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UNIT -1

PRECISIONAL MOTION AND FORCE ANALYSIS
Introduction

Whilst Gyroscopes are used extensively in aircraft instrumentation and have been utilised in monorail
trains, the everyday impact of gyroscopic forces on our lives is unappreciated and significant. The
simple example is a child's top which would not work but for the gyroscopic couple which keeps it
upright. On a slightly different level, the gyroscopic couple helps us to keep a bicycle upright. It is
interesting and instructive to remove a bicycle wheel from its frame, hold it by the axle, spin the
wheel and then try to change the orientation of the axle. The force required to do so is considerable!
However these gyroscopic forces are not always beneficial and it will be shown that the effect on the
wheels of a car rounding a corner is to increase the tendency for the vehicle to turn over.

Gyroscopic Couple

Without an understanding of Angular movement it is difficult to understand Gyroscopic Couples. For
this reason the Paragraph on Angular Displacement; Velocity and Acceleration shown in The Theory
of Machines - Mechanisms, has been reproduced here.

If a uniform disc of polar moment of inertia I is rotated about its axis with an angular velocity w, its
Angular Momentum I wis a vector and can be represented in diagram (c), by the line op which is
drawn in the direction of the axis of rotation. The sense of the rotation is clockwise when looking in

the direction of the arrow.

1
/—\-.\n @
) — , 3. )
‘/ a )
@w
(a) -
b
N - . (»)
——Tds \]
Ieo —
{c) 1

Irl I
If now the axis of rotation is precessing with a uniform angular velocity flabout an axis
perpendicular to that of w', then after a time 0t the axis of rotation will have turned through an angle

08 = 2t and the momentum vector will be og. The Gyroscopic Couple Tis given by:-



http://www.codecogs.com/users/13108/img_0001_13.jpg
http://www.codecogs.com/users/13108/img_0001_13.jpg

Pq
T = The rate of change of angular momentim = 5t
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Bt

= Jw ) In the limit

The direction of the couple acting on the gyroscope is that of a clockwise rotation when looking in the
direction pqg.

In the limit the direction of the couple is perpendicular to the axe of both wand {2

The reaction couple exerted by the gyroscope on its frame is in the reverse sense( It is advisable to

draw the vector triangle opq in each case.

Angular Displacement, Velocity And Acceleration

Let:- The line OP in the diagram rotates around O

. Its inclination relative to OX be “radians.

&l

Then if after a short period of time the line has moved to lie along OQ, then the angle d¢is The

Angular Displacement of the line.

Angular Displacement is a vector quantity since it has both magnitude and direction.

Angular Displacement:

In order to completely specify and angular displacement by a vector, the vector must fix:-
The direction of the axis of rotation in space.

The sense of the angular displacement. i.e. whether clockwise or anti-clockwise.

The magnitude of the angular displacement.

In order to fix the vector can be drawn at right angles to the plane in which the angular displacement
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takes place, say along the axis of rotation and its length will be , to a convenient scale, the magnitude
of the displacement.

The conventional way of representing the sense of the vector , is to use the right-hand screw rule. i.e,

The arrow head points along the vector in the same direction as a right handed screw would move,
relative to a fixed nut.

Using the above convention, the angular displacement 3shown in the diagram would be represented
by a vector perpendicular to the plane of the screen and the arrow head would point away from the

screen.

Angular Velocity:

This is defined as the rate of change of angular displacement with respect to time.

As angular velocity has both magnitude and direction it is avector quantity and may be represented
in the same way as angular displacement.

If the direction of the angular displacement vector is constant. i.e.The plane of the angular
displacement does not change its direction,. Then the angular velocity is merely the change in

magnitude of the angular displacement with respect to time.

Angular Acceleration:

Defined as the rate of change of angular velocity with respect to time.
A Vector quantity.
The direction of the acceleration vector is not necessarily the same as the displacement and velocity

vectors.

Assume that a given instant a disc is spinning with an angular velocity of . in a plane at right angles

to the screen and that after a short interval of 9t its speed has increased to w' + duw,
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Then applying the right-hand rule:-

The angular velocities at the two instants are represented by the vectors oa and ob
The change of angular velocity in a time of tis represented by the vector ab. This can be resolved

into two components ac and cb which are respectively parallel and perpendicular to oa
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The component parallel to oa is given by:- it
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The component perpendicular to oa is given by

The subject Dynamics of Machines may be defined as that branch of Engineering-science, which
deals with the study of relative motion between the various parts of a machine, and forces which act
on them. The knowledge of this subject is very essential for an engineer in designing the various parts
of a machine. A machine is a device which receives energy in some available form and utilises it to do
some particular type of work. If the acceleration of moving links in a mechanism is running with
considerable amount of linear and/or angular accelerations, inertia forces are generated and these
inertia forces also must be overcome by the driving motor as an addition to the forces exerted by the

external load or work the mechanism does.
NEWT ON’ S LAW :

First Law:

Everybody will persist in its state of rest or of uniform motion (constant velocity) in a straight line
unless it is compelled to change that state by forces impressed on it. This means that in the absence of
a non-zero net force, the center of mass of a body either is at rest or moves at a constant velocity.

nd Law

A body of mass m subject to a force F undergoes an acceleration a that has the same direction as the
force and a magnitude that is directly proportional to the force and inversely proportional to the mass,
i.e., F = ma. Alternatively, the total force applied on a body is equal to the time derivative of linear

momentum of the body.
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JThird Law

The mutual forces of action and reaction between two bodies are equal, opposite and collinear. This
means that whenever a first body exerts a force F on a second body, the second body exerts a force —F
on the first body. F and —F are equal in magnitude and opposite in direction. This law is sometimes

referred to as the action-reaction law, with F called the "action" and —F the "reaction".

Principle of Super Position:

Sometimes the number of external forces and inertial forces acting on a mechanism are too much for
graphical solution. In this case we apply the method of superposition. Using superposition the entire
system is broken up into (n) problems, where n is the number of forces, by considering the external
and inertial forces of each link individually. Response of a linear system to several forces acting
simultaneously is equal to the sum of responses of the system to the forces individually. This
approach is useful because it can be performed by graphically.

Free Body Diagram:

A free body diagram is a pictorial representation often used by physicists and engineers to analyze the
forces acting on a body of interest. A free body diagram shows all forces of all types acting on this
body. Drawing such a diagram can aid in solving for the unknown forces or the equations of motion
of the body. Creating a free body diagram can make it easier to understand the forces, and torques or
moments, in relation to one another and suggest the proper concepts to apply in order to find the
solution to a problem. The diagrams are also used as a conceptual device to help identify the internal
forces—for example, shear forces and bending moments in beams—which are developed within

structures.

DYNAMIC ANALYSIS OF FOUR BAR MECHANISM:

A four-bar linkage or simply a 4-bar is the simplest movable linkage. It consists of four rigid
bodies (called bars or links), each attached to two others by single joints or pivots to form closed loop.
Four- bars are simple mechanisms common in mechanical engineering machine design and fall under

the study of kinematics.

D-Alembert’s Principle
Consider a rigid body acted upon by a system of forces. The system may be reduced to a single

resultant force acting on the body whose magnitude is given by the product of the mass of the body
6




and the linear acceleration of the centre of mass of the body. According to Newton’s second law of
motion,

F=m.a

F = Resultant force acting on the body,

m = Mass of the body, and

= Linear acceleration of the centre of mass of the a body.

The equation (i) may also be written as: F—m.a =0

A little consideration will show, that if the quantity — m.a be treated as a force, equal, opposite and
with the same line of action as the resultant force F, and include this force with the system of forces of
which F is the resultant, then the complete system of forces will be in equilibrium. This principle is
known as D- Alembert’s principle. The equal and opposite force — m.a is known as reversed effective
force or the inertia force (briefly written as F,). The equation (ii) may be written as F + F; = 0...(iii)
Thus, D-Alembert’s principle states that the resultant force acting on a body together with the
reversed effective force (or inertia force), are in equilibrium. This principle is used to reduce a

dynamic problem into an equivalent static problem.

Velocity and Acceleration of the Reciprocating Parts in Engines

The velocity and acceleration of the reciprocating parts of the steam engine or internal combustion
engine (briefly called as I.C. engine) may be determined by graphical method or analytical method.
The velocity and acceleration, by graphical method, may be determined by one of the following

constructions: 1. Klien’s construction, 2. Ritterhaus’s construction, and 3. Benett’s construction.

SOLVED PROBLEMS

The crank and connecting rod of a reciprocating engine are 200 mm and 700 mm respectively. The
crank is rotating in clockwise direction at 120 rad/s. Find with the help of Klein’s construction: 1.
Velocity and acceleration of the piston, 2. Velocity and acceleration of the mid point of the
connecting rod, and 3. Angular velocity and angular acceleration of the connecting rod, at the instant
when the crank is at 30° to I.D.C. (inner dead centre).

Solution. Given: OC=200mm=0.2m ; PC=700 mm = 0.7 m ; ® = 120 rad/s
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The Klein’s velocity diagram OCM and Klein’s acceleration diagram CQNO as shown in Fig. 1 is
drawn to some suitable scale, in the similar way as discussed in Art. 15.5. By measurement, we find
that OM=127mm=0.127m; CM =173 mm =0.173m ; QN =93 mm = 0.093 m ; NO =

200 mm

Velocity and acceleration of the piston

We know that the velocity of the piston P,vp = ® x OM =120 x 0.127 = 15.24 m/s Ans.

Acceleration of the piston P, ap = ® 2 % NO = (120)2 x 0.2 = 2880 m/s % Ans.

Velocity and acceleration of the mid-point of the connecting rod

In order to find the velocity of the mid-point D of the connecting rod, divide CM at D, in the same
ratio as D divides CP. Since D is the mid-point of CP, therefore D, is the mid-point of CM, i.e. CD; =
D;M. Join OD;. By measurement, OD; = 140 mm =0.14 m
Velocity of D, vp = ® x OD; =120 x 0.14 = 16.8 m/s Ans.

In order to find the acceleration of the mid-point of the connecting rod, draw a line DD,
parallel to the line of stroke PO which intersects CN at D,. By measurement,

OD, =193 mm =0.193 m

« Acceleration of D,
ap=® 2 x OD, = (120)* x 0.193 = 2779.2 m/s > Ans.
. Angular velocity and angular acceleration of the connecting rod

We know that the velocity of the connecting rod PC (i.e. velocity of P with respect to

C), Vpc = x CM =120 x 0.173 = 20.76 m/s




EQUIVALENT DYNAMICAL SYSTEM

In order to determine the motion of a rigid body, under the action of external forces, itis usually
convenient to replace the rigid body by two masses placed at a fixed distance apart, in such a way
that,

the sum of their masses is equal to the total mass of the body ;

the centre of gravity of the two masses coincides with that of the body ; and

the sum of mass moment of inertia of the masses about their centre of gravity is equal to the mass
moment of inertia of the body.

When these three conditions are satisfied, then it is said to be an equivalent dynamical system.

Consider a rigid body, having its centre of gravity at G,

Let m = Mass of the body, kg = Radius of gyration about its centre of gravity G,
m1 and m 2 = Two masses which form a dynamical equivalent system,

CORRECTION COUPLE TO BE APPLIED TO MAKE TWO MASS SYSTEM

DYNAMICALLY EQUIVALENT

In Art.2 , we have discussed the conditions for equivalent dynamical system of two bodies. A little
consideration will show that when two masses are placed arbitrarily*, then the conditions (i) and (ii)
as given in Art. 2 will only be satisfied. But the condition (iii) is not possible to satisfy. This means
that the mass moment of inertia of these two masses placed arbitrarily, will differ than that of mass

moment of inertia of the rigid body.

Fig. 2. Correction couple to be applied to make the two-mass system dynamically equivalent.
INERTIA FORCES IN A RECIPROCATING ENGINE, CONSIDERING THE WEIGHT

OFCONNECTING ROD

In a reciprocating engine, let OC be the crank and PC, the connecting rod whose centre of gravity lies

at G. The inertia forces in a reciprocating engine may be obtained graphically as discussed
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below:First of all, draw the acceleration diagram OCQN by Klien’s construction. We know

that the acceleration of the piston P with respect to O,

Fig. 3. Inertia forces is reciprocating engine, considering the weight of connecting rod.
Replace the connecting rod by dynamically equivalent system of two masses as discussed in Art.
15.12. Let one of the masses be arbitrarily placed at P. To obtain the position of the other mass, draw
GZ perpendicular to CP such that GZ = k, the radius of gyration of the connecting rod. Join PZ and
from Z draw perpendicular to DZ which intersects CP at D. Now, D is the position of the second mass.
Note: The position of the second mass may also be obtained from the equation,
GP x GD = k2
Locate the points G and D on NC which is the acceleration image of the connecting rod. This is done
by drawing parallel lines from G and D to the line of stroke PO. Let these
From D, draw DE parallel to dO which intersects the line of stroke PO at E. Since the accelerating
forces on the masses at P and D intersect at E, therefore their resultant must also pass through E. But
their resultant is equal to the accelerang force on the rod, so that the line of action of the accelerating
force on the rod, is given by a line drawn through E and parallel to gO, in the direc- tion from g to O.

The inertia force of the connecting rod F¢ therefore acts through E and in the opposite direction.

A little consideration will show that the forces acting on the connecting rod are :

Inertia force of the reciprocating parts (F| ) acting along the line of stroke PO,The side thrust

10




(@)
(b)

between the crosshead and the guide bars (Fp) acting at P and right angles to line of stroke PO,
The weight of the connecting rod(W ¢ = mc.9),

Inertia force of the connecting rod (Fc),

The radial force (FR) acting through O and parallel to the crank OC,

The force (FT) acting perpen- dicular to the crank OC.

Now, produce the lines of action of Fg and F\ to intersect at a point I, known as instantaneous

centre. From I draw | X and | Y, perpendicular to the lines of action of Fc and W ¢. Taking moments

about I,

Fr xIC =FxIP+FcxIX+WcgxIlY ..(ii)
The value of Fr may be obtained from this equation and from the force polygon as shown in Fig.
15.22, the forces Fy and FR may be calculated. We know that, torque exerted on the crankshaft to

overcome the inertia of the moving parts = Fr xOC
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UNIT-I1

CLUTCH, BRAKE & DYNAMOMETER
CLUTCH:
It is the device used in the transmission system of the vehicle to engage and disengage the engine to
the transmission, thus the clutch is located between the engine and gearbox. When the clutch is
engaged the power flows from the engine to the gearbox.
Types of clutches
Single plate clutch

Cone clutch

SINGLE PLATE CLUTCH:

ety i
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Single Plate Clutch

It is the most common type of clutch wused in the motor vehicles.
The driving shaft is connected to the clutch plate by means of taper key and the driven shaft is
connected to the clutch plate by means of feather key. The friction disc is secured between 2 clutch
plates and fastened by the rivet. The clutch plate is still extended to accommodate the operating lever.
The spring is held by a collar by means of external source the collar slides in the shaft which applies
the pressure to the clutch plate through the spring. As the pressure is applied the friction disc and the
clutch plate comes more closer there by it starts rotating by means of a shaft. However when it is
desired to disengage, the lever is pushed which moves the clutch plate by compressing the spring over

the driven shaft to disengage the driving and driven shaft.
12




CONE FRICTION CLUTCH:
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Cone Friction Clutch

The driving shaft is connected to the flywheel by means of taper key and driven shaft is connected to

the cone clutch by means of feather key. The cone clutch comes in contact with the flywheel by

means of friction lining. The cone clutch is extended to accommodate the operating lever. The spring

is held by a collar. When the clutch is engaged the collar is pushes the cone clutch and applies the

pressure through the spring. When the clutch has to be disengaged, the operating lever is pressed

which prevents the contact from the clutch plate to the flywheel there by disengaging the driving and

driven shafts.

FUNCTIONS OF CLUTCH

The clutch is located between the engine and the gearbox

1. When the clutch is engaged the power flows from the engine to the wheels through the gear box
and vehicle moves.

2. When the clutch is disengaged the power is not flown to the wheels from the engine through the
gear box.

3. The clutch will be disengaged when starting the engine, stopping the engine.

4. The clutch permits the vehicle to take up the gradual load.

5. When properly operated, it prevents the jerky motion of the vehicle thus preventing the strain

applied to the transmission system.

13




DYNAMOMETER
It is the device used to measure the frictional forces in the steam engines, IC engines, steam turbines
etc.
CLASSIFICATION
1. Absorption dynamometer
2. Transmission dynamometer
ABSORPTION DYNAMOMETER:
It absorbs the available power while working against the friction. It is of 2 types. They are:
a. Mechanical friction dynamometer
b. Hydraulic dynamometer
c. Electrical friction dynamometer
Mechanical friction dynamometer is again classified as
a. Prony brake dynamometer

b. Rope brake dynamometer

TRANSMISSION DYNAMOMETER:

It transmits the power at the mechanical joints of the parts of the dynamometer. It is of 2
types:

Belt transmission dynamometer

Epicyclic transmission dynamometer

Torsion transmission dynamometer

PRONY DYNAMOMETER:

Prony Brake

It is the simplest type of the absorption dynamometer. It consists of 2 blocks of wood which are
14




clamped by means of a bolt. The upper block is bolted with the help of a spring so as to increase the
pressure on a revolving brake drum. The lower block is connected to the lever carrying the dead
weight. However the balance weight balances the brake when unloaded. During the rotation of the
brake drum, the block starts vibrating which is controlled by means of a dead weight. The friction
pressure on the brake drum is adjusted by means of the bolts until the brake drum runs at the required
speed. The power transmitted is calculated using the formula
HP= (2 aNT)/ (60*1000) W
N= RPM, T=torque applied on the net load on the brake drum, kNm
T=W*R W= net load acting on the brake drum, kg
R= radius of the brake drum, m

ROPE BRAKE DYNAMOMETER:

G D

Rope Brake

This brake consists of a brake drum over which the rope is being attached and wound. The upper
ends being connected together and attached to the spring balance which is hung from a support and
the lower ends are connected to the external weight W. the external weight W is adjusted until the
brake drum rotates at the desired speed. The power transmitted is calculated using the formula

HP= (2 aNT)/ (60*1000) W

= (2 IN(W-S)r)/(60*1000) W

W= external weight, N S= spring balance reading, N r=radius of a brake drum, m N

RPM

15




BELT TRANSMISSION DYNAMOMETER:

Belt Transmission Dynamometer

It consists of a frame mounted with a driving pulley A and driven pulley C. A lever pivated at the
junction D carries the balance weight at one end and the external weight W at the other end. The lever
carries 2 intermediate pulleys B1 and B2.an endless belt passes from the driving pulley A, over the
intermediate pulleys Bland B2 to the driven pulley C. if the driven pulley revolves in the
anticlockwise direction, the tight and the slack sides of the belt are shown. The power transmitted is
calculated using the formula

HP= (2aNT)/ (60*1000) W
N= RPM, T=torque applied on the net load on the brake drum, kNm
BRAKES
It is the device used to bring the rotating body to the rest.
CLASSIFICATION:
a. Block brake
b. Band brakes
c. Block and band brake

d. External and internal expanding shoe brake
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BLOCK BRAKE: used in railway carriages, road rollers etc

Block Brake

The block brake consists of a lever pivoted at A, connected at B to a block which may be held pressed
against the rim of a rotating wheel by applying a pull at the other end C of a lever. When the brake is
applied by applying a pull P, the friction between the block and the rim of the wheel causes the
tangential force F to act on the rim against its motion.
Work done against friction = friction force * S

= ((uPb) a)*S
u= coefficient of friction, P= external pull, S= linear distance travelled, Tangential force F=pR.
BAND BRAKE: The band is tightened round the drum and the friction between the band and the
drum provides the tangential braking torque. The two types of brakes are...

1. Simple band brake 2. Differential band brake

SIMPLE BAND BRAKE:

17.5. Simple Band Brake

£ oy
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Simpile Band Brake

One end of band is connected to the pivot end of the lever and the other end is connected to

intermediate point of the lever. The pull P applied at the end of the lever as shown, produces tensions
17




T1 and T2 in the band and these cause a frictional force between the band and the drum.
T1= tension in the tight side of the band, T2= tension in the slack side of the band, ©= angle of
contact in radians, pu= coefficient of friction. The braking force P = (T,y)/x

DIFFERENTIAL BAND BRAKE:

One end of the band is connected to the end of the short bent lever. The other end is connected to the
pin on a point on the long lever. Applying the pull P at the end of the lever as shown T1 and T2 are
produced in the band and these cause the frictional force between the band and the drum.

BAND AND BLOCK BRAKE:

Band and Block Brake )

This is the modification of band brake. It consists of number of wooden blocks fixed to a steel band.

Both the band and block are the part of the wheel.

18




INTERNAL EXPANDING SHOE BRAKE:

In mechanically operated brakes, as soon as the brake pedal is depressed, the cam rotates partly which
thrusts the shoes against the inner flanges of the drum to stop it from rotating. When the brake pedal is
released the cam rotates back and the 2 shoes are drawn back by the spring. In hydraulically operated
brakes, as soon as the brake pedal is depressed, a piston in the master cylinder moves which increases
the pressure of the fluid, the fluid is then passed to the wheel cylinder. The pressure of the fluid in the
wheel cylinder forces the 2 pistons in the wheel cylinder apart against the tension of the spring which
connects the 2 shoes. As a result the shoes thrust against the brake drum so as to stop it from rotating.
When the brake pedal is released the pressure in the master cylinder reduces which in turn reduces the

pressure in wheel cylinder and the 2 shoes are drawn back by the spring.
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UNIT-I11

TURNING MOMENT DIAGRAM, GOVERNORS

The turning moment diagram (also known as crank-effort diagram) is the graphical representation of
the turning moment or crank-effort for various positions of the crank. It is plotted on cartesian co-

ordinates, in which the turning moment is taken as the ordinate and crank angle as abscissa

Turning Moment Diagram for a Single Cylinder Double Acting Steam Engine

A turning moment diagram for a single cylinder double acting steam engine is shown in Fig. The

vertical ordinate represents the turning moment and the horizontal ordinate represents the crank angle.
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Fig. Turning moment diagram for a single cylinder, double acting steam engine
where F, = Piston effort,
» = Radius of crank,
n = Ratio of the connecting rod length and radius of crank. and

8 = Angle tumed by the crank from inner dead centre.

From the above expression, we see that the turning moment (T ) is zero, when the crank angle (0 ) is
zero. It is maximum when the crank angle is 90° and it is again zero when crank angle is 180°. This is
shown by the curve abc in Fig. 16.1 and it represents the turning moment diagram for outstroke. The
curve cde is the turning moment diagram for instroke and is somewhat similar to the curve abc. Since
the work done is the product of the turning moment and the angle turned, therefore the area of the
turning moment diagram represents the work done per revolution. In actual practice, the engine is
assumed to work against the mean resisting torque, as shown by a horizontal line AF. The height of
the ordinate a A represents the mean height of the turning moment diagram. Since it is assumed that

the work done by the turning moment per revolution is equal to the work done against the mean
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resisting torque, therefore the area of the rectangle aAFe is proportional to the work done against the

mean resisting torque.

Turning Moment Diagram for 4s IC Engine
A turning moment diagram for a four stroke cycle internal combustion engine is shown in Fig.2. We
know that in a four stroke cycle internal combustion engine, there is one working stroke after the

crank has turned through two revolutions, i.e. 720° (or 4 = radians).

—
]
T
g
&

:
|
i
i
|
|
d

_ Paositive laap

Turh 1y Inzimaist

' o | ' I
}4— Atclizn —b!d‘ Compression iTt— Warking —set Exhzust e

Crank angle »
Fig. 2. Turning moment diagram for a four stroke cycle internal combustion engine.

Since the pressure inside the engine cylinder is less than the atmospheric pressure during the suction
stroke, therefore a negative loop is formed as shown in Fig. 16.2. During the compression stroke, the
work is done on the gases, therefore a higher negative loop is obtained. During the expansion or
working stroke, the fuel burns and the gases expand, therefore a large positive loop is obtained. In this
stroke, the work is done by the gases. During exhaust stroke, the work is done on the gases, therefore
a negative loop is formed. It may be noted that the effect of the inertia forces on the piston is taken

into account in Fig. 2.

Turning Moment Diagram for a Multi-cylinder Engine

A separate turning moment diagram for a compound steam engine having three cylinders and the
resultant turning moment diagram is shown in Fig. 16.3. The resultant turning moment diagram is the
sum of the turning moment diagrams for the three cylinders. It may be noted that the first cylinder is

the high pressure cylinder, second cylinder is the intermediate cylinder and the third cylinder is the
21




low pressure cylinder. The cranks, in case of three cylinders, are usually placed at 120° to each other.

FLUCTUATION OF ENERGY

The fluctuation of energy may be determined by the turning moment diagram for one complete cycle
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of operation. Consider the turning moment diagram for a single cylinder double acting steam engine

as shown in Fig. 16.1. We see that the mean resisting torque line AF cuts the turning moment diagram
at points B, C, D and E. When the crank moves from a to p, the work done by the engine is equal to
the area aBp, whereas the energy required is represented by the area aABp. In other words, the engine
has done less work (equal to the area a AB) than the requirement. This amount of energy is taken from
the flywheel and hence the speed of the flywheel decreases. Now the crank moves from p to g, the
work done by the engine is equal to the area pBbCq, whereas the requirement of energy is represented
by the area pBCq. Therefore, the engine has done more work than the requirement. This excess work
(equal to the area BbC) is stored in the flywheel and hence the speed of the flywheel increases while

the crank moves from p to g.

Similarly, when the crank moves from g to r, more work is taken from the engine than is developed.
This loss of work is represented by the area C ¢ D. To supply this loss, the flywheel gives up some of
its energy and thus the speed decreases while the crank moves from g to r. As the crank moves from r
to s, excess energy is again developed given by the area D d E and the speed again increases. As the
piston moves from s to e, again there is a loss of work and the speed decreases. The variations of
energy above and below the mean resisting torque line are called fluctuations of energy. The areas

BbC, CcD, DdE, etc. represent fluctuations of energy.

A little consideration will show that the engine has a maximum speed either at q or at s. This is due to

the fact that the flywheel absorbs energy while the crank moves from p to g and from r to s. On the
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other hand, the engine has a minimum speed either at p or at r. The reason is that the flywheel gives
out some of its energy when the crank moves from a to p and q to r. The difference between the

maximum and the minimum energies is known as maximum fluctuation of energy.

Determination of Maximum Fluctuation of Energy

A turning moment diagram for a multi-cylinder engine is shown by a wavy curve in Fig. 4. The
horizontal line A G represents the mean torque line. Let a;, as, as be the areas above the mean torque
line and a,, a, and ag be the areas below the mean torque line. These areas represent some quantity of

energy which is either added or subtracted from the energy of the moving parts of the engine

Let the energy in the flywheel at A = E, then from Fig. 16.4, we have Energy at B = E + a,
Energyat C=E + a;—a,
EnergyatD=E+a;—a,+asEnergyatE=E+a;—a,+az— a4
EnergyatF=E+a;,—-ataz—a;+asEnergyat G=E+a;,—a,+az;—a;+as—as

= Energy at A (i.e. cycle repeats after G)

Let us now suppose that the greatest of these energies is at B and least at E. Therefore, Maximum
energy in flywheel

= E + a; Minimum energy in the flywheel

=E+a-ataz—a,

Turning ‘nenenl

—— Cran< angle —a=

Fig. 4. Determination of maximum fluctuation of energy.

FLYWHEEL
A flywheel used in machines serves as a reservoir, which stores energy during the period when the
supply of energy is more than the requirement, and releases it during the period when the requirement

of energy is more than the supply.
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In case of steam engines, internal combustion engines, reciprocating compressors and pumps, the
energy is developed during one stroke and the engine is to run for the whole cycle on the energy
produced during this one stroke. For example, in internal combustion engines, the energy is developed
only during expansion or power stroke which is much more than the engine load and no energy is
being developed during suction, compression and exhaust strokes in case of four stroke engines and
during compression in case of two stroke engines. The excess energy developed during power stroke
is absorbed by the flywheel and releases it to the crankshaft during other strokes in which no energy is
developed, thus rotating the crankshaft at a uniform speed. A little consideration will show that when
the flywheel absorbs energy, its speed increases and when it releases energy, the speed decreases.
Hence a flywheel does not maintain a constant speed, it simply reduces the fluctuation of speed. In
other words, a flywheel controls the speed variations caused by the fluctuation of the engine turning

moment during each cycle of operation.

In machines where the operation is intermittent like *punching machines, shearing machines, rivetting
machines, crushers, etc., the flywheel stores energy from the power source during the greater portion
of the operating cycle and gives it up during a small period of the cycle. Thus, the energy from the

power source to the machines is supplied practically at a constant rate throughout the operation.
COEFFICIENT OF FLUCTUATION OF SPEED

The difference between the maximum and minimum speeds during a cycle is called the maximum
fluctuation of speed. The ratio of the maximum fluctuation of speed to the mean speed is called the

coefficient of fluctuation of speed.

Let N; and N, = Maximum and minimum speeds in r.p.m. during the cycle
N +N_

N — Mezn speed inrpm. = — = =
. Coefficient of fluctuation of speed.

€. — NN B 2(M, - N:)
8 N N, + N,

O -®, 3(0),1 - o, )

= . e~ -..(In terms of angular speeds)
w0 « + ’ =

» » 2 : Y Aoy
LT "(.‘1 ‘2)
= - = " -.(In tcrms of lincar spceds)
1 VoFEw

The coefficient of fluctuation of speed is a limiting factor in the design of flywheel. It varies
24




depending upon the nature of service to which the flywheel is employed.

ENERGY STORED IN A FLYWHEEL

I = Mass moment of inertia of the flywheel about 1ts axis of rotation
mkg-m® = m k2,
N, and N, = Maximum and mmnimum speeds during the cycle mrp.m

®, and , = Maximum and minimum angular speeds during the cycle inrad’s.

; : NN
N = Mean speed dunng thecyclemrpm. = =
_ ] ® + o,
® = Mean angular speed dunng the cycle mn rad/s = 5 =
.Vl =t JN'._' 0)1 5 m.‘
C¢ = Coefficient of fluctuation of speed. = - = or . =
Y, |

Let m = Mass of the flywheel inkg,

k = Radius of gyration of the flywheel in metres,

The turning moment diagram for a multi-cylinder engine has been drawn to a scale of 1 mm to 500 N-
m torque and 1 mm to 6° of crank displacement. The intercepted areas between output torque curve
and mean resistance line taken in order from one end, in sq. mm are — 30, + 410, — 280, + 320, — 330,
+ 250, — 360, + 280, — 260 sq. mm, when the engine is running at 800 r.p.m.The engine has a stroke of
300 mm and the fluctuation of speed is not to exceed + 2% of the mean speed. Determine a suitable
diameter and cross-section of the flywheel rim for a limiting value of the safe centrifugal stress of 7
MPa. The material density may be assumed as 7200 kg/m®. The width of the rim is to be 5 times the

thickness.

and coefficient of fluctuation of speed.

Dy @>

Cg = =0.04
o
Diameter of the flywheel rin
Let D = Diameter of the flywheel nnm in metres. and
v = DPcriphceral velocity of the flywheel rim in mfs.

We know that centrifugal stress (G).
7 = 10% = pv2=7200v2 or vI=7 = 10%/7200=9722
= v =312 m/s
We know that v nt D N/60
> D =v>x60/tN=312 =60/t <x800=0.745 m Ans.

Solution. Given : N = 800 r.p.m. or & = 27t x 800 / 60 = 83.8 rad/s; *Stroke = 300 mm ;
6=7MPa=7x10°N/m?; p = 7200 kg/m°

Since the fluctuation of speed is + 2% of mean speed, therefore total fluctuation of
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and

Cross=section of the flywheel vim
Let t = Thickness of the flywheel rim in metres, and
b = Width of the flywhe=l rim 10 metres =51 ...{Given)
.. Cross-sectional area of flywheel im.
A=bt=5txt=5¢

kst of all, let us tmd the mass () ot the flywheel im. 1he turming moment diagram s
shown in Fig 16.18.

410

T 1 :To S 2
4 ,‘.‘,'./t \\ N - ‘lx =
3 A Jit 2 30 D/ 2 ':‘E ,F/". A H/ \K L{A)
ET B T ' \ i \ i B 4
s |1 = I \

N,
o |90 280 ‘}
g Mezn torque 330 350 26C
'I_ lire

Crank angle ———»
Fig. 1¢.18

Since the turning moment scalc :s | mm =500 N-m and crank anglc scalc 15 1 mm = 6°
=1 /30 rad. therefore

0w1-02,=4% 0=0.04 ®
The turning moment diagram of a four stroke engine may be assumed for the sake of

simplicity to be represented by four triangles in each stroke. The areas of these triangles are

as follows: Siictinn stroke = 5 x 10 5 m?2 Coamnressinn strake = 21 x 10 ° m% Fxnansinn
Letthe energy at 4 = E_ then refernicg toFig 16.18.

strok Encrgyat B=£E£ 30 .. . (Minimum energy)

Energyat € = £—30+410=E+ 380

Energyat D =E + 380—-280=E+ 100

torqu Energyat £ = E+ 100+ 320=E+420 .- . (Maximum energy)

Energvat F=E+420-330=E+90

Energvat G=E+90+250=E+ 340

minil Energyat H=E+340-360=E-20

strok

betw

AE = Maximum energy — Minimum energy
= (E+420)— (E— 30) = 450 mm*
— 450 = 5237 —23 566 N-m1
We also know that maximum fluctuation of energy (AE).
23 566 = m.\'z.CS= m > (312 x0.04=39m
m = 23566 /39 = 604 kg
We know that mass of the flywheel rnim (1),
604 = Volume = density=nD A4 p
=1 = 0.745 x 57 x 7200 = 84 268 7
£ = 604/84268 =0007 17 m* or +=0.085 m=85 mm Aus.
b=53=5x85=425mm Ans.
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—Turning moment —»
l— -LE§5_3<'”.

Line of zera
pressure

D

o]
_l!
o
n
a
w
"/

\'.\ .'-:Aa‘a. = 4

—»  Suction

l Comp l Expansion l Exhaust ‘4—

Crank angle ——»

Fig. 16.20

Net area =a;—(a; +a, + a)

=85%x10°—(5=10° 1 21 %107 | 8 x 107)=51 =% 107 m?

Since 1m? = 14 MN-m = 14 x 10° N-m of work. therefore
Net work done per cycle

=51 = 107 x 14 = 105 = 7140 N-m
We also know that work done per cycle

=T x 4wt N-m

From equation (7) and (77).
T, ...=FG=7140/4n=568 N-m

Work done during expansion stroke

= a; * Work scale= 85 = 10~° x 14 x 10 =11 900 N-m

Also, work done during expansion stroke

1 1
== xBCxAG= =5 XK *xAG=157T14G
From equations (7#77) and (1v),

AG =11900/1.571=7575 N-m

. Excess torque =AF=AG-FG=7575-568 =7007 N-m
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Now from similar rianples AL FE and A BC

DE = AF o AF = BC 700; X7 2.9 rad

oI

EBC AG A TAT:
We know that maxinonon [Juctoation of cnergy,
AE Areacf AAUE —;— < LB = Al”

1

2 * 2.9 = 7007 10160 N-m

Mounent nf Ineriia of the fhavheel
lLet /= Moment of inertia of the flywheel in kg-mZ.

We know that mmean speed during the cyele
N+ N, 102 + 98
2 2
Corresponding angular mean speed,
w= 2N/ 60 = 27« 100/60 = 10.47 rad/s

N 100 r.p.m,

and coefficient of fluctuation of speed.

Cs Ny — I, 102 — S8
’ N 100
We know that maximum fluctnatiaon of energy (A6,

10160 Zw?.C., 7(10.47)2x<0.04 4.3857
7= 10160/ 4 383 = 2317 kg m? Ans,

0.04

Size of Hvwheel
et f Thickness nf'the flywheel rim in metres,

f — Width of the flywheel rim in metres — 4 ¢ AGiven)
D = Mean diameter of the Oywheel in metres, and
v = Peripheral velocity of (he Mywheel in /s,

We know that hoop stress (a),

75% 108 . v% - 8150
Y a b
Vo= 7'€XIO =920 or v=303 mvs
H1hi)

= mON/GO or D=v » 60/mN =303 »x 60/m x 100 =5.780 m

and
Alsv = Volume » density = t1Dx AxE —wDxhxrxt
5 =4
< r4 7
2767 =1t x 5786 x 4¢x tx §oel0 =595 10% ¢
& £ =276.7/59.3 « 104 = 0.0216 w or 21.6 i Ans.
and b=4t=1x 216 = 861 mum Aus.
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INTRODUCTION TO GOVERNOR:

A centrifugal governor is a specific type of governor that controls the speed of an
engine by regulating the amount of fuel (or working fluid) admitted, so as to maintain a near constant

speed whatever the load or fuel supply conditions. It uses the principle of proportional control.

It is most obviously seen on steam engines where it regulates the admission of steam into the
cylinder(s). It is also found on internal combustion engines and variously fuelled turbines, and in
some modern striking clocks.

PRINCIPLE OF WORKING:
Power is supplied to the governor from the engine's output shaft by (in this instance) a belt or chain
(not shown) connected to the lower belt wheel. The governor is c_onnected to a throttle valve that
regulates the flow of working fluid (steam) supplying the prime mover (prime mover not shown). As
the speed of the prime mover increases, the central spindle of the governor rotates at a faster rate and
the Kinetic energy of the balls increases. This allows the two masses on lever arms to move outwards
and upwards against gravity. If the motion goes far enough, this motion causes the lever arms to pull
down on a thrust_bearing, which moves a beam linkage, which reduces the aperture of a throttle valve.
The rate of working-fluid entering the cylinder is thus reduced and the speed of the prime mover is

controlled, preventing over speeding.

Mechanical stops may be used to limit the range of throttle motion, as seen near the masses

in the image at right.

The direction of thelever arm holding the mass will be along the vector sum of the

reactive centrifugal force vector and the gravitational force.
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UNIT -1V
BALANCING

INTRODUCTION:

Balancing is the process of eliminating or at least reducing the ground forces and/or moments. It is
achieved by changing the location of the mass centres of links. Balancing of rotating parts is a well
known problem. A rotating body with fixed rotation axis can be fully balanced i.e. all the inertia
forces and moments. For mechanism containing links rotating about axis which are not fixed, force
balancing is possible, moment balancing by itself may be possible, but both not possible. We
generally try to do force balancing. A fully force balance is possible, but any action in force balancing

severe the moment balancing.

BALANCING OF ROTATING MASSES:
The process of providing the second mass in order to counteract the effect of the centrifugal force of

the first mass is called balancing of rotating masses.

Static balancing:
The net dynamic force acting on the shaft is equal to zero. This requires that the line of action of three
centrifugal forces must be the same. In other words, the centre of the masses of the system must lie on
the axis of the rotation. This is the condition for static balancing.
Dynamic balancing:
The net couple due to dynamic forces acting on the shaft is equal to zero. The algebraic sum of the
moments about any point in the plane must be zero.
Various cases of balancing of rotating masses:
i.Balancing of a single rotating mass by single mass rotating in the same plane.
ii. Balancing of a single rotating mass by two masses rotating in the different plane.
iii. Balancing of a several masses rotating in single plane.

iv.Balancing of a several masses rotating in different planes.
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BALANCING OF A SINGLE ROTATING MASS BY SINGLE MASS ROTATING IN THE

SAME PLANE:

Consider a disturbing mass m; attached to a shaft rotaiing at o rad/s as shownin Fig.
Let ry be the radus of rotation of the mass i, (1.e. distance between the axis of rotation of the shaft
and the centie of gravity of the mass m).

We know that the centrifugal force exerted by the mass m; on the shaft,
FCl:ml-(o"-rl ...

This centrifugal force acts radially outwards and thus produces bending mement on the
shaft. In order to counteract the effect of this force. a balancing mass (m,) may be atrached 1n the
same plane of rofation as taat of disturbing mass (m,) such that the centnfuoal forces due to the
two masses are equal and opposite.

Disturbing
mass

Balancng of a siagle rotating mass by a single mass rotating 1n the came plane.

Let 15 — Radius of rotation of the balancing mass m, (i.€. distance between the
axis of rotation of the shaft and the ceatre of gravity of mass m, ).

Centrifugal force due to mass m,.

2 ag
Foo=my @ -1 -

Equating equations (7) and (i),
2 )
MO =My 0 -7y OF M Ty =My T

Notes : 1. The product m,.r, may be split up in any convenient way. But the radws of rotation of the
balancing mass () 1s generally made large in order to reduce the balancing mass m,.

2. The centrifugal forces are proportional to the product of the mass and radius of rotation of
respective masses. because @ 1s same for each mass.
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BALANCING OF A SINGLE ROTATING MASS BY TWO MASSES ROTATINGIN THE

DIFFERENT PLANE:

We have discussed in the previous article that by mtroducing a single balancing mass in the
same plane of rotation as that of disturbing mass, the centrifugal forces are balanced. In other
words, the two forces are equal in magnitude and opposite m direction. Bur this type of arrange-
ment for balancing gives rise to a couple which tends to rock the shaft in its bearings. Therefore in
order to put the systen m complete balancz, two balancing masses are placed in two different
planes, parallel to the plane of rotation of the disturbing mass, m such a way that they sansfy the
followmg two conditions of equ:librium.

1. The net dvnamic foree acting on the shaft is equal to zero. This requires that the line of
action of three centrifugal forces must be the same. In other words, the centre of the
masses of the system must lie on the axis of rotation. This 15 the condition for sfatic
balancing.

2. The net couple due to the dynamic forces acting on the shaft 1s equal to zero. In other
words, the algebraic sum of the moments about ary pomt in the plane must bz zero
The conditions (1) and (2) together give dynamic balancing. The follow:ng rwo possibili-
Let [, = Distance between the planes 4 and L.
[; = Daistance between the plates 4 and M. and
{ = Dastarce between the planes L and M.

L V2% I m/ 2
| A A
P 72
, | [ 7
|<—11—><— I2—>] ,//

9| --------- o |P_ 174
< , =!- o » /',

Fig. 21.2. Balancmng of a siagle rotating mass by 'we rotating masses in different planes when the
plane of single rctating mass lies 1n between the plaaes of two balancing masses.

Wz know that the centrifugal force exerted by the mass m in the plane 4.
Fc =m-@ 7
Simularly, the centrifugal force exerted by the mass m, in the plane L.
Fry =gy o h
and. the centrifugal force exerted by the mass m, in the plane M.
Fory=m .(,)3.;-:

Since the net force acting on the shaft must be equal to zero, therefore the centrifugal force
on the disturbing mass must be equal to the sum of the centrifugal ferces on the balancing masses,
therefore
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BALANCING OF A SEVERAL MASSES ROTATING IN SAME PLANE:

The meagnitude and position of the balancing mass may bz found out analvtically or
graphically as discussed below :

Fea d
Rasultant SN EBes
] f';r“’vz -~ /'/ \\
e \T & o ol Fo1/ o
N \ = F
N \ ) m /
BE= \ 2 Sy /
Vi . \ l/ I/, .1 .'/
AN e 0 4 0, e/ Fea
R tRA L X * Resultant
4l \ b
A g
bR FoX
/ wr S lF<
//,4 . \\ '// C1
= m 4
Z L 8
7= \r
¥
Fis <
() Space diagram (b) Veotor diagram.

Fig. 214 Balancing of saveral masses rotating in the same plane.

L. Analytical method
Tha magnitude znd direction of tha balancing mass may he ohtained. analytically. as
discussad below :
1. First of all, find out the centrifugal force™ (or the product of the mass and its radmus of
rotation) exerted by sach mass on the rotating shaft.

). Resolve the cantrifigal forces horizontally and vertically and find their sums. ie. TH
and Iy . We know fhat
Sum of horizontal components of the cantrifugal forces,
LH =1y 0058y +my 1y 058y =
and sum of vertical componenrs of the cantrifigal forces,
L/ =mynsiml +aynsmby +o..

3. Magnitude of the resultant centrifugal force,

F =y 2H) + (7Y
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4. If 0 15 the angle, which the resultant force makes with the horizontal, then
tnf=LV/LH

5. The balancing force 15 then equal to the resultant force, but i apposite direction.
6. Now find out the magnstude of the balancing mass, such that

F =mr
where m = Balancing mass, and

r = Its radsus of rotation.

Y. Graphical method

The magnitude and position of the balancing mass may also be obtamned graphically as

discussed below

or

1, First of all, draw the space diagram with the positions of the several masses. as shown 1n
kg

1. Find out the centrifugal force (or product of the mass and radius of rotation) exerted by
each mass on the rotating shaft.

3. Now draw the vector diagram with the obtained centrifugal forces (or the product of the
masses and their radu of rotation), such that ab represents the centrifugal force exerted by
the mass m, (or m, ;) 1n magnitude and direction to some suitable scale. Similarly, draw
be. ed and de to represent centrifugal forces of other masses My, M, and m A (or My Ty,
My, and myry).

4. Now, as per polygon law of forces, the closing side ae represents the resultant force
magnitude and direction. as shown 10 Fig,

5. The balancing force 1s. then, equal to the resultant force, but in oppasire direcrion,

6. Now find out the magnitude of the balancing mass () at a given radtus of rotation (7).
such that

) .
M@ 1 = Resultant centrifugal force

m.r = Resultant of m, 7, my.ry, my.; and myr,
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BALANCING OF SEVERAL MASSES ROTATING DIFFERENT PLANE:

When several masses revolve in different planes. they
may bz transferred to a refereince plane (driefly written as
R.P.). which may be defined as ths plane passing through a
point on the axis of rotation and perpendicular to it. The
effect of rransferring a revolving mass (in one plane) to a
reference plane is to cause a force of magnitude equal to the
centrifugal foree of the revolving mass to act in the reference
plane. together with & couple of magnitude equal ‘o the
product of the force and the d:srance between the plane of
rotation and the reference plane. In order to have a complete
balance of the several revolving masses in different plenss,
the following two conditions must be satisfied :

1. The forces in the reference plane muist balance, i.e.
the resultant force must be zaro.

2, The couples about the reference plane must balance,
i.e, the resultan: couple must be zero.

Let us now consider four masses m,, m,. i, and m,
revolving in planes 1. 2. 3 and 4 respectively as shown in

Diesel engina.

Fig.  (a). The relative angular positions of these masses are shown in the end view [Fig. 21.7
(b)]. The magnitude of the balancmg masses m; and m, i planes L and M may be obtamed as
discussed below :

1. Take one of the planes. say L as the reference plane (R.P.). The distances of all the other
planes to the left of the reference plane may be regarded as negative, and those to the
night as positive.

2. Tabulate the data as shown m Table 21.1. The planes are tabulated 1n the same order 1n
which they occur, reading from left to right.
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Table 21.1

Plane Mass (m) Radius(r) | Cent.force + @ | Distance from | Couple + o

(m.r) Plane L (1) (me.r.0)

(1) 2) (3) (4) (5) (6)

1 " n My - —mprd;

L(RP) my " my.ry 0 0

2 m, 2 M0y I My.r. 1

3 s s M.y I} P m3.r3.13

4 ", Ty My Iy myr 4.14

—vpe—RP —+ve

®0Oe 0w 6

A
—~—
o~
v

(b) Angular position of the masses.

(¢) Couple vector.

kig.

O c
G g N
‘\\ //' = '."\\‘\?3 FcaY' 9 wfes
G, :f‘fé C";‘ /'*,b' 1 <Fon \}b
o wA
" l}i..ﬂ'cM " .—"E\_‘.—- —a

{d) Couple vectors turned (e) Couple polygor.

dp

counter clockwise through

a right angle.

(f) Force polygon.

Balancing cof several masses rotating in different planes.

3. A couple may be represented by & vector drawn perpendicular to the plane of the couple.
The couple C; mtroduced by transferring m,; to the reference plane through O 1s propor-
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tional to my.r.J; and acts in a plane through Om, and perpendicular to the paper. The
vector representing this couple 1s drawn 1n the plane of the paper and perpendicular to
Om, as shown by OC, m Fig. (¢). Simularly. the vectors OC,, OC; and OC, are
drawn perpendicular to Om,. Om; and Om, respectively and m the plane of the paper.

. The couple vectors as discussed above. are turned counter clockwise through a right angle

for conventence of drawing as shown m Fig_ 21.7 (d). We see that their relative positions
remams unaffected. Now the vectors OC,. OCy and OC; are parallel and in the same
direction as Om,. Om, and Om,, while the vector OC; 1s parallel to Om, but in *opposite
direction. Hence the couple vectors are drawn radially eutwards for the masses on one
side of the reference plane and radially inward for the masses on the other side of the
reference plane.

. Now draw the couple polygon as shown 1n Fig. (e). The vector d o represents the

balanced couple. Since the balanced couple Gy 1s proportional to 1y /. therefore

vectord’ o’
Cy=my i by =vector do’ or M™M= 7 —
M= Ty g —

From this expression. the value of the balancing mass my, in the plane M may be obtamed,
and the angle of inchnation ¢ of this mass may be measured from Fig. 21.7 ().

. Now draw the force polygon as shown in Fig. (f). The vector eo (in the direction

from e to o ) represents the balanced force. Smce the balanced force 15 proportional to
my .1y, therefore.

vector eo

mpm =vectoreo or ML=
L

From this expression. the value of the balancing mass m; in the plane L may be obtamned

the angle of inclination ¢ of this mass with the horizontal may be measured fromFig. (b)),

BALANCING OF RECIPROCATING MASSES:

Mass balancing encompasses a wide array of measures employed to obtain partial or complete

compensation for the inertial forces and moments of inertia emanating from the crankshaft assembly.

All
through the block to the outside. However, the remaining internal forces and moments subject the

engine mounts and block to various loads as well as deformities and vibratory stresses. The basic

masses are externally balanced when no free inertial forces or moments of inertia are transmitted

loads imposed by gas-based and inertial forces.
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Primary and secondary unbalanced forces of reciprocating parts:

Py,

Let

Reciprocaling engine mechanisin.
F, = Force required to accelerate the
reciprocating parts.

Let

m — Mass of the reciprocating parts,
I'=Tength of the conmecling rod PC
= Radius of the crank OC,
6 = Angle of inclination of the erank with the line of strcke PO,
o = Angular speed of the crank.
n = Ratio of length of the connecting rod to the crank radius =17/7

We have already discussed in Art. 15,8 that the acceleration of the reciprocating parts is
approximately ziven by the expression.

c0s 28

2
iy — @ -r[cosO-i—
n

|

:, Inertia force due to reciprocating parts or foree required o accelerate the reciprocating

parts,

c0526

F‘-‘,_

)
F, — Mass « acceleration — /1-€" -r| cosf +
R n

We have discussed in the previous article that the horizontal component of the force exerted
on the crank shaft bearing (i.e. Igy) s equal and opposite to inertia force (77). This force is an
unbalariced one and is denoted by F,.

Unbalanced force,

p .
- cos 28
Fy=m-o r|cos | ——

) ) cos20
=me" -rcosd | mo@ X

=y T Hg

i n

\\

The expression (m-w’ rensB) s known as primary wnbalenced force and

¢

2
l mee” X

1

cos20

)is called secondury unbalanced force,
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BALANCING OF SINGLE CYLINDER ENGINE:

A single cylinder engine produces three main vibrations. In describing them we will assume
that the cylinder is vertical. Firstly, in an engine with no balancing counterweights, there would be an
enormous vibration produced by the change in momentum of the piston, gudgeon pin, connecting rod
and crankshaft once every revolution. Nearly all single-cylinder crankshafts incorporate balancing
weights to reduce this. While these weights can balance the crankshaft completely, they cannot
completely balance the motion of the piston, for two reasons. The first reason is that the balancing
weights have horizontal motion as well as vertical motion, so balancing the purely vertical motion of
the piston by a crankshaft weight adds a horizontal vibration. The second reason is that, considering
now the vertical motion only, the smaller piston end of the connecting rod (little end) is closer to the
larger crankshaft end (big end) of the connecting rod in mid-stroke than it is at the top or bottom of the
stroke, because of the connecting rod's angle. So during the 180° rotation from mid-stroke through
top-dead-center and back to mid-stroke the minor contribution to the piston's up/down movement
from the connecting rod's change of angle has the same direction as the major contribution to the
piston's up/down movement from the up/down movement of the crank pin. By contrast, during the
180° rotation from mid-stroke through bottom-dead-center and back to mid-stroke the minor
contribution to the piston's up/down movement from the connecting rod's change of angle has the
opposite direction of the major contribution to the piston's up/down movement from the up/down
movement of the crank pin. The piston therefore travels faster in the top half of the cylinder than it
does in the bottom half, while the motion of the crankshaft weights is sinusoidal. The vertical motion
of the piston is therefore not quite the same as that of the balancing weight, so they can't be made to
cancel out completely.

Secondly, there is a vibration produced by the change in speed and therefore kinetic energy of the
piston. The crankshaft will tend to slow down as the piston speeds up and absorbs energy, and to
speed up again as the piston gives up energy in slowing down at the top and bottom of the stroke. This
vibration has twice the frequency of the first vibration, and absorbing it is one function of the
flywheel.

Thirdly, there is a vibration produced by the fact that the engine is only producing power during the

power stroke. In a four-stroke engine this vibration will have half the frequency of the first vibration,
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as the cylinder fires once every two revolutions. In a two-stroke engine, it will have the same

frequency as the first vibration. This vibration is also absorbed by the flywheel.

PARTIAL BALANCING OF LOCOMOTIVES:

The locomotives, usually. have two cylinders with cranks placed at right angles to each
other in order to have uniformity in furning moment diagram. The two cylinder locomotives may

be classitiad as ;

I. Tnsicle cylinder locomatives : and 2. Ontside cylinder locomofives.

In the wnsidle cylinder Iocomotives, the two cylinders are placed in between the planes of

™wo criving wheels as showr in Fig.

(@) ; whereas (n the oufside cvlinder locomotives, he two
cylinders ar placed owrsidz the driving wheels, one on each side of the driving wheel. as shown in
Fig. (D). The locomotives may be

() Stngle or uncoupled locomotives ; aud (4) Coupled locomotives.

N

0

2)

s

Crark Crank

%
\—Driving wheels—"

(a) Insade eylinder locomotives,

(1)

S’

5rank

- — -

|

\4iviug wheels

() Ouside eyliacer locomotives.

Variation of Tractive force:

The resultant unbalanced force due to the cylinders, along the line of stroke, is known as tractive force.

Swaying Couple:

The couple has swaying effect about a vertical axis, and tends to sway the engine alternately in clock

wise and anticlockwise directions. Hence the couple is known as swaying couple.

40




The unbalanced forces along the lime of stroke for the two eylnders constitute a couple
about the centre line J'Y betweer the cylinders as shown i Fig. 22.5.

This couple has swaying effect about a verticel axis, and fends to sway the engine altemately
1 clockw:se and antielockwise directions. Hence the couple 1s known as swaying couple.

Let a = Distance between the centre lines of the two cylinders.

-, Swaying couple 4
£(1-n) m " reos i

, a
=1 -c)m.ml.rcos Bx— <

2 il :

Line of strcke % T
: 5 g for cylinder 1

~(I=c)m.e" rcos (90°+6)— V-—-—-—-—-Y% f

2 Line of stroke for| a

! cylinder 2 %

) .4 4
=(1-c)m 0)‘.rx;(cose+sme) <

2 Ll
(1=c)m w rcos (90°+ &)
The swayimng couple :5 masimum or munuxum vhen

(cosB+sm0) 15 maxumum or minimum. For (cos@+smé) fo Fig.  Swaying couple.
be maximim or nmunimum.

d ;
d—(cosﬂ+sm9}:0 of -smB@+cosh=0 or —smnb=-—cosB

tnf=1 or  0=45° or 125
Thus. the swaying couplz 1s max:mum or munmum whan 6 = 45° o1 225°.

-, Maximum and mizmum valuz of the swaying couple

‘ ) _a PR a ., 2
= tl-c)mo” .rX;(cos45 ? +51:14>°)=t—,_(1—c)m.0) X
2 A9

Hammer blow:

The maximum magnitude of the unbalanced force along the perpendicular to the line of stroke is

known as Hammer blow.

We have already discussed that the maximum maguitude of the unbalanced force along the
perpendicular to the line of stroke 1s known as hammer blow.

We know that the unbalanced force along the perpendicular to the line of stroke due to the
balancing mass B, at a radius b, 1 order to balance reciprocating parts only 15 5. ®>bsin 0. This

force will b2 maximum vhen s 0 1s unity, 7.e. when 8 =90° or 270°.
Hammer blow =B.@2b (Substituiting sin § = 1)

The effect of hammer blow 1s fo causa the variation 1n pressure between the wheel and the
rail. This veriation 1s shown in Fig. 22.6. for one revolution of the wheel

Let P be the downward pressure on the rails (or static wheel load).
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BALANCING OF INLINE ENGINES:

An in-line engine is one wherein all the cylinders are arranged in a single line, one behind the other as
schematically indicated in Fig. Many of the passenger cars found on Indian roads such as Maruti 800,
Zen, Santro, Honda City, Honda CR-V, and Toyota Corolla all have four cylinder in-line engines.
Thus this is a commonly employed engine and it is of interest to us to understand the analysis of its

state of balance.

. Net pressure between the wheel and the rail

= P+B.wb

I ORI T]
R ' b'{'/ /","
N\
|~
j, 0° 90° 180° 270° 360°
Fig. Hammer blow.

If (P-B. (')jib_’) 1s negarive. then the wheel will be lifted from the rails. Therefore the limiting
condition 1n order that the wheel does not lift from the rails 15 given by

P=Bo'b
and the permissible value of the angular speed.
P
0= [—
Bb

BALANCING OF RADIAL ENGINES:

A radial engine is one in which all the cylinders are arranged circumferentially as shown in Fig.These
engines were quite popularly used in aircrafts during World War 1. Subsequent developments in
steam/gas turbines led to the near extinction of these engines. However it is still interesting to study
their state of balance in view of some elegant results we shall discuss shortly. Our method of analysis
remains identical to the previous case i.e., we proceed with the assumption that all cylinders are

identical and the cylinders are spaced at uniform interval around the circumference.
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UNIT-V
SINGLE DEGREE FREE VIBRATION

INTRODUCTION:

When a system is subjected to an initial disturbance and then left free to vibrate on its own,
the resulting vibrations are referred to as free vibrations .Free vibration occurs when a mechanical
system is set off with an initial input and then allowed to vibrate freely. Examples of this type of
vibration are pulling a child back on a swing and then letting go or hitting a tuning fork and letting it
ring. The mechanical system will then vibrate at one or more of its "natural frequencies" and damp

down to zero.

CAUSES OF VIBRATION:

Misalignment: This is another major cause of vibration particularly in machines that are driven by
motors or any other prime movers.

Bent Shaft: A rotating shaft that is bent also produces the the vibrating effect since it losses it rotation
capability about its center.

Gears in the machine: The gears in the machine always tend to produce vibration, mainly due to their
meshing. Though this may be controlled to some extent, any problem in the gearbox tends to get
enhanced with ease.

Bearings: Last but not the least, here is a major contributor for vibration. In majority of the cases
every initial problem starts in the bearings and propagates to the rest of the members of the machine.
A bearing devoid of lubrication tends to wear out fast and fails quickly, but before this is noticed it
damages the remaining components in the machine and an initial look would seem as if something
had gone wrong with the other components leading to the bearing failure.

Effects of vibration:

(a) Bad Effects:
The presence of vibration in any mechanical system produces unwanted noise, high
Stresses, poor reliability, wear and premature failure of parts. Vibrations are a great source of human

discomfort in the form of physical and mental strains.

43




(b) Good Effects:
A vibration does useful work in musical instruments, vibrating screens, shakers, relive pain in
physiotherapy.
METHODS OF REDUCTION OF VIBRATION:
-unbalance is its main cause, so balancing of parts is necessary.
-using shock absorbers.
-using dynamic vibration absorbers.
-providing the screens (if noise is to be reduced)
TYPES OF VIBRATORY MOTION:
Free Vibration
Forced Vibration
TERMS USED VIBRATORY MOTION:(a) Time period (or)period of vibration:
It is the time taken by a vibrating body to repeat the motion itself. Time period is usually expressed in
seconds.
Cycle: It is the motion completed in one time period.
Periodic motion: A motion which repeats itself after equal interval of time.
Amplitude (X): The maximum displacement of a vibrating body from the mean position.it is usually
expressed in millimeter.

Frequency (f): The number of cycles completed in one second is called frequency

DEGREES OF FREEDOM:

The minimum number of independent coordinates required to specify the motion of a system at any
instant is known as D.O.F of the system.

Single degree of freedom system:

| &

B
A

The system shown in this figure is what is known as a Single Degree of Freedom system. We use
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the term degree of freedom to refer to the number of coordinates that are required to specify
completely the configuration of the system. Here, if the position of the mass of the system is specified
then accordingly the position of the spring and damper are also identified. Thus we need just one
coordinate (that of the mass) to specify the system completely and hence it is known as a single

degree of freedom system.

Two degree of freedom system:

A two degree of freedom system With reference to automobile applications, this is referred as—quarter
carl model. The bottom mass refers to mass of axle, wheel etc components which are below the suspension spring and
the top mass refers to the mass of the portion of the car and passenger. Since we need to specify
both the top and bottom mass positions to completely specify the system, this becomes a two
degree of freedom system.

TYPES OF VIBRATORY MOTION:

Types of Vibration:

(a)Longitudinal vibration

(b)Transverse Vibration

(c)Torsional Vibration.
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(¢) Longitudinal vibranons, (&) Transverse vibrations. (¢) Torsional vibralions

Longitudinal Vibration:
When the particles of the shaft or disc moves parallel to the axis of the shaft, then the vibrations
known as longitudinal vibrations.

Free undamped longitudinal vibrations:

When a body is allowed to vibrate on its own, after giving it an initial displacement, then the ensuring
vibrations are known as free or natural vibrations. When the vibrations take place parallel to the axis
of constraint and no damping is provided, then it is called free undamped longitudinal vibrations.
NATURAL FREQUENCY OF FREE UNDAMPED LONGITUDINAL VIBRATION:

8 — Static deiflection of the spring in mctres due to weight W7
newlons, dmud

x— hsplacemen| given o thz body by the exleml Toree. i mneires.

(a) {b) (c)
_Ajf.u _Alj.téé 2%l
2. > <
= = <.
LS 3 <w-ss 2
Unstiainec & 9 1 <
positon “fﬁ:l:ﬁ S5+ - Eﬂ—r
¥
W= ma 7 =3t
lw
mex
di

Natral freqmency of free Tongimidinal vibrations=
o the eqmbibrian posihon: s shawn m Fige 23.2 (%), the gravnaboual putl W — g s
balanced by a force of spring, such thar F=75.5.

Smee he sy s now displaced Fom s equbbnun posinen by o distance 3, as show

Fig. (o). amidd 16 then releqszd, therelore alter e /
Reslonng loree =W —s(@+x) =W —vd—rx
$0—$0—5.r  —5% cwe o W=58) v D)
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and Accelerating force = Mass < Acceleration

-
2

=mX—— | (Taking dewoward force as positive) . . . (i)
i

Equating equations (7) and (/7). the cquation of motien of the bodv of mass 7 afior time 713

'.' )
dx g4 x
MX——==53 o MW%—+sa3=0
e s

12

fdex
I 5 =t =0 o (1]

n'f- hid

We lenow ~hat the fundamental equarion of simple harmeonic mation is

2
a'x <A -
—+0" =0 e V)
ars
Comparing equations (/#/} and (/v), we have
E
w= I—
m
: 2n 5 [
.. Time period. Ip=—= -RV—
T 3
e 1 'fo "
and natural frequency. 7= L & L A G !ﬂ o (0 mg=50)
i i, 2m\m 2w\8
Taking the value of g as 9.81 m/s® and & in metres,

1 (9 1982
g =L [RE1_oasss,
27\ a L

Nate ; The value of static deflection § may be found cut from the givea cenditiens of the problem: For
longitudinal vibrations. it may be obtzined by the relation,

Strezs L - W
=R oy R.o=Fk ar d=
Strain 4 5 LA
wvhiere O —Slatze deleclion ¢ o extension or vompression of e coustrul,

W Load alteched 1o the Tree el of eornsimnl.
{ = Lzngrh of the <onstrain:,
= Youno's modnins far the cansraint, and

A — Cross-secrional avea ot the constraint.
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Energy Method

In free vibrations, no energy is transferred into the system or from the system. Therefore, the

We know that the kinetic
energy 1s due to the motion of the
body and the potential energy is
with respect to a certain datum
position which is equal to the
amount of wark required to move
the body from the datum position.
In thc casc of vibrations. the
datum position is the mean or
equilibrium position at which the
potential energy of the body or the
system 1s zero.

In the free vibrations. no
energy is transferred to the system
or from the system. Therefore the
summation of kinetic energy and
potential energy must be a
constant quantity which 1s same at
all the times. In other words,

i(KE.+P.E.)=O
dr
We kanow that kinetic en-

This industrial compressor uses comprassad air to power heavy-
duty construction tools. Compressors are used for jobs, such
as breaking up concreta or paving, dniing, pie driving, sand
blasting and wunnelling. A compressor works on the same prin-
ciple as a pump. A pisiecn moves backwards and forwards in-
side a hollow cylinder, which comprasses the air and forces
mto a hollow chamber A pipe or hose connect2d to the cham-
ber channels the compressed air to the tools

Note - This picture is given as additional information and
5 not a direct examp'e of the current chapter

K .=lxm ﬁ
2 dr

and potential energy.

(*.* PE. = Mean force = Displacement )

d|1 ¥ 1.
—| —xm| — | +—x5x =0
dr| 2 dt 2

"
1 sodx _dx
XM XK —X——
2 dr dr*
2
or mx——+s5x=0 or
dr”

}xsxl,\'xr—- =0
2 dr
d’x = i
——Xx = 0 (Same as before)
dr= m

The time period and the natural frequency may be obtamed as discussed i the previous

method.

total energy (sum of KE and PE)is constant and is same all the times.

Rayleigh’s method

In this method, the maximum kinetic energy at mean position is made equal to the maximum potential

energy at the extreme position.

49




EQUIVALENT STIFFNESS OF SPRING.

(1) Springs in series

(2) Springs in parallel

(3) Combined springs

(4) Inclined springs

S.Na. Iype of beam Deflection (8)
w7’
1 18 Cartilever beam with a pouwt load 7™ zt the 8=—— (at the free end)
3E]
free end.
w
y, .
2 Y
l
e f >
; . , -l
A Cantilever beam with a uniformly a= SEI (at the free end)
distributed load of w per unit length,
w' unt length
4 b gt
,z OV NN NN N
4
Y I / -
_ z : . ~_Wa's* :
B Sumply supported beam with an eccentric o= 3ET (at the point load)
point loac 7 :
?.
*4 a -I « b »*
- / >
: s wi3
1. Sumply supported beam with a central pont AR ET (at the cenre)
1R E

load " w

fe— 2 —se— 12 —}
- ! >
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SNo. Type of beam Deflection (8)
= s : 5 wit
S Simply suppoerted beam with z uniformly = T84 X 553 (at the centre)
distributed load of w per vnit length.
w/ unit length
NN NNV NV VN N
- ; : - et
6. Tixed beam with an eccenrric point load I7” 0= _ (at the point load)
3E1Q
W
5 ! R
y N
24— a—me——b —>»
- [ -
, , wr _
I Fixed beam with a ceatral poiat load i/. = 10377 (at the centre)
w w -
4
4 !
j 4
Je 12 —de—— 12 —>»
I+ / *
wit
§. Fixcd beam with a uniformly distributed b= 18477 (at thc centre)
load of w per unit length. &
v/ unit length
IS BTN
OONYYYNYYY wﬁv\
Y R
7 ! N
DAMPING:

It is the resistance to the motion of a vibrating body. The vibrations associated with this resistance are

known as damped vibrations.

Types of damping:
(1) Viscous damping
(2) Dry friction or coulomb damping
(3) Solid damping or structural damping

(4) Slip or interfacial damping.
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: : S . : . .
The ratio of the actual damping coeflicient (c) to the critical damping coefficient (c ) 13
known as damping factor or damping ratio. Mathematically,

c

: ¢
Damping factor =—= 0 e =21ma)
¢
¢

2m.w,

The damping factor 1s the measure of the relatrve amount of damping in the existing system
with that necessary for the critical damped system.

An example of such a system is a door damper — when we open a door and enter a room, we want the
door to gradually close rather than exhibit oscillatory motion and bang into the person entering the
room behind us! So the damper is designed such that

When€<11,x(t) isadampedsinusoidandthesystem exhibits a vibratory motion whose amplitude keeps
diminishing. This is the most common vibration case and we will spend most of our time studying
such systems. These are referred to as Underdamped system

Logarithmic decrement:

It is defined as the natural logarithm of ratio of any two successive amplitudes of an under damped

system. It is a dimensionless quantity.
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TRANSVERSE VIBRATION:

Consider a shaft of nsgl:gible mass, whose one

-
encl is fixed and the nther 2nd carries a body ot weighr - w
W. as shown :n Fig. 253, Msan pesition = I_°
Let s = Stuttness of shatt. TSX IX
3= ot | == ' o s |
& = Static deflection duc to Position after —-—|.—_1__¥
weight of the body. time 1 (P
« — Displaceinent of body fom l
mean position after time 1. m9X
m = Mass rof hody = W/z . U
> ! . ; Fig. 23.3 Nztural frequency of free
As discussed in the previous articls, N
transverse vibrazions.
Restoring force — s5x PR |
2
enc accelerating force =mx— m—1)
dt=
Tiomating equations () ard (/7). the equation of motion hecomes
? 2
X X
X = —5.X or mx——+a =0
- at~
11'21' Ry o >
s —+—xXx=1 - - {(Same as kbefor=
dr= m

Tlence. the time period and the natural frequiency ot the transverse vibrations are same as
that of lengitudinal vibrations. Therefore

="
L : S |
lime pertod. Py =AW s

3 L 1 (ks 1 |z

aud matural Irequeney,  J ————, [— —— |—

ly 3r\m 2xN3B

Narte : The zhape of the curve. into which the vibranng chaft deflects. i¢ identical with the staric deflecrion
curve of a canulever bzam loaded at the 2nd Ir has been proved ir the text book on 3weng:h of Mateniale.
that the static deflection of a cantilever beam loadsd ar the free 2id 15

_we )
¢ — — {in merres)
sl ’
wher= W — Load at the fiee @nd. 1 newlons,

7= Length of the shaft or beam n metes.
E = Younz's modulus for the material of the shaft or bram
Nm’. and
£ — Momenl ol erliz of the shall or beamn m w”,

When the particles of the shaft or disc moves approximately perpendicular to the axis of the

shaft, then the vibrations known as transverse vibrations.

53




Whirling speed of shaft:

The speed, at which the shaft runs so that the additional deflection of the shaft from the axis of

rotation becomes infinite, is known as critical or whirling speed.

No shaft can ever be perfectly straight or perfectly balanced. When an element of mass is a distance

from the axis of rotation, centrifugal force, will tend to pull the mass outward. The

elastic properties of the shaft will act to restore the —straightnessl. If the frequency of rotation is equal to one of the

resonant frequencies of the shaft, whirling will occur. In order to save the machine from failure,

operation at such whirling speeds must be avoided.

Wlhen a shafl rotates, 10 way well go mio lmpsverse
oscillations If the shaft is out of halance. the resulting
centrifugal force will induce the shaft to vibrate. When the

shatt rotates at a spead equal to the natwal frequency of

transverse oscillations, this wvibration becomes large and
shows np as a whirling of the shatt. Tt also ocenrs ar multiples
oI the resonant spead. This can be very damazing 1o heavy
rotary machines such as mirbine generator sats and the system
st be carelully balanced to reduce lus efeel and desigued
i have a natmal Gequeney dilferent (o e speed of otation,
When starling or slopping sueh waclinery, the entical speeds
must be avoided to prevent damage to the bearings and
turbine blades. Consider a weightless <haft as shown with a
mass M at the middle Suppose the centre ot the mass 15 not
on the centre hine.

plp—1rte

The whirling frequency of a symmetric cross section of a given length between two points is given by:

ET

N =84.25¢) ——
m L* gpm

Where E = young's modulus, | = Second moment of area, m = mass of the shaft, L= length of the shaft

between points




A shaft with weights added will have an angular velocity of N (rpm) equivalent as follows:

111 1
N N TNZ T T
TORSIONAL VIBRATION:

When the particles of the shaft or disc move in a circle about the axis of the shaft, then the

vibrations known as tensional vibration

///{ LS Let 0

L

m
: (8]
’76
] S =
i dy 7 - = Mean position k
g q

— Position after

: time (1)

Natural frequency of
free torsional vibrations.

Restormg force = g6

and accelerating force =TI x

Angular displacement of the shaft
from mean position after time ¢
in radians,

Mass of disc in kg,

Mass moment of inertia of disc
in kg-m®> = m.kc.

Radius of gyration in metres.

Torsional stiffness of the shaft in
N-m.

- (D)

.. (@)

Equating equations (7) and (i7), the equation of

motion 1s

b 4 4 ?:—q,e
ar~
2
or I><"+q_9=0
ar-
22
g 9+—g-x39=0
dr? I

. . ({i7)

The fundamental equation of the simple harmonic motion 1s

420
ol

dr=
Comparing equations (777) and (#1),

(D:JE
I

5
+m x=0

: 27
Time period. tp=—r =28 2
(6} \j q
d natural fr . J“’
and natural frequency | g = —
Lo "ty 2nVI

_ . {iv)




The value of the torsional stiffness g may be obtained from the torsion equation,

T .. CH 1 . S
e = St ofr —=——o
J- i 0 I
— C.J .. T —
q ; = L q
where ¢ = Modulus of ngidiry for the shaft material,
J = Polar moment of mertia of the shaft cross-section,
T 4 :
= Ed - d 15 the diameter of the shaft. and
! = Length of the shaft.
Torsional vibration of a single rotor system:
Ve have already discussed that for a shaft fixed at A e
one 2nd anc carrying a rotor at the free 2nd as shown 1n kg, ’5
the natural frequency of torsional vibration. A B
5;4-—- [ —
N O 7R N 7 O
fo —ﬁ TN "

C.J
q ——
3
. L e e s Frez torsioral vibratiors
where C = Modulus of ngld{l.y tor. shaft nfmnal. cif'd ShnGle TOkor Rstens
J = Polar moment of inertia of shatt

= ==t

32
d — Diameter of shafl,
! = Length of shait,
m = Mass of rotor,

k = Radins of gyration of retor, and
I = Mass moment of inertia of rotor = m.i*

A little censideration will show that the amplitude of vibration is zero at A and maximum
at B, as shown in Fig. It may be noted that the point or the section of the sha't whose
amplitude of torsional vibration is zero, is known as nede. In other words, at the node, the shaft
remains unaffected by the vibration.




Torsional vibration of a two rotor system:

Consider a two rotor system as shown in Fig, It - -
consists of a shaft with two rotors at its ends. In this system, & JA BO
the torsional vibrations occur only when the two rctors A and < ! >
B move in opposite directions e. if 4 moves in anticlockwise
direction then B moves in clockwise direction at the same
instant and vice versa. It may be noted that the two rotors must () ®

have the same frzquency.

We see from Fig. that the node lies at point \. l
This point can be safely assumed as a fixed end and the shaft  p A
may be considered as two sepzrate shafts N P and N Q each &) s

fixed to one of its ends and carrying rotors at the free ends. L”
Let [ = Length of shaft, Fig Free torsional vibra-
/, = Length of part NP iz distance fiors. of a twn rotor system

cf node from rotor A,
I, = Length of part NO. ie. distance
of node from rotor B,
I, = Mass momert of inertia of rotor A,
IB = Mass moment of inertia of rotor B,
d = Diameter ot shaft,
I = Palar moment of inertia of shaft, and
C = Modulus of rigidity for shaft malenal.
Naturzl frequency of torsional vibraticn for rotor A,

P 1 |CJ .
h Z ’AII\ A1)
and natural frequency of torsional vibration for rotor B,
"D [B IB . tmw)
Since Lok /,B therefore
&J
[ad [RIR lydp =g Iy w3 KOO)
/g-1g
I o=
‘A

We zlso know that

S R o (i)

A




Torsionally equivalent shaft:

we have assumed that the shaft is of uniform diameter. But in
actual practice, the shaft mav have variable diameier for different lengths Such a shaft may,
theoretically, be replaced by an cquivalen: shaft of uniform diamecter.

Consider a shaft of varying diameters as shown in Fig. (a). Let this shaft 15 replaced
by an equivalent shall of aniform dimmeter  and [ength 7 as shown in Fig. (h).These lwao shalls

must have the same tofal angle of twist when egual opposing lorques Tare applied af their opposile
ends.

Lot d,, d, and d, = Diameters for the lengths / , 1, and /| respectively,
|+ 2 and 3 = Angle of twist for the lengths /;, /, and /, respectively,
= Total angle of wwist, and

J1.J3 and J3 = Polar moment of inertia for the shafts of diameters d;, 4, and
d, respectively.

i T

{ ‘ . ¥
d, G Q d=d,
RO S ® O
./ - \_/ -
(a) Shaft of varying diameter:. (b) Torsionally equivalent shaft,

Fig 24.8
Since the total angle of twist of the shaft is equa’ to the sum of the angle of twists of
different lengths, therefore

1
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CF GR G Cis
I 4 L h

I ok Iy Fn

1

ra

58




[ h l Ly

4 4 pa
SR L RS N e (TR
3 (@) 5

I T 5 Iy

(14 ((1] _)" | ({2 "' (tl_{ )4

In actual caleulations, it is assumed that the diameter d of the equivelent shaft s equal o
one of the diameter of the actual shaft. Let us assume thatd = d .

n’ [I [: I_l
@) @) @) (@)

4 4
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a'l

or I & bk

"\
3

This expression gives the length [ of an equivalent shaft.

SOLVED ROBLEMS

1.A machine of mass 75 kg is mounted on springs and is fitted with a dashpot to damp out vibrations.
There are three springs each of stiffness 10 N/mm and it is found that the amplitude of vibration
diminishes from 38.4 mm to 6.4 mm in two complete oscillations. Assuming that the damping force
varies as the velocity, determine : 1. the resistance of the dash-pot at unit velocity ; 2. the ratio of the
frequency of the damped vibration to the frequency of the undamped vibration ; and 3. the periodic
time of the damped vibration.

Solution. Given: m=75kg ; s =10 N/mm =10 x10% N/m ; x; = 38.4 mm = 0.0384 m
i X3 = 6.4 mm=0.0064 m
Since the stiffness of each spring is 10 x 10° N/m and there are 3 springs, therefore

total stiffness,
. 3
5=3x10x10° = 30x10% N/m
We know that natural circulzr frequency cf moticn,

5 [30x10°
O, =, ; =

VT‘ = 20 fadJIS




Let c= Kesistance of the dasiipul in ewlons al uni. velocily e in
N/m’s,
X, = Amplitude after ore complete oscillation in metres. and
x, = Amplitude aftar two complete oscillations in metres.

S
. [ _ %2

We know that T
/ G|

1. Resistance of the dashpot at unit velocity

N X % n.ox [X
b ] : RErTEEwE —[t_]' u
. : ' 3 42 A3 3 2 4
(X2 ) % 2 d
1:2
w (x 0038477 _
S KO WL T - =245
ar = = = =<
X3 Xy 1.0054
We also know that
[ i n
lo;u"_, l—.') ]= ot X ﬁ
" \J l_U.'”) -3
2. 2. Ratio of the frequency of the damped vibration to the frequency of undamped vibration
. . " (OF)
Let fa = Frequency cf damped vibration = S
2n
- . Wy
£ = Frequency of undumped vibration = e
{ 2 .7 a0y 7 2
£y @; 2n ® (w,)" —a (20)" —(2.8)
Ll='—d>(—=—d';‘V ’ =J R =0.99 i\llfv
fo 2m o, o, i, 0

3. Perledic ume of damped vibration
Ne know that perioc.c time of damged vibration
AR r - in 0475 A
" o o =035,
D Jlwg) —a” 207 —(28)

2. The mass of a single degree damped vibrating system is 7.5 kg and makes 24 free oscillations in 14




seconds when disturbed from its equilibrium position. The amplitude of vibration reduces to 0.25 of
its initial value after five oscillations. Determine : 1. stiffness of the spring, 2. logarithmic decrement,
and 3. damping factor, i.e. the ratio of the system damping to critical damping.

Solution. Given: m=7.5kg

£ =2414=17
and 0, =2a% i, =2r8x1.7=10.7 rad’s
1. Stiffness of the spiring
Let s — Stiftness of the spring in N/m.

We know thar ('o;n);" =s/m or 5:(0317)3;;: (1D 7}27_5 = 8R0 N/m Ans.

Since 24 oscillations are made in 14 seconds, therefore frequency of free vibrations,

2x
lOg 245 =5 W
: 2 2
1!‘20)- —a-

o A4 2T a‘x%30.5
0.8901 = —=———== or 08——— ... (Squaring bath s.des)
JA00-a" 400 -a”
@ a— 194 or a-128
We know that a=c/2m

r—ax2m—28 ¥ 2 x 75— 420 N/mfs Ans.

3. Damping factar

Let ¢ = Damping cozfficien: for the actual system, and
c,. = Damping coafficient for the eritical damped systern. (Given)
We know :hat logarithmic decrement (§ ],
Xi A'c
axiw axern — =
033=( - 2“2 ' ‘GJ
v —a" 10N -a
- 10 ‘ W
X X i 114 Nt
or —|= —I =' = L = (4! 5 =137
X: vs 025 ¥
\ .

\We know that logarizhmic decrement,

'd
d=loy,

\

A ]: 2,1.32 =0.28 Ans.
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a® %395

OV = ———— 'Saquarinz hoth sifrs)
114.5—a° et
RUTT G084 2'=34h o oar a =022 o a=1(.4/6
We knows that a-clZm cr r—ax2m-0476 22 «7.5-72 Nmss Ans.
and € —2mw, — 2x7.5x10.7 — 160,35 N/nv's Ans,

Damping facter = ¢c, = 7.2/ 1605 = 0.045 Ans,

3(i) The measurements on a mechanical vibrating system show that it has a mass of 8 kg and that the
springs can be combined to give an equivalent spring of stiffness 5.4 N/mm. If the vibrating system
have a dashpot attached which exerts a force of 40 N when the mass has a velocity of 1 m/s, find : 1.
critical damping coefficient, 2. damping factor, 3. logarithmic decrement, and 4. ratio of two

consecutive amplitudes.

Solution. Given : m =8 kg ; s = 5.4 N/mm = 5400 N/m

Since the force exerted by dashpot is 40 N, and the mass has a velocity of 1 m/s , therefore Damping

1. Critical damping coeflicient

We kncw that critical damping coefficient,

s ; 5 5400 )
o =cm.0),,=c3m><\/—=3><3 =416 N/ms Ans.
it \ 8
coefficient (actual),
3. Logarithauc decrement
We <now Lha Jogarithmic decremend,
2rc 2= 40

o

o — = = — (1.6 Ans.
Vi) =" 4116, - (10}°
4. Rario af mvo consecurive amplitodos
Let x and x,_,
We know thar Ingarithmic decrement,

= Magnitude of two consecutive amplitudes,

8=lugc,l: ali ] or 22— = (2.7)'% = 1.82 Ans,
X

X1 a1
2. Damping factes

We know that damping factor

_E_ B G006 A,
6

¢ 4l ¢ =40 N/m/s




3 (ii) An instrument vibrates with a frequency of 1 Hz when there is no damping. When the damping
is provided, the frequency of damped vibrations was observed to be 0.9 Hz. Find 1. the damping

factor, and 2. logarithmic decrement.

Solution. Given : f,=1Hz;f;=0.9 Hz

1. Damping factor

Let m= Mass of the instrument in kg,
c= Damping coefficient

or damping force per unit velocity in N/m/s, and

cc= Critical damping coefficient in N/m/s.

o, —2rx f, —2nx1—-6.28% rad's
and circular frequency of camped vibrations,
Wy = 2rx f[p=2nx0Y9=560L rad's

Wa also know that circular frequency of damped vihrations (@),

I - . \ .
5.66=1)(0,)? a®=,/(6.281)% 2
We know that natural circular frequency of undamped vibrations,

Squaring bett: sides
(5.68)% = (6.284)* - a‘or 32 =305 - &

£=75 or a=274
We know iat, a=og2m or c=ax2m=2.74 % Zm= 548 m N'u's
and ¢~ 2mwp — 2= G281 — 12.568 w Nir's

Caumping laclor,

¢l ¢ — 0. 48 12,008 i — U430 Ans,

4(i) A coil of spring stiffness 4 N/mm supports vertically a mass of 20 kg at the free end. The motion
is resisted by the oil dashpot. It is found that the amplitude at the beginning of the fourth cycle is 0.8
times the amplitude of the previous vibration. Determine the damping force per unit velocity. Also

find the ratio of the frequency of damped and undamped vibrations.

Solution. Given : s =4 N/mm = 4000 N/m ; m = 20 kg
Damping force per unit velocity

Let ¢ = Damping force in newtons per unit velocity i.e. in N/m/s




Xn = Amplitude at the beginning of the third cycle,

Xn+1 = Amplitude at the beginning of the fourth cycle = 0.8 x,

5 _ 4000

w, = =14.14 rad’s
o "\ (7] 21
N EN
anj clg(w. x" —c'!-'ﬁ-—.--fz—j
\ V((.‘,‘) —-da
[ x, ) 2n
o1 I(rg_‘_l — [=ax - -
B2 ) P =&
’n : 2n

log,l.2d — aX—= o [(.223=ax——
200- 22 \200- 2"

Squaring both sidas

2 2 & G
a’ x<dn 393a

0.05= —= -
200—a* 200-a*
0.05 » 200 - D.05 a° = 39,52° or 3955a =10
- a=10/3955=025 or a=05
We know that a—cliZm

c—ax2m—05 %2 = 20 - 20 N/m/s Ans.

We know that natural circular frequency of motion,

Ratio of the frequencies

. — O
Lt fy, = Frequency of damped vibrations = o

),
f,» = Frequency of undamgec vibrations = 5~
. J : r

2r ©, @, i, \ 1£.14

fo g 2 _ay _ [lmg)?—a® /(14.14)3—(0.3)3
E E

“rid

( Wy =y |‘m.,,)2 =g* )
= 0.999 Ans,

4(ii) Derive an expression for the natural frequency of single degrees of freedom system.

We know that the kinetic energy is due to the motion of the body and the potential energy is with
respect to a certain datum position which is equal to the amount of work required to move the body
from the datum position. In the case of vibrations, the datum position is the mean or equilibrium

position at which the potential energy of the body or the system is zero. In the free vibrations, no




energy is transferred to the system or from the system. Therefore the summation of kinetic energy and

potential energy must be a constant quantity which is same at all the times. In other words,

o =
(KF+TPF)=0
We know that it

kinetic enerav.

<

K.E= }? m[ = l

il polential encrgy,

[+ BPE — Nean force ~ Displacement ]

| s, dx Ay 1 44 iy
—XMALR—n— ==X 5x dxx— =)
2 ar g 2 dt
12 2
ax N arx 5
]| 7P | .4=0 or %
ol
el

xx=0

r’f/' X

- ~wé x=0
e

We know that (he limdaments] spuation of simple harmorne maolion is

Comparing equations,

27: "'l
Time period, to= =l
1 V s
e fo
and natural frequency. Fomd o Vo 1 s
“ 1, emNem 2V

" . . . o
Iaking the value of g as .81 m/s™ and & in merres

. 1 1981 D.aLElSSH?
TNy T F

\a




FORCED VIBRATION

When a system is subjected continuously to time varying disturbances, the vibrations resulting under
the presence of the external disturbance are referred to as forced vibrations.

Forced vibration is when an alternating force or motion is applied to a mechanical system.
Examples of this type of vibration include a shaking washing machine due to an imbalance,
transportation vibration (caused by truck engine, springs, road, etc), or the vibration of a building
during an earthquake. In forced vibration the frequency of the vibration is the frequency of the force
or motion applied, with order of magnitude being dependent on the actual mechanical system.

When a vehicle moves on a rough road, it is continuously subjected to road undulations causing the
system to vibrate (pitch, bounce, roll etc). Thus the automobile is said to undergo forced vibrations.
Similarly whenever the engine is turned on, there is a resultant residual unbalance force that is
transmitted to the chassis of the vehicle through the engine mounts, causing again forced vibrations of
the vehicle on its chassis. A building when subjected to time varying ground motion (earthquake) or
wind loads, undergoes forced vibrations. Thus most of the practical examples of vibrations are indeed
forced vibrations.

CAUSES OF RESONANCE:
Resonance is simple to understand if you view the spring and mass as energy storage

elements — with the mass storing Kinetic energy and the spring storing potential energy. As discussed
earlier, when the mass and spring have no force acting on them they transfer energy back and forth
at a rate equal to the natural frequency. In other words, if energy is tobe

efficiently pumped into both the mass and spring the energy source needs to feed the energy in at a
rate equal to the natural frequency. Applying a force to the mass and spring is similar to pushing a
child on swing, you need to push at the correct moment if you want the swing to get higher and
higher. As in the case of the swing, the force applied does not necessarily have to be high to get large

motions; the pushes just need to keep adding energy into the system.

The damper, instead of storing energy, dissipates energy. Since the damping force is
proportional to the velocity, the more the motion, the more the damper dissipates the energy.
Therefore a point will come when the energy dissipated by the damper will equal the energy being fed

in by the force. At this point, the system has reached its maximum amplitude and will continue to




vibrate at this level as long as the force applied stays the same. If no damping exists, there is nothing

to dissipate the energy and therefore theoretically the motion will continue to grow on into infinity.

FORCED VIBRATION OF A SINGLE DEGREE-OF-FREEDOM SYSTEM:

We saw that when a system is given an initial input of energy, either in the form of an initial
displacement or an initial velocity, and then released it will, under the right conditions, vibrate freely.
If there is damping in the system, then the oscillations die away. If a system is given a continuous
input of energy in the form of a continuously applied force or a continuously applied displacement,
then the consequent vibration is called forced vibration. The energy input can overcome that

dissipated by damping mechanisms and the oscillations are sustained.

We will consider two types of forced vibration. The first is where the ground to which the system is
attached is itself undergoing a periodic displacement, such as the vibration of a building in an
earthquake. The second is where a periodic force is applied to the mass, or object performing the
motion; an example might be the forces exerted on the body of a car by the forces produced in the
engine. The simplest form of periodic force or displacement is sinusoidal, so we will begin by
considering forced vibration due to sinusoidal motion of the ground. In all real systems, energy will
be dissipated, i.e. the system will be damped, but often the damping is very small. So let us first

analyze systems in which there isno damping.

STEADY STATE RESPONSE DUE TO HARMONIC OSCILLATION:

Consider a spring-mass-damper system as shown in figure 4.1. The equation of motion of this system

) _ Fsin et _
subjected to aharmonic force can be given by

LLLLLLLELILIL
mr+ix+ox=Fan ol

S N=E

m

¢Fsinmt

where, m, k and c are the mass, spring stiffness and damping coefficient of the system, F is the

amplitude of the force, w is the excitation frequency or driving frequency.

Figure : Harmonically excited system




Eeference line

Figure : Force polygon

The steady state response of the system can be determined by solving equation(4.1) in many different
ways. Here a simpler graphical method is used which will give physical understanding to this dynamic
problem. From solution of differential equations it is known that the steady state solution (particular

integral) will be of the form

FORCED VIBRATION WITH DAMPING:

In this section we will see the behaviour of the spring mass damper model when we add a

harmonic force in the form below. A force of this type could, for example, be generated by a rotating

F = Fycos (27 ft).

imbalance.

If we again sum the forces on the mass we get the following ordinary differential equation:

mi + ci + kxr = Fyeos (2mft).

The steady state solution of this problem can be written as:

z(t) = X cos (2w ft — ¢).

The result states that the mass will oscillate at the same frequency, f, of the applied force, but

with a phase shift .




Ey 1
X=— .
Ey/(1—)? + (2r)?

The amplitude of thevibration -XI is defined by the following formula.

Where —rl is defined as the ratio of the harmonic force frequency over the undamped

_ S
fﬂl

natural frequency of the mass—spring—damper model.

r

The phase shift , ¢, is defined by the following formula.

@ = arctan ( 2cr )

1 — 7t

Aumplisde

S Er——— I' o s P

The plot of these functions, called "the frequency response of the system", presents one of the most
important features in forced vibration. In a lightly damped system when the forcing frequency nears
the natural frequency ¥ == 1) the amplitude of the vibration can get extremely high. This
phenomenon is called resonance (subsequently the natural frequency of a system is

often referred to as the resonant frequency). In rotor bearing systems any rotational speed that excites

a resonant frequency is referred to as a critical speed.

If resonance occurs in a mechanical system it can be very harmful — leading to eventual
failure of the system. Consequently, one of the major reasons for vibration analysis is to predict when
this type of resonance may occur and then to determine what steps to take to prevent it from

occurring. As the amplitude plot shows, adding damping can significantly reduce the magnitude of the




vibration. Also, the magnitude can be reduced if the natural frequency can be shifted away from the
forcing frequency by changing the stiffness or mass of the system. If the system cannot be changed,
perhaps the forcing frequency can be shifted (for example, changing the speed of the machine

generating the force).

The following are some other points in regards to the forced vibration shown in the frequency
response plots.

At a given frequency ratio, the amplitude of the vibration, X, is directly proportional to the
amplitude of the force F, (e.g. if you double the force, the vibration doubles)
With little or no damping, the vibration is in phase with the forcing frequency when the frequency

ratio r < 1 and 180 degrees out of phase when the frequency ratio r > 1

When r « 1 the amplitude is just the deflection of the spring under the static

force Fo. This deflection is called the static deflection 8. Hence, when r « 1 the effects of the damper

and the mass are minimal.

When r > 1 the amplitude of the vibration is actually less than the static deflection d. In this
region the force generated by the mass (F = ma) is dominating because the acceleration seen by the
mass increases with the frequency. Since the deflection seen in the spring, X, is reduced in this region,

the force transmitted by the spring (F = kx) to the base is reduced. Therefore the

mass—spring—damper system is isolating the harmonic force from the mounting base — referred to as
vibration isolation. Interestingly, more damping actually reduces the effects of vibration isolation

when r > 1 because the damping force (F = cv) is also transmitted to the base.
ROTATING UNBALANCE FORCED VIBRATION:
One may find many rotating systems in industrial applications. The unbalanced force in such a system

can be represented by a mass m with eccentricity e , which is rotating with angular velocity as shown

in Figure 4.1.




Figure : Vibrating system with rotating unbalance

Inertia force of rotating
and nanrotatjng parts
¥
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Damping

S force =cx

force =ix

Figure : Freebody diagram of the system

Let x be the displacement of the nonrotating mass (M-m) from the static equilibrium position,

then the displacement of the rotating mass mis *+#¢ sin @f

From the freebody diagram of the system shown in figure, the equation of motion is

M+ i+ cx = med sin o




This equation is same as equation (1) where F is replaced by mea’ So from the force

polygon as shown in figure 4.3

meat = \({(—Mmﬂ +i) +ea} X

e

¥ =
Jlk - My +(ca)

Ml

or A _ M
=

)]

So the complete solution becomes

2

_ . I e gy .
7(e) = me sm( - gha +¢a)+'\ff@:—Mcﬂ2)2 +(ca? nled)

VIBRATION ISOLATION AND TRANSMISSIBILITY:

When a machine is operating, it is subjected to several time varying forces because of which it

tends to exhibit vibrations. In the process, some of these forces are transmitted to the foundation —
which could undermine the life of the foundation and also affect the operation of any other machine
on the same foundation. Hence it is of interest to minimize this force transmission. Similarly when a
system is subjected to ground motion, part of the ground motion is transmitted to the system as we
just discussed e.g., an automobile going on an uneven road; an instrument mounted on the vibrating
surface of an aircraft etc. In these cases, we wish to minimize the motion transmitted from the ground
to the system. Such considerations are used in the design of machine foundations and in order to
understand some of the basic issues involved, we will study this problem based on the single d.o.f
model discussed so far.

we get the expression for force transmitted to the base as follows:

k2 + (c2)?
V(e -@)* ) + (e Q)°

x T
X, -




Vibration Isolators:

Consider a vibrating machine; bolted to a rigid floor (Figure 2a).The force transmitted to the floor is equal to the
force generated in the machine. The transmitted force can be decreased by adding a suspension and
damping elements (often called vibration isolators) Figure 2b , or by adding what is called an inertia
block, a large mass (usually a block of cast concrete), directly attached to the machine (Figure
2c).Another option is to add an additional level of mass (sometimes called a seismic mass, again a block of

cast concrete) and suspension

a) Machine bolted to a rigid foundation

b) Supported on isolation springs, rigid foundation

¢) machine attached to an inertial blo ck.

d) Supported on isolation springs, non -rigid fo undation (such as afloor); or machine o

n isolation springs, seismic mass and second level of isolator springs

When oscillatory forces arise unavoidably in machines it is usually desired to prevent these forces
from being transmitted to the surroundings. For example, some unbalanced forces are inevitable in a
car engine, and it is uncomfortable if these are wholly transmitted to the car body. The usual solution
is to mount the source of vibration on sprung supports. Vibration isolation is measured in terms of the
motion or force transmitted to the foundation. The lesser the force or motion transmitted the greater
the vibration isolation Suppose that the foundation is effectively rigid and that only one direction of
movement is effectively excited so that the system can be treated as having only one degree of
freedom.

RESPONSE WITHOUT DAMPING:

The amplitude of the force transmitted to the foundations is Where Kk is the Stiffness of the support
and x(t) is the displacement of the mass m.

The governing equation can be determined by considering that the total forcing on the machine is

equal to its mass multiplied by its acceleration (Newton’s second law)




The rado (transmitted force amplitude] / (applied force amplitude) is called the
transmissibility.

S Fr
Transmissibility = |F| = — =

The transmissibility can never be zero but will be less than 1 providing ;'—'— >V2 or
“n

—{5 > +/Z otherwise it will be greater than 1.
n

SOLVED PROBLEMS
1 Derive the relation for the displacement of mass from the equilibrium position of the damped
vibration system with harmonic forcing.
Consider a system consisting of spring, mass and damper as shown in Fig. 23.19. Let the

system is acted upon by an external periodic (i.e. simple harmonic) disturbing force,

F, O Fcosm.t

where F = Static force, and

® = Angular velocity of the periodic disturbing force.
When the system is constrained to move in vertical guides, it has only one degree of freedom.

Let at sometime t, the mass is displaced downwards through a distance x from its mean position.

The equation of motiop may be written

AL A A

d5x ax .
mA— —— X ——sx+ [R5 @t <
at” L Spring 2~ 5i 13
2 < 5
dx ux _ & =i
nr mx~ T lex  1av=Frosmr 1 l
/ T e v -
de gt Mean pasben{——- M ——— 1
X
N & xJ < ?fi X
l‘*csnpcn af'.er_r e S S L, |
time 1 '—'__l. ...... g
mLx
df
Fig 2319 Trequzncy of under
tbannes] Toroenl wilmallons,

This equation of motion may be solved either by differential equation method or by graphi-cal

method as discussed below :

1. Differential equation method

The equation (i) is a differential equation of the second degree whose right hand side is some




function in t. The solution of such type of differential equation consists of two parts ;

one part is the complementary function and the second is particular integral. Therefore the solution
may be written as
X=X1+ X

where x; = Complementary function, and x, = Particular integral.
The complementary function is same as discussed in the previous article, i.e.

X1 ce cos (wgt=0)...(ii) where C and 6 are constants. Let us now
find the value of particular integral as discussed below :

Let the particular integral of equation (i) is given by

x; =B sinou+ B; cosoa - lwhere B and £, are corstans)
ax _ ,
— — B .mcos e - B; csinad
dr )
-
i, {350 9 o
and =—H o sinar— Hy.m° Pes g
di”
Substituting these values in the given differential equation (i), we get
7 . -
m(-B o’ sinot- B’ coswil+c(B ocosai- B wsinw!) +s(B sinws+ £ coso)
=Frosms
or ( mBw cof sB)sror ( me® B 1 col 1 s8)coso

—Frosat




Now from equaticn ()

(5—mw) B — co B,

?
LA

~ F!‘: = x ;?] .- e ((j
[HO]
Subst:tuting the value of B3, in equation (#1)

o

-4

? 2.
(s—ma”) (5—mw”)
colj + «
AN

2 2 2.2
=@ B+ (s—mo°) B —cof

i |
B [L“" W = (5=’ ) ]— cwkF

> 5 ol
=* X 9 B 1.0
i —({s—mn)"
[ [ - :')
cAnF . £i5 Ny
= > XSt ——— —5 XCOS ot
oW + [ s—met)e o+ (s—-me*)”
I r 2
=, , o cosinae 1 (s m..r.‘r,'cusm.*] (v)
e+ s—mw’)” - T
Let cv= Xsino; and s— g’ — X coso
. QX 2.7 « 3
X = Jc W+ (s—mnT)° v 1By syuaring and addiog)
ol0) _f co
tn = —— ar =i | ———
S—nim” | S— mam”
Now the efuatinn (17) may he written as
O ) ) :
X =—— — [ Xsinosinwe+ Xcosgeoswi|
U e
¢ 1z mo)
EX ;
= % oS (et —¢)

72 |7 7,2
w1 ls mo)

o T a5
Ife”.a® + (s—mw®)© ;
=—s 53 X COS [l —)
e +(s—mm®)©

F
== # €05 (et — )
.32 Zz42
\/c 0+ (s—m®°)
\ »
or [(s— mn©) B —cak, ]sin .t +[ cw B - (s—-mo”) B‘-]cc-s o

— Fcesoae = 0sin ot
Comparing the coefficizars of sin w¢ and cos oy on the left mand side and fight hand side
separatelv, we ge:

(s mw )l cob, =0 .. )

3 . o
and cw s me VB =F o (%)




2

S—mm- ok
and B - Xem—— 57 . - |Fram equation (1]
o ' + 5-mn)
y o
Pis— g™

e 242
CTAT + S—au )
The particnlar infegead al the GilTerenial cpunion (7 8

Xy — By sit@a+ B, cosme

™ . - - - . . .
‘ |=1.~;m|||:|lum shows 1l snotion is \1'np|('. hammnende whose sivenla I‘m:pn‘.’u YN W an e

E

artplitude s

-

2 22 '
e o+ (s—mo’)
v

Solution. Givan £= 10 Nfmm — 10> 10° N/ ; ¥-= 16

m— 10 kg ;

Since the periodic force I, — [Tcos@s—130cos50¢ , therefore
Stztie foree, F=150N
and angular velecity of the periodic disturbing force.
w=h0rad/s
We know that angular speed or natural circular frequency of free vibrations,

5 loxie* |
Wy =, =.J = 31.6 radfs
m 10

Ampfitude ot the forced vibrations

Since the amplitude dzcreases to 1/10th of tre initial value in four complete oscillazions,
therefore, the rauu ol indlial amplitude (x ) o the fnal anplitude 1Cer four complete oscillutions
{x;] is given by

A
.i_.“_lyx_‘?\'ﬁ:—,,‘_l_ i e o = *2 = & = o
Yo XY & & X \y ' BT - SR R
. 1L 1l.' A
by ¥ Y: gy " P
A —1' —[—,m, — (10" - 1.78 _’\-,,:1‘0]
.‘2 .-‘:’, ) X ,!l ' } f g
We know that

l .( .\1 27[

Cg"i T =ax : =
KAZ (O)" .' _ﬁb

- 2n X 2T
log,1.78= or 0.576 — —=

2. A mass of 10 kg is suspended from one end of a helical spring, the other end being fixed.
The stiffness of the spring is 10 N/mm. The viscous damping causes the amplitude to decrease to
one-tenth of the initial value in four complete oscillations. If a periodic force of 150 cos 50 t N is

applied at the mass in the vertical direction, find the amplitude of the forced vibrations. What is

its value of resonance ?




We kncw that amolitude of the forcad vibrations,

. ¢

'

7 =
ot w? '’
= 1- o
s-‘ ((1)“}‘ l

0.015 0.015

l 12 ~0083+2.25
(5774607 l_(ﬂ‘l" N
\f (10x10%)°

Tosr—

ZEN

316

5quaring doth sdas and rearranging,
3083242 =332 or a =833 o a=2387
We know that a—-c2m of c—ax2m- 2887 x2x10- 57.71 N/m/s
and deflection nt the system praduced by the stabe force /)
x,= F/s=150/10 x 10° = 0.015 m

o

(LTS

1.5

— 481070 m= 9.8 mm Aas.

Amplitsde of Forced vibratns at resenance

We know that amplitude of forced vibrazions at resonance.

® > 0.071h —1()-x-]()3 (LORZZ 29
X .. —XX - I — L Som=82.2m ¥ ;
ma — X0 cao, 5751%<31 6 m=82.2 mm Aus

We know thal trunsmissibilily relio (g),

| (% L (@,)°

11 fa'Y l-mz—(mnlZ (157.1)% - (,)°

pe W2
ur 157.7)°

3. The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The armature mass is 35 kg and its

! 2 2 . 3 (5 A
()2 =11(m,)% or (@,)° =2057 or ;=453 ruds

C.G. lies 0.5 mm from the axis of rotation. The motor is mounted on five springs of negligible
damping so that the force transmitted is one-eleventh of the impressed force. Assume that the mass of
the motor is equally distributed among the five springs. Determine : 1. stiffness of each spring; 2.
dynamic force transmitted to the base at the operating speed; and 3. natural frequency of the system.
Sulmtion. Giver my = 120 kg . my =85 kg, =05 m =5 W w=1{11
N - 1000 o, or - 25« 1300/ 60 - 157.1 rad/s |
| Suffuess of each spring
Let s = Combined stiffress of the spring in N-m, and

o= Natural circular frequency of vibration of the machine in
radfs.




2. Dynamic torce ransmited wo the base at the operating speed (i.e. 1500 rpam. or 1571 rad/s)
AL, 1 1 1
We We know diat maxd:zum unbadanced force on the mower Jdue (0 armature mass,

\2

2 P PR, = oot
F=mao r=250157.0°" 510 =422 N

Sin £ Dlynamic Torce transmitted to the base,

F, =c. =]'lx432=39.2m A

3. Natural frequency of the svstem
We Lave caleulated above that e vaturd! fregquency ol the systen,

©, —45.35 radis Ans,

Felt

Cork

Metallic Springs

Cork is suitable for compressive loads because it is not perfectly elastic. At high loads it becomes

more flexible.

. Show that for effective isolation of vibration, frequency ratio r>V2.
When r >V2, then transmissibility is less than one for all values of damping factor.

This means that the transmitted force is always less than the excited force.

. Sketch the graph for (0/®,) Vs Transmissibility for different values of damping factor.
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. What are the methods of isolating the vibration?

High speed engines/machines mounted on foundation and supports cause vibrations of excessive
amplitude because of the unbalanced forces. It can be minimized by providing “spring-damper” , etc.

The materials used for vibration isolation are rubber, felt cork, etc. These are placed between the




foundation and vibrating body.

PART-B

1. Derive the relation for the displacement of mass from the equilibrium position of the damped
vibration system with harmonic forcing. ?
Consider a system consisting of spring, mass and damper as shown in Fig. 23.19. Let the

system is acted upon by an external periodic (i.e. simple harmonic) disturbing force,

Fy [l Fcosm.t

where F = Static force, and

® = Angular velocity of the periodic disturbing force.
When the system is constrained to move in vertical guides, it has only one degree of
freedom. Letat sometime t, the mass is displaced downwards through a distance x from its mean

position.

The equation of motion may be written as,

A A A

dix ax = }

ni# —cw——sx+ Ions 3 <
iR ——r——¢ 5. R Sprng £ ¥ 09
ar- ar P —
- S—
E |
K ux s fj‘W
or mx. O lex 1ex= Frosmer Mean pastben f— - m ————
di’ dt . Tmall
-“.'.Xl C ?{1 X
Mosition afier - S=osorddesy |
time 1 "-."".-.I‘.'T_T.'--.-
1

g 2319 Trequzncy of under
] Tereel wilmallens,




1. A mass of 10 kg is suspended from one end of a helical spring, the other end being fixed. The
stiffness of the spring is 10 N/mm. The viscous damping causes the amplitude to decrease to one-
tenth of the initial value in four complete oscillations. If a periodic force of 150c0s50 t N is

applied at the mass in the vertical direction, find the amplitude of the forced vibrations. What is

its value of resonance?

Solution. Given . m— 10 kg; = 10 N/mm — 10 = 10* N/m; ¥ = Jvd
Since the periodic force [, — Feosat —130c0850¢ . therefore
Stztic foree, F=130N
and angular velecity of the periodic distusbing force.
o =50 radis
We know that angular spced or natural circular frequency of free vibrations,

W, = [?— 10x10° = 31.6 rad’s
. “Jm 'J 10 o )

Ampfitude ot the forced vibrations

Since the amplitude d=zcreases to L/10th of the initial value in four complete oscillazions,
therefore, the raviv of inilial aenplitude (x ) to the final anplitude JCer four conplete oscillutivns
{x;l is given by

A
Yo X» M & X ) ' o X3 X X
‘_ . i : ‘m :
L | —=! -0 -Ls 'F]
Xz A3 x 10 ) [ 10
We know that
( \1 T
lcge| — |=ax =
\ 2 ((0,_.)2—&"
We kncw that amglitude of the forcad vibrations
)
Aoy = 7 ,'
& w? w |
e 7 y
s~ ()" |
0.015 0.015

.12 00834+225
( AL G 1_( 50 |
\f (105x10%)° 316 |




Squaring doth sidzs and rearranging,
308324 =332 o a =833 u a=2887

We know that a-c2m o c-ax2m-2887 x2x10- 57.74 Nims
and detlection nf the sysrem nonduced by the statie torre /7,

1, = Fls=150/10 x 10° = 0.015 m

2. The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The armature mass is
35 kg and its C.G. lies 0.5 mm from the axis of rotation. The motor is mounted on five
springs of negligible damping so that the force transmitted is one-eleventh of the

impressed force. Assume that the mass of the motor is equally distributed among the five springs.
Determine : 1. stiffness of each spring; 2. dynamic force transmitted to the base at the

operating speed; and 3. natural frequency of the system. ?

Swlation. Givere my = 120 ky o m, =3h kg, r=05 mm =5 x W w= T
N-1500 np.m. or @ — 2% = 1300/ 60 - 157.1 rad/s |

. Stiffuess af eacl spring

Let s — Combined sfiffness of the spring in N-m, and
o, = Natwral circular frequency of vibration of the machine in
rac/s.
(0TS _
——— —U48x107" m= 9.8 mm Ans
1.33

Amplinede of farced vibratens at resanance

We Know that amplitude of forced vibraons at resonance.
s 1010°

— 0N ———-0MOKEZ 1 = 82.2 mm Ans
o, 5751316 m=82.2 mm Ans.

X — Xp X

it [ 88




We krow thal w,, =\fsa' my

s =13 (03‘.,)2 =120x20537 =246 840 N/ m

Since these are five springs. therefore stiffness of each spring
= 246 840 /5 = 49 368 IN\/m Ans.
We know that rransrmessibiliey ratic (g),

1 B . (2,7
L g \"‘ \ @ —@)?  4a7.0% —(w,)°
A, |
w1 A57.0% — ()2 =11i@.)? ur (®,)° =2057 or ,=4534 madis

2. Presravaric Frrew Ossnsaeritadnd dep Hier diase af e opessalinne speod (Lo TS0y . o 1370 raddis)

W laiow bl mmoxsmumn anbalanced force on (e molor dus o ol ure sposs

F—mpw r—330157.0°5=107" —432 N
Dynamic force transmitiec 1o the dase

11 <422 =30727i N Ans.

_hr=;-_'r =

3 Nataral frequency of the systew

Vi Diave Gl douve Jna Uoe il requency ol L svsienn,

0, -45.35 rad's Ans,

What do you understand by transmissibility? Describe the method of finding the
transmissibility ratio from unbalanced machine supported with foundation.

A little consideration will show that when an unbalanced machine is installed on the
foundation, it produces vibration in the foundation. In order to prevent these vibrations or to minimize
the transmission of forces to the foundation, the machines are mounted on springs and dampers or on
some vibration isolating material, as shown in Fig. 23.22. The arrangement is assumed to have one

degree of freedom, i.e. it can move up and down only.

It may be noted that when a periodic (i.e. simple harmonic) disturbing force F cos o t is
applied to a machine of mass m supported by a spring of stiffness s, then the force is transmitted by
means of the spring and the damper or dashpot to the fixed support or foundation.

The ratio of the force transmitted (Fr) to the force applied (F) is known as the isolation
factor or transmissibility ratio of the spring support.
We have discussed above that the force transmitted to the foundation consists of the fol-

lowing two forces :




1. Spring force or elastic force which is equal to s. Xpax, and

2.Damping force which is equal to ¢. ® Xpax.




