

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous)

Dundigal, Hyderabad -500 043

# ELECTRONICS AND COMMUNICATIONENGINEERING

| COURSE | DESCRIP | TOR |
|--------|---------|-----|
|--------|---------|-----|

| Course Title      | WIRELESS SENSOR NETWORKS AND ARCHITECTURE      |        |                    |                 |            |         |
|-------------------|------------------------------------------------|--------|--------------------|-----------------|------------|---------|
| Course Code       | AEC52                                          | 26     |                    |                 |            |         |
| Programme         | B.Tech                                         | l      |                    |                 |            |         |
| Semester          | V                                              | ECE    |                    |                 |            |         |
| Course Type       | Professional Elective                          |        |                    |                 |            |         |
| Regulation        | IARE - R16                                     |        |                    |                 |            |         |
|                   | Theory Practi                                  |        |                    |                 | ical       |         |
| Course Structure  | Lectu                                          | ires   | Tutorials          | Credits         | Laboratory | Credits |
|                   | 3                                              |        | -                  | 3               | -          | -       |
| Chief Coordinator | Mr. K Chaitanya, Asst Prof., Department of ECE |        |                    |                 |            |         |
| Course Faculty    | Mr. K                                          | Chaita | nya, Asst Prof., I | Department of E | ECE        |         |

#### I. COURSE OVERVIEW:

WSNs are beginning to be organized in an enhanced step. It is not awkward to expect that in 10 to 15 years that the world will be protected with WSNs with entree to them via the Internet. This can be measured as the Internet becoming a physical n/w. This technology is thrilling with infinite potential for many application areas like medical, environmental, transportation, military, entertainment, homeland defense, crisis management and also smart spaces. The most common WSN architecture follows the OSI architecture Model. The architecture of the WSN includes five layers and three cross layers. Mostly in sensor n/w we require five layers, namely application, transport, n/w, data link & physical layer.

#### **II. COURSE PRE-REQUISITES:**

| Level | Course Code | Semester | Prerequisites                        | Credits |
|-------|-------------|----------|--------------------------------------|---------|
| UG    | AIT003      | V        | Computer Networks                    | 4       |
| UG    | AEC524      | VI       | Wireless Communications And Networks | 3       |

#### **III. MARKSDISTRIBUTION:**

| Subject                                      | SEE Examination | CIA Examination | Total Marks |
|----------------------------------------------|-----------------|-----------------|-------------|
| Wireless Sensor Networks And<br>Architecture | 70 Marks        | 30 Marks        | 100         |

#### IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| × | Chalk & Talk      | ~     | Quiz     | ✓ Assignments |              | × | MOOCs  |
|---|-------------------|-------|----------|---------------|--------------|---|--------|
| ~ | LCD / PPT         | ~     | Seminars | ×             | Mini Project | > | Videos |
| × | Open Ended Experi | ments |          |               |              |   |        |

## V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for continuous internal assessment (CIA) and 70 marks for semester end examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

**Semester End Examination (SEE):** The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

| 50 % | To test the objectiveness of the concept.                                                    |
|------|----------------------------------------------------------------------------------------------|
| 50 % | To test the analytical skill of the concept OR to test the application skill of the concept. |

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

| Table 1: A | Assessment | pattern f | or CIA |
|------------|------------|-----------|--------|
|------------|------------|-----------|--------|

| Component          | Theory   |            | Total Marks    |  |
|--------------------|----------|------------|----------------|--|
| Type of Assessment | CIE Exam | Quiz / AAT | i otai wiai ks |  |
| CIA Marks          | 25       | 05         | 30             |  |

#### **Continuous Internal Examination (CIE):**

Two CIE exams shall be conducted at the end of the 8<sup>th</sup> and 16<sup>th</sup> week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

|       | Program Outcomes (POs)                                            | Strength | Proficiency<br>assessed by |
|-------|-------------------------------------------------------------------|----------|----------------------------|
| PO 1  | Engineering knowledge: Apply the knowledge of                     | 2        | Lectures,                  |
|       | mathematics, science, engineering fundamentals, and an            |          | Assignments,               |
|       | engineering specialization to the solution of complex             |          | Exercises                  |
|       | engineering problems.                                             |          |                            |
| PO 3  | Design/development of solutions: Design solutions for             | 2        | Design Exercises           |
|       | complex engineering problems and design system components         |          |                            |
|       | or processes that meet the specified needs with appropriate       |          |                            |
|       | consideration for the public health and safety, and the cultural, |          |                            |
|       | societal, and environmental considerations.                       |          |                            |
| PO 5  | Modern tool usage: Create, select, and apply appropriate          | 1        | One minute videos          |
|       | techniques, resources, and modern engineering and IT tools        |          |                            |
|       | including prediction and modeling to complex engineering          |          |                            |
|       | activities with an understanding of the limitations.              |          |                            |
| PO 12 | Life-long learning: Recognize the need for, and have the          | 1        | Lectures                   |
|       | preparation and ability to engage in independent and life-long    |          |                            |
|       | learning in the broadest context of technological change.         |          |                            |

#### VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

**3** = High; **2** = Medium; **1** = Low

# VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes (PSOs)                                  | Strength | Proficiency<br>assessed by |
|-------|-------------------------------------------------------------------|----------|----------------------------|
| PSO 1 | Professional Skills: An ability to understand the basic           | 2        | Lectures and               |
|       | concepts in electronics & communication engineering and to        |          | Seminars                   |
|       | apply them to various areas, like electronics, communications,    |          |                            |
|       | signal processing, VLSI, embedded systems etc., in the design     |          |                            |
|       | and implementation of complex systems.                            |          |                            |
| PSO 2 | Problem-Solving Skills: An ability to solve complex               | -        | -                          |
|       | Electronics and communication Engineering problems, using         |          |                            |
|       | latest hardware and software tools, along with analytical skills  |          |                            |
|       | to arrive cost effective and appropriate solutions.               |          |                            |
| PSO 3 | Successful Career and Entrepreneurship: An understanding          | -        | -                          |
|       | of social awareness & environmental-wisdom along with             |          |                            |
|       | ethical responsibility to have a successful career and to sustain |          |                            |
|       | passion and zeal for real-world applications using optimal        |          |                            |
|       | resources as an Entrepreneur.                                     |          |                            |

**3** = High; **2** = Medium; **1** = Low

# VIII. COURSE OBJECTIVES (COs):

| The co | The course should enable the students to:                                             |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| Ι      | Understand the basic WSN technology and supporting protocols, with emphasis placed on |  |  |  |  |  |
|        | standardization basic sensor systems and provide a survey of sensor technology.       |  |  |  |  |  |
| Π      | Understand the medium access control protocols and address physical layer issues.     |  |  |  |  |  |
| III    | Learn key routing protocols for sensor networks and main design issues.               |  |  |  |  |  |
| IV     | Learn transport layer protocols for sensor networks, and design requirements.         |  |  |  |  |  |
| V      | Understand the Sensor management, sensor network middleware, operating systems.       |  |  |  |  |  |

# IX. COURSE OUTCOMES (COs):

|      |                                          |       | -                                        |
|------|------------------------------------------|-------|------------------------------------------|
| COs  | Course Outcome                           | CLOs  | Course Learning Outcome                  |
| CO 1 | Describe the overview of wireless sensor | CLO 1 | Understand the challenges for wireless   |
|      | networks and enabling technologies for   |       | sensor networks.                         |
|      | wireless sensor networks                 | CLO 2 | Analyze the characteristic requirements  |
|      |                                          |       | of wireless sensor networks.             |
|      |                                          | CLO 3 | Understand the enabling technologies for |
|      |                                          |       | wireless sensor networks.                |
|      |                                          | CLO 4 | Understand the Advantages of sensor      |
|      |                                          |       | networks and applications.               |
|      |                                          | -     |                                          |

| COs  | Course Outcome                              | CLOs   | Course Learning Outcome                  |
|------|---------------------------------------------|--------|------------------------------------------|
| CO 2 | Understand the architectures, operating     | CLO 5  | Understandthe single-node architecture,  |
|      | systems, execution environments and         |        | hardware components.                     |
|      | network architecture gateway concepts.      | CLO 6  | Analyze the energy consumption of        |
|      |                                             |        | sensor nodes.                            |
|      |                                             | CLO 7  | Understand the operating systems and     |
|      |                                             |        | execution environments, network          |
|      |                                             |        | architecture.                            |
|      |                                             | CLO 8  | Analyze the Network scenarios,           |
|      |                                             |        | optimization goals and figures of merit, |
|      |                                             |        | gateway concepts.                        |
| CO 3 | Explore the networking sensors physical     | CLO 9  | Illustrate the Physical layer and        |
|      | layer and transceiver design considerations |        | transceiver design considerations        |
|      | assignment of MAC addresses.                | CLO 10 | Analyze the MAC protocols for            |
|      |                                             |        | wireless sensor networks.                |
|      |                                             | CLO 11 | Understand the mediation device          |
|      |                                             |        | protocol, wakeup radio concepts,         |
|      |                                             |        | address and name management.             |
| CO 4 | Understand the infrastructure               | CLO 12 | Understand the topology control.         |
|      | establishment, topology control and joint   | CLO 13 | Analyze the localization and             |
|      | routing and information aggregation.        |        | positioning, sensor tasking and          |
|      |                                             |        | control.                                 |
|      |                                             | CLO 14 | Determine the joint routing and          |
|      |                                             |        | information aggregation.                 |
| CO 5 | Understand the sensor network platform      | CLO 15 | Understand the Sensor node hardware      |
|      | and tools state-centric programming.        | CLO 16 | Understand the node-level software       |
|      |                                             |        | platforms.                               |
|      |                                             | CLO 17 | Understand the state-centric             |
|      |                                             |        | programming.                             |

**3 = High; 2 = Medium; 1 = Low** 

# X. COURSE LEARNING OUTCOMES (CLOs):

| CLO       | CLO's | At the end of the course, the student will                           | PO's         | Strength of |
|-----------|-------|----------------------------------------------------------------------|--------------|-------------|
| Code      |       | have the ability to:                                                 | Mapped       | Mapping     |
| AEC526.01 | CLO 1 | Understand the challenges for wireless sensor networks.              | PO 1         | 2           |
| AEC526.02 | CLO 2 | Analyze the characteristic requirements of wireless sensor networks. | PO 1         | 2           |
| AEC526.03 | CLO 3 | Understand the enabling technologies for wireless sensor networks.   | PO 1<br>PO 5 | 1           |

| CLO       | CLO's  | At the end of the course, the student will    | PO's         | Strength of |
|-----------|--------|-----------------------------------------------|--------------|-------------|
| Code      |        | have the ability to:                          | Mapped       | Mapping     |
| AEC526.04 | CLO 4  | Understand the Advantages of sensor networks  | PO 1         | 1           |
|           |        | and applications.                             | PO 5         |             |
| AEC526.05 | CLO 5  | Understand the single-node architecture,      | PO 3         | 3           |
|           |        | hardware components.                          |              |             |
| AEC526.06 | CLO 6  | Analyze the energy consumption of sensor      | PO 3         | 1           |
|           |        | nodes.                                        |              |             |
| AEC526.07 | CLO 7  | Understand the operating systems and          | PO 3         | 2           |
|           |        | execution environments, network architecture. |              |             |
| AEC526.08 | CLO 8  | Analyze the Network scenarios, optimization   | PO 1         | 2           |
|           |        | goals and figures of merit, gateway concepts. | PO 5         |             |
| AEC526.09 | CLO 9  | Illustrate the Physical layer and transceiver | PO 5         | 1           |
|           |        | design considerations                         |              |             |
| AEC526.10 | CLO 10 | Analyze the MAC protocols for wireless sensor | PO 1         | 3           |
|           |        | networks.                                     |              |             |
| AEC526.11 | CLO 11 | Understand the mediation device protocol,     | PO 1         | 2           |
|           |        | wakeup radio concepts, address and name       | PO 12        |             |
|           |        | management.                                   |              |             |
| AEC526.12 | CLO 12 | Understand the topology control.              | PO 12        | 1           |
| AEC526.13 | CLO 13 | Analyze the localization and positioning,     | PO 1         | 2           |
|           |        | sensor tasking and control.                   | PO 3         |             |
| AEC526.14 | CLO 14 | Determine the joint routing and information   | PO 1         | 2           |
|           |        | aggregation.                                  | PO 3         |             |
| AEC526.15 | CLO 15 | Understand the Sensor node hardware           | PO 3         | 1           |
| AEC526.16 | CLO 16 | Understand the node-level software platforms. | PO 3         | 1           |
| AEC526.17 | CLO 17 | Understand the state-centric programming.     | PO 1<br>PO 3 | 2           |

3 = High; 2 = Medium; 1 = Low

# XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

| Course<br>Outcomes (COs) |      | Program Outcomes (POs) |      |       |       |  |  |  |
|--------------------------|------|------------------------|------|-------|-------|--|--|--|
|                          | PO 1 | <b>PO 3</b>            | PO 5 | PO 12 | PSO 1 |  |  |  |
| CO 1                     | 2    |                        |      | 1     | 2     |  |  |  |
| CO 2                     | 1    | 3                      | 2    | 1     | 1     |  |  |  |
| CO 3                     | 1    | 1                      |      |       |       |  |  |  |

| Course<br>Outcomes (COs) |      | Program Out | tcomes (POs) |       | Program<br>Specific<br>Outcomes<br>(PSOs) |
|--------------------------|------|-------------|--------------|-------|-------------------------------------------|
|                          | PO 1 | <b>PO 3</b> | PO 5         | PO 12 | PSO 1                                     |
| CO 4                     |      | 3           | 1            |       | 1                                         |
| CO 5                     | 2    |             | 1            | 1     | 2                                         |

**3 = High; 2 = Medium; 1 = Low** 

# XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

|        |            |     |     |     |     | 1   | Program Outcomes (POs)     Program Specific<br>Outcomes (PSOs) |     |     |      |      |      |      |      |      |
|--------|------------|-----|-----|-----|-----|-----|----------------------------------------------------------------|-----|-----|------|------|------|------|------|------|
| (CLOS) | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b>                                                     | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 1  | 2          |     |     |     |     |     |                                                                |     |     |      |      |      | 1    |      |      |
| CLO 2  | 2          |     |     |     |     |     |                                                                |     |     |      |      |      | 1    |      |      |
| CLO 3  | 1          |     |     |     | 1   |     |                                                                |     |     |      |      |      |      |      |      |
| CLO 4  |            |     | 2   |     |     |     |                                                                |     |     |      |      |      |      |      |      |
| CLO 5  |            |     | 3   |     |     |     |                                                                |     |     |      |      |      |      |      |      |
| CLO 6  |            |     | 1   |     |     |     |                                                                |     |     |      |      |      |      |      |      |
| CLO 7  |            |     | 2   |     |     |     |                                                                |     |     |      |      |      |      |      |      |
| CLO 8  | 2          |     |     |     | 2   |     |                                                                |     |     |      |      |      | 2    |      |      |
| CLO 9  |            |     |     |     | 1   |     |                                                                |     |     |      |      |      | 1    |      |      |
| CLO 10 | 3          |     |     |     |     |     |                                                                |     |     |      |      |      |      |      |      |
| CLO 11 | 2          |     |     |     |     |     |                                                                |     |     |      |      | 2    | 1    |      |      |
| CLO 12 |            |     |     |     |     |     |                                                                |     |     |      |      | 1    |      |      |      |
| CLO 13 | 2          |     | 2   |     |     |     |                                                                |     |     |      |      |      | 3    |      |      |
| CLO 14 |            |     | 1   |     |     |     |                                                                |     |     |      |      |      |      |      |      |
| CLO 15 |            |     | 1   |     |     |     |                                                                |     |     |      |      |      | 3    |      |      |
| CLO 16 | 2          |     |     |     |     |     |                                                                |     |     |      |      |      | 1    |      |      |
| CLO 17 | 2          |     |     |     |     |     |                                                                |     |     |      |      |      | 1    |      |      |

# 3 = High; 2 = Medium; 1 = Low

# XIII. ASSESSMENT METHODOLOGIES-DIRECT:

|           | PO1, PO3,  |           | PO1, PO3,  |             | DO 1 |          |      |
|-----------|------------|-----------|------------|-------------|------|----------|------|
| CIE Exams | PO5, PO12, | SEE Exams | PO5, PO12, | Assignments |      | Seminars | PO 1 |
|           | PSO1       |           | PSO1       |             | 105  |          |      |

| Laboratory<br>Practices | -                               | Student<br>Viva | - | Mini<br>Project | - | Certification | - |
|-------------------------|---------------------------------|-----------------|---|-----------------|---|---------------|---|
| Term Paper              | PO1, PO3,<br>PO5, PO12,<br>PSO1 |                 |   |                 |   |               |   |

## XIV. ASSESSMENT METHODOLOGIES-INDIRECT:

| > | Early Semester Feedback                | > | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

# **XV. SYLLABUS:**

| UNIT - I                                                                                                                                                                                                                                    | OVERVIEW OF WIRELESS SENSOR NETWORKS                                                                                                                                                                                                 | Classes: 10                                                                    |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|
| Challenges for wireless sensor networks, characteristic requirements of wireless sensor networks, enabling technologies for wireless sensor networks, advantages of sensor networks, sensor network applications.                           |                                                                                                                                                                                                                                      |                                                                                |  |  |  |  |  |
| UNIT - II                                                                                                                                                                                                                                   | ARCHITECTURES                                                                                                                                                                                                                        | Classes: 09                                                                    |  |  |  |  |  |
| Single-node architecture, hardware components, energy consumption of sensor nodes, operating systems and execution environments, network architecture, sensor network scenarios, optimization goals and figures of merit, gateway concepts. |                                                                                                                                                                                                                                      |                                                                                |  |  |  |  |  |
| UNIT - III                                                                                                                                                                                                                                  | NETWORKING SENSORS                                                                                                                                                                                                                   | Classes: 08                                                                    |  |  |  |  |  |
| Physical layer ar<br>duty cycle prot<br>concepts, address<br>Assignment of 1                                                                                                                                                                | nd transceiver design considerations, MAC protocols for wireless sens<br>ocols and wakeup concepts-S-MAC, the mediation device protoco<br>s and name management.<br>MAC addresses, naming and addressing, routing protocols, energy- | or networks, low<br>or networks, low<br>of, wakeup radio<br>efficient routing, |  |  |  |  |  |
| geographic routin                                                                                                                                                                                                                           | ng.                                                                                                                                                                                                                                  | -                                                                              |  |  |  |  |  |
| UNIT - IV                                                                                                                                                                                                                                   | INFRASTRUCTURE ESTABLISHMENT                                                                                                                                                                                                         | Classes: 08                                                                    |  |  |  |  |  |
| Topology contro<br>positioning, sens                                                                                                                                                                                                        | l, clustering, hierarchical networks by clustering time synchronization<br>or tasking and control, joint routing and information aggregation.                                                                                        | , localization and                                                             |  |  |  |  |  |
| UNIT - V                                                                                                                                                                                                                                    | SENSOR NETWORK PLATFORM AND TOOLS                                                                                                                                                                                                    | Classes: 10                                                                    |  |  |  |  |  |
| Sensor node har<br>level simulators,                                                                                                                                                                                                        | dware, Berkeley motes, programming challenges, node-level software state-centric programming.                                                                                                                                        | platforms, node-                                                               |  |  |  |  |  |
| <b>Text Books:</b>                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                |  |  |  |  |  |
| 1. Holger Kar                                                                                                                                                                                                                               | l, Andreas Willig, "Protocols And Architectures for Wireless Sensor                                                                                                                                                                  | Networks", John                                                                |  |  |  |  |  |
| Wiley, 1 <sup>st</sup> H                                                                                                                                                                                                                    | Edition, 2005.                                                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| 2. Sudhakar, l                                                                                                                                                                                                                              | Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Inform                                                                                                                                                                 | mation Processing                                                              |  |  |  |  |  |
| Approach",                                                                                                                                                                                                                                  | Elsevier, 1 <sup>st</sup> Edition 2007.                                                                                                                                                                                              |                                                                                |  |  |  |  |  |
| 3. Jun Zheng,                                                                                                                                                                                                                               | Abbas Jamalipour, "Wireless Sensor Networks- A Networking Perspec                                                                                                                                                                    | tive∥, John Wiley                                                              |  |  |  |  |  |
| & Sons, 1 <sup>st</sup>                                                                                                                                                                                                                     | Edition, 2009.                                                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| Reference Book                                                                                                                                                                                                                              | KS:                                                                                                                                                                                                                                  |                                                                                |  |  |  |  |  |
| 1. Kazem Soh                                                                                                                                                                                                                                | raby, Daniel Minoli, & Taieb Znati, -Wireless Sensor Networks Techn                                                                                                                                                                  | nology, Protocols,                                                             |  |  |  |  |  |
| And Applic                                                                                                                                                                                                                                  | ations <sup>I</sup> , John Wiley, 1 <sup>st</sup> Edition 2007.                                                                                                                                                                      |                                                                                |  |  |  |  |  |
| 2. Anna Hac, -                                                                                                                                                                                                                              | Wireless Sensor Network Designs I, John Wiley, 1 <sup>st</sup> Edition 2003.                                                                                                                                                         |                                                                                |  |  |  |  |  |
| <ol> <li>Waltenegus Dargie , Christian Poellabauer, -Fundamentals of Wireless Sensor Networksl, John Wiley &amp; Sons, 1<sup>st</sup> Edition, 2010.</li> </ol>                                                                             |                                                                                                                                                                                                                                      |                                                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                      |                                                                                |  |  |  |  |  |

# **XVI. COURSE PLAN:**

| Lecture<br>No | Topics to be covered                                                                                                 | Course<br>Learning<br>Outcomes<br>(CLOs) | Reference                   |
|---------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|
| 1-2           | Overview of wireless sensor, networks challenges for wireless sensor networks.                                       | CLO 1                                    | T1-4.1-0.2                  |
| 3-7           | Characteristic requirements of wireless sensor networks, enabling technologies for wireless sensor networks.         | CLO 2                                    | T1-4.2-4.3                  |
| 8-10          | Advantages of sensor networks, sensor network<br>Applications.                                                       | CLO 3                                    | T1-4.3-4.4                  |
| 11            | Introduction to architectures.                                                                                       | CLO 3                                    | T1-4.5-4.6                  |
| 12-13         | Single-node architecture, hardware components.                                                                       | CLO 3                                    | T1-4.6-4.7                  |
| 14-16         | Energy consumption of sensor nodes, operating systems introduction.                                                  | CLO 4                                    | T1-4.7-4.8<br>R2- 6.8-6.9   |
| 17-20         | Different types of execution environments, Network architecture and sensor network scenarios.                        | CLO 5                                    | R2- 6.8-6.9<br>T2-2.1-2.3   |
| 21-23         | Networking sensors, physical layer and transceiver design considerations.                                            | CLO 6<br>CLO 7                           | T2-2.4-2.5<br>R2- 6.9-6.10  |
| 24-25         | MAC protocols for wireless sensor networks, low duty cycle protocols and wakeup concepts-S-MAC                       | CLO 8                                    | T2-2.5-2.6                  |
| 26-27         | The mediation device protocol, wakeup radio concepts, addresses and name management.                                 | CLO 9                                    | T2-2.6-2.7                  |
| 28-31         | Assignment of MAC addresses, naming and addressing, routing protocols, energy-efficient routing, geographic routing. | CLO 10                                   | T3-2.1-2.3                  |
| 32-35         | infrastructure establishment topology control, clustering, hierarchical networks                                     | CLO 11                                   | T3 – 2.6-2.7<br>R2- 7.1-7.3 |
| 36-37         | Introduction to localization and positioning                                                                         | CLO 11                                   | T1 - 9.4.2-9.4.3            |
| 38-40         | Sensor tasking and control, joint routing and information aggregation.                                               | CLO 12                                   | T1-9.5-9.7                  |
| 41-43         | Sensor network platform and tools sensor node hardware.                                                              | CLO 13                                   | T1-10.1-10.1.1              |
| 44-47         | Berkeley motes, programming challenges                                                                               | CLO 14                                   | T1-10.1.1-10.1.2            |
| 48-49         | Node-level simulators, state-centric programming                                                                     | CLO 15                                   | T1-7.1-7.3                  |

The course plan is meant as a guideline. Probably there may be changes.

# XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S NO | Description                                                               | Proposed actions                     | Relevance with | Relevance with |
|------|---------------------------------------------------------------------------|--------------------------------------|----------------|----------------|
|      |                                                                           |                                      | POs            | PSOs           |
| 1    | Real time operating system concepts which applicable to advanced systems. | Seminars / NPTEL                     | PO 1           | PSO 1          |
| 2    | Working Process of Networking Devices                                     | Work Shops/<br>Laboratory Practices  | PO 5           | PSO 1          |
| 3    | Data Communication                                                        | Seminars / Guest<br>Lectures / NPTEL | PO 1, PO 3     | PSO 1          |

Prepared by:

Mr. K Chaitanya, Asst Prof., Department of ECE