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The most known particles are photons, electrons and neutrons

with different masses. Their masses are

me = 9.10x 10-31 kilograms

mp = 1.67x 10-27 kilograms

these masses leads to gravitational force between them, given as                                        
F = G me mp / r2

The force between two opposite charges placed 1cm apart likely

to be 5.5x10-67 and force between two like charges placed 1cm

apart likely to be 2.3x10-24.this force between them is called as

electric force .

Electric force is larger than gravitational force. Gravitational force

due to their masses. Electric force is due to their properties. Neutron

has only mass but no electric force.

INTRODUCTION 
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ELECTROSTATICS: 

Electrostatics is the study of charge at rest. The study of electric
and magnetic field can be done using MAXWELL’S equations.
Electrostatic field is developed between static charges.
Electrostatics got wide variety applications like X-rays, lightning
protections etc.

Let us study the behavior of electric field using COLOUMB’s and 
GAUSS laws.

Point Charge

A charge with smallest dimensions on the body compare to other
charges is called as point charge.
A group of charges concentrated on any pin head may be also
called as point charge.

ELECTROSTATICS
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Coloumb stated that the force between two point charges is directly
proportional to product of charges and Inversely proportional
square of distance between the. F  α  Q1Q2 / r2

F = K Q1Q2 / r2 , where K is the proportionality constant.
K = 1/ 4πε          , where ε is the permittivity of the medium.

Ε = ε0εr,  ε0 = absolute permittivity = 8.854x10-12

εr = relative permittivity

most common medium is air or vacuum whose relative permittivity 
is 1, hence permittivity of air or vacuum is 

ε = 9x109 m/F

COLOUMB’S LAW
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Let us consider two point charges separated by some distance given 
as  .

Q1--------------------------------- Q2

According to coloumb’s law force between them is given as      
F = (K Q1Q2 / r2) x     , where   is the unit vector direction of force.

Let F2 is the force experienced by Q2 due to Q1 and F1 is force
experienced by Q1 due to Q2. The direction of forces opposes each
other , hence we can write in vector from forces as

F1 = -F2

Hence unit vector can be  or , from the vector analysis we can write
a12 =  R’12/ R12 =  R’ / R  and   
a21 =  R’21 / R21 =  R’ / R  

Therefore the magnitude of force between them can be written as
F1 = F2 = (K Q1Q2 / R3) xR’

Force between two point charges using vector
analysis
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Electric Field: It is the region around the point and group charges in

which another charge experiences force is called as electric field.

The force between two charges can be studied in terms of electric

field as : A charge can develop field surrounding it in space only,the
field of one charge leads to force on the other charge .

Electric Field Intensity: If an point charge q experiences the force F ,

then the electric field intensity of charge is defines as

E = F/q

Here charge q is called as test charge because the force experienced by

it is due field of other charge.

The units of electric field intensity are N/C or V/mt.

q1---------------- ----------------- q2

Electric Field&Electric Field Intensity
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the force experienced by q2 because of field of q1 is 

vector,  F2 = (K q1q2 / r2) x a’

Therefore electric filed intensity on q2 charge is 

Vector,E = F2/q2 = (K q1 / r2) x a’

the force experienced by q1 because of field of q2 is 

vector,  F1 = (K q1q2 / r2) x a’

Therefore electric filed intensity on q2 charge is 

Vector,  E = F1/q1 = (K q2/ r2) x a’

Electric Field&Electric Field Intensity
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Electric Field Intensity due to n point charges

let the point charges q2,q3--------------qn are placed at a distance of r2,r3-
---------------------------rn from     q1.

Hence total electric field intensity on q1 due to remaining point

Charges is ,   force due to q2 on q1, F2= (K q1q2 / r2) x a’

force due to q3 on q1, F3= (K q1q3 / r2) x a’

--------

force due to qn on q1, Fn= (K q1qn / r2) xa’ 

therefore total electric field intensity is ,  = (F2+F3----------------Fn) / q1

= (K q2 / r2) x  + (K q3 / r2) x  ----+ (K qn / r2) x a’

Electric Field&Electric Field Intensity
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Figure for Electric Field Intensity due to n point charges
Electric Field & Electric Field Intensity
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Charge Distribution
Charge distribution is of three types- line charge, surface and volume charge distribution.

Line charge: Here charge is distributed through out some length . The

total charge distributed through a wire of length l is Q = ʃ ρl dl

Where, ----- line charge density

Hence electric field intensity due to line charge is , E = ʃ (K dl/ r2) xa’ 

Surface charge: Here charge is distributed through given area . The

total charge distributed in an surface area is Q = ʃ ρs dl

Where, ----- surface  charge density

Hence electric field intensity due to surface charge is , E = ʃ (K ds/ r2) x 
a’,           E = ʃ (K ds/ r2) x a’

Volume charge: Here charge is distributed through given volume . the

total charge distributed in an volume is Q = ʃ ρV dl

Where, ----- volume  charge density

Hence electric field intensity due to volume charge is , E = ʃ (K dv/ r2) xa’ 

CHARGE DISTRIBUTION
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Electric Field Intensity Due To Line  Charge.

Let  us consider a straight wire of length l is symmetrically placed in X

Y axis as shown in below figure 

For a small length of dl on y-axis the charge is dq,  the electric field

intensity due dq at test point p is 

dE = K.dq/(y2+a2)

Then,dEx = K.dq.cosƟ/(y2+a2)-------------------0

cosƟ = aSqrt(y2+a2) ------------------------1

we can write charge per unit length as                dq/dl = Q/l,

dq =Q.dl/l   ( dl = dy)

dq =Q.dy/l   ---------------------2

Their dEx = KQ dy.a / l.(y2+a2)3/2

integrating on both sides with limits –l/2 and l/2,   Ex = ʃKQ dy.a / l.(and 
when l tends to 0,                                              Ex = KQ / a2.             

LINE  CHARGE DISTRIBUTION
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Electric Field Intensity Due To Line  Charge.CHARGE DISTRIBUTION
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Electric filed intensity due surface charge

Let us consider an infinite sheet placed uniformly in xyz plane as

shown in figure.t us consider a small area ds in xy plane , ds = ρ.dρ.dɸ.

Which is located at distance of ρ from origin making and angle of ɸ.

P be the point on z axis given as (0,0,h).

Distance from P to ds is .

R’= - ρaρ+haz,R = √(ρ2+h2),aR = (- ρaρ+haz) / √(ρ2+h2)

hence the electric field intensity at ds is given as ,

= ʃ ρs ds. aR / 4πε.R2

= ʃ ρs ρ.dρ.dɸ. (- ρaρ+haz) / √(ρ2+h2). 4πε.R2

The limits of ρ from 0 to ∞ and ɸ from 0 to 2π.

= ʃ ʃ ρs ρ.dρ.dɸ. (- ρaρ+haz) / √(ρ2+h2). 4πε.R2

By simplying above equation, the electric field intensity               

= ρs az / 2ε.

SURFACE  CHARGE DISTRIBUTION
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Electric Field Intensity Due To Surface  Charge.
SURFACE  CHARGE DISTRIBUTION
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Work Done In Moving Point Charge

Charge q is placed in the existing electric field . The charge q

experiences force  F                                                                   

------------------------------

a  -------------E’----------------b

------------------------------

Here charge q is made to move from a to b of length l throug

electric field intensity  .E’

dw = - Fdl = -q.E dl

integrating on both sides,                     w = -qʃ Edl with limits a to b.

WORK DONE ON POINT CHARGE
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Electric Potential

From the above discussion work done to move point charge through

the existing electric field is 

w = -qʃ E dl

but we know that electric potential is defined work done to move

unit charge

V = w/q

Therefore,                                               V = w/q = -ʃE dl with limits a to b

V = - E.l with limits a to b

V- potential

w- work done

q- charge

Hence ,                                             electric potential V = Va - Vb

POTENTIAL DUE TO POINT CHARGE
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Electric potential due to point charge

Point charge ------------------------------
a  -----------------------------b

Let the charge q is moved from a to b and at point charge is Q
from ra and rb , 

We know that electric potential,     V = q/(4πεr)                      
Electric field intensity at point p due to charge at a is,  Va = 
Q/(4πεra)
Electric field intensity at point p due to charge at a is,  Vb = 
Q/(4πεrb)
Hence potential difference or electric potential from a to b is,

Vab = Va - Vb

Vab = Q/(4πεra)  - Q/(4πεrb)
Vab = Q(rb - ra)/(4πεrarb).

POTENTIAL DUE TO POINT CHARGE
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Electric Flux

Macheal faraday has conducted experiment on two concentric

spheres, inner layer is positively charges and outerlayer negatively

charge, then he observe that their some sort of displacement from

inner layer to outer layer , thisdisplacement is pronounced as electric

flux between spheres.We know that electric field intensity is ,

E = (K q / r2) = q/ (4πε r2) , D =ε E = q/ (4π r2)—electric flux density

Electric flux density is defined as charge per unit area. 

Potential gradient: potential gradient is defined as electric change in

electric potential due to change in thedistance or  length.

E = - ▼V

Properties of Potential: Potential is the energy acquired by the
charge. When charge travel from one end to other end in any element
there is potential change from high to low. Potential acquired by point
charge leads to electric field.

POTENTIAL DUE TO POINT CHARGE
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Gauss Law

Gauss law states that the total flux in the given surface is equal to

charge enclosed in it.

ɸ = Q.

the total flux enlaced in given surface is     ɸ = ʃ E ds

= ʃ Q / (4πε r2) ds

= Q / (4πε r2). ʃ ds

= Q4π r2 / (4πε r2). 

= Q / ε.

Applications of Gauss law

 To apply gauss law first assume Gaussian surface.

 The electric field intensity must be normal to the Gaussian surface.

 Gaussian surface must be symmetry.

GAUSS LAW
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Maxwell’s First Equation

We  know that  electric flux passing through the surface is equal to 1/

ε  times the net charge   enclosed.  

ɸ = ʃs E ds = Q/ ε

ɸ = ʃs ε E ds = Q ε / ε

ɸ = ʃs D ds = Q 

from the strokes theorem we can say that surface integral function is

volume integral of divergence of  same function.                          

Q = ʃs D ds = ʃv (▼. D) dv ----------------------3

from the gauss law we can write ,   Q = ʃv ρv dv --------------------------- 4

by comparing equation 3 and 4 (▼. D) = ρv---------------------------5                                                       

Equation 3 and 5 are said to be Maxwell’s first and second equation. 

POISSON’S AND LAPLACE EQUATIONS
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Poission’s And Laplace Equation

From the Maxwell’s equation we know that,    

(▼. D) = ρv-------------------------------------6,D = εE------------------------ 7

Equation 7 in 6,▼ εE =  ρv

but we know that,       E = - ▼V

▼ ε(-▼V) =  ρv

▼2V = - ρv / ε ------------------8

Equation 8 is called poission’s equation.

In the uniform Gaussian surface ,      ρv = 0

Then equation 8 can be rewrite as,                                                             

▼2V = 0 ------------------9

Equation 9 is called as Laplace equation.

POISSON’S AND LAPLACE EQUATIONS
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UNIT-II
CONDUCTORS AND DIELECTRICS

24



Electric Dipole and Dipole Moment

Two opposite charges +q and –q separated by some distance d forms

the electric dipole.+q ----------------d--------------- -q

The distance travelled by the point charge is defined as dipole

moment (or) the product of charge and distancetravelled by it is

called as electric dipole. P = q.d ------------ 1

Here , P  electric dipole moment

d  distance between opposite charges

the line between two charges is called as axis of dipole.  
Potential 

ELECTRIC  DIPOLE  AND  MOMENTUM
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Electric Dipole Potential

assume two charges separated by distance d as shown in the figure

+q ----------------d--------------- -q

Here,  O  center of the axis between charges

P  be the test point where potential is required.

OP  with length of r.

AA1
 perpendicular from A to OP

BB1
 perpendicular from A to OP.

∟POB = Ɵ

r >>> d

ELECTRIC  DIPOLE  AND  MOMENTUM
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Electric Dipole Potential

the line                AP = A1P = OP + OA1--------------------------------2

from the right angle triangle AA1O,        OA1 = OA cos Ɵ

hence equation 2 can be written as,       AP = A1P = r + OA cos Ɵ 

but,                                                                 OA = d/2 

AP = A1P = r + d/2  cos Ɵ  

Hence the potential at P due negative charge at A is ,

VA = -Kq/ AP = -Kq/ r + d/2  cos Ɵ  

ELECTRIC  DIPOLE  AND  POTENTIAL
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Electric Dipole Potential

Similarly from the right angle triangle BB1O, BP = B1P  = r - d/2  cos Ɵ  
Hence the potential at P due negative charge at A is ,

VB = Kq/ BP = Kq/ r - d/2  cos Ɵ  
Therefore the total potential acting on P is ,  V = VA + VB

V = Kq[ (1/ r - d/2  cos Ɵ) - (1// r + d/2  cos Ɵ) +
= Kqd.cos Ɵ/ (r2 – d2/4  cos2 Ɵ)

But we know that,                                              r >>> d

V  = Kqd.cos Ɵ/ r2

V  = KP.cos Ɵ/ r2 ,  (P = q.d) ----------------- 3

ELECTRIC  DIPOLE  AND  POTENTIAL
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Electric  Field Intensity Due To Electric Dipole

know that electric field intensity in terms of electric potential is 
given as ,

E = - ▼V

From equation 3 we can say that potential due dipole is in spherical 
co-ordinates, therefore find   electric field

intensity we shall use spherical co-ordinates.

▼V = -[ dv/dr + (1/r)dv/dƟ ]

Simplifying▼V, dv/dr = -2KP.cos Ɵ/ r3

(1/r)dv/dƟ =  -KP.sin Ɵ/ r3

ELECTRIC  DIPOLE  AND  ELECTRIC FIELD
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Electric  Field Intensity Due To Electric Dipole

Substituting above two equations in E, E =  -[  (-2KP.cos Ɵ/ r3) +  (-
KP.sin Ɵ/ r3) ]

=  *  (2KP.cos Ɵ/ r3) +  ( KP.sin Ɵ/ r3) ]

= KP/ r3 *  (2cos Ɵ) +  (sin Ɵ) + ----------- 4

Torque due to Electric Dipole

Let us consider two opposite charges are placed in the uniform

electric field with their line of axis of 2r.

The experienced by +q is ,                                       F1 = E.q

The experienced by -q is ,                                        F2= -E.q

The total experienced by the dipole is ,                F = F1 + F2

F = 0

ELECTRIC  DIPOLE  AND  TORQUE
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Torque Due To Electric Dipole
ELECTRIC  DIPOLE  AND  TORQUE
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Torque Due To Electric Dipole

Budue to force experienced by +q it tends to oscillate in th
direction of E and –q in the direction opposite
to E, which leads torque of dipole.

T = magnitude of 
F x perpendicular distance 

Between their line of action

T = E.q x 2r sinƟ

T = PE.sinƟ.     ( q.2r = P)---

-----------5

ELECTRIC  DIPOLE  AND  TORQUE
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If an piece if dielectric or insulator placed between the charges plates

of condenser, then center of gravity of negative charges is
concentrated towards positive plate and center of gravity of
positives charges concentrated towards negative plate, this process
of separation opposite charges is called a polarization.

Polarization is also defined as electric dipole moment per unit 
volume.

Let        A be the area of cross section of dielectric,

l be the distance by with opposite charges are separated,

q total charge in the volume of dielectric

then polarization,                             P = dipole moment / volume

= q.l / A.l

= q / A -------------------------------------- 6

i.e the polarization numerically equal to surface charge density.

POLARIZATION
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Dielectric Constant and Electric Susceptibilty

Dielectric constant is defined as ratio capacitance of capacitor with

dielectric to the capacitance of capacitor without dielectric .

Capacitance of capacitor with dielectric  has low potential(Vd) than

the  capacitance of capacitor without dielectric(V) .

K = V / Vd ------------------------------------------------------ 7  

The polarization is directly proportional to the electric field intensity 
created between  charges.

P α E

P = Ke E

Ke = P / E = electric susceptibility--------------------------- 8

DIELECTRIC  CONSTANT
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Capacitor And Its Capacitance:

The basic capacitor element is formed by separated two parallel
plates with some dielectric medium.
When some voltage is applied to such an element charge is
formed between the plates, their by

capacitance of capacitor is defined as charge Q developed
between the plates when voltage V is applied.

C = Q / V ---------------------------------------------------- 9
The units of capacitance are Farads (F).

CAPACITOR
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Torque Due To Electric Dipole

But the due to force experienced by +q it tends to oscillate in
the direction of E and –q in the direction opposite
to E, which leads torque of dipole.

T = magnitude of F x perpendicular distance 

Between their line of action

T = E.q x 2r sinƟ

T = PE.sinƟ.           
( q.2r = P)--------------5

TORQUE DUE TO DIPOLE
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Capacitance Of Isolated SphereCAPACITANCE OF ISOLATED SPHERE
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Capacitance Of Isolated Sphere

Let us consider an isolated sphere which is positively charges with

radius x and negatively charges plate  placed at infinite distance.

The electric flux density due to positive charge,                     D  =  Kq / x2

Electric field intensity  due to positive charge,                       εE =  Kq / x2

E  =  Kq /. x2

Work done,                                                                   w = - q ʃ E dl.

W = -q ʃ E dx
with limits ∞ to x

V = - ʃ E dx
with limits ∞ to x

CAPACITANCE OF ISOLATED SPHERE
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Capacitance Of Isolated Sphere

V = - ʃ Kq /. x2 dx with limits ∞ to x

= -K.q /  (-. x ) with limits ∞ t

= K.q /  (. x )

But the capacitance is given charge per voltage,         C =  q / V

C = ( x ) / K ------------------------------- 10

CAPACITANCE OF ISOLATED SPHERE
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Capacitance Of Spherical  SphereCAPACITANCE OF CONCENTRIC SPHERE
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Capacitance Of Spherical  Sphere

Let us consider an isolated sphere which is positively charges with
radius a and negatively charges plate  place  at b distance.
The electric flux density due to positive charge,                D  =  Kq / x2

Electric field intensity  due to positive charge,                εE =  Kq / x2

E  =  Kq /. x2

Work done,     w = - q ʃ E dl, W = -q ʃ E dx
with limits b to a

V = - ʃ E dx
with limits b to a                                           

V = - ʃ Kq /. x2

dx with limits b to a
= -K.q /  (-. x ) with limits b to a
= .  [ (1/a) – (1/b) ]                                              

But the capacitance is given charge per voltage,    C =  q / V

C =  ab / K(b-a) -------------- 11


CAPACITANCE OF CONCENTRIC SPHERE
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Capacitance Between Parallel PlatesCAPACITANCE OF PARALLEL PLATES
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Capacitance Between Parallel Plates

Let potential applied to these parallel plates is V their by forming

charge q between them. 

Electric      flux density between plates,                               D = q / A

εE = q / A

E =   q / ε.A,  

V =   E.d

V =   q d / ε.A

But the capacitance is given charge per voltage,               C =  q / V

C =  ε.A / d ------------------------------- 12

ESTIMATECAPACITANCE OF PARALLEL PLATES
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Capacitance Between Parallel Plates with multiple dielectricsESTIMATECAPACITANCE OF PARALLEL PLATES WTH MULTIPLE 
DIELECRICS
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Capacitance Between Parallel Plates with multiple dielectrics

Let potential applied to first part is V1 their by forming charge q
between them.
Electric      flux density between plates,                                D = q / A

εE1 = q / A
E1 =   q / ε1.A,  
V1 =   E.d1

V1=   q d1 / ε1.A 
But the capacitance is given charge per voltage,               C =  q / V

C1 =  ε1.A / d1 ----------------------------- 13
Let potential applied to first part is V2 their by forming charge q 

between them. 

CAPACITANCE OF PARALLEL PLATES WTH MULTIPLE 
DIELECRICS
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Capacitance Between Parallel Plates with multiple dielectrics

Electric      flux density between plates,                               D = q / A
εE2 = q / A
E2 =   q / ε2.A,  
V2 =   E.d2

V2=   q d2 / ε21.A 
But the capacitance is given charge per voltage,               C =  q / V

C2 =  ε2.A / d2 ----------------------------- 14
Hence total capacitance between plates with multiple dielectric 

mediums is ,
C = C1 + C2

= (ε1.A / d1) + (ε2.A / d2)

= A / [ (d1/ ε1) + (d2/ ε2) ---------- 15.



CAPACITANCE OF PARALLEL PLATES WTH MULTIPLE 
DIELECRICS
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Capacitance Of Co-axial CableCAPACITANCE OF CO-AXIAL CABLE
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Capacitance Of Co-axial Cable

Let us consider co-axial cable two isolated sphere with radius a and

b from center of axis.The length of cable is , then line chargE

distribution  ρl = q / l 

the electric flux density generally in cable is ,           D = ρl / 2πr

therefore electric filed intensity ,                                E =  ρl / 2πrε

the electric potential of the cable is ,    V = -ʃ Edr , with limits b to a

= -ʃ (ρl / 2πrε) dr

= -(ρl / 2πε) ʃ dr/r

= -(ρl / 2πε) .ln(r)

By applying limits,                  V = -(ρl / 2πε) .*ln(a) – ln(b)]

V = (ρl / 2πε) .ln(b/a) 

The capacitance of co-axial cable,         C =   ρl / V

C = 2πε / ln(b/a) -------- 21

ESTIMATE
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ENERGY STORED IN CAPACITOR
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Energy Stored In Capacitor

By the definition capacitance between plates is ,    C = q /V
Electric potential,                                                           V = dw / dq

dw = V dq
dw = (q / C) dq

integrating on both sides,                                            w = ʃ (q / C) dq
w = q2 / 2C    (or) ---------------------------- 16
w = (CV) 2 / 2C
w = CV2 / 2     (or)--------------------------- 17
w = q2 / 2C    
w = Vq / 2    ---------------------------------18

ENERGY STORED IN CAPACITOR
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Energy Density In the Static Electric Field

Wd = energy stored / volume
Wd = CV2 / 2/ Ad
Wd = εA V2/d / 2. Ad
Wd = ε V2/2d2

Wd = εE2/ 2
Wd = DE/ 2 ------------------------------------ 19

From equation 19  we can write,
dW = (DE/ 2)  dV

integrating on both sides,   energy stored        
W = ʃv(DE/ 2)  dV -------------------- 20

ENERGY STORED IN CAPACITOR
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Current And Current Density

The flow of electrons from one end to other end constitutes current.
The rate of change of   Charge is also defined as current.  

i= q / t = dq / dt ----------------------------------- 22
the units of current is ampere.

Current Density
If charge is distributed in the given area, then current density is

defined as current constituted 
In given area.

J = i / A   (A/mt2) ----------------------------------- 23
J = di / ds
di = J .ds

integrating on both sides,      i = ʃ J .ds

CURRENT DENSITY
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Current And Current Density

Convection Current Density             

Let us consider a material with volume of charges (ρV) moving
with drift velocity (Vd) , then

Convection Current density is defined as product volume of
charges moving with drift velocity.

J =  ρV x Vd ------------------------------------------------ 24.

Equation of Continuity      

Let us an surface area through charges are moving in and out as 
shown in the figure

Let the charge q is moving through an area of S.

According law of conservation of charge,           [I]s = - dq / dt

But current passing through area is ,                    *I+s = ʃ J ds

CURRENT DENSITY
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Equation of Continuity      CURRENT DENSITY
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Equation of Continuity      

Total charge in the given volume  is,               q = ʃv ρv ds
From above three equations we can write,

ʃ J ds = -(d/dt). ʃv ρv dv--------------------25
from the stokes theorem we can write,

ʃ J ds = ʃ v▼J dv -------------------------- 26
by comparing equation 25and 26,

ʃ v▼J dv = -(d/dt). ʃv ρv dv
ʃ v▼J dv + (d/dt). ʃv ρv dv = 0
ʃ v [▼J + dρv / dt] dv = 0 ------------------ 27

equation 27 is called as equation of continuity or maxwell’s fifth 
equation.

EQUATION OF CONTINUITY
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Conductors And Dielectrics In Electric Field

Conductors:
The substances having free charge carriers axe called the conductors.
The examples of conductors are metallic substances e.g. copper, silver,
gold, aluminum, iron, mercury etc.
Insulators:
The substances having no free charge carriers are called
the insulators or dielectrics. The examples of insulators are glass, plastic,
mica wood, cotton etcesence of free charges aboundcharges inside a
conduct
The free and bound charges inside a conductor may be understood by
the knowledge of structure of atom. Every substance is formed of
atoms. Every atom is electrically neutral. It consists of a central, nucleus
containing positive charge and negatively charged electrons revolving
around the nucleus in various definite orbits. The electrons in orbits
near the nucleus are tightly bound by Coulomb attractive forces; while
the electrons in outermost orbit are very loosely bound.

CONDUCTORS
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Conductors And Dielectrics In Electric Field

The absence of electron from a neutral atom makes it positively charged
and the resulting atom is termed as positive ion. The positive ions are
bound in the conductor in a regular pattern and are therefore termed as
bound charges. Thus a conductor consists of free charges as well as
bound charges. The free charges are free electrons and the bound
charges are positive ions fixed in the lattice.iriDielectrics are substances
which do not contain free charge carriers. The examples of dielectrics
are air, mica, rubber, wood, plastic etc. Each atom/molecule of a
dielectric is neutral. The molecules of a dielectric may be of two types:
(i) Non-polar Molecules: If the centers of positive and negative charges
in a molecule coincide; so that no electric dipole is formed, the molecule
of the dielectric is said to be non-polar. The examples of non-polar
molecules are H2N2O2 etc
(ii) Polar Molecules: if the centers of positive and negative charges in
molecules do not coincide, so that an electric dipole is formed, the
molecule is said to be polar. The example of polar molecules are H2O,
CO2 etc.

DIELECTRICS
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Boundary Conditions Of Dielectrics In Electric FieldBOUNDARY CONDITIONS
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Boundary Conditions Of Dielectrics In Electric FieldBOUNDARY CONDITIONS
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UNIT-III
MAGNETO-STATICS
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Introduction To Magneto-statics

Magneto-statics is the study of magnetic field developed by the
constant current through the coil Or due to permanent magnets.

The behavior of constant magnetic field is studied by using two 
basic laws, they are

 Bi-Savart’s law

 Ampere’s circutal law.

INTRODUCTION
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Introduction To Magneto-statics

Magnetic Field

1. Let us consider a constant current I is passing through coil shown above
which develops constant Flux surrounding the coil their by forming north
and south poles. This formation of magnetic from North pole to south
pole is called as magnetic field. The direction of magnetic flux in an coil is
Given by right hand thumb rule.

2. Right hand thumb rule says that if four fingers of hand folded such that
they show direction of flux. Then thumb indicates direction of flux and
other fingers how the coil is wounded ( clock wise or anti-clock wise)
.The means to develop the magnetic field is permanent magnets and
above is said to be electro- magnets. Permanent magnetic posses the
property of magnetism by nature, in order to develop strong magnetic
one must choose permanent magnets with high cohesive force.
Permanent magnet has disadvantage of ageing and getting rusted. This
disadvantage of permanent is overcome by electro-magnets.

MAGNETIC  FIELD
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Introduction To Magneto-statics

Magnetostatics is the study of magnetic fields in systems where the
currents are steady (not changingwith time). It is the magnetic
analogue of electrostatics, where the charges are stationary. Like in
electro-statics in magneto-statics we are going to deal with magnetic
field intensity, magnetic flux density using Bio-Savart’s law and
Amper’s circuital law.

Some of the important terms used to study characteristics of 
Magneto-statics are 

Magnetic flux.
Magnetic flux density.
Magnetic field intensity.
 Intensity of magnetization.
Magnetic susceptibility.
 Permeability of core.
 Reluctance of core.

DEFINITIONS
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Definitions Of Magneto-statics

Magnetic Flux Density

magnetic flux density is defined as  flux per unit area,      
B = d ɸ / ds ( Wb/mt2 or Tesla)

dɸ = B ds

by integrating on both sides we can determine total magnetic 
flux in area,

ɸ = ʃB ds -----------------------28

MAGNETIC FLUX DENSITY
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Definitions Of Magneto-statics

Magnetic Field Intensity

The force experienced by coil when some current passes  through  it  
is magnetic field Intensity. 

Mathematically magnetic field intensity is givens as,

H = magnetic force / length 

Magnetic force = NI

Length = l

Therefore magnetic field intensity,  H = NI / l  (AT/mt) ---------------- 29

MAGNETIC FIELD INTENSITY
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Definitions Of Magneto-statics

Magnetic Permeabilty

Permeability is the inherent property of core which helps in 
sustaining flux in the core.
Mathematically permeability is given as, µ = B /H ---------------------- 30
From equation 30 the relation between flux density and intensity is ,

B = µ H   ------------------------ 31
Where                                     µ = µ0 µr

µ0 = absolute permeability = 4πx10-7 H/mt

µr = relative permeability
varies from core to core

PERMEABILITY
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Definitions Of Magneto-statics

When a magnetic substance is placed in a magnetic field it 
experiences magnetic momentum.
The magnetic momentum per unit volume of substance is intensity 
of magnetization.

I = M / V
M = m.l ( m- pole strength of bar, l – length)

V = A.l

intensity of magnetization,                         I = m.l / A.l

I = m / A

INTENSITY OF MAGNETIZATION
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Definitions Of Magneto-statics

The ratio intensity of magnetization to the magnetic field intensity is 
called as Magnetic  Susceptibility          K = I / H.

Total flux density,  B = B due to magnetic field + B due to intensity of 
magnetization of bar

B = µ0 H + I

But we know that, µ = B / H                                                                                                 

= ( µ0 H + I ) / H

= µ0.+ (I/H

µ0 µr =  µ0.+ K  = 1 + K / µ0 -------- 31     

µr > 1,  paramagnetic materials

µr < 1,  diamagnetic materials

µr = 0,  non-magnetic materials

MAGNETIC  SUSCEPTIBILITY
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Bio-Savart’s Law

Bio and savart are two scientists who conducted experiments on
current carrying conductor To determine magnetic flux density(B) at
any point surrounding that conductor. Their Conclusion is named as
“Biot-Savart’s Law”.

Let us consider an conductor carrying current I, which develops
magnetic flux density B surrounding It. Here Idl is called as current
element. To find total electric field intensity conductor is divided into
Number of current elements.

BIO-SAVART’S  LAW
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Bio-Savart’s Law

The magnetic field intensity due to current element Idl is dH at point P. 
According Bio-Savart’s law 

dH α Idl (current element)
dH α sinƟ (angle between current element and length joining 

point)
dH α 1 / r2 (square of distance between current element and 

point)
by combining above three,

dH α Idl . sinƟ / r2

by removing proportionality,

dH = Idl . sinƟ / 4πr2

BIO-SAVART’S  LAW
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Bio-Savart’s Law

total magnetic field intensity at point P,

H = ʃ  Idl . sinƟ / 4πr2

therefore total flux density  at point P,   B = µ H

B = µ ʃ  Idl . sinƟ / 4πr2 ----------------- 32

BIO-SAVART’S  LAW
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Magnetic Field Intensity due to a finite length of current carrying filamentFIELD INTENSITY DUE TO STRAIGHT CONDUCTOR

75



Magnetic Field Intensity due to a finite length of current carrying filament

Let us consider a straight conductor of length l, a test point P at 
which electric field intensity is to be  determined at a distance of d 
from conductor. Assume  current element with a distance of R to
From Bio-Savart’s law magnetic field intensity  at test point P due 
to current element ldl is ,

dH = Idl . sinƟ . / 4πR2 -------------------------------- a
from above  right angle triangle,   Ɵ + ɸ = 900 ----------------- b

using equation a and b,           

dH = Idl . cos ɸ . / 4πR2 ---------------------------------- c

FIELD INTENSITY DUE TO STRAIGHT CONDUCTOR
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Magnetic Field Intensity due to a finite length of current carrying filament

the unit vector a’  , indicates the direction H at point P.
a’  =  R’  / R ------------------------------------------- d 

from above  right angle triangle,  R = √ l2 + d2 ------------------------------ e
cos ɸ = d / √ l2 + d2 ------------------------------------- f
tanɸ = l / d --------------------------------------------- g
l = d. tanɸ
dl = d sec2ɸ dɸ -------------------------------------- h

substituting d,e,f in c,

dH = Idl . cos ɸ .d . R’/ 4π (l2 + d2)2

FIELD INTENSITY DUE TO STRAIGHT CONDUCTOR
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Magnetic Field Intensity due to a finite length of current carrying filament 

integrating on both sides                H = ʃ Idl . cos ɸ .d . / 4π (l2 + d2)3/2

H = I/(4Пd2 ) ʃ dl / (l2 / d2 + 1)3/2

H =I/(4Пd2 ) ʃ dl / (tan2ɸ + 1)3/2

Substituting equation h in above equation is ,

H = I/(4Пd2 ). ʃ d sec2ɸ dɸ / (sec2ɸ)3/2

H = I/(4Пd2 ) .ʃ d sec2ɸ dɸ / (sec3ɸ)

H = I/(4Пd ) .ʃ cosɸ dɸ

H = I/(4Пd2 ) .sinɸ ----------------------------------33

For straight line of infinite length,  ɸ varies between –π /2 to π /2

Substituting above limits in equation 33, H = I/(2Пd ) ------------- 34

FIELD INTENSITY DUE TO STRAUGHT CONDUCTOR
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Magnetic Field Intensity due to a circular current carrying filamentFIELD INTENSITY DUE TO CIRCULAR CONDUCTOR
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Magnetic Field Intensity due to a circular current carrying filament

Let us consider circular conductor with radius r,  

magnetic field intensity at the center of circular conductor is,

from above figure we can say that idl and center are at 900

using Bio-Savart’s law magnetic field intensity  at center point 
P due to current element ldl is,

dH = idl sin90 / 4πr2

dH = idl / 4πr2

FIELD INTENSITY DUE TO CIRCULAR CONDUCTOR
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Magnetic Field Intensity due to a circular current carrying filament

integrating on both sides,                        H = ʃ idl / 4πr2

H = i ʃ dl  / 4πr2 (ʃ dl = 2πr)

H = i 2πr / 4πr2

H = i / 2r ------------------------------- 34

Magnetic field intensity at the center of circular conductor with N 
number of turns is,

H = Ni  / 2r ------------------------ 35

FIELD INTENSITY DUE TO CIRCULAR CONDUCTOR
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Magnetic Field Intensity due to a Square current carrying filamentFIELD INTENSITY DUE TO SQUARE CONDUCTOR
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Magnetic Field Intensity due to a Square current carrying filament

From  the above figure we can say that each side AB,BC,CD,DA has 
magnetic field intensity at the center Of square conductor.

In every right angle triangle angle between current element and 
center is 450.

The total magnetic field intensity at the center of square due to all 
corners using Bio-Savart’s law
Because of any one side,               

H = (I / 4πa) x* sin450 + sin450 ]

FIELD INTENSITY DUE TO SQUARE CONDUCTOR
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Magnetic Field Intensity due to a Square current carrying filament

Using all sides,                                         

H = 4(I / 4πa) x* sin450 + sin450 ]

H = (I / πa) x* 2 / √2 +

H = (√2.I / πa) ----------------------36

FIELD INTENSITY DUE TO SQUARE CONDUCTOR
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Magnetic Field Intensity due to a Solenoid current carrying filamentFIELD INTENSITY DUE TO SOLENOID CONDUCTOR
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Magnetic Field Intensity due to a Solenoid current carrying filament

The construction of solenoid is same as coil wounded on a cylinder , 
let us take take cylinder As reference and derive expression for H 
due to solenoid. The solenoid with length l, number of turns N 
allowing an current of I is shown in below figure,

Assume a small length dx, with total turns ndx in it , let us derive
what is the magnetic field intensity
Due to dx on P, their by total H at P.

total number of turns = N
total length                   = l  
number of turns per unit length,       n = N / l

x  be the distance of the point,

the magnetic field intensity due to length dx on P is , 

FIELD INTENSITY DUE TO SOLENOID CONDUCTOR
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Magnetic Field Intensity due to a Solenoid current carrying filament

dH = (Ia2 / 2r3) ndx
from figure ,                     r = √a2 + x2 , substituting r in dH.

dH = (Ia2 / 2 (a2 + x2)3/2) ndx
from above right angle triangles,  dƟ<<<Ɵ, hence sin dƟ = dƟ

sin Ɵ = r dƟ / dx
sin Ɵ = a / r

substituting above deduction in dH,

dH = (Ia2 r.dƟ/ sin Ɵ / 2r3) n

dH = I.n. sin Ɵ. dƟ / 2 -------------------------------- a

FIELD INTENSITY DUE TO SOLENOID CONDUCTOR
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Magnetic Field Intensity due to a Solenoid current carrying filament

if seen from end points of solenoid the magnetic field intensity at P
is  Here from one end to other end angle varies from 0 to 2π, 
substituting above and integrating equation a

ʃ dH = ʃ  I.n. sin Ɵ. dƟ / 2
H = - I.n.cos Ɵ. / 2
H = -(I.n/2) *cos2π – cos 0]
H = I.n = NI/l

if seen from end point of solenoid the magnetic field intensity at P at 
same end point,

then the limits varies between 0 to π/2  
substituting above limits in b                                                                    

H =  -(I.n/2) [cosπ/2 – cos 0]
H = n.I/2 = N.I/ 2l ------------------ 37



FIELD INTENSITY DUE TO SOLENOID CONDUCTOR
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Maxwell’s Second Equation

From the guass law we can write magnetic flux in the given surface is 
surface integral of magnetic flux density.

Ψ = ʃ B.ds
But total flux density in closed surface is always zero,

Ψ = ʃ B.ds = 0
By applying divergence theorem we can write,    

ʃ B.ds = ʃv▼ B.dv = 0

hence we can write ,    ▼ B = 0, is Maxwell’s second equation------ 38

GAUSS LAW IN MAGNETIC FIELDS
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Ampere Circuital Law

The ampere circuital law states line integral magnetic filed 
intensity around any closed path is equal to total current 
enclosed in that path.

ʃ H dl = I ---------------------------------------------39

Ampere’s law is analogous to gauss law electro-statics.

AMPERE  CIRCUITAL  LAW
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Ampere Circuital Law

Applications of Ampere’s law :

 The magnetic field intensity in the surrounding closed path 
is always at tangential at Each and every point on it.

 At each every point on the closed path magnetic field 
intensity has the same value.

AMPERE  CIRCUITAL  LAW
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Maxwell’s Third Equation

From the ampere circuital law we know that, 
ʃ H dl = I

but current can be written as,                                                                                               
ʃ J ds = I

equating above two equations,                                                                                      
ʃ H dl = ʃ J ds ---------------------------a

from stokes theorem,                                                                                                      
ʃ H dl = ʃ ▼x H ds --------------------- b

by combining equation a and b,                                                                             
ʃ ▼x H ds = ʃ J ds

by comparing on both sides,                                                                                             
▼x H = J  ,       ▼x H = curl of H ------40

Equation 40 is called as differential, integral or point form of 
ampere’s law and also calledas Maxwell’s Third Equation

AMPERE  CIRCUITAL  LAW APPLICATION
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Magnetic field intensity due to long straight conductor using ampere’s law          AMPERE LAW FOR CIRCULAR CONDUCTOR
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Magnetic field intensity due to long straight conductor using ampere’s law

Let us consider a straight conductor as shown in figure with closed 
path of magnetic field Intensity  surrounding it with radius of r.
From ampere’s circuital law we can write magnetic field intensity in 
closed path,

ʃ H dl = I -------------------------------------a
but we can write,                 ʃ H dl = H ʃ dl

= H 2πr ------------------------------ b

Equating a and b,                  H 2πr = I

H = I / 2πr --------------------------------- 41

AMPERE LAW FOR CIRCULAR CONDUCTOR
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Magnetic field intensity due to infinite sheet conductor using ampere’s law AMPERE LAW FOR SQUARE CONDUCTOR
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Magnetic field intensity due to infinite sheet conductor using ampere’s law 

let us consider a square sheet as shown above with surrounding
current path of side d.
according to Ampere’s law , 

ʃ H dl = I
where  ʃ dl indicates the mean length closed path,

ʃ dl = 4d
their by ,                                                                     H ʃ dl = I

H.4d = I

H = I/4d.---------42

ESTIMATEAMPERE LAW FOR SQUARE CONDUCTOR
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Ampere Circuital Law

The ampere circuital law states line integral magnetic filed 
intensity around any closed path is equal to total current 
enclosed in that path.

ʃ H dl = I ---------------------------------------39

Ampere’s law is analogous to gauss law electro-statics.

AMPERE LAW 
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UNIT-IV
MAGNETIC  FORCE AND MAGNETIC POTENTIAL
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Force on moving charge.

When an charge Q is with velocity  is placed in the magnetic 
field of density  , then it experiences force called as magnetic 
force.

Fm= Q(VXB ) ----------------------------------- 43

= QVB sinƟ af

V is parallel to  B then Ɵ= 0, therefore  sinƟ = 0, hence always 
velocity direction and flux density 

Direction must be normal to each other.

FORCE ON POINT CHARGE
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Moving charges in the magnetic fieldFORCE ON POINT CHARGE
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Moving charges in the magnetic field

The limitations of moving charge in the existing magnetic field,
 If the velocity of charge in the magnetic field is zero then force 

experienced also zero.
 If the velocity direction and magnetic field direction are parallel 

to each other then force
experienced is zero.

To say that moving charge in the magnetic field experiences force 
velocity and field must be normal to each other.
From the above discussion the force experienced by moving charge 

is ,
Fm = QVB.

Similarly we can also write force experienced by moving charge due 
to its mass is ,

Fm = ma.

LIMITATIONS  ON MOVING CHARGE
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Moving charges in the magnetic field

the radius made by path travelled by charge when it experiences force.

Fm = mV2/r
By equating both forces,         QVB = mV2/r

r = mV / QB

time taken to complete one revolution in field is ,
T = 2πr / V
= 2πm / QB

Hence frequency of charge in field is ,
F = 1/ T

= QB / 2πm, as this
expression of frequency is independent Of velocity it is called as 

cyclotron.

LIMITATIONS  ON MOVING CHARGE
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Lorentz force equation FORCE  EQUATION
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Force on current element due to magnetic fieldLORENZ  FORCE EQUATION
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Force on current element due to magnetic fieldFORCE  ON DIFFERENT CONFIGURATION
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Force on a straight long current carrying conductor placed in the magnetic field

FORCE ON STRAIGHT  CONDUCTOR PLACED IN 
EXISTING MAGNETIC FIELD
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Force on a straight long current carrying conductor placed in the magnetic 

field

FORCE ON STRAIGHT  CONDUCTOR PLACED IN 
EXISTING MAGNETIC FIELD

107



Magnetic dipole

Magnetic dipole is formed when two opposite magnetic charges are separated by distance l.

-Qm --------------l-------------- +Qm

The line joining two charges is termed as axis of dipole. Direction magnetic dipole is from -Qm to   

+Qm

In other words a bar magnet with pole strength Qm and l has , magnetic dipole moment, m =Qm l .

Let us consider a bar conductor allowing current I their forming loop of area A, magnet poles    

formed

As shown in the figure.

Magnetic dipole moment ,     m= IA

Numerically both dipole moment must be same,  Qm l = IA

MAGNETIC  DIPOLE AND ITS MOMENTUM
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Magnetic dipole

Magnetization 

If their exist an conductor consisting of number of dipoles in its volume 
, then magnet dipole Moment per unit volume is called as 
magnetization.

M = m / V 
= Qm .l / A.l
= Qm / A

Magnetic susceptibility
When the magnetic field is applied to an material the ,
Total magnetic field intensity is , 

MAGNETIZATION AND SUSCEPTIBILITY
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Magnetic dipoleMAGNETIZATION AND SUSCEPTIBILITY
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Force on a straight  parallel long current carrying conductors placed in the magnetic 

fieldMAGNETIC  FORCE  BETWEEN TWO  CONDUCTORS
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Force on a straight  parallel long current carrying conductors placed in the 

magnetic field

Let us consider two straight parallel current carrying conductors of length l separated by distance d

As shown above,
The magnetic field intensity due conductor P on Q is,

H = I1 / 2Πd
The magnetic flux density due conductor P on Q is,

B = µ0 I1 / 2Πd
Hence forced experienced by conductor Q due to field of P is,

F1 = B I2 l
= µ0 I1 I2 l / 2Πd

Similarly force experienced by P due to conductor Q is ,  
F2  = µ0 I1 I2 l / 2Πd 

Hence force per unit length of conductor is ,
(F / l) = µ0 I1 I2 / 2Πd ----------------------------------- 47

MAGNETIC  FORCE  BETWEEN TWO  CONDUCTORS
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Torque  due to Magnetic DipoleMAGNETIC  FORCE  ON SQUARECONDUCTORS
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Torque  due to Magnetic Dipole

Let us a consider sheet of side abcd placed in the magnetic field , the 
side ab experiences the force into the page and side cd out of the 
page. Angles made by sheet with magnetic field are α and β.
the total torque experienced by sheet due to dipole is ,

T = 2 x torque on each side
= 2 x force x distance from axis of rotation     
= 2 x F x d/2
= 2 x BIl cos β x d/2
= BIA cos β
= mB cos β   or  mB sin α

MAGNETIC  FORCE  ON SQUARECONDUCTORS
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Scalar Magnetic Potential

Form the electro-statics we know that,                 E = -▼V

Similarly in the magneto-statics ,         H = -▼Vm

Vm – vector magnetic potential
Applying curl on both sides of H,         ▼x H = -▼x(▼Vm)
But curl of divergence of any vector is zero,   ▼x H = 0

We can also write ,                                              ▼x H = J

From the above two equations we can write ,       J = 0.

This is possible only in the case constant magnetic field.

VECTOR AND SCALAR MAGNETIC POTENTIAL
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Scalar Magnetic Potential

from  the electro-statics we know that,                ʃE dl = V           

Similarly in the magneto-statics ,                          ʃH dl = Vm

Ampere circuital law says that,                              ʃH dl = I

Comparing last two equations,                               Vm = I ---------50

Hence the units of scalar magnetic potential is Amperes.

VECTOR AND SCALAR MAGNETIC POTENTIAL
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Vector  Magnetic Potential

We know that divergence  magnetic flux density over uniform closed 
surface is always zero.

▼B = 0
Also divergence of curl of vector is always zero. 

▼ .(▼x A) = 0
By comparing above two equations,

B = ▼x A

µH = ▼x A

H = (▼x A) / µ

VECTOR AND SCALAR MAGNETIC POTENTIAL

117



Vector  Magnetic Potential

Applying curl on both sides,     ▼x H = ▼x (▼x A) / µ = J
But,                                               ▼x (▼x A) = ▼. (▼. A) - ▼2 A = µJ
For time invariant fields  divergence of vector is zero, hence above 
can be written as

-▼2 A = µJ
▼2 A = - µJ

Form the electro-statics we know that,                 dv = dq/ 4πε
Similarly in the magneto-statics ,                           dA= µidl/ 4πr

Integrating on both sides,   
A = ʃ µidl/ 4πr, A- vector magnetic potential ---------51

VECTOR AND SCALAR MAGNETIC POTENTIAL
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119



Self Inductance Of  Solenoid
let us consider a solenoid as shown in figure with length l allowing an current of i A.

N – total turns of solenoid coil
n – number of turns per unit length   
magnetic filed density inside solenoid is ,            B = µ0 n.i.
total flux linking with coil is                                    ɸ = N B A

= µ0 n l.i.A .n
= µ0 n2.i.A .l

Self inductance is the property of coil which is responsible for emf
induced in it,

L = N ɸ / i
= µ0 n2.i.A .l / i
=  µ0 N2A / l  H ----------------------------52

INDUCATNCE  OF  SOLENOID
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Self inductance of a ToroidINDUCATNCE OF TOROID
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Self inductance of a Toroid

Let us a toroid on which a coil N turns is wounded allowing an current 
of i A.
Let r be the mean radius of the toroid.

Magnetic flux density in the toroid,                     B = µ0 Ni / l  
Where ,       l = 2πr

B = µ0 Ni / 2πr

Total flux linkage with toroid is ,                                   ɸ = NBA

INDUCATNCE OF TOROID
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Self inductance of a Toroid

= (N µ0 Ni / 2πr ) . A
But, area                               A =  πR2

ɸ = ( N µ0 Ni / 2πr). πR2

= ( N2 µ0 i R2/ 2r). 

Therefore self inductance of toroid is ,       L = ɸ / i

= ( N2 µ0 R2/ 2r). H ------------------------ 53

INDUCATNCE OF TOROID
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Neumann’s formulae NEUMAN’S  FORMULA
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Neumann’s formulae NEUMAN’S  FORMULA
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Energy Stored In Magnetic FieldENERGY STORED IN INDUCTOR
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Energy Stored In Magnetic FieldENERGY STORED IN INDUCTOR
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Mutual Inductance 

When two coils are brought together as close as possible then they
form coupledcoils.

Here when current(i1) is allowed through first coil then magnetic flux
Ф1 is developed in it, as other coil brought to close proximity some
of Ф1 links with second coil called as Фm1 their by inducing voltage
in it and when we close the second coil current flows in it (i2). This
current i2 develops Ф2 in it and some of Ф2 links with 1st coil called
as Фm2. If the two coils are of same dimensions Фm1= Фm2= Фm.

Here we define two inducatnces slef inductance of coils L1 and L2, 
mutal inductance between the coils M12=M21=M.

MUTUAL  INDUCTANCE
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Permanent Magnet

Characteristics and applications of permanent magnets   
Characteristics :

Permanent magnets are the one which readily available in nature 
in the form of Bar and horse shoe shapes etc. Permanent magnets 
irrespective of supply always exhibits magnetic properties. 
Permanent magnets always develops a constant magnetic field. 
The strength of the permanent magnets measured in terms of their 
cohesive force. An permanent magnet with high  cohesive force will 
have long life. Permanent  magnet got the disadvantage of ageing 
effect i.e in long run they may get rusted.

Applications:

Permanent magnets are used in the applications where ever it  is 
required to develop Constant magnetic field .  Eg- Dc generator, Dc 
motor.

PERMANENT MAGNETS AND APPLICATION
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Comparison Between Electromagnets And Permanent Magnets

Large industrial electromagnets, on the other hand, benefit greatly
from the ability to control the magnetic flux. Electro lifting magnets
can be positioned over materials to be moved before the
magnetism is turned on, and the load can then be positioned before
the magnet is de-energized.

On the negative side, electromagnets require a significant DC power
source, create heat, and are vulnerable to power failures.

These problems are not insurmountable, however. Some
electromagnets available today, for example, are up to 50% more
energy efficient than any others previously available, have
moreefficient cooling systems, and can be purchased with rectifiers
and emergency generators (or other cut-in power source) to eliminate
the vulnerability to power failure.

PERMANENT MAGNETS AND APPLICATION
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UNIT-V
TIME VARYING FIELDS AND WAVE PROPAGATION
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Time varying fields are produced due to accelerated charges or time 
varying currents.
Here we shall study how time varying current affects electric and 
magnet fields.

Faraday’s law of electro-magnetic induction
Micheal faraday has  stated two laws 

If any coil experiences change in flux or variable flux then emf is   
induced in it. 
The emf induced in the coil is directly proportional to rate of 
change of flux linking  With the coil.

E α - dɸ / dt
For an coil with N turns emf induced in it ,

E = - N.dɸ / dt

INTRODUCTION 
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Maxwell’s Fourth equation or vector form of faraday’s law

We know from the gauss law,                             ɸ = ʃs B ds

hence emf induced due to above flux is ,

e =    - dɸ / dt =    -d(ʃs B ds) /dt

Electric potential is given as ,
e = ʃ E dl 

equating above two equations,
ʃ E dl = - (ʃs dB ds) /dt

by applying stokes theorem,
ʃ E dl =  ʃs (▼xE) ds

MAXWELL’S EQUATIONS
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Maxwell’s Fourth Equation Or Vector Form Of Faraday’s 

Law&Types of induced emf

substituting above equation in c,
ʃs (▼xE) ds = - (ʃs dB ds) /dt

comparing on both sides,
▼xE = -dB/dt

Equation  is called as Maxwell’’s fourth equation of vector form of
faraday’s law.

Types of induced emf

The emf induced in the coil according faraday’s law is mainly of two 
types. They are 

Dynamically induced emf
Statically induced emf.

TYPES  OF EMF
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Types of induced emf

Dynamically induced emf

Let us consider a straight conductor with charge velocity of

moving against the existing magnetic field. Force experienced by

conductor is , potential induced can be written as, e = BVl sinƟ

the maximum value of potential induced is, e = BVl

Statically induced emf

If  an conductor experiences variable flux then emf induced in it is 
called as statically induced Emf.

e = -Nd (ɸm sinwt ) / dt
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135



Displacement CurrentDISPLACEMENT  CURRENT DENSITY
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Displacement CurrentDISPLACEMENT  CURRENT DENSITY
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Displacement CurrentDISPLACEMENT  CURRENT DENSITY
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Maxwell’s Equations MAXWELL’S  EQUATION
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Maxwell’s Equations
MAXWELL’S  EQUATION
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Exercise Problems On Electro-staticsADD ON INFORMATION
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