
DATA WAREHOUSING AND DATA MINING
Course code: AIT006

III. B.Tech II semester
Regulation: IARE R-16

BY

Dr. M Madhu Bala, Professor and HOD, Dept. of CSE
Dr. D Kishore Babu

Mr. Ch Suresh Kumar Raju
Mr. A Praveen, Ms. Ms. S Swarajya Laxmi, Ms. M GeethaYadav

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500 043

CO’s Course outcomes

CO1 Identifying necessity of Data Mining and Data Warehousing for
the society.

CO2 Familiar with the process of data analysis, identifying the
problems, and choosing the relevant models and algorithms to
apply.

CO3 Develop skill in selecting the appropriate data mining algorithm
for solving practical problems.

CO4 Develop ability to design various algorithms based on data mining
tools.

CO5 Create further interest in research and design of new Data
Mining techniques and concepts.

MODULE– I

DATA WAREHOUSING

CLOs Course Learning Outcome

CLO1 Learn data warehouse principles and find the differences
between relational databases and data warehouse

CLO2 Explore on data warehouse architecture and its
Components

CLO3 Learn Data warehouse schemas

CLO4 Differentiate different OLAP Architectures

What is a Data Warehouse?

• Defined in many different ways, but not rigorously.

– A decision support database that is maintained separately from

the organization’s operational database

– Support information processing by providing a solid platform of

consolidated, historical data for analysis.

• “A data warehouse is a subject-oriented, integrated, time-variant,

and nonvolatile collection of data in support of management’s

decision-making process.”—W. H. Inmon

• Data warehousing:

– The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

• Organized around major subjects, such as customer, product, sales

• Focusing on the modeling and analysis of data for decision makers,

not on daily operations or transaction processing

• Provide a simple and concise view around particular subject issues

by excluding data that are not useful in the decision support process

Data Warehouse—Integrated

• Constructed by integrating multiple, heterogeneous data sources

– relational databases, flat files, on-line transaction records

• Data cleaning and data integration techniques are applied.

– Ensure consistency in naming conventions, encoding structures,
attribute measures, etc. among different data sources

• E.g., Hotel price: currency, tax, breakfast covered, etc.

– When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

• The time horizon for the data warehouse is significantly longer than

that of operational systems

– Operational database: current value data

– Data warehouse data: provide information from a historical

perspective (e.g., past 5-10 years)

• Every key structure in the data warehouse

– Contains an element of time, explicitly or implicitly

– But the key of operational data may or may not contain “time

element”

Data Warehouse—Nonvolatile

• A physically separate store of data transformed from the

operational environment

• Operational update of data does not occur in the data warehouse

environment

– Does not require transaction processing, recovery, and

concurrency control mechanisms

– Requires only two operations in data accessing:

• initial loading of data and access of data

Data Warehouse vs. Heterogeneous DBMS

• Traditional heterogeneous DB integration: A query driven approach

– Build wrappers/mediators on top of heterogeneous databases

– When a query is posed to a client site, a meta-dictionary is used to

translate the query into queries appropriate for individual

heterogeneous sites involved, and the results are integrated into a

global answer set

– Complex information filtering, compete for resources

• Data warehouse: update-driven, high performance

– Information from heterogeneous sources is integrated in advance and

stored in warehouses for direct query and analysis

Data Warehouse vs. Operational DBMS

• OLTP (on-line transaction processing)

– Major task of traditional relational DBMS

– Day-to-day operations: purchasing, inventory, banking,
manufacturing, payroll, registration, accounting, etc.

• OLAP (on-line analytical processing)

– Major task of data warehouse system

– Data analysis and decision making

• Distinct features (OLTP vs. OLAP):

– User and system orientation: customer vs. market

– Data contents: current, detailed vs. historical, consolidated

– Database design: ER + application vs. star + subject

– View: current, local vs. evolutionary, integrated

– Access patterns: update vs. read-only but complex queries

OLTP vs. OLAP

 OLTP OLAP

users clerk, IT professional knowledge worker

function day to day operations decision support

DB design application-oriented subject-oriented

data current, up-to-date

detailed, flat relational

isolated

historical,

summarized, multidimensional

integrated, consolidated

usage repetitive ad-hoc

access read/write

index/hash on prim. key

lots of scans

unit of work short, simple transaction complex query

records accessed tens millions

#users thousands hundreds

DB size 100MB-GB 100GB-TB

metric transaction throughput query throughput, response

Why a Separate Data Warehouse?

• High performance for both systems

– DBMS— tuned for OLTP: access methods, indexing, concurrency

control, recovery

– Warehouse—tuned for OLAP: complex OLAP queries,

multidimensional view, consolidation

• Different functions and different data:

– missing data: Decision support requires historical data which

operational DBs do not typically maintain

– data consolidation: DS requires consolidation (aggregation,

summarization) of data from heterogeneous sources

– data quality: different sources typically use inconsistent data

representations, codes and formats which have to be reconciled

• Note: There are more and more systems which perform OLAP analysis

directly on relational databases

From Tables and Spreadsheets to Data Cubes

• A data warehouse is based on a multidimensional data model which
views data in the form of a data cube

• A data cube, such as sales, allows data to be modeled and viewed in

multiple dimensions

– Dimension tables, such as item (item_name, brand, type), or
time(day,

week, month, quarter, year)

– Fact table contains measures (such as dollars_sold) and keys to each

of the related dimension tables

• In data warehousing literature, an n-D base cube is called a base cuboid.

The top most 0-D cuboid, which holds the highest-level of

summarization, is called the apex cuboid. The lattice of cuboids forms a

data cube.

Fig: A 2-D view of sales data for AllElectronics according to the
dimensions time and item, where the sales are from branches located
in the city of Vancouver.

Multidimensional Data Model

Multidimensional Data Model

Fig: A 3-D view of sales data for AllElectronics, according to the
dimensions time, item, and location.

Multidimensional Data Model

Fig: 3-D data cube representation of the data

Multidimensional Data Model

Fig: A 4-D data cube representation of sales data, according to the
dimensions time, item, location, and supplier.

Multidimensional Data Model

Fig: Lattice of cuboids

Conceptual Modeling of Data Warehouses

• Modeling data warehouses: dimensions & measures

– Star schema: A fact table in the middle connected to a setof

dimension tables

– Snowflake schema: A refinement of star schema where

some dimensional hierarchy is normalized into a set of

smaller dimension tables, forming a shape similar to

snowflake

– Fact constellations: Multiple fact tables share dimension

tables, viewed as a collection of stars, therefore called

galaxy schema or fact constellation

Example of Star Schema

Example of Snowflake Schema

Example of Fact Constellation

A Concept Hierarchy: Dimension (location)

all

Europe North_America

MexicoCanadaSpainGermany

Vancouver

M. WindL. Chan

...

......

... ...

...

all

region

office

country

TorontoFrankfurtcity

Data Cube Measures: Three Categories

• Distributive: if the result derived by applying the function to n

aggregate values is the same as that derived by applying the

function on all the data without partitioning

• E.g., count(), sum(), min(), max()

• Algebraic: if it can be computed by an algebraic function with M

arguments (where M is a bounded integer), each of which is

obtained by applying a distributive aggregate function

• E.g., avg(), min_N(), standard_deviation()

• Holistic: if there is no constant bound on the storage size needed

to describe a subaggregate.

• E.g., median(), mode(), rank()

Three Data Warehouse Models

• Enterprise warehouse

– collects all of the information about subjects spanning the

entire organization

• Data Mart

– a subset of corporate-wide data that is of value to a specific

groups of users. Its scope is confined to specific, selected

groups, such as marketing data mart

• Independent vs. dependent (directly from warehouse) data mart

• Virtual warehouse

– A set of views over operational databases

– Only some of the possible summary views may be

materialized

Multidimensional Data

• Sales volume as a function of product, month,
and region

P
ro

d
u
ct

Month

Dimensions: Product, Location, Time

Hierarchical summarization paths

Industry Region Year

Category Country Quarter

Product City Month Week

Office Day

A Sample Data Cube

Total annual sales

of TVs in U.S.A.

Date

C
o
u

n
tr

y

sum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum

Cuboids Corresponding to the Cube

all

product date country

product,date product,country date, country

product, date, country

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D (base) cuboid

Typical OLAP Operations

• Roll up (drill-up): summarize data

– by climbing up hierarchy or by dimension reduction
• Drill down (roll down): reverse of roll-up

– from higher level summary to lower level summary or detailed
data, or introducing new dimensions

• Slice and dice: project and select
• Pivot (rotate):

– reorient the cube, visualization, 3D to series of 2D planes
• Other operations

– drill across: involving (across) more than one fact table

– drill through: through the bottom level of the cube to its back-
end relational tables (using SQL)

OLAP Operations

• Four views regarding the design of a data warehouse

– Top-down view

• allows selection of the relevant information necessary for the data

warehouse

– Data source view

• exposes the information being captured, stored, and managed by

operational systems

– Data warehouse view

• consists of fact tables and dimension tables

– Business query view

• sees the perspectives of data in the warehouse from the view of

end-user

Design of Data Warehouse
A Business Analysis Framework

• Top-down, bottom-up approaches or a combination of both

– Top-down: Starts with overall design and planning (mature)

– Bottom-up: Starts with experiments and prototypes (rapid)

• From software engineering point of view

– Waterfall: structured and systematic analysis at each step before

proceeding to the next

– Spiral: rapid generation of increasingly functional systems, short turn

around time, quick turn around

• Typical data warehouse design process

– Choose a business process to model, e.g., orders, invoices, etc.

– Choose the grain (atomic level of data) of the business process

– Choose the dimensions that will apply to each fact table record

– Choose the measure that will populate each fact table record

Data Warehouse Design Process

A three-tier data warehousing architecture

Three Data Warehouse Models

• Enterprise warehouse

– collects all of the information about subjects spanning the

entire organization

• Data Mart

– a subset of corporate-wide data that is of value to a specific

groups of users. Its scope is confined to specific, selected

groups, such as marketing data mart

• Independent vs. dependent (directly from warehouse) data mart

• Virtual warehouse

– A set of views over operational databases

– Only some of the possible summary views may be

materialized

Data Warehouse Development
A Recommended Approach

Data Warehouse Back-End Tools and Utilities

• Data extraction

– get data from multiple, heterogeneous, and external sources

• Data cleaning

– detect errors in the data and rectify them when possible

• Data transformation

– convert data from legacy or host format to warehouse format

• Load
– sort, summarize, consolidate, compute views, check integrity,

and build indicies and partitions

• Refresh

– propagate the updates from the data sources to the
warehouse

Metadata Repository

• Meta data is the data defining warehouse objects. It stores:

• Description of the structure of the data warehouse

– schema, view, dimensions, hierarchies, derived data defn, data mart
locations and contents

• Operational meta-data

– data lineage (history of migrated data and transformation path), currency
of data (active, archived, or purged), monitoring information (warehouse
usage statistics, error reports, audit trails)

• The algorithms used for summarization

• The mapping from operational environment to the data warehouse

• Data related to system performance
– warehouse schema, view and derived data definitions

• Business data

– business terms and definitions, ownership of data, charging policies

• Relational OLAP (ROLAP)

– Use relational or extended-relational DBMS to store and manage

warehouse data and OLAP middle ware

– Include optimization of DBMS backend, implementation of aggregation

navigation logic, and additional tools and services

– Greater scalability

• Multidimensional OLAP (MOLAP)

– Sparse array-based multidimensional storage engine

– Fast indexing to pre-computed summarized data

• Hybrid OLAP (HOLAP) (e.g., Microsoft SQLServer)

– Flexibility, e.g., low level: relational, high-level: array

• Specialized SQL servers (e.g., Redbricks)

– Specialized support for SQL queries over star/snowflake schemas

OLAP Server Architectures

Extraction, Transformation, and Loading (ETL)

• Data extraction

– get data from multiple, heterogeneous, and external sources

• Data cleaning

– detect errors in the data and rectify them when possible

• Data transformation

– convert data from legacy or host format to warehouse format

• Load

– sort, summarize, consolidate, compute views, check integrity,
and build indicies and partitions

• Refresh

– propagate the updates from the data sources to the
warehouse

Data Warehouse Implementation

• Data cube can be viewed as a lattice of cuboids

– The bottom-most cuboid is the base cuboid

– The top-most cuboid (apex) contains only one cell

– How many cuboids in an n-dimensional cube with L levels?

• Materialization of data cube

– Materialize every (cuboid) (full materialization), none (no

materialization), or some (partial materialization)

– Selection of which cuboids to materialize

• Based on size, sharing, access frequency, etc.

)1
1
(

n

i
i

LT

Efficient Data Cube Computation

Indexing OLAP Data: Bitmap Index

• Index on a particular column

• Each value in the column has a bit vector: bit-op is fast

• The length of the bit vector: # of records in the base table

• The i-th bit is set if the i-th row of the base table has the value for the
indexed column

• not suitable for high cardinality domains

– A recent bit compression technique, Word-Aligned Hybrid (WAH), makes it
work for high cardinality domain as well *Wu, et al. TODS’06+

Cust Region Type

C1 Asia Retail

C2 Europe Dealer

C3 Asia Dealer

C4 America Retail

C5 Europe Dealer

RecID Retail Dealer

1 1 0

2 0 1

3 0 1

4 1 0

5 0 1

RecIDAsia Europe America

1 1 0 0

2 0 1 0

3 1 0 0

4 0 0 1

5 0 1 0

Base table Index on Region Index on Type

From On-Line Analytical Processing (OLAP)
to On Line Analytical Mining (OLAM)

• Why online analytical mining?

– High quality of data in data warehouses

• DW contains integrated, consistent, cleaned data

– Available information processing structure surrounding
data warehouses

• ODBC, OLEDB, Web accessing, service facilities,
reporting and OLAP tools

– OLAP-based exploratory data analysis

• Mining with drilling, dicing, pivoting, etc.

– On-line selection of data mining functions

• Integration and swapping of multiple mining functions,
algorithms, and tasks

Indexing OLAP Data: Join Indices

• Join index: JI(R-id, S-id) where R (R-id, …) S (S-id,
…)

• Traditional indices map the values to a list of record
ids

– It materializes relational join in JI file and speeds
up relational join

• In data warehouses, join index relates the values of
the dimensions of a start schema to rows in the fact
table.

– E.g. fact table: Sales and two dimensions city and
product

• A join index on city maintains for each distinct
city a list of R-IDs of the tuples recording the
Sales in the city

– Join indices can span multiple dimensions

The “Compute Cube” Operator
• Cube definition and computation in DMQL

define cube sales [item, city, year]: sum (sales_in_dollars)

compute cube sales

• Transform it into a SQL-like language (with a new operator cube by,
introduced by Gray et al.’96)

SELECT item, city, year, SUM (amount)

FROM SALES

CUBE BY item, city, year

• Need compute the following Group-Bys

(date, product, customer),

(date,product),(date, customer), (product, customer),

(date), (product), (customer)

()

(item)(city)

()

(year)

(city, item) (city, year) (item, year)

(city, item, year)

Data Warehouse Usage

• Three kinds of data warehouse applications

– Information processing

• supports querying, basic statistical analysis, and reporting using

crosstabs, tables, charts and graphs

– Analytical processing

• multidimensional analysis of data warehouse data

• supports basic OLAP operations, slice-dice, drilling, pivoting

– Data mining

• knowledge discovery from hidden patterns

• supports associations, constructing analytical models, performing

classification and prediction, and presenting the mining results

using visualization tools

OLAP Server Architectures

• Relational OLAP (ROLAP)

– Use relational or extended-relational DBMS to store and manage

warehouse data and OLAP middle ware

– Include optimization of DBMS backend, implementation of aggregation

navigation logic, and additional tools and services

– Greater scalability

• Multidimensional OLAP (MOLAP)

– Sparse array-based multidimensional storage engine

– Fast indexing to pre-computed summarized data

• Hybrid OLAP (HOLAP) (e.g., Microsoft SQLServer)

– Flexibility, e.g., low level: relational, high-level: array

• Specialized SQL servers (e.g., Redbricks)

– Specialized support for SQL queries over star/snowflake schemas

MODULE– II

DATA MINING

CLOs Course Learning Outcome

CLO5 Understand Data Mining concepts and knowledge
discovery process

CLO6 Explore on Data preprocessing techniques

CLO7 Apply task related attribute selection and
transformation techniques

CLO8 Understand the Association rule mining
Problem

Why Data Mining?

• The Explosive Growth of Data: from terabytes to petabytes

– Data collection and data availability

• Automated data collection tools, database systems, Web,

computerized society

– Major sources of abundant data

• Business: Web, e-commerce, transactions, stocks, …

• Science: Remote sensing, bioinformatics, scientific simulation, …

• Society and everyone: news, digital cameras, YouTube

• We are drowning in data, but starving for knowledge!

• “Necessity is the mother of invention”—Data mining—Automated analysis of

massive data sets

Evolution of Sciences
• Before 1600, empirical science

• 1600-1950s, theoretical science

– Each discipline has grown a theoretical component. Theoretical models often motivate

experiments and generalize our understanding.

• 1950s-1990s, computational science

– Over the last 50 years, most disciplines have grown a third, computational branch (e.g.

empirical, theoretical, and computational ecology, or physics, or linguistics.)

– Computational Science traditionally meant simulation. It grew out of our inability to find

closed-form solutions for complex mathematical models.

• 1990-now, data science

– The flood of data from new scientific instruments and simulations

– The ability to economically store and manage petabytes of data online

– The Internet and computing Grid that makes all these archives universally accessible

– Scientific info. management, acquisition, organization, query, and visualization tasks scale

almost linearly with data volumes. Data mining is a major new challenge!

• Jim Gray and Alex Szalay, The World Wide Telescope: An Archetype for Online Science, Comm.

ACM, 45(11): 50-54, Nov. 2002

Evolution of Database Technology

• 1960s:

– Data collection, database creation, IMS and network DBMS

• 1970s:

– Relational data model, relational DBMS implementation

• 1980s:

– RDBMS, advanced data models (extended-relational, OO, deductive, etc.)

– Application-oriented DBMS (spatial, scientific, engineering, etc.)

• 1990s:

– Data mining, data warehousing, multimedia databases, and Web databases

• 2000s

– Stream data management and mining

– Data mining and its applications

– Web technology (XML, data integration) and global information systems

What Is Data Mining?

• Data mining (knowledge discovery from data)

– Extraction of interesting (non-trivial, implicit, previously unknown and

potentially useful) patterns or knowledge from huge amount of data

– Data mining: a misnomer?

• Alternative names

– Knowledge discovery (mining) in databases (KDD), knowledge

extraction, data/pattern analysis, data archeology, data dredging,

information harvesting, business intelligence, etc.

• Watch out: Is everything “data mining”?

– Simple search and query processing

– (Deductive) expert systems

Knowledge Discovery (KDD) Process

– Data mining—core of
knowledge discovery
process

Data Cleaning

Data Integration

Databases

Data Warehouse Selection

Data Mining

Task-relevant Data

Pattern Evaluation

Data Mining and Business Intelligence

Increasing potential

to support

business decisions End User

Business

Analyst

Data

Analyst

DBA

Decision
Making

Data Presentation

Visualization Techniques

Data Mining
Information Discovery

Data Exploration

Statistical Summary, Querying, and Reporting

Data Preprocessing/Integration, Data Warehouses

Data Sources

Paper, Files, Web documents, Scientific experiments, Database Systems

Data Mining: Confluence of Multiple Disciplines

Data Mining

Database
Technology Statistics

Machine
Learning

Pattern
Recognition

Algorithm

Other
Disciplines

Visualization

Why Not Traditional Data Analysis?

• Tremendous amount of data

– Algorithms must be highly scalable to handle such as tera-bytes of data

• High-dimensionality of data

– Micro-array may have tens of thousands of dimensions

• High complexity of data

– Data streams and sensor data

– Time-series data, temporal data, sequence data

– Structure data, graphs, social networks and multi-linked data

– Heterogeneous databases and legacy databases

– Spatial, spatiotemporal, multimedia, text and Web data

– Software programs, scientific simulations

• New and sophisticated applications

Multi-Dimensional View of Data Mining

• Data to be mined

– Relational, data warehouse, transactional, stream, object-oriented/relational,

active, spatial, time-series, text, multi-media, heterogeneous, legacy, WWW

• Knowledge to be mined

– Characterization, discrimination, association, classification, clustering,

trend/deviation, outlier analysis, etc.

– Multiple/integrated functions and mining at multiple levels

• Techniques utilized

– Database-oriented, data warehouse (OLAP), machine learning, statistics,

visualization, etc.

• Applications adapted

– Retail, telecommunication, banking, fraud analysis, bio-data mining, stock

market analysis, text mining, Web mining, etc.

Data Mining: Classification Schemes

• General functionality

– Descriptive data mining

– Predictive data mining

• Different views lead to different classifications

– Data view: Kinds of data to be mined

– Knowledge view: Kinds of knowledge to be discovered

– Method view: Kinds of techniques utilized

– Application view: Kinds of applications adapted

Data Mining: On What Kinds of Data?

• Database-oriented data sets and applications

– Relational database, data warehouse, transactional database

• Advanced data sets and advanced applications

– Data streams and sensor data

– Time-series data, temporal data, sequence data (incl. bio-sequences)

– Structure data, graphs, social networks and multi-linked data

– Object-relational databases

– Heterogeneous databases and legacy databases

– Spatial data and spatiotemporal data

– Multimedia database

– Text databases

– The World-Wide Web

Data Mining Functionalities

• Multidimensional concept description: Characterization and discrimination

– Generalize, summarize, and contrast data characteristics, e.g., dry vs.

wet regions

• Frequent patterns, association, correlation vs. causality

– Diaper Beer [0.5%, 75%] (Correlation or causality?)

• Classification and prediction

– Construct models (functions) that describe and distinguish classes or

concepts for future prediction

• E.g., classify countries based on (climate), or classify cars based on

(gas mileage)

– Predict some unknown or missing numerical values

Data Mining Functionalities (2)

• Cluster analysis

– Class label is unknown: Group data to form new classes, e.g., cluster
houses to find distribution patterns

– Maximizing intra-class similarity & minimizing interclass similarity

• Outlier analysis
– Outlier: Data object that does not comply with the general behavior of

the data

– Noise or exception? Useful in fraud detection, rare events analysis

• Trend and evolution analysis

– Trend and deviation: e.g., regression analysis

– Sequential pattern mining: e.g., digital camera large SD memory

– Periodicity analysis

– Similarity-based analysis

• Other pattern-directed or statistical analyses

Why Data Mining?—Potential Applications

• Data analysis and decision support

– Market analysis and management

• Target marketing, customer relationship management (CRM),

market basket analysis, cross selling, market segmentation

– Risk analysis and management

• Forecasting, customer retention, improved underwriting, quality

control, competitive analysis

– Fraud detection and detection of unusual patterns (outliers)

• Other Applications

– Text mining (news group, email, documents) and Web mining

– Stream data mining

– Bioinformatics and bio-data analysis

Ex. 1: Market Analysis and Management

• Where does the data come from?—Credit card transactions, loyalty cards, discount
coupons, customer complaint calls, plus (public) lifestyle studies

• Target marketing

– Find clusters of “model” customers who share the same characteristics: interest, income
level, spending habits, etc.

– Determine customer purchasing patterns over time

• Cross-market analysis—Find associations/co-relations between product sales, &
predict based on such association

• Customer profiling—What types of customers buy what products (clustering or
classification)

• Customer requirement analysis

– Identify the best products for different groups of customers

– Predict what factors will attract new customers

• Provision of summary information

– Multidimensional summary reports

– Statistical summary information (data central tendency and variation)

Ex. 2: Corporate Analysis & Risk
Management

• Finance planning and asset evaluation

– cash flow analysis and prediction

– contingent claim analysis to evaluate assets

– cross-sectional and time series analysis (financial-ratio, trend analysis,

etc.)

• Resource planning

– summarize and compare the resources and spending

• Competition

– monitor competitors and market directions

– group customers into classes and a class-based pricing procedure

– set pricing strategy in a highly competitive market

Ex. 3: Fraud Detection & Mining Unusual Patterns

• Approaches: Clustering & model construction for frauds, outlier analysis

• Applications: Health care, retail, credit card service, telecomm.

– Auto insurance: ring of collisions

– Money laundering: suspicious monetary transactions

– Medical insurance

• Professional patients, ring of doctors, and ring of references

• Unnecessary or correlated screening tests

– Telecommunications: phone-call fraud

• Phone call model: destination of the call, duration, time of day or week.

Analyze patterns that deviate from an expected norm

– Retail industry

• Analysts estimate that 38% of retail shrink is due to dishonest employees

– Anti-terrorism

KDD Process: Several Key Steps
• Learning the application domain

– relevant prior knowledge and goals of application

• Creating a target data set: data selection

• Data cleaning and preprocessing: (may take 60% of effort!)

• Data reduction and transformation

– Find useful features, dimensionality/variable reduction, invariant representation

• Choosing functions of data mining

– summarization, classification, regression, association, clustering

• Choosing the mining algorithm(s)

• Data mining: search for patterns of interest

• Pattern evaluation and knowledge presentation

– visualization, transformation, removing redundant patterns, etc.

• Use of discovered knowledge

Are All the “Discovered” Patterns Interesting?

• Data mining may generate thousands of patterns: Not all of them are

interesting

– Suggested approach: Human-centered, query-based, focused mining

• Interestingness measures

– A pattern is interesting if it is easily understood by humans, valid on new or test

data with some degree of certainty, potentially useful, novel, or validates some

hypothesis that a user seeks to confirm

• Objective vs. subjective interestingness measures

– Objective: based on statistics and structures of patterns, e.g., support,

confidence, etc.

– Subjective: based on user’s belief in the data, e.g., unexpectedness, novelty,

actionability, etc.

Find All and Only Interesting Patterns?

• Find all the interesting patterns: Completeness

– Can a data mining system find all the interesting patterns? Do we need to

find all of the interesting patterns?

– Heuristic vs. exhaustive search

– Association vs. classification vs. clustering

• Search for only interesting patterns: An optimization problem

– Can a data mining system find only the interesting patterns?

– Approaches

• First general all the patterns and then filter out the uninteresting ones

• Generate only the interesting patterns—mining query optimization

Other Pattern Mining Issues

• Precise patterns vs. approximate patterns

– Association and correlation mining: possible find sets of precise patterns

• But approximate patterns can be more compact and sufficient

• How to find high quality approximate patterns??

– Gene sequence mining: approximate patterns are inherent

• How to derive efficient approximate pattern mining algorithms??

• Constrained vs. non-constrained patterns

– Why constraint-based mining?

– What are the possible kinds of constraints? How to push constraints into

the mining process?

Architecture: Typical Data Mining
System

Why Data Preprocessing?

• Data in the real world is dirty
– incomplete: lacking attribute values, lacking

certain attributes of interest, or containing only
aggregate data

• e.g., occupation=“ ”

– noisy: containing errors or outliers
• e.g., Salary=“-10”

– inconsistent: containing discrepancies in codes or
names

• e.g., Age=“42” Birthday=“03/07/1997”

• e.g., Was rating “1,2,3”, now rating “A, B, C”

• e.g., discrepancy between duplicate records

Why Is Data Dirty?

• Incomplete data may come from

– “Not applicable” data value when collected

– Different considerations between the time when the data was collected
and when it is analyzed.

– Human/hardware/software problems

• Noisy data (incorrect values) may come from

– Faulty data collection instruments

– Human or computer error at data entry

– Errors in data transmission

• Inconsistent data may come from

– Different data sources

– Functional dependency violation (e.g., modify some linked data)

• Duplicate records also need data cleaning

Why Is Data Preprocessing
Important?

• No quality data, no quality mining results!

– Quality decisions must be based on quality data

• e.g., duplicate or missing data may cause incorrect or even

misleading statistics.

– Data warehouse needs consistent integration of qualitydata

• Data extraction, cleaning, and transformation comprises the

majority of the work of building a data warehouse

Multi-Dimensional Measure of Data Quality

• A well-accepted multidimensional view:

– Accuracy

– Completeness

– Consistency

– Timeliness

– Believability

– Value added

– Interpretability

– Accessibility

• Broad categories:

– Intrinsic, contextual, representational, and accessibility

Major Tasks in Data Preprocessing

• Data cleaning

– Fill in missing values, smooth noisy data, identify or remove outliers,
and resolve inconsistencies

• Data integration
– Integration of multiple databases, data cubes, or files

• Data transformation

– Normalization and aggregation

• Data reduction

– Obtains reduced representation in volume but produces the same or
similar analytical results

• Data discretization
– Part of data reduction but with particular importance, especially for

numerical data

Forms of Data Preprocessing

Mining Data Descriptive Characteristics

• Motivation

– To better understand the data: central tendency, variation and

spread

• Data dispersion characteristics

– median, max, min, quantiles, outliers, variance, etc.

• Numerical dimensions correspond to sorted intervals

– Data dispersion: analyzed with multiple granularities of precision

– Boxplot or quantile analysis on sorted intervals

• Dispersion analysis on computed measures

– Folding measures into numerical dimensions

– Boxplot or quantile analysis on the transformed cube

DATA PREPROCESSING

• Why preprocess the data?

• Descriptive data summarization

• Data cleaning

• Data integration and transformation

• Data reduction

• Discretization and concept hierarchy generation

Data Cleaning

• Importance
– “Data cleaning is one of the three biggest problemsin

data warehousing”—Ralph Kimball
– “Data cleaning is the number one problem in data

warehousing”—DCI survey

• Data cleaning tasks

– Fill in missing values

– Identify outliers and smooth out noisy data

– Correct inconsistent data

– Resolve redundancy caused by data integration

Missing Data

• Data is not always available

– E.g., many tuples have no recorded value for several attributes,

such as customer income in sales data

• Missing data may be due to

– equipment malfunction

– inconsistent with other recorded data and thus deleted

– data not entered due to misunderstanding

– certain data may not be considered important at the time of
entry

– not register history or changes of the data

• Missing data may need to be inferred.

How to Handle Missing Data?

• Ignore the tuple: usually done when class label is missing (assuming the

tasks in classification—not effective when the percentage of missing values

per attribute varies considerably.

• Fill in the missing value manually: tedious + infeasible?

• Fill in it automatically with

– a global constant : e.g., “unknown”, a new class?!

– the attribute mean

– the attribute mean for all samples belonging to the same class: smarter

– the most probable value: inference-based such as Bayesian formula or

decision tree

Noisy Data

• Noise: random error or variance in a measured variable

• Incorrect attribute values may due to

– faulty data collection instruments

– data entry problems

– data transmission problems

– technology limitation

– inconsistency in naming convention

• Other data problems which requires data cleaning

– duplicate records

– incomplete data

– inconsistent data

How to Handle Noisy Data?

• Binning

– first sort data and partition into (equal-frequency)bins

– then one can smooth by bin means, smooth by bin median,
smooth by bin boundaries, etc.

• Regression

– smooth by fitting the data into regressionfunctions

• Clustering

– detect and remove outliers

• Combined computer and human inspection

– detect suspicious values and check by human (e.g., deal
with possible outliers)

Simple Discretization Methods: Binning

• Equal-width (distance) partitioning

– Divides the range into N intervals of equal size: uniform grid

– if A and B are the lowest and highest values of the attribute, the width of

intervals will be: W = (B –A)/N.

– The most straightforward, but outliers may dominate presentation

– Skewed data is not handled well

• Equal-depth (frequency) partitioning

– Divides the range into N intervals, each containing approximately same

number of samples

– Good data scaling

– Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

 Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

* Partition into equal-frequency (equi-depth) bins:

- Bin 1: 4, 8, 9, 15

- Bin 2: 21, 21, 24, 25

- Bin 3: 26, 28, 29, 34

* Smoothing by bin means:

- Bin 1: 9, 9, 9, 9

- Bin 2: 23, 23, 23, 23

- Bin 3: 29, 29, 29, 29

* Smoothing by bin boundaries:

- Bin 1: 4, 4, 4, 15

- Bin 2: 21, 21, 25, 25

- Bin 3: 26, 26, 26, 34

Regression

x

y = x + 1

X1

y

Y1

Y1’

Cluster Analysis

Data Cleaning as a Process

• Data discrepancy detection

– Use metadata (e.g., domain, range, dependency, distribution)

– Check field overloading

– Check uniqueness rule, consecutive rule and null rule

– Use commercial tools
• Data scrubbing: use simple domain knowledge (e.g., postal code,

spell-check) to detect errors and make corrections
• Data auditing: by analyzing data to discover rules and relationship to

detect violators (e.g., correlation and clustering to find outliers)

• Data migration and integration

– Data migration tools: allow transformations to be specified
– ETL (Extraction/Transformation/Loading) tools: allow users to specify

transformations through a graphical user interface

• Integration of the two processes

– Iterative and interactive (e.g., Potter’s Wheels)

Data Integration

• Data integration:

– Combines data from multiple sources into a coherentstore

• Schema integration: e.g., A.cust-id B.cust-#

– Integrate metadata from different sources

• Entity identification problem:

– Identify real world entities from multiple data sources,e.g.,
Bill Clinton = William Clinton

• Detecting and resolving data value conflicts

– For the same real world entity, attribute values from different
sources are different

– Possible reasons: different representations, different scales,
e.g., metric vs. British units

Handling Redundancy in Data Integration

• Redundant data occur often when integration of multiple

databases

– Object identification: The same attribute or object may

have different names in different databases

– Derivable data: One attribute may be a “derived” attribute

in another table, e.g., annual revenue

• Redundant attributes may be able to be detectedby

correlation analysis

• Careful integration of the data from multiple sources may help

reduce/avoid redundancies and inconsistencies and improve

mining speed and quality

Correlation Analysis (Numerical Data)

A , B

(n 1) A B (n 1) A B

r

• Correlation coefficient (also called Pearson’s product moment

coefficient)

 (A A)(B B) (A B) n A B

where n is the number of tuples, aAnd areBthe respective means of A

and B, σA and σB are the respective standard deviation of A and B, and

Σ(AB) is the sum of the AB cross-product.

• If rA,B > 0, A and B are positively correlated (A’s values increase as

B’s). The higher, the stronger correlation.

• rA,B = 0: independent; rA,B < 0: negatively correlated

Correlation Analysis (Categorical Data)

• Χ2 (chi-square)test

Expected

• The larger the Χ2 value, the more likely the variables arerelated

• The cells that contribute the most to the Χ2 value are those

whose actual count is very different from the expected count

• Correlation does not imply causality

– # of hospitals and # of car-theft in a city are correlated

– Both are causally linked to the third variable: population

 Expected2
)

2
(Observed

Chi-Square Calculation: An Example

• Χ2 (chi-square) calculation (numbers in parenthesis are expected

counts calculated based on the data distribution in the two

categories)

• It shows that like_science_fiction and play_chess are correlated

in the group

90 210 360 840

(250 90)
2

(50 210)
2

(200 360)
2

(1000 840)
2

 507 .93 2

Play chess Not play chess Sum (row)

Like science fiction 250(90) 200(360) 450

Not like science fiction 50(210) 1000(840) 1050

Sum(col.) 300 1200 1500

Data Transformation

• Smoothing: remove noise from data

• Aggregation: summarization, data cube construction

• Generalization: concept hierarchy climbing

• Normalization: scaled to fall within a small, specified range

– min-max normalization

– z-score normalization

– normalization by decimal scaling

• Attribute/feature construction

– New attributes constructed from the given ones

Data Transformation: Normalization

• Min-max normalization: to [new_minA, new_maxA]

Then $73,000 is mapped to

– Ex. Let μ = 54,000, σ = 16,000. Then

• Normalization by decimal scaling

(1 .0 0) 0 0 .716
98 ,000 12 ,000

73 ,600 12 ,000

max A min A

– Ex. Let income range $12,000 to $98,000 normalized to [0.0, 1.0].

v min A

v ' (new _ max A new _ min A) new _ min A

 A

• Z-score normalization (μ: mean, σ: standard deviation):

v A

v '

j

v

10
v ' Where j is the smallest integer such that Max(|ν’|) < 1

16 ,000
 1 .225

73 ,600 54,000

Data Reduction Strategies

• Why data reduction?

– A database/data warehouse may store terabytes of data

– Complex data analysis/mining may take a very long time to run on the
complete data set

• Data reduction

– Obtain a reduced representation of the data set that is much smaller
in volume but yet produce the same (or almost the same) analytical
results

• Data reduction strategies

– Data cube aggregation:

– Dimensionality reduction — e.g., remove unimportant attributes

– Data Compression

– Numerosity reduction — e.g., fit data into models

– Discretization and concept hierarchy generation

Data Cube Aggregation

• The lowest level of a data cube (base cuboid)

– The aggregated data for an individual entity of interest

– E.g., a customer in a phone calling data warehouse

• Multiple levels of aggregation in data cubes

– Further reduce the size of data to deal with

• Reference appropriate levels

– Use the smallest representation which is enough to solve the

task

• Queries regarding aggregated information should be answered

using data cube, when possible

Attribute Subset Selection

• Feature selection (i.e., attribute subset selection):

– Select a minimum set of features such that the probability
distribution of different classes given the values for those
features is as close as possible to the original distribution
given the values of all features

– reduce # of patterns in the patterns, easier to understand

• Heuristic methods (due to exponential # of choices):

– Step-wise forward selection

– Step-wise backward elimination

– Combining forward selection and backward elimination

– Decision-tree induction

Example of Decision Tree Induction

Initial attribute set:

{A1,A2, A3, A4, A5, A6}

A4 ?

A1? A6?

Class 1 Class 2 Class 1 Class 2

> Reduced attribute set: {A1, A4,A6}

101

Heuristic Feature Selection Methods

• There are 2d possible sub-features of d features

• Several heuristic feature selection methods:

– Best single features under the feature independence
assumption: choose by significance tests

– Best step-wise feature selection:

• The best single-feature is picked first

• Then next best feature condition to the first, ...

– Step-wise feature elimination:

• Repeatedly eliminate the worst feature

– Best combined feature selection and elimination

– Optimal branch and bound:

• Use feature elimination and backtracking

Data Compression

• String compression

– There are extensive theories and well-tuned algorithms

– Typically lossless

– But only limited manipulation is possible without expansion

• Audio/video compression

– Typically lossy compression, with progressive refinement

– Sometimes small fragments of signal can be reconstructed
without reconstructing the whole

• Time sequence is not audio

– Typically short and vary slowly with time

Data Compression

Original Data Compressed

Data

lossless

Original Data

Approximated

Dimensionality Reduction: Wavelet Transformation

• Discrete wavelet transform (DWT): linear signal processing,
multi-resolutional analysis

• Compressed approximation: store only a small fraction of the
strongest of the wavelet coefficients

• Similar to discrete Fourier transform (DFT), but better lossy
compression, localized in space

• Method:

– Length, L, must be an integer power of 2 (padding with 0’s, when
necessary)

– Each transform has 2 functions: smoothing, difference

– Applies to pairs of data, resulting in two set of data of length L/2

– Applies two functions recursively, until reaches the desired length

DWT for Image Compression

• Image

Low Pass High Pass

Low Pass High Pass

Low Pass High Pass

• Given N data vectors from n-dimensions, find k ≤ n orthogonal vectors
(principal components) that can be best used to represent data

• Steps

– Normalize input data: Each attribute falls within the same range

– Compute k orthonormal (unit) vectors, i.e., principal components

– Each input data (vector) is a linear combination of the k principal
component vectors

– The principal components are sorted in order of decreasing “significance”
or strength

– Since the components are sorted, the size of the data can be reduced by
eliminating the weak components, i.e., those with low variance. (i.e.,
using the strongest principal components, it is possible to reconstruct a
good approximation of the original data

• Works for numeric data only

• Used when the number of dimensions is large

Dimensionality Reduction:

Principal Component Analysis (PCA)

X1

X2

Y1

Y2

Principal Component Analysis

Numerosity Reduction

• Reduce data volume by choosing alternative, smaller forms of
data representation

• Parametric methods

– Assume the data fits some model, estimate model
parameters, store only the parameters, and discard the
data (except possible outliers)

– Example: Log-linear models—obtain value at a point in m-
D space as the product on appropriate marginal subspaces

• Non-parametric methods

– Do not assume models

– Major families: histograms, clustering, sampling

Data Reduction Method (1):
Regression and Log-Linear Models

• Linear regression: Data are modeled to fit a straight line

– Often uses the least-square method to fit the line

• Multiple regression: allows a response variable Y to be

modeled as a linear function of multidimensional feature

vector

• Log-linear model: approximates discrete multidimensional

probability distributions

• Linear regression: Y = w X + b

– Two regression coefficients, w and b, specify the line and
are to be estimated by using the data at hand

– Using the least squares criterion to the known values of Y1,
Y2, …, X1, X2, ….

• Multiple regression: Y = b0 + b1 X1 + b2 X2.

– Many nonlinear functions can be transformed into the
above

• Log-linear models:

– The multi-way table of joint probabilities is approximated by
a product of lower-order tables

– Probability: p(a, b, c, d) = ab acad bcd

Regress Analysis and Log-Linear Models

Data Reduction Method (2):
Histograms

• Divide data into buckets and store

average (sum) for each bucket

• Partitioning rules:

original values that each bucket

represents)

the β–1 largest differences 0

– MaxDiff: set bucket boundary

between each pair for pairs have 5

15

10

– Equal-width: equal bucket range 30

– Equal-frequency (or equal-depth)25

– V-optimal: with the least histogra2m0
variance (weighted sum of the

40

35

10000 30000 50000 70000 90000

Data Reduction Method (3): Clustering

• Partition data set into clusters based on similarity, and store cluster

representation (e.g., centroid and diameter) only

• Can be very effective if data is clustered but not if data is “smeared”

• Can have hierarchical clustering and be stored in multi-dimensional index

tree structures

• There are many choices of clustering definitions and clustering algorithms

• Cluster analysis will be studied in depth in Chapter 7

Data Reduction Method (4): Sampling

• Sampling: obtaining a small sample s to represent thewhole
data set N

• Allow a mining algorithm to run in complexity that is potentially
sub-linear to the size of the data

• Choose a representative subset of the data

– Simple random sampling may have very poor performance
in the presence of skew

• Develop adaptive sampling methods

– Stratified sampling:
• Approximate the percentage of each class (or

subpopulation of interest) in the overall database

• Used in conjunction with skewed data

• Note: Sampling may not reduce database I/Os (page at a time)

Sampling: with or without Replacement

Raw Data

Sampling: Cluster or Stratified Sampling

Raw Data Cluster/Stratified Sample

Discretization

• Three types of attributes:

– Nominal — values from an unordered set, e.g., color, profession

– Ordinal — values from an ordered set, e.g., military or academic rank

– Continuous — real numbers, e.g., integer or real numbers

• Discretization:

– Divide the range of a continuous attribute into intervals

– Some classification algorithms only accept categorical attributes.

– Reduce data size by discretization

– Prepare for further analysis

Discretization and Concept Hierarchy

• Discretization

– Reduce the number of values for a given continuous attribute by dividing

the range of the attribute into intervals

– Interval labels can then be used to replace actual data values

– Supervised vs. unsupervised

– Split (top-down) vs. merge (bottom-up)

– Discretization can be performed recursively on an attribute

• Concept hierarchy formation

– Recursively reduce the data by collecting and replacing low level concepts

(such as numeric values for age) by higher level concepts (such as young,

middle-aged, or senior)

Discretization and Concept Hierarchy Generation
for Numeric Data

• Typical methods: All the methods can be applied recursively

– Binning (covered above)

• Top-down split, unsupervised,

– Histogram analysis (covered above)

• Top-down split, unsupervised

– Clustering analysis (covered above)

• Either top-down split or bottom-up merge, unsupervised

– Entropy-based discretization: supervised, top-down split

– Interval merging by 2 Analysis: unsupervised, bottom-up merge

– Segmentation by natural partitioning: top-down split, unsupervised

Entropy-Based Discretization

• Given a set of samples S, if S is partitioned into two intervals S1 and S2 using

boundary T, the information gain after partitioning is

2

1 2Entropy (S)
S

S
| S | | S |

| S 1 | | |
I (S , T) Entropy ()

• Entropy is calculated based on class distribution of the samples in the set.

Given m classes, the entropy of S1 is
m

E n t ro p y (S
1

) p
i
log

2
(p

i
)

i 1

where pi is the probability of class i in S1

• The boundary that minimizes the entropy function over all possible

boundaries is selected as a binary discretization

• The process is recursively applied to partitions obtained until some stopping

criterion is met

• Such a boundary may reduce data size and improve classification accuracy

Interval Merge by 2 Analysis

• Merging-based (bottom-up) vs. splitting-based methods

• Merge: Find the best neighboring intervals and merge them to form larger

intervals recursively

• ChiMerge [Kerber AAAI 1992, See also Liu et al. DMKD 2002]

– Initially, each distinct value of a numerical attr. A is considered to be one

interval

– 2 tests are performed for every pair of adjacent intervals

– Adjacent intervals with the least 2 values are merged together, since low

2 values for a pair indicate similar class distributions

– This merge process proceeds recursively until a predefined stopping

criterion is met (such as significance level, max-interval, max inconsistency,

etc.)

Segmentation by Natural Partitioning

• A simply 3-4-5 rule can be used to segment numeric data into

relatively uniform, “natural” intervals.

– If an interval covers 3, 6, 7 or 9 distinct values at the most

significant digit, partition the range into 3 equi-width

intervals

– If it covers 2, 4, or 8 distinct values at the most significant

digit, partition the range into 4 intervals

– If it covers 1, 5, or 10 distinct values at the mostsignificant

digit, partition the range into 5 intervals

Data Mining: Concepts and Techniques 136

Example of 3-4-5 Rule

(-$400 -$5,000)

(-$400 - 0)

(-$400 -

-$300)

(-$300 -

July01) 6, 2018

(0 - $1,000)

(0 -

$200)

($200 -

$400)

($2,000 - $5,000)

($2,000-

$3,000)

($4,000 -

$5,000)

($1,000 - $2,000)

($1,000 -

$1,200)

($1,200 -

$1,400)
-$200) ($3,000-

($400 - ($1,400 - $4,000)

(-$200 - $600) $1,600)

-$100)
($600 - ($1,600 -

$800) ($800 - $1,800) ($1,800 -

(-$100 - $1,000) $2,000)

High=$2,000Step 2:

Step 4:

Step 1: profit-$351

Min

msd=1,000

-$159

Low (i.e, 5%-tile)

Low=-$1,000

$1,838

High(i.e, 95%-0 tile)

$4,700

Max

count

(-$1,000 - $2,000)

(-$1,000 - 0) (0 -$ 1,000)

Step 3:

($1,000 - $2,000)

Concept Hierarchy Generation for Categorical Data

• Specification of a partial/total ordering of attributes explicitlyat

the schema level by users or experts

– street < city < state < country

• Specification of a hierarchy for a set of values by explicit data

grouping

– {Urbana, Champaign, Chicago} < Illinois

• Specification of only a partial set of attributes

– E.g., only street < city, not others

• Automatic generation of hierarchies (or attribute levels) bythe

analysis of the number of distinct values

– E.g., for a set of attributes: {street, city, state, country}

Automatic Concept Hierarchy Generation

• Some hierarchies can be automatically generated based on
the analysis of the number of distinct values per attributein
the data set

– The attribute with the most distinct values is placed at
the lowest level of the hierarchy

– Exceptions, e.g., weekday, month, quarter, year

country

province_or_ state

city

street

15 distinct values

365 distinct values

3567 distinct values

674,339 distinct values

MODULE– III

ASSOCIATION RULE MINING

CLOs Course Learning Outcome

CLO9 Illustrate the concept of Apriori algorithm for finding
frequent items and generating association rules.
Association rules.

CLO10 Illustrate theconcept of Fp-growth algorithm and

different representations of frequent item sets.

CLO11 Understand the classification problem and
Prediction

CLO12 Explore on decision tree construction and
attribute selection

What Is Frequent Pattern
Analysis?

• Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.)

that occurs frequently in a data set

• First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of

frequent itemsets and association rule mining

• Motivation: Finding inherent regularities in data

– What products were often purchased together?— Beer and diapers?!

– What are the subsequent purchases after buying a PC?

– What kinds of DNA are sensitive to this new drug?

– Can we automatically classify web documents?

• Applications

– Basket data analysis, cross-marketing, catalog design, sale campaign

analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

• Discloses an intrinsic and important property of data sets

• Forms the foundation for many essential data mining tasks

– Association, correlation, and causality analysis

– Sequential, structural (e.g., sub-graph) patterns

– Pattern analysis in spatiotemporal, multimedia, time-series,
and stream data

– Classification: associative classification

– Cluster analysis: frequent pattern-based clustering

– Data warehousing: iceberg cube and cube-gradient

– Semantic data compression: fascicles

– Broad applications

Basic Concepts: Frequent Patterns and Association
Rules

• Itemset X = {x1, …, xk}

• Find all the rules X Y with minimum

support and confidence

– support, s, probability that a
transaction contains X Y

– confidence, c, conditional
probability that a transaction
having X also contains Y

Let supmin = 50%, confmin = 50%

Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}

Association rules:

A D (60%, 100%)

D A (60%, 75%)

Customer

buys diaper

Customer

buys both

Customer

buys beer

Transaction-id Items bought

10 A, B, D

20 A, C, D

30 A, D, E

40 B, E, F

50 B, C, D, E, F

Closed Patterns and Max-Patterns

• A long pattern contains a combinatorial number of sub-
patterns, e.g., {a1, …, a100} contains (100

1) + (100
2) + … + (1

1
0

0
0

0) =
2100 – 1 = 1.27*1030 sub-patterns!

• Solution: Mine closed patterns and max-patterns instead

• An itemset X is closed if X is frequent and there exists no super-
pattern Y כ X, with the same support as X (proposed by
Pasquier, et al. @ ICDT’99)

• An itemset X is a max-pattern if X is frequent and there exists
no frequent super-pattern Y כ X (proposed by Bayardo @
SIGMOD’98)

• Closed pattern is a lossless compression of freq. patterns

– Reducing the # of patterns and rules

Closed Patterns and Max-Pattern

• Exercise. DB = {<a1, …, a100>, < a1, …, a50>}

– Min_sup = 1.

• What is the set of closed itemset?

– <a1, …, a100>: 1

– < a1, …, a50>: 2

• What is the set of max-pattern?

– <a1, …, a100>: 1

• What is the set of all patterns?

– !!

Scalable Methods for Mining Frequent Patterns

• The downward closure property of frequent patterns

– Any subset of a frequent itemset must be frequent

– If {beer, diaper, nuts} is frequent, so is {beer, diaper}

– i.e., every transaction having {beer, diaper, nuts} also contains
{beer, diaper}

• Scalable mining methods: Three major approaches

– Apriori (Agrawal & Srikant@VLDB’94)

– Freq. pattern growth (FPgrowth—Han, Pei & Yin
@SIGMOD’00)

– Vertical data format approach (Charm—Zaki & Hsiao
@SDM’02)

Apriori: A Candidate Generation-and-Test Approach

• Apriori pruning principle: If there is any itemset which is

infrequent, its superset should not be generated/tested!

(Agrawal & Srikant @VLDB’94, Mannila, et al. @ KDD’ 94)

• Method:

– Initially, scan DB once to get frequent 1-itemset

– Generate length (k+1) candidate itemsets from length k

frequent itemsets

– Test the candidates against DB

– Terminate when no frequent or candidate set can be

generated

The Apriori Algorithm—An Example

Database TDB

1st scan

C1

L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2

The Apriori Algorithm

• Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1

that are contained in t
Lk+1 = candidates in Ck+1 with min_support
end

return k Lk;

Important Details of Apriori

• How to generate candidates?

– Step 1: self-joining Lk

– Step 2: pruning

• How to count supports of candidates?

• Example of Candidate-generation

– L3={abc, abd, acd, ace, bcd}

– Self-joining: L3*L3

• abcd from abc and abd

• acde from acd and ace

– Pruning:

• acde is removed because ade is not in L3

– C4={abcd}

How to Generate Candidates?

• Suppose the items in Lk-1 are listed in an order

• Step 1: self-joining Lk-1

insert into Ck

select p.item1, p.item2, …, p.itemk-1, q.itemk-1

from Lk-1 p, Lk-1 q

where p.item1=q.item1, …, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1

• Step 2: pruning

forall itemsets c in Ck do

forall (k-1)-subsets s of c do

if (s is not in Lk-1) then delete c from Ck

How to Count Supports of Candidates?

• Why counting supports of candidates a problem?

– The total number of candidates can be very huge

– One transaction may contain many candidates

• Method:

– Candidate itemsets are stored in a hash-tree

– Leaf node of hash-tree contains a list of itemsets and

counts

– Interior node contains a hash table

– Subset function: finds all the candidates contained in a

transaction

Example: Counting Supports of Candidates

1,4,7

2,5,8

3,6,9

Subset function

2 3 4

5 6 7

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

3 4 5 3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

Transaction: 1 2 3 5 6

1 + 2 3 5 6

1 2 + 3 5 6

1 3 + 5 6

Efficient Implementation of Apriori in SQL

• Hard to get good performance out of pure SQL (SQL-92)

based approaches alone

• Make use of object-relational extensions like UDFs, BLOBs,

Table functions etc.

– Get orders of magnitude improvement

• S. Sarawagi, S. Thomas, and R. Agrawal. Integrating

association rule mining with relational database systems:

Alternatives and implications. In SIGMOD’98

Challenges of Frequent Pattern Mining

• Challenges

– Multiple scans of transaction database

– Huge number of candidates

– Tedious workload of support counting for candidates

• Improving Apriori: general ideas

– Reduce passes of transaction database scans

– Shrink number of candidates

– Facilitate support counting of candidates

Partition: Scan Database Only Twice

• Any itemset that is potentially frequent in DB must be

frequent in at least one of the partitions of DB

– Scan 1: partition database and find local frequent patterns

– Scan 2: consolidate global frequent patterns

• A. Savasere, E. Omiecinski, and S. Navathe. An efficient

algorithm for mining association in large databases. In

VLDB’95

DHP: Reduce the Number of Candidates

• A k-itemset whose corresponding hashing bucket count is below

the threshold cannot be frequent

– Candidates: a, b, c, d, e

– Hash entries: ,ab, ad, ae- ,bd, be, de- …

– Frequent 1-itemset: a, b, d, e

– ab is not a candidate 2-itemset if the sum of count of {ab, ad,

ae} is below support threshold

• J. Park, M. Chen, and P. Yu. An effective hash-based algorithm

for mining association rules. In SIGMOD’95

Sampling for Frequent Patterns

• Select a sample of original database, mine frequent patterns

within sample using Apriori

• Scan database once to verify frequent itemsets found in

sample, only borders of closure of frequent patterns are

checked

– Example: check abcd instead of ab, ac, …, etc.

• Scan database again to find missed frequent patterns

• H. Toivonen. Sampling large databases for association rules. In

VLDB’96

DIC: Reduce Number of Scans

• Once both A and D are determined frequent,
the counting of AD begins

• Once all length-2 subsets of BCD are
determined frequent, the counting of BCD
begins

ABCD

ABC ABD ACD BCD

AB AC BC AD BD CD

A B C D

{}

Itemset lattice

Transactions

1-itemsets

2-itemsets

…
Apriori

1-itemsets

2-items

3-itemsDIC

S. Brin R. Motwani, J. Ullman, and S.
Tsur. Dynamic itemset counting and
implication rules for market basket
data. In SIGMOD’97

Bottleneck of Frequent-pattern Mining

• Multiple database scans are costly

• Mining long patterns needs many passes of

scanning and generates lots of candidates

– To find frequent itemset i1i2…i100

• # of scans: 100

• # of Candidates: (100
1) + (100

2) + … + (1
1

0
0

0
0) = 2100-1 =

1.27*1030 !

• Bottleneck: candidate-generation-and-test

• Can we avoid candidate generation?

Mining Frequent Patterns Without Candidate
Generation

• Grow long patterns from short ones using local

frequent items

– “abc” is a frequent pattern

– Get all transactions having “abc”: DB|abc

– “d” is a local frequent item in DB|abc abcd is a

frequent pattern

Construct FP-tree from a Transaction Database

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1. Scan DB once, find frequent 1-
itemset (single item pattern)

2. Sort frequent items in frequency
descending order, f-list

3. Scan DB again, construct FP-tree

F-list=f-c-a-b-m-p

Benefits of the FP-tree Structure

• Completeness

– Preserve complete information for frequent pattern mining

– Never break a long pattern of any transaction

• Compactness

– Reduce irrelevant info—infrequent items are gone

– Items in frequency descending order: the more frequently
occurring, the more likely to be shared

– Never be larger than the original database (not count node-
links and the count field)

– For Connect-4 DB, compression ratio could be over 100

Partition Patterns and Databases

• Frequent patterns can be partitioned into
subsets according to f-list

– F-list=f-c-a-b-m-p

– Patterns containing p

– Patterns having m but no p

– …

– Patterns having c but no a nor b, m, p

– Pattern f

• Completeness and non-redundency

Find Patterns Having P From P-conditional Database

• Starting at the frequent item header table in the FP-tree
• Traverse the FP-tree by following the link of each frequent item p
• Accumulate all of transformed prefix paths of item p to form p’s

conditional pattern base

Conditional pattern bases

item cond. pattern base

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

From Conditional Pattern-bases to Conditional FP-trees

• For each pattern-base

– Accumulate the count for each item in the base

– Construct the FP-tree for the frequent items of the
pattern base

m-conditional pattern base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent
patterns relate to m

m,

fm, cm, am,

fcm, fam, cam,

fcam

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

Recursion: Mining Each Conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3

am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)
{}

f:3

cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3

cam-conditional FP-tree

A Special Case: Single Prefix Path in FP-tree

• Suppose a (conditional) FP-tree T has a shared single

prefix-path P

• Mining can be decomposed into two parts

– Reduction of the single prefix path into one node

– Concatenation of the mining results of the two parts

a2:n2

a3:n3

a1:n1

{}

b1:m1
C1:k1

C2:k2 C3:k3

b1:m1
C1:k1

C2:k2 C3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =

Mining Frequent Patterns With FP-trees

• Idea: Frequent pattern growth

– Recursively grow frequent patterns by pattern and database
partition

• Method

– For each frequent item, construct its conditional pattern-
base, and then its conditional FP-tree

– Repeat the process on each newly created conditional FP-
tree

– Until the resulting FP-tree is empty, or it contains only one
path—single path will generate all the combinations of its
sub-paths, each of which is a frequent pattern

Scaling FP-growth by DB Projection

• FP-tree cannot fit in memory?—DB projection

• First partition a database into a set of projected DBs

• Then construct and mine FP-tree for each projected DB

• Parallel projection vs. Partition projection techniques

– Parallel projection is space costly

Partition-based Projection

• Parallel projection needs a lot of

disk space

• Partition projection saves it

Tran. DB
fcamp
fcabm
fb
cbp
fcamp

p-proj DB
fcam
cb
fcam

m-proj DB
fcab
fca
fca

b-proj DB
f
cb
…

a-proj DB
fc
…

c-proj DB
f
…

f-proj DB
…

am-proj DB
fc
fc
fc

cm-proj DB
f
f
f

…

FP-Growth vs. Apriori: Scalability With the Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

Support threshold(%)

R
u

n
 t

im
e

(s
e

c.
)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

FP-Growth vs. Tree-Projection: Scalability with the Support
Threshold

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

Support threshold (%)

R
u

n
ti

m
e
 (

s
e
c
.)

D2 FP-growth

D2 TreeProjection

Data set T25I20D100K

Why Is FP-Growth the Winner?

• Divide-and-conquer:

– decompose both the mining task and DB according to the

frequent patterns obtained so far

– leads to focused search of smaller databases

• Other factors

– no candidate generation, no candidate test

– compressed database: FP-tree structure

– no repeated scan of entire database

– basic ops—counting local freq items and building sub FP-

tree, no pattern search and matching

Implications of the Methodology

• Mining closed frequent itemsets and max-patterns

– CLOSET (DMKD’00)

• Mining sequential patterns

– FreeSpan (KDD’00), PrefixSpan (ICDE’01)

• Constraint-based mining of frequent patterns

– Convertible constraints (KDD’00, ICDE’01)

• Computing iceberg data cubes with complex measures

– H-tree and H-cubing algorithm (SIGMOD’01)

MaxMiner: Mining Max-patterns

• 1st scan: find frequent items

– A, B, C, D, E

• 2nd scan: find support for

– AB, AC, AD, AE, ABCDE

– BC, BD, BE, BCDE

– CD, CE, CDE, DE,

• Since BCDE is a max-pattern, no need to check BCD, BDE, CDE in

later scan

• R. Bayardo. Efficiently mining long patterns from databases. In

SIGMOD’98

Tid Items

10 A,B,C,D,E

20 B,C,D,E,

30 A,C,D,F

Potential max-
patterns

Mining Frequent Closed Patterns: CLOSET

• Flist: list of all frequent items in support ascending order

– Flist: d-a-f-e-c

• Divide search space

– Patterns having d

– Patterns having d but no a, etc.

• Find frequent closed pattern recursively

– Every transaction having d also has cfa cfad is a frequent

closed pattern

• J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for Mining

Frequent Closed Itemsets", DMKD'00.

TID Items

10 a, c, d, e, f

20 a, b, e

30 c, e, f

40 a, c, d, f

50 c, e, f

Min_sup=2

CLOSET: Mining Closed Itemsets by Pattern-
Growth

• Itemset merging: if Y appears in every occurrence of X, then Y is

merged with X

• Sub-itemset pruning: if Y כ X, and sup(X) = sup(Y), X and all of X’s

descendants in the set enumeration tree can be pruned

• Hybrid tree projection

– Bottom-up physical tree-projection

– Top-down pseudo tree-projection

• Item skipping: if a local frequent item has the same support in several

header tables at different levels, one can prune it from the header

table at higher levels

• Efficient subset checking

CHARM: Mining by Exploring Vertical Data Format

• Vertical format: t(AB) = {T11, T25, …-

– tid-list: list of trans.-ids containing an itemset

• Deriving closed patterns based on vertical intersections

– t(X) = t(Y): X and Y always happen together

– t(X) t(Y): transaction having X always has Y

• Using diffset to accelerate mining

– Only keep track of differences of tids

– t(X) = {T1, T2, T3}, t(XY) = {T1, T3}

– Diffset (XY, X) = {T2}

• Eclat/MaxEclat (Zaki et al. @KDD’97), VIPER(P. Shenoy et

al.@SIGMOD’00), CHARM (Zaki & Hsiao@SDM’02)

Further Improvements of Mining Methods

• AFOPT (Liu, et al. @ KDD’03)

– A “push-right” method for mining condensed frequent
pattern (CFP) tree

• Carpenter (Pan, et al. @ KDD’03)

– Mine data sets with small rows but numerous columns

– Construct a row-enumeration tree for efficient mining

Visualization of Association Rules: Plane Graph

Visualization of Association Rules: Rule Graph

Frequent-Pattern Mining: Research Problems

• Mining fault-tolerant frequent, sequential and structured

patterns

– Patterns allows limited faults (insertion, deletion, mutation)

• Mining truly interesting patterns

– Surprising, novel, concise, …

• Application exploration

– E.g., DNA sequence analysis and bio-pattern classification

– “Invisible” data mining

Visualization of Association Rules
(SGI/MineSet 3.0)

Frequent-Pattern Mining: Summary

• Frequent pattern mining—an important task in data mining

• Scalable frequent pattern mining methods

– Apriori (Candidate generation & test)

– Projection-based (FPgrowth, CLOSET+, ...)

– Vertical format approach (CHARM, ...)

 Mining a variety of rules and interesting patterns

 Constraint-based mining

 Mining sequential and structured patterns

 Extensions and applications

MODULE– IV

CLASSIFICATION AND PRIDICTION

CLOs Course Learning Outcome

CLO13 Understand the classification problem and
Bayesian classification

CLO14 Illustrate the rule based and back propagation
classification algorithms

CLO15 Understand the Cluster and Analysis

CLO16 Understand the Types of data and categorization of

major clustering methods

CONTENTS

 What is classification?
 What is prediction?

 Issues regarding classification and prediction

 Classification by decision tree induction

 Bayesian classification

 Lazy learners (or learning from your neighbors)

 Classification

 predicts categorical class labels (discrete or nominal)

 classifies data (constructs a model) based on the training
set and the values (class labels) in a classifying attribute
and uses it in classifying new data

 Prediction

 models continuous-valued functions, i.e., predicts
unknown or missing values

 Typical applications

 Credit approval

 Target marketing

 Medical diagnosis

 Fraud detection

Classification vs. Prediction

Classification—A Two-Step Process

 Model construction: describing a set of predetermined classes

 Each tuple/sample is assumed to belong to a predefined class, as
determined by the class label attribute

 The set of tuples used for model construction is training set

 The model is represented as classification rules, decision trees, or
mathematical formulae

 Model usage: for classifying future or unknown objects

 Estimate accuracy of the model
 The known label of test sample is compared with the

classified result from the model
 Accuracy rate is the percentage of test set samples that are

correctly classified by the model
 Test set is independent of training set, otherwise over-fitting

will occur
 If the accuracy is acceptable, use the model to classify data

tuples whose class labels are not known

Process (1): Model Construction

Training

Data

N A M E R A N K Y E A R S T E N U R E D

M ik e A s s is t a n t P r o f 3 n o

M a r y A s s is t a n t P r o f 7 y e s

B ill P r o f e s s or 2 y e s

J im A s s o c ia t e P r o f 7 y e s

D a v e A s s is t a n t P r o f 6 n o

A n n e A s s o c ia t e P r o f 3 n o

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’

Classifier

(Model)

Process (2): Using the Model in Prediction

Classifier

Testing

Data

N A M E R A N K Y E A R S T E N U R E D

T o m A s s is t a n t P r o f 2 n o

M e r lis a A s s o c ia t e P r o f 7 n o

G e o r g e P r o f e s s or 5 y e s

J o s e p h A s s is t a n t P r o f 7 y e s

Unseen Data

(Jeff, Professor, 4)

Tenured?

Supervised vs. Unsupervised Learning

 Supervised learning (classification)

 Supervision: The training data (observations,

measurements, etc.) are accompanied by labels

indicating the class of the observations

 New data is classified based on the training set

 Unsupervised learning (clustering)

 The class labels of training data is unknown

 Given a set of measurements, observations, etc. with the

aim of establishing the existence of classes or clusters in

the data

Issues: Data Preparation

 Data cleaning

 Preprocess data in order to reduce noise and handle

missing values

 Relevance analysis (feature selection)

 Remove the irrelevant or redundant attributes

 Data transformation

 Generalize and/or normalize data

Issues: Evaluating Classification Methods

 Accuracy

 classifier accuracy: predicting class label

 predictor accuracy: guessing value of predicted
attributes

 Speed

 time to construct the model (training time)

 time to use the model (classification/prediction time)

 Robustness: handling noise and missing values

 Scalability: efficiency in disk-resident databases

 Interpretability

 understanding and insight provided by the model

 Other measures, e.g., goodness of rules, such as decision tree
size or compactness of classification rules

Decision Tree Induction: Training Dataset

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

This follows an
example of
Quinlan‘s ID3
(Playing
Tennis)

Output: A Decision Tree for ―buys_computer‖

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno

Algorithm for Decision Tree Induction

 Basic algorithm (a greedy algorithm)

 Tree is constructed in a top-down recursive divide-and-conquer
manner

 At start, all the training examples are at the root

 Attributes are categorical (if continuous-valued, they are

discretized in advance)

 Examples are partitioned recursively based on selected attributes

 Test attributes are selected on the basis of a heuristic or
statistical measure (e.g., information gain)

 Conditions for stopping partitioning

 All samples for a given node belong to the same class

 There are no remaining attributes for further partitioning –

majority voting is employed for classifying the leaf

 There are no samples left

Information Gain (ID3/C4.5)

 Select the attribute with the highest information gain

 Let pi be the probability that an arbitrary tuple in D
belongs to class Ci, estimated by |Ci, D|/|D|

 Expected information (entropy) needed to classify a tuple
in D:

partitions) to classify D:

i1

 Information needed (after using A to split D into v

m

Info (D) p
i
log

2
(p

i
)

j

v

j

A

| D |

| D |
 I (D)Info (D)

j1

A
(D)

 Information gained by branching on attribute A

Gain(A) Info(D) Info

July 16, 2018 Data Mining: Co

Information Gain

 Class P: buys_computer = ―yes‖

 Class N: buys_computer = ―no‖

means ―age <=30‖ has 5

out of 14 samples, with 2 yes‘es

and 3 no‘s. Hence

Similarly,

14

5

4

14 14

5

 I (3 , 2) 0 .694

I (4 ,0)I (2 ,3) (D) Info
age

Gain (income) 0 .029

Gain (student) 0 .151

Gain (credit _ rating) 0 .048

Gain (age) Info (D) Info (D) 0 .246
age

age pi ni I(pi, ni)

<=30 2 3 0.971

31…40 4 0 0

>40 3 2 0.971
age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

14

5
I (2 ,3)

5

14

5

14

9

14

9

14
log

2
(log

2
() 0 .940) Info (D) I (9 ,5)

Computing Information-Gain

 Let attribute A be a continuous-valued attribute

 Must determine the best split point for A

 Sort the value A in increasing order

 Typically, the midpoint between each pair of adjacent values is

considered as a possible split point

 (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

 The point with the minimum expected information requirement for A

is selected as the split-point for A

 Split:

 D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of

tuples in D satisfying A > split-point

Gain Ratio for Attribute Selection (C4.5)

 Information gain measure is biased towards attributes

with a large number of values

 C4.5 (a successor of ID3) uses gain ratio to overcome the

problem (normalization to information gain)

 GainRatio(A) = Gain(A)/SplitInfo(A)

 Ex.

 gain_ratio(income) = 0.029/0.926 = 0.031

 The attribute with the maximum gain ratio is selected as

the splitting attribute

)
2

| D | | D |

| D | | D |
SplitInfo

v

j j

A
 log ((D)

j1

14

44

14 14 14 14 14

4 4 6 6
 log () 0 .926

2
 log ()

2
 log ()

2
SplitInfo A (D)

Gini index (CART, IBM IntelligentMiner)

 If a data set D contains examples from n classes, gini index, gini(D) is

defined as

where pj is the relative frequency of class j in D
 If a data set D is split on A into two subsets D1 and D2, the gini index

gini(D) is defined as

n

 p j

j 1

2
gini (D) 1

2

2

1

1
D

| D |
D

|D |

| D | | D |
gini

A
) gini ()(D) gini (

 Reduction in Impurity:

 gini (A) gini (D) gini (D)
A

 The attribute provides the smallest ginisplit(D) (or the largest reduction in

impurity) is chosen to split the node (need to enumerate all the possible

splitting points for each attribute)

Gini index (CART, IBM IntelligentMiner)

 Ex. D has 9 tuples in buys_computer = ―yes‖and 5 in ―no‖

medium} and 4 in D2

but gini{medium,high} is 0.30 and thus the best since it is the lowest

 All attributes are assumed continuous-valued

 May need other tools, e.g., clustering, to get the possible split values

 Can be modified for categorical attributes

2 2

 5
 0.459

 14 14

 Suppose the attribute income partitions D into 10 in D1: {low,

 9
gini (D) 1

11

 14

 14

gini (D)
 10

Gini (D)
 4

Gini (D)
income { low , medium }

Comparing Attribute Selection Measures

 The three measures, in general, return good results but

 Information gain:

 biased towards multivalued attributes

 Gain ratio:

 tends to prefer unbalanced splits in which one

partition is much smaller than the others

 Gini index:

 biased to multivalued attributes

 has difficulty when # of classes is large

 tends to favor tests that result in equal-sized

partitions and purity in both partitions

Other Attribute Selection Measures

 CHAID: a popular decision tree algorithm, measure based on χ2test

for independence

 C-SEP: performs better than info. gain and gini index in certain cases

 G-statistics: has a close approximation to χ2distribution

 MDL (Minimal Description Length) principle (i.e., the simplest solution

is preferred):

 The best tree as the one that requires the fewest # of bits to both

(1) encode the tree, and (2) encode the exceptions to the tree

 Multivariate splits (partition based on multiple variable combinations)

 CART: finds multivariate splits based on a linear comb. of attrs.

 Which attribute selection measure is the best?

 Most give good results, none is significantly superior than others

Overfitting and Tree Pruning

 Overfitting: An induced tree may overfit the training data

 Too many branches, some may reflect anomalies due to noise or

outliers

 Poor accuracy for unseen samples

 Two approaches to avoid overfitting

 Prepruning: Halt tree construction early—do not split a node if this

would result in the goodness measure falling below a threshold

 Difficult to choose an appropriate threshold

 Postpruning: Remove branches from a ―fully grown‖ tree—geta

sequence of progressively pruned trees

 Use a set of data different from the training data to decide

which is the ―best pruned tree‖

Enhancements to Basic Decision Tree Induction

 Allow for continuous-valued attributes

 Dynamically define new discrete-valued attributes that

partition the continuous attribute value into a discrete set

of intervals

 Handle missing attribute values

 Assign the most common value of the attribute

 Assign probability to each of the possible values

 Attribute construction

 Create new attributes based on existing ones that are

sparsely represented

 This reduces fragmentation, repetition, and replication

Classification in Large Databases

 Classification—a classical problem extensively studied by

statisticians and machine learning researchers

 Scalability: Classifying data sets with millions of examples and

hundreds of attributes with reasonable speed

 Why decision tree induction in data mining?

 relatively faster learning speed (than other classification
methods)

 convertible to simple and easy to understand
classification rules

 can use SQL queries for accessing databases

 comparable classification accuracy with other methods

Scalable Decision Tree Induction Methods

 SLIQ (EDBT‘96 — Mehta et al.)

 Builds an index for each attribute and only class list and the
current attribute list reside in memory

 SPRINT (VLDB‘96 — J. Shafer et al.)

 Constructs an attribute list data structure

 PUBLIC (VLDB‘98 — Rastogi & Shim)

 Integrates tree splitting and tree pruning: stop growing the
tree earlier

 RainForest (VLDB‘98 — Gehrke, Ramakrishnan & Ganti)

 Builds an AVC-list (attribute, value, class label)

 BOAT (PODS‘99 — Gehrke, Ganti, Ramakrishnan & Loh)

 Uses bootstrapping to create several small samples

Scalability Framework for RainForest

 Separates the scalability aspects from the criteria that

determine the quality of the tree

 Builds an AVC-list: AVC (Attribute, Value, Class_label)

 AVC-set (of an attribute X)

 Projection of training dataset onto the attribute X and

class label where counts of individual class label are

aggregated

 AVC-group (of a node n)

 Set of AVC-sets of all predictor attributes at the node n

Rainforest:Training Set and Its AVC Sets

Age Buy_Computer

yes no

<=30 3 2

31..40 4 0

>40 3 2

student Buy_Computer

yes no

yes 6 1

no 3 4

Credit

rating

fair

excellent

Buy_Computer

yes no

6 2

3 3

age income student redit_ratin _co

m

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

AVC-set on incomeAVC-set on Age

AVC-set on Student

Training Examples
income Buy_Computer

yes no

high 2 2

medium 4 2

low 3 1

AVC-set on

credit_rating

Data Cube-Based Decision-Tree Induction

 Integration of generalization with decision-tree induction

(Kamber et al.‘97)

 Classification at primitive concept levels

 E.g., precise temperature, humidity, outlook, etc.

 Low-level concepts, scattered classes, bushy

classification-trees

 Semantic interpretation problems

 Cube-based multi-level classification

 Relevance analysis at multi-levels

 Information-gain analysis with dimension + level

BOAT (Bootstrapped Optimistic Algorithm for Tree
Construction)

 Use a statistical technique called bootstrapping to create

several smaller samples (subsets), each fits in memory

 Each subset is used to create a tree, resulting in several trees

 These trees are examined and used to construct a new tree

T’

 It turns out that T’ is very close to the tree that would be

generated using the whole data set together

 Adv: requires only two scans of DB, an incremental alg.

18July 16, 2018 Data Mining: Concepts and Techniques 2

Presentation of Classification Results

July 16, 2018 Data Mining: Concepts and Techniques 219

Visualization of a Decision Tree in SGI/MineSet 3.0

Perception-Based Classification (PBC)

Bayesian Classification: Why?

 A statistical classifier: performs probabilistic prediction,
i.e., predicts class membership probabilities

 Foundation: Based on Bayes‘ Theorem.

 Performance: A simple Bayesian classifier, naïve Bayesian
classifier, has comparable performance with decision tree and
selected neural network classifiers

 Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is correct —
prior knowledge can be combined with observed data

 Standard: Even when Bayesian methods are computationally
intractable, they can provide a standard of optimal decision
making against which other methods can be measured

Bayesian Theorem: Basics

 Let X be a data sample (―evidence‖): class label is unknown

 Let H be a hypothesis that X belongs to class C

 Classification is to determine P(H|X), the probability that the

hypothesis holds given the observed data sample X

 P(H) (prior probability), the initial probability

 E.g., X will buy computer, regardless of age, income, …

 P(X): probability that sample data is observed

 P(X|H) (posteriori probability), the probability of observing

the sample X, given that the hypothesis holds

 E.g., Given that X will buy computer, the prob. that X is

31..40, medium income

Bayesian Theorem

 Given training data X, posteriori probability of a

hypothesis H, P(H|X), follows the Bayes theorem

P (H | X)
P (X | H) P (H)

P (X)

 Informally, this can be written as

posteriori = likelihood x prior/evidence

 Predicts X belongs to C2 iff the probability P(Ci|X) is the highest among

all the P(Ck|X) for all the k classes

 Practical difficulty: require initial knowledge of many

probabilities, significant computational cost

Towards Naïve Bayesian Classifier

 Let D be a training set of tuples and their associated class
labels, and each tuple is represented by an n-D attribute
vector X = (x1, x2, …, xn)

 Suppose there are m classes C1, C2, …, Cm.

 Classification is to derive the maximum posteriori, i.e., the
maximal P(Ci|X)

 This can be derived from Bayes‘ theorem

P (X)i

P (X |C) P (C)
P (C | X) i i

 Since P(X) is constant for all classes, only
P (C

i
| X) P (X |C

i
) P (C

i
)

needs to be maximized

Derivation of Naïve Bayes Classifier

 A simplified assumption: attributes are conditionally
independent (i.e., no dependence relation between
attributes):

 This greatly reduces the computation cost: Only counts
the class distribution

 If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having
value xk for Ak divided by |Ci, D| (# of tuples of Ci in D)

 If Ak is continous-valued, P(xk|Ci) is usually computed
based on Gaussian distribution with a mean μand
standard deviation σ

and P(xk|Ci) is

P (x | C i) P (x | C i) P (x | C i) ... P (x | C i)
k 1 2 n

n

k 1

P (X | C i)

21
2

2

(x)

2

eg (x , ,)

P (X | Ci) g (x
k
,

C
,

C
)

i i

Naïve Bayesian Classifier

Class:

C1:buys_computer = ‗yes‘

C2:buys_computer = ‗no‘

Data sample

X = (age <=30,
Income = medium,

Student = yes

Credit_rating = Fair)

age income student redit_rating_com

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Naïve Bayesian Classifier:An Example

 P(Ci): P(buys_computer = ―yes‖) = 9/14 = 0.643

P(buys_computer = ―no‖) = 5/14= 0.357

Compute P(X|Ci) for each class
P(age = ―<=30‖ | buys_computer = ―yes‖) = 2/9 = 0.222
P(age = ―<= 30‖ | buys_computer = ―no‖) = 3/5 =0.6
P(income = ―medium‖ | buys_computer = ―yes‖) = 4/9 = 0.444
P(income = ―medium‖ | buys_computer = ―no‖) = 2/5 = 0.4
P(student = ―yes‖ | buys_computer = ―yes) = 6/9 = 0.667
P(student = ―yes‖ | buys_computer = ―no‖) = 1/5 = 0.2
P(credit_rating = ―fair‖ | buys_computer = ―yes‖) = 6/9 = 0.667
P(credit_rating = ―fair‖ | buys_computer = ―no‖) = 2/5 = 0.4

X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

P(X|Ci) : P(X|buys_computer = ―yes‖) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = ―no‖) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|Ci)*P(Ci) : P(X|buys_computer = ―yes‖) * P(buys_computer = ―yes‖) =0.028

P(X|buys_computer = ―no‖) * P(buys_computer = ―no‖) = 0.007

Therefore, X belongs to class (“buys_computer = yes”)

Avoiding the 0-Probability Problem

 Ex. Suppose a dataset with 1000 tuples, income=low (0), income=
medium (990), and income = high (10),

 Use Laplacian correction (or Laplacian estimator)

 Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

 The ―corrected‖ prob. estimates are close to their ―uncorrected‖
counterparts

 Naïve Bayesian prediction requires each conditional prob. be non-
zero. Otherwise, the predicted prob. will be zero

n

 P (x k | C i)

k 1

P (X | C i)

Naïve Bayesian Classifier: Comments

 Advantages

 Easy to implement

 Good results obtained in most of the cases

 Disadvantages

 Assumption: class conditional independence, therefore
loss of accuracy

 Practically, dependencies exist among variables

 E.g., hospitals: patients: Profile: age, family history, etc.

Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.

 Dependencies among these cannot be modeled by Naïve
Bayesian Classifier

 How to deal with these dependencies?

 Bayesian Belief Networks

Bayesian Belief Networks

X Y

Z
P

 Bayesian belief network allows a subset of the variables

conditionally independent

 A graphical model of causal relationships

 Represents dependency among the variables

 Gives a specification of joint probability distribution

 Nodes: random variables

 Links: dependency

 X and Y are the parents of Z, and Y is

the parent of P

 No dependency between Z and P

 Has no loops or cycles

Bayesian Belief Network: An Example

Family

History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC 0.8 0.5 0.7 0.1

~LC 0.2 0.5 0.3 0.9

Bayesian Belief Networks

The conditional probability table
(CPT) for variable LungCancer:

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

 P (x i | P a r e n t s (Y i))

i 1

P (x
1

, . . . , x
n

)

CPT shows the conditional probability for
each possible combination of its parents

Derivation of the probability of a
particular combination of values of X,
from CPT:

n

Training Bayesian Networks

 Several scenarios:

 Given both the network structure and all variables
observable: learn only the CPTs

 Network structure known, some hidden variables:
gradient descent (greedy hill-climbing) method,
analogous to neural network learning

 Network structure unknown, all variables observable:
search through the model space to reconstruct network
topology

 Unknown structure, all hidden variables: No good
algorithms known for this purpose

 Ref. D. Heckerman: Bayesian networks for data mining

Lazy vs. Eager Learning

 Lazy vs. eager learning

 Lazy learning (e.g., instance-based learning): Simply
stores training data (or only minor processing) and waits
until it is given a test tuple

 Eager learning (the above discussed methods): Given a set
of training set, constructs a classification model before
receiving new (e.g., test) data to classify

 Lazy: less time in training but more time in predicting

 Accuracy

 Lazy method effectively uses a richer hypothesis space
since it uses many local linear functions to form its implicit
global approximation to the target function

 Eager: must commit to a single hypothesis that covers the
entire instance space

Instance-Based Methods

 Instance-based learning:

 Store training examples and delay the processing
(―lazy evaluation‖) until a new instance must be
classified

 Typical approaches

 k-nearest neighbor approach

 Instances represented as points in a Euclidean
space.

 Locally weighted regression

 Constructs local approximation

 Case-based reasoning

 Uses symbolic representations and knowledge-
based inference

The k-Nearest Neighbor Algorithm

 All instances correspond to points in the n-D space

 The nearest neighbor are defined in terms of
Euclidean distance, dist(X1, X2)

 Target function could be discrete- or real- valued

 For discrete-valued, k-NN returns the most common
value among the k training examples nearest to xq

 Vonoroi diagram: the decision surface induced by 1- NN
for a typical set of training examples

_
+

_
q

.
x

+

_ _
+

_

_

+

.

.
.

. .

Discussion on the k-NN Algorithm

 k-NN for real-valued prediction for a given unknown tuple

 Returns the mean values of the k nearest neighbors

 Distance-weighted nearest neighbor algorithm

 Weight the contribution of each of the k neighbors

according to their distance to the query xq

 Give greater weight to closer neighbors

 Robust to noisy data by averaging k-nearest neighbors

 Curse of dimensionality: distance between neighbors could

be dominated by irrelevant attributes

 To overcome it, axes stretch or elimination of the least

relevant attributes

1

d (xq , x
i
)2

w

Case-Based Reasoning (CBR)

 CBR: Uses a database of problem solutions to solve new problems

 Store symbolic description (tuples or cases)—not points in a Euclidean

space

 Applications: Customer-service (product-related diagnosis), legal ruling

 Methodology

 Instances represented by rich symbolic descriptions (e.g., function

graphs)

 Search for similar cases, multiple retrieved cases may be combined

 Tight coupling between case retrieval, knowledge-based reasoning,

and problem solving

 Challenges

 Find a good similarity metric

 Indexing based on syntactic similarity measure, and when failure,

backtracking, and adapting to additional cases

Problems and Challenges

 Considerable progress has been made in scalable

clustering methods

 Partitioning: k-means, k-medoids, CLARANS

 Hierarchical: BIRCH, ROCK, CHAMELEON

 Current clustering techniques do not address all the

requirements adequately, still an active area of research

MODULE– V

CLUSTERING

CLOs Course Learning Outcome

CLO17 Explore on partition algorithms for clustering.

CLO18 Explore on different hierarchical based methods,

different density based methods, grid based and

Model based methods.
CLO19 Understand the outlier Analysis.

CLO20 Understand mining complex data types.

CLUSTERING

What is Cluster Analysis?

• Cluster: a collection of data objects

– Similar to one another within the same cluster

– Dissimilar to the objects in other clusters

• Cluster analysis

– Grouping a set of data objects into clusters

• Clustering is unsupervised classification: no predefined classes

• Typical applications

– As a stand-alone tool to get insight into data distribution

– As a preprocessing step for other algorithms

General Applications of Clustering

• Pattern Recognition

• Spatial Data Analysis

– create thematic maps in GIS by clustering feature spaces

– detect spatial clusters and explain them in spatial data mining

• Image Processing

• Economic Science (especially market research)

• WWW

– Document classification

– Cluster Weblog data to discover groups of similar access patterns

Examples of Clustering Applications

• Marketing: Help marketers discover distinct groups in their customer bases,
and then use this knowledge to develop targeted marketing programs
• Land use: Identification of areas of similar land use in an earth observation
database
• Insurance: Identifying groups of motor insurance policy holders with a high
average claim cost
• City-planning: Identifying groups of houses according to their house type,
value, and geographical location
• Earth-quake studies: Observed earth quake epicenters should be clustered
along continent faults

What Is Good Clustering?
• A good clustering method will produce high quality clusters with
– high intra-class similarity
– low inter-class similarity
• The quality of a clustering result depends on both the similarity measure used
by the method and its implementation.

Type of data in clustering analysis

• Interval-scaled variables:

• Binary variables:

• Nominal, ordinal, and ratio variables:

• Variables of mixed types:

Similarity and Dissimilarity Between Objects

• Distances are normally used to measure the similarity or dissimilarity

between two data objects

Binary Variables

Nominal Variables

Ordinal Variables

Ratio-Scaled Variables

Categorization of Major Clustering Methods

1. Partitioning algorithms: Construct various partitions and then evaluate

them by some criterion

2. Hierarchy algorithms: Create a hierarchical decomposition of the set of

data (or objects) using some criterion

3. Density-based: based on connectivity and density functions

4. Grid-based: based on a multiple-level granularity structure

5. Model-based: A model is hypothesized for each of the clusters and the idea

is to find the best fit of that model to each other

Partitioning method

Partitioning method: Construct a partition of a database D of n objects into a set
of k clusters
• Given a k, find a partition of k clusters that optimizes the chosen partitioning
criterion
– Global optimal: exhaustively enumerate all partitions
– Heuristic methods: k-means and k-medoids algorithms
– k-means (MacQueen‘67): Each cluster is represented by the center of the
cluster
– k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw‘87):
Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

• Given k, the k-means algorithm is implemented in 4 steps:

– Partition objects into k nonempty subsets

– Compute seed points as the centroids of the clusters of the current partition.

The centroid is the center (mean point) of the cluster.

– Assign each object to the cluster with the nearest seed point.

– Go back to Step 2, stop when no more new assignment

The K-Means Clustering Method

Hierarchical Clustering

Hierarchical Clustering

Use distance matrix as clustering criteria. This method does not require the

number of clusters k

as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

• Introduced in Kaufmann and Rousseeuw (1990)

• Implemented in statistical analysis packages, e.g., Splus

• Use the Single-Link method and the dissimilarity matrix.

• Merge nodes that have the least dissimilarity

• Go on in a non-descending fashion

• Eventually all nodes belong to the same cluster

AGNES (Agglomerative Nesting)

DIANA (Divisive Analysis)

DIANA (Divisive Analysis)

• Introduced in Kaufmann and Rousseeuw (1990)

• Implemented in statistical analysis packages, e.g., Splus

• Inverse order of AGNES

• Eventually each node forms a cluster on its own

AGGLOMERATIVE HIERARCHICAL CLUSTERING

AGGLOMERATIVE HIERARCHICAL CLUSTERING

• Algorithms of hierarchical cluster analysis are divided into the two categories

divisible algorithms and agglomerative algorithms.

• A divisible algorithm starts from the entire set of samples X and divides it into

a partition of subsets, then divides each subset into smaller sets, and so on.

• Thus, a divisible algorithm generates a sequence of partitions that is ordered

from a coarser one to a finer one. An agglomerative algorithm first regards

each object as an initial cluster.

•The clusters are merged into a coarser partition, and the merging process

proceeds until the trivial partition is obtained: all objects are in one large

cluster.

Hierarchical and Non-Hierarchical Clustering

Hierarchical and Non-Hierarchical Clustering

• There are two main types of clustering techniques, those that create a
hierarchy of clusters and those that do not.

•The hierarchical clustering techniques create a hierarchy of clusters from small
to big. The main reason for this is that, as was already stated, clustering is an
unsupervised learning technique, and as such, there is no absolutely correct
answer.

• For this reason and depending on the particular application of the clustering,
fewer or greater numbers of clusters may be desired. With a hierarchy of clusters
defined it is possible to choose the number of clusters that are desired.
• At the extreme it is possible to have as many clusters as there are records in
the database.
• In this case the records within the cluster are optimally similar to each other
(since there is only one) and certainly different from the other clusters.

Density-Based Clustering Methods

• Clustering based on density (local cluster criterion), such as density-

connected points

• Major features:

– Discover clusters of arbitrary shape

– Handle noise

– One scan

– Need density parameters as termination condition

• Several interesting studies:

– DBSCAN: Ester, et al. (KDD‘96)

– OPTICS: Ankerst, et al (SIGMOD‘99).

– DENCLUE: Hinneburg & D. Keim (KDD‘98)

– CLIQUE: Agrawal, et al. (SIGMOD‘98)

DBSCAN: Density Based Spatial Clustering of
Applications with Noise

DBSCAN: Density Based Spatial Clustering of Applications with Noise

• Relies on a density-based notion of cluster: A cluster is defined as a

maximal set of density-connected points

• Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN: The Algorithm

– Arbitrary select a point p

– Retrieve all points density-reachable from p wrt Eps and MinPts.

– If p is a core point, a cluster is formed.

– If p is a border point, no points are density-reachable from p and DBSCAN

visits the next point of the database.

– Continue the process until all of the points have been processed

OPTICS: A Cluster-Ordering Method (1999)

OPTICS: A Cluster-Ordering Method (1999)

• OPTICS: Ordering Points To Identify the Clustering Structure

– Ankerst, Breunig, Kriegel, and Sander (SIGMOD‘99)

– Produces a special order of the database wrt its density-based clustering

structure

– This cluster-ordering contains info equiv to the density-based clusterings

corresponding to a broad range of parameter settings

– Good for both automatic and interactive cluster analysis, including finding

intrinsic clustering structure

– Can be represented graphically or using visualization techniques

Denclue: Technical Essence

Denclue: Technical Essence
• Uses grid cells but only keeps information about grid cells that do actually
contain data points and manages these cells in a tree-based access structure.
• Influence function: describes the impact of a data point within its
neighborhood.
• Overall density of the data space can be calculated as the sum of the influence
function of all data points.
• Clusters can be determined mathematically by identifying density attractors.
• Density attractors are local maximal of the overall density function.

Grid-Based Methods
Using multi-resolution grid data structure
• Several interesting methods
– STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz
(1997)
– WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB‘98)
• A multi-resolution clustering approach using wavelet method
– CLIQUE: Agrawal, et al. (SIGMOD‘98)

Grid-Based Methods

Grid-Based Methods

Using multi-resolution grid data structure

• Several interesting methods

– STING (a STatistical INformation Grid approach) by Wang, Yang and

Muntz (1997)

– WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB‘98)

• A multi-resolution clustering approach using wavelet method

– CLIQUE: Agrawal, et al. (SIGMOD‘98)

STING: A Statistical Information Grid Approach

STING: A Statistical Information Grid Approach
• Wang, Yang and Muntz (VLDB‘97)
• The spatial area is divided into rectangular cells
• There are several levels of cells corresponding to different levels of resolution

STING: A Statistical Information Grid Approach (2)
– Each cell at a high level is partitioned into a number of smaller cells in the next
lower level
– Statistical info of each cell is calculated and stored beforehand and is used to
answer queries
– Parameters of higher level cells can be easily calculated from parameters of
lower level cell
• count, mean, s, min, max
• type of distribution—normal, uniform, etc.
– Use a top-down approach to answer spatial data queries
– Start from a pre-selected layer—typically with a small number of cells
– For each cell in the current level compute the confidence interval

Model-Based Clustering Methods

Model-Based Clustering Methods:

1. Attempt to optimize the fit between the data and some mathematical

model

2. Statistical and AI approach Conceptual clustering

3. A form of clustering in machine learning

4. Produces a classification scheme for a set of unlabeled objects

5. Finds characteristic description for each concept (class) COBWEB (Fisher‘87)

6. A popular a simple method of incremental conceptual learning

7. Creates a hierarchical clustering in the form of a classification tree

8. Each node refers to a concept and contains a probabilistic description of

that concept

Other Model-Based Clustering Methods

1. Neural network approaches

a. Represent each cluster as an exemplar, acting as a ―prototype‖ of the

cluster

b. New objects are distributed to the cluster whose exemplar is the most

similar according to some distance measure

2. Competitive learning

a. Involves a hierarchical architecture of several units (neurons)

b. Neurons compete in a ―winner-takes-all‖ fashion for the object currently

being presented

Model-Based Clustering Methods

• Attempt to optimize the fit between the data and some mathematical

model

• Statistical and AI approach

– Conceptual clustering

• A form of clustering in machine learning

• Produces a classification scheme for a set of unlabeled objects

• Finds characteristic description for each concept (class)

– COBWEB (Fisher‘87)

• A popular a simple method of incremental conceptual learning

• Creates a hierarchical clustering in the form of a classification tree

• Each node refers to a concept and contains a probabilistic description of

that concept

COBWEB Clustering Method

Fig. A classification tree

Outlier Analysis

What Is Outlier Discovery?

• What are outliers?

– The set of objects are considerably dissimilar from the remainder of

the data

– Example: Sports: Michael Jordon, Wayne Gretzky, ...

• Problem

– Find top n outlier points

• Applications:

– Credit card fraud detection

– Telecom fraud detection

– Customer segmentation

– Medical analysis

Outlier Discovery: Statistical Approaches

Fig. Outlier Discovery: Statistical Approaches

Outlier Discovery: Distance-Based Approach

• Introduced to counter the main limitations imposed by statistical methods
– We need multi-dimensional analysis without knowing data distribution.
• Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that
at least a fraction p of the objects in T lies at a distance greater than D from O
• Algorithms for mining distance-based outliers
– Index-based algorithm
– Nested-loop algorithm
– Cell-based algorithm

Outlier Discovery: Deviation-Based Approach
• Identifies outliers by examining the main characteristics of objects in a group
• Objects that ―deviate‖ from this description are considered outliers
• sequential exception technique
– simulates the way in which humans can distinguish unusual objects from
among a series of supposedly like objects
• OLAP data cube technique
– uses data cubes to identify regions of anomalies in large multidimensional data

