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COURSE OUTCOME (COs): 

CO 1: Understand and analyze basic AC and DC electrical circuits. 

CO 2: Apply mesh analysis and nodal analysis to solve electrical networks. Calculate the two port network 

parameters. 

CO 3: Illustrate single phase AC circuits and apply steady state analysis to time varying circuits. 

CO 4: Understand the transient response of series and parallel RL, RC and RLC circuits for DC excitations. 

CO 5: Understand the characteristics of complex electrical networks using DC and AC Theorems. 
 

COURSE LEARNING OUTCOME (CLOs):  

CLO 1: Define the various nomenclature used to study the characteristics of DC networks. 

CLO 2: Understand the concept of circuit, classification of elements and types of energy sources. 

CLO 3: State different laws associated with electrical circuits and apply source transformation technique to 

determine equivalent resistance and source current. 

CLO 4: Apply the network reduction techniques directly. 

CLO 5: Indirectly to calculate quantities associated with electrical circuit. 

CLO 6: Define the various nomenclature related with network topology and give the importance of dual network. 

CLO 7: Identify the alternating quantities with it instantaneous, average and root mean square values. 

CLO 8: Demonstrate the impression of reactance, susceptance, impedance and admittance in estimating power of 

AC circuits. 

CLO 9: Demonstrate the concept of power, real, reactive and complex power, power factor of AC circuits. 



CLO 10: Design the series and parallel RLC for the required bandwidth, resonant frequency and quality factor. 
CLO 11: Analyze the steady state behavior of series and parallel RL, RC and RLC circuit with 

sinusoidal excitation. 

CLO 12: Determine magnetic flux, reluctance, self and mutual inductance in the single coil and coupled coils 

magnetic circuits. 

CLO 13: State the faraday’s laws of electromagnetic induction used in construction of magnetic Circuit. 

CLO 14: Summarize the procedure of thevenin’s, norton’s and milliman’s theorems to reduce complex network 

into simple equivalent network. 

CLO 15: Prove the law of conservation of energy, superposition principle, reciprocity and maximum power 

transfer condition for the electrical network with DC and AC excitation. 

 

SYLLABUS 

 
 

 

 

Module-I INTRODUCTION TO ELECTRICAL CIRCUITS 

Circuit concept: Basic definitions, Ohm’s law at constant temperature, classifications of elements, R, L, C 

parameters, independent and dependent sources, voltage and current relationships for passive elements (for 

different input signals like square, ramp, saw tooth, triangular and complex), temperature dependence of 

resistance, tolerance, source transformation, Kirchhoff’s laws, equivalent resistance of series, parallel and series 

parallel networks. 

Module -II ANALYSIS OF ELECTRICAL CIRCUITS 

Circuit analysis: Star to delta and delta to star transformation, mesh analysis and nodal analysis by Kirchhoff’s 

laws, inspection method, super mesh, super node analysis; Network topology: definitions, incidence matrix, basic 

tie set and basic cut set matrices for planar networks, duality and dual networks. 

Module-III SINGLE PHASE AC CIRCUITS AND RESONANCE 

Single phase AC circuits: Representation of alternating quantities, instantaneous, peak, RMS, average, form 

factor and peak factor for different periodic wave forms, phase and phase difference, ‘j’notation, concept of 

reactance, impedance, susceptance and admittance, rectangular and polar form, concept of power, real, reactive 

and complex power, power factor. 

Steady state analysis: Steady state analysis of RL, RC and RLC circuits (in series, parallel and series parallel 

combinations) with sinusoidal excitation; Resonance: Series and parallel resonance, concept of band width and Q 

factor. 

Module-IV MAGNETIC CIRCUITS  

Magnetic circuits: Faraday’s laws of electromagnetic induction, concept of self and mutual inductance, dot 

convention, coefficient of coupling, composite magnetic circuit, analysis of series and parallel magnetic circuits 

Module-V  NETWORK THEOREMS (DC AND AC) 

Network Theorems: Tellegen‟s, superposition, reciprocity, Thevenin‟s, Norton‟s, maximum power transfer, 

Milliman‟s and compensation theorems for DC and AC excitations, numerical problems. 



UNIT – I  

INTRODUCTION TO ELECTRICAL CIRCUITS 

Circuit concept:. Basic definitions, Ohm‟s law at constant temperature, classifications of 

elements, R, L, C parameters, independent and dependent sources, Kirchhoff‟s laws, equivalent 

resistance of series, parallel and series parallel networks. Star to delta and delta to star 

transformation, mesh analysis and nodal analysis by Kirchhoff‟s laws, inspection method, super 

mesh and super node analysis. 

 
Introduction 

 
The interconnection of various electric elements in a prescribed manner comprises as an electric 

circuit in order to perform a desired function. The electric elements include controlled and uncontrolled 

source of energy, resistors, capacitors, inductors, etc. Analysis of electric circuits refers to computations 

required to determine the unknown quantities such as voltage, current and power associated with one or 

more elements in the circuit. To contribute to the solution of engineering problems one must acquire the 

basic knowledge of electric circuit analysis and laws. Many other systems, like mechanical, hydraulic, 

thermal, magnetic and power system are easy to analyze and model by a circuit. To learn how to analyze 

the models of these systems, first one needs to learn the techniques of circuit analysis. We shall discuss 

briefly some of the basic circuit elements and the laws that will help us to develop the background of 

subject. 

 

Basic electrical circuits use standard symbols for the components in the circuit. Understanding 

electrical circuits is of great importance nowadays. 
 

As we all know that modern life is overwhelmingly dependent on electricity, it is quite important 

for people to understand simple electrical circuits. Simple electrical circuits introduction is a good 

assistant for you to better know electrical circuits. 
 

The Definition of Electrical Circuits 
 

An electrical circuit is a closed loop of conductive material that allows electrons to flow through 

continuously without beginning or end. There is continuous electrical current goes from the supply to the 

load in an electrical circuit. People also say that a complete path, typically through conductors such as 

wires and through circuit elements, is called an electric circuit. 

An electrical circuit is an electrical device that provides a path for electrical current to flow. After 

you get the definition of the electrical circuit, now we are going to show you three simple electrical 

circuits. 

 

Switch Circuit 

 
A switch is a device for making and breaking the connection in an electric circuit. We operate 

switches for lights, fans, electric hair drier and more many times a day but we seldom try to see the 

connection made inside the switch circuit. The function of the switch is to connect or complete the circuit 

going to the load from the supply. It has moving contacts which are normally open. 

https://www.edrawsoft.com/basic-electrical-solutions.php


 

 

With a switch you can turn the device on or off, therefore, it is a very important component in an 

electrical circuit. 

 

DC Lighting Circuit 

 
As you can see from the picture below that the LED lamp uses DC supply battery. The battery is 

bipolar, one is anode and the other is cathode. Moreover, the anode is positive and the cathode is negative. 

Also, the lamp itself has two ends, one positive and the other is negative. Therefore, the anode of the 

battery is battery is connected to positive terminal of the lamp, meanwhile the cathode of the battery is 

connected to the negative terminal of the lamp. 

 

 

Once the above connection is complete, the LED lamp will light. Although it is simple electrical circuit, 

many people have no idea how to deal with the connection correctly. 

 

Thermocouple Circuit 

If you are looking to build a temperature-sensing device or you need to add sensing capabilities to a large 

system, you will have to familiarize yourself with thermocouples circuits and understand how to design 

them. A thermocouple is a device consisting of two dissimilar conductors that contact each other at one or 

more spots, and it is used to measure temperature. As you can see from the picture below that a 

thermocouple is made of two wires - iron and constantan, with a voltmeter. If the cold junction 

temperature is kept constant, then the EMF is proportional to the temperature of the hot junction. 

 

 



Voltmeter will measure the EMF generated and this can be calibrated to measure the temperature. The 

temperature difference between the hot and cold junction will produce an EMF proportional to it. Because 

thermocouple junctions produce such low voltages, it is imperative that wire connections be very clean 

and tight for accurate and reliable operation. Despite these seemingly restrictive requirements, 

thermocouples remain one of the most robust and popular methods of industrial temperature measurement 

in modern use. 

 

A circuit diagram is like a map that shows electricity flows. This tutorial will show you a few of 

the common symbols and some of the professional terms to help you read circuit diagrams. 

 

Learning to read electrical schematics is like learning to read maps. Electrical schematics show 

which electrical components used and how they are connected together. The electronic symbols consisted 

represent each of the components used. The symbols are connected with lines. 

 

Recognizing Electrical Schematic Terms 

 
Here are some of the standard and basic terms of circuit diagrams: 

 

• Voltage: Voltage is the "pressure" or "force" of electricity, it is usually measured in volts (V) and 

the outlets in common house operate at 120V. Outlets of voltage may differ in other countries. 

• Resistance: Resistance represents how easily electrons can flow through a certain material, and it 

is measured in Ohms (R or Ω). Current flow can move faster in conductors such as gold or 

copper, in this case we say the resistance is low. The movement of electrons is relatively slow in 

insulators such as plastic, wood, and air, in this case we say the resistance is high. 

• Current: Current is the flow of electricity, or to be more specific, the flow of electrons. Current is 

measured in Amperes (Amps). The flow of current is only possible when a voltage supply is 

connected. 

• DC (Direct Current): DC is the continuous current flow in one direction. DC can flow not just 

through conductors, but semi-conductors and insulators too. 

• AC (Alternating Current): In AC, the current flow alternates between two directions according to 

a certain period, it often forms a sine wave. The frequency of AC is measured in Hertz (Hz), and 

it is usually 60 Hz. 
Basic Elements & Introductory Concepts 

• Electrical Network: A combination of various electric elements (Resistor, Inductor, Capacitor, 

Voltage source, Current source) connected in any manner what so ever is called an electrical 

network. We may classify circuit elements in two categories, passive and active elements. 

• Passive Element: The element which receives energy (or absorbs energy) and then either converts 

it into heat (R) or stored it in an electric (C) or magnetic (L ) field is called passive element. 

• Active Element: The elements that supply energy to the circuit is called active element. Examples 

of active elements include voltage and current sources, generators, and electronic devices that 

require power supplies. A transistor is an active circuit element, meaning that it can amplify 

power of a signal. On the other hand, transformer is not an active element because it does not 

amplify the power level and power remains same both in primary and secondary sides. 

Transformer is an example of passive element. 

• Bilateral Element: Conduction of current in both directions in an element (example: Resistance; 

Inductance; Capacitance) with same magnitude is termed as bilateral element. 



•  

• Unilateral Element: Conduction of current in one direction is termed as unilateral (example: 

Diode, Transistor) element. 

•  

• Meaning of Response: An application of input signal to the system will produce an output 

signal, the behavior of output signal with time is known as the response of the system. 

 

BASIC CIRCUIT CONCEPTS 

 
An electric circuit is formed by interconnecting components having different electric properties. It is 

therefore important, in the analysis of electric circuits, to know the properties of the involved components 

as well as the way the components are connected to form the circuit. In this introductory chapter some 

ideal electric components and simple connection styles are introduced. Without resort to advanced 

analysis techniques, we will attempt to solve simple problems involving circuits that contain a relatively 

small number of components connected in some relatively simple fashions. In particular we will derive a 

set of useful formulae for dealing with circuits that involve such simple connections as ``series'', 

``parallel'', ``ladder'', ``star'' and ``delta''. This chapter serves as a review of the basic properties of electric 

circuits. In addition we will briefly introduce the PSPICE analysis programme and how it can be used to 

help analyze electric circuits. 

Direction and Polarity 

 
Current direction indicates the direction of flow of positive charge, and voltage polarity indicates the 

relative potential between two points. Usually, ``+'' is assigned to a higher potential point and ``-'' to a 

lower potential point. However, during analysis, direction and polarity can be arbitrarily assigned on 

circuit diagrams. Actual direction and polarity will be governed by the sign of the value. Figure 1.1 shows 

some examples. 
 

Figure 1.1: Equivalent assignments of (a) current direction; (b) voltage polarity 

 
Ohm's Law | Equation Formula and Limitation of Ohm's Law 

The most basic quantities of electricity are voltage, current and resistance or impedance. Ohm's law 

shows a simple relationship between these three quantities. This law is one of the most basic laws of 

electricity. This law helps to calculate the power, efficiency, current, voltage and resistance or impedance 

of any element of electrical circuit. 

http://www.eie.polyu.edu.hk/~cktse/linear_circuits/main/node3.html#ch0dir
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https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.electrical4u.com/voltage-or-electric-potential-difference/
https://www.electrical4u.com/what-is-electrical-resistance/
https://www.electrical4u.com/active-and-passive-elements-of-electrical-circuit/


 

Statement of Ohm's Law 

 
Whenever, we apply a potential difference i.e. voltage across a resistor of a closed electric circuit, current 

starts flowing through it. The statement of Ohm's law says that The current (I) is directly proportional to 

the applied voltage (V), provided temperature and all other factors remain constant. 

 

Mathematically, 

 
Where, R is constant of proportionality. 

 
This equation presents the statement of Ohm's law. Here, we measure current in Ampere (or amps), 

voltage in unit of volt. The constant of proportionality R is the property of the conductor; we know it as 

resistance and measure it in ohm (Ω). Theoretically, the resistance has no dependence on the applied 

voltage, or on the flow of current. The value of R changes only if the conditions (like temperature, 

diameter and length etc.) of the resistor are changed by any means. 

History of Ohm's Law 

 
In the month of May 1827, Georg Simon Ohm published a book "Die Galvanische Kette, 

Mathematisch Bearbeitet". "Die Galvanische Kette, Mathematisch Bearbeitet" means "The Galvanic 

Circuit Investigated Mathematically". He presented the relationship between voltage (V), current (I), and 

resistance (R) based on his experimental data, in this book. Georg Simon Ohm had defined the 

fundamental interrelationship between current, voltage and resistance of a circuit which was later named 

Ohm's law. Because of this law and his excellence in the field of science and academics, he got the 

Copley Medal award in 1841. In 1872 the unit of electrical resistance was named 'OHM" in his honor. 

 
Ohm's Law Physics 

 
We can understand the physics behind Ohm's law well if we examine it from atomic level of a 

metal. A metal conductor contains plenty of free electrons. These free electrons randomly move in the 

conductor. When, we apply a voltage, across the conductor, the free electrons keep being accelerated 

towards higher potential end due to electrostatic force of the applied voltage. This means they acquire 

some kinetic energy as they move towards the + Ve end of the conductor. However, before they get very 

far they collide with an atom or ion, lose some of their kinetic energy and may bounce back. Again due to 

presence of static electric field the free electrons again being accelerated. This keeps happening. That 

means, even after application of external electric field, there will be still random motion in the free 

electrons of the conductor. Each free electron drifts towards +Ve end with its inherent random motion. As 

a result, the free electrons tend to "drift" towards the + Ve end, bouncing around from atom to atom on 

the way. This is how the materials resist a current. If we apply more voltage across the conductor, the 

more free electrons will move with more acceleration which causes more drift velocity of the electrons. 

The drift velocity of the electrons is proportional to the applied static electric field. That more electrons 

pass through a cross section per unit time, which means more charge transfer per unit time. The rate of 

charge transfer per unit time is current. 

 
Hence the current (I) we get is also proportional to the applied voltage (V). 
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Applications of Ohm's Law 

The applications of ohm's law are that it helps us in determining either voltage, current or 

impedance or resistance of a linear electric circuit when the other two quantities are known to us. Apart 

from that, it makes power calculation a lot simpler, like when we know the value of the resistance for a 

particular circuit element, we need not know both the current and the voltage to calculate the power 

 

dissipation since, P = VI. 

 
To replace either the voltage or current in the above expression to produce the result 

 

 
We can see from the results, that the rate of energy loss varies with the square of the voltage or 

current. When we double the voltage applied to a circuit, obeying Ohm's law, the rate at which energy is 

supplied (or power) gets four times bigger. Similarly, the power dissipation at a circuit element is 

increased by 4 times when we make double the current through it. 

 

 
Limitation of Ohm's Law 

The limitations of Ohm's law are explained as follows: 

 
1. This law cannot be applied to unilateral networks. A unilateral network has unilateral elements 

like diode, transistors, etc., which do not have same voltage current relation for both directions of 

current. 

2. Ohm's law is also not applicable for non – linear elements. 

 
Non-linear elements are those which do not have current exactly proportional to the applied voltage, that 

means the resistance value of those elements changes for different values of voltage and current. 

Examples of non – linear elements are thyristor, electric arc, etc. 

 

 

 

. 
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Basic circuit elements 

Definition of Resistor 

A resistor offers resistance to the flow of current. The resistance is the measure of opposition to the flow 
of current in a resistor. More resistance means more opposition to current. The unit of resistance is ohm 

and it is represented as Ω. When one volt potential difference is applied across a resistor and for that one 

ampere of current flows through it, the resistance of the resistor is said to be one Ω. Resistor is one of the 

most essential passive elements in electrical and electronics engineering. 

 
Resistor 

 
It is some time required to introduce electrical resistance in different circuit to limit the current 

through it. Resistor is an element of circuit which does the same. Such as series connected resistor limits 

the current flowing through the light emitting diode (LED). In addition to that resistors serve many other 

purposes in electrical and electronic applications. The most essential requirement of a resistor is that its 

value of electrical resistance should not vary with temperature for a wide range. That means resistance 

variation with temperature must be as minimal as possible for a wide range of temperature. In other word 

the temperature coefficient of resistance of must be minimum for the materials by which a resistor is 

made of. Power Rating of Resistor 

When current passes through a resistor there would be I2R loss and hence as per Joules law of 

heating there must be temperature rise in the resistor. A resistor must be operated within a temperature 

limit so that there should not be any permanent damage due high temperature. The power rating of 

resistor is defined as the maximum power that a resistor can dissipate in form of heat to maintain the 

temperature within maximum allowable limit. How much power a resistor will dissipate depends upon 

material, dimensions, voltage rating, maximum temperature limit of the resistor and ambient temperature. 

 
Voltage Rating of Resistor 

 
This rating is defined as the maximum voltage that can be applied across a resistor due to which power 

dissipation will be within its allowable limit. Actually voltage rating of resistor is related to the power 

rating. As we know that power rating of resistor is expressed as Where, V is 

the applied voltage across the resistor and R is the resistance value of the resistor in ohms. From above 

equation it is clear that for limiting P, V must be limited for a particular resistor of resistance R. This V is 

voltage rating of resistor of power rating P watts and resistance R Ω. 

 
Types of Resistor 

 
There are different types of resistor depending upon their construction, power dissipation capacities and 

tolerance of the value. Such as 

 
• Carbon Composition Resistor 

• Metal Film Resistor 

• Carbon Film Resistor 

• Non Linear Resistor 

• Varistor 

• Thermistor 

 
Carbon Composition Resistor 

 
These types of resistor are very commonly used low cost resistor. The construction of carbon 

https://www.electrical4u.com/types-of-resistor-carbon-composition-and-wire-wound-resistor/
https://www.electrical4u.com/electrical-resistance-and-laws-of-resistance/
https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.electrical4u.com/electrical-resistance-and-laws-of-resistance/
https://www.electrical4u.com/led-or-light-emitting-diode/
https://www.electrical4u.com/temperature-coefficient-of-resistance/
https://www.electrical4u.com/joules-law/


composition resistor is very simple. It is also commonly referred as carbon resistor. It is mainly made 

of carbon clay composition covered with a plastic case. The lead of the resistor is made of tinned copper. 

The main advantages of these resistors are that they are easily available in local market in very low cost 

and they are very durable too. But the main disadvantage is that they are very much temperature sensitive. 

These resistors are available in wide range of values. It is available in as low as 1 Ω value and it is also 

available in as high as 22 Mega Ω value. The tolerance range in resistance of carbon composition resistor 

is of ± 5 to ± 20 %. Such resistor has a tendency of electric noise due to passage of electrical current 

from one carbon particle to other. Where low cost is the main criteria of designing a circuit rather than it's 

performance, these resistors are normally used. 

 
These carbon resistors are provided with different colored band on their cylindrical body. These color 

bands are code for the resistance values of carbon composition resistor along with their tolerance range. 

 
Resistor Color Code 

 
There are mainly four color bands provided on the body of resistors and each color indicates unique digit. 
Such as Black ⇒ 0, Brown ⇒ 1, Red ⇒ 2, Orange ⇒ 3, Yellow ⇒ 4, Green ⇒ 5, Blue ⇒ 6, Violet ⇒ 7 

Gray ⇒ 8, White ⇒ 9. The first and second color bands indicate a two digits number. The 3rd color band 
indicates the power of ten as multiplier. The fourth band indicates the tolerance. 

 

 

If fourth band is of golden color the resistors may have ± 5 % tolerance in its value, if fourth band is of 

silver color, the resistor must have ± 10 % tolerance and if there is no fourth band provided, then the 

carbon resistor may have ± 20 % tolerance in it's value. 

 
Suppose we have a carbon composition resistor which has four color bands among which first band is 
blue second band is yellow, third band is red and fourth band is golden. So from the above rule the first 
digit of the number will be 6 ( as Blue ⇒ 6 ), the second digit of the number will be 4 ( as Yellow ⇒ 4 ) 
and the multiplier of this two digit number will be 102 ( as Red ⇒ 2 ). Hence, electrical resistance value 
of the resistor will be 64 × 102 Ω. The tolerance of that value may be ± 5 % as the color of fourth band is 
golden. 

 
Resistance 

 
When voltage is applied to a piece of metal wire, as shown in figure 1.2 (a), the current I flowing through 

the wire is proportional to the voltage V across two points in the wire. This property is known as Ohm's 

law, which reads 

https://www.electrical4u.com/electric-current-and-theory-of-electricity/
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where R is called resistance, and G is called conductance. The resistance R and the conductance G of the 

same piece of wire is related by R = 1/G. Resistance is measured in ohms ( ) and conductance 

in siemens (S or ).  

Figure 1.2: Ohm's law. (a) Metal wire; (b) circuit symbol 

 
Any apparatus/device that has this property is called a resistor. Study of the physics of resistance shows 

that it is proportional to the length of the metal wire, l, and inversely proportional to the cross-sectional 

area, A, 

 

i.e.,   

where the proportionality constant is known as the resistivity of the metal. 

 
We may calculate the power required to pass current I through a resistor of resistance R using the 

previously derived formula, i.e., 

 
 

Using the Ohm's law equation, we get   

The last inequality defines a property called passivity. 

INDUCTOR:- 

 
What is Inductor? 

 
Before knowing what is inductor we should first know the definition of inductance. 

Definition of Inductance 

If a changing flux is linked with a coil of a conductor there would be an emf induced in it. The property of 

the coil of inducing emf due to the changing flux linked with it is known as inductance of the coil. Due 

to this property all electrical coil can be referred as inductor. In other way, an inductor can be defined as 

an energy storage device which stores energy in form of magnetic field. 

 
Theory of Inductor 

 

https://www.electrical4u.com/what-is-flux-types-of-flux/
https://www.electrical4u.com/electrical-conductor/
https://www.electrical4u.com/magnetic-field/


A current through a conductor produces a magnetic field surround it. The strength of this field depends 

upon the value of current passing through the conductor. The direction of the magnetic field is found 

https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.electrical4u.com/electrical-conductor/
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using the right hand grip rule, which shown. The flux pattern for this magnetic field would be number of 

concentric circle perpendicular to the detection of current. 

 
Now if we wound the conductor in form of a coil or solenoid, it can be assumed that there will be 

concentric circular flux lines for each individual turn of the coil as shown. But it is not possible 

practically, as if concentric circular flux lines for each individual turn exist, they will intersect each other. 

However, since lines of flux cannot intersect, the flux lines for individual turn will distort to form 

complete flux loops around the whole coil as shown. This flux pattern of a current carrying coil is similar 

to a flux pattern of a bar magnet as shown. 

 

 

 
 

Now if the current through the coil is changed, the magnetic flux produced by it will also be changed at 

same rate. As the flux is already surrounds the coil, this changing flux obviously links the coil. Now 

according to Faraday’s law of electromagnetic induction, if changing flux links with a coil, there would 

be an induced emf in it. Again as per Lenz’s law this induced emf opposes every cause of producing it. 

Hence, the induced emf is in opposite of the applied voltage across the coil. 

 
Types of Inductor 

 

 

 
 

There are many types of inductors; all differ in size, core material, type of windings, etc. so they are used 

in wide range of applications. The maximum capacity of the inductor gets specified by the type of core 
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material and the number of turns on coil. Depending on the value, inductors typically exist in two forms, 

fixed and variable. The number of turns of the fixed coil remains the same. This type is like resistors in 

shape and they can be distinguished by the fact that the first color band in fixed inductor is always silver. 

They are usually used in electronic equipment as in radios, communication apparatus, electronic testing 

instruments, etc. The number of turns of the coil in variable inductors, changes depending on the design 

of the inductor. Some of them are designed to have taps to change the number of turns. The other design 

is fabricated to have a many fixed inductors for which, it can be switched into parallel or series 

combinations. They often get used in modern electronic equipment. Core or heart of inductor is the main 

part of the inductor. Some types of inductor depending on the material of the core will be discussed. 

 
Ferromagnetic Core Inductor or Iron-core Inductors 

 

 

 

 

 
 

This type uses ferromagnetic materials such as ferrite or iron in manufacturing the inductor for increasing 

the inductance. Due to the high magnetic permeability of these materials, inductance can be increased in 

response of increasing the magnetic field. At high frequencies it suffers from core loses, energy loses, that 

happens in ferromagnetic cores. 

 
Air Core Inductor 

 

 

 

 
Air cored inductor is the type where no solid core exists inside the coils. In addition, the coils that wound 

on nonmagnetic materials such as ceramic and plastic, are also considered as air cored. This type does not 

use magnetic materials in its construction. The main advantage of this form of inductors is that, at high 

magnetic field strength, they have a minimal signal loss. On the other hand, they need a bigger number of 

turns to get the same inductance that the solid cored inductors would produce. They are free of core losses 

because they are not depending on a solid core. 
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Toroidal Core Inductor 
 

 

 

 

 
 

Toroidal Inductor constructs of a circular ring-formed magnetic core that characterized by it is magnetic 

with high permeability material like iron powder, for which the wire wounded to get inductor. It works 

pretty well in AC electronic circuits' application. The advantage of this type is that, due to its symmetry, it 

has a minimum loss in magnetic flux; therefore it radiates less electromagnetic interference near circuits 

or devices. Electromagnetic interference is very important in electronics that require high frequency and 

low power. 

 
Laminated Core Inductor 

 

 

This form gets typified by its stacks made with thin steel sheets, on top of each other designed to be 

parallel to the magnetic field covered with insulating paint on the surface; commonly on oxide finish. It 

aims to block the eddy currents between steel sheets of stacks so the current keeps flowing through its 

sheet and minimizing loop area for which it leads to great decrease in the loss of energy. Laminated core 

inductor is also a low frequency inductor. It is more suitable and used in transformer applications. 

 
Powdered Iron Core 
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Its core gets constructed by using magnetic materials that get characterized by its distributed air gaps. 

This gives the advantage to the core to store a high level of energy comparing to other types. In addition, 

very good inductance stability is gained with low losses in eddy current and hysteresis. Moreover, it has 

the lowest cost alternative. 

 
Choke 

 
The main purpose of it is to block high frequencies and pass low frequencies. It exists in two types; RF 

chokes and power chokes. 

 
Applications of Inductors 

 
In general there are a lot of applications due to a big variety of inductors. Here are some of them. 

Generally the inductors are very suitable for radio frequency, suppressing noise, signals, isolation and for 

high power applications. More applications summarized here: 

 
• Energy Storage 

• Sensors 

• Transformers 

• Filters 

• Motors 

 
Introduction to Capacitors 

 
Just like the Resistor, the Capacitor, sometimes referred to as a condenser, is a simple passive device that 

is used to “store electricity” on its plates 

 

The capacitor is a component which has the ability or “capacity” to store energy in the form of an 

electrical charge producing a potential difference (Static Voltage) across its plates, much like a small 

rechargeable battery. 

There are many different kinds of capacitors available from very small capacitor beads used in resonance 

circuits to large power factor correction capacitors, but they all do the same thing, they store charge. 

In its basic form, a capacitor consists of two or more parallel conductive (metal) plates which are not 

connected or touching each other, but are electrically separated either by air or by some form of a good 

insulating material such as waxed paper, mica, ceramic, plastic or some form of a liquid gel as used in 

electrolytic  capacitors.  The  insulating  layer   between   a   capacitors   plates   is   commonly   called  

the Dielectric. 
 

A Typical Capacitor 

Due to this insulating layer, DC current can not flow through the capacitor as it blocks it allowing 

instead a voltage to be present across the plates in the form of an electrical charge. 
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The conductive metal plates of a capacitor can be either square, circular or rectangular, or they 

can be of a cylindrical or spherical shape with the general shape, size and construction of a parallel plate 

capacitor depending on its application and voltage rating. 

When used in a direct current or DC circuit, a capacitor charges up to its supply voltage but 

blocks the flow of current through it because the dielectric of a capacitor is non-conductive and basically 

an insulator. However, when a capacitor is connected to an alternating current or AC circuit, the flow of 

the current appears to pass straight through the capacitor with little or no resistance. 

There are two types of electrical charge, positive charge in the form of Protons and negative 

charge in the form of Electrons. When a DC voltage is placed across a capacitor, the positive (+ve) charge 

quickly accumulates on one plate while a corresponding and opposite negative (-ve) charge accumulates 

on the other plate. For every particle of +ve charge that arrives at one plate a charge of the same sign will 

depart from the -ve plate. 

Then the plates remain charge neutral and a potential difference due to this charge is established 

between the two plates. Once the capacitor reaches its steady state condition an electrical current is unable 

to flow through the capacitor itself and around the circuit due to the insulating properties of the dielectric 

used to separate the plates. 

The flow of electrons onto the plates is known as the capacitors Charging Current which 

continues to flow until the voltage across both plates (and hence the capacitor) is equal to the applied 

voltage Vc. At this point the capacitor is said to be “fully charged” with electrons. 

The strength or rate of this charging current is at its maximum value when the plates are fully 

discharged (initial condition) and slowly reduces in value to zero as the plates charge up to a potential 

difference across the capacitors plates equal to the source voltage. 

The amount of potential difference present across the capacitor depends upon how much charge 

was deposited onto the plates by the work being done by the source voltage and also by how much 

capacitance the capacitor has and this is illustrated below. 

 



The parallel plate capacitor is the simplest form of capacitor. It can be constructed using two 

metal or metallised foil plates at a distance parallel to each other, with its capacitance value in Farads, 

being fixed by the surface area of the conductive plates and the distance of separation between them. 

Altering any two of these values alters the the value of its capacitance and this forms the basis of 

operation of the variable capacitors. 

Also, because capacitors store the energy of the electrons in the form of an electrical charge on 

the plates the larger the plates and/or smaller their separation the greater will be the charge that the 

capacitor holds for any given voltage across its plates. In other words, larger plates, smaller distance, 

more capacitance. 

By applying a voltage to a capacitor and measuring the charge on the plates, the ratio of the 

charge Q to the voltage V will give the capacitance value of the capacitor and is therefore given as: C = 

Q/V this equation can also be re-arranged to give the more familiar formula for the quantity of charge on 

the plates as: Q = C x V 

Although we have said that the charge is stored on the plates of a capacitor, it is more correct to 

say that the energy within the charge is stored in an “electrostatic field” between the two plates. When an 

electric current flows into the capacitor, charging it up, the electrostatic field becomes more stronger as it 

stores more energy. 

Likewise, as the current flows out of the capacitor, discharging it, the potential difference 

between the two plates decreases and the electrostatic field decreases as the energy moves out of the 

plates. 

The property of a capacitor to store charge on its plates in the form of an electrostatic field is 

called the Capacitance of the capacitor. Not only that, but capacitance is also the property of a capacitor 

which resists the change of voltage across it. 

 
 

The Capacitance of a Capacitor 

Capacitance is the electrical property of a capacitor and is the measure of a capacitors ability to 

store an electrical charge onto its two plates with the unit of capacitance being the Farad (abbreviated    

to F) named after the British physicist Michael Faraday. 

Capacitance is defined as being that a capacitor has the capacitance of One Farad when a charge 

of One Coulomb is stored on the plates by a voltage of One volt. Note that capacitance, C is always 

positive in value and has no negative units. However, the Farad is a very large unit of measurement to use 

on its own so sub-multiples of the Farad are generally used such as micro-farads, nano-farads and pico- 

farads, for example. 

 
 

Standard Units of Capacitance 

Microfarad (μF) 1μF = 1/1,000,000 = 0.000001 = 10-6 F 

Nanofarad (nF) 1nF = 1/1,000,000,000 = 0.000000001 = 10-9 F 

Picofarad (pF) 1pF = 1/1,000,000,000,000 = 0.000000000001 = 10-12 F 



Then using the information above we can construct a simple table to help us convert between pico-Farad 

(pF), to nano-Farad (nF), to micro-Farad (μF) and to Farads (F) as shown. 

 
 

Capacitance of a Parallel Plate Capacitor 

The capacitance of a parallel plate capacitor is proportional to the area, A in metres2 of the 

smallest of the two plates and inversely proportional to the distance or separation, d(i.e. the dielectric 

thickness) given in metres between these two conductive plates. 

The  generalised  equation  for   the   capacitance   of   a   parallel   plate   capacitor   is   given   

as: C = ε(A/d) where ε represents the absolute permittivity of the dielectric material being used. The 

permittivity of a vacuum, εo also known as the “permittivity of free space” has  the  value  of  the  

constant 8.84 x 10-12 Farads per metre. 

To make the maths a little easier, this dielectric constant of free space, εo, which can be written 

as: 1/(4π x 9×109), may also have the units of picofarads (pF) per metre as the constant giving: 8.84 for 

the value of free space. Note though that the resulting capacitance value will be in picofarads and not in 

farads. 

Generally, the conductive plates of a capacitor are separated by some kind of insulating material 

or gel rather than a perfect vacuum. When calculating the capacitance of a capacitor, we can consider the 

permittivity of air, and especially of dry air, as being the same value as a vacuum as they are very close. 
 

 

 
Capacitance Example No1 

A capacitor is constructed from two conductive metal plates 30cm x 50cm which are spaced 6mm apart 

from each other, and uses dry air as its only dielectric material. Calculate the capacitance of the capacitor. 



 

Then the value of the capacitor consisting of two plates separated by air is calculated as 221pF or 

0.221nF 

 
 

The Dielectric of a Capacitor 

As well as the overall size of the conductive plates and their distance or spacing apart from each 

other, another factor which affects the overall capacitance of the device is the type of dielectric material 

being used. In other words the “Permittivity” (ε) of the dielectric. 

The conductive plates of a capacitor are generally made of a metal foil or a metal film allowing 

for the flow of electrons and charge, but the dielectric material used is always an insulator. The various 

insulating materials used as the dielectric in a capacitor differ in their ability to block or pass an electrical 

charge. 

This dielectric material can be made from a number of insulating materials or combinations of 

these materials with the most common types used being: air, paper, polyester, polypropylene, Mylar, 

ceramic, glass, oil, or a variety of other materials. 

The factor by which the dielectric material, or insulator, increases the capacitance of the capacitor 

compared to air is known as the Dielectric Constant, k and a dielectric material with a high dielectric 

constant is a better insulator than a dielectric material with a lower dielectric constant. Dielectric constant 

is a dimensionless quantity since it is relative to free space. 

The actual permittivity or “complex permittivity” of the dielectric material between the plates is 

then the product of the permittivity of free space (εo) and the relative permittivity (εr) of the material being 

used as the dielectric and is given as: 

 
 

Complex Permittivity 
 

In other words, if we take the permittivity of free space, εo as our base level and make it equal to 

one, when the vacuum of free space is replaced by some other type of insulating material, their 

permittivity of its dielectric is referenced to the base dielectric of free space giving a multiplication factor 



known as “relative permittivity”, εr. So the value of the complex permittivity, ε will always be equal to 

the relative permittivity times one. 

Typical units of dielectric permittivity, ε or dielectric constant for common materials are: Pure 

Vacuum = 1.0000, Air = 1.0006, Paper = 2.5 to 3.5, Glass = 3 to 10, Mica = 5 to 7, Wood = 3 to 8 and 

Metal Oxide Powders = 6 to 20 etc. This then gives us a final equation for the capacitance of a capacitor 

as: 
 

One method used to increase the overall capacitance of a capacitor while keeping its size small is 

to “interleave” more plates together within a single capacitor body. Instead of just one set of parallel 

plates, a capacitor can have many individual plates connected together thereby increasing the surface  

area, A of the plates. 

For a standard parallel plate  capacitor  as  shown  above,  the  capacitor  has  two  plates,  

labelled A and B.  Therefore  as  the  number  of  capacitor  plates  is  two,  we  can  say  that n = 2,  

where “n” represents the number of plates. 

Then our equation above for a single parallel plate capacitor should really be: 
 

However, the capacitor may have two parallel plates but only one side of each plate is in contact 

with the dielectric in the middle as the other side of each plate forms the outside of the capacitor. If we 

take the two halves of the plates and join them together we effectively only have “one” whole plate in 

contact with the dielectric. 

As for a single parallel plate capacitor, n – 1 = 2 – 1 which equals 1 as C = (εo.εr x 1 x A)/d is 

exactly the same as saying: C = (εo.εr.A)/d which is the standard equation above. 

 

Voltage Rating of a Capacitor 

All capacitors have a maximum voltage rating and when selecting a capacitor consideration must 

be given to the amount of voltage to be applied across the capacitor. The maximum amount of voltage 

that can be applied to the capacitor without damage to its dielectric material is generally given in the data 

sheets as: WV, (working voltage) or as WV DC, (DC working voltage). 

If the voltage applied across the capacitor becomes too great, the dielectric will break down 

(known as electrical breakdown) and arcing will occur between the capacitor plates resulting in a short- 

circuit. The working voltage of the capacitor depends on the type of dielectric material being used and its 

thickness. 

The DC working voltage of a capacitor is just that, the maximum DC voltage and NOT the 

maximum AC voltage as a capacitor with a DC voltage rating of 100 volts DC cannot be safely subjected 



to an alternating voltage of 100 volts. Since an alternating voltage has an r.m.s. value of 100 volts but a 

peak value of over 141 volts!. 

Then a capacitor which is required to operate at 100 volts AC should have a working voltage of at 

least 200 volts. In practice, a capacitor should be selected so that its working voltage either DC or AC 

should be at least 50 percent greater than the highest effective voltage to be applied to it. 

Another factor which affects the operation of a capacitor is Dielectric Leakage. Dielectric 

leakage occurs in a capacitor as the result of an unwanted leakage current which flows through the 

dielectric material. 

Generally, it is assumed that the resistance of the dielectric is extremely high and a good insulator 

blocking the flow of DC current through the capacitor (as in a perfect capacitor) from one plate to the 

other. 

However, if the dielectric material becomes damaged due excessive voltage or over temperature, 

the leakage current through the dielectric will become extremely high resulting in a rapid loss of charge 

on the plates and an overheating of the capacitor eventually resulting in premature failure of the capacitor. 

Then never use a capacitor in a circuit with higher voltages than the capacitor is rated for otherwise it may 

become hot and explode. 

 

Active elements- voltage source and current source exercise problems 
 

An active element is one that is capable of continuously supplying energy to a circuit, such as a 

battery, a generator, an operational amplifier, etc. A passive element on the other hand are physical 

elements such as resistors, capacitors, inductors, etc, which cannot generate electrical energy by 

themselves but only consume it. 

The types of active circuit elements that are most important to us are those that supply electrical 

energy to the circuits or network connected to them. These are called “electrical sources” with the two 

types of electrical sources being the voltage source and the current source. The current source is usually 

less common in circuits than the voltage source, but both are used and can be regarded as complements of 

each other. 

An electrical supply or simply, “a source”, is a device that supplies electrical power to a circuit in 

the form of a voltage source or a current source. Both types of electrical sources can be classed as a direct 

(DC) or alternating (AC) source in which a constant voltage is called a DC voltage and one that varies 

sinusoidally with time is called an AC voltage. So for example, batteries are DC sources and the 230V 

wall socket or mains outlet in your home is an AC source. 

We said earlier that electrical sources supply energy, but one of the interesting characteristic of an 

electrical source, is that they are also capable of converting non-electrical energy into electrical energy 

and vice versa. For example, a battery converts chemical energy into electrical energy, while an electrical 

machine such as a DC generator or an AC alternator converts mechanical energy into electrical energy. 

Renewable technologies can convert energy from the sun, the wind, and waves into electrical or 

thermal energy. But as well as converting energy from one source to another, electrical sources can both 

deliver or absorb energy allowing it to flow in both directions. 



Another important characteristic of an electrical source and one which defines its operation, are 

its I-V characteristics. The I-V characteristic of an electrical source can give us a very nice pictorial 

description of the source, either as a voltage source and a current source as shown. 

 
 

Electrical Sources 
 

 

 
Electrical sources, both as a voltage source  or  a  current  source  can  be  classed  as  being  

either independent (ideal) or dependent, (controlled) that is whose value depends upon a voltage or 

current elsewhere within the circuit, which itself can be either constant or time-varying. 

When dealing with circuit laws and analysis, electrical sources are often viewed as being “ideal”, 

that is the source is ideal because it could theoretically deliver an infinite amount of energy without loss 

thereby having characteristics represented by a straight line. However, in real or practical sources there is 

always a resistance either connected in parallel for a current source, or series for a voltage source 

associated with the source affecting its output. 

 
 

The Voltage Source 

A voltage source, such as a battery or generator, provides a potential difference (voltage) between two 

points within an electrical circuit allowing current to flowing around it. Remember that voltage can exist 

without current. A battery is the most common voltage source for a circuit with the voltage that appears 

across the positive and negative terminals of the source being called the terminal voltage. 



Ideal Voltage Source 
 

 

 
An ideal voltage source is defined as a two terminal active element that is capable of supplying and 

maintaining the same voltage, (v) across its terminals regardless of the current, (i) flowing through it. In 

other words, an ideal voltage source will supply a constant voltage at all times regardless of the value of 

the current being supplied producing an I-V characteristic represented by a straight line. 

Then an ideal voltage source is known as an Independent Voltage Source as its voltage does not depend 

on either the value of the current flowing through the source or its direction but is determined solely by 

the value of the source alone. So for example, an automobile battery has a 12V terminal voltage that 

remains constant as long as the current through it does not become to high, delivering power to the car in 

one direction and absorbing power in the other direction as it charges. 

On the other hand, a Dependent Voltage Source or controlled voltage source, provides a voltage supply 

whose magnitude depends on either the voltage across or current flowing through some other circuit 

element. A dependent voltage source is indicated with a diamond shape and are used as equivalent 

electrical sources for many electronic devices, such as transistors and operational amplifiers. 

 
 

Connecting Voltage Sources Together 

Ideal voltage sources can be connected together in both parallel or series the same as for any circuit 

element. Series voltages add together while parallel voltages have the same value. Note that unequal ideal 

voltage sources cannot be connected directly together in parallel. 

 
 

Voltage Source in Parallel 
 



While not best practice for circuit analysis, ideal voltage sources can be connected in parallel provided 

they are of the same voltage value. Here in this example, two 10 volt voltage source are combined to 

produce 10 volts between terminals A and B. Ideally, there would be just one single voltage source of 10 

volts given between terminals A and B. 

What is not allowed or is not best practice, is connecting together ideal voltage sources that have different 

voltage values as shown, or are short-circuited by an external closed loop or branch. 

 
 

Badly Connected Voltage Sources 
 

 

 
However, when dealing with circuit analysis, voltage sources of different values can be used 

providing there are other circuit elements in between them to comply with Kirchoff’s Voltage Law, KVL. 

Unlike parallel connected voltage sources, ideal voltage sources of different values can be 

connected together in series to form a single voltage source whose output will be the algebraic addition or 

subtraction of the voltages used. Their connection can be as: series-aiding or series-opposing voltages as 

shown. 

 
 

Voltage Source in Series 
 

 

 
Series aiding voltage sources are series connected sources with their polarities connected so that the plus 

terminal of one is connected to the negative terminal of the next allowing current to flow in the same 



direction. In the example above, the two voltages of 10V and 5V of the first circuit can be added, for a  

VS of 10 + 5 = 15V. So the voltage across terminals A and B is 15 volts. 

Series opposing voltage sources are series connected sources which have their polarities connected so that 

the plus terminal or the negative terminals are connected together as shown in the second circuit above. 

The net result is that the voltages are subtracted from each other. Then the two voltages of 10V and 5V of 

the second circuit are subtracted with the smaller voltage subtracted from the larger voltage. Resulting in 

a VS of 10 - 5 = 5V. 

The polarity across terminals A and B is determined by the larger polarity of the voltage sources, in this 

example terminal A is positive and terminal B is negative resulting in +5 volts. If the series-opposing 

voltages are equal, the net voltage across A and B will be zero as one voltage balances out the other. Also 

any currents (I) will also be zero, as without any voltage source, current can not flow. 

 
 

Voltage Source Example No1 

Two series aiding ideal voltage sources of 6 volts and 9 volts respectively are connected together to 

supply a load resistance of 100 Ohms. Calculate: the source voltage, VS, the load current through the 

resistor, IR and the total power, P dissipated by the resistor. Draw the circuit. 
 

Thus, VS = 15V, IR = 150mA or 0.15A, and PR = 2.25W. 

 
 

Practical Voltage Source 

We have seen that an ideal voltage source can provide a voltage supply that is independent of the 

current flowing through it, that is, it maintains the same voltage value always. This idea may work well 

for circuit analysis techniques, but in the real world voltage sources behave a little differently as for a 

practical voltage source, its terminal voltage will actually decrease with an increase in load current. 

As the terminal voltage of an ideal voltage source does not vary with increases in the load current, 

this implies that an ideal voltage source has zero internal resistance, RS = 0. In other words, it is a 

resistorless voltage source. In reality all voltage sources have a very small internal resistance which 

reduces their terminal voltage as they supply higher load currents. 

For non-ideal or practical voltage sources such as batteries, their internal resistance (RS) produces 

the same effect as a resistance connected in series with an ideal voltage source as these two series 

connected elements carry the same current as shown. 



Ideal and Practical Voltage Source 
 

 

 
You may have noticed that a practical voltage source closely resembles that of a Thevenin’s 

equivalent circuit as Thevenin’s theorem states that “any linear network containing resistances and 

sources of emf and current may be replaced by a single voltage source, VS in series with a single 

resistance, RS“. Note that if the series source resistance is low, the voltage source is ideal. When the 

source resistance is infinite, the voltage source is open-circuited. 

In the case of all real or practical voltage sources, this internal resistance, RS no matter how small 

has an effect on the I-V characteristic of the source as the terminal voltage falls off with an increase in 

load current. This is because the same load current flows through RS. 

Ohms law tells us that when a current, (i) flows through a resistance, a voltage drop is produce 

across the same resistance. The value of this voltage drop is given as i*RS. Then VOUT will equal the ideal 

voltage source, VS minus the i*RS voltage drop across the resistor. Remember that in the case of an ideal 

source voltage, RS is equal to zero as there is no internal resistance, therefore the terminal voltage is same 

as VS. 

Then the voltage sum around the loop given by Kirchoff’s voltage law, KVL is: VOUT = VS – 

i*RS. This equation can be plotted to give the I-V characteristics of the actual output voltage. It will give  

a straight line with a slope –RS which intersects the vertical voltage axis at the same point as VS when the 

current i = 0 as shown. 

 
 

Practical Voltage Source Characteristics 
 



Therefore, all ideal voltage sources will have a straight line I-V characteristic but non-ideal or 

real practical voltage sources will not but instead will have an I-V characteristic that is slightly angled 

down by an amount equal to i*RS where RS is the internal source resistance (or impedance). The I-V 

characteristics of a real battery provides a very close approximation of an ideal voltage source since the 

source resistance RS is usually quite small. 

The decrease in the angle of the slope of the I-V characteristics as the current increases is known 

as regulation. Voltage regulation is an important measure of the quality of a practical voltage source as it 

measures the variation in terminal voltage between no load, that is when IL = 0, (an open-circuit) and full 

load, that is when IL is at maximum, (a short-circuit). 

 

Voltage Source Example No2 

A battery supply consists of an ideal voltage source in series with an internal resistor. The voltage 

and current measured at the terminals of the battery were  found  to  be  VOUT1 = 130V  at  10A,  and 

VOUT2 = 100V at 25A. Calculate the voltage rating of the ideal voltage source and the value of its internal 

resistance. Draw the I-V characteristics. 

Firstly lets define in simple “simultaneous equation form“, the two voltage and current outputs 

of the battery supply given as: VOUT1 and VOUT2. 
 

 

 
As with have the voltages and currents in a simultaneous equation form, to find VS we will first 

multiply VOUT1 by five, (5) and VOUT2 by two, (2) as shown to make the value of the two currents, (i) the 

same for both equations. 
 

 

 

Having made the co-efficients for RS the same by multiplying through with the previous 

constants, we now multiply the second equation VOUT2 by minus one, (-1) to allow for the subtraction of 

the two equations so that we can solve for VS as shown. 



 
 

Knowing that the ideal voltage source, VS is equal to 150 volts, we can use this value for equation 

VOUT1 (or VOUT2 if so wished) and solve to find the series resistance, RS. 
 

 

 
Then for our simple example, the batteries internal voltage source is calculated as: VS = 150 volts, and its 

internal resistance as: RS = 2Ω. The I-V characteristics of the battery are given as: 

 

Battery I-V Characteristics 
 



Dependent Voltage Source 

Unlike an ideal voltage source which produces a constant voltage across its terminals regardless of what 

is connected to it, a controlled or dependent voltage source changes its terminal voltage depending upon 

the voltage across, or the current through, some other element connected to the circuit, and as such it is 

sometimes difficult to specify the value of a dependent voltage source, unless you know the actual value 

of the voltage or current on which it depends. 

Dependent voltage sources behave similar to the electrical sources we have looked at so far, both practical 

and ideal (independent) the difference this time is that a dependent voltage source can be controlled by an 

input  current or voltage. A voltage  source that depends on a voltage input is generally referred to as        

a Voltage Controlled Voltage Source or VCVS. A voltage source that depends on a current input is 

referred too as a Current Controlled Voltage Source or CCVS. 

Ideal dependent sources are commonly used in the analysing the input/output characteristics or the gain of 

circuit elements such as operational amplifiers, transistors and integrated circuits. Generally, an ideal 

voltage dependent source, either voltage or current controlled is designated by a diamond-shaped symbol 

as shown. 

 
 

Dependent Voltage Source Symbols 
 

 
An ideal dependent voltage-controlled voltage source, VCVS, maintains an output voltage equal to some 

multiplying constant (basically an amplification factor) times the controlling voltage present elsewhere in 

the circuit. As the multiplying constant is, well, a constant, the controlling voltage, VIN will determine the 

magnitude of the output voltage, VOUT. In other words, the output voltage “depends” on the value of input 

voltage making it a dependent voltage source and in many ways, an ideal transformer can be thought of as 

a VCVS device with the amplification factor being its turns ratio. 

Then the VCVS output voltage is determined by the following equation: VOUT = μVIN. Note that the 

multiplying constant μ is dimensionless as it is purely a scaling factor because μ = VOUT/VIN, so its units 

will be volts/volts. 

An ideal dependent current-controlled voltage source, CCVS, maintains an output voltage equal to some 

multiplying constant (rho) times a controlling current input generated elsewhere within the connected 

circuit. Then the output voltage “depends” on the value of the input current, again making it a dependent 

voltage source. 

As a controlling current, IIN determines the magnitude of the output voltage, VOUT times the magnification 

constant ρ (rho), this allows us to model a current-controlled voltage source as a trans-resistance amplifier 



as the multiplying constant, ρ  gives  us  the  following  equation:  VOUT = ρIIN.  This  multiplying  

constant ρ (rho) has the units of Ohm’s because ρ = VOUT/IIN, and its units will therefore be volts/amperes. 

Current source: 

As its name implies, a current source is a circuit element that maintains a constant current flow 

regardless of the voltage developed across its terminals as this voltage is determined by other circuit 

elements. That is, an ideal constant current source continually provides a specified amount of current 

regardless of the impedance that it is driving and as such, an ideal current source could, in theory, supply 

an infinite amount of energy. So just as a voltage source may be rated, for example, as 5 volts or 10 volts, 

etc, a current source will also have a current rating, for example, 3 amperes or 15 amperes, etc. 

Ideal constant current sources are represented in a similar manner to voltage sources, but this time the 

current source symbol is that of a circle with an arrow inside to indicates the direction of the flow of the 

current. The direction of the current will correspond to the polarity of the corresponding voltage, flowing 

out from the positive terminal. The letter “i” is used to indicate that it is a current source as shown. 

Ideal Current Source 
 

 

 

Then an ideal current source is called a “constant current source” as it provides a constant steady 

state current independent of the load connected to it producing an I-V characteristic represented by a 

straight line. As with voltage sources, the current source can be either independent (ideal) or dependent 

(controlled) by a voltage or current elsewhere in the circuit, which itself can be constant or time-varying. 

Ideal independent current sources are typically used to solve circuit theorems and for circuit 

analysis techniques for circuits that containing real active elements. The simplest form of a current source 

is a resistor in series with a voltage source creating currents ranging from a few milli-amperes to many 

hundreds of amperes. Remember that a zero-value current source is an open circuit as R = 0. 

The concept of a current source is that of a two-terminal element that allows the flow of current 

indicated by the direction of the arrow. Then a current source has a value, i, in units of amperes, (A) 

which are typically abbreviated to amps. The physical relationship between a current source and voltage 

variables around a network is given by Ohm’s law as these voltage and current variables will have 

specified values. 

It may be difficult to specify the magnitude and polarity of voltage of an ideal current source as a 

function of the current especially if there are other voltage or current sources in the connected circuit. 



Then we may know the current supplied by the current source but not the voltage across it unless the 

power supplied by the current source is given, as P = V*I. 

However, if the current source is the only source within the circuit, then the polarity of voltage 

across the source will be easier to establish. If however there is more than one source, then the terminal 

voltage will be dependent upon the network in which the source is connected. 

Connecting Current Sources Together 

Just like voltage sources, ideal current sources can also be connected together to increase (or 

decrease) the available current. But there are rules on how two or more independent current sources with 

different values can be connected, either in series or parallel. 

Current Source in Parallel 
 

 

Connecting two or more current sources in parallel is equivalent to one current source whose total 

current output is given as the algebraic addition of the individual source currents. Here in this example, 

two 5 amp current sources are combined to produce 10 amps as IT = I1 + I2. 

Current sources of different values may be connected together in parallel. For example, one of 5 

amps and one of 3 amps would combined to give a single current source of 8 amperes as the arrows 

representing the current source both point in the same direction. Then as the two currents add together, 

their connection is said to be: parallel-aiding. 

While not best practice for circuit analysis, parallel-opposing connections use current sources that 

are connected in opposite directions to form a single current source whose value is the algebraic 

subtraction of the individual sources. 

Parallel Opposing Current Sources 
 



Here, as the two current sources are connected in opposite directions (indicated by their arrows), 

the two currents subtract from each other as the two provide a closed-loop path for a circulating current 

complying with Kirchoff’s Current Law, KCL. So for example, two current sources of 5 amps each would 

result in zero output as 5A -5A = 0A. Likewise, if the two currents are of different values, 5A and 3A, 

then the output will be the subtracted value with the smaller current subtracted from the larger current. 

Resulting in a IT of 5 - 3 = 2A. 

We have seen that ideal current sources can be connected together in parallel to form parallel- 

aiding or parallel-opposing current sources. What is not allowed or is not best practice for circuit analysis, 

is connecting together ideal current sources in series combinations. 

Current Sources in Series 

 

 

 

Current sources are not allowed to be connected together in series, either of the same value or 

ones with different values. Here in this example, two current sources of 5 amps each are connected 

together in series, but what is the resulting current value. Is it equal to one source of 5 amps, or is it equal 

to the addition of the two sources, that is 10 amps. Then series connected current sources add an unknown 

factor into circuit analysis, which is not good. 

Also, another reason why series connected sources are not allowed for circuit analysis techniques 

is that they may not supply the same current in the same direction. Series-aiding or series-opposing 

currents do not exist for ideal current sources. 

Current Source Example No1 

Two current sources of 250 milli-amps and 150 milli-amps respectively are connected together in a 

parallel-aiding configuration to supply a connected load of 20 ohms. Calculate the voltage drop across the 

load and the power dissipated. Draw the circuit. 
 

Then, IT = 0.4A or 400mA, VR = 8V, and PR = 3.2W 

Practical Current Source 



We have seen that an ideal constant current source can supply the same amount of current 

indefinitely regardless of the voltage across its terminals, thus making it an independent source. This 

therefore implies that the current source has an infinite internal resistance, (R = ∞). This idea works well 

for circuit analysis techniques, but in the real world current sources behave a little differently as practical 

current sources always have an internal resistance, no matter how large (usually in the mega-ohms range), 

causing the generated source to vary somewhat with the load. 

A practical or non-ideal current source can be represented as an ideal source with an internal 

resistance connected across it. The internal resistance (RP) produces the same effect as a resistance 

connected in parallel (shunt) with the current source as shown. Remember that circuit elements in parallel 

have exactly the same voltage drop across them. 

Ideal and Practical Current Source 
 

 

You may have noticed that a practical current source closely resembles that of a Norton’s 

equivalent circuit as Norton’s theorem states that “any linear dc network can be replaced by an equivalent 

circuit consisting of a constant-current source, IS in parallel with a resistor, RP“. Note that if this parallel 

resistance is very low, RP = 0, the current source is short-circuited. When the parallel resistance is very 

high or infinite, RP ≈ ∞, the current source can be modelled as ideal. 

An ideal current source plots a horizontal line on the I-V characteristic as shown previously 

above. However as practical current sources have an internal source resistance, this takes some of the 

current so the characteristic of this practical source is not flat and horizontal but will reduce as the current 

is now splitting into two parts, with one part of the current flowing into the parallel resistance, RP and the 

other part of the current flowing straight to the output terminals. 

Ohms law tells us that when a current, (i) flows through a resistance, (R) a voltage drop is 

produce across the same resistance. The value of this voltage drop  will  be  given  as  i*RP.  Then  

VOUT will be equal to the voltage drop across the resistor with no load attached. We remember that for 

an ideal source current, RP is infinite as there is no internal resistance, therefore the terminal voltage will 

be zero as there is no voltage drop. 

The sum of the current around the loop given by Kirchoff’s current law, KCL is: IOUT = IS - 

VS/RP. This equation can be plotted to give the I-V characteristics of the output current. It is given as a 

straight line with a slope –RP which intersects the vertical voltage axis at the same point as IS when the 

source is ideal as shown. 

Practical Current Source Characteristics 



 
 

 

Therefore, all ideal current sources will have a straight line I-V characteristic but non-ideal or real 

practical current sources will have an I-V characteristic that is slightly angled down by an amount equal  

to VOUT/RP where RP is the internal source resistance. 

Current Source Example No2 

A practical current source consists of a 3A ideal current source which has an internal resistance of 500 

Ohms. With no-load attached, calculate the current sources open-circuit terminal voltage and the no-load 

power absorbed by the internal resistor. 

1. No-load values: 
 

 

 
Then the open circuit voltage across the internal source resistance and terminals A and B (VAB) is 

calculated at 1500 volts. 

Part 2: If a 250 Ohm load resistor is connected to the terminals of the same practical current source, 

calculate the current through each resistance, the power absorbed by each resistance and the voltage drop 

across the load resistor. Draw the circuit. 

2. Data given with load connected: IS = 3A, RP = 500Ω and RL = 250Ω 
 



 

2a. To find the currents in each resistive branch, we can use the current-division rule. 
 

 

 
2b. The power absorbed by each resistor is given as: 

 

 

 
2c. Then the voltage drop across the load resistor, RL is given as: 

 

We can see that the terminal voltage of an open-circuited practical current source can be very 

high it will produce whatever voltage is needed, 1500 volts in this example, to supply the specified 

current. In theory, this terminal voltage can be infinite as the source attempts to deliver the rated current. 

Connecting a load across its terminals will reduce the voltage, 500 volts in this example, as now 

the current has somewhere to go and for a constant current source, the terminal voltage is directly 

proportional to the load resistance. 

In the case of non-ideal current sources that each have an internal resistance, the total internal 

resistance (or impedance) will be the result of combining them together in parallel, exactly the same as for 

resistors in parallel. 

Dependent Current Source 



We now know that an ideal current source provides a specified amount of current completely 

independent of the voltage across it and as such will produce whatever voltage is necessary to maintain 

the required current. This then makes it completely independent of the circuit to which it is connected to 

resulting in it being called an ideal independent current source. 

A controlled or dependent current source on the other hand changes its available current 

depending upon the voltage across, or the current through, some other element connected to the circuit. In 

other words, the output of a dependent current source is controlled by another voltage or current. 

Dependent current sources behave similar to the current sources we have looked at so far, both 

ideal (independent) and practical. The difference this time is that a dependent current source can be 

controlled by an input voltage or current. A current source that depends on a voltage input is generally 

referred to as a Voltage Controlled Current Source or VCCS. A current source that depends on a current 

input is generally referred too as a Current Controlled Current Source or CCCS. 

Generally, an ideal current dependent source, either voltage or current controlled is designated by 

a diamond-shaped symbol where an arrow indicates the direction of the current, i as shown. 

Dependent Current Source Symbols 
 

 

An ideal dependent voltage-controlled current source, VCCS, maintains an  output  current,  

IOUT that is proportional to the controlling input voltage, VIN. In other words, the output current 

“depends” on the value of input voltage making it a dependent current source. 

Then the VCCS output current is defined by the following equation: IOUT = αVIN. This 

multiplying  constant α (alpha)  has  the   SI  units  of   mhos,   ℧   (an  inverted   Ohms   sign)   because  α 

= IOUT/VIN, and its units will therefore be amperes/volt. 

An ideal dependent current-controlled current source, CCCS, maintains an output current that is 

proportional to a controlling input current. Then the output current “depends” on the value of the input 

current, again making it a dependent current source. 

As a controlling current, IIN determines the magnitude of the output current, IOUT times the 

magnification constant β (beta), the output current for a CCCS element is determined by the following 

equation:  IOUT = βIIN.   Note  that   the  multiplying  constant β is  a  dimensionless  scaling  factor   as 

β = IOUT/IIN, so therefore its units would be amperes/amperes. 

Kirchhoffs voltage law voltage division rule 



Kirchhoff’s Voltage Law 

 
Kirchhoff’s Voltage Law (KVL) is Kirchhoff’s second law that deals with the conservation of 

energy around a closed circuit path. 

 

Gustav Kirchhoff’s Voltage Law is the second of his fundamental laws we can use for circuit 

analysis. His voltage law states that for a closed loop series path the algebraic sum of all the voltages 

around any closed loop in a circuit is equal to zero. This is because a circuit loop is a closed 

conducting path so no energy is lost. 

In other words the algebraic sum of ALL the potential differences around the loop must be equal 

to zero as: ΣV = 0. Note here that the term “algebraic sum” means to take into account the polarities and 

signs of the sources and voltage drops around the loop. 

This idea by Kirchhoff is commonly known as the Conservation of Energy, as moving around a 

closed loop, or circuit, you will end up back to where you started in the circuit and therefore back to the 

same initial potential with no loss of voltage around the loop. Hence any voltage drops around the loop 

must be equal to any voltage sources met along the way. 

So when applying Kirchhoff’s voltage law to a specific circuit element, it is important that we 

pay special attention to the algebraic signs, (+ and -) of the voltage drops across elements and the emf’s of 

sources otherwise our calculations may be wrong. 

But before we look more closely at Kirchhoff’s voltage law (KVL) lets first understand the 

voltage drop across a single element such as a resistor. 

 
 

A Single Circuit Element 
 

For this simple example we will assume that the current, I is in the same direction as the flow of 

positive charge, that is conventional current flow. 

Here the flow of current through the resistor is from point A to point B, that is from positive 

terminal to a negative terminal. Thus as we are travelling in the same direction as current flow, there will 

be a fall in potential across the resistive element giving rise to a -IR voltage drop across it. 

If the flow of current was in the opposite direction from point B to point A, then there would be   

a rise in potential across the resistive element as we are moving from a -potential to a + potential giving 

us a +I*R voltage drop. 



Thus to apply Kirchhoff’s voltage law correctly to a circuit, we must first understand the direction 

of the polarity and as we can see, the sign of the voltage drop across the resistive element will depend on 

the direction of the current flowing through it. As a general rule, you will loose potential in the same 

direction of current across an element and gain potential as you move in the direction of an emf source. 

The direction of current flow around a closed circuit can be assumed to be either clockwise or 

anticlockwise and either one can be chosen. If the direction chosen is different from the actual direction of 

current flow, the result will still be correct and valid but will result in the algebraic answer having a minus 

sign. 

To understand this idea a little more, lets look at a single circuit loop to see if Kirchhoff’s Voltage 

Law holds true. 

 
 

A Single Circuit Loop 
 

 

 
Kirchhoff’s voltage law states that the algebraic sum of the potential differences in any loop must 

be equal to zero as: ΣV = 0. Since the two resistors, R1 and R2 are wired together in a series connection, 

they are both part of the same loop so the same current must flow through each resistor. 

Thus  the  voltage  drop  across   resistor,   R1 = I*R1 and   the   voltage   drop   across   resistor, 

R2 = I*R2 giving by KVL: 
 



We can see that applying Kirchhoff’s Voltage Law to this single closed loop produces the formula for the 

equivalent or total resistance in the series circuit and we can expand on this to find the values of the 

voltage drops around the loop. 
 

 
 

Kirchhoff’s Voltage Law Example No1 

Three resistor of values: 10 ohms, 20 ohms and 30 ohms, respectively are connected in series across a 12 

volt battery supply. Calculate: a) the total resistance, b) the circuit current, c) the current through each 

resistor, d) the voltage drop across each resistor, e) verify that Kirchhoff’s voltage law, KVL holds true. 

 
 

a) Total Resistance (RT) 

RT = R1 + R2 + R3 = 10Ω + 20Ω + 30Ω = 60Ω 

Then the total circuit resistance RT is equal to 60Ω 

 
 

b) Circuit Current (I) 
 

Thus the total circuit current I is equal to 0.2 amperes or 200mA 

 

 
c) Current Through Each Resistor 

The resistors are wired together in series, they are all part of the same loop and therefore each experience 

the same amount of current. Thus: 

IR1 = IR2 = IR3 = ISERIES = 0.2 amperes 

 
 

d) Voltage Drop Across Each Resistor 

VR1 = I x R1 = 0.2 x 10 = 2 volts 

VR2 = I x R2 = 0.2 x 20 = 4 volts 



VR3 = I x R3 = 0.2 x 30 = 6 volts 

 
 

e) Verify Kirchhoff’s Voltage Law 
 

 
Thus Kirchhoff’s voltage law holds true as the individual voltage drops around the closed loop add up to 

the total. 

 
 

Kirchhoff’s Circuit Loop 
 

 

 
We have seen here that Kirchhoff’s voltage law, KVL is Kirchhoff’s second law and states that the 

algebraic sum of all the voltage drops, as you go around a closed circuit from some fixed point and return 

back to the same point, and taking polarity into account, is always zero. That is ΣV = 0 

The theory behind Kirchhoff’s second law is also known as the law of conservation of voltage, and this is 

particularly useful for us when dealing with series circuits, as series circuits also act as voltage dividers 

and the voltage divider circuit is an important application of many series circuits. 



 

Kirchhoff’s Current Law 

 

Kirchhoff’s Current Law (KCL) is Kirchhoff’s first law that deals with the conservation of charge 

entering and leaving a junction. 

 

 

To determine the amount or magnitude of the electrical current flowing around an electrical or 

electronic circuit, we need to use certain laws or rules that allows us to write down these currents in the 

form of an equation. The network equations used are those according to Kirchhoff’s laws, and as we are 

dealing with circuit currents, we will be looking at Kirchhoff’s current law, (KCL). 

Gustav Kirchhoff’s Current Law is one of the fundamental laws used for circuit analysis. His 

current law states that for a parallel path the total current entering a circuits junction is exactly equal 

to the total current leaving the same junction. This is because it has no other place to go as no charge 

is lost. 

In other words the algebraic sum of ALL the currents entering and leaving a junction must be 

equal to zero as: Σ IIN = Σ IOUT. 

This idea by Kirchhoff is commonly known as the Conservation of Charge, as the current is 

conserved around the junction with no loss of current. Lets look at a simple example of Kirchhoff’s 

current law (KCL) when applied to a single junction. 

 

A Single Junction 
 

Here in this simple single junction example, the current ITleaving the junction is the algebraic 

sum of the two currents, I1and I2 entering the same junction. That is IT = I1 + I2. 

Note that we could also write this correctly as the algebraic sum of: IT - (I1 + I2) = 0. 



So if I1 equals 3 amperes and I2 is equal to 2 amperes, then the total current, IT leaving the 

junction will be 3 + 2 = 5 amperes, and we can use this basic law for any number of junctions or nodes as 

the sum of the currents both entering and leaving will be the same. 

Also, if we reversed the directions of the currents, the resulting equations would still hold true for 

I1 or I2. As I1 = IT - I2 = 5 - 2 = 3 amps, and I2 = IT - I1 = 5 - 3 = 2 amps. Thus we can think of the currents 

entering the junction as being positive (+), while the ones leaving the junction as being negative (-). 

Then we can see that the mathematical sum of the currents either entering or leaving the junction and in 

whatever direction will always be equal to zero, and this forms the basis of Kirchhoff’s Junction Rule, 

more commonly known as Kirchhoff’s Current Law, or (KCL). 

 

Resistors in Parallel 

Let’s look how we could apply Kirchhoff’s current law to resistors in parallel, whether the resistances in 

those branches are equal or unequal. Consider the following circuit diagram: 
 

 

 

In this simple parallel resistor example there are two distinct junctions for current. Junction one 

occurs at node B, and junction two occurs at node E. Thus we can use Kirchhoff’s Junction Rule for the 

electrical currents at both of these two distinct junctions, for those currents entering the junction and for 

those currents flowing leaving the junction. 

To start, all the current, IT leaves the 24 volt supply and arrives at point A and from there it enters 

node B. Node B is a junction as the current can now split into two distinct directions, with some of the 

current flowing downwards and through resistor R1 with the remainder continuing on through resistor 

R2 via node C. Note that the currents flowing into and out of a node point are commonly called branch 

currents. 

We can use Ohm’s Law to determine the individual branch currents through each resistor as: 

I = V/R, thus: 

For current branch B to E through resistor R1 



 
 

For current branch C to D through resistor R2 
 

 

 
From above we know that Kirchhoff’s current law states that the sum of the currents entering a 

junction must equal the sum of the currents leaving the junction, and in our simple example above, there 

is one current, IT going into the junction at node B and two currents leaving the junction, I1 and I2. 

Since we now know from calculation that the currents leaving the junction at node B is I1equals 3 

amps and I2 equals 2 amps, the sum of the currents entering the junction at node B must equal 3 + 2 = 5 

amps. Thus ΣIN = IT = 5 amperes. 

In our example, we have two distinct junctions at node B and node E, thus we can confirm this 

value for IT as the two currents recombine again at node E. So, for Kirchhoff’s junction rule to hold true, 

the sum of the currents into point F must equal the sum of the currents flowing out of the junction at node 

E. 

As the two currents entering junction E are 3 amps and 2 amps respectively, the sum of the 

currents entering point F is therefore: 3 + 2 = 5 amperes. Thus ΣIN = IT = 5 amperes and therefore 

Kirchhoff’s current law holds true as this is the same value as the current leaving point A. 

 

Applying KCL to more complex circuits. 

We can use Kirchhoff’s current law to find the currents flowing around more complex circuits. We 

hopefully know by now that the algebraic sum of all the currents at a node (junction point) is equal to zero 

and with this idea in mind, it is a simple case of determining the currents entering a node and those 

leaving the node. Consider the circuit below. 



Kirchhoff’s Current Law Example No1 
 

 

 
In this example there are four distinct junctions for current to either separate or merge together at 

nodes A, C, E and node F. The supply current IT separates at node A flowing through resistors R1 and R2, 

recombining at node C before separating again through resistors R3, R4 and R5 and finally recombining 

once again at node F. 

But before we can calculate the individual currents flowing through each resistor branch, we must 

first calculate the circuits total current, IT. Ohms law tells us that I = V/R and as we know the value of V, 

132 volts, we need to calculate the circuit resistances as follows. 

 

Circuit Resistance RAC 

 

Thus the equivalent circuit resistance between nodes A and C is calculated as 1 Ohm. 



Circuit Resistance RCF 

 

Thus the equivalent circuit resistance between nodes C and F is calculated as 10 Ohms. Then the total 

circuit current, IT is given as: 
 

Giving us an equivalent circuit of: 

 
 

Kirchhoff’s Current Law Equivalent Circuit 
 

 

 
Therefore, V = 132V, RAC = 1Ω, RCF = 10Ω’s and IT = 12A. 

Having established the equivalent parallel resistances and supply current, we can now calculate the 

individual branch currents and confirm using Kirchhoff’s junction rule as follows. 



 
 

 

 
Thus, I1 = 5A, I2 = 7A, I3 = 2A, I4 = 6A, and I5 = 4A. 

We can confirm that Kirchoff’s current law holds true around the circuit by using node C as our reference 

point to calculate the currents entering and leaving the junction as: 
 

 

 
We can also double check to see if Kirchhoffs Current Law holds true as the currents entering the junction 

are positive, while the ones leaving the junction are negative, thus the algebraic sum is: I1 + I2 - I3 - I4 - 

I5 = 0 which equals 5 + 7 – 2 – 6 – 4 = 0. 

So we can confirm by analysis that Kirchhoff’s current law (KCL) which states that the algebraic sum of 

the currents at a junction point in a circuit network is always zero is true and correct in this example. 

 

Kirchhoff’s Current Law Example No2 

Find the currents flowing around the following circuit using Kirchhoff’s Current Law only. 



 
 

 
 

IT is the total current flowing around the circuit driven by the 12V supply voltage. At point A, I1 is equal 

to IT, thus there will be an I1*R voltage drop across resistor R1. 

The circuit has 2 branches, 3 nodes (B, C and D) and 2 independent loops, thus the I*R voltage drops 

around the two loops will be: 

• Loop ABC ⇒ 12 = 4I1 + 6I2 

• Loop ABD ⇒ 12 = 4I1 + 12I3 

Since Kirchhoff’s current law states that at node B, I1 = I2 + I3, we can therefore substitute current I1 for 

(I2 + I3) in both of the following loop equations and then simplify. 

 

Kirchhoff’s Loop Equations 
 

 

 
We now have two simultaneous equations that relate to the currents flowing around the circuit. 

Eq. No 1 : 12 = 10I2 + 4I3 

Eq. No 2 : 12 = 4I2 + 16I3 



By multiplying the first equation (Loop ABC) by 4 and subtracting Loop ABD from Loop ABC, we can 

be reduced both equations to give us the values of I2 and I3 

Eq. No 1 : 12 = 10I2 + 4I3 ( x4 ) ⇒ 48 = 40I2 + 16I3 

Eq. No 2 : 12 = 4I2 + 16I3 ( x1 ) ⇒ 12 = 4I2 + 16I3 

Eq. No 1 – Eq. No 2 ⇒ 36 = 36I2 + 0 

Substitution of I2 in terms of I3 gives us the value of I2 as 1.0 Amps 

Now we can do the same procedure to find the value of I3 by multiplying the first equation (Loop ABC) 

by 4 and the second equation (Loop ABD) by 10. Again by subtracting Loop ABC from Loop ABD, we 

can be reduced both equations to give us the values of I2 and I3 

Eq. No 1 : 12 = 10I2 + 4I3 ( x4 ) ⇒ 48 = 40I2 + 16I3 Eq. 

No 2 : 12 = 4I2 + 16I3 ( x10 )  ⇒ 120 = 40I2 + 160I3 

Eq. No 2 – Eq. No 1 ⇒ 72 = 0 + 144I3 

Thus substitution of I3 in terms of I2 gives us the value of I3 as 0.5 Amps 

As Kirchhoff’s junction rule states that : I1 = I2 + I3 

The supply current flowing through resistor R1 is given as : 1.0 + 0.5 = 1.5 Amps 

Thus I1 = IT = 1.5 Amps, I2 = 1.0 Amps and I3 = 0.5 Amps and from that information we could calculate 

the I*R voltage drops across the devices and at the various points (nodes) around the circuit. 

We could have solved the circuit of example two simply and easily just using Ohm’s Law, but we have 

used Kirchhoff’s Current Law here to show how it is possible to solve more complex circuits when we 

cannot just simply apply Ohm’s Law. 

Current Division 

Statement and formula of Current Divider 
 

Statement: The electrical current entering the node of a parallel circuit is divided into the branches. 

Current divider formula is employed to calculate the magnitude of divided current in the circuits. 

Let's understand the basic definitions: 

Node: A point where two or more than two components are joined. 

Parallel circuit: The circuit in which one end of all components share a common node, and the other end 

of all components share the other common node. You can learn more about parallel circuit 

configuration here. 

 

General formula 
 

A parallel circuit with 'n' number of resistors and an input voltage source is illustrated below. We are 

interested to find the current which is flowing through Rx. 

http://www.basicsofelectricalengineering.com/2018/02/series-vs-parallel-circuit-configuration.html
http://www.basicsofelectricalengineering.com/2018/02/series-vs-parallel-circuit-configuration.html


 

In the above formula: 
Ix: The current through Rx. 

It: The total current which enters the circuit. 

Rx: The resistance of the component whose current value is to be determined 

Rt: The equivalent resistance of the parallel circuit 

 

For two resistors 
 

Let's consider a parallel circuit having two resistors R1 and R2. The current It enters the node. We are 

interested to calculate the current that is flowing through. The general formula and circuit now take the 

form: 

 
 

We can modify the previous equation to obtain an alternative formula: 



 
 

: 
 

Resistors in parallel divide up the current. When we have a current flowing through resistors in parallel, 

we can express the current flowing through a single resistor as ratio of currents and resistances, without 

ever knowing the voltage. 

 
 

In the circuit above 
 

 

or 

 

where i is the current flowing through all the resistors. Note that the numerator on the right is R2, not 

R1. Remember that a larger resistance will carry a smaller current. 

We can generalize the equation for N resistors in parallel with the equation: 



 
 

where ik is the current flowing through resistor k and i is the current flowing through all the resistors. 

 
Example # 1: A 5 kΩ resistor connects in parallel to a 20 kΩ resistor. 5 A current enters the node. Find 

the current across both resistors. 

Solution: 

Derivation of Current Divider formula 
 

The derivation of CDR formula is very simple. Let's reconsider the general circuit: 

 

Apply the Ohm's law on Rx. 

Ix = E/Rx 



where E = ItRt. 

Ix = ItRt/Rx. 
or 

Ix = [Rt/Rx] * It 

 
Problem 2 

Simplify the circuit and then use current division to find ix in the circuit below: 

 
ix = 2A 

 
Series, parallel connection of resistors, inductors and capacitors and their equivalents: 

Resistors in Series and Parallel 

Resistor circuits that  combine  series  and  parallel  resistors  networks  together  are  generally  known  

as Resistor Combination or mixed resistor circuits. The method of calculating the circuits equivalent 

resistance is the same as that for any individual series or parallel circuit and hopefully we now know that 

resistors in series carry exactly the same current and that resistors in parallel have exactly the same 

voltage across them. 

For example, in the following circuit calculate the total current ( IT ) taken from the 12v supply. 
 



At first glance this may seem a difficult task, but if we look a little closer we can see that the two 

resistors, R2 and R3 are actually both connected together in a “SERIES” combination so we can add them 

together to produce an equivalent resistance the same as we did in the series resistor tutorial. The resultant 

resistance for this combination would therefore be: 

R2 + R3 = 8Ω + 4Ω = 12Ω 

So we can replace both resistor R2 and R3 above with a single resistor of resistance value 12Ω 
 

So our circuit now has a single resistor RA in “PARALLEL” with the resistor R4. Using our resistors in 

parallel  equation  we  can  reduce  this  parallel  combination  to  a  single  equivalent  resistor  value     

of R(combination) using the formula for two parallel connected resistors as follows. 
 

The resultant resistive circuit now looks something like this: 
 

 

We can see that the two remaining resistances, R1 and R(comb) are connected together in a “SERIES” 

combination and again they can be added together (resistors in series) so that the total circuit resistance 

between points A and B is therefore given as: 

R(AB) = Rcomb + R1 = 6Ω + 6Ω = 12Ω. 
 



and a single resistance of just 12Ω can be used to replace the original four resistors connected together in 

the original circuit. 

Now by using Ohm´s Law, the value of the circuit current ( I) is simply calculated as: 
 

So any complicated resistive circuit consisting of several resistors can be reduced to a simple 

single circuit with only one equivalent resistor by replacing all the resistors connected together in series or 

in parallel using the steps above. 

It is sometimes easier with complex resistor combinations and resistive networks to sketch or 

redraw the new circuit after these changes have been made, as this helps as a visual aid to the maths. Then 

continue to replace any series or parallel combinations until one equivalent resistance, REQ is found. Lets 

try another more complex resistor combination circuit. 

 
 

Resistors in Series and Parallel Example No2 

Find the equivalent resistance, REQ for the following resistor combination circuit. 
 

Again, at first glance this resistor ladder network may seem a complicated task, but as before it is 

just a combination of series and parallel resistors connected together. Starting from the right hand side 

and using the simplified equation for two parallel resistors, we can find the equivalent resistance of       

the R8 to R10 combination and call it RA. 
 

 



RA is in series with R7 therefore the total resistance will be RA + R7 = 4 + 8 = 12Ω as shown. 
 

This resistive value of 12Ω is now in parallel with R6 and can be calculated as RB. 
 

RB is in series with R5 therefore the total resistance will be RB + R5 = 4 + 4 = 8Ω as shown. 
 

This resistive value of 8Ω is now in parallel with R4 and can be calculated as RC as shown. 
 

RC is in series with R3 therefore the total resistance will be RC + R3 = 8Ω as shown. 
 

This resistive value of 8Ω is now in parallel with R2 from which we can calculated RD as: 



 
 

RD is in series with R1 therefore the total resistance will be RD + R1 = 4 + 6 = 10Ω as shown. 
 

Inductors in Series and parallel: 

 
Inductors can be connected together in a series connection when the are daisy chained together sharing a 

common electrical current 

 

Inductor in Series Circuit 
 

 

The current, ( I ) that flows through the first inductor, L1 has no other way to go but pass through 

the second inductor and the third and so on. Then, series inductors have a Common Current flowing 

through them, for example: 

 

IL1 = IL2 = IL3 = IAB …etc. 

 

In the example above, the inductors L1, L2 and L3 are all connected together in series between 

points A and B. The sum of the individual voltage drops across each inductor can be found using 

Kirchoff’s Voltage Law (KVL) where, VT = V1 + V2 + V3 and we know from the previous tutorials on 

inductance that the self-induced emf across an inductor is given as: V = L di/dt. 

So by taking the values of the individual voltage drops across each inductor in our example 

above, the total inductance for the series combination is given as: 
 



By dividing through the above equation by di/dt we can reduce it to give a final expression for 

calculating the total inductance of a circuit when connecting inductors together in series and this is given 

as: 

 

 

Inductors in Series Equation 

  Ltotal = L1 + L2 + L3 + ….. + Ln etc.  
 

Then the total inductance of the series chain can be found by simply adding together the 

individual inductances of the inductors in series just like adding together resistors in series. However, the 

above equation only holds true when there is “NO” mutual inductance or magnetic coupling between two 

or more of the inductors, (they are magnetically isolated from each other). 

One important point to remember about inductors in series circuits, the total inductance ( LT ) of 

any two or more inductors connected together in series will always be GREATERthan the value of the 

largest inductor in the series chain. 

 

Inductors in Series Example No1 

Three inductors of 10mH, 40mH and 50mH are connected together in a series combination with no 

mutual inductance between them. Calculate the total inductance of the series combination. 
 

 
 

Inductors in Parallel Circuit 
 

In the previous series inductors tutorial, we saw that the total inductance, LT of the circuit was 

equal to the sum of all the individual inductors added together. For inductors in parallel the equivalent 

circuit inductance LT is calculated differently. 

The sum of the individual currents flowing through each inductor can be found using Kirchoff’s 

Current Law (KCL) where, IT = I1 + I2 + I3 and we know from the previous tutorials on inductance that 

the self-induced emf across an inductor is given as: V = L di/dt 

Then by taking the values of the individual currents flowing through each inductor in our circuit 

above, and substituting the current i for i1 + i2 + i3 the voltage across the parallel combination is given as: 



 
 

By substituting di/dt in the above equation with v/L gives: 
 

We can reduce it to give a final expression for calculating the total inductance of a circuit when 

connecting inductors in parallel and this is given as: 

 

Parallel Inductor Equation 
 

 

Here, like the calculations for parallel resistors, the reciprocal ( 1/Ln ) value of the individual 

inductances are all added together instead of the inductances themselves. But again as with series 

connected inductances, the above equation only holds true when there is “NO” mutual inductance or 

magnetic coupling between two or more of the inductors, (they are magnetically isolated from each 

other). Where there is coupling between coils, the total inductance is also affected by the amount of 

coupling. 

This method of calculation can be used for calculating any number of individual inductances 

connected together within a single parallel network. If however, there are only two individual inductors in 

parallel then a much simpler and quicker formula can be used to find the total inductance value, and this 

is: 
 

 

One important point to remember about inductors in parallel circuits, the total inductance ( LT ) of 

any two or more inductors connected together in parallel will always be LESS than the value of the 

smallest inductance in the parallel chain. 

 

Inductors in Parallel Example No1 

Three inductors of 60mH, 120mH and 75mH respectively, are connected together in a parallel 

combination with no mutual inductance between them. Calculate the total inductance of the parallel 

combination in millihenries. 



 
 
 

Capacitors in a Series Connection 
 

In the previous parallel circuit we saw that the total capacitance, CT of the circuit was equal to the 

sum of all the individual capacitors added together. In a series connected circuit however, the total or 

equivalent capacitance CT is calculated differently. 

In the series circuit above the right hand plate of the first capacitor, C1 is connected to the left 

hand plate of the second capacitor, C2 whose right hand plate is connected to the left hand plate of the 

third capacitor, C3. Then this series connection means that in a DC connected circuit, capacitor C2 is 

effectively isolated from the circuit. 

The result of this is that the effective plate area has decreased to the smallest individual 

capacitance connected in the series chain. Therefore the voltage drop across each capacitor will be 

different depending upon the values of the individual capacitance’s. 

Then by applying Kirchoff’s Voltage Law, ( KVL ) to the above circuit, we get: 
 

Since Q = CV and rearranging for V = Q/C, substituting Q/C for each capacitor voltage VCin the above 

KVL equation will give us: 
 

dividing each term through by Q gives 



Series Capacitors Equation 
 

 

When adding together Capacitors in Series, the reciprocal ( 1/C ) of the individual capacitors are 

all added together ( just like resistors in parallel ) instead of the capacitance’s themselves. Then the total 

value for capacitors in series equals the reciprocal of the sum of the reciprocals of the individual 

capacitances. 

 
 

Capacitors in Series Example No1 

Taking the three capacitor values from the above example, we can calculate the total capacitance, CT for 

the three capacitors in series as: 
 

One important point to remember about capacitors that are connected together in a series 

configuration, is that the total circuit capacitance ( CT ) of any number of capacitors connected together in 

series will always be LESS than the value of the smallest capacitor in the series and in our example  

above CT = 0.055uF with the value of the smallest capacitor in the series chain is only 0.1uF. 

This reciprocal method of calculation can be used for calculating any number of individual 

capacitors connected together in a single series network. If however, there are only two capacitors in 

series, then a much simpler and quicker formula can be used and is given as: 
 

 

If the two series connected capacitors are equal and of the same value, that is: C1 = C2, we can 

simplify the above equation further as follows to find the total capacitance of the series combination. 
 

 

Then we can see that if and only if the two series connected capacitors are the same and equal, 

then the total capacitance, CT will be exactly equal to one half of the capacitance value, that is: C/2. 

With series connected resistors, the sum of all the voltage drops across the series circuit will be 

equal to the applied voltage VS ( Kirchoff’s Voltage Law ) and this is also true about capacitors in series. 



With series connected capacitors, the capacitive reactance of the capacitor acts as an impedance 

due to the frequency of the supply. This capacitive reactance produces a voltage drop across each 

capacitor, therefore the series connected capacitors act as a capacitive voltage divider network. 

The result is that the voltage divider formula applied to resistors can also be used to find the 

individual voltages for two capacitors in series. Then: 
 

 

Where: CX is the capacitance of the capacitor in question, VS is the supply voltage across the 

series chain and VCX is the voltage drop across the target capacitor. 

Capacitors in Parallel 

 
When capacitors are connected together in parallel the total or equivalent capacitance, CT in the 

circuit is equal to the sum of all the individual capacitors added together. This is because the top plate of 

capacitor, C1 is connected to the top plate of C2 which is connected to the top plate of C3 and so on. 

The same is also true of the capacitors bottom plates. Then it is the same as if the three sets of 

plates were touching each other and equal to one large single plate thereby increasing the effective plate 

area in m2. 

Since capacitance, C is related to plate area ( C = ε A/d ) the capacitance value of the combination 

will also increase. Then the total capacitance value of the capacitors connected together in parallel is 

actually calculated by adding the plate area together. In other words, the total capacitance is equal to the 

sum of all the individual capacitance’s in parallel. You may have noticed that the total capacitance of 

parallel capacitors is found in the same way as the total resistance of series resistors. 

The currents flowing through each capacitor and as we saw in the previous tutorial are related to the 

voltage. Then by applying Kirchoff’s Current Law, ( KCL ) to the above circuit, we have 
 

and this can be re-written as: 
 



Then we can define the total or equivalent circuit capacitance, CT as being the sum of all the 

individual capacitance’s add together giving us the generalized equation of: 

 
 

Parallel Capacitors Equation 
 

 

When adding together capacitors in parallel, they must all be converted to the same capacitance 

units, whether it is uF, nF or pF. Also, we can see that the current flowing through the total capacitance 

value, CT is the same as the total circuit current, iT 

We can also define the total capacitance of the parallel circuit from the total stored coulomb 

charge using the Q = CV equation for charge on a capacitors plates. The total charge QT stored on all the 

plates equals the sum of the individual stored charges on each capacitor therefore, 
 

As the voltage, ( V ) is common for parallel connected capacitors, we can divide both sides of the 

above equation through by the voltage leaving just the capacitance and by simply adding together the 

value of the individual capacitances gives the total capacitance, CT. Also, this equation is not dependent 

upon the number of Capacitors in Parallel in the branch, and can therefore be generalized for any 

number of N parallel capacitors connected together. 

 
 

Capacitors in Parallel Example No1 

So by taking the values of the three capacitors from the above example, we can calculate the total 

equivalent circuit capacitance CT as being: 

CT = C1 + C2 + C3 = 0.1uF + 0.2uF + 0.3uF = 0.6uF 
 

One important point to remember about parallel connected capacitor circuits, the total capacitance 

( CT ) of any two or more capacitors connected together in parallel will always be GREATER than the 



value of the largest capacitor in the group as we  are  adding  together  values.  So  in  our  example  

above CT = 0.6uF whereas the largest value capacitor is only 0.3uF. 

When 4, 5, 6 or even more capacitors are connected together  the  total  capacitance  of  the 

circuit CT would still be the sum of all the individual capacitors added together and as we know now, the 

total capacitance of a parallel circuit is always greater than the highest value capacitor. 

This is because we have effectively increased the total surface area of the plates. If we do this 

with two identical capacitors, we have doubled the surface area of the plates which in turn doubles the 

capacitance of the combination and so on. 

Resistors in Series and Parallel Example No2 

Find the equivalent resistance, REQ for the following resistor combination circuit. 
 

 

Again, at first glance this resistor ladder network may seem a complicated task, but as before it is 

just a combination of series and parallel resistors connected together. Starting from the right hand side 

and using the simplified equation for two parallel resistors, we can find the equivalent resistance of       

the R8 to R10 combination and call it RA. 
 



 
 

RA is in series with R7 therefore the total resistance will be RA + R7 = 4 + 8 = 12Ω as shown. 
 

This resistive value of 12Ω is now in parallel with R6 and can be calculated as RB. 
 

RB is in series with R5 therefore the total resistance will be RB + R5 = 4 + 4 = 8Ω as shown. 
 

This resistive value of 8Ω is now in parallel with R4 and can be calculated as RC as shown. 
 

RC is in series with R3 therefore the total resistance will be RC + R3 = 8Ω as shown. 



 
 

This resistive value of 8Ω is now in parallel with R2 from which we can calculated RD as: 
 

RD is in series with R1 therefore the total resistance will be RD + R1 = 4 + 6 = 10Ω as shown. 
 

Then the complex combinational resistive network above comprising of ten individual resistors 

connected together in series and parallel combinations can be replaced with just one single equivalent 

resistance ( REQ ) of value 10Ω. 

When solving any combinational resistor circuit that is made up of resistors in series and parallel 

branches, the first step we need to take is to identify the simple series and parallel resistor branches and 

replace them with equivalent resistors. 

Source transformation technique 

 
Background Study 

An electrical network can consist of sources and passive elements. Sources are circuit 

components which possess their own energy and are capable of transferring this energy to other circuit 

elements. 



There are two basic types of sources: voltage sources and current sources. These can be further 

classified as independent or dependent. In the case of independent sources, the voltage or current is 

fixed. If the source is dependent, the value of the voltage or current depends on the amount of current 

or voltage elsewhere in the circuit. 

Passive components do not have their own energy. As a result of this, they are regarded as 

sinks. However, they influence the amount of current or voltage in a given portion of the circuit. 

Resistors, capacitors, and inductors are passive components. 

 

 
 

Analyzing Electrical Networks 

The complexity of electrical networks  ranges  from  very simple—e.g.,  a  voltage  divider— 

to very complicated—e.g., the internal structure of an integrated circuit (IC). 

A good electrical designer is expected to have a sound knowledge of the entire system 

irrespective of its complexity. This is absolutely essential when the issue arises of upgrading or 

troubleshooting the system. 

At this point, it is essential to note that analyzing an electrical circuit is sometimes easy and 

straightforward, taking only a couple of minutes in its entirety. Sometimes, though, it can involve a lot 

of hard work (or rather, smart work), and it may even force the analyzer to resort to help from 

software. Nevertheless, the mode of analysis is based on certain basic rules and theorems. 

Here's a list of important theorems along with a brief explanation: 

 
1. Superposition Theorem: Aids in finding the current and voltage in a circuit which has multiple 

sources; the effects produced by each of the sources individually can be summed. 

2. Thevenin's Theorem: Aids in circuit simplification; multiple sources and resistances can be 

represented by an equivalent circuit with just a single voltage source and a single resistor. 

3. Norton's Theorem: Aids in circuit simplification; multiple sources and resistances can be 

represented by an equivalent circuit with just a single current source and a single resistor. 

4. Millman's Theorem: A simplification technique involving circuits with parallel branches. 

 
At this point, it should be noted that all these theorems are based on the basic rules governing the 

field of electronics, namely, Ohm's Law and Kirchoff's Laws. 

In addition, we may sometimes find a circuit which has the resistors connected either in a delta/pi 

or a star/Y/T configuration. In such cases, we can employ star-to-delta or delta-to-star transformation 

when analyzing the circuit. 

Source Transformation for Independent Sources 

Consider the circuit shown in Figure 1; the goal is to find the current (denoted by i) through 

the central 5 Ω resistor. Here, mesh analysis (Kirchoff's Voltage Law, KVL) cannot be applied readily 

because the circuit has a branch which has a current source. Thus, we need to devise a method by 



which we can eliminate this current source from our circuit. However, while doing so, we need to take 

care that the current and the voltages in the circuit remain unaltered. 

 

 
 

 

 

 
Recall Ohm's Law, which states that 

Figure 1 

 

 
I=VRI=VR 

 

Step 1: Current-to-Voltage Source Transformation 

Looking back at the circuit (Figure 1) again, we can see that the 1 A current source has a 10 Ω resistor 

in parallel with it. Let us now replace this combination with a voltage source, V = 1 A × 10 Ω = 10 V, 

and a 10 Ω series resistor. You can see what this looks like in Figure 2. Note that the positive terminal 

of the voltage source is placed to the left, because the current-source arrow was pointing to the left. 

These two circuits (Figure 1 and Figure 2) are considered to be equivalent: the 1 A current entering 

node X from node Y has not changed. 

 

 
Figure 2 

The process carried out here is called source transformation. We have transformed an existing 

current source with a parallel resistor into an equivalent voltage source with a series resistor. 



Step 2: Voltage-to-Current Source Transformation 

The circuit in Figure 2 can be further simplified as it has a 10 Ω resistor in series with a 5 Ω 

resistor. These can be replaced by an equivalent 15 Ω (= 10 Ω + 5 Ω) resistor. The simplified circuit is 

shown in Figure 3(a). 

Now we can easily apply mesh analysis to solve the problem before us. However, there is also 

a much easier graphical way of achieving this: apply source transformation again! 

Previously we transformed a current source with a parallel resistor, but we can also apply 

source transformation to a voltage source with a series resistor. We have two such arrangements, as 

indicated in Figure 3(b). This circuit is equivalent to the one shown in Figure 3(a). 
 

 

Figure 3 

So here we will apply voltage-to-current source transformation, which is very similar to 

current-to-voltage source transformation. The process involves replacing the voltage source V in series 

with a resistor R with an equivalent network which has a current source 

I=VRI=VR 
 

in parallel with a resistor R. The current source is oriented such that the arrow points towards the 

positive terminal of the voltage source being replaced (see Figure 4). 

Thus, for the leftmost branch, we have a current source 

I=105=2 AI=105=2 A 
 

in parallel with a 5 Ω resistor. Similarly, for the rightmost branch, we get 
 

I=1015=23 AI=1015=23 A 
 

in parallel with a 15 Ω resistor. The resulting circuit is shown in Figure 4. 
 

The circuit in Figure 4 has two current sources pointing in the same direction, and hence these can be 

replaced by a single current source whose value is equal to their sum, i.e., 

83 A83 A 



 
 

Figure 4 

There are three resistors: two 5 Ω resistors and one 15 Ω resistor, all in parallel. We could replace all 

three of them with an equivalent resistance (REQ), but our goal is to find the current through the 5 Ω 

resistor, so we will combine only the other two. 

REQ=5×155+15=5×1520=154 Ω 

REQ=5×155+15=5×1520=154 Ω 

Having made these changes, we get the circuit shown in Figure 5. 

 

 

Figure 5 
 

Step 3: Current-to-Voltage Source Transformation (again) 

Now, let us apply current-to-voltage source transformation once again for the combination indicated in 

Figure 5. 

Here, the voltage source will be of the value, with the positive terminal towards node X, in series with 

a resistor. 

 

 
V=83×154=10 VV=83×154=10 V 

 

154 Ω154 Ω 
 

The resulting circuit is shown in Figure 6. 

 



Figure 6 

 

 
For Figure 6, we can readily apply KVL to obtain the current through the 5 Ω resistor: 

10−154i−5i=010−154i−5i=0 
 

10−354i=010−354i=0 
 

10=354i10=354i 

i=10×435=87 Ai=10×435=87 A 

 

 
Source Transformation for Dependent Sources 

Source transformation is applicable even for the circuits which have dependent sources. Let's consider 

the circuit shown in Figure 7(a). 

Here, one needs to resort to source shifting for the 3 A current source before applying source 

transformation. This yields the circuit shown in Figure 7(b). 

 

 
Figure 7 

 

 
Step 1: Current-to-Voltage Source Transformation 

Now let us apply current-to-voltage source transformation for the circuit elements indicated in Figure 

7(b). 

For the upper portion, we have V = 3 × 1 = 3 V, with the positive terminal oriented downwards, in 

series with a 1 Ω resistor. Similarly, for the lower portion we get V = 3 × 2 = 6 V, oriented downwards, 

in series with a 2 Ω resistor. This leads to the circuit shown in Figure 8(a). 



 
 

Figure 8 

The circuit can be further reduced: the upper mesh has a 1 Ω resistor in series with a 2 Ω resistor, 

forming an equivalent resistance of 3 Ω, and the lower mesh has a 2 Ω resistor in series with a 3 Ω 

resistor, which can be replaced by a single 5 Ω resistor. This results in the circuit shown in Figure 

8(b). 

Step 2: Voltage-to-Current Source Transformation 

By looking at Figure 8(b), you can see that we need to apply voltage-to-current source transformation 

three times (once for each source-plus-resistor combination). 

 

 
Case 1: For the 3 V source in series with 3 Ω 

 

I=33=1 AI=33=1 A 
 

in parallel with a 3 Ω resistor, directed towards the left. 

Case 2: For the 5i1 dependent voltage source in series with 5 Ω 

I=5i15=1i1 AI=5i15=1i1 A 
 

in parallel with a 5 Ω resistor, directed towards the right. 

 

 

Case 3: For the 6 V source in series with 5 Ω 

I=65 AI=65 A 
 

in parallel with a 5 Ω resistor directed towards the right. 



 

These steps lead to the circuit shown in Figure 9. 
 

 

 

Figure 9 

 

 
Here, the two independent current sources are oriented in opposite directions and thus can be replaced 

by a single current source whose value is given by 

I=65−1=15 AI=65−1=15 A 
 

, directed towards the right. 
 

Next, we can express the value of the dependent current source as 

I=15+1i1=1+5i15 AI=15+1i1=1+5i15 A 
 

, towards the right. 
 

We need to find the current flowing through the 5 Ω resistor (the one in the middle). Therefore, we will 

leave it as it is and replace the other two (i.e., the 3 Ω and 5 Ω resistors on top and bottom) with an 

equivalent resistance: R = 5 || 3 = 

5×35+3=158 Ω5×35+3=158 Ω 
 

. 
 

The circuit can now be depicted as follows: 



 

 
 

Figure 10 
 

Step 3: Current-to-Voltage Source Transformation (again) 

Finally, we can transform the dependent current source into a dependent voltage source with the value 

V′=1+5i15×158=3+15i18 VV′=1+5i15×158=3+15i18 V 

This will be in series with a 
 

158 Ω158 Ω 
 

resistor and will have its positive terminal towards the right. 
 

 
 

 

Figure 11 

Now, KVL can be used to compute i1: 
 

3+15i18−158×i1−5i1=03+15i18−158×i1−5i1=0 
 

38+15i18−158×i1−5i1=038+15i18−158×i1−5i1=0 
 

38−5i1=038−5i1=0 
 

38=5i138=5i1 

i1=340 Ai1=340 A 

 

 

Example: 



Consider the below voltage source circuit with a voltage of 20 V and a internal resistance of 5 ohms. This 

circuit is transformed into the current source by placing a resistor of the same value with a current source. 

This current source value can be determined by, 

 
Is = Vs/Rs 

 

= 20/ 5 

 

= 4 amps 

 

The equivalent current source with a current of 4A and parallel resistor of 5 ohms is shown below. 
 

 

 
Conversion of Current Source to Voltage Source 

 
The current source transformed into a voltage source by interchanging parallel resistor in series. Let us 

see how it could work. 

 
Steps: 

 

• Find the parallel resistance of the constant current source and place in series with a voltage source. 

• Determine the open circuit voltage value of the voltage source by applying ohms law. 



 
 

 

In the above figure, a current source is converted into a voltage source by placing resistance Rs in series 

with a voltage source and the value of the voltage source is calculated as, 

 
Vs = Is *Rs 

 

Example: 

 

Consider the below example for current source transformation, where current source is of 10A with a 

parallel resistance of 3 ohms. To calculate the value of voltage in voltage source apply the simple ohms 

law, then, 

 
Vs = Is * Rs 

Vs = 10 * 3 

= 30 Volts. 

 

Therefore the equivalent voltage source of this transformation consists a voltage source 30 V with a series 

resistance 3 ohms. 

 
 



Example of Source Transformations 

 
•  Consider the below example where we have to find the voltage Vo by applying the source 

transformation. This circuit consists of both current and voltage sources. Let us see how we can 

apply source transformation to simplify the circuit below. 

 

 

 
 

•  In the circuit there are two areas where we can apply the source transformation since current 

source has a parallel resistor and voltage source has a series resistor as shown in figure. So these 

configurations are necessary requirements to apply the source transformation. 

 

 

 
•  First, consider the current source with a parallel resistance of 4 ohms. This current source can be 

transformed into a voltage source by 4 ohms series with a voltage source and voltage source value 

is determined as 

 
Vs = Is * R 

 

= 3* 4 

 

= 12 Volts 

 

Consider the direction of the current as it downwards so the voltage terminals in voltage source are also 

changes as shown in figure. 



 
 

 

• Place the above voltage source with a series resistance in the circuit, then we get below figure. 
 
 

 

 
•  Resistors 4 ohms and 2 ohms are in series , hence the total series resistance will be 6 ohms as 

shown below. 

 

 
 

•  Again the voltage source of 12V with series resistor 6 ohms can be transformed into a current 

source. Therefore consider to transform it. 



 
 

 

•  This 12V voltage source with 6 ohm resistor combination can be converted into the current source 

by placing 6 ohms resistor in parallel with a current source. And the value of current in current 

source can be determined as 

 
Is = Vs/R 

 

= 12/6 

 

= 2Amps 

 

The direction of current flow is represented in below figure. 
 

 

 

 
• Insert the above current source in the main circuit, then we get 

 



•  On the right hand side, there is a voltage source with a 3 ohms resistor so this can be transformed 

into a current source by placing a 3 ohm resistor in parallel with a current source and this current 

source value is calculated as 

 
Is = Vs/Rs 

 

= 12/ 3 

 

= 4 Amps 

The direction of current in current source is shown in figure. 

 

 

 
• Insert the above current source in simplified circuit, then we get a final circuit as 

 

 

 
From the above simplified circuit the current sources are appeared to be opposite to each other. The node 

current through the circuit will be 

 
Is = I1 – I2 

 

= 4-2 

 

= 2 amps 



By applying the divider rule, the current through the resistor 8 ohms is 

 

Io = Is * (1/Ro/ ((1/Ro) + (1/R1) + (1/R2)) 

 

= 2 * (1/8/((1/8) + (1/6) + (1/3) ) 

 

= 0.4 Amps 

Therefore, the voltage across the resistor 8 ohms is 

Vo = Io * Ro 

 

= 0.4 * 8 

 

= 3.2 Volts 

 

 
  



MODULE -II 

ANALYSIS OF ELECTRICAL CIRCUITS 

Circuit analysis: Star to delta and delta to star transformation, mesh analysis and nodal analysis by 

Kirchhoff’s laws, inspection method, super mesh, super node analysis; Network topology: definitions, 

incidence matrix, basic tie set and basic cut set matrices for planar networks, duality and dual networks. 

 

STAR DELTA TRANSFORMATION 

 
Star-Delta Transformations and Delta-Star Transformations allow us to convert impedances connected 

together in a 3-phase configuration from one type of connection to another 

 

We can now solve simple series, parallel or bridge type resistive networks using Kirchhoff’s laws mesh 

current analysis or nodal voltage analysis techniques but in a balanced 3-phase circuit we can use 

different mathematical techniques to simplify the analysis of the circuit and thereby reduce the amount of 

math’s involved which in itself is a good thing. 

Standard 3-phase circuits or networks take on two major forms with names that represent the way in 

which  the  resistances  are  connected,  a Star connected  network  which  has  the  symbol   of   the 

letter, Υ (wye) and a Delta connected network which has the symbol of a triangle, Δ (delta). 

If a 3-phase, 3-wire supply or even a 3-phase load is connected in one type of configuration, it can be 

easily transformed or changed it into an equivalent configuration of the other type by using either the Star 

Delta Transformation or Delta Star Transformation process. 

A resistive network consisting of three impedances can be connected together to form a Tor “Tee” 

configuration but the network can also be redrawn to form a Star or Υ type network as shown below. 



T-connected and Equivalent Star Network 
 

 
As we have already seen, we can redraw the T resistor network above to produce an electrically 

equivalent Star or Υ type network. But we can also convert a Pi or π type resistor network into an 

electrically equivalent Delta or Δ type network as shown below. 

 
 

Pi-connected and Equivalent Delta Network 
 

 
 

Having now defined exactly what  is  a Star and Delta connected  network it  is possible  to transform  

the Υ into an equivalent Δ circuit and also to convert a Δ into an equivalent Υcircuit using a the 

transformation process. 

This process allows us to produce a mathematical relationship between  the various resistors giving us      

a Star Delta Transformation as well as a Delta Star Transformation. 

These circuit transformations allow us to change the three connected resistances (or impedances) by their 

equivalents measured between the terminals 1-2, 1-3 or 2-3 for either a star or delta connected circuit. 

However, the resulting networks are only equivalent for voltages and currents external to the star or delta 

networks, as internally the voltages and currents are different but each network will consume the same 

amount of power and have the same power factor to each other. 



Delta Star Transformation 

To convert a delta network to an equivalent star network we need to derive a transformation formula for 

equating the various resistors to each other between the various terminals. Consider the circuit below. 

 
 

Delta to Star Network 
 

 

 
Compare the resistances between terminals 1 and 2. 

 

 

Resistance between the terminals 2 and 3. 
 

 

Resistance between the terminals 1 and 3. 
 

 

This now gives us three equations and taking equation 3 from equation 2 gives: 



 
 

Then, re-writing Equation 1 will give us: 
 

 

Adding together equation 1 and the result above of equation 3 minus equation 2 gives: 
 

 

From which gives us the final equation for resistor P as: 
 

 

Then to summarize a little about the above maths, we can now say that resistor P in a Star network can be 

found as Equation 1 plus (Equation 3 minus Equation 2) or Eq1 + (Eq3 – Eq2). 

Similarly, to find resistor Q in a star network, is equation 2 plus the result of equation 1 minus equation 3 

or Eq2 + (Eq1 – Eq3) and this gives us the transformation of Q as: 
 

 

and again, to find resistor R in a Star network, is equation 3 plus the result of equation 2 minus equation 1 

or Eq3 + (Eq2 – Eq1) and this gives us the transformation of R as: 
 



When converting a delta network into a star network the denominators of all of the transformation 

formulas are the same: A + B + C, and which is the sum of ALL the delta resistances. Then to convert any 

delta connected network to an equivalent star network we can summarized the above transformation 

equations as: 

 
 

Delta to Star Transformations Equations 
 

 

 

If the three resistors in the delta network are all equal in value then the resultant resistors in the equivalent 

star network will be equal to one third the value of the delta resistors. This gives each resistive branch in 

the star network a value of: RSTAR = 1/3*RDELTA which is the same as saying: (RDELTA)/3 

 

Delta – Star Example No1 

Convert the following Delta Resistive Network into an equivalent Star Network. 
 

 

 

Star Delta Transformation 

Star Delta transformation is simply the reverse of above. We have seen that when converting from a delta 

network to an equivalent star network that the resistor connected to one terminal is the product of the two 

delta  resistances  connected  to  the  same  terminal,  for  example  resistor P is  the  product   of   

resistors A and B connected to terminal 1. 



By rewriting the previous formulas a little we can also find the transformation formulas for converting a 

resistive star network to an equivalent delta network giving us a way of producing a star delta 

transformation as shown below. 

 
 

Star to Delta Transformation 
 

The value of the resistor on any one side of the delta, Δ network is the sum of all the two-product 

combinations of resistors in the star network divide by the star resistor located “directly opposite” the 

delta resistor being found. For example, resistor A is given as: 
 

with respect to terminal 3 and resistor B is given as: 
 

with respect to terminal 2 with resistor C given as: 
 

with respect to terminal 1. 

By dividing out each equation by the value of the denominator we end up with three separate 

transformation formulas that can be used to convert any Delta resistive network into an equivalent star 

network as given below. 

 
 

Star Delta Transformation Equations 
 



 

One final point about converting a star resistive network to an equivalent delta network. If all the resistors 

in the star network are all equal in value then the resultant resistors in the equivalent delta network will be 

three times the value of the star resistors and equal, giving: RDELTA = 3*RSTAR 

 

Star – Delta Example No2 

Convert the following Star Resistive Network into an equivalent Delta Network. 
 

 

 

Both Star Delta Transformation and Delta Star Transformation allows us to convert one type of 

circuit connection into another type in order for us to easily analyse the circuit. These transformation 

techniques can be used to good effect for either star or delta circuits containing resistances or impedances. 

 
 

Star – Delta Example 

Convert the following Star Resistive Network into an equivalent Delta Network. 



 
 
 

Both Star Delta Transformation and Delta Star Transformation allows us to convert one type of 

circuit connection into another type in order for us to easily analyse the circuit. These transformation 

techniques can be used to good effect for either star or delta circuits containing resistances or impedances. 

Find the value of the voltage source ( ) that delivers 2 Amps current through the circuit as shown 

in fig.6.3. 

 
 

 
Solution: 



 
 

Convert the three terminals Δ-network (a-c-d & e-f-g) into an equivalent Y-connected 

 
network. Consider the Δ-connected network ‘a-c-d’ and the corresponding equivalent Y- 

connected resistor values are given as 

 



 
 

Example: Determine the equivalent resistance between the terminals AandB of network shown in 

fig.6.4 (a). 
 

 

 

 

Next we transform ‘Δ’connected 3-terminal resistor to an equivalent ‘Y’ connected network 

between points ‘A’; ‘c’ and ‘e’ (see fig.6.4(b)) and the corresponding Y connected resistances value 

are obtained using the following expression. Simplified circuit after conversion is shown in fig 



 

 

 

Fig 
 

 

MESH ANALYSIS: 

 
Mesh analysis is an technique used to solve the complex networks consisting of more number of meshes. 

Mesh analysis is nothing but applying KVL to each and every loop in circuit and solving for mesh 

currents. By finding the mesh currents we can solve any require data of the network. 



 
 

Let V1 = 30v, V2 = 40v, R1 =4 ohms, R2 = 2 ohms and R3 = 4 ohms 

i1, i2 are the mesh currents, here positive direction of currents are assumed , but in general we can 

assume current directions in any fashion and can solve. 

 

 
Applying KVL to first loop we get, V1 – i1R1 – (i1+i2)R2. 

V1 = (R1+R2)i1 + i2.R2. -------- 1 

Applying KVL to second loop we get, V2 – i2R3 – (i1+i2)R2. 

V2 = (R1+R2)i1 + i2.R3. ------- 2 

 
Hence by solving eq. 1 and 2 we can get mesh currents i1 and i2. 

 
Mesh analysis by inspection method: 

 
Inspection method is direct method using mesh currents can be find directly without applying KVL. Let 

us take same network as above , representing eq 1 and 2 in matrix form. 

 

 

 
 

V1 

 

 

V2 

 
= 

R1 R1+R2 i1 

 

 

i2 R1+R2 R3 

 

Generally we can write in matrix form as, 

 
V1 

 

 

V2 

 
= 

R11 R12 i1 

 

 

i2 R21 R22 



Where, V1 – sum of all the voltage sources in 1st mesh according current flow. 

V2 – sum of all the voltage sources in 2nd mesh according current flow. 

R11- self resistance of first loop, adding total resistance in 1st loop 

R21= R12- mutual resistance between 1st and 2nd loop , 

+ve if mesh currents are in same direction 

-ve if mesh currents are in opposite direction 

 
R22- self resistance of second loop, adding total resistance in 2nd loop 

 
NODAL ANALYSIS : 

 

 
Nodal analysis is an technique used to solve the complex networks consisting of more number of nodes. 

Node analysis is nothing but applying KCL to each and every node in circuit and solving for node 

voltages. By finding the node voltages we can solve any require data of the network. 

 
 

 

 
For the above circuit current division takes place at two nodes 1 and 2. 

Let , I3,I4,I5 are the currents flowing through R1,R2 and R3. 

Applying KCL at node 1, I1 = I3+I4 

 
= Va / R1 + (Va-Vb) / R2 

= Va( 1/R1 + 1/R2) -  Vb / R2 ---- 1 

Applying KCL at node 2, I2+I4 = I5 

I2+(Va-Vb) / R2 = Vb / R3 

I2 = - Va /  R2  + Vb ( 1/R3 + 1/R2) ---- 2 

By solving above eq.1 and 2 we can get node voltages V1 and V2. 

Nodal analysis by inspection method: 



Inspection method is direct method using node voltages can be find directly without applying KCL. Let 

us take same network as above , representing eq 1 and 2 in matrix form. 

 

 
 

I1 

 

 

I2 

 
= 

( 1/R1 +1/R2) -1/ R2 V1 

 

 

V2 -1/ R2 ( 1/R3 +1/R2) 

 
Genereally we can write in matrix form as, 

 
I1 

 

 

I2 

= G11 G12 V1 

 

 

V2 G21 G22 

 

 

 
Where, I1 – sum of all the current sources in 1st node according current flow. 

I2 – sum of all the voltage sources in 2nd node according current flow. 

G11- self conductance of first node, adding total conductance in 1st node 

G21= G12- mutual conductance between 1st and 2nd loop , 

Always -ve 

 
G22- self conductance of second node, adding total conductance in 2nd node 

 

 
CONVENTIONS: 

 
• power delivered = Vs.Is 

• power lost = I2 . R 

• volatge is positive if flow is from negative to positive called as poetntial rise.(Vs) 

• volatge is negative if flow is from positive to negative called as poetntial drop.(I.R) 

Mesh analysis exercise problems 

Given the Circuit below, find the currents , . 



 

 

 

Solution:- 

 
The first step in the Mesh Current method is to identify “loops” within the circuit encompassing all 

components. In our example circuit, the loop formed by B1, R1, and R2 will be the first while the loop 

formed by B2, R2, and R3 will be the second. The strangest part of the Mesh Current method is 

envisioning circulating currents in each of the loops. In fact, this method gets its name from the idea of 

these currents meshing together between loops like sets of spinning gears: 

 

 
The choice of each current’s direction is entirely arbitrary, just as in the Branch Current method, but 

the resulting equations are easier to solve if the currents are going the same direction through 

intersecting components (note how currents I1 and I2 are both going “up” through resistor R2, where 

they “mesh,” or intersect). If the assumed direction of a mesh current is wrong, the answer for that 

current will have a negative value. 

The next step is to label all voltage drop polarities across resistors according to the assumed directions 

of the mesh currents. Remember that the “upstream” end of a resistor will always be negative, and the 

“downstream” end of a resistor positive with respect to each other, since electrons are negatively 

charged. The battery polarities, of course, are dictated by their symbol orientations in the diagram, and 

may or may not “agree” with the resistor polarities (assumed current directions): 



 

 

 

Using Kirchhoff’s Voltage Law, we can now step around each of these loops, generating equations 

representative of the component voltage drops and polarities. As with the Branch Current method, we 

will denote a resistor’s voltage drop as the product of the resistance (in ohms) and its respective mesh 

current (that quantity being unknown at this point). Where two currents mesh together, we will write 

that term in the equation with resistor current being the sum of the two meshing currents. 

Tracing the left loop of the circuit, starting from the upper-left corner and moving counter-clockwise 

(the choice of starting points and directions is ultimately irrelevant), counting polarity as if we had a 

voltmeter in hand, red lead on the point ahead and black lead on the point behind, we get this equation: 

 

 

 

Notice that the middle term of the equation uses the sum of mesh currents I1 and I2 as the current 

through resistor R2. This is because mesh currents I1 and I2 are going the same direction through R2, 

and thus complement each other. Distributing the coefficient of 2 to the I1 and I2 terms, and then 

combining I1 terms in the equation, we can simplify as such: 

 

 

 

At this time we have one equation with two unknowns. To be able to solve for two unknown mesh 

currents, we must have two equations. If we trace the other loop of the circuit, we can obtain another 

https://www.allaboutcircuits.com/video-lectures/electronic-components-resistors/


KVL equation and have enough data to solve for the two currents. Creature of habit that I am, I’ll start 

at the upper-left hand corner of the right loop and trace counter-clockwise: 

 

 

 

Simplifying the equation as before, we end up with: 
 

 

 

Now, with two equations, we can use one of several methods to mathematically solve for the unknown 

currents I1 and I2: 

 

 

 

Knowing that these solutions are values for mesh currents, not branch currents, we must go back to our 

diagram to see how they fit together to give currents through all components: 

 

 



 

The solution of -1 amp for I2 means that our initially assumed direction of current was incorrect. In 

actuality, I2 is flowing in a counter-clockwise direction at a value of (positive) 1 amp: 

 

 

 
 

This change of current direction from what was first assumed will alter the polarity of the voltage 

drops across R2 and R3 due to current I2. From here, we can say that the current through R1 is 5 amps, 

with the voltage drop across R1 being the product of current and resistance (E=IR), 20 volts (positive 

on the left and negative on the right). Also, we can safely say that the current through R3 is 1 amp, with 

a voltage drop of 1 volt (E=IR), positive on the left and negative on the right. But what is happening at 

R2? 

Mesh current I1 is going “up” through R2, while mesh current I2 is going “down” through R2. To 

determine the actual current through R2, we must see how mesh currents I1 and I2 interact (in this case 

they’re in opposition), and algebraically add them to arrive at a final value. Since I1 is going “up” at 5 

amps, and I2 is going “down” at 1 amp, the real current through R2 must be a value of 4 amps, going 

“up:” 

 

 

 

 
A current of 4 amps through R2‘s resistance of 2 Ω gives us a voltage drop of 8 volts (E=IR), positive 

on the top and negative on the bottom. 



The primary advantage of Mesh Current analysis is that it generally allows for the solution of a large 

network with fewer unknown values and fewer simultaneous equations. Our example problem took 

three equations to solve the Branch Current method and only two equations using the Mesh Current 

method. This advantage is much greater as networks increase in complexity: 

 

 

 

 
To solve this network using Branch Currents, we’d have to establish five variables to account for each 

and every unique current in the circuit (I1 through I5). This would require five equations for solution, in 

the form of two KCL equations and three KVL equations (two equations for KCL at the nodes, and 

three equations for KVL in each loop): 

 

 

 

 
 



 

I suppose if you have nothing better to do with your time than to solve for five unknown variables with 

five equations, you might not mind using the Branch Current method of analysis for this circuit. For 

those of us who have better things to do with our time, the Mesh Current method is a whole lot easier, 

requiring only three unknowns and three equations to solve: 

 

 

 

 
 

 
 

Less equations to work with is a decided advantage, especially when performing simultaneous 

equation solution by hand (without a calculator). 

Another type of circuit that lends itself well to Mesh Current is the unbalanced Wheatstone Bridge. 

Take this circuit, for example: 



 

 
 

 

Since the ratios of R1/R4 and R2/R5 are unequal, we know that there will be voltage across resistor R3, 

and some amount of current through it. As discussed at the beginning of this chapter, this type of 

circuit is irreducible by normal series-parallel analysis, and may only be analyzed by some other 

method. 

We could apply the Branch Current method to this circuit, but it would require six currents (I1 through 

I6), leading to a very large set of simultaneous equations to solve. Using the Mesh Current method, 

though, we may solve for all currents and voltages with much fewer variables. 

The first step in the Mesh Current method is to draw just enough mesh currents to account for all 

components in the circuit. Looking at our bridge circuit, it should be obvious where to place two of 

these currents: 

 

 



 

The directions of these mesh currents, of course, is arbitrary. However, two mesh currents is not 

enough in this circuit, because neither I1 nor I2 goes through the battery. So, we must add a third mesh 

current, I3: 

 

 

 
 

Here, I have chosen I3 to loop from the bottom side of the battery, through R4, through R1, and back to 

the top side of the battery. This is not the only path I could have chosen for I3, but it seems the 

simplest. 

Now, we must label the resistor voltage drop polarities, following each of the assumed currents’ 

directions: 

 

 



 

Notice something very important here: at resistor R4, the polarities for the respective mesh currents do 

not agree. This is because those mesh currents (I2 and I3) are going through R4 in different directions. 

This does not preclude the use of the Mesh Current method of analysis, but it does complicate it a bit. 

Though later, we will show how to avoid the R4 current clash. (See Example below) 

Generating a KVL equation for the top loop of the bridge, starting from the top node and tracing in a 

clockwise direction: 

 

 

 
 

In this equation, we represent the common directions of currents by their sums through common 

resistors. For example, resistor R3, with a value of 100 Ω, has its voltage drop represented in the above 

KVL equation by the expression 100(I1 + I2), since both currents I1 and I2 go through R3 from right to 

left. The same may be said for resistor R1, with its voltage drop expression shown as 150(I1 + I3), since 

both I1 and I3 go from bottom to top through that resistor, and thus work together to generate its 

voltage drop. 

Generating a KVL equation for the bottom loop of the bridge will not be so easy, since we have two 

currents going against each other through resistor R4. Here is how I do it (starting at the right-hand 

node, and tracing counter-clockwise): 

 

 



 

Note how the second term in the equation’s original form has resistor R4‘s value of 300 Ω multiplied 

by the difference between I2 and I3 (I2 - I3). This is how we represent the combined effect of two mesh 

currents going in opposite directions through the same component. Choosing the appropriate 

mathematical signs is very important here: 300(I2 - I3) does not mean the same thing as 300(I3 - I2). I 

chose to write 300(I2 - I3) because I was thinking first of I2‘s effect (creating a positive voltage drop, 

measuring with an imaginary voltmeter across R4, red lead on the bottom and black lead on the top), 

and secondarily of I3‘s effect (creating a negative voltage drop, red lead on the bottom and black lead 

on the top). If I had thought in terms of I3‘s effect first and I2‘s effect secondarily, holding my 

imaginary voltmeter leads in the same positions (red on bottom and black on top), the expression 

would have been -300(I3 - I2). Note that this expression is mathematically equivalent to the first one: 

+300(I2 - I3). 

Well, that takes care of two equations, but I still need a third equation to complete my simultaneous 

equation set of three variables, three equations. This third equation must also include the battery’s 

voltage, which up to this point does not appear in either two of the previous KVL equations. To 

generate this equation, I will trace a loop again with my imaginary voltmeter starting from the battery’s 

bottom (negative) terminal, stepping clockwise (again, the direction in which I step is arbitrary, and 

does not need to be the same as the direction of the mesh current in that loop): 

 

 

 

Solving for I1, I2, and I3 using whatever simultaneous equation method we prefer: 
 

 



 

 

SUPERMESH Circuit Analysis | Step by Step with Solved Example 

Supermesh or Supermesh Analysis is a better technique instead of using Mesh analysis to analysis such 

a complex electric circuit or network, where two meshes have a current source as a common element. 

This is the same where we use Supernode circuit analysis instead of Node or Nodal circuit analysis to 

simplify such a network where the assign supernode, fully enclosing the voltage source inside the 

supernode and reducing the number of none reference nodes by one (1) for each voltage source. 

In supermesh circuit analysis technique, the current source is in the inner area of the supermesh. 

Therefore, we are able to reduce the number of meshes by one (1) for each current source which is present 

in the circuit. 

The single mesh can be ignored, if current source (in that mesh) lies on the perimeter of the circuit. 

Alternatively, KVL (Kirchhoff’s Voltage Law) is applied only to those meshes or supermeshes in the 

renewed circuit. 

By the way, it is difficult to understand by Preamble, so we will first solve a simple circuit by supermesh 

circuit analyses, and then, we will summarize the whole supermesh analysis (step by step). 

Solved Example of Supermesh Analysis 

 

 

 

 

 
Example: 

Use Mesh analysis to find V3 and Current i1, i2 and i3 in the following fig? 

https://www.electricaltechnology.org/2014/01/important-terms-related-to-electric-circuits-and-networks.html
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Solution: 
 
 

Supermesh Circuit Analysis. Step by step with solved example 

UsingKVA on Mesh 1. 

80 = 10i1 + 20(i1–i2) + 30 (i1–i3) 

Simplifying 

80 = 10i1 + 20i1 -20i2 + 30i1-30i3 

80 = 60i1 – 20i2 – 30i3 ….. → Eq 1. 

Now apply KVL on Supermesh (which is integration of mesh 2 and mesh 3, but we have reduced it by 

single mesh which is known as supermesh) 

30 = 40i3 + 30(i3–i1) +20(i2–i1) 

30 = 40i3 + 30i3 – 30i1 +20i2-20i1 

30 = 70i3 – 50i1 +20i2 ….. → Eq 2. 

 
But here, we have three (3) variables i.e. i1, 12 and i3. And there are two equations. So we must need 

three equations as well. 

The independent current source (in the supermesh) is related to the assumed mesh currents, i.e. 

 
15ix = i3–i2 

I3=15ix+i2 ….. → Eq 3. 



Solving equations 1, 2 and 3 by Cramer’s rule or Cramer’r rule calculator, Elimination, Gauss 

Elimination or computer aided program such as MATLAB, we find 

 
i1 =0.583A 

i2 =-6.15A 

i3 = 2.6 A 

 
Also, we can find the value of v3, 

V3 = i3 x R3 

Putting the values, 

 
V3 =2.6Ax40Ω 

V3 = 104 V. 

Summary of Supermesh Analysis (Step by Step) 

1. Evaluate if the circuit is a planer circuit. if yes, apply Supermesh. If no, perform nodal analysis 

instead. 

2. Redraw the circuit if necessary and count the number of meshes in the circuit. 

3. Label each of mesh currents in the circuit. As a rule of thumb, defining all the mesh currents to flow 

clockwise result in a simpler circuit analysis. 

4. Form a supermesh if the circuit contains current sources by two meshes. So that, the supermesh 

would enclose both meshes. 

5. Write a KVL (Kirchoff’s Voltage Law) around each mesh and supermesh in the circuit. Begin 

with an easy and will fitted one node. Now proceed in the direction of the mesh current. Take the “-“ 

sign in the account while writing KVL equations and solving the circuit. No KVL equation is needed if 

a current source lies on the periphery of a mesh. So, the mesh current is determined and evaluated by 

inspection. 

6. One KCL (Kirchhoff’s Current Law) is needed for each supermesh defined and can be 

accomplished by simple application of KCL. in simple words, relate the current flowing from each 

current source to mesh currents. 

7. An additional case can be occurred if the circuit contains on further dependent sources. In this 

case, express any additional unknown values and qantitis like currents ir voltages other than the mesh 

currents in terms of suitable mesh currents. 

8. Arrange and organize the system of equations. 

9. At last, solve the system of equations for the Nodal voltages such as V1, V2, and V3 etc. there will 

be Mesh of them. if you find difficulties to solve the system of equations, refer to the above example. 

 
 

Nodal Voltage Analysis 

 
Nodal Voltage Analysis finds the unknown voltage drops around a circuit between different nodes that 

provide a common connection for two or more circuit components 

https://www.electricaltechnology.org/2015/01/cramers-rule-2-3-equation-systems-easy-step-step.html


Nodal Voltage Analysis complements the previous mesh analysis in that it is equally powerful and based 

on the same concepts of matrix analysis. As its name implies, Nodal Voltage Analysis uses the “Nodal” 

equations of Kirchhoff’s first law to find the voltage potentials around the circuit. 

So by adding together all these nodal voltages the net result will be equal to zero. Then, if there are “n” 

nodes in the circuit there will be “n-1” independent nodal equations and these alone are sufficient to 

describe and hence solve the circuit. 

At each node point write down Kirchhoff’s first law equation, that is: “the currents entering a node are 

exactly equal in value to the currents leaving the node” then express each current in terms of the voltage 

across the branch. For “n” nodes, one node will be used as the reference node and all the other voltages 

will be referenced or measured with respect to this common node. 

For example, consider the circuit from the previous section. 

 
 

Nodal Voltage Analysis Circuit 
 

 

 
In the above circuit, node D is chosen as the reference node and the other three nodes are assumed to have 

voltages, Va, Vb and Vc with respect to node D. For example; 
 

 

As Va = 10v and Vc = 20v , Vb can be easily found by: 
 

again is the same value of 0.286 amps, we found using Kirchhoff’s Circuit Law in the previous tutorial. 



From both Mesh and Nodal Analysis methods we have looked at so far, this is the simplest method of 

solving this particular circuit. Generally, nodal voltage analysis is more appropriate when there are a 

larger number of current sources around. The network is then defined as: [ I ] = [ Y ] [ V ] where [ I ] are 

the driving current sources, [ V ] are the nodal voltages to be found and [ Y ] is the admittance matrix of 

the network which operates on [ V ] to give [ I ]. 

 

Nodal Voltage Analysis Summary. 

The basic procedure for solving Nodal Analysis equations is as follows: 

1. Write down the current vectors, assuming currents into a node are positive. ie, a (N x 1) 

matrices for “N” independent nodes. 

2. Write the admittance matrix [Y] of the network where: 

i. Y11 = the total admittance of the first node. 

ii. Y22 = the total admittance of the second node. 

iii. RJK = the total admittance joining node J to node K. 

3. For a network with “N” independent nodes, [Y] will be an (N x N) matrix and that Ynnwill be 

positive and Yjk will be negative or zero value. 

4. The voltage vector will be (N x L) and will list the “N” voltages to be found. 

We have now seen that a number of theorems exist that simplify the analysis of linear circuits. In the next 

tutorial we will look at Thevenins Theorem which allows a network consisting of linear resistors and 

sources to be represented by an equivalent circuit with a single voltage source and a series resistance. 

Nodal analysis exercise problems super nodal analysis: 

 

The node voltage method of analysis solves for unknown voltages at circuit nodes in terms of a system 

of KCL equations. This analysis looks strange because it involves replacing voltage sources with 

equivalent current sources. Also, resistor values in ohms are replaced by equivalent conductances in 

siemens, G = 1/R. The siemens (S) is the unit of conductance, having replaced the mho unit. In any 

event S = Ω-1. And S = mho (obsolete). 

We start with a circuit having conventional voltage sources. A common node E0 is chosen as a 

reference point. The node voltages E1 and E2 are calculated with respect to this point. 

 

 

https://www.allaboutcircuits.com/video-lectures/electronic-components-resistors/


I1 = E1/R1 = 10/2 = 5 A 

I2 = E2/R5 = 4/1 = 4 A 

G1 = 1/R1 = 1/2 Ω = 0.5 S 

G2 = 1/R2 = 1/4 Ω = 0.25 S 

G3 = 1/R3 = 1/2.5 Ω = 0.4 S 

G4 = 1/R4 = 1/5 Ω = 0.2 S 

G5 = 1/R5 = 1/1 Ω = 1.0 S 

 

A voltage source in series with a resistance must be replaced by an equivalent current source in parallel 

with the resistance. We will write KCL equations for each node. The right hand side of the equation is 

the value of the current source feeding the node. 

 

 

 
 

Replacing voltage sources and associated series resistors with equivalent current sources and parallel 

resistors yields the modified circuit. Substitute resistor conductances in siemens for resistance in ohms. 
 

 

 

https://www.allaboutcircuits.com/video-lectures/series-circuits-part-1/
https://www.allaboutcircuits.com/video-lectures/parallel-circuits/
https://www.allaboutcircuits.com/video-lectures/parallel-circuits/


GA = G1 + G2 = 0.5 S + 0.25 S = 0.75 S 

GB = G4 + G5 = 0.2 S + 1 S = 1.2 S 

GAE1 + G3(E1 - E2) = I1 (1) 

GBE2 - G3(E1 - E2) = I2 (2) 

(GA + G3 )E1 -G3E2 = I1 (1) 

-G3E1 + (GB + G3)E2 = I2 (2) 

 

The parallel conductances (resistors) may be combined by addition of the conductances. Though, we 

will not redraw the circuit. The circuit is ready for application of the node voltage method. 
 

Deriving a general node voltage method, we write a pair of KCL equations in terms of unknown node 

voltages V1 and V2 this one time. We do this to illustrate a pattern for writing equations by inspection. 
 

The coefficients of the last pair of equations above have been rearranged to show a pattern. The sum of 

conductances connected to the first node is the positive coefficient of the first voltage in equation (1). 

The sum of conductances connected to the second node is the positive coefficient of the second voltage 

in equation (2). The other coefficients are negative, representing conductances between nodes. For 

both equations, the right hand side is equal to the respective current source connected to the node. This 

pattern allows us to quickly write the equations by inspection. This leads to a set of rules for the node 

voltage method of analysis. 

 
Node voltage rules: 

 
1. Convert voltage sources in series with a resistor to an equivalent current source with the resistor 

in parallel. 

2. Change resistor values to conductances. 

3. Select a reference node(E0) 

4. Assign unknown voltages (E1)(E2) ... (EN)to remaining nodes. 

5. Write a KCL equation for each node 1,2, ... N. The positive coefficient of the first voltage in the 

first equation is the sum of conductances connected to the node. The coefficient for the second 

voltage in the second equation is the sum of conductances connected to that node. Repeat for 

coefficient of third voltage, third equation, and other equations. These coefficients fall on a 

diagonal. 

6. All other coefficients for all equations are negative, representing conductances between nodes. 

The first equation, second coefficient is the conductance from node 1 to node 2, the third 

coefficient is the conductance from node 1 to node 3. Fill in negative coefficients for other 

equations. 

7. The right hand side of the equations is the current source connected to the respective nodes. 

8. Solve system of equations for unknown node voltages. 



SUPERNODE Circuit Analysis | Step by Step with Solved Example 

 
Consider both circuits in the following fig 1. did you notice something different? 

Difference between Node / Nodal & Supernode Analysis 

 
The difference in both circuits is that there is an additional voltage source of 22V instead of 7Ω resistor 

between node 2 and node 3. And this is the main point. 

 
In Node or Nodal analysis, we apply the KCL (Kirchhoff’s Current Law) at each non-reference nodes i.e. 

we apply the simple KCL at once on three nodes in fig 1(a). 

 
If we do the same i.e. apply the Nodal analysis instead on Supernode circuit analysis on the circuit in fig 1 

(b), we face some difficulty at Node1 and Node2, because we don’t know that what is the current in the 

branch with the voltage source? In addition, there is no such a way by which we adjust the situation i.e. 

we can’t express the current as a function of the voltage, where the definition of the voltage source is that 

the voltage is independent of the current. Due to these difficulties and troubles, we use supernode circuit 

analysis instead of Nodal analysis in the above fig 1 (b). 

 
There are two methods to simplify the circuit in the above fig 1 (b). 

 
The 1st one, which is more complex, is that to assign an unknown current value to the branch contains the 

voltage source. Then apply KCL three times on the 3 Nodes (one KCL equation for each node). At last, 

apply KVL (Kirchhoff’s Voltage Law) which is v3–v2 = 22V between Node2 and Node3. In this case, we 

get four (4) equations for unknown values in the above example, which is little bit complex to simplify. 

 
The 2nd method is easier than the above method which is called Supernode analysis. In this method, we 

treat Node2, Node3 and the voltage source of 22V together as a sort of Supernode and apply KCL to both 

nodes (Nod2 and Node3) at once. The supernode is indicated by the region enclosed by the dotted line. 

This is possible because, if the total current leaving Node2 is zero (0) and the total current leaving Node3 



is zero (0), the the total current leaving the combination is zero. This concept is shown in the following 

fig 2 (b) with the supernode (the area enclosed by the broken line). 

 

Expanded view of the region defined as Supernode 

 
Now, we will solve the circuit below by step by step supernode circuit analysis and then, we will 

summarize the whole supernode analysis (step by step). 

Solved Example of Supernode Analysis 

Example: 

Use Supernode analysis to find voltage across each current source i.e. v1 & v2 in the following fig 3 (a)? 

SUPERNODE Circuit Analysis Step by Step with Solved Example 



Solution: 

First, we redraw the circuit as shown in fig 3(b) 

We begin by writing a KCL equation for Node1. 

 

4 = 0 + 3v1 + 3v3 …. → Eq 1. 

 
Now, consider the supernode (Combination of Node1 and Node2). Moreover, one current source and 

three resistors are connected. Thus, 

 
Apply KCL at Supernode (Node1 & Node2) 

 
 

 

9 = 2v2 + 6v3 + 3v3 – 3v1 + 0. 

9 = – 3v1 + 2v2 + 9v3 …. → Eq 2. 

 
Since we have three unknown values, therefore, we need one additional equation. Obliviously, we will go 

for the 5V voltage source between Nodes 2 and 3, which is; 

 
v2 – v3 = 5 …. → Eq 3. 

 
Solving equations 1, 2 and 3 by Cramer’s rule or Cramer’r rule calculator, Elimination, Gauss 

Elimination or computer aided program such as MATLAB, we find, 

 
v3 = 0.575 V or 375mV. 

v2 = 5.375 V. 

v1 = 1.708 V. 

 
Summary of Supernode Analysis (Step by Step) 

 
1. Redraw the circuit if possible. 

2. Count the Number of Nodes in the circuit. 

3. Design a Reference Node. This may be the node with the greatest number of branches. So that, 

we may minimize the number of of equations. 

4. Label the Nodal Voltages. Which are (N-1), where N= number of Nodes. 

5. Form a Supernode if the circuit or network contains voltage sources. This job is done by 

enclosing the source terminal, and other circuit element connected between the two terminals 

with the dotted line enclosure. This is shown in the above fig 2 (b). 

https://www.electricaltechnology.org/2015/01/cramers-rule-2-3-equation-systems-easy-step-step.html


6. Write a KCL (Kirchhoff’s Current law) equation for each non-reference node as well as for each 

supernode which does not contain the reference node. On the first side, add the currents flowing 

into a supernode or node from the current sources. On the other hand, add the currents leaving the 

supernode or node through resistors. Take the “-“ sign in the account while writing KCL 

equations and solving the circuit. 

7. One KCL (Kirchhoff’s Current Law) is needed for each defined Supernode which can be 

accomplished by simple application of KCL. In simple words, relate the voltage across each 

voltage source to nodal voltages. 

8. If dependent sources appear in the circuit, In this case, express any additional unknown 

values and quantities like currents or voltages other than the Nodal voltages in terms of suitable 

nodal voltages. 

9. Arrange and organize the system of equations. 

10. At last, solve the system of equations for the Nodal voltages such as V1, V2, and V3 etc. there 

will be (N-1, where “N” = Number of Nodes) of them. If you find difficulties to solve the system 

of equations, refer to the above solved example. 

 
Mesh analysis and nodal analysis by inspection , exercise problems 

Mesh analysis by inspectio 

We take a second look at the “mesh current method” with all the currents running counterclockwise 

(ccw). The motivation is to simplify the writing of mesh equations by ignoring the resistor voltage 

drop polarity. Though, we must pay attention to the polarity of voltage sources with respect to assumed 

current direction. The sign of the resistor voltage drops will follow a fixed pattern. 

If we write a set of conventional mesh current equations for the circuit below, where we do pay 

attention to the signs of the voltage drop across the resistors, we may rearrange the coefficients into a 

fixed pattern: 

 

 

 

 
Once rearranged, we may write equations by inspection. The signs of the coefficients follow a fixed 

pattern in the pair above, or the set of three in the rules below. 

 
• Mesh current rules: 



+(sum of R's loop 1)I1 - (common R loop 1-2)I2 - (common R loop 1-3)I3 = E1 

-(common R loop 1-2)I1 + (sum of R's loop 2)I2 - (common R loop 2-3)I3   = E2 

-(common R loop 1-3)I1 - (common R loop 2-3)I2 + (sum of R's loop 3)I3   = E3 

• This method assumes electron flow (not conventional current flow) voltage sources. Replace any 

current source in parallel with a resistor with an equivalent voltage source in series with an 

equivalent resistance. 

• Ignoring current direction or voltage polarity on resistors, draw counterclockwise current loops 

traversing all components. Avoid nested loops. 

• Write voltage-law equations in terms of unknown currents currents: I1, I2, and I3. Equation 1 

coefficient 1, equation 2, coefficient 2, and equation 3 coefficient 3 are the positive sums of 

resistors around the respective loops. 

• All other coefficients are negative, representative of the resistance common to a pair of loops. 

Equation 1 coefficient 2 is the resistor common to loops 1 and 2, coefficient 3 the resistor 

common to loops 1 an 3. Repeat for other equations and coefficients. 

 

 

• The right hand side of the equations is equal to any electron current flow voltage source. A 

voltage rise with respect to the counterclockwise assumed current is positive, and 0 for no voltage 

source. 

• Solve equations for mesh currents:I1, I2, and I3 . Solve for currents through individual resistors 

with KCL. Solve for voltages with Ohms Law and KVL. 

 
While the above rules are specific for a three mesh circuit, the rules may be extended to smaller or 

larger meshes. The figure below illustrates the application of the rules. The three currents are all drawn 

in the same direction, counterclockwise. One KVL equation is written for each of the three loops. Note 

that there is no polarity drawn on the resistors. We do not need it to determine the signs of the 

coefficients. Though we do need to pay attention to the polarity of the voltage source with respect to 

current direction. The I3counterclockwise current traverses the 24V source from (+) to (-). This is a 

voltage rise for electron current flow. Therefore, the third equation right hand side is +24V. 

 

 

 
 

In Octave, enter the coefficients into the A matrix with column elements comma separated, and rows 



octave:2> A=[300,-100,-150;-100,650,-300;-150,-300,450] 

A = 

300  -100 -150 

-100  650 -300 

-150  -300 450 

 
octave:3> b=[0;0;24] 

b = 

0 

0 

24 

 
octave:4> x=A\b 

x = 

0.093793 

0.077241 

0.136092 

semicolon separated. Enter the voltages into the column vector b. Solve for the unknown currents: I1, 

I2, and I3 with the command: x=A\b. These currents are contained within the x column vector. The 

positive values indicate that the three mesh currents all flow in the assumed counterclockwise 

direction. 
 

The mesh currents match the previous solution by a different mesh current method.. The calculation of 

resistor voltages and currents will be identical to the previous solution. No need to repeat here. 

Note that electrical engineering texts are based on conventional current flow. The loop-current, mesh- 

current method in those text will run the assumed mesh currents clockwise.[aef] The conventional 

current flows out the (+) terminal of the battery through the circuit, returning to the (-) terminal. A 

conventional current voltage rise corresponds to tracing the assumed current from (-) to (+) through 

any voltage sources. 

One more example of a previous circuit follows. The resistance around loop 1 is 6 Ω, around loop 2: 3 

Ω. The resistance common to both loops is 2 Ω. Note the coefficients of I1 and I2 in the pair of 

equations. Tracing the assumed counterclockwise loop 1 current through B1 from (+) to (-) corresponds 

to an electron current flow voltage rise. Thus, the sign of the 28 V is positive. The loop 2 counter 

clockwise assumed current traces (-) to (+) through B2, a voltage drop. Thus, the sign of B2 is negative, 

-7 in the 2nd mesh equation. Once again, there are no polarity markings on the resistors. Nor do they 

figure into the equations. 

https://www.allaboutcircuits.com/textbook/direct-current/chpt-10/mesh-current-method/#aef.bibitem


(G1 + G2)E1 -G1E2 -G2E3 = 0.136092 

-G1E1 +(G1 + G3 + G4)E2 -G3E3 = 0 

-G2E1 -G3E2 +(G2 + G3 + G5)E3 = 0 

 

 
 

 

The currents I1 = 5 A, and I2 = 1 A are both positive. They both flow in the direction of the 

counterclockwise loops. This compares with previous results. 

 

 

 

 
 

 

There are three nodes to write equations for by inspection. Note that the coefficients are positive for 

equation (1) E1, equation (2) E2, and equation (3) E3. These are the sums of all conductances connected 

to the nodes. All other coefficients are negative, representing a conductance between nodes. The right 

hand side of the equations is the associated current source, 0.136092 A for the only current source at 

node 1. The other equations are zero on the right hand side for lack of current sources. We are too lazy 

to calculate the conductances for the resistors on the diagram. Thus, the subscripted G’s are the 

coefficients. 
 



We are so lazy that we enter reciprocal resistances and sums of reciprocal resistances into the octave 

“A” matrix, letting octave compute the matrix of conductances after “A=”.[octav] The initial entry line 

was so long that it was split into three rows. This is different than previous examples. The entered “A” 

matrix is delineated by starting and ending square brackets. Column elements are space separated. 

Rows are “new line” separated. Commas and semicolons are not need as separators. Though, the 

current vector at “b” is semicolon separated to yield a column vector of currents. 

 
Note that the “A” matrix diagonal coefficients are positive, That all other coefficients are negative. 

The solution as a voltage vector is at “x”. E1 = 24.000 V, E2 = 17.655 V, E3 = 19.310 V. These three 

voltages compare to the previous mesh current and SPICE solutions to the unbalanced bridge problem. 

This is no coincidence, for the 0.13609 A current source was purposely chosen to yield the 24 V used 

as a voltage source in that problem 

octave:12> A = [1/150+1/50 -1/150 -1/50 

> -1/150 1/150+1/100+1/300 -1/100 

> -1/50 -1/100 1/50+1/100+1/250] 

A = 

0.0266667  -0.0066667 -0.0200000 

-0.0066667   0.0200000 -0.0100000 

-0.0200000  -0.0100000  0.0340000 

 
octave:13> b = [0.136092;0;0] 

b = 

0.13609 

0.00000 

0.00000 

 
octave:14> x=A\b 

x = 

24.000 

17.655 

19.310 

https://www.allaboutcircuits.com/textbook/direct-current/chpt-10/node-voltage-method/#octav.bibitem


UNIT – III 

AC CIRCUITS 

Single phase AC circuits: Representation of alternating quantities, instantaneous, peak, RMS, average, form factor 

and peak factor for different periodic wave forms, phase and phase difference, ‘j’notation, concept of reactance, 

impedance, susceptance and admittance, rectangular and polar form, concept of power, real, reactive and complex 

power, power factor. 

 Steady state analysis: Steady state analysis of RL, RC and RLC circuits (in series, parallel and series parallel 

combinations) with sinusoidal excitation; Resonance: Series and parallel resonance, concept of band width and Q 

factor.  

Analysis of AC circuits: 
 

Direct Current or D.C. as it is more commonly called, is a form of electrical current or voltage that 

flows around an electrical circuit in one direction only, making it a “Uni-directional” supply. 

Generally, both DC currents and voltages are produced by power supplies, batteries, dynamos and solar 

cells to name a few. A DC voltage or current has a fixed magnitude (amplitude) and a definite direction 

associated with it. For example, +12V represents 12 volts in the positive direction, or -5V represents 5 

volts in the negative direction. 

We also know that DC power supplies do not change their value with regards to time, they are a constant 

value flowing in a continuous steady state direction. In other words, DC maintains the same value for all 

times and a constant uni-directional DC supply never changes or becomes negative unless its connections 

are physically reversed. An example of a simple DC or direct current circuit is shown below. 

 
 

DC Circuit and Waveform 
 

An alternating function or AC Waveform on the other hand is defined as one that varies in both 

magnitude and direction in more or less an even manner with respect to time making it a “Bi-directional” 

waveform. An AC function can represent either a power source or a signal source with the shape of an AC 

waveform generally following that of a mathematical sinusoid being defined as: A(t) = Amax*sin(2πƒt). 

The term AC or to give it its full description of Alternating Current, generally refers to a time-varying 

waveform with the most common of all being called a Sinusoid better known as a Sinusoidal 

Waveform. Sinusoidal waveforms are more generally called by their short description as Sine Waves. 

Sine waves are by far one of the most important types of AC waveform used in electrical engineering. 

The shape obtained by plotting the instantaneous ordinate values of either voltage or current against time 

is called an AC Waveform. An AC waveform is constantly changing its polarity every half cycle 

alternating between a positive maximum value and a negative maximum value respectively with regards 

to time with a common example of this being the domestic mains voltage supply we use in our homes. 



This means then that the AC Waveform is a “time-dependent signal” with the most common type of time- 

dependant signal being that of the Periodic Waveform. The periodic or AC waveform is the resulting 

product of a rotating electrical generator. Generally, the shape of any periodic waveform can be generated 

using a fundamental frequency and superimposing it with harmonic signals of varying frequencies and 

amplitudes but that’s for another tutorial. 

Alternating voltages and currents cannot be stored in batteries or cells like direct current (DC) can, it is 

much easier and cheaper to generate these quantities using alternators or waveform generators when they 

are needed. The type and shape of an AC waveform depends upon the generator or device producing 

them, but all AC waveforms consist of a zero voltage line that divides the waveform into two symmetrical 

halves. The main characteristics of an AC Waveform are defined as: 

 
 

AC Waveform Characteristics 

• The Period, (T) is the length of time in seconds that the waveform takes to repeat itself from start 

to finish. This can also be called the Periodic Time of the waveform for sine waves, or the Pulse 

Width for square waves. 

• The Frequency, (ƒ) is the number of times the waveform repeats itself within a one second time 

period. Frequency is the reciprocal of the time period, ( ƒ = 1/T ) with the unit of frequency being 

the Hertz, (Hz). 

• The Amplitude (A) is the magnitude or intensity of the signal waveform measured in volts or 

amps. 

In our tutorial about waveforms,we looked at different types of waveforms and said that “Waveforms are 

basically a visual representation of the variation of a voltage or current plotted to a base of time”. 

Generally, for AC waveforms this horizontal base line represents a zero condition of either voltage or 

current. Any part of an AC type waveform which lies above the horizontal zero axis represents a voltage 

or current flowing in one direction. 

Likewise, any part of the waveform which lies below the horizontal zero axis represents a voltage or 

current flowing in the opposite direction to the first. Generally for sinusoidal AC waveforms the shape of 

the waveform above the zero axis is the same as the shape below it. However, for most non-power AC 

signals including audio waveforms this is not always the case. 

The most common periodic signal waveforms that are used in Electrical and Electronic Engineering are 

the Sinusoidal Waveforms. However, an alternating AC waveform may not always take the shape of a 

smooth shape based around the trigonometric sine or cosine function. AC waveforms can also take the 

shape of either Complex Waves, Square Waves or Triangular Waves and these are shown below. 



Types of Periodic Waveform 
 

The time taken for an AC Waveform to complete one full pattern from its positive half to its negative 

half and back to its zero baseline again is called a Cycle and one complete cycle contains both a positive 

half-cycle and a negative half-cycle. The time taken by the waveform to complete one full cycle is called 

the Periodic Time of the waveform, and is given the symbol “T”. 

The  number  of  complete  cycles  that  are  produced   within  one  second  (cycles/second)  is  called   

the Frequency, symbol ƒ of the alternating waveform. Frequency is measured in Hertz, ( Hz ) named 

after the German physicist Heinrich Hertz. 

Then we can see that a relationship exists between cycles (oscillations), periodic time and frequency 

(cycles per second), so if there are ƒ number  of  cycles  in  one  second,  each  individual  cycle  must 

take 1/ƒ seconds to complete. 

 
 

Relationship Between Frequency and Periodic Time 
 



AC Waveform Example No1 

1. What will be the periodic time of a 50Hz waveform and 2. what is the frequency of an AC waveform 

that has a periodic time of 10mS. 

1). 
 

2). 
 

 

Frequency used to be expressed in “cycles per second” abbreviated to “cps”, but today it is more 

commonly specified in units called “Hertz”. For a domestic mains supply the frequency will be either 

50Hz or 60Hz depending upon the country and is fixed by the speed of rotation of the generator. But one 

hertz is a very small unit so prefixes are used that denote the order of magnitude of the waveform at 

higher frequencies such as kHz, MHz and even GHz. 

 

 
Amplitude of an AC Waveform 

As well as knowing either the periodic time or the frequency of the alternating quantity, another 

important parameter of the AC waveform is Amplitude, better known as its Maximum or Peak value 

represented by the terms, Vmax for voltage or Imax for current. 

The peak value is the greatest value of either voltage or current that the waveform reaches during 

each half cycle measured from the zero baseline. Unlike a DC voltage or current which has a steady state 

that can be measured or calculated using Ohm’s Law, an alternating quantity is constantly changing its 

value over time. 

For pure sinusoidal waveforms this peak value will always be the same for both half cycles 

( +Vm = -Vm ) but for non-sinusoidal or complex waveforms the maximum peak value can be very 

different for each half cycle. Sometimes, alternating waveforms are given a peak-to-peak, Vp-p value and 

this is simply the distance or the sum in voltage between the maximum peak value, +Vmax and the 

minimum peak value, -Vmax during one complete cycle. 

 
 

The Average Value of an AC Waveform 

The average or mean value of a continuous DC voltage will always be equal to its maximum peak value 

as a DC voltage is constant. This average value will only change if the duty cycle of the DC voltage 

changes. In a pure sine wave if the average value is calculated over the full cycle, the average value 

would be equal to zero as the positive and negative halves will cancel each other out. So the average or 

mean value of an AC waveform is calculated or measured over a half cycle only and this is shown below. 

https://www.electronics-tutorials.ws/dccircuits/dcp_2.html


Average Value of a Non-sinusoidal Waveform 
 

To find the average value of the waveform we need to calculate the area underneath the 

waveform using the mid-ordinate rule, trapezoidal rule or the Simpson’s rule found commonly in 

mathematics. The approximate area under any irregular waveform can easily be found by simply using 

the mid-ordinate rule. 

The zero axis base line is divided up into any number of equal parts and in our simple example 

above this value was nine, ( V1 to V9 ). The more ordinate lines that are drawn the more accurate will be 

the final average or mean value. The average value will be the addition of all the instantaneous values 

added together and then divided by the total number. This is given as. 

 
 

Average Value of an AC Waveform 
 

Where: n equals the actual number of mid-ordinates used. 

For a pure sinusoidal waveform this average or mean value will always be equal to 0.637*Vmax and this 

relationship also holds true for average values of current. 



The RMS Value of an AC Waveform 

The average value of an AC waveform that we calculated above as being: 0.637*Vmax is NOT the same 

value we would use for a DC supply. This is because unlike a DC supply which is constant and and of a 

fixed value, an AC waveform is constantly changing over time and has no fixed value. Thus the 

equivalent value for an alternating current system that provides the same amount of electrical power to a 

load as a DC equivalent circuit is called the “effective value”. 

The effective value of a sine wave produces the same I2*R heating effect in a load as we would expect to 

see if the same load was fed by a constant DC supply. The effective value of a sine wave is more 

commonly known as the Root Mean Squared or simply RMS value as it is calculated as the square root 

of the mean (average) of the square of the voltage or current. 

That is Vrms or Irms is given as the square root of the average of the sum of all the squared mid-ordinate 

values of the sine wave. The RMS value for any AC waveform can be found from the following modified 

average value formula as shown. 

 
 

RMS Value of an AC Waveform 
 

Where: n equals the number of mid-ordinates. 

For  a  pure  sinusoidal  waveform  this  effective  or   R.M.S.  value  will  always   be   equal   

too: 1/√2*Vmax which is equal to 0.707*Vmax and this relationship holds true for RMS values of current. 

The RMS value for a sinusoidal waveform is always greater than the average value except for a 

rectangular waveform. In this case the heating effect remains constant so the average and the RMS values 

will be the same. 

One final comment about R.M.S. values. Most multimeters, either digital or analogue unless 

otherwise stated only measure the R.M.S. values of voltage and current and not the average. Therefore 

when using a multimeter on a direct current system the reading will be equal to I = V/R and for an 

alternating current system the reading will be equal to Irms = Vrms/R. 

Also, except for average power calculations, when calculating RMS or peak voltages, only use 

VRMS to find IRMS values, or peak voltage, Vp to find peak current, Ip values. Do not mix them together as 

Average, RMS or Peak values of a sine wave are completely different and your results will definitely be 

incorrect. 

 
 

Form Factor and Crest Factor 

Although little used these days, both Form Factor and Crest Factor can be used to give information 

about the actual shape of the AC waveform. Form Factor is the ratio between the average value and the 

RMS value and is given as. 



 
 

For a pure sinusoidal waveform the Form Factor will always be equal to 1.11. Crest Factor is the ratio 

between the R.M.S. value and the Peak value of the waveform and is given as. 
 

 

For a pure sinusoidal waveform the Crest Factor will always be equal to 1.414. 

 

 
AC Waveform Example No2 

A sinusoidal alternating current of 6 amps is flowing through a resistance of 40Ω. Calculate the average 

voltage and the peak voltage of the supply. 

The R.M.S. Voltage value is calculated as: 
 

The Average Voltage value is calculated as: 
 

 

The Peak Voltage value is calculated as: 
 

 

The use and calculation of Average, R.M.S, Form factor and Crest Factor can also be use with 

any type of periodic waveform including Triangular, Square, Sawtoothed or any other irregular or 

complex voltage/current waveform shape. Conversion between the various sinusoidal values can 

sometimes be confusing so the following table gives a convenient way of converting one sine wave value 

to another. 

 

Phasor Diagrams and Phasor Algebra 

Phasor Diagrams are a graphical way of representing the magnitude and directional relationship 

between two or more alternating quantities 



Sinusoidal waveforms of the same frequency can have a Phase Difference between themselves 

which represents the angular difference of the two sinusoidal waveforms. Also the terms “lead” and “lag” 

as well as “in-phase” and “out-of-phase” are commonly used to indicate the relationship of one waveform 

to the other with the generalized sinusoidal expression given as: A(t) = Am sin(ωt ± Φ) representing the 

sinusoid in the time-domain form. 

But when presented mathematically in this way it is sometimes difficult to visualise this angular 

or phasor difference between two or more sinusoidal waveforms. One way to overcome this problem is to 

represent the sinusoids graphically within the spacial or phasor-domain form by using Phasor Diagrams, 

and this is achieved by the rotating vector method. 

Basically a rotating vector, simply called a “Phasor” is a scaled line whose length represents an 

AC quantity that has both magnitude (“peak amplitude”) and direction (“phase”) which is “frozen” at 

some point in time. 

A phasor is a vector that has an arrow head at one end which signifies partly the maximum value 

of the vector quantity ( V or I ) and partly the end of the vector that rotates. 

Generally, vectors are assumed to pivot at one end around a fixed zero point known as the “point 

of origin” while the arrowed end representing the quantity, freely rotates in an anti-clockwise direction at 

an angular velocity, ( ω ) of one full revolution for every cycle. This anti-clockwise rotation of the vector 

is considered to be a positive rotation. Likewise, a clockwise rotation is considered to be a negative 

rotation. 

Although the both the terms vectors and phasors are used to describe a rotating line that itself has 

both magnitude and direction, the main difference between the two is that a vectors magnitude is the 

“peak value” of the sinusoid while a phasors magnitude is the “rms value” of the sinusoid. In both cases 

the phase angle and direction remains the same. 

The phase of an alternating quantity at any instant in time can be represented by a phasor 

diagram, so phasor diagrams can be thought of as “functions of time”. A complete sine wave can be 

constructed by a single vector rotating at an angular velocity of ω = 2πƒ, where ƒ is the frequency of the 

waveform. Then a Phasor is a quantity that has both “Magnitude” and “Direction”. 

Generally, when constructing a phasor diagram, angular velocity of a sine wave is always assumed to   

be: ω in rad/sec. Consider the phasor diagram below. 



Phasor Diagram of a Sinusoidal Waveform 
 

As the single vector rotates in an anti-clockwise direction, its tip at point A will rotate one 

complete revolution of 360o or 2π representing one complete cycle. If the length of its moving tip is 

transferred at different angular intervals in time to a graph as shown above, a sinusoidal waveform would 

be drawn starting at the left with zero time. Each position along the horizontal axis indicates the time that 

has elapsed since zero time, t = 0. When the vector is horizontal the tip of the vector represents the angles 

at 0o, 180o and at 360o. 

Likewise, when the tip of the vector is vertical it represents the positive peak value, ( +Am ) at 

90o or π/2 and the negative peak value, ( -Am ) at 270o or 3π/2. Then the time axis of the waveform 

represents the angle either in degrees or radians through which the phasor has moved. So we can say that 

a phasor represent a scaled voltage or current value of a rotating vector which is “frozen” at some point in 

time, ( t ) and in our example above, this is at an angle of 30o. 

Sometimes when we are analysing alternating waveforms we may need to know the position of 

the phasor, representing the Alternating Quantity at some particular instant in time especially when we 

want to compare two different waveforms on the same axis. For example, voltage and current. We have 

assumed in the waveform above that the waveform starts at time t = 0 with a corresponding phase angle in 

either degrees or radians. 

But if a second waveform starts to the left or to the right of this zero point or we want to represent 

in phasor notation the relationship between the two waveforms then we will need to take into account this 

phase difference, Φ of the waveform. 



Phase Difference of a Sinusoidal Waveform 
 

 

 
The generalised mathematical expression to define these two sinusoidal quantities will be written as: 

 

The current, i is lagging the voltage, v by angle Φ and in our example above this is 30o. So the 

difference between the two phasors representing the two sinusoidal quantities is angle Φ and the resulting 

phasor diagram will be. 

 
 

Phasor Diagram of a Sinusoidal Waveform 
 

The phasor diagram is drawn corresponding to time zero ( t = 0 ) on the horizontal axis. The 

lengths of the phasors are proportional to the values of the voltage, ( V ) and the current, ( I ) at the instant 

in time that the phasor diagram is drawn. The current phasor lags the voltage phasor by the angle, Φ, as 

the two phasors rotate in an anticlockwisedirection as stated earlier, therefore the angle, Φ is also 

measured in the same anticlockwise direction. 
 



If however, the waveforms are frozen at time, t = 30o, the corresponding phasor diagram would 

look like the one shown on the right. Once again the current phasor lags behind the voltage phasor as the 

two waveforms are of the same frequency. 

However, as the current waveform is now crossing the horizontal zero axis line at this instant in 

time we can use the current phasor as our new reference and correctly say that the voltage phasor is 

“leading” the current phasor by angle, Φ. Either way, one phasor is designated as the reference phasor  

and all the other phasors will be either leading or lagging with respect to this reference. 

 
 

Phasor Addition 

Sometimes it is necessary when studying sinusoids to add together two alternating waveforms, for 

example in an AC series circuit, that are not in-phase with each other. If they are in-phase that is, there is 

no phase shift then they can be added together in the same way as DC values to find the algebraic sum of 

the two vectors. For example, if two voltages of say 50 volts and 25 volts respectively are together “in- 

phase”, they will add or sum together to form one voltage of 75 volts (50 + 25). 

If however, they are not in-phase that is, they do not have identical directions or starting point 

then the phase angle between them needs to be taken into account so they are added together using phasor 

diagrams to determine their Resultant Phasor or Vector Sum by using the parallelogram law. 

Consider two AC voltages, V1 having a peak voltage of 20 volts, and V2 having a peak voltage of 

30 volts where V1 leads V2 by 60o. The total voltage, VT of the two voltages can be found by firstly 

drawing a phasor diagram representing the two vectors and then constructing a parallelogram in which 

two of the sides are the voltages, V1 and V2 as shown below. 

 

Phasor Addition of two Phasors 
 

 

 
By drawing out the two phasors to scale onto graph paper, their phasor sum V1 + V2 can be easily 

found by measuring the length of the diagonal line, known as the “resultant r-vector”, from the zero point 



to the intersection of the construction lines 0-A. The downside of this graphical method is that it is time 

consuming when drawing the phasors to scale. 

Also, while this graphical method gives an answer which is accurate enough for most purposes, it 

may produce an error if not drawn accurately or correctly to scale. Then one way to ensure that the correct 

answer is always obtained is by an analytical method. 

Mathematically we can add the two voltages together by firstly finding their “vertical” and 

“horizontal” directions, and from this we can then calculate both the “vertical” and “horizontal” 

components for the resultant “r vector”, VT. This analytical method which uses the cosine and sine rule to 

find this resultant value is commonly called the Rectangular Form. 

In  the  rectangular  form,  the  phasor  is  divided  up  into  a  real  part, x and  an  imaginary  

part, yforming the generalised expression Z = x ± jy. ( we will discuss this in more detail in the next 

tutorial ). This then gives us a mathematical expression that represents both the magnitude and the phase 

of the sinusoidal voltage as: 

 
 

Definition of a Complex Sinusoid 
 

 

So the addition of two vectors, A and B using the previous generalised expression is as follows: 
 

 

 
Phasor Addition using Rectangular Form 

Voltage, V2 of 30 volts points in the reference direction along the horizontal zero axis, then it has a 

horizontal component but no vertical component as follows. 

Horizontal Component = 30 cos 0o = 30 volts 

Vertical Component = 30 sin 0o = 0 volts 

This then gives us the rectangular expression for voltage V2 of: 30 + j0 

Voltage, V1 of 20 volts leads voltage, V2 by 60o, then it has both horizontal and vertical components as 

follows. 

Horizontal Component = 20 cos 60o = 20 x 0.5 = 10 volts 

Vertical Component = 20 sin 60o = 20 x 0.866 = 17.32 volts 

This then gives us the rectangular expression for voltage V1 of: 10 + j17.32 

The resultant voltage, VT is found by adding together the horizontal and vertical components as follows. 



VHorizontal = sum of real parts of V1 and V2 = 30 + 10 = 40 volts 

VVertical = sum of imaginary parts of V1 and V2 = 0 + 17.32 = 17.32 volts 

Now that both the real and imaginary values have been found the magnitude of voltage, VT is determined 

by simply using Pythagoras’s Theorem for a 90o triangle as follows. 
 

Then the resulting phasor diagram will be: 

 

 
Resultant Value of VT 

 

 

Phasor Subtraction 

Phasor subtraction is very similar to the above rectangular method of addition, except this time the vector 

difference is the other diagonal of the parallelogram between the two voltages of V1 and V2 as shown. 

 

Vector Subtraction of two Phasors 
 

This time instead of “adding” together both the horizontal and vertical components we take them away, 

subtraction. 



 
 

 

 

 

Phasor Diagram of a Sinusoidal Waveform 
 
 

 
As the single vector rotates in an anti-clockwise direction, its tip at point A will rotate one 

complete revolution of 360o or 2π representing one complete cycle. If the length of its moving tip is 

transferred at different angular intervals in time to a graph as shown above, a sinusoidal waveform would 

be drawn starting at the left with zero time. Each position along the horizontal axis indicates the time that 

has elapsed since zero time, t = 0. When the vector is horizontal the tip of the vector represents the angles 

at 0o, 180o and at 360o. 

 
Likewise, when the tip of the vector is vertical it represents the positive peak value, ( +Am ) at 

90o or π/2 and the negative peak value, ( -Am ) at 270o or 3π/2. Then the time axis of the waveform 

represents the angle either in degrees or radians through which the phasor has moved. So we can say that 

a phasor represent a scaled voltage or current value of a rotating vector which is “frozen” at some point in 

time, ( t ) and in our example above, this is at an angle of 30o. 

 
Sometimes when we are analysing alternating waveforms we may need to know the position of 

the phasor, representing the Alternating Quantity at some particular instant in time especially when we 

want to compare two different waveforms on the same axis. For example, voltage and current. We have 

assumed in the waveform above that the waveform starts at time t = 0 with a corresponding phase angle in 

either degrees or radians. 

 
But if a second waveform starts to the left or to the right of this zero point or we want to represent 

in phasor notation the relationship between the two waveforms then we will need to take into account this 



phase difference, Φ of the waveform. Consider  the  diagram  below  from  the  previous Phase  

Difference tutorial. 

 
Phase Difference of a Sinusoidal Waveform 

 
 

 
The generalised mathematical expression to define these two sinusoidal quantities will be written 

as: 

 

 
The current, i is lagging the voltage, v by angle Φ and in our example above this is 30o. So the difference 

between the two phasors representing the two sinusoidal quantities is angle Φ and the resulting phasor 

diagram will be. 

 
Phasor Diagram of a Sinusoidal Waveform 

 

 

 

 
The phasor diagram is drawn corresponding to time zero ( t = 0 ) on the horizontal axis. The lengths of  

the phasors are proportional to the values of the voltage, ( V ) and the current, ( I ) at the instant in time 

that the phasor diagram is drawn. The current phasor lags the voltage phasor by the angle, Φ, as the two 

phasors rotate in an anticlockwisedirection as stated earlier, therefore the angle, Φ is also measured in the 

same anticlockwise direction. 
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If however, the waveforms are frozen at time, t = 30o, the corresponding phasor diagram would look like 

the one shown on the right. Once again the current phasor lags behind the voltage phasor as the two 

waveforms are of the same frequency. 

 
However, as the current waveform is now crossing the horizontal zero axis line at this instant in time we 

can use the current phasor as our new reference and correctly say that the voltage phasor is “leading” the 

current phasor by angle, Φ. Either way, one phasor is designated as the reference phasor and all the other 

phasors will be either leading or lagging with respect to this reference. 

 
Phase Difference and Phase Shift 

 
Phase Difference is used to describe the difference in degrees or radians when two or more 

alternating quantities reach their maximum or zero values 

 

Previously we saw that a Sinusoidal Waveform is an alternating quantity that can be presented 

graphically in the time domain along an horizontal zero axis. We also saw that as an alternating quantity, 

sine waves have a positive maximum value at time π/2, a negative maximum value at time 3π/2, with zero 

values occurring along the baseline at 0, π and 2π. 

However, not all sinusoidal waveforms will pass exactly through the zero axis point at the same 

time, but may be “shifted” to the right or to the left of 0o by some value when compared to another sine 

wave. 

For example, comparing a voltage waveform to that of a current waveform. This then produces an 

angular shift or Phase Difference between the two sinusoidal waveforms. Any sine wave that does not 

pass through zero at t = 0 has a phase shift. 

The phase difference or phase shift as it is  also  called  of  a  Sinusoidal  Waveform  is  the  

angle Φ (Greek letter Phi), in degrees or radians that the waveform has shifted from a certain reference 

point along the horizontal zero axis. In other words phase shift is the lateral difference between two or 

more waveforms along a common axis and sinusoidal waveforms of the same frequency can have a phase 

difference. 

The phase difference, Φ of an alternating waveform can vary from between 0 to its maximum 

time period, T of the waveform during one complete cycle and this can be anywhere along the horizontal 

axis between, Φ = 0 to 2π (radians) or Φ = 0 to 360odepending upon the angular units used. 



Phase difference can also be expressed as a time shift of τ in seconds representing a fraction of the 

time period, T for example, +10mS or – 50uS but generally it is more common to express phase 

difference as an angular measurement. 

Then the equation for the instantaneous value of a sinusoidal voltage or current waveform we 

developed in the previous Sinusoidal Waveform will need to be modified to take account of the phase 

angle of the waveform and this new general expression becomes. 

 
 

Phase Difference Equation 
 

 

Where: 

Am - is the amplitude of the waveform. 

ωt - is the angular frequency of the waveform in radian/sec. 

Φ (phi) -  is the phase angle in degrees or radians that the waveform has shifted either left or  

right from the reference point. 

If the positive slope of the sinusoidal waveform passes through the horizontal axis “before” t = 0 then 

the waveform has shifted to the left so Φ >0, and the phase angle will be positive in nature, +Φ giving a 

leading phase angle. In other words it appears earlier in time than 0o producing an anticlockwise rotation 

of the vector. 

Likewise, if the positive slope of the sinusoidal waveform passes through the horizontal x-axis some 

time “after” t = 0 then the waveform has shifted to the right so Φ <0, and the phase angle will be negative 

in nature -Φ producing a lagging phase angle as it appears later in time than 0o producing a clockwise 

rotation of the vector. Both cases are shown below. 

 
 

Phase Relationship of a Sinusoidal Waveform 
 

 

Firstly, lets consider that two alternating quantities such as a voltage, v and a current, ihave the 

same frequency ƒ in Hertz. As the frequency of the two quantities is the same the angular 



velocity, ω must also be the same. So at any instant in time we can say that the phase of voltage, v will be 

the same as the phase of the current, i. 

Then the angle of rotation within a particular time period will always be the same and the phase 

difference between the two quantities of v and i will therefore be zero and Φ = 0. As the frequency of the 

voltage, v and the current, i are the same they must both reach their maximum positive, negative and zero 

values during one complete cycle at the same time (although their amplitudes may be different). Then the 

two alternating quantities, v and iare said to be “in-phase”. 

 
 

Two Sinusoidal Waveforms – “in-phase” 

 

 
 

Now lets consider that the voltage, v and the current, i have a phase difference between themselves         

of 30o, so (Φ = 30o or π/6 radians). As both alternating quantities rotate at the same speed, i.e. they have 

the same frequency, this phase difference will remain constant for all instants in time, then the phase 

difference of 30o between the two quantities is represented by phi, Φ as shown below. 

 

Phase Difference of a Sinusoidal Waveform 

 

 
 

The voltage waveform above starts at zero along the horizontal reference axis, but at that same 

instant of time the current waveform is still negative in value and does not cross this reference axis     

until 30o later. Then there exists a Phase difference between the two waveforms as the current cross the 

horizontal reference axis reaching its maximum peak and zero values after the voltage waveform. 



As the two waveforms are no longer “in-phase”, they must therefore be “out-of-phase” by an 

amount determined by phi, Φ and in our example this is 30o. So we can say that the two waveforms are 

now 30o out-of phase. The current waveform can also be said to be “lagging” behind the voltage 

waveform by the phase angle, Φ. Then in our example above the two waveforms have a Lagging Phase 

Difference so the expression for both the voltage and current above will be given as. 
 

 

where, i lags v by angle Φ 

Likewise, if the current, i has a positive value and crosses the reference axis reaching its maximum peak 

and zero values at some time before the voltage, v then the current waveform will be “leading” the 

voltage by some phase angle. Then the two waveforms are said to have a Leading Phase Difference and 

the expression for both the voltage and the current will be. 
 

 
 

where, i leads v by angle Φ 

The phase angle of a sine wave can be used to describe the relationship of one sine wave to another by 

using the terms “Leading” and “Lagging” to indicate the relationship between two sinusoidal waveforms 

of the same frequency, plotted onto the same reference axis. In our example above the two waveforms  

are out-of-phase by 30o. So we can correctly say that i lags v or we can say that v leads i by 30o depending 

upon which one we choose as our reference. 

The relationship between the two waveforms and the resulting phase angle can be measured anywhere 

along the horizontal zero axis through which each waveform passes with the “same slope” direction either 

positive or negative. 

In AC power circuits this ability to describe the relationship between a voltage and a current sine wave 

within the same circuit is very important and forms the bases of AC circuit analysis. 

AC Inductance and Inductive Reactance: 

 
The opposition to current flow through an AC Inductor is called Inductive Reactance and which 

depends lineally on the supply frequency 

 

Inductors and chokes are basically coils or loops of wire that are either wound around a hollow 

tube former (air cored) or wound around some ferromagnetic material (iron cored) to increase their 

inductive value called inductance. 



Inductors store their energy in the form of a magnetic field that is created when a voltage is 

applied across the terminals of an inductor. The growth of the current flowing through the inductor is not 

instant but is determined by the inductors own self-induced or back emf value. Then for an inductor coil, 

this back emf voltage VL is proportional to the rate of change of the current flowing through it. 

This current will continue to rise until it reaches its maximum steady state condition which is 

around five time constants when this self-induced back emf has decayed to zero. At this point a steady 

state current is flowing through the coil, no more back emf is induced to oppose the current flow and 

therefore, the coil acts more like a short circuit allowing maximum current to flow through it. 

However, in an alternating current circuit which contains an AC Inductance, the flow of current 

through an inductor behaves very differently to that of a steady state DC voltage. Now in an AC circuit, 

the opposition to the current flowing through the coils windings not only depends upon the inductance of 

the coil but also the frequency of the applied voltage waveform as it varies from its positive to negative 

values. 

The actual opposition to the current flowing through a coil in an AC circuit is determined by the 

AC Resistance of the coil with this AC resistance being represented by a complex number. But to 

distinguish a DC resistance value from an AC resistance value, which is also known as Impedance, the 

term Reactance is used. 

Like resistance, reactance is measured in Ohm’s but is given the symbol “X” to distinguish it 

from a purely resistive “R” value and as the component in question is an inductor, the reactance of an 

inductor is called Inductive Reactance, ( XL ) and is measured in Ohms. Its value can be found from the 

formula. 

 

Inductive Reactance 
 

 

Where: XL is the Inductive Reactance in Ohms, ƒ is the frequency in Hertz and L is the 

inductance of the coil in Henries. 

We can also define inductive reactance in radians, where Omega, ω equals 2πƒ. 
 

 

So whenever a sinusoidal voltage is applied to an inductive coil, the back emf opposes the rise 

and fall of the current flowing through the coil and in a purely inductive coil which has zero resistance or 

losses, this impedance (which can be a complex number) is equal to its inductive reactance. Also 

reactance is represented by a vector as it has both a magnitude and a direction (angle). Consider the  

circuit below. 



AC Inductance with a Sinusoidal Supply 
 

 

 
This simple circuit above consists of a pure inductance of L Henries ( H ), connected across a 

sinusoidal voltage given by the expression: V(t) = Vmax sin ωt. When the switch is closed this sinusoidal 

voltage will cause a current to flow and rise from zero to its maximum value. This rise or change in the 

current will induce a magnetic field within the coil which in turn will oppose or restrict this change in the 

current. 

But before the current has had time to reach its maximum value as it would in a DC circuit, the 

voltage changes polarity causing the current to change direction. This change in the other direction once 

again being delayed by the self-induced back emf in the coil, and in a circuit containing a pure inductance 

only, the current is delayed by 90o. 

The applied voltage reaches its maximum positive value a quarter ( 1/4ƒ ) of a cycle earlier than 

the current reaches its maximum positive value, in other words, a voltage applied to a purely inductive 

circuit “LEADS” the current by a quarter of a cycle or 90o as shown below. 

 

Sinusoidal Waveforms for AC Inductance 
 

 

 
This effect can also be represented by a phasor diagram were in a purely inductive circuit the 

voltage “LEADS” the current by 90o. But by using the voltage as our reference, we can also say that the 

current “LAGS” the voltage by one quarter of a cycle or 90o as shown in the vector diagram below. 



Phasor Diagram for AC Inductance 
 

So for a pure loss less inductor, VL “leads” IL by 90o, or we can say that IL “lags” VL by 90o. 

There are many different ways to remember the phase relationship between the voltage and current 

flowing through a pure inductor circuit, but one very simple and easy to remember way is to use the 

mnemonic expression “ELI” (pronounced Ellie as in the girls name). ELI stands for Electromotive force 

first in an AC inductance, L before the current I. In other words, voltage before the current  in  an 

inductor, E, L, I equals “ELI”, and whichever phase angle the voltage starts at, this expression always 

holds true for a pure inductor circuit. 

 

The Effect of Frequency on Inductive Reactance 

When a 50Hz supply is connected across a suitable AC Inductance, the current will be delayed by 90o as 

described previously and will obtain a peak value of I amps before the voltage reverses polarity at the end 

of each half cycle, i.e. the current rises up to its maximum value in “T secs“. 

If we now apply a 100Hz supply of the same peak voltage to the coil, the current will still be delayed by 

90o but its maximum value will be lower than the 50Hz value because the time it requires to reach its 

maximum value has been reduced due to the increase in frequency because now it only has “1/2 T secs” 

to reach its peak value. Also, the rate of change of the flux within the coil has also increased due to the 

increase in frequency. 

Then  from  the  above  equation  for  inductive   reactance,   it   can   be   seen   that   if   either 

the Frequency OR the Inductance is increased the overall inductive reactance value of the coil would 

also increase. As the frequency increases and approaches infinity, the inductors reactance and therefore its 

impedance would also increase towards infinity acting like an open circuit. 

Likewise, as the frequency approaches zero or DC, the inductors reactance would also decrease to 

zero, acting like a short circuit. This means then that inductive reactance is “directly proportional to 

frequency” and has a small value at low frequencies and a high value at higher frequencies as shown. 



Inductive Reactance against Frequency 
 

The inductive reactance of an inductor increases as the frequency across it increases therefore 

inductive reactance is proportional to frequency ( XL α ƒ ) as the back emf generated in the inductor is 

equal to its inductance multiplied by the rate of change of current in the inductor. 

Also as the frequency increases the current flowing through the inductor also reduces in value. 

We can present the effect of very low and very high frequencies on a the reactance of a pure AC 

Inductance as follows: 
 

 

 

In an AC circuit containing pure inductance the following formula applies: 
 

So how did we arrive at this equation. Well the self induced emf in the inductor is determined by 

Faraday’s Law that produces the effect of self-induction in the inductor due to the rate of change of the 

current and the maximum value of the induced emf will correspond to the maximum rate of change. Then 

the voltage in the inductor coil is given as: 
 



 

then the voltage across an AC inductance will be defined as: 
 

Where: VL = IωL which is the voltage amplitude and θ = + 90o which is the phase difference or phase 

angle between the voltage and current. 

 

In the Phasor Domain 

In the phasor domain the voltage across the coil is given as: 
 

and in Polar Form this would be written as: XL∠90o where: 
 

 
 

 

 

 

AC Capacitance and Capacitive Reactance 

 
The opposition to current flow through an AC Capacitor is called Capacitive Reactance and 

which itself is inversely proportional to the supply frequency 

 

Capacitors store energy on their conductive plates in the form of an electrical charge. When a 

capacitor is connected across a DC supply voltage it charges up to the value of the applied voltage at a 

rate determined by its time constant. 

A capacitor will maintain or hold this charge indefinitely as long as the supply voltage is present. 

During this charging process, a charging current, i flows into the capacitor opposed by any changes to the 

voltage at a rate which is equal to the rate of change of the electrical charge on the plates. A capacitor 

therefore has an opposition to current flowing onto its plates. 



The relationship between this charging current and the rate at which the capacitors supply voltage 

changes can be defined mathematically as: i = C(dv/dt), where C is the capacitance value of the capacitor 

in farads and dv/dt is the rate of change of the supply voltage with respect to time. Once it is “fully- 

charged” the capacitor blocks the flow of any more electrons onto its plates as they have become  

saturated and the capacitor now acts like a temporary storage device. 

A pure capacitor will maintain this charge indefinitely on its plates even if the DC supply voltage 

is removed. However, in a sinusoidal voltage circuit which contains “AC Capacitance”, the capacitor will 

alternately charge and discharge at a rate determined by the frequency of the supply. Then capacitors in 

AC circuits are constantly charging and discharging respectively. 

When an alternating sinusoidal voltage is applied to the plates of an AC capacitor, the capacitor is 

charged firstly in one direction and then in the opposite direction changing polarity at the same rate as the 

AC supply voltage. This instantaneous change in voltage across the capacitor is opposed by the fact that it 

takes a certain amount of time to deposit (or release) this charge onto the plates and is given by V = Q/C. 

Consider the circuit below. 

 
 

AC Capacitance with a Sinusoidal Supply 
 

 

 
When the switch is closed in the circuit above, a high current will start to flow into the capacitor 

as there is no charge on the plates at t = 0. The sinusoidal supply voltage, V is increasing in a positive 

direction at its maximum rate as it crosses the zero reference axis at an instant in time given as 0o. Since 

the rate of change of the potential difference across the plates is now at its maximum value, the flow of 

current into the capacitor will also be at its maximum rate as the maximum amount of electrons are 

moving from one plate to the other. 

As the sinusoidal supply voltage reaches its 90o point on the waveform it begins to slow down 

and for a very brief instant in time the potential difference across the plates is neither increasing nor 

decreasing therefore the current decreases to zero as there is no rate of voltage change. At this 90o point 

the potential difference across the capacitor is at its maximum ( Vmax ), no current flows into the capacitor 

as the capacitor is now fully charged and its plates saturated with electrons. 

At the end of this instant in time the supply voltage begins to decrease in a negative direction 

down towards the zero reference line at 180o. Although the supply voltage is still positive in nature the 



capacitor starts to discharge some of its excess electrons on its plates in an effort to maintain a constant 

voltage. This results in the capacitor current flowing in the opposite or negative direction. 

When the supply voltage waveform crosses the zero reference axis point at instant 180othe rate of 

change or slope of the sinusoidal supply voltage is at its maximum but in a negative direction, 

consequently the current flowing into the capacitor is also at its maximum rate at that instant. Also at this 

180o point the potential difference across the plates is zero as the amount of charge is equally distributed 

between the two plates. 

Then during this first half cycle 0o to 180o the applied voltage reaches its maximum positive value 

a quarter (1/4ƒ) of a cycle after the current reaches its maximum positive value, in other words, a voltage 

applied to a purely capacitive circuit “LAGS” the current by a quarter of a cycle or 90o as shown below. 

 

Sinusoidal Waveforms for AC Capacitance 
 

During the second half cycle 180o to 360o, the supply voltage reverses direction and heads 

towards its negative peak value at 270o. At this point the potential difference across the plates is neither 

decreasing nor increasing and the current decreases to zero. The potential difference across the capacitor 

is at its maximum negative value, no current flows into the capacitor and it becomes fully charged the 

same as at its 90o point but in the opposite direction. 

As the negative supply voltage begins to increase in a positive direction towards the 360opoint on 

the zero reference line, the fully charged capacitor must now loose some of its excess electrons to 

maintain a constant voltage as before and starts to discharge itself until the supply voltage reaches zero at 

360o at which the process of charging and discharging starts over again. 

From the voltage and current waveforms and description above, we can see that the current is 

always leading the voltage by 1/4 of a cycle or π/2 = 90o “out-of-phase” with the potential difference 

across the capacitor because of this charging and discharging process. Then the phase relationship 

between the voltage and current in an AC capacitance circuit is the exact opposite to that of an AC 

Inductance we saw in the previous tutorial. 

https://www.electronics-tutorials.ws/accircuits/ac-inductance.html
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This effect can also be represented by a phasor diagram where in a purely capacitive circuit the 

voltage “LAGS” the current by 90o. But by using the voltage as our reference, we can also say that the 

current “LEADS” the voltage by one quarter of a cycle or 90o as shown in the vector diagram below. 

 

Phasor Diagram for AC Capacitance 
 

So for a pure capacitor, VC “lags” IC by 90o, or we can say that IC “leads” VC by 90o. 

There are many different ways to remember the phase relationship between the voltage and 

current flowing in a pure AC capacitance circuit, but one very simple and easy to remember way is to use 

the   mnemonic    expression    called    “ICE”. ICE stands    for    current Ifirst    in    an    AC 

capacitance, C before Electromotive  force.  In  other  words,  current  before  the  voltage  in  a  

capacitor, I, C, E equals “ICE”, and whichever phase angle the voltage starts at, this expression always 

holds true for a pure AC capacitance circuit. 

 
 

Capacitive Reactance 

So we now know that capacitors oppose changes in voltage with the flow of electrons onto the 

plates of the capacitor being directly proportional to the rate of voltage change across its plates as the 

capacitor charges and discharges. Unlike a resistor where the opposition to current flow is its actual 

resistance, the opposition to current flow in a capacitor is called Reactance. 

Like resistance, reactance is measured in Ohm’s but is given the symbol X to distinguish it from a 

purely resistive R value and as the component in question is a capacitor, the reactance of a capacitor is 

called Capacitive Reactance, ( XC ) which is measured in Ohms. 

Since capacitors charge and discharge in proportion to the rate of voltage change across them, the 

faster the voltage changes the more current will flow. Likewise, the slower the voltage changes the less 

current will flow. This means then that the reactance of an AC capacitor is “inversely proportional” to the 

frequency of the supply as shown. 



Capacitive Reactance 
 

 

Where: XC is the Capacitive Reactance in Ohms, ƒ is the frequency in Hertz and C is the AC capacitance 

in Farads, symbol F. 

When dealing with AC capacitance, we can also define capacitive reactance in terms of radians, where 

Omega, ω equals 2πƒ. 
 

 

From the above formula we can see that the value of capacitive reactance and therefore its overall 

impedance ( in Ohms ) decreases towards zero as the frequency increases acting like a short circuit. 

Likewise, as the frequency approaches zero or DC, the capacitors reactance increases to infinity, acting 

like an open circuit which is why capacitors block DC. 

The relationship between capacitive reactance and frequency is the exact opposite to that of 

inductive reactance, ( XL ) we saw in the previous tutorial. This means then that capacitive reactance is 

“inversely proportional to frequency” and has a high value at low frequencies and a low value at higher 

frequencies as shown. 

 
 

Capacitive Reactance against Frequency 
 

Capacitive reactance of a capacitor decreases as the frequency across its plates increases. 

Therefore, capacitive reactance is inversely proportional to frequency. Capacitive reactance opposes 

current flow but the electrostatic charge on the plates (its AC capacitance value) remains constant. 

This means it becomes easier for the capacitor to fully absorb the change in charge on its plates 

during each half cycle. Also as the frequency increases the current flowing into the capacitor increases in 

value because the rate of voltage change across its plates increases. 

We can present the effect of very low and very high frequencies on the reactance of a pure AC 

Capacitance as follows: 



 
 

 
 

In an AC circuit containing pure capacitance the current (electron flow) flowing into the capacitor is 

given as: 
 

 

 

and therefore, the rms current flowing into an AC capacitance will be defined as: 
 

Where: IC = V/(1/ωC) (or IC = V/XC) is the current magnitude and θ = + 90o which is the phase 

difference or phase angle between the voltage and current. For a purely capacitive circuit, Ic leads Vc by 

90o, or Vc lags Ic by 90o. 

 

Phasor Domain 

In the phasor domain the voltage across the plates of an AC capacitance will be: 
 

 

 
and in Polar Form this would be written as: XC∠-90o where: 



 
 

 

 
AC Resistance and Impedance 

 
Impedance, measured in Ohms, is the effective resistance to current flow around an AC circuit containing 

resistances and reactances 

 
 

AC Resistance with a Sinusoidal Supply 
 

When the switch is closed, an AC voltage, V will be applied to resistor, R. This voltage will cause 

a current to flow which in turn will rise and fall as the applied voltage rises and falls sinusoidally. As the 

load is a resistance, the current and voltage will both reach their maximum or peak values and fall through 

zero at exactly the same time,  i.e. they rise and fall simultaneously and are therefore said to be “in-  

phase ”. 

Then the electrical current that flows through an AC resistance varies sinusoidally with time and 

is represented by the expression, I(t) = Im x sin(ωt + θ), where Im is the maximum amplitude of the 

current and θ is its phase angle. In addition we can also say that for any given current, i flowing through 

the resistor the maximum or peak voltage across the terminals of R will be given by Ohm’s Law as: 
 

and the instantaneous value of the current, i will be: 
 



So for a purely resistive circuit the alternating current flowing through the resistor varies in 

proportion to the applied voltage across it following the same sinusoidal pattern. As the supply frequency 

is common to both the voltage and current, their phasors will also be common resulting in the current 

being “in-phase” with the voltage, ( θ = 0 ). 

In other words, there is no phase difference between the current and the voltage when using an 

AC resistance as the current will achieve its maximum, minimum and zero values whenever the voltage 

reaches its maximum, minimum and zero values as shown below. 

 
 

Sinusoidal Waveforms for AC Resistance 
 

This “in-phase” effect can also be represented by a phasor diagram. In the complex domain, 

resistance is a real number only meaning that there is no “j” or imaginary component. Therefore, as the 

voltage and current are both in-phase with each other, there will be no phase difference ( θ = 0 ) between 

them, so the vectors of each quantity are drawn super-imposed upon one another along the same reference 

axis. The transformation from the sinusoidal time-domain into the phasor-domain is given as. 

 
 

Phasor Diagram for AC Resistance 
 

As a phasor represents the RMS values of the voltage and current quantities unlike a vector which 

represents the peak or maximum values, dividing the peak value of the time-domain expressions above  

by √2 the corresponding voltage-current phasor relationship is given as. 



RMS Relationship 
 

 
 

Phase Relationship 
 

This shows that a pure resistance within an AC circuit produces a relationship between its voltage 

and current phasors in exactly the same way as it would relate the same resistors voltage and current 

relationship  within  a  DC  circuit.  However,  in  a  DC  circuit   this   relationship   is   commonly   

called Resistance, as defined by Ohm’s Law but in a sinusoidal AC circuit this voltage-current 

relationship is now called Impedance. In other words, in an AC circuit electrical resistance is called 

“Impedance”. 

In both cases this voltage-current ( V-I ) relationship is always linear in a pure resistance. So 

when using resistors in AC circuits the term Impedance, symbol Z is the generally used to mean its 

resistance. Therefore, we can correctly say that for a resistor, DC resistance = AC impedance , or R = Z. 

The impedance vector is represented by the letter, ( Z ) for an AC resistance value with the units 

of Ohm’s ( Ω ) the same as for DC. Then Impedance ( or AC resistance ) can be defined as: 

 
 

AC Impedance 
 

 

Impedance can also be represented by a complex number as it depends upon the  frequency of  the  

circuit, ω when reactive components are present. But in the case of a purely resistive circuit this reactive 

component will always be zero and the general expression for impedance in a purely resistive circuit 

given as a complex number will be: 

  Z = R + j0 = R Ω’s  
 

Since the phase angle between the voltage and current in a purely resistive AC circuit is zero, the power 

factor must also be zero and is given as: cos 0o = 1.0 , Then the instantaneous power consumed in the 

resistor is given by: 



 
 

 

 
However, as the average power in a resistive or reactive circuit depends upon the phase angle and 

in a purely resistive circuit this is equal to θ = 0, the power factor is equal to one so the average power 

consumed by an AC resistance can be defined simply by using Ohm’s Law as: 
 

which are the same Ohm’s Law equations as for DC circuits. Then the effective power consumed by an 

AC resistance is equal to the power consumed by the same resistor in a DC circuit. 

Many AC circuits such as heating elements and lamps consist of a pure ohmic resistance only and 

have negligible values of inductance or capacitance containing on impedance. 

In such circuits we can use both Ohm’s Law ,Kirchoff’s Law as well as simple circuit rules for 

calculating and finding the voltage, current, impedance and power as in DC circuit analysis. When 

working with such rules it is usual to use RMS values only. 

 
 

AC Resistance Example No1 

An electrical heating element which has an AC resistance of 60 Ohms is connected across a 240V AC 

single phase supply. Calculate the current drawn from the supply and the power consumed by the heating 

element. Also draw the corresponding phasor diagram showing the phase relationship between the current 

and voltage. 

1. The supply current: 
 

2. The Active power consumed by the AC resistance is calculated as: 
 

 

3. As there is no phase difference in a resistive component, ( θ = 0 ), the corresponding phasor diagram is 

given as: 

 

 

\ 
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AC Resistance Example No2 

A sinusoidal voltage supply defined as: V(t) = 100 x cos(ωt + 30o) is connected to a pure 

resistance of 50 Ohms. Determine its impedance and the peak value of the current flowing through the 

circuit. Draw the corresponding phasor diagram. 

The sinusoidal voltage across the resistance will be the same as for the supply in a purely resistive 

circuit. Converting this voltage from the time-domain expression into the phasor-domain expression gives 

us: 
 

 

Applying Ohms Law gives us: 
 

 

The corresponding phasor diagram will therefore be: 
 

 

 

j-notation: 
 

The mathematics used in Electrical Engineering to add together resistances, currents or DC 

voltages use what are called “real numbers” used as either integers or as fractions. But real numbers are 

not the only kind of numbers we need to use especially when dealing with frequency dependent sinusoidal 

sources and vectors. As well as using normal or real numbers, Complex Numbers were introduced to 

allow complex equations to be solved with numbers that are the square roots of negative numbers, √-1. 

In electrical engineering this type of number is called an “imaginary number” and to distinguish 

an imaginary number from a real number the letter “ j ” known commonly in electrical engineering as   

the j-operator, is used. Thus the letter “j” is placed in front of a real number to signify its imaginary 

number operation. 

Examples of imaginary numbers are: j3, j12, j100 etc. Then a complex number consists of two 

distinct but very much related parts, a “ Real Number ” plus an “ Imaginary Number ”. 

Complex Numbers represent points in a two dimensional complex or s-plane that are referenced 

to two distinct axes. The horizontal axis is called the “real axis” while the vertical axis is called the 



“imaginary axis”. The real and imaginary parts of a complex number are abbreviated as Re(z) and Im(z), 

respectively. 

Complex numbers that are made up of real (the active component) and imaginary (the reactive 

component) numbers can be added, subtracted and used in exactly the same way as elementary algebra is 

used to analyse DC circuits. 

 

The rules and laws used in mathematics for the addition or subtraction of imaginary numbers are 

the same as for real numbers, j2 + j4 = j6 etc. The only difference is in multiplication because two 

imaginary numbers multiplied together becomes a negative real number. Real numbers can also be 

thought of as a complex number but with a zero imaginary part labelled j0. 

 

The j-operator has a value exactly equal to √-1, so successive multiplication of “ j “, ( j x j ) will 

result in j having the following values of, -1, -j and +1. As the j-operator is commonly used to indicate the 

anticlockwise rotation of a vector, each successive multiplication or power of “ j”, j2, j3 etc, will force the 

vector to rotate through an angle of 90o anticlockwise as shown below. Likewise, if the multiplication of 

the vector results in a -j operator then the phase shift will be -90o, i.e. a clockwise rotation. 
 

 

 

 

 

 

 

 
Vector Rotation of the j-operator 

 



So    by    multiplying    an    imaginary     number     by j2 will     rotate     the     vector 

by 180o anticlockwise, multiplying by j3 rotates it 270o and by j4 rotates it 360o or back to its original 

position. Multiplication by j10 or by j30 will cause the vector to rotate anticlockwise by the appropriate 

amount. In each successive rotation, the magnitude of the vector always remains the same. 

In Electrical Engineering there are different ways to represent a complex number either 

graphically  or  mathematically.  One  such  way   that   uses   the   cosine   and   sine   rule   is   called  

the Cartesian or Rectangular Form. 

Complex Numbers using the Rectangular Form 

In the last tutorial about phasors, we saw that a complex number is represented by a real part and 

an imaginary part that takes the generalised form of: 
 

Where: 

Z - is the Complex Number representing the Vector 

x - is the Real part or the Active component 

y - is the Imaginary part or the Reactive component 

j - is defined by √-1 

In the rectangular form, a complex number can be represented as a point on a two dimensional 

plane called the complex or s-plane. So for example, Z = 6 + j4 represents a single point whose 

coordinates represent 6 on the horizontal real axis and 4 on the vertical imaginary axis as shown. 

 
Complex Numbers using the Complex or s-plane 

 

But as both the real and imaginary parts of a complex number in the rectangular form can be 

either a positive number or a negative number, then both the real and imaginary axis must also extend in 

both the positive and negative directions. This then produces a complex plane with four quadrants called 

an Argand Diagram as shown above. 

Four Quadrant Argand Diagram 



 

On the Argand diagram, the horizontal axis represents all positive real numbers to the right of the 

vertical imaginary axis and all negative real numbers to the left of the vertical imaginary axis. All positive 

imaginary numbers are represented above the horizontal axis while all the negative imaginary numbers 

are below the horizontal real axis. This then produces a two dimensional complex plane with four distinct 

quadrants labelled, QI, QII, QIII, and QIV. 

The Argand diagram above can also be used to represent a rotating phasor as a point in the 

complex plane whose radius is given by the magnitude of the phasor will draw a full circle around it for 

every 2π/ω seconds. 

Then we can extend this idea further to show the definition of a complex number in both the polar 

and rectangular form for rotations of 90o. 

Complex Numbers can also have “zero” real or imaginary parts such as: Z = 6 + j0 or Z = 0 + j4. 

In this case the points are plotted directly onto the real or imaginary axis. Also, the angle of a complex 

number can be calculated using simple trigonometry to calculate the angles of right-angled triangles, or 

measured anti-clockwise around the Argand diagram starting from the positive real axis. 

Then angles between 0 and 90o will be in the first quadrant ( I ), angles ( θ ) between 90 and  

180o in the second quadrant ( II ). The third quadrant ( III ) includes angles between 180 and 270o while 

the fourth and final quadrant ( IV ) which completes the full circle, includes the angles between 270 and 

360o and so on. In all the four quadrants the relevant angles can be found from: 

tan-1(imaginary component ÷ real component) 

 
Addition and Subtraction of Complex Numbers: 

The addition or subtraction of complex numbers can be done either mathematically or graphically 

in rectangular form. For addition, the real parts are firstly added together to form the real part of the sum, 



and then the imaginary parts to form the imaginary part of the sum and this process is as follows using 

two complex numbers A and B as examples. 

Complex Addition and Subtraction 
 

Complex Numbers Example No1 

Two vectors are defined as, A = 4 + j1 and B = 2 + j3 respectively. Determine the sum and 

difference of the two vectors in both rectangular ( a + jb ) form and graphically as an Argand Diagram. 

Mathematical Addition and Subtraction 

Addition 

 
Subtraction 

 
Graphical Addition and Subtraction 

 

Multiplication and Division of Complex Numbers 

The multiplication of complex numbers in the rectangular form follows more or less the same 

rules as for normal algebra along with some additional rules for the successive multiplication of the j- 

operator   where: j2 = -1.   So   for   example,    multiplying   together   our   two   vectors   from   above 

of A = 4 + j1 and B = 2 + j3 will give us the following result. 



Mathematically, the division of complex numbers in rectangular form is a little more difficult to 

perform as it requires the use of the denominators conjugate function to convert the denominator of the 

equation into a real number. This is called “rationalising”. Then the division of complex numbers is best 

carried out using “Polar Form”, which we will look at later. However, as an example in rectangular form 

lets find the value of vector Adivided by vector B. 

The Complex Conjugate 

The Complex Conjugate, or simply Conjugate of a complex number is found by reversing the 

algebraic sign of the complex numbers imaginary number only while keeping the algebraic sign of the 

real number the same and to identify the complex conjugate of z the symbol z is used. For example, the 

conjugate of z = 6 + j4 is z = 6 – j4, likewise the conjugate of z = 6 – j4 is z = 6 + j4. 

The points on the Argand diagram for a complex conjugate have the same horizontal position on 

the real axis as the original complex number, but opposite vertical positions. Thus, complex conjugates 

can be thought of as a reflection of a complex number. The following example shows  a complex  

number, 6 + j4 and its conjugate in the complex plane. 

Conjugate Complex Numbers 
 

The sum of a complex number and its complex conjugate will always be a real number as we 

have seen above. Then the addition of a complex number and its conjugate gives the result as a real 

number or active component only, while their subtraction gives an imaginary number or reactive 

component only. The conjugate of a complex number is an important element used in Electrical 

Engineering to determine the apparent power of an AC circuit using rectangular form. 

Complex Numbers using Polar Form 

Unlike rectangular form which plots points in the complex plane, the Polar Form of a complex 

number  is  written  in  terms  of  its  magnitude  and  angle.  Thus,  a  polar  form  vector  is  presented  

as: Z = A ∠±θ, where: Z is the complex number in polar form, A is the magnitude or modulo of the 
vector and θ is its angle or argument of A which can be either positive or negative. The magnitude and 



angle of the point still remains the same as for the rectangular form above, this time in polar form the 

location of the point is represented in a “triangular form” as shown below. 

Polar Form Representation of a Complex Number 
 

As the polar representation of a point is based around the triangular form, we can use simple 

geometry of the triangle and especially trigonometry and Pythagoras’s Theorem on triangles to find both 

the magnitude and the angle of the complex number. As we remember from school, trigonometry deals 

with the relationship between the sides and the angles of triangles so we can describe the relationships 

between the sides as: 

 

Using trigonometry again, the angle θ of A is given as follows. 
 

Then in Polar form the length of A and its angle represents the complex number instead of a 

point. Also in polar form, the conjugate of the complex number has the same magnitude or modulus it is 

the sign of the angle that changes, so for example the conjugate of 6 ∠30o would be 6 ∠– 30o. 

Converting between Rectangular Form and Polar Form In the rectangular form we can express a 

vector in terms of its rectangular coordinates, with the horizontal axis being its real axis and the vertical 

axis being its imaginary axis or j-component. In polar form these real and imaginary axes are simply 

represented by “A ∠θ“. Then  using our  example  above,  the  relationship between rectangular form and 

polar form can be defined as. 

Converting Polar Form into Rectangular Form, ( P→R ) 
 

 

We can also convert back from rectangular form to polar form as follows. 

Converting Rectangular Form into Polar Form, ( R→P ) 



 

Polar Form Multiplication and Division 

Rectangular form is best for adding and subtracting complex numbers as we saw above, but polar 

form is often better for multiplying and dividing. To multiply together two vectors in polar form, we must 

first multiply together the two modulus or magnitudes and then add together their angles. 

Multiplication in Polar Form 

Multiplying together 6 ∠30o and 8 ∠– 45o in polar form gives us. 
 

Division in Polar Form 

Likewise, to divide together two vectors in polar form, we must divide the two modulus and then 

subtract their angles as shown. 
 

Fortunately today’s modern scientific calculators have built in mathematical functions (check 

your book) that allows for the easy conversion of rectangular to polar form, ( R → P ) and back from 

polar to rectangular form, ( R → P ). 

Complex Numbers using Exponential Form 

So far we have considered complex numbers in the Rectangular Form, ( a + jb ) and the Polar 
Form, ( A ∠±θ ). But there is also a third method for representing a complex number which is similar to 
the polar form that corresponds to the length (magnitude) and phase angle of the sinusoid but uses the 

base of the natural logarithm, e = 2.718 281.. to find the value of the complex number. This third method 

is called the Exponential Form. 

The Exponential  Form uses the trigonometric functions  of  both the sine ( sin ) and the cosine   

( cos ) values of a right angled triangle to define the complex exponential as a rotating point in the 

complex plane. The exponential form for finding the position of the point is based around Euler’s 

Identity, named after Swiss mathematician, Leonhard Euler and is given as: 

Then Euler’s identity can be represented by the following rotating phasor diagram in the complex plane. 



 

We can see that Euler’s identity is very similar to the polar form above and that it shows us that a 

number such as Ae jθ which has a magnitude of 1 is also a complex number. Not only can we convert 

complex      numbers      that      are      in      exponential      form      easily      into      polar      form  such 

as: 2e j30 = 2∠30, 10e j120 = 10∠120 or -6e j90 = -6∠90, but Euler’s identity also gives us a way of 

converting a complex number from its exponential form into its rectangular form. Then the relationship 

between, Exponential, Polar and Rectangular form in defining a complex number is given as. 

Complex Number Forms 
 

Phasor Notation 

So far we have look at different ways to represent either a rotating vector or a stationary vector 

using complex numbers to define a point on the complex plane. Phasor notation is the process of 

constructing a single complex number that has the amplitude and the phase angle of the given sinusoidal 

waveform. 

Then phasor notation or phasor transform as it is sometimes called, transfers the real part of the 

sinusoidal function: A(t) = Am cos(ωt ± Φ) from the time domain into the complex number domain which 

is also called the frequency domain. For example: 

Please note that the √2 converts the maximum amplitude into an effective or RMS value with the 

phase angle given in radians, ( ω ). 

 
 

Purely Inductive Circuit 



 
 

The waveforms above show us the instantaneous voltage and instantaneous current across a 

purely inductive coil as a function of time. Maximum current, Im occurs at one full quarter of a cycle (90o) 

after the maximum (peak) value of the voltage. Here the current is shown with its negative maximum 

value at the start of the voltage cycle and passes through zero increasing to its positive maximum value 

when the voltage waveform is at its maximum value at 90o. 

Thus as the voltage and current waveforms are no longer rising and falling together, but instead a 

phase shift of 90o (π/2) is introduced in the coil, then the voltage and current waveforms are “out-of- 

phase” with each other as the voltage leads the current by 90o. Since the phase difference between the 

voltage waveform and the current waveform is 90o, then the phase angle resulting in cos 90o = 0. 

Therefore the electrical power consumed by a pure inductor, QL is given by: 

Real Power in a Pure Inductor 

Clearly then, a pure inductor does not consume or dissipate any real or true power, but as we have 

both voltage and current the use of cosθ in the expression: P = VI cosθ for a pure inductor is no longer 

valid. The product of the current and the voltage in this case is imaginary power, commonly called 

“Reactive Power”, (Q) measured in volt-amperes reactive, (VAr), Kilo-volt-amperes reactive (KVAr), 

etc. 

Volt-amperes reactive, VAr should not be confused with watts, W which is used for real power. 

VAr represents the product of the volts and amperes that are 90o out-of-phase with each other. To identify 

the reactive average power mathematically, the sine function is used. Then the equation for the average 

reactive power in an inductor becomes: 

Reactive Power in a Pure Inductor 
 



Like real power, P, reactive power, Q also depends on voltage and current, but also the phase 

angle between them. It is therefore the product of the applied voltage and the component part of the 

current which is 90o out-of-phase with the voltage as shown. 

AC Power Waveforms for a Pure Inductor 
 

 

 
In the positive half of the voltage waveform between the angle of 0o and 90o, the inductor current 

is negative while the supply voltage is positive. Therefore, the volts and ampere product gives a negative 

power as negative times a positive equals a negative. Between 90o and 180o, both current and voltage 

waveforms are positive in value resulting in positive power. This positive power indicates that the coil is 

consuming electrical energy from the supply. 

In the negative half of the voltage waveform between 180o and 270o, there is a negative voltage 

and positive current indicating a negative power. This negative power indicates that the coil is returning 

the stored electrical energy back to the supply. Between 270o and 360o , both the inductors current and the 

supply voltage are both negative resulting in a period of positive power. 

Then during one full-cycle of the voltage waveform we have two identical positive and negative 

pulses of power whose average value is zero so no real power is used up since the power alternately flows 

to and from the source. This means then that the total power taken by a pure inductor over one full-cycle 

is zero, so an inductors reactive power does not perform any real work. 

 
Electrical Power Example 

Example-1 
 

A solenoid coil with a resistance of 30 ohms and an inductance of 200mH is connected to a 230VAC, 

50Hz supply. Calculate: (a) the solenoids impedance, (b) the current consumed by the solenoid, (c) the 

phase angle between the current and the applied voltage, and (d) the average power consumed by the 

solenoid. 
 



Solution: 

Data given: R = 30Ω, L = 200mH, V = 230V and ƒ = 50Hz. 

(a) Impedance (Z) of the solenoid coil: 
 

 

 
(b) Current (I) consumed by the solenoid coil: 

 

(c) The phase angle, θ: 
 

(d) Average AC power consumed by the solenoid coil: 
 

 

Example-2 

Three coils of resistances 20, 30 and 40 W and inductance 0.5, 0.3 and 0.2H, respectively are connected 

in series across a 230 V, 50 c/s supply. Calculate the total current, power factor and the power consumed 

in the circuit. 

Solution: 
 

Total resistance R = 20 + 30 + 40 = 90 W 

 

Total resistance L = 0.5 + 0.3 + 0.2 = 1.0 W 

XL = 2πfL= 2π *50* 1.0 = 314 Ω 

Impedance Z = R 2 + X L2 



= 902 + 3142 = 327 Ω 

 
Current I =    

    
          

 
                     

 

Power consumed = EI . 
 

= 230*0.704*0.275 = 44.5 watts. 

Example 3:- 

In an R – L series circuit R = 10 W and XL = 8.66 W if current in the circuit is (5 – j 10) A, find (i) the 

applied voltage (ii) power factor and (iii) active power and reactive power. 

Solution: 
Z = R + jXL = (10 + j 8.66) W = 13.23 ∠ 40.9° W I 
= (5 – j 10)A = 11.18 ∠ –63.43° A 

(i) V = IZ = 11.18 ∠ –63.43° ´ 13.23 ∠ 40.9° = 148 ∠ –22.53° V 
V = 148 Volts. 

(ii) Ф= 63.43° – 22.53° = 40.9° 

p.f. = cos Ф = cos 40.9° = 0.756 lag. 

(iii) S = phasor voltage * conjugate of phasor current. 

or P + jQ = 148 ∠ –22.53° * 11.18 ∠ 63.43° = 1654.64 ∠ 40.9° VA. 

= (1250.66 + j 1083.36) VA 

Active power, P = 1250.66 W 

Reactive power Q = 1083.36 VAr. 

 

 
Series Resistance-Capacitance Circuit 

 

 
 

In the RC series circuit above, we can see that the current flowing into the circuit is common to both the 

resistance and capacitance, while the voltage is made up of the two component voltages, VR and VC. The 

resulting voltage of these two components can be found mathematically but since vectors VR and VC are 

90o out-of-phase, they can be added vectorially by constructing a vector diagram. 



To be able to produce a vector diagram for an AC capacitance a reference or common component must be 

found. In a series AC circuit the current is common and can therefore be used as the reference source 

because the same current flows through the resistance and into the capacitance. The individual vector 

diagrams for a pure resistance and a pure capacitance are given as: 

 
Vector Diagrams for the Two Pure Components 

 

 

 
Both the voltage and current vectors for an AC Resistance are in phase with each other and therefore the 

voltage vector VR is drawn superimposed to scale onto the current vector. Also we know that the current 

leads the voltage ( ICE ) in a pure AC capacitance circuit, therefore the voltage vector VC is drawn        

90o behind ( lagging ) the current vector and to the same scale as VR as shown. 

 

 

 

 

 

 

 

 
 

Vector Diagram of the Resultant Voltage 
 

https://www.electronics-tutorials.ws/accircuits/ac-resistance.html


In the vector diagram above, line OB represents the horizontal current reference and line OA is the 

voltage across the resistive component which is in-phase with the current. Line OC shows the capacitive 

voltage which is 90o behind the current therefore it can still be seen that the current leads the purely 

capacitive voltage by 90o. Line OD gives us the resulting supply voltage. 

As the current leads the voltage in a pure capacitance by 90o the resultant phasor diagram drawn from the 

individual voltage drops VR and VC represents a right angled voltage triangle shown above as OAD. Then 

we can also use Pythagoras theorem to mathematically find the value of this resultant voltage across the 

resistor/capacitor ( RC ) circuit. 

As VR = I.R and VC = I.XC the applied voltage will be the vector sum of the two as follows. 
 

 
The quantity represents the impedance, Z of the circuit. 

 

 
 

The Impedance of an AC Capacitance 

Impedance, Z which has the units of Ohms, Ω’s is the “TOTAL” opposition to current flowing in an AC 

circuit that contains both Resistance, ( the real part ) and Reactance ( the imaginary part ). A purely 

resistive impedance will have a phase angle of 0o while a purely capacitive impedance will have a phase 

angle of -90o. 

However when resistors and capacitors are connected together in the same circuit, the total impedance 

will have a phase angle somewhere between 0o and 90o depending upon the value of the components 

used. Then the impedance of our simple RC circuit shown above can be found by using the impedance 

triangle. 



The RC Impedance Triangle 

 

Then: ( Impedance )2 = ( Resistance )2 + ( j Reactance )2 where j represents the 90ophase shift. 

This means then by using Pythagoras theorem the negative phase angle, θ between the voltage and current 

is calculated as. 

 
Phase Angle 

 

 
AC Capacitance Example No1 

A single-phase sinusoidal AC supply voltage defined as: V(t) = 240 sin(314t - 20o) is connected to a pure 

AC capacitance of 200uF. Determine the value of the current flowing into the capacitor and draw the 

resulting phasor diagram. 
 

The voltage across the capacitor will be the same as the supply voltage. Converting this time domain 
value into polar form gives us: VC = 240 ∠-20o (v). The capacitive reactance will be: XC = 1/( ω.200uF ). 
Then the current flowing into the capacitor can be found using Ohms law as: 



 
 

 

With the current leading the voltage by 90o in an AC capacitance circuit the phasor diagram will be. 
 

 

AC Capacitance 

Example No2 

A capacitor which has an internal resistance of 10Ω’s and a capacitance value of 100uF is connected to a 

supply voltage given as V(t) = 100 sin (314t). Calculate the current flowing into the capacitor. Also 

construct a voltage triangle showing the individual voltage drops. 
 

The capacitive reactance and circuit impedance is calculated as: 
 

Then the current flowing into the capacitor and the circuit is given as: 



 
 

The phase angle between the current and voltage is calculated from the impedance triangle above as: 
 

Then the individual voltage drops around the circuit are calculated as: 
 

Then the resultant voltage triangle will be. 
 

 
AC Capacitance Summary 

In a pure AC Capacitance circuit, the voltage and current are both “out-of-phase” with the 

current leading the voltage by 90o and we can remember this by using the mnemonic expression “ICE”. 

The AC resistive value of a capacitor called impedance, ( Z ) is related to frequency with the reactive 

value of a capacitor called “capacitive reactance”, XC. In an AC Capacitance circuit, this capacitive 

reactance value is equal to 1/( 2πƒC ) or 1/( jωC ) 

Thus far we have seen that the relationship between voltage and current is not the same and 

changes in all three pure passive components. In the Resistance the phase angle is 0o, in the Inductance it 

is +90o while in the Capacitance it is -90o. 



Series RLC Circuit 
 

 
The series RLC circuit above has a single loop with the instantaneous current flowing through the 

loop  being  the   same   for   each   circuit   element.   Since   the   inductive   and   capacitive   

reactance’s XL and XC are a function of the supply frequency, the sinusoidal response of a series RLC 

circuit will therefore vary with frequency, ƒ. Then the individual voltage drops across each  circuit 

element of R, L and C element will be “out-of-phase” with each other as defined by: 

i(t) = Imax sin(ωt) 

The instantaneous voltage across a pure resistor, VR is “in-phase” with current 

The instantaneous voltage across a pure inductor, VL “leads” the current by 90o 

The instantaneous voltage across a pure capacitor, VC “lags” the current by 90o 

Therefore, VL and VC are 180o “out-of-phase” and in opposition to each other. 

For the series RLC circuit above, this can be shown as: 
 

The amplitude of the source voltage across all three components in a series RLC circuit is made up of the 

three individual component voltages, VR, VL and VC with the current common to all three components. 

The vector diagrams will therefore have the current vector as their reference with the three voltage vectors 

being plotted with respect to this reference as shown below. 



Individual Voltage Vectors 
 

This means then that we can not simply add together VR, VL and VC to find the supply voltage, VS across 

all three components as all three voltage vectors point in different directions with regards to the current 

vector. Therefore we will have to find the supply voltage, VS as the Phasor Sum of the three component 

voltages combined together vectorially. 

Kirchoff’s voltage law ( KVL ) for both loop and nodal circuits states that around any closed loop the sum 

of voltage drops around the loop equals the sum of the EMF’s. Then applying this law to the these three 

voltages will give us the amplitude of the source voltage, VS as. 

 
Instantaneous Voltages for a Series RLC Circuit 

 

The phasor diagram for a series RLC circuit is produced by combining together the three individual 

phasors above and adding these voltages vectorially. Since the current flowing through the circuit is 

common to all three circuit elements we can use this as the reference vector with the three voltage vectors 

drawn relative to this at their corresponding angles. 

The resulting vector VS is obtained by adding together two of the vectors, VL and VC and then adding this 

sum to the remaining vector VR. The resulting angle obtained between VSand i will be the circuits phase 

angle as shown below. 



 

 

 

 

 

Phasor Diagram for a Series RLC Circuit 
 

We can see from the phasor diagram on the right hand side above that the voltage vectors produce a 

rectangular   triangle,   comprising   of   hypotenuse VS,   horizontal   axis VR and   vertical   axis VL –   

VC Hopefully you will notice then, that this forms our old favourite the Voltage Triangle and we can 

therefore use Pythagoras’s theorem on this voltage triangle to mathematically obtain the value of VS as 

shown. 

 

Voltage Triangle for a Series RLC Circuit 
 

 
Please note that when using the above equation, the final reactive voltage must always be positive in 

value, that is the smallest voltage must always be taken away from the largest voltage we can not have a 

negative voltage added to VR so it is correct to have VL – VC or VC – VL. The smallest value from the 

largest otherwise the calculation of VS will be incorrect. 

We know from above that the current has the same amplitude and phase in all the components of a series 

RLC circuit. Then the voltage across each component can also be described mathematically according to 

the current flowing through, and the voltage across each element as. 



 

 

By substituting these values into Pythagoras’s equation above for the voltage triangle will give us: 
 

So we can see that the amplitude of the source voltage is proportional to the amplitude of the 

current flowing through the circuit. This proportionality constant is called the Impedance of the circuit 

which ultimately depends upon the resistance and the inductive and capacitive reactance’s. 

Then in the series RLC circuit above, it can be seen that the opposition to current flow is made up 

of three components, XL, XC and R with the  reactance, XT of  any  series  RLC  circuit  being  defined  as: 

XT = XL – XC or XT = XC – XL with the total impedance of the circuit being thought of as the voltage 

source required to drive a current through it. 

 
The Impedance of a Series RLC Circuit 

As the three vector voltages are out-of-phase with each other, XL, XC and R must also be “out-of- 

phase” with each other with the relationship between R, XL and XC being the vector sum of these three 

components thereby giving us the circuits overall impedance, Z. These circuit impedance’s can be drawn 

and represented by an Impedance Triangle as shown below. 

 

The Impedance Triangle for a Series RLC Circuit 
 



The  impedance Z of  a   series   RLC   circuit   depends   upon   the   angular   frequency, ω as   

do XLand XC If the capacitive reactance is greater than the inductive reactance, XC > XL then the overall 

circuit reactance is capacitive giving a leading phase angle. 

Likewise, if the inductive reactance is greater than the capacitive reactance, XL > XC then the 

overall circuit reactance is inductive giving the series circuit a lagging phase angle. If the two reactance’s 

are the same and XL = XC then the angular frequency at which this occurs is called the resonant frequency 

and produces the effect of resonance which we will look at in more detail in another tutorial. 

Then the magnitude of the current depends upon the frequency applied to the series RLC circuit. 

When impedance, Z is at its maximum, the current is a minimum and likewise, when Z is at its minimum, 

the current is at maximum. So the above equation for impedance can be re-written as: 
 

The phase angle, θ between the source voltage, VS and the current, i is the same as for the angle 

between Z and R in the impedance triangle. This phase angle may be positive or negative in value 

depending on whether the source voltage leads or lags the circuit current and can be calculated 

mathematically from the ohmic values of the impedance triangle as: 
 

 
 

 
  



UNIT – IV 
MAGNETIC CIRCUITS 

Magnetic circuits: Faraday‟s laws of electromagnetic induction, concept of self and mutual inductance, dot 

convention, coefficient of coupling, composite magnetic circuit, analysis of series and parallel magnetic circuits, 

behaviors of series and parallel resonant networks. 

 

3.1 MAGNETIC CIRCUITS 

 
Let us consider an coil allowing current of IA which develops magnetic lines of force forming 

north and south poles , the flow of magnetic lines from north pole to south pole. If coil is 

wounded on some core allowing current IA develops flux Ф and this flux follows the path of 

core to form magnetic circuit. 

 

 
3.2 Definitions: 

 
Magnetic flux density: Flux developed per unit area. (Ф / A). Represented with B. 



Whose units are webers/mt2 or tesla. 

 
MMF( Magneto motive force): It is the measure of ability of amount of flux can be developed in 

the coil.(J), which is given as product of number of turns and 

current flowing through coil. 

 
J = N.I (A-turns) 

 
Field intensity: It is defined as mmf per unit length.(H) 

 
H = mmf / l ( A-turns / mt) 

 
Reluctance: It is the property of core which opposes magnetic flux. Generally cores of two types 

,they are air and iron core. When compare to iron core air core has more reluctance 

Property. 

 
(or) 

Reluctance is ratio of mmf to the flux.( J / Ф) 

 
R = (l / µ.A) . 

Where, l – mean length of magnetic circuit. 

A – area of cross of core. 

µ - permeability of the core. 

- µo. µr 

- absolute permeability(µo) 

- relative permeability(µr)—varies for different types of cores. 

 
Hence mmf is also given as ,J = R. Ф 

 

 
Fringing and leakage effect: 

 
Let us consider ring core with small air gap. When flux developed in core, during flow of flux if 

there is a sudden change in core whose values are largely differ , flux suddenly bulges out which 

is called as fringing. 

 
Generally core laminated and these lamination may consists of some weak points and flux leaked 

through these weak points is called as leakage flux. 



 

 

 
Now, from equation (1) and (2) we get, 

The use of inductors somehow is restricted due to its ability of radiation of electromagnetic 

interference. In addition, it is a side effect which makes inductor deviate a little bit from it is real 

behavior. 

 

 
Definition of Self Inductance 

Whenever, current flows through a circuit or coil, flux is produced surround it and this flux also 

links with the coil itself. Self induced emf in a coil is produced due to its own changing flux and 

changing flux is caused by changing current in the coil. So, it can be concluded that self-induced 

emf is ultimately due to changing current in the coil itself. And self inductance is the property of 

a coil or solenoid, which causes a self-induced emf to be produced, when the current through it 

changes. 

 
Explanation of Self Inductance of a Coil 

Whenever changing flux, links with a circuit, an emf is induced in the circuit. This is Faraday’s 

laws of electromagnetic induction. According to this law, 

 

Where, e is the induced emf. N is the number of turns. (dφ/dt) is the rate of change of flux 

leakage with respect to time. The negative sign of the equation indicates that the induced emf 

opposes the change flux linkage. This is according to Len’z law of induction. The flux is 

changing due to change in current of the circuit itself. The produced flux due to a current, in a 

circuit, always proportional to that current. 

That means,  

Where, i is the current in the circuit and K is the proportional constant. 

 

The above equation can also be rewritten as 

Where, L (= NK) is the constant of proportionality and this L is defined as the self inductance of 

the coil or solenoid. This L determines how much emf will be induced in a coil for a specific rate 

of change of current through it. 

Now, from equation (1) and (3), we get, 

 

Integrating, both sides we get, 

https://www.electrical4u.com/self-inductance/
https://www.electrical4u.com/resistance-leakage-reactance-or-impedance-of-transformer/#Leakage-Flux-in-Transformer
https://www.electrical4u.com/resistance-leakage-reactance-or-impedance-of-transformer/#Leakage-Flux-in-Transformer


 

From the above expression, inductance can be also be defined as, “If the current I through an N 

turn coil produces a flux of Ø Weber, then its self-inductance would be L”. A coil can be 

designed to have a specific value of self-inductance (L). In the view of self-inductance, a coil or 

solenoid is referred as an inductor. Now, if cross-sectional area of the core of the inductor(coil) is 

A and flux density in the core is B, then total flux inside the core of inductor is AB. Therefore, 

equation (4) can be written as 

 

Now, B = μoμrH Where, H is magnetic field strength, µo and μr are permeability of free space 

and relative permeability of the core respectively. Now, H = mmf/unit length = Ni/l Where l is 

the length of the coil. Therefore, 

 

Self Inductance Formula 

 

 

 
 

4.3 Series magnetic circuit: 

 
Let us consider an coil of N turns wounded on ring core. When some current I A is allowed 

through coil flux Ф is developed in it. 

 
Let, mmf required to develop Ф is J 

R is reluctance of core. 

N- number of turns. 

I- Current through coil. 

 
Hence , mmf, J = N.I 

Drop in core is = Ф.R 

J = Ф.R = N.I 

Therefore flux developed in coil is given as, Ф = N.I / R 



4.4 Composite magnetic circuit: 

 
Let us consider ring core which comprises of three different materials with different lengths and 

areas. An coil of N turns is wounded on such core as described above, allowing current I A. 

 
Let , Ф1 = flux developed in the first part of core 

R1 = reluctance of first part of the core 

l1 = length of first part of the core 

A1 = area of first part of core 

J1 = mmf drop in first part of core 

 

 

 
Ф2 = flux developed in the 2nd part of core 

R2 = reluctance of 2nd part of the core 

l2= length of 2nd part of the core 

A2 = area of 2nd part of core 

J2= mmf drop in 2nd part of core 

 

 
Ф3 = flux developed in the 3rd part of core 

R3= reluctance of 3rd part of the core 

l3= length of 3rd part of the core 

A3 = area of 3rd part of core 

J3 mmf drop in 3rd part of core 

 
Hence total mmf required, J = J1+J2+J3 

= Ф1.R1+ Ф2.R2+ Ф3.R3=N.I 

 

 
Total flux developed is = NI / (R1+R2+R3) 

Where , R1 = (l1 / µ1.A1) 

R2 = (l2 / µ2.A2) 

R3 = (l3 / µ3.A3) 

 
4.5 Coupled circuits: 



 

When two coils are brought together as close as possible then they form coupled coils. 

Here when current(i1) is allowed through first coil then magnetic flux Ф1 is developed in it, as 

other coil brought to close proximity some of Ф1 links with second coil called as Фm1 their by 

inducing voltage in it and when we close the second coil current flows in it (i2). This current i2 

develops Ф2 in it and some of Ф2 links with 1st coil called as Фm2. If the two coils are of same 

dimensions Фm1= Фm2= Фm. 

 
Here we define two inducatnces slef inductance of coils L1 and L2, mutal inductance between 

the coils M12=M21=M. Now we can say that total emf induced in coil is the combination of self 

and mutually induced emf. 

Emf in 1st coil , v1= L1 di1/dt + Mdi2/dt 

Emf in 2nd coil , v2= L2 di2/dt + Mdi1/dt 

 

 

 
 

 
1.2.1 Types of coupled coils: 

 
Coupled coils are of three types, they are 

 
1. Conductively coupled: Here an voltage is fed to the potential divider circuit 

Called as conductively coupled 

 

 
2. Inductively coupled: where there is no electrical cconnection, i.e electrically 

Isolated but magnetically coupled. 



 

 

 

 

 

 

 

 

Eg: Transformer . 

 

 
3. Conductively and inductively coupled: an best device which can be as conductively 

and inductively coupled is auto-transformer. 

 

 
 

4.5.2 Dot Convention: 

 
Dot convention is the method used to find whether mutually induced emf is positive or negative. 

Dot convention method is based on right hand thumb rule.Right hand thumb rule states that if 

thum indictaes direction of current then remaining folded fingers indicates how the coil is 

wounded. 

 
When we represent coupled coils , they may indicated with dots. Dot 

convention says that , 

 
If both the currents enter the dot then mutually indued emf is positive. 

If both the currents leaving the dot then mutually indued emf is positive. 

If one of the current enter the dot and other leaving the dot then mutually indued emf is 

negative. 



 

 

4.5.3 co-efficient of coupling: 

 
Let us consider coupled coil as shown below 

 
 

Here , v1= L1 di1/dt + Mdi2/dt 

v2= L2 di2/dt + Mdi1/dt 

 
total energy stored is, w = ʃv1.i1dt + ʃv2.i2dt 

 
= ʃ (L1 di1/dt + Mdi2/dt).i1dt + ʃ.i2d(L1 di1/dt + Mdi2/dt)dt 

w = (1/2 L1i12 )+ (1/2 L2i22 )+Mi1i2 

similarly, 



Total energ stored is , w = (1/2 L1i12 )+ (1/2 L2i22 )-Mi1i2 

 

 
To say energy is positive, (L1.L2) – M >= 0. 

 
By removing the proportionality, K = M / (L1.L2). 

 
Here K is defined as co-efficient of coupling maximum value of 1. If K=1 then coils are said to 

be perfectly coupled i.e maximum mutual flux linkage takes place. 

 

 

 

 

 

 
4.6 RESONANCE: 

 
If an electriacl circuit offers impedance which is purely resistive then it is said to 

be uder resonance and frequency of the circuit at which it happens is called as 

resonant frequency. While studying the resonance of electrical circuits we 

unedrstand terms like resonant frequency, bandwidth, cut-off frequencies and 

quality factor. 

 

 
Resonant frequency: 

 
It is the frequency at which maximum response occurs or net impedance is purely 

resistive or minimum impedance is offered by circuit.(fr) 

 

 
Bandwidth: 

 
It is the range of frequencies within which signal can be esily transmitted with out 

any overlap of other signals. It is also given as difference between 

Higher cutt-off frequency and lower cutt-off frequency.(Bw = fh - fl) 

 

 
Cutt-off frequencies: 



I 

 

It is the frequency at which response of the circuit is the 70.7% of maximum value 

or 0.707 of maximum value. This can be happen at two frequencies called as 

lower cutt-off frequencies < fr and higher cutt-off frequencies < fr. 

 

 
Quality factor: 

 
Quality factor is the measurement of quality of the energy storing elements , 

which in turn indictaes life time of energ storing elements. 

 

 
Q = 2Π * energy stored in the element 

 

Energy dissipated in one cycle. 

 

4.6.1 Types of resonance: 

 

Depending on types of circuit resonance is defined. The are 

 

3 Series resonance: series is related to series RLC circuit. In an series RLC circuit resonance 

occurs when voltage across L and C are same in magnitude and 180 degrees out of phase. 

 

4 Parallel resonance: series is related to Parallel RLC circuit. In an Parallel RLC circuit 

resonance occurs when current flowing through L and C are same in magnitude and 180 

degrees out of phase. 

 

 

 

4.6.2 Series Resonance: 
 

 

 

 

Let us consider series RLC circuit as shown, 



 

Here, Z = R+ j( XL –XC) 

 

Where, XL = 2ΠfL 

 

XC = 1/ 2ΠfC 

 

To say that circuit is under resonance , Z = R 

 

This happens only when, XL = XC i.e imaginary part of total impedance is zero. 

( XL –XC = 0) 

 

XL = XC 

 

2ΠfL = 1/ 2ΠfC 

 

wL = 1/ wC ( w= 2Πf , angular frequency rad/sec) 

w2 = 1/     

fr = 1/ 2Π -------- resonant frequency. 

 
 

IMPEDANCE CURVE: 

 

We know that, Z = R+ j( XL –XC) 

 
Z =                   

 

For the lower frequencies , XC > XL the total impedance is 

Z =                   

And current through circuit is , I = V/                    

 
Here we can say that at lower frequencies Z is very high as XC is infinitely high and 

current is very low, but as frequency increases towards fr Xc value decreases and (XC- 

XL) decreases and Z decreases their by current increases. 

 

At resonant frequency, XL=XC 

 

Z =R (minimum value) 

And current is , I = V / R = maximum current 



For the higher frequencies , XL > XC the total impedance is 

Z =                   

And current through circuit is , I = V/                    
 

Here we can say that at higher frequencies Z is decreases as XL increases and current is 

also decreases, as frequency increases towards very high frequencies XL value increases 

and (XL-XC) increases and Z increases their by current decreases. 
 

 
 

Here for frequencies < fr circuit is said to be dominantly capacitive and for frequencies > 

fr circuit is said to be dominantly inductive. 

 
 

BANDWIDTH : 

 

Let f1 , f2 --- lower and higher cut-off frequencies 

At f1, I = V /     

And also at f2, I = V /     
 

This is possible only when , 

At f1 , 1/ w1 C – w1. L = R --- 1 

f2, w2 L – 1/w2. C = R ---- 2 

 

equate 1 and 2 

 

1/ w1 C – w1. L = w2 L – 1/w2. C 

 

1/ w1 C – w1. L = w2 L – 1/w2. C 

w1.w2 = 1/ LC 

w1.w2 = wr2 



now add two equations, 

 

1/ w1 C – w1. L + w2 L – 1/w2. C =2R 

(w2-w1)L + (w2-w1)/w1w2C = 2R 

By sloving above equation, f2 – f1 = R / 2ΠL 

Lower cut off frequency (f1) = fr-R/4∏L 

Upper cut off frequency (f2) = fr+R/4∏L 

 

 

 

 

 

 

 

 

Quality factor: For inductor. 

 
Q = 2Π * energy stored in the element 

 

Energy dissipated in one cycle. 

 

 
Q = 2Π * ½ LI2 

 

I2. R.t 

 
 

Q = 2Π * ½ LI2 
 

I2. R.1/f 

 
Q = 2ΠL /R = XL /R 

 

 

 

For capacitor. 



Q = 2Π * energy stored in the element 
 

Energy dissipated in one cycle. 

 

 
Q = 2Π * ½ CV2 

 

I2. R.t 

 
 

Q = 2Π * ½ CV2 
 

(V/       )2. R.1/f 

Q = 1 /2Π fC R = XC /R 

 

 
 

MAGNIFICATION: 
 

Magnification is defined ratio voltage across energy storing elements and input voltage under 

resonance. 

 

 
VL / Vi = IXL / IR = XL / R =Q 

 

 

VC / Vi = IXC / IR = XC / R =Q 

 

 

To say that life of the circuit is high the magnification must be high. 

 

 
4.6.3 Parallel Resonance: 

 

 
Signal Generator 



Let us consider parallel RLC circuit as shown, 

 

Here, Y =1/ R+ j( 1/XL –1/XC) = G+ j(BL – BC) 

 

Where, BL = 1 / 2ΠfL 

 

BC = 2ΠfC 

 

To say that circuit is under resonance , Y = G 

 

This happens only when, BL = BC i.e imaginary part of total impedance is zero. 

( BL –BC = 0) 

 

BL = BC 

 

1 / 2ΠfL = 2ΠfC 

 

1 / wL = wC ( w= 2Πf , angular frequency rad/sec) 

w2 = 1/     

fr = 1/ 2Π -------- resonant frequency. 

 
 

ADMITTANCE CURVE: 

 

We know that, Y = G+ j(BL – BC) 

 
 

Y =                   
 

For the lower frequencies , BL > BC the total admittance is 

Y =                   

And current through circuit is , V = I /                    



Here we can say that at lower frequencies Y is very high as BL is infinitely high and 

voltage is very low, but as frequency increases towards fr BL value decreases and (BL- 

BC) decreases and Y decreases their by voltage increases. 

 

At resonant frequency, BL=BC 

 

Y =1 / R (minimum value) 

And voltage is , V = I / G = maximum current 

For the higher frequencies , BC > BL the total admittance is 

Y =                   

 

And current through circuit is , V = I/                    
 

Here we can say that at higher frequencies Y is decreases as BC increases and voltage is 

also decreases, as frequency increases towards very high frequencies BC value increases 

and (BC-BL) increases and Y increases their by voltage decreases. 
 

 
 

Here for frequencies < fr circuit is said to be dominantly inductive and for frequencies > 

fr circuit is said to be dominantly capacitive. 

 
 

BANDWIDTH : 

 

Let f1 , f2 --- lower and higher cut-off frequencies 

At f1, V = I /     

And also at f2, V = I /     
 

This is possible only when , 

At f1 ,  w1 C – 1/w1. L = G      1 

f2, 1 / w2 L – w2. C = G ---- 2 



equate 1 and 2 

 

1w1 C – 1 / w1. L = 1 / w2 L – w2. C 

 

1/ w1 C – w1. L = w2 L – 1/w2. C 

w1.w2 = 1/ LC 

w1.w2 = wr2 

now add two equations, 

w1 C – 1 / w1. L + 1 / w2 L – w2. C =2G 

 
 

By sloving above equation, f2 – f1 = 1 / 2ΠRC 

Lower cut off frequency (f1) =fr-1/4∏RC 

Upper cut off frequency (f2) = fr+1/4∏RC 

 
Quality factor: For inductor. 

 
Q = 2Π * energy stored in the element 

 

Energy dissipated in one cycle. 

 

 
Q = 2Π * ½ L(V/XL)2 

 

(V /      R)2. .t 

 
 

Q = 2Π * ½ LI2 
 

I2. R.1/f 

Q = R / XL 

 
 

 

 

 

 

 



For capacitor. 

Q = 2Π * energy stored in the element 
 

Energy dissipated in one cycle. 

 

 
Q = 2Π * ½ CV2 

 

I2. R.t 

 
 

Q = 2Π * ½ CV2 
 

(V/    )2. R.1/f 

Q = R / BC = XC.R 

 

 
 

MAGNIFICATION: 
 

Magnification is defined ratio voltage across energy storing elements and input voltage under 

resonance. 

 

 
IL / I = V/BL / V/R = R / BL 

 

 

IC / Ii = V / BC / V / R = R / BC =Q 

 

 

To say that life of the circuit is high the magnification must be high. 

 
 



 

UNIT – IV 
 

5.1 INTRODUCTION: 

Network theorems are also can be termed as network reduction techniques.Each and every 

theorem got its importance of solving network. Let us see some important theorems with DC and 

AC excitation with detailed procedures. 

 
 

5.2 SUPER-POSITION THEOREM: 

DC: “ In an any linear , bi-lateral network consisting number of sources , response in any 

element(resistor) is given as sum of the individual reponses due to individual sources, while 

other sources are non-operative” 

 

AC: “ In an any linear , bi-lateral network consisting number of sources , response in any 

element(impedance) is given as sum of the individual reponses due to individual sources, while 

other sources are non-operative” 

 

Eg:  

Let V = 6v, I = 3A, R1 = 8 ohms and R2 = 4 ohms 

 

Let us find current through 4 ohms using V source , while I is zero.then equivalent circuit is 
 
 

 

Let i1 is the current through 4 ohms, i1 = V / (R1+R2) 

 

Let us find current through 4 ohms using I source , while V is zero.then equivalent circuit is 

 

 
Let i2 is the current through 4 ohms, i2 = I. R1 / (R1+R2) 

 

Hence total current through 4 ohms is = I1+I1( as both currents are in same direction or 

otherwise I1-I2) 

 

 



Eg:  

Let V = 6v, I = 3A, Z1 = 8 ohms and Z2 = 4 ohms 

 

Let us find current through 4 ohms using V source , while I is zero.then equivalent circuit is 
 
 

 

Let i1 is the current through 4 ohms, i1 = V / (Z1+Z2) 

 

Let us find current through 4 ohms using I source , while V is zero.then equivalent circuit is 

 

 
Let i2 is the current through 4 ohms, i2 = I. Z1 / (Z1+Z2) 

 

Hence total current through 4 ohms is = I1+I1( as both currents are in same direction or 

otherwise I1-I2). 

 

5.3 RECIPROCITY THEOREM: 

 

DC & AC: “ In any linear bi-lateral network ratio of voltage in one mesh to current in other mesh 

is same even if their positions are inter-changed”. 

 

 

 

 

 

 

Eg: 

Find the total resistance of the circuit, Rt = R1+ [R2(R3+Rl)] / R2+R3+RL. 

Hence source current, I = V1 / Rt. 

Current through RL is I1 = I. R2 / (R2+R3+RL) 

Take the ratio of , V1 / I1 ---1 

Draw the circuit by inter changing position of V1 and I1 



 

 
 

 

Find the total resistance of the circuit, Rt = (R3+RL) + [R2(Rl)] / R2+R1. 

Hence source current, I = V1 / Rt. 

Current through RL is I1 = I. R2 / (R2+R1) 

Take the ratio of , V1 / I1 ---2 

If ratio 1 = ratio 2, then circuit is said to be satisfy reciprocity. 

Eg: 

 

 

 
 

: 

Find the total impedance of the circuit, Zt = Z1+ [Z2(Z3+ZL)] / Z2+ Z 3+ Z L. 

Hence source current, I = V1 / Z t. 

Current through ZL is I1 = I. Z 2 / (Z2+ Z3+ ZL) 

Take the ratio of , V1 / I1 ---1 

Draw the circuit by inter changing position of V1 and I1 



 

 
 

 

Find the total impedanceof the circuit, Zt = (Z3+ ZL) + [Z2(ZL)] / Z2+ Z1. 

Hence source current, I = V1 / Z t. 

Current through ZL is I1 = I. Z2 / (Z2+ Z1) 

Take the ratio of , V1 / I1 ---2 

If ratio 1 = ratio 2, then circuit is said to be satisfy reciprocity. 

 

*** Here only magnitudes are compared. 

 

5.4 THEVENIN’S THEOREM: 

 

DC: “ An complex network consisting of number voltage and current sources cand be replaced 

by simple series circuit consisting of equivalent voltage source in series with equivalent 

resistance, where equivalen voltage is called as open circuit voltage and equivalent resistance is 

called as thevenin’s resistance calculated across open circuit terminals while all energy sources 

are non-operative” 

AC: “ An complex network consisting of number voltage and current sources cand be replaced 

by simple series circuit consisting of equivalent voltage source in series with equivalent 

impedance, where equivalen voltage is called as open circuit voltage and equivalent impedance 

is called as thevenin’s impedance calculated across open circuit terminals while all energy 

sources are non-operative” 

 

 

 

Eg: 

Here we need to find current through RL using thevenin’s theorem. 

Open circuit the AB terminals to find the Thevenin’s voltage. 

Thevenin’s voltage , Vth = E1. R3 / (R1+R3) ----1 from figure .1 



Thevenin’s resistance, Rth = (R1.R3)/ (R1+R3) + R2 ----2 from figure 2. 

 

Now draw the thevenin’s equivalent circuit as shown in figure 3 with calculated values. 

Eg: With AC excitation 

Here we need to find current through ZL using thevenin’s theorem. 

Open circuit the AB terminals to find the Thevenin’s voltage. 

Thevenin’s voltage , Vth = E1. R3 / (R1+R3) ----1 from figure .1 

Thevenin’s impedance, Zth = (Z1. Z3)/ (Z1+ Z3) + Z2 ----2 from figure 2. 

Now draw the thevenin’s equivalent circuit as shown in figure 3 with calculated values. 

 

 

5.5 NORTON’S THEOREM: 

 

DC: “ An complex network consisting of number voltage and current sources cand be replaced 

by simple parallel circuit consisting of equivalent current source in parallel with equivalent 

resistance, where equivalent current source is called as short circuit current and equivalent 

resistance is called as norton’s resistance calculated across open circuit terminals while all 

energy sources are non-operative” 

 

AC: “An complex network consisting of number voltage and current sources cand be replaced 

by simple parallel circuit consisting of equivalent current source in parallel with equivalent 

impedance, where equivalent current source is called as short circuit current and equivalent 

impedance is called as norton’s impedance calculated across open circuit terminals while all 

energy sources are non-operative” 
 

Here we need to find current through RL using norton’s theorem. 

Short circuit the AB terminals to find the norton’s current. 

Total resistance of circuit is, Rt = (R2.R3) / (R2+R3) + R1 



Source current, I = E / Rt 

 

Norton’s current , IN = I. R3 / (R2+R3) ----1 from figure .1 

 

Norton’s resistance, RN = (R1.R3)/ (R1+R3) + R2 ----2 from figure 2. 

 

Now draw the Norton’s equivalent circuit as shown in figure 3 with calculated values. 

 

*** These two theorems are useful in determining the load value for which maximum power 

transfer can be happened. 

 

5.6 MAXIMUM POWER TRANSFER THEOREM: 

 
 

DC: “ In linear bi-lateral network maximum power can be transferred from source to load if load 

resistance is equal to source or thevenin’s or internal resistances”. 

 

AC: “ In linear bi-lateral network maximum power can be transferred from source to load if load 

impedance is equal to complex conjugate of source or thevenin’s or internal impedances” 

 

Eg: For the below circuit explain maximum power transfer theorem. 

 

 
Let I be the source current, I = V / (R1+R2) 

Power absorbed by load resistor is, PL = I2 .R2 

= [ V / (R1+R2)]2 .R2. 

 

To say that load resistor absorbed maximum power , dPL / dR2 = 0. 

When we solve above condition we get, R2 = R1. 

Hence maximum power absorbed by load resistor is, PLmax = V2 / 4R2. 

 

5.7 MILLIMAN’S THEOREM: 

 

DC: “ An complex network consisting of number of parallel branches , where each parallel 

branch consists of voltage source with series resistance, can be replaced with equivalent circuit 

consisting of one voltage source in series with equivalent resisrance” 



 

 
 

Where equivalent voltage source value is , V’ = (V1G1+V2G2+ ----- +VnGn) 
 

G1+G2+  Gn 

 

Equivalent resistance is , R’ = 1 / ( G1+G2+ ------------------ Gn) 

 

5.8 COMPENSATION THEOREM: 

 

DC &AC: “ compensation theorem states that any element in the network can be replaced with 

Voltage source whose value is product of current through that element and its value” 

It is useful in finding change in current when sudden change in resistance value. 
 

 

 
For the above circuit source current is given as, I = V / (R1+R2) 

Element R2 can be replaced with voltage source of ,V’ = I.R2 

Let us assume there is change in R2 by ΔR, now source current is I’= V / (R1+R2+ ΔR) 

Hence actual change in current from original circuit to present circuit is = I – I’. 

This can be find using compensation theorem as, making voltage source non-operative and 

replacing ΔR with voltage source of I’. ΔR. 

 

Then change in current is given as = I’. ΔR / (R1+R2) 


