
EMBEDDED SYSTEM DESIGN (AEC016)

B.Tech -ECE-VII Sem

IARE-R16

Institute of Aeronautical Engineering

2

UNIT-I

EMBEDDED COMPUTING

Definition

 It is an Electronic/Electro-mechanical system designed to

perform a specific function and is a combination of both

hardware & software.

OR

 A combination of hardware and software which together form a

component of a larger machine.

3

Embedding a computer

CPU

mem

input

output analog

analog

embedded

computer

4

Example

 An example of an embedded system is a microprocessor that
controls an automobile engine.

 An embedded system is designed to run on its own without
human intervention, and may be required to respond to events
in real time.

5

Early history

 Late 1940’s: MIT Whirlwind computer was designed for real-time

operations.

Originally designed to control an aircraft simulator.

 First microprocessor was Intel 4004 in early 1970’s.

HP-35 calculator used several chips to implement a

microprocessor in 1972.

6

Early history, cont’d.

Automobiles used microprocessor-based engine controllers

starting in 1970’s.

Control fuel/air mixture, engine timing, etc.

Multiple modes of operation: warm-up, cruise, hill climbing, etc.

Provides lower emissions, better fuel efficiency.

7

Automotive embedded systems

 Today’s high-end automobile may have 100 microprocessors:

4-bit microcontroller checks seat belt;

microcontrollers run dashboard devices;

16/32-bit microprocessor controls engine.

8

BMW 850i brake and stability control system

 Anti-lock brake system (ABS): pumps brakes to reduce skidding.

 Automatic stability control (ASC+T): controls engine to improve

stability.

 ABS and ASC+T communicate.

 ABS was introduced first---needed to interface to existing ABS

module.

9

Embedded Systems Vs General-Purpose Systems

 Embedded System is a special-
purpose computer system
designed to perform one or a
few dedicated functions --
Wikipedia

 In general, it does not provide
programmability to users, as
opposed to general purpose
computer systems like PC

 Embedded systems are virtually
everywhere in your daily life

10

Embedded Systems (Cont)

 Even though embedded systems cover a wide range of special-

purpose systems, there are common characteristics

 Low cost

○ Should be cheap to be competitive

 Memory is typically very small compared to a general

purpose computer system

 Lightweight processors are used in embedded

systems

 Low power

○ Should consume low power especially in case of

portable devices

○ Low-power processors are used in embedded systems

11

Embedded Systems (Cont)

 High performance

○ Should meet the computing requirements of

applications

 should be in sync with video

 Gaming Users want to watch video on

portable devices

 Real-time property

• Job should be done within a time limit

• Aerospace applications, Car control systems,

• Medical gadgets are critical in terms of time

12

General-purpose processors

IR PC

Register

file

General

ALU

DatapathController

Program

memory

Assembly

code for:

total = 0

for i =1 to …

Control

logic and

State

register

Data

memory

 Programmable device used in a
variety of applications

– Also known as “microprocessor”

 Features

– Program memory

– General data path with large
register file and general ALU

 User benefits

– Low time-to-market and NRE costs

– High flexibility

13

Application-specific processors

IR PC

Register

s

Custom

ALU

DatapathController

Program

memory

Assembly

code for:

total = 0

for i =1 to

…

Control

logic and

State

register

Data

memory

 Programmable processor optimized for a
particular class of applications having
common characteristics. Compromise
between general-purpose and single-purpose
processors

 Features

Program memory

Optimized datapath

Special functional units

 Benefits

Some flexibility, good performance, size
and power

14

General Computer Purpose VS Embedded system

Criteria General Computer

Purpose

Embedded system

Contents It is combination of generic

hardware and a general

purpose OS for executing a

variety of applications.

It is combination of special purpose

hardware and embedded OS for

executing specific set of

applications

Operating

System

It contains general purpose

operating system

It may or may not contain operating

system.

Alterations Applications are alterable by

the user.

Applications are non-alterable by

the user.

Key factor Performance” factor is

key

Application specific

requirements are key factors.

Power

Consumption

More Less

Response Time Not Critical Critical applications for some

15

CLASSIFICATION OF EMBEDDED SYSTEMS

TYPES OF EMBEDDED

SYSTEM

BASED ON PERFORMANCE OF

MICROCONTROLLER

BASED ON PERFORMANCE AND

FUNCTIONAL REQUIREMENTS

MEDIUM

SCALE
MOBILE

SOPHISTICATED

SMALL

SCALE

NETWORKED

REAL

TIME

STAND

ALONE

16

BASED ON PERFORMANCE AND FUNCTIONAL
REQUIREMENT

 Real-time embedded systems are defined as those systems in
which the correctness of the system depends not only on the logical
result of computation, but also on the time at which the results are
produced.

 Hard real-time systems (e.g., Avionic control).

 Firm real-time systems (e.g., Banking).

 Soft real-time systems (e.g., Video on demand).

1.REAL TIME EMBEDDED SYSTEM

17

2. STAND ALONE EMBEDDED SYSTEM

 A standalone device is able to function independently of other
hardware. This means it is not integrated into another device.
 It takes the input from the input ports either analog or digital and
processes, calculates and converts the data and gives the resulting
data through the connected device-Which either controls, drives and
displays the connected devices.
 For example, a TiVo box that can record television programs , mp3
players are standalone devices

18

3.NETWORKED EMBEDDED SYSTEM

These types of embedded systems are related to a network to
access the resources.

The connected network can be LAN, WAN or the internet. The
connection can be any wired or wireless. This type of embedded
system is the fastest growing area in embedded system
applications. .

19

Mobile embedded systems are used in portable embedded
devices like cell phones, mobiles, digital cameras, mp3 players
and personal digital assistants, etc.

The basic limitation of these devices is the other resources and
limitation of memory.

4.MOBILE EMBEDDED SYSTEMS

20

Major Application Areas Of Embedded Systems

1. Consumer Electronics
 Camcorders, Cameras, etc…

2. Household Appliances
 Television, DVD Player, Washing machine, fridge, microwave oven, etc.

3. Home automation and security system
 Air conditioners, Sprinkler, intruder detection alarms, fire alarms, closed

circuit television cameras, etc

4. Automotive industry
 Anti-lock breaking system (ABS), engine control, ignition control, automatic

navigation system, etc..

5. Telecommunication
 Cellular telephones, telephone switches, Router, etc…

21

Major Application Areas Of Embedded Systems

6. Computer peripherals
 Printers, scanners, fax machines, etc…

7. Computer Networking systems
 Network routers, switches, hubs, firewalls, etc…

8. Health care
 CT scanner, ECG , EEG , EMG ,MRI, Glucose monitor, blood pressure

monitor, medical diagnostic device, etc.

9. Measurement & Instrumentation
 Digital multi meters, digital CROs, logic analyzers PLC systems, etc…

10. Banking & Retail
 Automatic Teller Machine (ATM) and Currency counters, smart vendor

machine, cash register ,Share market, etc..

11. Card Readers
 Barcode, smart card readers, hand held devices, etc…

22

Application Areas

23

Application Areas

24

Single-purpose processors

DatapathController

Control
logic

State
register

Data
memory

index

total

+

 Digital circuit designed to execute
exactly one program

– a.k.a. coprocessor, accelerator or
peripheral

 Features

– Contains only the components
needed to execute a single program

– No program memory

 Benefits

– Fast

– Low power

– Small size
25

HW/SW Stack of Embedded Systems

 Identical to the general-computer

systems

OS / Device Drivers

Hardware

Application Software

26

Components of Embedded Systems

 Hardware
 It is mainly composed of processor (1 or more), memory,

I/O devices including network devices, timers, sensors etc.

27

Components of Embedded Systems

 Software

 System software

 Operating systems

 Many times, a multitasking (multithreaded) OS is required, as embedded
applications become complicated

 Networking, GUI, Audio, Video

 Processor is context-switched to process multiple jobs

 Operating system footprint should be small enough to fit into memory of an
embedded system

 In the past and even now, real-time operating systems (RTOS) such as
VxWorks or uC/OS-II have been used because they are light-weighted in terms
of memory requirement

 Nowadays, little heavy-weighted OSs such as Windows-CE or embedded Linux
(uClinux) are used, as embedded processors support computing power and
advanced capabilities such as MMU (Memory Management Unit)

28

Components of Embedded Systems (Cont)

 Software (cont.)

 Device drivers for I/O devices

 Application software

○ Run on top of operating system

○ Execute tasks that users wish to perform
 Web surfing, Audio, Video playback

29

Real-Time System

 Real-time operating system (RTOS)
 Multitasking operating system intended for real-time applications

 RTOS facilitates the creation of real-time systems

 RTOS does not necessarily have a high throughput

 RTOS is valued more for how quickly and/or predictably it can respond to a
particular event
○ Hard real-time systems are required to complete a critical task within a guaranteed

amount of time

○ Soft real-time systems are less restrictive

 Implementing real-time system requires a careful design of scheduler
○ System must have the priority-based scheduling

 Real-time processes must have the highest priority

 Priority inheritance (next slide)
- Solve the priority inversion problem

○ Process dispatch latency must be small

30

Determine the requirements
Design the

system

architecture

Select the OS

Choose

the

Processor

and peripherals

Choose the

Development

platform

Code the

application

And optimize

Verify the

software On the

host system

Verify the

software On the

target system

31

Functional and non-functional.

Multi function or Multi mode system.
Size, cost, Weight etc.

Selecting the H/W components.

•Application specific H/W. External interfaces.

•Input devices. Output devices.

32

System architecture depends on,

•Whether the system is real time.

•Whether OS needs to be embedded.

•Size, Cost, Power consumption etc.

33

If OS needed we can select,

• Real time OS (such as RTLinux,Vx Works, VRTX, pSOS,

QNX etc.).

• Non-real time OS (such as Windows CE, embedded

Windows XP etc).

34

We can select any one of the following,

•Microprocessor8085,8086,Pentium

•Microcontroller

•MCS-51,PIC,AVR,MSP430

•Digital Signal Processor

•dsPIC,Blackfin,Sharc,TigerSharc

35

 The hardware
platform.

 The operating system.

 The programming language.

 The development tools.

36

 Choice of
language.

 Assembly.

 C language.

 Object Oriented Language (C++, Java etc.).

s

•

Optimizing the code

37

 Compile and
assemble
the source code

into object file.

f
Use a simulator to
simulate the working o
the system.

38

 Download the

program using a

programmer device.

 Use an EMULATOR or
on chip debugging tools
to verify the software.

39

Due to the developments in Micro electronics
availabilit of processors increased.

 Reduces cost.

 Increased speed.

 Reduce Size

 Reduce Power.

40

Processor
ADC

Temp
Sensor

Seven Segment Display

Relay-1

Relay-2

41

START

INITIALIZE
LCD, ADC

READ
TEMPERATURE

IS
TEMP

>40

YES
NO

FAN ONFAN OFF

42

MODULES AND INDUSTRIAL STANDARD SENSORS USED IN
PROJECTS

Color SensorsPressure Sensors Flow

Sensors Ultrasonic

Seansors RF Tx / Rx

Zigbee Modules EM

Locks

Vacuum sensors Digital

Compass

CAN IC

MEMS IC
Fire Sensor

Temperature Sensor

Speed sensors

Level sensors

Industrial proximity sensor

Vibration sensor

Water Identifier Sensors

Acceleration Sensor - 3 Axis

Glass braking sensor

Force Sensor

43

Design goals

 Performance.

 Overall speed, deadlines.

 Functionality and user interface.

 Manufacturing cost.

 Power consumption.

 Other requirements (physical size, etc.)

44

Levels of abstraction

requirements

specification

architecture

component

design

system

integration

45

Top-down vs. bottom-up

 Top-down design:

 start from most abstract description;

 work to most detailed.

 Bottom-up design:

 work from small components to big system.

 Real design uses both techniques.

46

Stepwise refinement

 At each level of abstraction, we must:

 analyze the design to determine characteristics of

the current state of the design;

 refine the design to add detail.

47

Requirements

 Plain language description of what the user

wants and expects to get.

 May be developed in several ways:

 talking directly to customers;

 talking to marketing representatives;

 providing prototypes to users for comment.

48

Functional vs. non-functional requirements

 Functional requirements:

 output as a function of input.

 Non-functional requirements:

 time required to compute output;

 size, weight, etc.;

 power consumption;

 reliability;

 etc.

49

Our requirements form

name

purpose

inputs

outputs

functions

performance

manufacturing cost

power

physical size/weight

50

Example:
GPS moving map requirements

 Moving map

obtains position

from GPS, paints

map from local

database.

lat: 40 13 lon: 32 19

I-78

S
c
o

tc
h

 R
o

a
d

51

GPS moving map needs

 Functionality: For automotive use. Show major roads and
landmarks.

 User interface: At least 400 x 600 pixel screen. Three buttons
max. Pop-up menu.

 Performance: Map should scroll smoothly. No more than 1 sec
power-up. Lock onto GPS within 15 seconds.

 Cost: $120 street price = approx. $30 cost of goods sold.

 Physical size/weight: Should fit in hand.

 Power consumption: Should run for 8 hours on four AA
batteries.

52

Specification

 A more precise description of the system:

 should not imply a particular architecture;

 provides input to the architecture design process.

 May include functional and non-functional elements.

 May be executable or may be in mathematical form for
proofs.

53

GPS specification

 Should include:

 What is received from GPS;

 map data;

 user interface;

 operations required to satisfy user requests;

 background operations needed to keep the system running.

54

Architecture design

 What major components go satisfying the
specification?

 Hardware components:

 CPUs, peripherals, etc.

 Software components:

 major programs and their operations.

 Must take into account functional and non-functional

specifications.

55

GPS moving map block diagram

GPS

receiver

search

engine
renderer

user

interfacedatabase

display

56

GPS moving map hardware architecture

GPS

receiver

CPU

panel I/O

display frame

buffer

memory

57

GPS moving map software architecture

position database

search
renderer

timer
user

interface

pixels

58

Designing hardware and software components

 Must spend time architecting the system before you start
coding.

 Some components are ready-made, some can be modified from
existing designs, others must be designed from scratch.

59

QUALITY ATTRIBUTES OF EMBEDDED SYSTEM

 These are the attributes that together form the deciding factor about

the quality of an embedded system.

 There are two types of quality attributes are:-

• Operational Quality Attributes.
1. These are attributes related to operation or functioning of an embedded

system. The way an embedded system operates affects its overall quality.

• Non-Operational Quality Attributes.
1. These are attributes not related to operation or functioning of an embedded

system. The way an embedded system operates affects its overall quality.

2. These are the attributes that are associated with the embedded system

before it can be put in operation.

60

Operational Attributes

 a) Response

• Response is a measure of quickness of the system.

• It gives you an idea about how fast your system is tracking the input variables.

• Most of the embedded system demand fast response which should be real-

time.

 b) Throughput

• Throughput deals with the efficiency of system.

• It can be defined as rate of production or process of a defined process over a

stated period of time.

• In case of card reader like the ones used in buses, throughput means how

much transaction the reader can perform in a minute or hour or day.

61

Operational Attributes

 Reliability

 Reliability is a measure of how much percentage you rely upon the proper

functioning of the system .

 Mean Time between failures and Mean Time To Repair are terms used in

defining system reliability.

 Mean Time between failures can be defined as the average time the system

is functioning before a failure occurs.

 Mean time to repair can be defined as the average time the system has

spent in repairs.

 Maintainability

 Maintainability deals with support and maintenance to the end user or a

client in case of technical issues and product failures or on the basis of a

routine system checkup

 It can be classified into two types

I. Scheduled or Periodic Maintenance

II. Maintenance to unexpected failure

62

Operational Attributes

 Security
• Confidentiality, Integrity and Availability are three corner stones of

information security.

• Confidentiality deals with protection data from unauthorized disclosure.

• Integrity gives protection from unauthorized modification.

• Availability gives protection from unauthorized user

• Certain Embedded systems have to make sure they conform to the security

measures.

• Ex. An Electronic Safety Deposit Locker can be used only with a pin number

like a password.

 Safety

 Safety deals with the possible damage that can happen to the operating

person and environment due to the breakdown of an embedded system or

due to the emission of hazardous materials from the embedded products.

63

Non Operational Attributes

 Testability and Debug-ability
• It deals with how easily one can test his/her design, application and

by which mean he/she can test it.

• In hardware testing the peripherals and total hardware function in

designed manner

• Firmware testing is functioning in expected way

• Debug-ability is means of debugging the product as such for figuring

out the probable sources that create unexpected behavior in the

total system

 Evolvability

 For embedded system, the qualitative attribute “Evolvability” refer to

ease with which the embedded product can be modified to take

advantage of new firmware or hardware technology.

64

Non Operational Attributes

 Portability

• Portability is measured of “system Independence”.

• An embedded product can be called portable if it is capable of

performing its operation as it is intended to do in various

environments irrespective of different processor and or controller

and embedded operating systems.

 Time to prototype and market

• Time to Market is the time elapsed between the conceptualization of

a product and time at which the product is ready for selling or use

• Product prototyping help in reducing time to market.

• Prototyping is an informal kind of rapid product development in

which important feature of the under consider are develop.

• In order to shorten the time to prototype, make use of all possible

option like use of reuse, off the self component etc.

65

Non Operational Attributes

 Per unit and total cost

•Cost is an important factor which needs to be carefully
monitored. Proper market study and cost benefit analysis
should be carried out before taking decision on the per
unit cost of the embedded product.

•When the product is introduced in the market, for the
initial period the sales and revenue will be low

•There won’t be much competition when the product
sales and revenue increase.

66

System integration

 Put together the components.

 Many bugs appear only at this stage.

 Have a plan for integrating components to uncover
bugs quickly, test as much functionality as early as

possible.

67

System modeling

 Need languages to describe systems:

 useful across several levels of abstraction;

 understandable within and between organizations.

 Block diagrams are a start, but don’t cover everything.

68

Object-oriented design

 Object-oriented (OO) design: A generalization of
object-oriented programming.

 Object = state + methods.

 State provides each object with its own identity.

 Methods provide an abstract interface to the object.

69

Objects and classes

 Class: object type.

 Class defines the object’s state elements but state
values may change over time.

 Class defines the methods used to interact with all
objects of that type.

 Each object has its own state.

70

Relationships between objects and classes

 Association: objects communicate but one does not
own the other.

 Aggregation: a complex object is made of several
smaller objects.

 Composition: aggregation in which owner does not
allow access to its components.

 Generalization: define one class in terms of another.

71

UML object

d1: Display

pixels: array[] of pixels

elements

menu_items

pixels is a

2-D array

comment

object name

class name

attributes

72

UML class

Display

pixels

elements

menu_items

mouse_click()

draw_box
operations

class name

73

The class interface

 The operations provide the abstract interface between the class’s
implementation and other classes.

 Operations may have arguments, return values.

 An operation can examine and/or modify the object’s state.

74

Choose your interface properly

 If the interface is too small/specialized:

 object is hard to use for even one application;

 even harder to reuse.

 If the interface is too large:

 class becomes too cumbersome for designers to understand;

 implementation may be too slow;

 spec and implementation are probably buggy.

75

Class derivation

 May want to define one class in terms of

another.

 Derived class inherits attributes, operations of base

class.

Derived_class

Base_class

UML

generalization

76

Class derivation example

Display

pixels

elements

menu_items

pixel()

set_pixel()

mouse_click()

draw_box

BW_display Color_map_display

base

class

derived class

77

Multiple inheritance

Speaker Display

Multimedia_display

base classes

derived class

78

Links and associations

 Link: describes relationships between

objects.

 Association: describes relationship between

classes.

79

Link example

 Link defines the contains relationship:

message

msg = msg1

length = 1102

message

msg = msg2

length = 2114

message set

count = 2

80

Association example

message

msg: ADPCM_stream

length : integer

message set

count : integer

0..* 1

contains

contained messages # containing message sets

81

Stereotypes

 Stereotype: recurring combination of

elements in an object or class.

 Example:

 <<foo>>

82

Behavioral description

 Several ways to describe behavior:

 internal view;

 external view.

83

State machines

a b

state state name

transition

84

Event-driven state machines

 Behavioral descriptions are written as event-driven
state machines.

 Machine changes state when receiving an input.

 An event may come from inside or outside of the

system.

85

Types of events

 Signal: asynchronous event.

 Call: synchronized communication.

 Timer: activated by time.

86

Signal event

<<signal>>

mouse_click

leftorright: button

x, y: position

declaration

a

b

mouse_click(x,y,button)

event description

87

Call event

c d

draw_box(10,5,3,2,blue)

88

Timer event

e f

tm(time-value)

89

Example state machine

region

found

got menu

item

called

menu item

found

object

object

highlighted

start

finish

mouse_click(x,y,button)/

find_region(region)

input/output

region = menu/

which_menu(i) call_menu(I)

region = drawing/

find_object(objid) highlight(objid)

90

Introduction

 Example: model train controller.

91

Purposes of example

 Follow a design through several levels of
abstraction.

 Gain experience with UML.

92

Model train setup

console

power

supply

rcvr motor

ECC address headercommand

Mess

age

93

Requirements

 Console can control 8 trains on 1 track.

 Throttle has at least 63 levels.

 Inertia control adjusts responsiveness with at least 8 levels.

 Emergency stop button.

 Error detection scheme on messages.

94

Requirements form

name model train controller
purpose control speed of <= 8 model

trains
inputs throttle, inertia, emergency

stop, train #
outputs train control signals
functions set engine speed w. inertia;

emergency stop
performance can update train speed at least

10 times/sec
manufacturing $50

95

Digital Command Control

 DCC created by model railroad hobbyists, picked up

by industry.

 Defines way in which model trains, controllers

communicate.

 Leaves many system design aspects open, allowing

competition.

 This is a simple example of a big trend:

 Cell phones, digital TV rely on standards.

96

DCC documents

 Standard S-9.1, DCC Electrical Standard.

 Defines how bits are encoded on the rails.

 Standard S-9.2, DCC Communication Standard.

 Defines packet format and semantics.

97

98

UNIT-II

INTRODUCTION TO EMBEDDED C AND
APPLICATIONS

This section looks at the most efficient ways to code for and while loops on
the ARM. We start by looking at loops with a fixed number of iterations
and then move on to loops with a variable number of iterations. Finally we
look at loop unrolling.

LOOPS WITH A FIXED NUMBER OF ITERATIONS

What is the most efficient way to write a for loop on the ARM? Let’s
return to our checksum example and look at the looping structure.

Here is the last version of the 64-word packet checksum routine
we studied This shows how the compiler treats a loop with incrementing
count i++.

C LOOPING STRUCTURES

int checksum_v5(int *data)
{
unsigned int i; int sum=0;

for (i=0; i<64; i++)
{
sum += *(data++);
}
return sum;
}

This compiles to

checksum_v5

MOV r2,r0 ; r2 = data
MOV r0,#0 ; sum = 0
MOV r1,#0 ;i=0
checksum_v5_loop
LDR r3,[r2],#4 ; r3 = *(data++)
ADD r1,r1,#1 ; i++
CMP r1,#0x40 ; compare i, 64
ADD r0,r3,r0 ; sum += r3
BCC checksum_v5_loop ; if (i<64) goto
loop
MOV pc,r14 ; return sum

C LOOPING STRUCTURES

It takes three instructions to implement the for loop structure:
An ADD to increment i
A compare to check if i is less than 64
A conditional branch to continue the loop if i < 64

This is not efficient. On the ARM, a loop should only use two instructions:

A subtract to decrement the loop counter, which also sets the condition
code flags on the result

A conditional branch instruction

The key point is that the loop counter should count down to zero rather than
counting up to some arbitrary limit. Then the comparison with zero is free
since the result is stored in the condition flags. Since we are no longer using i
as an array index, there is no problem in counting down rather than up.

C LOOPING STRUCTURES

The compiler attempts to allocate a processor register to each local variable
you use in a C function. It will try to use the same register for different local
variables if the use of the variables do not overlap.

When there are more local variables than available registers, the compiler
stores the excess variables on the processor stack. These variables are called
spilled or swapped out variables since they are written out to memory (in a
similar way virtual memory is swapped out to disk).

Spilled variables are slow to access compared to variables allocated to
registers.

To implement a function efficiently, you need to minimize the number of spilled
variables,ensure that the most important and frequently accessed variables are
stored in registers

REGISTER AllocATION

The ARM Procedure Call Standard (APCS) defines how to pass function arguments
and return values in ARM registers. The more recent ARM-Thumb Procedure Call
Standard (ATPCS) covers ARM and Thumb interworking as well.

The first four integer arguments are passed in the first four ARM registers: r0, r1,
r2, and r3. Subsequent integer arguments are placed on the full descending stack,
ascending in memory as in Figure 5.1. Function return integer values are passed in
r0.

Calling Functions Efficiently
Try to restrict functions to four arguments. This will make them more efficient to

call. Use structures to group related arguments and pass structure pointers
instead of multiple arguments.

Define small functions in the same source file and before the functions that call
them. The compiler can then optimize the function call or inline the small
function.Critical functions can be inlined using the inline keyword.

FUNCTION CALLS

Two pointers are said to alias when they point to the same address. If you
write to one pointer, it will affect the value you read from the other pointer.
In a function, the compiler often doesn’t know which pointers can alias and
which pointers can’t. The compiler must be very pessimistic and assume
that any write to a pointer may affect the value read from any other pointer,
which can significantly reduce code efficiency.

Let’s start with a very simple example. The following function increments
two timer values by a step amount:
void timers_v1(int *timer1, int *timer2, int *step)
{
*timer1 += *step;
*timer2 += *step;
}

POINTER ALIASING

This compiles to
timers_v1
LDR r3,[r0,#0] ; r3 = *timer1
LDR r12,[r2,#0] ; r12 = *step
ADD r3,r3,r12 ; r3 += r12
STR r3,[r0,#0] ; *timer1 = r3
LDR r0,[r1,#0] ; r0 = *timer2
LDR r2,[r2,#0] ; r2 = *step
ADD r0,r0,r2 ; r0 += r2
STR r0,[r1,#0] ; *timer2 = t0
MOV pc,r14 ; return

Note that the compiler loads from step twice. Usually a compiler optimization
called common sub expression elimination would kick in so that *step was only
evaluated once, and the value reused for the second occurrence. However, the
compiler can’t use this optimization here. The pointers timer1 and step might
alias one another. In other words, the compiler cannot be sure that the write to
timer1 doesn’t affect the read from step.

POINTER ALIASING

The way you lay out a frequently used structure can have a significant impact on
its perfor- mance and code density. There are two issues concerning structures
on the ARM: alignment of the structure entries and the overall size of the
structure.

For architectures up to and including ARMv5TE, load and store instructions are
only guaranteed to load and store values with address aligned to the size of the
access width.

For example, consider the structure
struct { char a;
int b;
char c;
short d;
}

STRUCTURE ARRANGEMENT

Bit-fields are probably the least standardized part of the ANSI C specification.
The compiler can choose how bits are allocated within the bit-field container.
For this reason alone, avoid using bit-fields inside a union or in an API structure
definition. Different compilers can assign the same bit-field different bit
positions in the container.

It is also a good idea to avoid bit-fields for efficiency. Bit-fields are structure ele-
ments and usually accessed using structure pointers; consequently, they suffer
from the pointer aliasing problems described in Section 5.6. Every bit-field
access is really a memory access. Possible pointer aliasing often forces the
compiler to reload the bit-field several times.

The following example, dostages_v1, illustrates this problem. It also shows that
compilers do not tend to optimize bit-field testing very well.

BIT-fiELDS

Unaligned data and endianness are two issues that can complicate memory
accesses and portability. Is the array pointer aligned? Is the ARM configured
for a big-endian or little- endian memory system?

• The ARM load and store instructions assume that the address is a multiple
of the type you are loading or storing.

• If you load or store to an address that is not aligned to its type, then the
behavior depends on the particular implementation. The core may
generate a data abort or load a rotated value. For well-written, portable
code you should avoid unaligned accesses.

int readint(packed int *data)
{
return *data;
}

UNALIGNED DATA AND ENDIANNESS

how to call functions efficiently.

You can remove the function call overhead completely by inlining
functions. Additionally many compilers allow you to include inline assembly
in your C source code.

Using inline functions that contain assembly you can get the compiler to
support ARM instructions and optimizations that aren’t usually available. For
the examples of this section we will use the inline assembler in armcc.

The main benefit of inline functions and inline assembly is to make
accessible in C operations that are not usually available as part of the C
language. It is better to use inline functions rather than #define macros
because the latter doesn’t check the types of the function arguments and
return value.

INLINE FUNCTIONS AND INLINE ASSEMBLy

Here you may encounter when porting C code to the ARM.

The char type. On the ARM, char is unsigned rather than signed as

for many other processors. A common problem concerns loops that

use a char loop counter i and the continuation condition i ≥ 0, they

become infinite loops. In this situation, armcc

PORTABILITY ISSUES

Embedded C

Embedded C Programming is the soul of the processor functioning inside each
and every embedded system we come across in our daily life, such as mobile
phone, washing machine, and digital camera.

Each processor is associated with an embedded software. The first and foremost
thing is the embedded software that decides functioning of the embedded
system. Embedded C language is most frequently used to program the
microcontroller.

The Structure of an Embedded C Program

comments

Pre processor directives

global variables

main() function

{

local variables

statements

…………..

…………..

}

fun(1)

{

local variables

statements

…………..

…………..

}

The Structure of an Embedded C Program

Comments: In embedded C programming language, we can place
comments in our code which helps the reader to understand the code
easily.
C=a+b; /* add two variables whose value is stored in another
variable C*/

Preprocessor directives: All the functions of the embedded C software
are included in the preprocessor library like “#includes<reg51.h>,
#defines”. These functions are executed at the time of running the
program.
Global variable
A global variable is a variable that is declared before the main function,
and can be accessed on any function in the program.

The Structure of an Embedded C Program

Local variable
A local variable is a variable declared within a function, and it is valid only to
be used within that function.

Main () function
The execution of a program starts with the main function. Every
program uses only one main () function.

Advantages of embedded C program

•Its takes less time to develop application program.

•It reduces complexity of the program.

•It is easy to verify and understand.

•It is portable in nature from one controller to another.

Example Program

Example Program

Write a C program that continuously gets a single bit of data from PI. 7 and sends it
to Pl.O, while simultanepusly creating a square wave of 200 (as period on pin P2.5.
Use timer 0 to create the square wave. Assume that XTAL = 11.0592 MHz.

Example Program

Write a C program that continuously gets a single bit of data from PI. 7 and sends it

to Pl.O in the main, while simultaneously (a) creating a square wave of 200 us period

on pin P2.5, and (b) sending letter ‘A’ to the serial port. Use Timer 0 to create the

square wave. Assume that XTAL = 11.0592 MHz. Use the 9600 baud rate.

Example Program

Example Program

Write a C program using interrupts to do the following:

Generate a 10000 Hz frequency on P2.1 using TO 8-bit auto-reload,
Use timer 1 as an event counter to count up a 1-Hz pulse and display
it on PO. The pulse is connected to EX1.Assume that XTAL = 11.0592
MHz's Set the baud rate at 9600.

Example Program

Example Program

The interrupt service routine should only execute the critical code; the rest of

the task can be relegated to the main process by setting a flag variable. Note

that since flags generally take binary values (0 or 1), these should be declared in

bitwise memory wherever possible (like in 8051). This reduces the push/pop

overhead and the execution time. Example:

Example Program

bit flag;

#pragma interrupt_handler ISR

void ISR(void)

{

flag=1;

}

void main()

{

--

--

while(1)

{

--

--

if (flag) /* Wait for the ISR to set the * flag; reset *before taking any action. */

{

flag = 0;

/* Perform the required action here */

}

}

}

Example Program

UNIT-III
RTOS FUNDAMENTALS AND

PROGRAMMING

Operating System Basics

126

An Operating system (OS) is a piece of software that controls

the overall operation of the Computer. It acts as an interface

between hardware and application programs .It facilitates the

user to format disks, create, print, copy, delete and display files,

read data from files ,write data to files , control the I/O

operations, allocate memory locations and process the

interrupts etc.

Operating System Basics..

127

It provides the users an interface to the hardware

resources. In a multiuser system it allows several users to

share the CPU time, share the other system resources

and provide inter task communication, Timers, clocks,

memory management and also avoids the interference of

different users in sharing the resources etc. Hence the OS

is also known as a resource manager.

Types of operating systems

128

An Operating system (OS) is nothing but a piece of software that controls

the overall operation of the Computer. It acts as an interface between

hardware and application programs .It facilitates the user to format disks,

create ,print ,copy , delete and display files , read data from files ,write

data to files ,control the I/O operations , allocate memory locations and

process the interrupts etc. It provides the users an interface to the

hardware resources.

Types of operating systems..

129

In a multiuser system it allows several users to share the CPU time, share

the other system resources and provide inter task communication,

Timers, clocks, memory management and also avoids the interference of

different users in sharing the resources etc. Hence the OS is also known

as a resource manager.

There are three important types of operating systems .They are

(i).Embedded Operating System (ii). Real time operating system and

(iii).Handheld operating system.

REAL TIME SYSTEMS:

130

Real-time systems are those systems in which the correctness of the

system depends not only on the Output, but also on the time at which

the results are produced (Time constraints must be strictly followed).

Real time systems are two types. (i) Soft real time systems and (ii) Hard

real time systems. A Soft real time system is one in which the

performance of the system is only degraded but, not destroyed if the

timing deadlines are not met.

REAL TIME OPERATING SYSTEM (RTOS)

131

It is an operating system that supports real-time applications by

providing logically correct result within the deadline set by the user. A

real time operating system makes the embedded system into a real time

embedded system. The basic structure of RTOS is similar to regular OS

but, in addition, it provides mechanisms to allow real time scheduling of

tasks.

Though the real-time operating systems may or may not increase the

speed of execution, but they provide more precise and predictable timing

characteristics than general-purpose OS.

The figure below shows the embedded system with RTOS.

REAL TIME OPERATING SYSTEM (RTOS)

132

All the embedded systems are not designed

with RTOS. Low end application systems do

not require the RTOS but only High end

application oriented embedded systems which

require scheduling alone need the RTOS.

For example an embedded system which

measures Temperature or Humidity etc. do not

require any operating system. Whereas a

Mobile phone , RADAR or Satellite system

used for high end applications require an

operating system.

Task

133

A task is a basic unit or atomic unit of execution that can be scheduled by

an RTOS to use the system resources like CPU, Memory, I/O devices etc. It

starts with reading of the input data and of the internal state of the task,

and terminates with the production of the results and updating the

internal state. The control signal that initiates the execution of a task is

provided by the operating system.

There are two types of tasks.

(i)Simple Task(S-Task) and

(ii) Complex Task(C-Task).

Task States

134

At any instant of time a task can be in one of the following states:

Dormant (ii). Ready (iii). Running and (iv).Blocked.

When a task is first created, it is in the dormant task. When it is added to

RTOS for scheduling, it is a ready task. If the input or a resource is not

available, the task gets blocked.

Task States

135

An Idle Task does nothing .The idle task has the lowest priority.

void Idle task(void)

{

While(1);

}

Creation of a Task

136

A task is characterized by the parameters like task name , its priority , stack

size and operating system options .To create a task these parameters must

be specified .A simple program to create a task is given below.

result = task-create(“Tx Task”, 100,0x4000,OS_Pre-emptiable); /*task

create*/ if (result = = os_success)

{ /*task successfully created*/

}

Task Scheduler

137

Task scheduler is one of the important component of the Kernel .Basically

it is a set of algorithms that manage the multiple tasks in an embedded

system. The various tasks are handled by the scheduler in an orderly

manner. This produces the effect of simple multitasking with a single

processor. The advantage of using a scheduler is the ease of implementing

the sleep mode in microcontrollers which will reduce the power

consumption considerably (from mA to µA). This is important in battery

operated embedded systems.

Task Scheduler….

138

The task scheduler establishes task time slots. Time slot width and

activation depends on the available resources and priorities.

A scheduler decides which task will run next in a multitasking system. Every

RTOS provides three specific functions.

(i).Scheduling (ii) Dispatching and (iii). Inter-process communication and

synchronization.

The scheduling determines ,which task ,will run next in a multitasking

system and the dispatches perform the necessary book keeping to start the

task and Inter-process communication and synchronization assumes that

each task cooperate with others.

Process or Task:

139

Embedded program (a static entity) = a collection of firmware modules.

When a firmware module is executing, it is called a process or task . A task

is usually implemented in C by writing a function. A task or process simply

identifies a job that is to be done within an embedded application.

When a process is created, it is allocated a number of resources by the OS,

which may include: – Process stack – Memory address space – Registers

(through the CPU) – A program counter (PC) – I/O ports, network

connections, file descriptors, etc.

Threads

140

A process or task is characterized by a collection of resources that

are utilized to execute a program. The smallest subset of these

resources (a copy of the CPU registers including the PC and a stack)

that is necessary for the execution of the program is called a thread.

A thread is a unit of computation with code and context, but no

private data.

Multitasking

141

A multitasking environment allows applications to be constructed as

a set of independent tasks, each with a separate thread of execution

and its own set of system resources. The inter-task communication

facilities allow these tasks to synchronize and coordinate their

activity. Multitasking provides the fundamental mechanism for an

application to control and react to multiple, discrete real-world

events and is therefore essential for many real-time applications.

Multitasking….

142

Multitasking creates the appearance of many threads of execution

running concurrently when, in fact, the kernel interleaves their

execution on the basis of a scheduling algorithm. This also leads to

efficient utilization of the CPU time and is essential for many

embedded applications where processors are limited in computing

speed due to cost, power, silicon area and other constraints. In a

multi-tasking operating system it is assumed that the various tasks

are to cooperate to serve the requirements of the overall system.

Multitasking….

143

Co-operation will require that the tasks communicate with each

other and share common data in an orderly an disciplined manner,

without creating undue contention and deadlocks. The way in which

tasks communicate and share data is to be regulated such that

communication or shared data access error is prevented and data,

which is private to a task, is protected. Further, tasks may be

dynamically created and terminated by other tasks, as and when

needed.

Semaphores

144

A semaphore is nothing but a value or variable or data which can control

the allocation of a resource among different tasks in a parallel

programming environment. So, Semaphores are a useful tool in the

prevention of race conditions and deadlocks; however, their use is by no

means a guarantee that a program is free from these problems.

Semaphores which allow an arbitrary resource count are called counting

semaphores, whilst semaphores which are restricted to the values 0 and 1

(or locked/unlocked, unavailable/available) are called binary semaphores.

Semaphores…

145

Semaphores…

146

Types of Semaphores: There are three types of semaphores

Binary Semaphores,

Counting Semaphores and

Mutexes.

Message Queues

147

The Message Queues, are used to send one or more messages to a task

i.e. the message queues are used to establish the Inter task

communication. Basically Queue is an array of mailboxes. Tasks and ISRs

can send and receive messages to the Queue through services provided by

the kernel. Extraction of messages from a queue follow FIFO or LIFO

structure.

Message Queues…

148

Applications of message queue are

 Taking the input from a keyboard

To display output

Reading voltages from sensors or transducers

Data packet transmission in a network

In each of these applications, a task or an ISR deposits the message in the

message queue. Other tasks can take the messages. Based on our

application, the highest priority task or the first task waiting in the queue

can take the message. At the time of creating a queue, the queue is given

a name or ID, queue length, sending task waiting list and receiving task

waiting list.

Saving Memory and Power

149

Saving memory:

Embedded systems often have limited memory.

RTOS: each task needs memory space for its stack.

The first method for determining how much stack space a task needs is to

examine your code

The second method is experimental. Fill each stack with some

recognizable data pattern at startup, run the system for a period of time

Saving Memory and Power…

150

Program Memory:

Limit the number of functions used

Check the automatic inclusions by your linker: may consider

writing own functions.

Include only needed functions in RTOS

Consider using assembly language for large routines

Saving Memory and Power…

151

Data Memory

Consider using more static variables instead of stack variables

On 8-bit processors, use char instead of int when possible.

Saving Memory and Power…

152

Saving power:

The primary method for preserving battery power is to turn off parts or all

of the system whenever possible.

Most embedded-system microprocessors have at least one power-saving

mode.

The modes have names such as sleep mode, low-power mode, idle mode,

standby mode, and so on.

A very common power-saving mode is one in which the microprocessor

stops executing instructions, stops any built-in peripherals, and stops its

clock circuit.

Saving Memory and Power…

153

Shared memory:

In this model stored information in a

shared region of memory is

processed, possibly under the

control of a supervisor process.

An example might be a single node

with multiple cores.

share a global memory space

cores can efficiently exchange/share

data.

Message Passing

154

In this model, data is shared by sending and receiving messages between

co-operating processes, using system calls. Message Passing is particularly

useful in a distributed environment where the communicating processes

may reside on different, network connected, systems. Message passing

architectures are usually easier to implement but are also usually slower

than shared memory architectures.

Remote Procedure Call (RPC)

155

RPC allows programs to call procedures located on other machines.

When a process on machine A calls' a procedure on machine B, the

calling process on A is suspended, and execution of the called

procedure takes place on B. Information can be transported from the

caller to the callee in the parameters and can come back in the

procedure result. No message passing at all is visible to the

programmer. This method is known as Remote Procedure Call, or

often just RPC.

Remote Procedure Call (RPC)…

156

It can be said as the special case of message-passing model. It has

become widely accepted because of the following features: Simple

call syntax and similarity to local procedure calls. Its ease of use,

efficiency and generality. It can be used as an IPC mechanism

between processes on different machines and also between

different processes on the same machine.

Sockets

157

Sockets (Berkley sockets) are one of the most widely used communication

APIs. A socket is an object from which messages and are sent and

received. A socket is a network communication endpoint.

In connection-based communication such as TCP, a server application binds

a socket to a specific port number. This has the effect of registering the

server with the system to receive all data destined for that port. A client

can then rendezvous with the server at the server's port, as illustrated

here: Data transfer operations on sockets work just like read and write

operations on files. A socket is closed, just like a file, when communications

is finished.

Sockets…

158

Network communications are conducted through a pair of cooperating

sockets, each known as the peer of the other.

Processes connected by sockets can be on different computers (known as a

heterogeneous environment) that may use different data representations.

Data is serialized into a sequence of bytes by the local sender and

deserialized into a local data format at the receiving end.

Task Synchronization

159

All the tasks in the multitasking operating systems work together to solve

a larger problem and to synchronize their activities, they occasionally

communicate with one another.

For example, in the printer sharing device the printer task doesn’t have any

work to do until new data is supplied to it by one of the computer tasks. So

the printer and the computer tasks must communicate with one another to

coordinate their access to common data buffers. One way to do this is to

use a data structure called a mutex. Mutexes are mechanisms provided by

many operating systems to assist with task synchronization.

Task Synchronization…

160

A mutex is a multitasking-aware binary flag. It is because the processes of

setting and clearing the binary flag are atomic (i.e. these operations cannot

be interrupted). When this binary flag is set, the shared data buffer is

assumed to be in use by one of the tasks. All other tasks must wait until

that flag is cleared before reading or writing any of the data within that

buffer. The atomicity of the mutex set and clear operations is enforced by

the operating system, which disables interrupts before reading or

modifying the state of the binary flag.

Device drivers

…

161

Simplify the access to devices – Hide device specific details as much as

possible – Provide a consistent way to access different devices.

A device driver USER only needs to know (standard) interface functions

without knowledge of physical properties of the device .

A device driver DEVELOPER needs to know physical details and provides

the interface functions as specified.

162

UNIT-IV

EMBEDDED SOFTWARE
DEVELOPMENT TOOLS

HOST AND TARGET MACHINES

163

Host:

Where the embedded software is developed, compiled, tested,

debugged, optimized, and prior to its translation into target device.

(Because the host has keyboards, editors, monitors, printers, more

memory, etc. for development, while the target may have not of these

capabilities for developing the software.)

Target:

After development, the code is cross-compiled, translated –

cross-assembled, linked (into target processor instruction set) and located

into the target

HOST AND TARGET MACHINES

164

 Cross-Compilers :

 Native tools are good for host, but to port/locate embedded code to target,

the host must have a tool-chain that includes a cross-compiler, one which

runs on the host but produces code for the target processor

 Cross-compiling doesn’t guarantee correct target code due to (e.g.,

differences in word sizes, instruction sizes, variable declarations, library

functions)

HOST AND TARGET MACHINES

165

 Cross-Assemblers and Tool Chain:

 Host uses cross-assembler to assemble code in target’s instruction syntax

for the target

 Tool chain is a collection of compatible, translation tools, which are

‘pipelined’ to produce a complete binary/machine code that can be linked

and located into the target processor

HOST AND TARGET MACHINES

166

LINKERS AND LOCATORS

167

Linker/Locators for Embedded Software:

 Native linkers are different from cross-linkers (or locators) that perform

additional tasks to locate embedded binary code into target processors

 Address Resolution –

 Native Linker: produces host machine code on the hard-drive (in a named

file), which the loader loads into RAM, and then schedules (under the OS

control) the program to go to the CPU.

LINKERS AND LOCATORS

168

Linker/Locators for Embedded Software:

 Function calls, are ordered or organized by the linker. The loader then

maps the logical addresses into physical addresses a process called address

resolution. The loader then loads the code accordingly into RAM . In the

process the loader also resolves the addresses for calls to the native OS

routines

 Locator: produces target machine code (which the locator glues into the

RTOS) and the combined code (called map) gets copied into the target

ROM. The locator doesn’t stay in the target environment, hence all

addresses are resolved, guided by locating-tools and directives, prior to

running the code.

LINKERS AND LOCATORS

169

HOST AND TARGET MACHINES

170

LINKERS AND LOCATORS

171

 Locating Program Components – Segments

 Unchanging embedded program (binary code) and constants must be

kept in ROM to be remembered even on power-off

 Changing program segments (e.g., variables) must be kept in RAM

 Chain tools separate program parts using segments concept

 Chain tools (for embedded systems) also require a ‘start-up’ code to be

in a separate segment and ‘located’ at a microprocessor-defined

location where the program starts execution

 Some cross-compilers have default or allow programmer to specify

segments for program parts, but cross-assemblers have no default

behavior and programmer must specify segments for program parts

HOST AND TARGET MACHINES

172

GETTING EMBEDDED SOFTWARE INTO TARGET SYSTEM

173

Getting Embedded Software into Target System

 Moving maps into ROM or PROM, is to create a ROM using hardware tools

or a PROM programmer (for small and changeable software, during

debugging)

 If PROM programmer is used (for changing or debugging software), place

PROM in a socket (which makes it erasable – for EPROM, or

removable/replaceable) rather than ‘burnt’ into circuitry

 PROM’s can be pushed into sockets by hand, and pulled using a chip puller

 The PROM programmer must be compatible with the format

(syntax/semantics) of the Map

GETTING EMBEDDED SOFTWARE INTO TARGET SYSTEM

174

GETTING EMBEDDED SOFTWARE INTO TARGET SYSTE

175

Getting Embedded Software into Target System – 1

 ROM Emulators – Another approach is using a ROM emulator (hardware)

which emulates the target system, has all the ROM circuitry, and a serial

or network interface to the host system. The locator loads the Map into

the emulator, especially, for debugging purposes.

 Software on the host that loads the Map file into the emulator must

understand (be compatible with) the Map’s syntax/semantics

DEBUGGING TECHNIQUES

176

• Getting Embedded Software into Target System – 1

 Using Flash Memory

 For debugging, a flash memory can be loaded with target Map code

using a software on the host over a serial port or network connection (just

like using an EPROM)

DEBUGGING TECHNIQUES

177

DEBUGGING TECHNIQUES

178

Advantages:

 No need to pull the flash (unlike PROM) for debugging different

embedded code

 Transferring code into flash (over a network) is faster and hassle-free

 Modifying and/or debugging the flash programming software requires

moving it into RAM, modify/debug, and reloading it into target flash

memory using above methods

DEBUGGING TOOLS

179

Advantages:

New versions of embedded software (supplied by vendor) can

be loaded into flash memory by customers over a network - Requires a)

protecting the flash programmer, saving it in RAM and executing from

there, and reloading into flash after new version is written and b) the

ability to complete loading new version even if there are crashes and

protecting the startup code as in (a)

DEBUGGING TECHNIQUES

180

Advantages:

 No need to pull the flash (unlike PROM) for debugging different

embedded code

 Transferring code into flash (over a network) is faster and hassle-free

 Modifying and/or debugging the flash programming software requires

moving it into RAM, modify/debug, and reloading it into target flash

memory using above methods

SIMPLE VOLT/OHM METER

181

Simple volt-ohm meter can be used to test the target hardware.

 It has two leds red and black

One end is connected to meter and other is connected to point

between which the voltage or resistance is to be measured

The meter is set for volt for checking the power supply voltage at

sorce and voltage level at chips and port pins.

The meter is set for ohm for checking thebroken

connections,improper ground connections,burn out resistance and

diods.

SIMPLE LED TESTS AND LOGIC PROBE

182

 A logic probe is a hand-held test probe used for analyzing and

troubleshooting the logical states (boolean 0 or 1) of a digital circuit.

Most modern logic probes typically have one or more LEDs on the body of

the probe:

an LED to indicate a high (1) logic state.

an LED to indicate a low (0) logic state.

an LED to indicate changing back and forth between low and high

states.

OSCILLOSCOPE

183

 An 'oscilloscope', previously called an 'oscillograph', and informally known

as a scope or o-scope, CRO (for cathode-ray oscilloscope), or DSO (for the

more modern digital storage oscilloscope), is a type of electronic test

instrument that graphically displays varying signal voltage, usually as a

two-dimensional plot of one or more signals as a function of time. Other

signals (such as sound or vibration) can be converted to voltages and

displayed.

 Oscilloscopes display the change of an electrical signal over time, with

voltage and time as the Y- and X-axes, respectively, on a calibrated scale.

OSCILLOSCOPE

184

The waveform can then be analyzed for properties such

as amplitute, f requency, rise time , time interval, distortion, and

others.

The oscilloscope can be adjusted so that repetitive signals can be

observed as a continuous shape on the screen.

A storage oscilloscope can capture a single event and display it

continuously, so the user can observe events that would otherwise

appear too briefly to see directly.

Oscilloscopes are used in the sciences, medicine, engineer

BIT RATE METER

185

In telecommunications and computng , bit rate (bit rate or as a

variable R) is the number of bits that are conveyed or processed per

unit of time.

The bit rate is quantified using the bits per second unit (symbol:

"bit/s"), often in conjunction with an SI prefix such as "kilo" (1 kbit/s

= 1,000 bit/s), "mega" (1 Mbit/s = 1,000 kbit/s), "giga" (1 Gbit/s =

1,000 Mbit/s) or "tera" (1 Tbit/s = 1000 Gbit/s). The non-standard

abbreviation "bps" is often used to replace the standard symbol

"bit/s", so that, for example, "1 Mbps" is used to mean one million

bits per second.

BIT RATE METER

186

The bit rate is calculated using the formula:

1.Frequency × bit depth × channels = bit rate.

2.44,100 samples per second × 16 bits per sample × 2 channels =

1,411,200 bits per second (or 1,411.2 kbps)

3.14,411,200 × 240 = 338,688,000 bits (or 40.37 megabytes)

LOGIC ANALYZER

187

A logic analyzer is an electronic instrument that captures and

displays multiple signals from a digital system or digital circuit.

A logic analyzer may convert the captured data into timing

diagrams, protocol decodes, state machine traces, assembly

language, or may correlate assembly with source-level software.

Logic analyzers have advanced triggering capabilities, and are

useful when a user needs to see the timing relationships between

many signals in a digital system

IN-CIRCUIT EMULATOR

188

An In-circuit emulator (ICE) is a debugging tool that allows you to

access a target MCU for in-depth debugging.

In-circuit emulation (ICE) is the use of a hardware device or in-

circuit emulator used to debug the software of an embedde system.

It operates by using a processor with the additional ability to

support debugging operations, as well as to carry out the main

function of the system.

IN-CIRCUIT EMULATOR

189

IN-CIRCUIT EMULATOR

190

ICE consists of a hardware board with accompanying software for

the host computer. The ICE is physically connected between the host

computer and the target MCU.

The debugger on the host establishes a connection to the MCU via

the ICE. ICE allows a developer to see data and signals that are internal

to the MCU, and to step through the source code (e.g., C/C++ on the

host) or set breakpoints; the immediate ramifications of executed

software are observed during run time.

Since the debugging is done via hardware, not software, the MCU’s

performance is left intact for the most part, and ICE does not

compromise MCU resources.

MONITOR

191

Monitor is a debugging tool for actual target microprocessor or

microcontroller in ICE ROM emulator or in target development board.

It also lets host system debugging interface just like as an ICE.

Monitor means a ROM resident program at the target board or ROM

emulator connected to ICE.It monitors the device applications ,the

runs for different hardware architecture and is used for debugging.

192

UNIT-V
INTRODUCTION TO

ADVANCED PROCESSORS

ARM instruction set

193

 ARM versions.

 ARM assembly language.

 ARM programming model.

 ARM memory organization.

 ARM data operations.

 ARM flow of control

ARM versions

194

ARM architecture has been extended over several versions.

We will concentrate on ARM7.

ARM assembly language

195

Fairly standard assembly language:

LDR r0,[r8] ; a comment

label ADD r4,r0,r1

ARM programming model

196

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

CPSR

31 0

N Z C V

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

CPSR

31 0

N Z C V

Endianness

 Relationship between bit and byte/word ordering defines
endianness:

byte 3 byte 2 byte 1 byte 0 byte 0 byte 1 byte 2 byte 3

bit 31 bit 0 bit 0 bit 31

little-endian big-endian

ARM data types

198

 Word is 32 bits long.

 Word can be divided into four 8-bit bytes.

 ARM addresses can be 32 bits long.

 Address refers to byte.

 Address 4 starts at byte 4.

 Can be configured at power-up as either little- or bit-endian mode.

ARM status bits

199

 Every arithmetic, logical, or shifting operation sets CPSR bits:

N (negative), Z (zero), C (carry), V (overflow).

 Examples:

-1 + 1 = 0: NZCV = 0110.

231-1+1 = -231: NZCV = 1001.

ARM data instructions

200

 Basic format:

ADD r0,r1,r2

-Computes r1+r2, stores in r0.

 Immediate operand:

ADD r0,r1,#2

-Computes r1+2, stores in r0.

ARM data instructions

201

 ADD, ADC : add (w. carry)

 SUB, SBC : subtract (w. carry)

 RSB, RSC : reverse subtract (w.
carry)

 MUL, MLA : multiply (and
accumulate)

 AND, ORR, EOR

 BIC : bit clear

 LSL, LSR : logical shift left/right

 ASL, ASR : arithmetic shift
left/right

 ROR : rotate right

 RRX : rotate right extended with
C

Data operation varieties

202

 Logical shift:

-fills with zeroes.

 Arithmetic shift:

-fills with ones.

 RRX performs 33-bit rotate, including C bit from CPSR above sign bit.

ARM comparison instructions

203

 CMP : compare

 CMN : negated compare

 TST : bit-wise AND

 TEQ : bit-wise XOR

 These instructions set only the NZCV bits of CPSR.

ARM move instructions

204

 MOV, MVN : move (negated)

MOV r0, r1 ; sets r0 to r1

NUMBER BASE CONVERSION

205

 LDR, LDRH, LDRB : load (half-word, byte)

 STR, STRH, STRB : store (half-word, byte)

 Addressing modes:

-register indirect : LDR r0,[r1]

-with second register : LDR r0,[r1,-r2]

-with constant : LDR r0,[r1,#4]

ARM ADR pseudo-op

206

 Cannot refer to an address directly in an instruction.

 Generate value by performing arithmetic on PC.

 ADR pseudo-op generates instruction required to calculate address:

ADR r1,FOO

Example: C assignments

207

 C:

x = (a + b) - c;

 Assembler:

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b, reusing r4

LDR r1,[r4] ; get value of b

ADD r3,r0,r1 ; compute a+b

ADR r4,c ; get address for c

LDR r2,[r4] ; get value of c

C assignment, cont’d.

208

SUB r3,r3,r2 ; complete computation of x
ADR r4,x ; get address for x
STR r3,[r4] ; store value of x

Example: C assignment

209

 C:
y = a*(b+c);

 Assembler:
ADR r4,b ; get address for b
LDR r0,[r4] ; get value of b
ADR r4,c ; get address for c
LDR r1,[r4] ; get value of c
ADD r2,r0,r1 ; compute partial result
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a

C assignment, cont’d.

210

MUL r2,r2,r0 ; compute final value for y
ADR r4,y ; get address for y
STR r2,[r4] ; store y

Example: C assignment

211

 C:
z = (a << 2) | (b & 15);

 Assembler:
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
MOV r0,r0,LSL 2 ; perform shift
ADR r4,b ; get address for b
LDR r1,[r4] ; get value of b
AND r1,r1,#15 ; perform AND
ORR r1,r0,r1 ; perform OR

C assignment, cont’d.

212

ADR r4,z ; get address for z

STR r1,[r4] ; store value for z

Additional addressing modes

213

 Base-plus-offset addressing:
LDR r0,[r1,#16]
Loads from location r1+16

 Auto-indexing increments base register:
LDR r0,[r1,#16]!

 Post-indexing fetches, then does offset:
LDR r0,[r1],#16
Loads r0 from r1, then adds 16 to r1.

ARM flow of control

214

 All operations can be performed conditionally, testing CPSR:
EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE

 Branch operation:
B #100
Can be performed conditionally

Example: if statement

215

 C:

if (a > b) { x = 5; y = c + d; } else x = c - d;

 Assembler:

; compute and test condition

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b

LDR r1,[r4] ; get value for b

CMP r0,r1 ; compare a < b

BLE fblock ; if a ><= b, branch to false block

If statement, cont’d.

216

; true block
MOV r0,#5 ; generate value for x
ADR r4,x ; get address for x
STR r0,[r4] ; store x
ADR r4,c ; get address for c
LDR r0,[r4] ; get value of c
ADR r4,d ; get address for d
LDR r1,[r4] ; get value of d
ADD r0,r0,r1 ; compute y
ADR r4,y ; get address for y
STR r0,[r4] ; store y
B after ; branch around false block

If statement, cont’d.

217

; false block
fblock ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c
ADR r4,d ; get address for d
LDR r1,[r4] ; get value for d
SUB r0,r0,r1 ; compute a-b
ADR r4,x ; get address for x
STR r0,[r4] ; store value of x

after ...

Example: switch statement

218

 C:
switch (test) { case 0: … break; case 1: … }

 Assembler:
ADR r2,test ; get address for test

LDR r0,[r2] ; load value for test

ADR r1,switchtab ; load address for switch table

LDR r1,[r1,r0,LSL #2] ; index switch table

switchtab DCD case0

DCD case1

...

Example: FIR filter

219

 C:
for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

 Assembler
; loop initiation code

MOV r0,#0 ; use r0 for I

MOV r8,#0 ; use separate index for arrays

ADR r2,N ; get address for N

LDR r1,[r2] ; get value of N

MOV r2,#0 ; use r2 for f

FIR filter, cont’.d

220

ADR r3,c ; load r3 with base of c

ADR r5,x ; load r5 with base of x

; loop body

loop LDR r4,[r3,r8] ; get c[i]

LDR r6,[r5,r8] ; get x[i]

MUL r4,r4,r6 ; compute c[i]*x[i]

ADD r2,r2,r4 ; add into running sum

ADD r8,r8,#4 ; add one word offset to array index

ADD r0,r0,#1 ; add 1 to i

CMP r0,r1 ; exit?

BLT loop ; if i < N, continue

ARM subroutine linkage

221

 Branch and link instruction:

BL foo

Copies current PC to r14.

To return from subroutine:

MOV r15,r14

Nested subroutine calls

222

 Nesting/recursion requires coding convention:

f1 LDR r0,[r13] ; load arg into r0 from stack

; call f2()

STR r14,*r13+! ; store f1’s return adrs

STR r0,[r13]! ; store arg to f2 on stack

BL f2 ; branch and link to f2

; return from f1()

SUB r13,#4 ; pop f2’s arg off stack

LDR r13!,r15 ; restore register and return

SHARC instruction set

223

 SHARC programming model.
 SHARC assembly language.
 SHARC memory organization.
 SHARC data operations.
 SHARC flow of control

SHARC programming model

224

 Register files:

R0-R15 (aliased as F0-F15 for floating point)

 Status registers.

 Loop registers.

 Data address generator registers.

 Interrupt registers.

SHARC assembly language

225

Algebraic notation terminated by semicolon:

R1=DM(M0,I0), R2=PM(M8,I8); ! comment
label: R3=R1+R2;

data memory access program memory access

SHARC MEMORY SPACE

226

SHARC DATA TYPES

227

 32-bit IEEE single-precision floating-point.

 40-bit IEEE extended-precision floating-point.

 32-bit integers.

 Memory organized internally as 32-bit words.

SHARC MICRO ARCHITECTURE

228

 Modified Harvard architecture.

 Program memory can be used to store some data.

 Register file connects to:

 multiplier

 shifter;

 ALU.

SHARC MODE REGISTERS

229

 Most important:

 ASTAT: arithmetic status.

 STKY: sticky.

 MODE 1: mode 1.

ROUNDING AND SATURATION

230

 Floating-point can be:

 rounded toward zero;

 rounded toward nearest.

 ALU supports saturation arithmetic (ALUSAT bit in MODE1).

 Overflow results in max value, not rollover.

MULTIPLIER

231

 Fixed-point operations can accumulate into local MR registers or be

written to register file. Fixed-point result is 80 bits.

 Floating-point results always go to register file.

 Status bits: negative, under/overflow, invalid, fixed-point underflow,

floating-point underflow, floating-point invalid.

ALU/SHIFTER STATUS FLAGS

232

ALU:

– zero, overflow, negative, fixed-point carry, input sign, floating-

point invalid, last op was floating-point, compare accumulation

registers, floating-point under/oveflow, fixed-point overflow,

floating-point invalid

Shifter:

– zero, overflow, sign

FLAG OPERATIONS

233

 All ALU operations set AZ (zero), AN (negative), AV (overflow), AC

(fixed-point carry), AI (floating-point invalid) bits in ASTAT.

 STKY is sticky version of some ASTAT bits.

SHARC load/store

234

 Load/store architecture: no memory-direct operations.

 Two data address generators (DAGs):

 program memory;

 data memory.

 Must set up DAG registers to control loads/stores.

SHARC program sequencer

235

Features:

– instruction cache;

– PC stack;

– status registers;

– loop logic;

– data address generator;

Networking for Embedded Systems

236

• Why we use networks.

• Network abstractions.

• Example networks.

Network elements

237

Distributed computing platform:

PEs may be CPUs or ASICs.

Networks in embedded systems

238

Why distributed?

239

 Higher performance at lower cost.

 Physically distributed activities---time constants may not allow

transmission to central site.

 Improved debugging---use one CPU in network to debug others.

 May buy subsystems that have embedded processors.

Network abstractions

240

 International Standards Organization (ISO) developed the Open

Systems Interconnection (OSI) model to describe networks:

7-layer model.

 Provides a standard way to classify network components and

operations.

OSI model

241

OSI layers

242

 Physical: connectors, bit formats, etc.

 Data link: error detection and control across a single link (single

hop).

 Network: end-to-end multi-hop data communication.

 Transport: provides connections; may optimize network

resources.

 Session: services for end-user applications: data grouping, check

pointing, etc.

 Presentation: data formats, transformation services.

 Application: interface between network and end-user programs.

Bus networks

243

 Common physical connection:

Bus arbitration

244

 Fixed: Same order of resolution every time.

 Fair: every PE has same access over long periods.

 Round-robin: rotate top priority among Pes.

Crossbar

245

Crossbar characteristics:

Non-blocking.

Can handle arbitrary multi-cast combinations.

Size proportional to n2.

I2C bus

246

 Designed for low-cost, medium data rate applications.

 Characteristics:

 serial;

 multiple-master;

 fixed-priority arbitration.

 Several microcontrollers come with built-in I2C controllers.

I2C physical layer

247

I2C data format

248

I2C signaling

249

 Sender pulls down bus for 0.

 Sender listens to bus---if it tried to send a 1 and heard a 0,

someone else is simultaneously transmitting.

 Transmissions occur in 8-bit bytes.

I2C data link layer

 Every device has an address (7 bits in standard, 10 bits in

extension).Bit 8 of address signals read or write.

 General call address allows broadcast.

I2C bus arbitration

250

Sender listens while sending address.

When sender hears a conflict, if its address is higher, it stops

signaling.

Low-priority senders relinquish control early enough in clock

cycle to allow bit to be transmitted reliably.

I2C transmissions

251

CAN BUS

252

 CAN (Controller Area Network) is a serial bus system used to

communicate between several embedded 8-bit and 16-bit

microcontrollers.

 It was originally designed for use in the automotive industry but is

used today in many other systems (e.g. home appliances and

industrial machines).

CAN Controller Diagram

253

Data Format

254

 Each message has an ID, Data and overhead.

 Data –8 bytes max

 Overhead – start, end, CRC, ACK

Internet –EnAnalyzed systems

255

 Embedded systems are internet enabled by using

TCP/IP protocols for networking to internet and

assigning IP addresses to each systems.

 Internet provides a standard way for embedded

systems to act in concert with other devices and with

users.eg.

1.High end laser printers use internet protocols to receive

print jobs from host machines.

2.PDA can display web pages ,read email and synchronous

calendar information with remote computer.

ELEVATOR CONTROLLER

256

An elevator system is a vertical transport vehicle that efficiently

moves people or goods between floors of a building. They are generally

powered by electric motors.

The most popular elevator is the rope elevator. In the rope elevator,

the car is raised and lowered by transaction with steel rope.

Elevators also have electromagnetic brakes that engage, when the car

comes to a stop. The electromagnetic actually keeps the brakes in the

open position. Instead of closing them with the design, the brakes will

automatically clamp shut if the elevator loses power.

Elevators also have automatic braking systems near the top and the

bottom of the elevator shaft.

ELEVATOR CONTROLLER

257

ELEVATOR SYSTEM OVERVIEW

