
DATA STRUCTURES
Course code:AHSB03

II B. Tech II semester
Regulation: IARE R-18

BY 
Ms. Y Harika Devi

Mr. U Shivaji

DEPARTMENT OF ELECTRONICS AND ELECTRICAL ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500 043

1



CO’s Course outcomes

CO1 Learn the basic techniques of algorithm analysis.

CO2 Demonstrate searching and sorting algorithms and analyze 

their time complexities. 

CO3 Implement linear data structures viz. stack, queue and linked 

list.

CO4 Demonstrate non-linear data structures viz. tree and graph 

traversal algorithms.

CO5 Study and choose appropriate data structure to solve problems

in real world.

2



MODULE– I
INTRODUCTION TO DATA 

STRUCTURES, SEARCHING AND 
SORTING

3



CLOs Course Learning Outcome

CLO1 Understand algorithms and data structures in terms
of time and space complexity of basic operations

CLO2 Analyze a given problem; choose an appropriate data
structure and an algorithm to solve the problem.

CLO3 Choose a suitable algorithm to organize the data in
ascending or descending order.

CLO4 Understand the difference between iterative and
recursion approaches to solve problems.

4



CLOs Course Learning Outcome

CLO5 Explore an algorithm to find the location of an 
element in a given list.

CLO6 Understand the usage of divide and conquer strategy 
in searching and sorting applications. 

CLO7 Compare the time complexities of various searching 
and sorting algorithms.

5



Contents

• Introduction to Data Structures

• Classification and Operations on Data Structures

• Searching Techniques - Linear, Binary

• Sorting Techniques- Bubble, Selection and Insertion sort

• Comparison of SortingAlgorithms



Introduction to Data Structures

• A data structure is a way of storing data in a computer so that it
can be used efficiently and it will allow the most efficient algorithm
to be used.

• A data structure should be seen as a logical concept that must

address two fundamental

concerns.

I. First, how the data will be stored, and

II. Second, what operations will be performed on it.



Classification of Data Structures

• Data structures can be classified as

i. Simple data structure

ii. Compound data structure

iii. Linear data structure

iv. Non linear data structure



Simple and Compound Data Structures

• Simple Data Structure: Simple data structure can be constructed
with the help of primitive data structure. A primitive data structure
used to represent the standard data types of any one of the
computer languages. Variables, arrays, pointers, structures, unions,
etc. are examples of primitive data structures.

• Compound Data structure: Compound data structure can be
constructed with the help of any one of the primitive data
structure and it is having a specific functionality. It can be designed
by user. It can be classified as

i. Linear data structure

ii. Non-linear data structure



Linear and Non-linear Data Structures

• Linear Data Structure:
• Linear data structures can be constructed as a continuous

arrangement of data elements in the memory. It can be constructed by
using array data type. In the linear Data Structures the relationship of
adjacency is maintained between the data elements.

• Non-Linear Data Structure:
Non-linear data structures can be be constructed as a collection of
randomly distributed set of data item joined together by using a
special pointer (tag). In non-linear Data structure the relationship of
adjacency is not maintained between the data items.



Operations on Data Structures

i. Add an element

ii. Delete an element

iii. Traverse

iv. Sort the list of elements

v. Search for a data element



Algorithm Definition

• An Algorithm may be defined as a finite sequence of instructions each
of which has a clear meaning and can be performed with a finite
amount of effort in a finite length of time.

• The word algorithm originates from the Arabic word Algorism which is
linked to the name of the Arabic Mathematician AI Khwarizmi.

• AI Khwarizmi is considered to be the first algorithm designer for adding
numbers.



Structure of anAlgorithm

• An algorithm has the following structure:

– Input Step

– Assignment Step

– Decision Step

– Repetitive Step

– Output Step



Properties of an Algorithm

• Finiteness:- An algorithm must terminate after finite number of
steps.

• Definiteness:-The steps of the algorithm must be precisely defined.
• Generality:- An algorithm must be generic enough to solve all problems

of a particular class.
• Effectiveness:- The operations of the algorithm must be basic enough

to be put down on pencil and paper.
• Input-Output:- The algorithm must have certain initial and precise

inputs, and outputs that may be generated both at its intermediate
and final steps



Algorithm Analysis and Complexity

• The performances of algorithms can be measured on the scales of Time
and Space.

• The Time Complexity of an algorithm or a program is a function of the
running time of the algorithm or a program.

• The Space Complexity of an algorithm or a program is a function of the
space needed by the algorithm or program to run tocompletion.



Algorithm Analysis and Complexity

• The Time Complexity of an algorithm can be computed either by an

– Empirical or PosterioriTesting

– Theoretical or AprioriApproach

• The Empirical or Posteriori Testing approach calls for implementing
the complete algorithm and executes them on a computer for
various instances of the problem.

• The Theoretical or Apriori Approach calls for mathematically
determining the resources such as time and space needed by the
algorithm, as a function of parameter related to the instances of the
problem considered.



• Apriori analysis computed the efficiency of the program as

a function of the total frequency count of the statements

comprising the program.

• Example:

Let us estimate the frequency count of the statement x = x+2

occurring in the following three program segments A, B and

C.

Algorithm Analysis and Complexity



Total Frequency Count of Program 

SegmentA

• Program Statements

..…………………

x = x+ 2

….……………….

Total Frequency Count

• Frequency Count

1

1

Time Complexity of Program Segment A is O(1).



Total Frequency Count of Program

Segment B

• Program Statements

..…………………

for k = 1 to n do

x = x+ 2;

end

….……………….

Total Frequency Count

• Frequency Count

(n+1)

n

n

……………………

3n+1



Time Complexity

Complexity Notation Description

Constant O(1) Constant number of operations, not 
depending onthe  input data size.

Logarithmic O(logn) Number of operations proportional of log(n) 
where n  is the size of the input data.

Linear O(n) Number of operations proportional to the 
inputdata  size.

Quadratic O(n2 ) Number of operations proportional to the 
square of  the size of the input data.

Cubic O(n3 ) Number of operations proportional to the cube 
ofthe
size of the input data.

Exponential O(2n) Exponential number of operations, fast
growing.O(kn )



Time Complexities of various Algorithms



Searching Methods

• Search: A search algorithm is a method of locating a specific item of
information in a larger collection of data.

• There are two primary algorithms used for searching the contents of an
array:

1. Linear or Sequential Search

2. Binary Search



Linear Search

• Begins search at first item in list, continues searching
sequentially(item by item) through list, until desired item(key) is
found, or until end of list is reached.

Also called sequential or serial search.

• Obviously not an efficient method for searching ordered lists like
phone directory(which is ordered alphabetically).

• Advantages

1. Algorithm is simple.

2. List need not be ordered in any particular  way.

• Time Complexity of Linear Search is O(n).



def linear_Search(l,key,index=0):  

if l:

if l[0]==key:  

return index

s=linear_Search(l[1:],key,(index+1))  

if s is not false:

return s  

return false

Recursive Linear SearchAlgorithm



Binary Search

Binary search uses a recursive method to search an array to find a 
specified value

The array must be a sorted array:
a[0]≤a[1]≤a[2]≤. . . ≤  a[finalIndex]

If the value is found, its index is returned
If the value is not found, -1 is returned

Note:  Each execution of the recursive method reduces the search 
space by about a half



An algorithm to solve this task looks at the middle of the array or array 
segment first
If the value looked for is smaller than the value in the middle of the 
array

Then the second half of the array or array segment can be ignored
This strategy is then applied to the first half of the array or array 
segment

Binary Search



If the value looked for is larger than the value in the middle of the 
array or array segment

Then the first half of the array or array segment can be ignored
This strategy is then applied to the second half of the array or 
array segment

If the value looked for is at the middle of the array or array segment, 
then it has been found
If the entire array (or array segment) has been searched in this way 
without finding the value, then it is not in the array



Basic Sorting Methods :-Bubble Sort

• First Level Considerations

• To sort list of n elements in ascending order

Pass 1 :make nth element the largest

Pass 2 :if needed make n-1th element the 2nd  largest

Pass 3 :if needed make n-2th element the 3rd  largest

Pass n-2: if needed make 3rd n-(n-3)thelement  the (n-2)th

largest
Pass n-1 :if needed make 2nd n-(n-2)thelement  the (n-1)th

largest

• Maximum number of passes is (n-1).



Bubble Sort

Second Level Considerations

• Pass 1: Make nth element the largest.  Compare each successive
pair of elements  beginning with 1st 2nd and ending 
with n-1th  nth and swap the elements if necessary.

• Pass 2 : Make n-1th element the 2nd largest.  Compare each
successive pair of elements  beginning with 
1st 2nd and ending with n-2th n-1th and swap the 
elements if necessary



Pass n-1:Make 2nd n-(n-2)th element the (n-1)th largest.
Compare each successive pair of elements beginning with 1st 2nd and
ending with n-(n-1) th n-(n-2)th 1st 2nd and swap the elements if
necessary.

List is sorted when either of the following occurs  No swapping involved 
in any pass
Pass n-1:the last pass has been executed



Bubble Sort Example



Selection Sort

First Level Considerations

• To sort list of n elements in ascending order

• Pass 1: make 1st element the smallest

• Pass 2: make 2nd element the 2nd smallest

• Pass 3: make 3rd element the 3rd smallest

• Pass n-2: make (n-2)th element the (n- 2)th smallest

• Pass n-1: make (n-1)th element the (n- 1)th smallest

• Number of passes is (n-1).



Selection Sort

Second Level Considerations

• Pass 1: Make 1st element the smallest

Examine list from 1st to last element locate element with
smallest value and swap it with the 1st element where
appropriate .

• Pass 2: Make 2nd element the 2nd smallest

Examine list from 2nd to last element locate element with
smallest value and swap it with the 2nd element where
appropriate.

• Pass n-1: Make (n-1)th element the (n-1)thsmallest

Examine list from (n-1)th to last element locate element with
smallest value and swap it with the n-1th element where
appropriate.



Selection Sort Example

34



Insertion Sort

First Level Considerations

To sort list of n items (stored as 1D array) in ascending  order

• NOTE: 1-element sub-array (1st) is always sorted

• Pass 1: make 2-element sub-array (1st 2nd)sorted

• Pass 2 :make 3-element sub-array (1st 2nd 3rd)sorted

• Pass 3 :make 4-element sub-array (1st 4th)sorted

• Pass n-2: make n-1-element sub-array (1st (n-1)th)  

sorted

• Pass n-1: make entire n-element array (1st nth)sorted

• Number of passes is (n-1)



Insertion Sort



Comparison of SortingAlgorithms



MODULE – II
LINEAR DATA STRUCTURES



The course will enable the students to: 

CLO 5 Implementation of stack and queues using an
underlying array.

CLO 6 Understand application of stacks in arithmetic
expression conversion and evaluation.

CLO 7 Understand working of circular queues and double
ended queue.

Running Course Learning Outcomes 



Contents

• Stacks - Primitive Operations 

• Implementation of stacks using arrays

• Applications of Stack

• arithmetic expression conversion and evaluation

• Queues - Primitive Operations 

• Implementation of queues using Arrays

• Applications of Linear Queue

• Circular Queue

• Double Ended Queue (Deque)



Stacks

• A stack is a list of elements in which an  element may be inserted or
deleted only at one  end, called the top of the stack.

• The elements are removed from a stack in the  reverse order of that

in which they were  inserted into the stack.

• Stack is also known as a LIFO (Last in Fast  out) list or Push down list.



Basic Stack Operations

• PUSH: It is the term used to insert an element  into a stack.

PUSH operations on stack



Basic Stack Operations

POP: It is the term used to delete an element  from a stack.

POP operation from a stack



Standard Error Messages in Stack

• Two standard error messages of stack are

– Stack Overflow: If we attempt to add new element beyond the
maximum size, we will encounter a stack overflow condition.

– Stack Underflow: If we attempt to remove elements beyond the
base of the stack, we will encounter a stack underflow condition.



Stack Operations

• PUSH (STACK, TOP, MAXSTR, ITEM): This procedure  pushes an ITEM 
onto a stack

1. If TOP = MAXSIZE, then Print: OVERFLOW, and Return.

2. Set TOP := TOP + 1 [Increases TOP by 1]

3. Set STACK [TOP] := ITEM. [Insert ITEM in TOP  position]

4. Return

• POP (STACK, TOP, ITEM): This procedure deletes the top  element of 
STACK and assign it to the variable ITEM

1. If TOP = 0, then Print: UNDERFLOW, and Return.

2. Set ITEM := STACK[TOP]

3. Set TOP := TOP - 1 [Decreases TOP by 1]

4. Return



Applications of Stack

• Converting algebraic expressions from one form to another. E.g. Infix to
Postfix, Infix to Prefix, Prefix to Infix, Prefix to Postfix, Postfix to Infix
and Postfix to prefix.

• Evaluation of Postfix expression.

• Parenthesis Balancing in Compilers.

• Depth First Search Traversal of Graph.

• Recursive Applications.



Arithmetic Expression

• Infix: It is the form of an arithmetic expression in which we fix (place) the
arithmetic operator in between the two operands. E.g.: (A + B) * (C - D)

• Prefix: It is the form of an arithmetic notation in which we fix (place) the
arithmetic operator before (pre) its two operands. The prefix notation is
called as polish notation. E.g.: * + A B – C D

• Postfix: It is the form of an arithmetic expression in which we fix (place) the
arithmetic operator after (post) its two operands. The postfix notation is
called as suffix notation and is also referred to reverse polish notation. E.g: A
B + C D - *



Conversion from Infix to Postfix

Convert the following infix expression A + B * C – D / E * H into its 
equivalent postfix  expression.



Evaluation of Postfix Expression

Postfix expression: 6 5 2 3 + 8 * + 3 + *



Queue

• A queue is a data structure where items are inserted at one end called
the rear and deleted at the other end called the front.

• Another name for a queue is ―FIFO‖ or―First-in-first-out‖ list.

• Operations of a Queue:

 enqueue: which inserts an element at the end of  the queue.

 dequeue: which deletes an element at the front of  the queue.



Representation of Queue

Initially the queue is empty.

Now, insert 11 to the queue. Then queue status will be:

Next, insert 22 to the queue. Then the queue status is:



Representation of Queue

Now, delete an element 11.

Next insert another element, say 66 to the queue. 
We cannot insert 66 to the queue as it signals queue is full. The queue status 
is as follows:



Queue Operations using Array

• Various operations of Queue are:
 insertQ(): inserts an element at the end of queue Q.

 deleteQ(): deletes the first element of Q.
 displayQ(): displays the elements in the queue.
• There are two problems associated with

linear queue. They are:

 Time consuming: linear time to be spent in shifting  the elements to
the beginning of the queue.

 Signaling queuefull: even if the queue is having vacant position



Applications of Queue

 It is used to schedule the jobs to be processed  by the CPU.
 When multiple users send print jobs to a printer, each printing job

is kept in the printing queue. Then the printer prints those jobs
according to first in first out (FIFO) basis.

 Breadth first search uses a queue data structure  to find an
element from a graph.



Circular Queue

• A circular queue is one in which the insertion of new element is done at
the very first location of the queue if the last location of the queue is
full.

• Suppose if we have a Queue of n elements then after adding the
element at the last index i.e. (n-1)th , as queue is starting with 0 index,
the next element will be inserted at the very first location of the queue
which was not possible in the simple linear queue.



Circular Queue operations

• The Basic Operations of a circular queue are

 InsertionCQ: Inserting an element into a circular queue results in
Rear = (Rear + 1) % MAX, where MAX is the maximum size of the
array.

 DeletionCQ : Deleting an element from a circular queue results in
Front = (Front + 1) % MAX, where MAX is the maximum size of the
array.

 TraversCQ: Displaying the elements of a circular Queue.

• Circular Queue Empty: Front=Rear=0.



Circular Queue Representation  Using Arrays

Let us consider a circular queue, which can hold maximum (MAX) of six  
elements. Initially the queue is empty.



Insertion and Deletion operations  on a Circular Queue

Now, delete two elements 11, 22 from the circular queue. The 

circular queue status is as follows:

Insert new elements 11, 22, 33, 44 and 55 into the circular queue. 

The circular  queue status is:



Insertion and Deletion operations  on a Circular 

Queue

Again, insert 77 and 88 to the circular queue. The status of the Circular 
queue  is:

Again, insert another element 66 to the circular queue. The status 

of the  circular queue is:



Double Ended Queue (DEQUE)

• It is a special queue like data structure that  supports insertion and
deletion at both the  front and the rear of the queue.

• Such an extension of a queue is called a double-ended queue, or

deque, which is usually pronounced "deck" to avoid confusion with

the dequeue method of the regular queue, which is pronounced

like the abbreviation "D.Q."

• It is also often called a head-tail linked list.



DEQUE Representation using arrays



Types of DEQUE

• There are two variations of deque. They are:

– Input restricted deque (IRD)

– Output restricted deque (ORD)

• An Input restricted deque is a deque, which allows insertions at one end
but allows deletions at both ends of the list.

• An output restricted deque is a deque, which allows deletions at one
end but allows insertions at both ends of the list.



• Since Deque supports both stack and queue operations, it can be 

used as both.

• The Deque data structure supports clockwise and anticlockwise 

rotations in O(1) time which can be

• useful in certain applications.

• Also, the problems where elements need to be removed and or added 

both ends can be efficiently

• solved using Deque.

Applications of Deque



64

MODULE – III
LINKED LISTS



Running Course learning Outcomes

The course will enable the students to: 

CLO 8 Understand dynamic data structures and their real time

applications.

CLO 9 Understand the basic insertion and deletion
operations associated with linked list.

CLO 10 Organize the data in various linked representation

format.



66

Contents

• Introduction to Linked listAdvantages and 

Disadvantages of  Linked List

• Types of Linked List

• Single Linked List

• Applications of Linked List

• Circular Single Linked list

• Double Linked List



Introduction  to Linked List 

67

A linked list is a collection of data in which each element contains 

the location of the next element—that is, each element contains two 

parts: data and link.



Arrays versus Linked Lists

• Both an array and a linked list are representations of a list of items in

memory. The only difference is the way in which the items are linked

together. The Figure below compares the two representations for a list

of five integers.

68



69

Linked List:  A Dynamic Data Structure

• A data structure that can shrink or grow during program execution.

• The size of a dynamic data structure is not necessarily known at

compilation time, in most programming languages.

• Efficient insertion and deletion of elements.

• The data in a dynamic data structure can be stored in non-contiguous

(arbitrary) locations.

• Linked list is an example of a dynamic data structure.



70

Advantages of linked list

• Unused locations in array is often a wastage of  

space

• Linked lists offer an efficient use of memory

– Create nodes when they are required

– Delete nodes when they are not required anymore

– We don‘t have to know in advance how long the list  should be



71

Applications  of linked list

• Linked lists are used to represent and manipulate polynomial.
Polynomials are expression containing terms with non zero coefficient
and exponents. For example:

P(x) = a0 Xn + a1 Xn-1 + …… + an-1 X + an

• Represent very large numbers and operations of the large number such

as addition, multiplication and division.

• Linked lists are to implement stack, queue, trees and graphs.

• Implement the symbol table in compiler construction.



72

Types of linked lists

• There are four types of Linked lists:

– Single linked list

• Begins with a pointer to the first node

• Terminates with a null pointer

• Only traversed in one direction

– Circular single linked list

• Pointer in the last node points back to the first node

– Doubly linked list

• Two ―start pointers‖ – first element and last element

• Each node has a forward pointer and a backward pointer

• Allows traversals both forwards and backwards

– Circular double linked list

• Forward pointer of the last node points to the first node and

backward pointer of the first node points to the last node



Singly Linked Lists

 A singly linked list is a concrete
data structure consisting of a
sequence of nodes

 Each node stores
 Element 

 link to the next node

next

elem node

A B C D



73



74

Singly Linked Lists

• A linked list allocates space for each element separately in its own

block of memory called a "node".

• Each node contains two fields; a "data" field to store whatever element,

and a "next" field which is a pointer used to link to the next node.

• Each node is allocated in the heap using malloc(), so the node memory

continues to exist until it is explicitly de-allocated using free().

• The front of the list is a pointer to the ―start‖ node.



Single Linked List

75



76

Operations on Linked Lists

• The basic operations of a single linked list are

– Creation

– Insertion

– Deletion

– Traversing 



Creating a node for Single Linked  List:

Sufficient memory has to be allocated for creating a node. The

information is stored in the memory, allocated by using the malloc()

function. The function getnode(), is used for creating a node, after

allocating memory for the structure of type node, the information for the

item (i.e., data) has to be read from the user, set next field to NULL and

finally returns the address of the node.

77



class Node:

def init (self,data,nextNode=None):  

self.data = data

self.nextNode = nextNode def getData(self):

return self.data def setData(self,val):

self.data = val def getNextNode(self):

return self.nextNode def setNextNode(self,val):

self.nextNode = val



class LinkedList:

def init (self,head = None):  self.head = head  

self.size = 0

def getSize(self):

return self.size def addNode(self,data):

newNode = Node(data,self.head)  self.head = 

newNode self.size+=1

return True  def printNode(self):

curr = self.head while curr:

print(curr.data)

curr = curr.getNextNode()



Creating a single linked list with N  nodes

80



Inserting a node

81

• Inserting a node into a single linked list can be  done at

– Inserting into an empty list.

– Insertion at the beginning of the list.

– Insertion at the end of the list.

– Insertion in the middle of the list.



Inserting a node at the beginning

The following steps are to be followed to insert a new  node at the 

beginning of the list:

#Function to insert a new node at the  def push(self, 

new_data):

# Allocate the Node & Put in the data  

new_node = Node(new_data)

#Make next of new Node as head 

new_node.next = self.head

# Move the head to point to new Node  self.head = 

new_node



Inserting  a node at the beginning

83



Inserting  a node at the end

• The following steps are followed to insert a new  node at the end of 

the list:

# This function is defined in Linked List class  # Appends a new node at 
the end. This method  is defined inside LinkedList class shown 
above  def append(self, new_data):

# Create a new node, Put in the data, Set next  as None

new_node = Node(new_data)

# If the Linked List is empty, then make the  new node as head

if self.head is None:  self.head = new_node return

#Else traverse till the last node  last = self.head

while last.next:

last = last.next

# Change the next of last node  last.next = new_node



Inserting a node at the end

85



Inserting a node at intermediate  position

86

• The following steps are followed, to insert a new node after the  given 
previous node in the list:

def insertAfter(self, prev_node, new_data):  #check if the given prev_node

exists

if prev_node is None:

print(―The given previousnode must in Linked  List.‖)

return

#Create new node & Put in the data  new_node = Node(new_data)

# Make next of new Node as next of prev_node new_node.next = 

prev_node.next

#Make next of prev_node as new_node prev_node.next = new_node



Inserting a node at intermediate  position

109



110

Deletion of a node

• Another primitive operation that can be done in a singly linked list is the

deletion of a node. Memory is to be released for the node to be

deleted. A node can be deleted from the list from three different places

namely.

– Deleting a node at the beginning.

– Deleting a node at the end.

– Deleting a node at intermediate position.



Deleting a node at the beginning

89

• The following steps are followed, to delete a  node at the beginning of 

the list:



Deleting a node at the end

90

• The following steps are followed to delete a node at the end of the  list:

– If list is empty then display ‗Empty List‘message.

– If the list is not empty, follow the steps given below:

temp = prev = start;  while(temp -> next != NULL)

{

prev = temp;

temp = temp -> next;

}

prev -> next = NULL;  free(temp);



Deleting a node at the end

91



Deleting a node at Intermediate  position

92

• The following steps are followed, to delete a  node from an 

intermediate position in the list:

# Given a reference to the head of a list and a  position, delete the node 

at a given position  def deleteNode(self, position):

# If linked list is empty  if self.head == None:

return

# Store head node  temp = self.head

# If head needs to be removed  if position == 0:

self.head = temp.next temp = None

return

# Find previous node of the node to be  deleted

for i in range(position -1 ):  temp = temp.next

if temp is None:  break



# If position is more than number of nodes

if temp is None:

return

if temp.next is None:  return

# Node temp.next is the node to be deleted  store pointer to the next of 

node to be deleted

next = temp.next.next

# Unlink the node from linked list  temp.next = None  temp.next=next

# Find previous node of the node to be deleted  for i in range(position -1 ):

temp = temp.next if temp is None:

break

# If position is more than number of nodes  if temp is None:

return

if temp.next is None:  return



Deleting a node at Intermediate  position

110



120

Traversal and displaying a list

• To display the information, you have to traverse (move) a linked list,

node by node from the first node, until the end of the list is reached.

Traversing a list involves the following steps:

– Assign the address of start pointer to a

temp  pointer.

– Display the information from the data field of each  node.



Double Linked List

96

• A double linked list is a two-way list in which all nodes will have two
links. This helps in accessing both successor node and predecessor
node from the given node position. It provides bi-directional traversing.
Each node contains three fields:

– Left link.

– Data.

– Right link.

• The left link points to the predecessor node and the right link points to
the successor node. The data field stores the required data.



A Double Linked List

97



Basic operations in a double linked list

98

• Creation

• Insertion

• Deletion

• Traversing 

• The e beginning of the double linked list is  stored in a "start" pointer 

which points to the  first node. The first node‘s left link and last  

node‘s right link is set to NULL.



Structure of a Double Linked List

99



Creating a Double Linked List with  N number of 

nodes

100

• The following steps are to be followed to create

‗n‘ number of nodes:

class Node(object):

def init (self, data, prev, next):  self.data = data

self.prev = prev

self.next = next

class DoubleList(object):  head = None

tail = None



Creating a Double Linked List with  N number 

of nodes

101



Inserting a node at the beginning

102

• The following steps are to be followed to insert a  new node at 

the beginning of the list:

• Get the new node using  getnode().  newnode=getnode();

• If the list is empty then start = newnode.

• If the list is not empty,follow the steps given  below:

newnode -> right = start;  start -> left = newnode;  start = 

newnode;



120

Inserting a node at the beginning

• The following steps are followed to insert a new node  at 

the end of the list:

• Get the new node using getnode()

newnode=getnode();

• If the list is empty then start = newnode.

• If the list is not empty follow the steps given  below:

temp = start;

while(temp -> right != NULL)  temp = temp -> right;

temp -> right = newnode;  newnode -> left = temp;



Inserting a node at an intermediate  position

104

•

•

• The following steps are followed, to insert a new node in an
intermediate position in the list:

Get the new node using  getnode().  newnode=getnode();

• Ensure that the specified position is in between first node 
and last  node. If not, specified position is invalid. This is 
done by  countnode() function.

• Store the starting address (which is in start pointer) in temp
and prev pointers. Then traverse the temp pointer upto the
specified position followed by prev pointer.

After reaching the specified position, follow the steps given  

below: newnode -> left = temp;

newnode -> right = temp -> right;  temp -> right -> left = 

newnode;

temp -> right = newnode;



Inserting a node at an intermediate  position

105



Deleting a node at the beginning

106

• The following steps are followed, to delete a  node 

at the beginning of the list:

• If list is empty then display‗Empty List‘  message.

• If the list is not empty, follow the steps given  below:

temp = start;

start = start -> right;

start -> left = NULL;  free(temp);



Deleting a node at the end

107

• The following steps are followed to delete a node at the  end 

of the list:

– If list is empty then display ‗Empty List‘ message

– If the list is not empty, follow the steps given below:

temp = start;

while(temp -> right != NULL)

{

temp = temp -> right;

}

temp -> left -> right = NULL;  free(temp);



Deleting a node at Intermediate  position

108

•The following steps are followed, to delete a node from an 
intermediate position in the list.
•If list is empty then display ‗Empty List‘ message.
•If the list is not empty, follow the steps given below:

– Get the position of the node to delete.
– Ensure that the specified position is in between first node 

and last node. If not, specified  position is invalid.

•Then perform the following steps:

if(pos > 1 && pos < nodectr)

{

temp = start;  i = 1;

while(i < pos)

{

temp = temp -> right;  i++;

}

temp -> right -> left = temp -> left;  temp -> left -> right = temp 

-> right;  free(temp);

printf("\n node deleted..");}



Deleting a node at Intermediate  position

109



130

Traversal and displaying a list (Left  to Right)

• The following steps are followed, to traverse a list from  left to 

right:

• If list is empty then display ‗Empty List‘ message.

• If the list is not empty, follow the steps given  

below: temp = start;

while(temp != NULL)

{

print temp -> data;  temp = temp -> right;

}



140

Traversal and displaying a list  (Right to Left)

• The following steps are followed, to traverse a list from  
right to left:

• If list is empty then display ‗Empty List‘ message.

• If the list is not empty, follow the steps given  below:

temp = start;

while(temp -> right != NULL)  temp = temp -> right;  

while(temp != NULL)

{

print temp -> data;  temp = temp -> left;

}



Advantages and Disadvantages of  Double 

Linked List

112

• The major disadvantage of doubly linked lists (over singly
linked lists) is that they require more space (every node has
two pointer fields instead of one). Also, the code to
manipulate doubly linked lists needs to maintain the prev
fields as well as the next fields; the more fields that have to
be maintained, the more chance there is for errors.

• The major advantage of doubly linked lists is that they make

some operations (like the removal of a given node, or a right-

to-left traversal of the list) more efficient.



Circular Single Linked List

113

• It is just a single linked list in which the link field of the last node

points back to the address of the first node.

• A circular linked list has no beginning and no end. It is necessary
to establish a special pointer called start pointer always pointing
to the first node of the list.

• Circular linked lists are frequently used instead of ordinary linked
list because many operations are much easier to implement. In
circular linked list no null pointers are used, hence all pointers
contain valid address.



Circular Single Linked List and its  basic 

operations

114

The basic operations in a circular single linked list 

are:

• Creation 

•Insertion

•Deletion

•Traversing



144

Creating a circular single Linked  List with N 

number of nodes

•

•

• The following steps are to be followed to create ‗n‘ number  
of nodes:

• Get the new node using getnode().

newnode = getnode();

If the list is empty, assign new node as  start. start = 

newnode;

• If the list is not empty, follow the steps given below:

temp = start;

while(temp -> next != NULL)  temp = temp -> next;

temp -> next = newnode;

Repeat the above steps ‗n‘  times.

newnode -> next = start;



Inserting node at the beginning

116

•

•

• The following steps are to be followed to insert a new node  
at the beginning of the circular list:

• Get the new node using getnode().

newnode = getnode();

If the list is empty, assign new node as  start.

start = newnode;

newnode -> next = start;

If the list is not empty, follow the steps given  below:

last = start;

while(last -> next != start)  last = last -> next;

newnode -> next = start;  start = newnode;

last -> next = start;



Inserting a node at the beginning

117



Inserting a node at the end

118

•

•

•

• The following steps are followed to insert a new node at the  
end of the list:

Get the new node using  getnode().

newnode =  getnode();

If the list is empty, assign new node as  start.

start = newnode;

newnode -> next = start;

If the list is not empty follow the steps given  below:

temp = start;

while(temp -> next != start)  temp = temp -> next;

temp -> next = newnode;  newnode -> next = start;



Inserting a node at the end

119



140

Deleting a node at the beginning

• The following steps are followed, to delete a node at  the 

beginning of the list:

• If the list is empty, display a message ‘Empty List’.

• If the list is not empty, follow the steps given  below: last 

= temp = start;

while(last -> next != start)  last = last -> next;

start = start -> next;  last -> next = start;

• After deleting the node, if the list is empty then start =  NULL.



Deleting a node at the end

121

• The following steps are followed to delete a node at the end of  
the list:

• If the list is empty, display a message ‗Empty List‘.

• If the list is not empty, follow the steps given  below: temp 

= start;

prev = start;

while(temp -> next != start)

{

prev = temp;

temp = temp -> next;

}

prev -> next = start;

• After deleting the node, if the list is empty then start = NULL.



Deleting a node at the end

122



Traversing a circular single linked  list from left to 

right

123

• The following steps are followed, to traverse a list from  left to 

right:

• If list is empty then display ‗Empty List‘ message.

• If the list is not empty, follow the steps given below:

temp = start;

do

{

printf("%d ", temp -> data);  temp = temp -> next;

} while(temp != start);



Advantages of Circular Lists

124

• The major advantage of circular lists (over non-circular

lists) is that they eliminate some extra-case code for

some operations (like deleting last node).

• Also, some applications lead naturally to circular list

representations.

• For example, a computer network might best be modeled

using a circular list.



Applications of Linked Lists:  Representing 

Polynomials

125

A polynomial is of the form:

Where, ci is the coefficient of the ith term and n is the degree of the

polynomial

Some examples are: 5x2 + 3x + 1, 5x4 – 8x3 + 2x2 + 4x1 + 9x0

The computer implementation requires implementing polynomials

as a list of pairs of coefficient and exponent. Each of these pairs

will constitute a structure, so a polynomial will be represented as

a list of structures. A linked list structure that represents

polynomials

5x4 – 8x3 + 2x2 + 4x1 + 9x0 illustrated.



Addition of Polynomials

126

• To add two polynomials, if we find terms with the same
exponent in the two polynomials, then we add the coefficients;
otherwise, we copy the term of larger exponent into the sum
and go on. When we reach at the end of one of the polynomial,
then remaining part of the other is copied into the sum.

• To add two polynomials follow the following  steps:

– Read two polynomials.

– Add them.

– Display the resultant polynomial.



127

MODULE – IV
NON LINEAR DATA STRUCTURES



CONTENTS

• Basic Tree Concepts, Binary Trees

• Representation of Binary Trees

• Operations on a Binary Tree 

• Binary Tree Traversals

• Threaded Binary Trees

• Basic Graph Concepts

• Graph Traversal Techniques: DFS and BFS



Tree – a Hierarchical Data Structure

• Trees are non linear data structure that can be  represented in a 

hierarchical manner.

– A tree contains a finite non-empty set of elements.

– Any two nodes in the tree are connected with a  

relationship of parent-child.

– Every individual elements in a tree can have any  number of 

sub trees.



An Example of a Tree



Tree – Basic Terminology

• Root : The basic node of all nodes in the tree. All operations on the
tree are performed with passing root node to the functions.

• Child : a successor node connected to a node is called child. A node

in binary tree may have at most two children.

• Parent : a node is said to be parent node to all its child nodes.

• Leaf : a node that has no child nodes.

• Siblings : Two nodes are siblings if they are children to the same

parent node.



Tree – Basic Terminology Contd…

• Ancestor : a node which is parent of parent node ( A is

ancestor node to D,E and F ).

• Descendent : a node which is child of child node ( D, E and F

are descendent nodes of node A )

• Level : The distance of a node from the root node, The root is
at level – 0,( B and C are at Level 1 and D, E, F have Level 2 (
highest level of tree is called height of tree )

• Degree : The number of nodes connected to a particular parent

node.



Binary Tree

• A binary tree is a hierarchy of nodes, where every parent node has

at most two child nodes. There is a unique node, called the root,

that does not have a parent.

• A binary tree can be defined recursively as

• Root node

• Left subtree: left child and all its descendants

• Right subtree: right child and all its  descendants



Binary Tree

a

b c

d e

g h i

l

f

j k



Full and Complete Binary Trees

• A full tree is a binary tree in which

– Number of nodes at level l is 2l–1

– Total nodes in a full tree of height n is

• A complete tree of height n is a binary tree

– Number of nodes at level 1 l n–1 is 2l–1

– Leaf nodes at level n occupy the leftmost positions  in the 

tree



Tree Traversals

• A binary tree is defined recursively: it consists  of a root, a left 

subtree, and a right subtree.

• To traverse (or walk) the binary tree is to visit  each node in 

the binary tree exactly once.

• Tree traversals are naturally recursive.

• Standard traversal orderings:

• preorder

• inorder

• postorder

• level-order



Preorder, Inorder, Postorder

• In Preorder, the root  is visited 

before (pre)

the subtrees traversals.

• In Inorder, the root is

visited in-between left

and right subtree traversal.

• In Preorder, the root

is visited after (pre)

the subtrees traversals.

PreorderTraversal:
1. Visit the root

2. Traverse left subtree

3. Traverse right subtree

InorderTraversal:

1. Traverse left subtree

2. Visit the root

3. Traverse right subtree

PostorderTraversal:

1. Traverse left subtree

2. Traverse right subtree

3. Visit the root



Example of Tree Traversal

• Assume: visiting a node

is printing its data

•Preorder: 15 8 2 6 3 7

11 10 12 14 20 27 22 30

•Inorder: 2 3 6 7 8 10 11

12 14 15 20 22 27 30

•Postorder: 3 7 6 2 10 14

12 11 8 22 30 27 20 15

6

1

5
8

2

3 7

11

1

4

10

1

2

2

0

2

7

2

2

3

0



Traversal Techniques

void preorder(tree *tree) {

if (tree->isEmpty( )) return;  visit(tree->getRoot( ));  preOrder(tree-

>getLeftSubtree());  preOrder(tree->getRightSubtree());

}

void inOrder(Tree *tree){

if (tree->isEmpty( )) return;  inOrder(tree->getLeftSubtree( ));  

visit(tree->getRoot( ));  inOrder(tree->getRightSubtree( ));

}

void postOrder(Tree *tree){

if (tree->isEmpty( )) return;  postOrder(tree->getLeftSubtree( ));  

postOrder(tree->getRightSubtree( ));  visit(tree->getRoot( ));
}



Threaded Binary Tree

• A threaded  binary tree defined as:

• "A binary tree is threaded  by making 

all right child  pointers that would  

normally be null point to  the inorder

successor of  the node, and all left child  

pointers that would  normally be null point 

to  the inorderpredecessor of  the node



Graph Basics

• Graphs are collections of nodes connected by  edges –G = (V,E) where 

V is a set of nodes  and E  a  set of  edges.

• Graphs are useful in a number of  applications  including

– Shortest path problems

– Maximum flow problems

• Graphs unlike trees are more general for they  can have connected 

components.



Graph Types

Directed Graphs: A directed graph edges   allow travel in one 

direction.

• Undirected Graphs: An undirected graph   edges allow 

travel in either direction.



Graph Terminology

• A graph is an ordered pair G=(V,E) with a set  of vertices or 

nodes and the edges that connect  them.

• A subgraph of a graph has a subset of the  vertices and edges.

• The edges indicate how we can move through  the graph.

• A path is a subset of E that is a series of edges  between two 

nodes.

• A graph is connected if there is at least one  path between 

every pair of nodes.



Graph Terminology

• The length of a path in a graph is the number of  edges in the 

path.

• A complete graph is one that has an edge between  every pair 

of nodes.

• A weighted graph is one where each edge has a  cost for 

traveling between the nodes.

• A cycle is a path that begins and ends at the same  node.

• An acyclic graph is one that has no cycles.

• An acyclic, connected graph is also called an  unrooted tree



Data Structures for Graphs  An Adjacency Matrix

• For an undirected graph, the matrix will be symmetric along the

diagonal.

• For a weighted graph, the adjacency matrix would have the
weight for edges in the graph, zeros along the diagonal, and
infinity (∞) every place else.



Adjacency Matrix Example 1



Adjacency Matrix Example 2



Data Structures for Graphs  An Adjacency List

• A list of pointers, one for each node of the graph.

• These pointers are the start of a linked list of nodes that can be
reached by one edge of the graph.

• For a weighted graph, this list would also include the weight

for each edge.



Adjacency List Example 1



Adjacency List Example 2



Graph Traversals

• Some algorithms require that every vertex of a graph be visited

exactly once.

• The order in which the vertices are visited may be important,

and may depend upon the particular algorithm.

• The two common traversals:

- depth-first

- breadth-first



Graph Traversals:  Depth First Search Traversal

• We follow a path through the graph until we reach a dead end.

• We then back up until we reach a node with an edge to an

unvisited node.

• We take this edge and again follow it until we reach a dead end.

• This process continues until we back up to the starting node
and it has no edges to unvisited nodes.



Depth First Search Traversal  Example

• Consider the following graph:

• The order of the depth-first traversal of this graph  starting at node 1 

would be: 1, 2, 3, 4, 7, 5, 6, 8, 9



Breadth First Search Traversal

• From the starting node, we follow all paths of length one.

• Then we follow paths of length two that go to unvisited nodes.

• We continue increasing the length of the paths until there are

no unvisited nodes along any of the paths.



Breadth First Search Traversal  Example

• Consider the following graph:

• The order of the breadth-first traversal of this  graph starting at node 1 

would be: 1, 2, 8, 3, 7,  4, 5, 9, 6



156

MODULE – V
BINARY TREES AND HASHING



180

Binary Search Trees

• In a BST, each node stores some information including a

unique key value, and perhaps some associated data. A binary

tree is a BST iff, for every node n in the tree:

• All keys in n's left subtree are less than the key in n, and

• All keys in n's right subtree are greater than the key in n.

• In other words, binary search trees are binary trees in which all

values in the node‘s left subtree are less than node value all

values in the node‘s right subtree are greater than node value.



BST Example

190



Properties and Operations

159

A BST is a binary tree of nodes ordered inthe  following way:

i. Each node contains one key (also unique)

ii. The keys in the left subtree are < (less) than the  key in 

its parent node

iii. The keys in the right subtree > (greater) than the  key in 

its parent node

iv. Duplicate node keys are not allowed.



Operations - Inserting a node

160

• A naïve algorithm for inserting a node into a BST is that, we start from
the root node, if the node to insert is less than the root, we go to left
child, and otherwise we go to the right child of the root.

• We then insert the node as a left or right child of the leaf node based on
node is less or greater than the leaf node. We note that a new node is
always inserted as a leaf node.



Operations - Inserting a node

161

• A recursive algorithm for inserting a node into a BST is as follows.
Assume we insert a node N to tree T. if the tree is empty, the we return
new node N as the tree. Otherwise, the problem of inserting is reduced
to inserting the node N to left of right sub trees of T, depending on N is
less or greater than T.A definition is asfollows.

Insert(N, T) = N if T isempty

= insert(N, T.left) if N < T

= insert(N, T.right) if N > T



Operations - Searching for a node

162

• Searching for a node is similar to inserting a node. We start

from root, and then go left or right until we find (or not find the

node). A recursive definition of search is as follows. If the node

is equal to root, then we return true. If the root is null, then we

return false. Otherwise we recursively solve the problem for

T.left or T.right, depending on N < T or N > T. A recursive

definition is as follows.

• Search should return a true or false, depending on the node is

found or not.



= search(N, T.right) if N > T

Searching for a node

• Search(N, T) = false if T is empty Searching for a node is similar

to inserting a node. We start from root, and then go left or right

until we find (or not find thenode).

• A recursive definition of search is as follows. If the node is

equal to root, then we return true. If the root is null, then we

return false. Otherwise we recursively solve the problem for

T.left or T.right, depending on N < T or N>

T.A recursive definition is as follows.

• Search should return a true or false, depending on the node is

found or not.

Search(N, T) = false if T is empty

= true if T = N

= search(N, T.left) if N < T

186



Operations - Deleting a node

164

• A BST is a connected structure. That is, all nodes in a tree are

connected to some other node. For example, each node has a

parent, unless node is the root. Therefore deleting a node could

affect all sub trees of that node. For example, deleting node 5

from the tree could result in losing sub trees that are rooted at 1

and 9.



Balanced Search Trees

165

• A self-balancing (or height-balanced) binary search  tree is any 

node-based binary search tree that  automatically keeps its 

height (maximal number of levels  below the root) small in the 

face of arbitrary item  insertions and deletions.

• AVL Trees: An AVL tree is another balanced binary  search tree. 

Named after their inventors, Adelson-Velskii  and Landis, they 

were the first dynamically balanced  trees to be proposed. Like 

red-black trees, they are not  perfectly balanced, but pairs of 

sub-trees differ in height  by at most 1, maintaining an  O(logn) 

search time.  Addition and deletion operations also take O(logn)

time.



AVL Tree -Definition

166

• Definition of an AVL tree: An AVL tree is a binary  

search tree which has the following properties:

i. The sub-trees of every node differ in height by at most one.

ii. Every sub-tree is anAVL tree.

• Balance requirement for an AVL tree: the left and right  

sub-trees differ by at most 1 in height.



190



Balance Factor

168

• To implement our AVL tree we need to keep track of a balance

factor for each node in the tree. We do this by looking at the

heights of the left and right subtrees for each node. More

formally, we define the balance factor for a node as the difference

between the height of the left subtree and the height of the right

subtree.

balanceFactor=height(leftSubTree)−height(rightSubTree)

• Using the definition for balance factor given above we  say that 

a subtree is left-heavy if the balance factor is  greater than zero. 

If the balance factor is less than zero  then the subtree is right 

heavy. If the balance factor is  zero then the tree is perfectly in

balance.



Balance Factor

169



Introduction to M-Way Search Trees

170

• A multiway tree is a tree that can have more than two children.

A multiway tree of order m (or an m-way tree) is one in which a

tree can have m children.

• As with the other trees that have been studied, the nodes in an

m-way tree will be made up of key fields, in this case m-1 key

fields, and pointers to children.

• Multiday tree of order 5



Properties of M-way Search Trees

171

• m-way search tree is a m-way tree in which:

i. Each node has m children and m-1 key fields

ii. The keys in each node are in ascending order.

iii. The keys in the first i children are smaller than the ithkey

iv. The keys in the last m-i children are larger than theith  

key

• 4-way search tree



B -Trees

• An extension of a multiway search tree of order m is a B- tree of

order m. This type of tree will be used when the data to be

accessed/stored is located on secondary storage devices

because they allow for large amounts of data to be stored in a

node.

• A B-tree of order m is a multiway search tree inwhich:

iii.

i. The root has at least two subtrees unless it is the only 

node in

the tree.

ii. Each nonroot and each nonleaf node have at most m 

nonempty  children and at least m/2 nonempty children.

The number of keys in each nonroot and each nonleaf 

node is  one less than the number of its nonempty

children.

iv. All leaves are on the same level.



Searching a B -Tree

173

• Start at the root and determine which pointer to follow based

on a comparison between the search value and key fields in

the root node.

• Follow the appropriate pointer to a child node.

• Examine the key fields in the child node and continue to follow

the appropriate pointers until the search value is found or a

leaf node is reached that doesn't contain the desired search

value.



Insertion into a B-Tree

174

• The condition that all leaves must be on the same level forces

a characteristic behavior of B-trees, namely that B-trees are not

allowed to grow at the their leaves; instead they are forced to

grow at the root.

• When inserting into a B-tree, a value is inserted directly into a

leaf. This leads to three common situations that can occur:

i. A key is placed into a leaf that still hasroom.

ii. The leaf in which a key is to be placed is full.

iii. The root of the B-tree is full.



175



176



177



210

Deleting from a B -Tree

• The deletion process will basically be a reversal of the

insertion process - rather than splitting nodes, it's possible that

nodes will be merged so that B-tree properties, namely the

requirement that a node must be at least half full, can be

maintained.

• There are two main cases to be considered:

i. Deletion from a leaf

ii. Deletion from a non-leaf



179



180



Hashing

• Hashing is the technique used for performing almost constant

time search in case of insertion, deletion and find operation.

• Taking a very simple example of it, an array with its index as key

is the example of hash table. So each index (key) can be used

for accessing the value in a constant search time. This

mapping key must be simple to compute and must helping in

identifying the associated value. Function which helps us in

generating such kind of key- value mapping is known as Hash

Function.

• In a hashing system the keys are stored in an array which is

called the Hash Table. A perfectly implemented hash table would

always promise an average insert/ delete / retrieval

time of O(1).



Hashing Function

182

• A function which employs some algorithm to computes  the key 

K for all the data elements in the set U, such that  the key K 

which is of a fixed size. The same key K can be  used to map 

data to a hash table and all the operations  like insertion, 

deletion and searching should be possible.  The values returned 

by a hash function are also referred  to as hash values, hash 

codes, hash sums, or hashes.



Hash Collision

183

A situation when the resultant hashes for two or more data 

elements in the data set U, maps to the same  location in the 

has table, is called a hash collision. In such  a situation two or 

more data elements would qualify to be  stored / mapped to the 

same location in the hash table.

• Hash collision resolution techniques:

• Open Hashing (Separate chaining):Open Hashing, is a  

technique in which the data is not directly stored at the  hash 

key index (k) of the Hash table. Rather the data at  the key index 

(k) in the hash table is a pointer to the head  of the data 

structure where the data is actually stored. In  the most simple 

and common implementations the data  structure adopted for 

storing the element is a linked-list.



184



Closed Hashing (OpenAddressing)

185

• In this technique a hash table with pre-identified size is

considered. All items are stored in the hash table itself. In

addition to the data, each hash bucket also maintains the three

states: EMPTY, OCCUPIED, DELETED. While inserting, if a

collision occurs, alternative cells are tried until an empty bucket

is found. For which one of the following technique is adopted.

• Liner Probing

• Quadratic probing

• Double hashing



A Comparative Analysis ofClosed  Hashing vs 

Open Hashing

186



210

Applications of Hashing

• A hash function maps a variable length input string to fixed

length output string -- its hash value, or hash for short. If the

input is longer than the output, then some inputs must map to

the same output -- a hash collision.

• Comparing the hash values for two inputs can give us one of

two answers: the inputs are definitely not the same, or there is

a possibility that they are the same. Hashing as we know it is

used for performance improvement, error checking, and

authentication.

• In error checking, hashes (checksums, message digests, etc.)

are used to detect errors caused by either hardware or

software. Examples are TCP checksums, ECC memory, and

MD5 checksums on downloaded files.



211

Applications of Hashing

• Construct a message authentication code (MAC)

• Digital signature

• Make commitments, but reveal message later

• Timestamping

• Key updating: key is hashed at specific intervals  

resulting in new key



THANK YOU


