INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	ELECTRONIC MEASUREMENT AND INSTRUMENTATION				
Course Code	AEC014				
Programme	B.Tech				
Semester	VI	ECE			
Course Type	CORE				
Regulation	IARE - R16				
	Theory Practical				
		Theory		Practic	al
Course Structure	Lectures	Theory Tutorials	Credits	Practic Laboratory	cal Credits
Course Structure	Lectures 3	Theory Tutorials -	Credits 3	Practic Laboratory -	cal Credits -
Course Structure Chief Coordinator	Lectures 3 Ms. P Anna	Theory Tutorials - purna, Assistant I	Credits 3 Professor	Practic Laboratory -	cal Credits -

I. COURSE OVERVIEW:

2000

Electronic measurement and instrumentation is used for troubleshooting of electronic equipment, It is an essential requirement of Service sector industry. This course will help to develop skills to become professional technician with capability to measure electrical parameters using various electronic instruments like analog and digital instruments. By learning this course students will able to know basics of various Instruments, transducers and working of electronic circuits used in electronic test and measuring instruments.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEE002	II	Electrical circuits	3
UG	AEC101	III	Electronic Devices and circuits laboratory	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Electronic Measurement and Instrumentation	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1	:	Assessment	pattern	for	CIA
---------	---	------------	---------	-----	-----

Component				
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modelling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

	Program Outcomes (POs)	Strength	Proficiency assessed By
PO 1	Engineering knowledge: Apply the knowledge of	3	Lectures, Assignments,
	mathematics, science, engineering fundamentals, and		Exercises
	an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Design Exercises
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first		
	principles of mathematics, natural sciences, and		
	engineering sciences		
PO 4	Conduct investigations of complex problems: Use	2	Design Exercises
	research-based knowledge and research methods		
	including design of experiments, analysis and		
	interpretation of data, and synthesis of the information		
	to provide valid conclusions.		
PO 5	Modern tool usage: Create, select, and apply	3	Assignments, Exercises
	appropriate techniques, resources, and modern		
	engineering and IT tools including prediction and		
	modelling to complex engineering activities with an		
	understanding of the limitations.		

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering	2	Lectures and
	professional capable of synthesizing and analyzing		Assignments.
	mechanical systems including allied engineering		
	streams.		
PSO 2	Software Engineering Practices: An ability to	-	-
	adopt and integrate current technologies in the		
	design and manufacturing domain to enhance the		
	employability.		
PSO 3	Successful Career and Entrepreneurship: To	-	-
	build the nation, by imparting technological		
	inputs and managerial skills to become technocrats.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The cours	The course should enable the students to:					
Ι	Acquire a sound understanding theory and performance characteristics of instruments and					
	errors in measurement and apply to DC voltmeters, ammeters, ohmmeters.					
II	Provide concepts and operation of different signal generators and wave form analyzers.					
III	Compare and contrast different types of oscilloscopes					
IV	Select different types of D.C and A.C bridges for measurement of passive components and					
	physical parameters					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe the types of voltmeters,	CLO 1	Analyze Block schematics of measuring systems,
	ammeters, ohmmeters and Dynamic		performance characteristics like accuracy,
	characteristics of measuring systems		precision, resolution and the types of errors.
		CLO 2	TT. 1
		CLO 2	Understand the analog measuring instruments its
			working of analog measuring instruments D'
			Arsenal movement
		CLO 3	Discuss various types measuring range
			Meters like DC and AC voltmeters ammeters.
		CLO 4	Understand of basic building of Cathode ray
			oscilloscopes and cathode ray tubes its

CO 2	Understand the different types of	CLO 5	Illustrate the various types of special purpose
	Oscilloscopes and their working		oscilloscopes and discuss Lissajous figures,
	principies.		frequency measurement, phase measurement,
			CRO probes
		CLO 6	Understand working principle of signal
			generators like AF and RF signal generators
			and Discuss the types of function generators
		CLO 7	Understand the function of various types of
			signal analyzers and discuss the type like AF
CO 3	Understand the Different types of	CLO 8	Understand the various wave analyzers
	analyzers and their working		heterodyne wave analyzers, harmonic distortion,
	principles		spectrum analyzers, and power analyzers.
		CLO 9	Discuss various measurements using DC
		CLO 10	Discuss various measurements using A bridges,
			Maxwell, Hay, Schering, Wien, Anderson
			bridges, Wagner & ground connection.
CO 4	Explore the different types of A.C.	CLO 11	Understand transducers and its classifications
	and DC Bridges and their operations		and discuss strain gauges.
		CLO 12	Understand Force and displacement transducers,
		CLO 13	Discuss the types of transducers Piezoelectric
			transducers, variable capacitance transducers;
		CLO 14	Determine measurement of physical parameters
			Flow measurement, displacement meters, liquid
			level measurement,
CO 5	Demonstrate the different types of	CLO 15	Illustrate the following: active and passive,
	transducers and their principles and		primary and secondary transducers
	operations	CLO 16	Illustrate the measurement of physical parameters
			of transducer like velocity,
		CLO 17	Illustrate the measurement of vacuum level,
			temperature measurements

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Codo	CLO's	At the end of the course, the student will	PO's	Strength of
CLO Code	CLU S	have the ability to:	Mapped	Mapping
AEC014.01	CLO 1	Analyze Block schematics of measuring systems,		
		performance characteristics like	PO 1	3
AEC014.02	CLO 2	Understand the analog measuring instruments its		
		working of analog measuring	PO I	3
AEC014.03	CLO 3	Discuss various types measuring range meters	PO 5	3
		like DC and AC voltmeters ammeters.	105	5
AEC014.04	CLO 4	Understand of basic building of Cathode ray	PO 5	2
		oscilloscopes and cathode ray tubes its	105	2

AEC014.05	CLO 5	Illustrate the various types of special purpose	PO 1	3
AEC014.06	CLO 6	Understand working principle of signal	PO 1	2
		generators like AF and RF signal generators		
AEC014.07	CLO 7	Understand the function of various types of	DO 4	2
		signal analyzers and discuss the type like AF	PO 4	2
AEC014.08	CLO 8	Understand the various wave analyzers	PO 4	1
		heterodyne wave analyzers, harmonic		
AEC014.09	CLO 9	Discuss various measurements using DC	PO 4	2
AE CO14 11	CL 0 11	bridges for Wheat stone bridge, Kelvin bridge.		
AEC014.11	CLO II	Understand transducers and its classifications	DO 4	2
		and discuss strain gauges.	PO 4	Z
AEC014.12	CLO 12	Understand Force and displacement transducers,		
		resistance thermometers, hotwire anemometers,	PO 5	3
		LVDT, thermocouples,		
AEC014.13	CLO 13	Discuss the types of transducers Piezoelectric		
		transducers, variable capacitance transducers;	PO 5	3
		Magneto strictive transducers		
AEC014.14	CLO 14	Determine measurement of physical parameters		
		Flow measurement, displacement meters, liquid	PO 5	3
		level measurement,		
AEC014.15	CLO 15	Illustrate the following: active and passive,	PO 5	2
AEC014.16	CLO 16	Illustrate the measurement of physical		
		parameters of transducer like velocity, force,	PO 1	2
		pressure, high pressure, vacuum level,		
AEC014.17	CLO 17	Illustrate the measurement of vacuum level.		
- / /		temperature measurements	PO 2	2
1				

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course		Program Outcomes (POs)					
Outcomes(COs)	PO 1	PO 2	PO 4	PO 5	PSO1		
CO 1	3			3	2		
CO 2	2		2				
CO 3			2	2	2		
CO 4	2						
CO 5		2					

Course Learning		Program Outcomes (POs)							Prog Outc	Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												3		
CLO 2	3														
CLO 3					3								3		
CLO 4					2										
CLO 5	3														
CLO 6				2									2		
CLO 7				1									2		
CLO 8				1									2		
CLO 9				2											
CLO 10				2											
CLO 11					3										
CLO 12					3								2		

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

3 = High; 2 = Medium; 1 = Low

3

2

XIII. ASSESSMENT METHODOLOGIES - DIRECT

	PO1, PO2,	SEE	PO1, PO2,		-		PO1, PO2,
CIE Exams	PO4,PO5,PSO1	Exams	PO4,	Assignments		Seminars	PO4,
		2	PO5,PSO1	0			PO5,PSO1
Laboratory	-	Student	-		-		-
Practices		Viva		Mini Project		Certification	
Torm Dopor	PO1, PO2, PO4,						
r enn r aper	PO5,PSO1						

2

2

CLO 12

CLO 13

CLO 14

CLO 15

CLO 16

CLO 17

2

2

2

XIV. ASSESSMENT METHODOLOGIES – INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

UNIT-I	INTRODUCTION TO MEASURING INSTRUMENTS	Classes: 10				
Block sch	ematics of measuring systems, performance characteristics, Static character	istics: Accuracy,				
resolution,	precision, gauss error, types of errors, Dynamic characteristics : Repeatability	, reproducibility,				
fidelity, la	g; Analog measuring instruments: D' Arsonval movement, DC voltmeters a	nd ammeter, AC				
voltmeters	and current meters, ohmmeters, multimeters, meter protection, extension	of range, digital				
voltmeters	: Ramp type, staircase, dual slope integrating type, successive appr	oximation type,				
specificati	ons of instruments.					
UNIT-II	OSCILLOSCOPE	Classes: 09				
Oscillosco	pes: CRT, block schematic of CRO, time base circuits, delay lines, high	frequency CRO				
considerati	ons, applications, specifications, special purpose oscilloscopes: Dual trace, dua	al beam CROs,				
sampling	oscilloscopes, storage oscilloscopes, digital storage CROs, Lissajous fig	gures, frequency				
measureme	ent, phase measurement, CRO probes.					
UNIT-III	SIGNAL GENERATOR AND SIGNAL ANALYZERS	Classes: 08				
Signal Ger	erators: AF and RF signal generators, sine and square wave generators, function	on generators				
arbitrary w	aveform generator, sweep frequency generators, video signal generators, and s	pecifications.				
Signal An	alyzers: AF, HF wave analyzers, heterodyne wave analyzers, harmonic dist	ortion, spectrum				
analyzers,	power analyzers					
UNIT-IV	AC AND DC BRIDGES	Classes: 08				
Measurem	ents using DC and AC bridges: Wheat stone bridge, Kelvin bridge, AC bridge	s, Maxwell,				
Hay, Sche	ring, Wien, Anderson bridges, Wagner & ground connection.					
UNIT-V	TRANSDUCERS	Classes: 10				
Transduce	ers: Classification, strain gauges, force and displacement, transducers, resistanc	e thermometers,				
hotwire a	hotwire anemometers, LVDT, thermocouples, synchros; Piezoelectric transducers, variable capacitance					
transducer	rs; Magneto strictive transducers, measurement of physical parameters: Flor	w measurement,				
displacement meters, liquid level measurement, measurement of humidity and moisture, velocity, force,						
pressure, high pressure, vacuum level, temperature measurements.						
Text Books:						
1. A.K.Sawhney,"Electrical and electronics measurements and instrumentation", 19 th Edition, 2011.						
2. H.S.Ka	llsi, "Electronic Instrumentation", TMH, 2 nd Edition, 2004.					
3. K. Lal	Kishore, "Electronic Measurements and Instrumentation", Pearson Education,	2 nd Edition, 2010.				

Reference Books:

- 1. David A. Bell, "Electronic Instrumentation and Measurements", Oxford University Press, 1st Edition, 2007.
- A.D. Helbincs, W.D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", PHI, 56th Edition, 2003.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Describe Block schematics of measuring systems, performance	CLO 1	T1:2.2,
	characteristics, Static and Dynamic characteristics.		T2:1.2-1.7 T2:2 10
3	Understand Analog measuring instruments: D'Arsonval movement	CLO 2	T1:2.4, T2:1.4
4-6	Discuss DC voltmeters and ammeter, AC voltmeters and current	CLO 3	
	meters.		12:1.12- 1.13
7-9	Discuss ohmmeters, multimeters, meter protection, extension of	CLO 3	T1:2.3-2.4
	range.		T1:3.2 T2:2.3
10-11	Understand digital voltmeters: Ramp type, staircase, dual slope	CLO 3	T1:3.3-3.4
	integrating type, Successive approximation type.		
12	Remember specifications of instruments.	CLO 3	T1:3.3-3.4
13	Explain the Oscilloscopes, CRT, block schematic of CRO	CLO 4	T1:2.3 T2: 6.10, 3.2
14	Describe the functionalities of time base circuits, delay lines.	CLO 4	T1:11.1- 11.5
15	Memorize the high frequency CRO considerations, applications, specifications.	CLO 4	T1:11.1- 11.5
16-17	Discuss in detail about special purpose oscilloscopes, Dual trace, and dual beam CROs.	CLO 5	T1:4.8 T1:5.2-5.6
18	Discuss in detail about sampling oscilloscopes, Storage	CLO 5	T1:4.8
	Oscilloscopes.		T1:5.2 -5.6
19-20	Recognize digital storage CROs, Lissajous figures, and CRO	CLO 5	T1:7.2
	probes.		
21	Understand the frequency measurement, phase measurement.	CLO 5	T1:7.2
22-23	Discuss in detail about the Signal Generators: AF and RF signal	CLO 6	T1:7.2
	generators, sine and square wave generators.		
24	Define function generators, arbitrary waveform generator	CLO 6	T2:10.4
25-26	Describe the functionalities of Sweep frequency generators, Video signal generators and specifications.	CLO 6	T1:8.2 -8.5 T2:10.4

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
27-28	Describe the functionalities Signal Analyzers: AF, HF wave	CLO 7	T1:9.2-9.7
	heterodyne wave analyzers,		
29-30	Describe the functionalities harmonic distortion, spectrum	CLO 8	T1:10.1
	analyzers, power analyzers.		
31	Illustrate the Measurements using DC and AC bridges.	CLO 8	T1:10.2
32-33	Explain the operation of Wheat stone bridge, Kelvin bridge.	CLO 9	T1:10.2
34-35	Explain the operation of AC bridges, Maxwell, Hay bridges.	CLO 9	T1:10.3
36-37	Discuss Schering, Wien, and Anderson bridges.	CLO 10	T1:10.3
38	Understand Wagner bridge & ground connection.	CLO 10	T1:10.3
39-40	Classify Transducers, strain gauges, force and displacement transducers.	CLO 11	T3:3.12, 5.7, 5.10
41-42	Illustrate resistance thermometers, hotwire anemometers	CLO 11	T3:3.12, 5.7, 5.10
43-44	Explain LVDT, thermocouples, Piezoelectric transducers	CLO 12	T3:7.2
45-46	Understand variable capacitance transducers; Magneto strictive transducers,	CLO 13	T3:8.4
47-48	Understand measurement of physical parameters: Flow	CLO 14	T3:8.5
	measurement, displacement meters, liquid level measurement,		
49-51	Understand Measurement of humidity and moisture, velocity measurements.	CLO 14	T1:2.2 T2:1.2-1.7 T2:2.10
52-53	Illustrate the following: active and passive, primary and secondary transducers	CLO 15	T1:2.2 T2:1.2-1.7 T2:2.10
54-56	Understand force, Pressure, high pressure measurements.	CLO 16	T1:2.2 T2:1.2-1.7 T2:2.10
57-60	Understand Measurement of vacuum level, temperature measurements.	CLO 17	T1:2.4 T2:1.4
1			1

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

		PROPOSED	RELEVANCE	RELEVANCE
S NO	DESCRIPTION	ACTIONS	WITH POs	WITH PSOs
1	To introduce students to monitor,	Seminars	PO1	PS01
	analyze and control any physical			
	system.			
2	To provide a student a knowledge	Seminars /	PO2	PS01
	to design and create novel	NPTEL		
	products and solutions for real life			
	problems.			
3	To introduce students a	NPTEL	PO1	PS01
	knowledge to use modern tools			
	necessary for electronic projects.			

Prepared by

Ms. P Annapurna, Assistant Professor

HOD, ECE