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COURSE OBJECTIVES:

The course should enable the students to:

| Understand the 3D vector co-ordinate systems and electromagnetic field concepts.

I Analyze the importance of Maxwell’s equations in electromagnetic theory and wave propagation.

1 Study the propagation characteristics of electromagnetic waves at boundary.

v Demonstrate the ability to compute various parameters for transmission lines using smith chart and classical
theory.

COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

SNO DESCRIPTION
AECB13.01 | Understand the different types of 3D co- ordinate systems, scalars and vectors, physical
significance of divergence, curl and gradient
AECB13.02 | Illustrate the concepts of coulomb’s law and gauss’s law to different charge distributions
like point charge, line charge, surface charge and volume charge. Analyze its applications.
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AECB13.03 | Understand the applications of Laplace’s and Poisson’s equations to solve problems on capacitance
of different charge distributions.

AECB13.04 | |llustrate the physical significance of Biot- Savart’s law and Ampere’s Circuit law for different
current distributions and analyze its applications

AECB13.05 | Evaluate the physical interpretation of Maxwell’s equations and applications for various fields like
antennas and wave guides.

AECB13.06 | Derive the boundary conditions between different media like dielectric to conductor,
conductor to free space.

AECB13.07 | Analyze and apply the Maxwell’s equations to derive electromagnetic wave equations for different
media.

AECB13.08 | Understand the behavior of electromagnetic waves incident on the interface between two
different media.

AECBI13.09 | Formulate and analyze problems in different media such as lossy, lossless with boundaries using
uniform plane waves.

AECB13.10 | Understand the significance of transmission lines and its types, derive their primary constants and
secondary constants.

AECBI13.11 | Understand the concept of attenuation, loading, and analyze the loading technique to the
transmission lines.

AECB13.12 | Understand the design of various transmission lines with respect to distortion, loss, impedance
matching, and VSWR and reflection coefficient.

AECB13.13 | Summarize the impedance transformation for different lengths such as A/4,A/2,)/8 transmission
lines.

AECB13.14 | Understand the design of ultra high frequency transmission lines for different applications by using
single and double stub matching techniques.

AECB13.15 | Formulate and analyze the smith chart to estimate impedance, VSWR, reflection coefficient, OC
and SC lines.

AECB13.16 | Apply the concept of electromagnetic fields to understand and analyze land mobile
communications.

AECB13.17 | Acquire the knowledge and develop capability to succeed national and international level
competitive examinations.

MODULE -1 ELECTROSTATICS Classes: 10

Electrostatics: Coulomb®s law, electric field intensity, fields due to different charge distributions; Electric flux
density, Gauss law and its applications; Scalar electric potential; Energy density, illustrative problems; Conductors and
dielectrics-characterization; Convection and conduction currents; Dielectric constant, isotropic and homogeneous
dielectrics; Continuity equation and relaxation time, conductivity, power absorbed in conductor, Poisson®s and
Laplace®s equations; Capacitance: Parallel plate, co axial, spherical capacitors; Method of images; Illustrative
problems.

MODULE -1l | MAGNETOSTATICS Classes: 10

Magnetostatics: Biot-savart law; Ampere®s circuital law and applications; Magnetic flux density; Magnetic scalar and
vector potentials; Forces due to magnetic fields; Ampere*s force law; Boundary conditions: Dielectric- dielectric,
dielectric conductor interfaces; Inductances and magnetic energy; Illustrative problems;

Maxwell’s equations (Time varying fields): Faraday*s law; Inconsistency of ampere™s law for time varying fields
and definition for displacement current density; Maxwell*s equations in differential form, integral form and word
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Statements.

MODULE - 111 | UNIFORM PLANE WAVES Classes: 08

Uniform plane waves: Wave equations for conducting and perfect dielectric media; Relation between E and H; Wave
propagation in lossless and conducting media, Loss tangent, Intrinsic impedance; Skin depth; Polarization, Illustrative
problems.

Reflection/refraction of plane waves: Reflection and refraction at normal incidence, reflection and refraction at
oblique incidence; Standing waves; Brewster angle, critical angle, total internal reflection, surface impedance; Poynting
vector and poynting theorem-applications; Power loss in plane conductor; Illustrative problems.

MODULE - IV | TRANSMISSION LINE CHARACTERISTICS Classes: 09

Transmission line characteristics: Types; Transmission line parameters; Transmission line equations;
Characteristic impedance, propagation constant; Phase and group velocities; Infinite line concepts,

Loss less/low loss transmission line characterization; condition for distortion less and minimum attenuation in
transmission lines; Loading: Types of loading; Illustrative problems.

MODULE -V |UHF TRANSMISSION LINES AND APPLICATIONS Classes: 08

UHF transmission lines and applications: Input impedance relations; SC and OC lines; Reflection coefficient,
VSWR; UHF lines as circuit elements, A/4, /2 and A/8 lines, impedance transformations, significance of Zmin and
Zmax; Smith chart; Configuration and applications; Single and double stub matching; Illustrative problems.
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UNIT-I
ELECTROSTATICS

Coordinate Systems:

In order to describe the spatial variations of the quantities, appropriate coordinate system is
required.

A point or vector can be represented in a curvilinear coordinate system that may be orthogonal or
non-orthogonal.

- A way of addressing the points in the space ,,,,

- An orthogonal system is one in which the coordinates are mutually perpendicular to
each other.
- The different co-ordinate system available are:

- Cartesian or Rectangular.
- Circular cylindrical.

- Spherical.

- Elliptical Cylindrical.

- Hyperbolic Cylindrical.

- Parabolic Cylindrical.

The choice depends on the geometry of the application

The frequently used and hence discussed herein are
Rectangular Co-ordinate system.(Example: Cube, Cuboids)
Cylindrical Co-ordinate system.(Example : Cylinder)
Spherical Co-ordinate system.(Example : Sphere)

A set of 3 scalar values that define position and a set of unit vectors that define direction form a co-
ordinate system.

The 3 scalar values used to define position are called co-ordinates. All coordinates are defined

with respect to an arbitrary point called the origin.
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Cartesian Co-ordinate System / Rectangular Co-ordinate
System (X, Y, 2)
A Vector in Cartesian system is represented as
(A Ay, AY)
Or
A=Aa+ Aat+ Al,
Where a,, a, and a, are the unit vectors in X, y, z direction respectively.

Range of the variables:

It defines the minimum and the maximum value that x, y and z can have in Cartesian system.

-0 < X,Y,Z < o0

Differential Displacement / Differential Length (dD):

It is given as dl = dxa, + dya, + dza,
Differential length for a surface is given as:

dl = dxax + dya, --- ( For XY Plane or Z Constant

Plane). dl = dya, + dza,, ---( For YZ Plane or X :

Constant Plane). dl = dxa, + dza, ---( For XZ Plane or i s

Y Constant Plane). Differential length for a line parallel .

to X, y and z axis are respectively given as: i |d: dz o f’“f-’: ‘ /
dl = dxa, -—-( For a line parallel to x- L iy T
axis). dl = dyay ---( For a line Parallel

to y-axis). dl = dza,, ---( For a line
parallel to z-axis). Differential Normal
Surface ds):

The differential surface (area element) is defined as

ds =ds a,
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where a, is the unit vector perpendicular to the

surface. For the 1st figure, ds = dydz a,

2nd figure,

ds = dxdz a

3rd figure,

ds = dxdy a,
Differential surface is basically a cross product between two parameters of the surface. For
example, consider the first figure. The surface has two differential lengths, one is dy and dz. The
differential surface (ds) is hence given as:

dS =dy * dz

= |dy] |dz] sin" ag &y
=|dy] |dz| a,
Where a, is the unit vector normal to both dy and dz
l.e.a,=a,*a, = a

In other words the differential surface element (ds) has an area equal to product dydz, and a normal
vector that points in a, direction.
Differential Volume element (dv)

The differential volume element (dv) can be expressed in terms of the triple product.
dv=dx. (dy * dz)

Consider a cubical surface having dimension x * y * z. The differential volume (dv) of the cubical
surface is given as the triple product of the dimensions.
dv =dx. (dy * dz)

= dx ay . (dy dz a sin 0 ap )
=dxay. (dydza,)
=dxdydz

Where dy and dz are mutually perpendicular to each other. Therefore the angle between them is
90°.

a.a= 1 ax.a,=0 a.a,=0
ay.a,=0 ay.a,=1 ay.a,=0
az.a,=0 a,.8y= 0 aza,=1

One thing to remember is that, the three parameters of Cartesian
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coordinate system ie. X, Y, Z are all mutually
perpendicular to each other.

=]

Therefore ay, a, and a, are all mutually perpendicular to each other.

Circular Cylindrical Co-ordinate System...

A Vector in Cylindrical system is represented as

(Ap1 A(pa AZ)

or

P
A=A+ A+ AQ, x

Where a,, a,and a, are the unit vectors in p, ¢ and z direction respectively.
The physical significance of each parameter of cylindrical coordinates:
- The value p indicates the distance of the point from the z-axis. It is the radius of the cylinder.

- The value ¢, also called the azimuthal angle, indicates the rotation angle around the z-
axis. It is basically measured from the x axis in the x-y plane. It is measured anti-
clockwise.
- The value z indicates the distance of the point from z-axis. It is the same as in the
Cartesian system. In short, it is the height of the cylinder.

Range of the variables:

It defines the minimum and the maximum value that p, ¢ and z can have in Cartesian System.
0<sp<w

0<9o<2m

-0 < Zz< oo

Cylindrical System - Unit vectors:

Since the co-ordinate system is orthogonal, the unit vectors a,, a, and a, are
mutually perpendicular to each other.
- 8, points in the direction of increasing p, i.e a, points away from the z-axis.

- 8, points in the direction of increasing ¢ (anticlockwise).

- 3, points in the direction of increasing z.
Introduction to Co-Ordinate System:

Line, surface and volume integrals:

In electromagnetic theory, we come across integrals, which contain vector functions. Some representative
integrals are listed below:
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n the above integrals, & and ¢ respectively represent vector and scalar function of space coordinates. C,S and V
represent path, surface and volume of integration. All these integrals are evaluated using extension of the usual
one-dimensional integral as the limit of a sum, i.e., if a function f(X) is defined over arrange a to b of values of x,
then the integral is given by

f Fx)dx = 11mz o,
Tl (1.42)

where the interval (a,b) is subdivided into n continuous interval of lengths ORpy v Sz

Edl
Line Integral: Line integral J“ is the dot product of a vector with a specified C; in other words it is the
integral of the tangential component £ along the curve C.

Vector field E

Figure : Line Integral

Fig 1.14: Line Integral

0

L[E..:fhjgmsaﬁﬂ

As shown in the figure 1.14, given a vector £ around C, we define the integral 2 as the line

integral of E along the curve C.

f the path of integration is a closed path as shown in the flgure the line integral becomes a closed line integral and

Edi
is called the circulation of E around C and denoted as iﬁ as shown in the figure 1.15.
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Figure: Closed Line Integral

Fig 1.15: Closed Line Integral

Surface Integral :

Given a vector field <4, continuous in a region containing the smooth surface S, we define the surface integral or

w=lﬂcosads=lﬁ.% dS=lﬁd§

the flux of < through S as as surface integral over surface S.

Surface S

Fig 1.16 : Surface Integral

Volume Integrals:
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We define or as the volume integral of the scalar function f(function of spatial coordinates) over
JF&V

the volume V. Evaluation of integral of the form can be carried out as a sum of three scalar volume

integrals, where each scalar volume integral is a component of the vector &

The Del Operator :

The vector differential operator ¥ was introduced by Sir W. R. Hamilton and later on developed by P. G. Tait.

Mathematically the vector differential operator can be written in the general form as:

................................. (1.43)
In Cartesian coordinates:
W= E&x +icf}, +E&K
I S 2 (1.44)
In cylindrical coordinates:
yo2a4l2,,2,
A (1.45)
and in spherical polar coordinates:
g, 18, 1 a8,
V=—d+-—d, t———4d,
& - rdd  rem8dg (1.46)

Gradient of a Scalar function:
Let us consider a scalar field V/(u,v,w) , a function of space coordinates.

Gradient of the scalar field V is a vector that represents both the magnitude and direction of the maximum space
rate of increase of this scalar field V.
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Fig 1.17 : Gradient of a scalar function

By our definition of gradient we can write:

............................................... (1.47)

Also we can write,
ar = Vo

izl ar .

—a, + i @, +dla, +dl

(a;“a;a"afw J[a oy +ahdy)

(EV a,+ id a,+ W ; ](klcfucz + hodvid, + hdwd )

T = A (1.51)
By comparison we can write,
ool L, v,

o (1.52)

Hence for the Cartesian, cylindrical and spherical polar coordinate system, the expressions for gradient can be

written as:
In Cartesian coordinates:

?V—ga +ﬁa +ﬁ iy
O A T B e (1.53)

In cylindrical coordinates:
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Vi = ach +1 W +g

w0 0o % (1.54)

and in spherical polar coordinates:

vy = L +lg 1

+ —d
B r 88 " rand 8p ? (1.55)

A

Divergence theorem :

Divergence theorem states that the volume integral of the divergence of vector field is equal to the net outward

JV Adv Efﬂ ds
flux of the vector through the closed surface that bounds the volume. Mathematically,

Proof:

Let us consider a volume V enclosed by a surface S . Let us subdivide the volume in large number of cells. Let

the k™ cell has a volume Ly and the corresponding surface is denoted by Sy. Interior to the volume, cells have
common surfaces. Outward flux through these common surfaces from one cell becomes the inward flux for the
neighboring cells. Therefore when the total flux from these cells are considered, we actually get the net outward
flux through the surface surrounding the volume. Hence we can write:

iﬂ de
fﬁ-dE=Z§ﬁ-dE=z L,

E['\?’.ﬂdff

& —scogng AV =0

In the limit, that is when the right hand of the expression can be written as

15;1 a5 JV AV
Hence we get , which is the divergence theorem.

Curl of a vector field:

Adl
We have defined the circulation of a vector field A around a closed path as EF

—

Curl of a vector field is a measure of the vector field's tendency to rotate about a point. Curl A | also written as

V% Ajs defined as a vector whose magnitude is maximum of the net circulation per unit area when the area
tends to zero and its direction is the normal direction to the area when the area is oriented in such a way so as to
make the circulation maximum.
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Therefore, we can write:

Curl A=VxA=lim 2
ﬁS—}DM

cjﬁl&-.ﬂ

piki

dy, d, &
In Cartesian coordinates: 44 4
&P -'G&pf- az
In Cylindrical coordinates, HP “Gﬂﬂ’ 4,
d, rd, rsinda,
Tx A= 1 (8 4 g

Plsind|ar 38 5_-;25'
A rd rsiné‘ﬂﬁ

In Spherical polar coordinates,

Stoke's theorem :

It states that the circulation of a vector field <4 around a closed path is equal to the integral of V%A over the

surface bounded by this path. It may be noted that this equality holds provided 4 and V% 4 are continuous on
the surface.

ie,

Epzﬁ-df=‘l‘s‘?><ﬁ-dg

Proof:Let us consider an area S that is subdivided into large number of cells as shown in the figure 1.21.
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Fig 1.21: Stokes theorem

Let k™cell has surface area A and is bounded path L while the total area is bounded by path L. As seen from
the figure that if we evaluate the sum of the line integrals around the elementary areas, there is cancellation along
every interior path and we are left the line integral along path L. Therefore we can write,

.. Lo Al
P Adl =2 pd-dl =3 "’!M AS,
. , B, (1.83)
As 2% =0
g Adl=fvrdds (1.84)

which is the stoke's theorem.

Coulomb’s law:

Coulomb’s Law states that the force between two point charges Q;and Q is directly proportional to the product of
the charges and inversely proportional to the square of the distance between them.

Point charge is a hypothetical charge located at a single point in space. It is an idealised model of a particle
having an electric charge.
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Mathematically, R wherekis the proportionality constant.
In Sl units, Q; and Q, are expressed in Coulombs(C) and R is in meters.

1

=
Force F is in Newtons (N) and A7ty , “0js called the permittivity of free space.

(We are assuming the charges are in free space. If the charges are any other dielectric medium, we will use

£= &% instead where s called the relative permittivity or the dielectric constant of the medium).

1 &

4w, R

Therefore

— — e —

As shown in the Figure 1 let the position vectors of the point charges Q,and Q, are given by and "2 . Let g

represent the force on Q; due to charge Q..

0
Fig 1: Coulomb's Law

[RPUR— —_— =+

. E=lh-nl=n- . .
The charges are separated by a distance of 772712 7] \we define the unit vectors as

- (?"2_’"1) — Iirl_’"z:l
. @31 =
R and R
T - ek i i ()
= Podm, R Amg R _;r
12 can be defined as 4 11 Similarly the force on Q; due to charge Q;

—_—

) fy =R,

can be calculated and if “ 2! represents this force then we can write

When we have a number of point charges, to determine the force on a particular charge due to all other
charges, we apply principle of superposition. If we have N number of charges Q1,Qz,......... Qn located
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respectively at the points represented by the position vectors 1, "2 ... "¥  the force experienced by a
charge Q located at #is given by,

5. 0 Lot-n

A7, |;_;;_“’3

Electric Field Intensity:

The electric field intensity or the electric field strength at a point is defined as the force per unit charge.
That is

The electric field intensity E at a point r (observation point) due a point charge Q located at ;T (source
point) is given by:

—  —+ —_—

For a collection of N point charges Q;,Q>,......... Qn located at "1, "2 ... ¥  the electric field intensity
at point 7 'is obtained as

Field due to Different Types of Charges:

Eelectric filed due to a continuous distribution of charges.:

In figure 2.2 we consider a continuous volume distribution of charge r(t) in the region denoted as the
source region.

For an elementary charge & = 204" j o considering this charge as point charge, we can write the
field expression as:

(-1 _ e haviz-rY

41, |r—r'r 4ire, |r—r"3

4dF =
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Souree reglon

When this expression is integrated over the source region, we get the electric field at the point P due to
this distribution of charges. Thus the expression for the electric field at P can be written as:

75 - (2O,
1[4;?1'&',] r rf

Similar technique can be adopted when the charge distribution is in the form of a line charge density or
a surface charge density.

G5 = (22T 4
Idl;:'r&'ur r’z

7 - l,ca(r:w(r 2
4;??5,] =
Electric Flux Density:
Electric field intensity or simply ‘Electric field' gives the strength of the field at a particular point. The electric
field depends on the material media in which the field is being considered. The flux density vector is defined to

be independent of the material media (as we'll see that it relates to the charge that is producing it).For a linear
isotropic medium under consideration; the flux density vector is defined as:

We define the electric flux Y as
W= ‘!ﬁd;

Consider a point charge at the origin:
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Electric Flux Density of a Point Charge
Assume from symmetry the form of the field
D=4D,(r)

Construct a family of Gaussian surfaces

0<r<ow

Evaluate the total charge within the volume enclosed by each Gaussian surface

Qencl = I qev dV
For each Gaussian surface, evaluate the integral

fD-ds=Ds
S

{D-ds=D,(r) 4zr’
S

Solve for D on each Gaussian surface

D=Qencl D:ér Q2
S - Arr & drg, ¥

Consider a spherical shell of uniform charge density:

|9, asr<b
v = 0, otherwise

IARE Electromagnetic Theory and Transmission Lines

Page | 18



\ 4

Gauss's Law:

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total electric flux through a
closed surface is equal to the total charge enclosed by the surface.

Fig 1: Gauss's Law

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric constant e. The flux
density at a distance r on a surface enclosing the charge is given by
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D-eE-—2_4
dar

If we consider an elementary area ds, the amount of flux passing through the elementary area is given by

di = Dds = 2 —dscos &
45

=48l -
But - , is the elementary solid angle subtended by the area @2 at the location of Q. Therefore we
diyr= Edfz
can write 4

- gy %?cm -0

For a closed surface enclosing the charge, we can write

which can seen to be same as what we have stated in the definition of Gauss's Law.

Application of Gauss's Law:

Gauss's law is particularly useful in computing £ or £'where the charge distribution has some symmetry. We
shall illustrate the application of Gauss's Law with some examples.

1.An infinite line charge

As the first example of illustration of use of Gauss's law, let consider the problem of determination of the electric
field produced by an infinite line charge of density r,C/m. Let us consider a line charge positioned along the z-
axis as shown in Fig. 2(a). Since the line charge is assumed to be infinitely long, the electric field will be of the
form as shown in Fig. 2(b) .

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can write,

od =0 =<1SE,JE..:£E=JEDE.JE+15DE_.:£E+JEDE§E

]

Considering the fact that the unit normal vector to areas S; and S; are perpendicular to the electric field, the

surface integrals for the top and bottom surfaces evaluates to zero. Hence we can write, e = . 2nal

IARE Electromagnetic Theory and Transmission Lines Page | 20



sl

- T\

X {a) {.b}

Fig 2: Infinite Line Charge

5= £
2T

ad
aP

2. Infinite Sheet of Charge

As a second example of application of Gauss's theorem, we consider an infinite charged sheet covering the x-z
plane as shown in figure 3.

Assuming a surface charge density of s for the infinite surface charge, if we consider a cylindrical volume
having sides &5 placed symmetrically as shown in figure 5, we can write:

$D-ds =2Dbs = o Ls

=

- &
E=_EF 5
25‘0 ¥
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Fig 3: Infinite Sheet of Charge

It may be noted that the electric field strength is independent of distance. This is true for the infinite plane of
charge; electric lines of force on either side of the charge will be perpendicular to the sheet and extend to infinity
as parallel lines. As number of lines of force per unit area gives the strength of the field, the field becomes
independent of distance. For a finite charge sheet, the field will be a function of distance.

3. Uniformly Charged Sphere

—

Let us consider a sphere of radius r, having a uniform volume charge density of r, C/m®. To determine Z/
everywhere, inside and outside the sphere, we construct Gaussian surfaces of radius r < ro and r > rq as shown in
Fig. 4(a) and Fig. 4(b).

. L .
For the region il ; the total enclosed charge will be

4 5
=0, ="ar
(e A3
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LEY (b)

Fig 4: Uniformly Charged Sphere

By applying Gauss's theorem,

cj_sﬁ- ds= } J‘ Dt sin 6d8d ¢ =4mr*D, =0
[ gl A=l

Therefore

ro.
gpvar Diripg

T-

For the region 7 279 the total enclosed charge will be

il
Qﬂ! =5 EFT'?I':F

By applying Gauss's theorem,

3
7
=0 5
L=——pmoa, i

r

Electrostatic Potential:

In the previous sections we have seen how the electric field intensity due to a charge or a charge distribution can
be found using Coulomb's law or Gauss's law. Since a charge placed in the vicinity of another charge (or in other
words in the field of other charge) experiences a force, the movement of the charge represents energy exchange.
Electrostatic potential is related to the work done in carrying a charge from one point to the other in the presence
of an electric field.

Let us suppose that we wish to move a positive test charge By from a point P to another point Q as shown in the
Fig. 1.
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The force at any point along its path would cause the particle to accelerate and move it out of the region if
unconstrained. Since we are dealing with an electrostatic case, a force equal to the negative of that acting on the

charge is to be applied while by moves from P to Q. The work done by this external agent in moving the charge

by a distance dljs given by:

0
Fig 1: Movement of Test Charge in Electric Field

AW = -tgEd]

The negative sign accounts for the fact that work is done on the system by the external agent.
'Q — -
W= -bg ][ E-di
The potential difference between two points P and Q, Vpq, is defined as the work done per unit charge, i.e.
g
Vep = E =- l E-dl
rite;

It may be noted that in moving a charge from the initial point to the final point if the potential difference is
positive, there is a gain in potential energy in the movement, external agent performs the work against the field. If
the sign of the potential difference is negative, work is done by the field.

We will see that the electrostatic system is conservative in that no net energy is exchanged if the test charge is
moved about a closed path, i.e. returning to its initial position. Further, the potential difference between two
points in an electrostatic field is a point function; it is independent of the path taken. The potential difference is
measured in Joules/Coulomb which is referred to as Volts.

Let us consider a point charge Q as shown in the Fig. 2
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Fig 2: Electrostatic Potential calculation for a point charge

Further consider the two points A and B as shown in the Fig. 2.9. Considering the movement of a unit positive
test charge from B to A , we can write an expression for the potential difference as:

A ¥
Vag = [ B dl=- —czQ S, drd, = 2 l—l =, -V
'_,34;??‘6,:,:" 47, |1y Fa

It is customary to choose the potential to be zero at infinity. Thus potential at any point ( ra = r) due to a point
charge Q can be written as the amount of work done in bringing a unit positive charge from infinity to that point
(i.e.rg =0).

Let us now consider a situation where the point charge Q is not located at the origin as shown in Fig. 2.10.
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Fig 2.10: Electrostatic Potential due a Displaced Charge

The potential at a point P becomes

ey -2 1

4??5'0 |,r' -

So far we have considered the potential due to point charges only. As any other type of charge distribution can be
considered to be consisting of point charges, the same basic ideas now can be extended to other types of charge
distributionalso.

—  — —_—

Let us first consider N point charges Q;, Q,,.....Qn located at points with position vectors RS i The

V{;}= 1 ) + £ + iy

4, |r—r'1 lr—rg |r'—rN

- iy
Vi = LZ—F’L

4575, 1= |r -7,

Potential Field Due To Different Types of Charges:
For continuous charge distribution, we replace point charges Q, by corresponding charge elements el or

Pyds or Brdv depending on whether the charge distribution is linear, surface or a volume charge distribution
and the summation is replaced by an integral. With these modifications we can write:
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V) - — Z[pi'(’" )l
4??5'0 |,r"—,r':;é

For line charge,

1 o ds'

vir) =
47re,
For surface charge,

|—.-—.-

r=

~ 1 g
6 g

—+ —
|.?"_.?"x

For volume charge,

It may be noted here that the primed coordinates represent the source coordinates and the unprimed coordinates
represent field point.

Further, in our discussion so far we have used the reference or zero potential at infinity. If any other point is
chosen as reference, we can write:

¢

47,

y = +C

where C is a constant. In the same manner when potential is computed from a known electric field we
can write:

V=—I§-ai‘f+i?

Potential Gradient: The potential difference is however independent of the choice of reference then
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We have mentioned that electrostatic field is a conservative field; the work done in moving a charge from one
point to the other is independent of the path. Let us consider moving a charge from point P, to P, in one path and
then from point P, back to P; over a different path. If the work done on the two paths were different, a net
positive or negative amount of work would have been done when the body returns to its original position P;. In a
conservative field there is no mechanism for dissipating energy corresponding to any positive work neither any
source is present from which energy could be absorbed in the case of negative work. Hence the question of
different works in two paths is untenable; the work must have to be independent of path and depends on the
initial and final positions.

Since the potential difference is independent of the paths taken, Vg = - Vga , and over a closed path,
Vod TWan = cPE-ai'f =0

Applying Stokes's theorem, we can write:
EPE di = I(‘? xE)ds

from which it follows that for electrostatic field,

Any vector field 4 that satisfies * 4 =Ujs called an irrotational field.
From our definition of potential, we can write

A= s o FoaT
dx he dx

BVa +g£},+a{f (.:;f’m +dyd, +dzd )——E'df
dx y dz

VIV di=-Edl
from which we obtain,
E=-VV

From the foregoing discussions we observe that the electric field strength at any point is the negative of the

potential gradient at any point, negative sign shows that £is directed from higher to lower values of ¥ This
gives us another method of computing the electric field, i. e. if we know the potential function, the electric field

may be computed. We may note here that that one scalar function ¥ contain all the information that three
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components of £ carry, the same is possible because of the fact that three components of £ are interrelated by
the relation ¥ % & .

Dipole field due to Dipole :

An electric dipole consists of two point charges of equal magnitude but of opposite sign and separated by a small
distance.

As shown in figure 1, the dipole is formed by the two point charges Q and -Q separated by a distance d , the
charges being placed symmetrically about the origin. Let us consider a point P at a distance r, where we are
interested to find the field.

Fig 1: Electric Dipole

The potential at P due to the dipole can be written as:
yo 12 2]. ¢ [n-n
dmg, |n & 4z, | nn

o
r—rh=2%—cos8=dcosd
When r; and r,>>d, we can write and

13

.?"1 = .F"2 = .?".
Therefore,

- o du:-:;sé?
drg, r

We can write,
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Od cos 8 = 0da, a4,

—

The quantity F=pd is called the dipole moment of the electric dipole.

Hence the expression for the electric potential can now be written as:

yo d,

2
47,

It may be noted that while potential of an isolated charge varies with distance as 1/r that of an electric dipole

varies as 1/r* with distance. If the dipole is not centered at the origin, but the dipole center lies at 7', the
expression for the potential can be written as:

Beir—r

e

The electric field for the dipole centered at the origin can be computed as

E=-TF=- ﬁ@r +l£aﬂ
dr radd
_{d n::c:-s;i?' i+ Cf 511135‘ i,
2MEr 4,
e " D
= 2oos 83, +an 84
4??50.?"3 I: CI?. If-‘:l
= l_Dh o - "
= 3[2c055cxr+s1n5‘cxﬂj
4mE.r
P=0d

is the magnitude of the dipole moment. Once again we note that the electric field of electric dipole
varies as 1/r® where as that of a point charge varies as 1/r>.

Energy Density in Electrostatic Field:

Electrostatic Energy and Energy Density
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We have stated that the electric potential at a point in an electric field is the amount of work required to bring a
unit positive charge from infinity (reference of zero potential) to that point.

To determine the energy that is present in an assembly of charges, let us first determine the amount of work
required to assemble them. Let us consider a number of discrete charges Q1, Q,,....... , Qn are brought from infinity
to their present position one by one.

Since initially there is no field present, the amount of work done in bring Q; is zero. Q, is brought in the presence

of the field of Q,, the work done W;= Q,V,; where V,; is the potential at the location of Q, due to Q;. Proceeding
in this manner, we can write, the total work done

Wo=0,0, + (0 +FL,00+ (Ot + Panara )

Therefore,

2W = (Vi + Vg o FPLIC Y P t Ve T Vs 00

h
It

Here V,; represent voltage at the 1™ charge location due to J" charge. Therefore,

If instead of discrete charges, we now have a distribution of charges over a volume v then we can write,

W = % JVp,,.:fv

where ¥ is the volume charge density and V represents the potential function.

—

D

since, & =¥ £ e can write
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= % I(v : E)V.:fv

¥

Using the vector identity,

V.@D) =DV W'ﬁ, we can write

1 — =
W=EI(?.(VD}—D-?V) v

;?(Vﬂ) ds- _I(E- V) dv

¥

. . . . . b = .
In the expression 23 , for point charges, since V varies as 7 and D variesas # , the termV Dvaries
1 1

as ¥~ while the area varies as r’. Hence the integral term varies at least as # and the as surface becomes large
(i.e. ¥ =) the integral term tends to zero.

> §(vD)as 1 1

Thus the equation for W reduces to

1 _lam, 1 2
W = E!‘(D.‘?V EJ(DE v EJ(E.E Jav Jwedv
W, 1 A
2 , is called the energy density in the electrostatic field
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Illustrative Problems:

— 9z oa DdS V. DAV
1. Consider a vector function given by 4 EZP‘IP. Find SPS and IF

by Uipil,ngzi:l and DL 2m
Solution:

over the region defined

. Is the divergence theorem satisfied?

Given 2 =220a,

As shown in Figure 1 (next slide) , the closed cylindrical surface can be split into three surfaces S ; S ,and S 3

"¢ Das = Dds,+§, DdS, +§, Dds,

£
“

———= ds:

51
-
) d5a
Figure 1

Since the unit vector perpendicular to S ; & S ; are directed along #3 & - @3 the contribution from the 1 st and 3
rd integrals are zero.

$Das =I;’Ll[zzgp].[uzd¢gp] [Since o =1]

dax 1
= J; ‘fﬁf"l; 2zdz
2 1
= 2;??[22—] =27
2 o

o

D=2zpa, 5 only “#component.
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18 18
VD= ——(p2zp)=——[220°] =4
,GE-*,G[’G ) ,GE-*,G[ sz] :

L[ vpay =L1‘Ifz‘|j4zpdpd¢dz

1 ' 1
=L4zdzL d;ﬁLpd,G
2 T 2t
=[4i] XE}TX["G_]
2 0 2 ]
1
=2><2;’T><5=2;?T

EFS DS = IV‘?.DdV

Since , the divergence theorem is satisfied.

- ; - V% AdS
2. Given A= otosga,t o as Compute ¥ * 4 and .[S over the area S as shown in the figure 2

below.

W

Y
k-

Figure 2
Solution:

A= ,Gl::os.;zﬁap+p2 ;x

In cylindrical coordinate; the curl of a vector A is given by
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?xA=l

k)

IARE

d
de
ocos @

Ly
d
ag
0

ol l[—,a;,,,[zp)dz osin ¢
o

dS = pdoddas

FTXAAS = psin gd o dd

L[, xAdS = Llpd,aﬁ]”zsm ¢5d¢5=%
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Convection and Conduction Currents: -

e Current (in amperes) through a given area is the electric charge passing through the area per unit time

dQ

Current | =—
dt

e Current density is the amount of current flowing through a surface, A/m?, or the current through a unit
normal area at that point

e Current density

Al
AS

e Where

|=Lst

e Depending on how the current is produced, there are different types of current density

v Convection current density
v Conduction current density
v Displacement current density

- Current generated by a magnetic field

Convection current density

e Does not involve conductors and does not obey Ohm’s law

e Occurs when current flows through an insulating medium such as liquid, gas, or vacuum

-1———-.—-—-_> u
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AQ Ay
Al =—==p AS— = p ASv
At pv At IDV y

Where v is the velocity vector of the fluid

Y AS Py

Conduction current density

Current in a conductor
Obeys Ohm’s law

Consider a large number of free electrons travelling in a metal with mass (m), velocity (v), and scattering
time (time between electron collisions), T

F=—qe=""
T

The carrier density is determined by the number of electrons, n, with charge, e
p, =—he

Conduction current density can then be calculated as

Where o is the conductivity of the conductor. This relationship between current concentration and
electric field is known as Ohm’s Law.

Continuity Equation and Relaxation Time: -

IARE

Due to the principle of charge conservation, the time rate of decrease of charge within a given volume
must be equal to the net outward current flow through the closed surface of the volume.

Thus, the current coming out of the closed surface is

aQ,

ly = [ 3.5 =- -

Where Qin is the total charge enclosed by the closed surface. Invoking divergence theorem
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N] ds = LV.Jdv =
S

But,

dQ, d dp
——N = — | pdv=—| —Ldv
dt dt A J; dt

From the above three equations, we can write as

J,v-3dv=-] Leav

v.y=2P

v

ot
which is called the continuity of current equation.

The continuity equation is derived from the principle of conservation of charge and essentially states that
Py _

there can be no accumulation of charge at any point. For steady currents, ot and hence V.J =0

showing that the total charge leaving a volume is the same as the total charge entering it.

Relaxation time

IARE

Utilizing the continuity equation and material properties such as permittivity and conductivity, one can
derive a time constant (in seconds) by which to measure the relaxation time associated with the decay of
charge from the point at which it was introduced within a material to the surface of that material.

We start with Ohm’s and Gauss’ Laws

J=cE
VE=2
&
VI=VoE=P__ %P
& ot
O-_p\’+% 0
& ot
op, _ oot
Py £
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P, IS the initial charge density. The relaxation time(T,) is the time it takes a charge placed in the interior

of a material to drop by e™ (=36.8%) of its initial value.
e For good conductors T, is approx. 2*10™ s,

e For good insulators T, can be days
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Poisson’s and Laplace’s Equations: -

We have determined the electric field E in a region using Coulomb’s law or Gauss law when the charge

distribution is specified in the region or using the relation E= —VV when the potential V is specified

throughout the region.

However, in practical cases, neither the charge distribution nor the potential distribution is specified only

at some boundaries. These types of problems are known as electrostatic boundary value problems.

For these type of problems, the field and the potential V are determined by using Poisson’s equation or

Laplace’s equation.

Laplace’s equation is the special case of Poisson’s equation.

For the Linear materials Poisson’s and Laplace’s equation can be easily derived from Gauss’s equation

V-D= Py
But,
D=¢E
Putting the value of D in Gauss Law,
V.-eE=p,
From homogeneous medium for which ¢ is a constant, we write
v.E-~
£
Also, E=-VV
Then the previous equation becomes,
V.- =
£
or
vy =P
£

This equation is known as Poisson’s equation which state that the potential distribution in a region

depend on the local charge distribution.

In many boundary value problems, the charge distribution is involved on the surface of the conductor for
which the free volume charge density is zero, i.e., p, ¢=0. In that case, Poisson’s equation reduces to,

V& =0

This equation is known as Laplace’s equation.

Laplace Equation in Three Coordinate System

In Cartesian coordinates:

o oV oV
+—+
aXZ ay2 822

VA =

In cylindrical coordinates

IARE
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15( avj 1oV NV _,

vy ==, N 2oV OV
pop\"op) pop o
In spherical coordinates:
Vz\/:izE(rZﬂJ+ 21_ i(sin¢9ﬁj+ 21_ ﬂ:o
reor or resiné oo 00 ) r°sin@ o¢

Application of Laplace’s and Poisson’s Equation
e Using Laplace or Poisson’s equation we can obtain:

e Potential at any point in between two surfaces when potential at two surfaces are given.
e We can also obtain capacitance between these two surfaces.

General Procedure for solving Laplace or Poisson Equation:

e Solve Laplace or Poisson equations for V by (a) direct substitution for single variable or (b) by method of
separation of variables for more than one variable. The solution at this point is not unique because of the
integration constants

e Apply the boundary conditions to determine the integration constants giving a unique solution for V.
Having found V, find E=-VV and D=¢E.

o If desired find the charge Q induced on a conductor surface using Q = jdeS =¢Eand p, = D, where

D, is the component of D normal to the conductor. If necessary the capacitance between two conductors

Q

can be found using C = —=.
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Capacitance: -

IARE

Capacitance is an intuitive characterization of a capacitor. It tells you, how much charge a capacitor can
hold for a given voltage.

The property of a capacitor to ‘store electricity’ may be called its capacitance.

A capacitor essentially consists of two conducting surfaces separated by a layer of an insulating medium
called dielectric. The conducting surfaces may be in the form of either circular (or rectangular) plates or
be of spherical or cylindrical shape.

Generally speaking, to have a capacitor we must have two (or more) conductors carrying equal but
opposite charges.

Figure 1. Charge carriers of conductor with opposite polarity.

This implies that all the flux lines leaving one conductor must necessarily terminate at the surface of the
other conductor. The conductors are sometimes referred to as the plates of the capacitor. The plates may
be separated by free space or a dielectric.

Suppose we give Q coulomb of charge to one of the two plates of capacitor, the potential difference V is
established between the two plates, then its capacitance is

C:Q

V

ab
The capacitance C is a physical property of the capacitor and in measured in farads (F).

The charge Q on the surface of the plate and the potential difference V,, between the plates can be
represented in terms of electric field

V=V, -V, = [E.dl

Therefore, the capacitance C can be written as

CZE:NE' ds

Va -TE.dI

From the above expression, Capacitance can be obtained for any given two-conductor capacitance by
following either of these methods:

Assuming Q and determining V in terms of Q (involving Gauss's law)

Assuming V and determining Q in terms of V (involving solving Laplace's equation)
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e In this lecture we will discuss the former method and capacitance can be determined using later method
in the following lectures.
e The following steps used for finding the capacitance by using former method.

v Choose a suitable coordinate system.

v Let the two conducting plates carry charges + Q and — Q.

v Determine E using Coulomb's or Gauss's law and find V from '[E. dl.
v Finally, obtain C from C :\%

¢ Now, we will apply this procedure to determine the capacitance of some important two-conductor
configurations.

Parallel-Plate Capacitor: -

e A parallel-plate capacitor consisting of two plates each of area A m?separated by a thickness d meters of
a medium of relative permittivity €, is shown in Figure 2. Assume the charge of + Q coulomb and - Q
coulomb is distributed on top and bottom plates, respectively. So that the charge density is given by

Q

ps:K

Metal plate

+ + 4+ + +
Area, Ainm?

+ 4+ + +
+ + +
Electric field TV (volts)
—_
Distance, d -
in metres / L

Metal pI ate

Figure 2. Parallel plate conductors.
e If the space between the plates is filled with a homogeneous dielectric with permittivity &, and we ignore
flux fringing at the edges of the plates, then the flux passing through the medium is ¥ =Q coulomb and

flux density is given by the medium is
= [D,dA=Q= p,.dA
S S

D, = ps

e But, we know

D=c¢E
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e From the above relation, we can write the charge density in terms of electric field as

E-£s
g
e  Where, p, = % then the above equation modifies to
. Q
Ac
e Also, from the relation between electric field and electric potential, we write
d
V= j E.dl = Ed
0
vy
Ac

e Thus, the parallel plate capacitor C :8 can be written as

Qg
As
e This formula offers a means of measuring the dielectric constant ¢, of a given dielectric. By measuring
the capacitance C of a parallel-plate capacitor with the space between the plates filled with the dielectric
and the capacitance Co with air between the plates, we find ¢, from

c=-- -~
d

Coaxial Capacitor: -

e This is essentially a coaxial cable or coaxial cylindrical capacitor. Consider length | of two coaxial
conductors of inner radius a and outer radius b (b > a) as shown in Figure 3.

Gaussian
surface

Figure 3: Cylindrical conductors.
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Let the space between the conductors be filled with a homogeneous dielectric with permittivity €. We
assume that inner and outer conductors, respectively, carry +Q and -Q uniformly distributed on them. By
applying Gauss's law to an arbitrary Gaussian cylindrical surface of radius p (a < p < b), we obtain

Q=V =ND.dA=1K}rE.dA

Q=PFEdA=¢E[ pdg] d
Q =;E(27Zpl)

Neglecting flux fringing at the cylinder ends, the potential difference between the inner and outer
conductors can be written as

V:—fE.dr:— Q jad_p

2rel v p
2 [In(p)];
Y =_2Sg| LGN

Thus, the capacitance of a coaxial cylinder is given by

C Q Q 27el

v —Q In(b] In (bj
27el a a
‘>/ Q;f -Q

Gaussian
surface

Figure 4. Spherical conductor
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Spherical Capacitor:-

e This is the case of two concentric spherical conductors. Consider the inner sphere of radius a and outer
sphere of radius b(b> a) separated by a dielectric medium with permittivity € as shown in Figure 4.

e We assume charges +Q and -Q on the inner and outer spheres, respectively. By applying Gauss's law to
an arbitrary Gaussian spherical surface of radius r(a<r<b), we obtain

Q=V =1Rp.dA=NsE.dA

2z T,
Q=}§pE.dA=gEr2L dg|[ " sinode
Q=cE(4rr?)

e Therefore,

=0

Arer?

e The potential difference between the inner and outer sphere can be written as

V=—[Ed= —ij:%

Are

e Thus, the capacitance of a spherical capacitor is given by

c—9— Q _ Adre
‘v‘Q(l_lj‘l_l
dre\a b a b

e By letting b> o, C —4zea which is the capacitance of a spherical capacitor whose outer plate is

infinitely large. Such is the case of a spherical conductor at a large distance from other conducting
bodies—the isolated sphere.
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Poisson’s and Laplace’s Equations: -

e The method of images, introduced by Lord Kelvin in 1848, is commonly used to determine V, E, D, and
ps due to charges in the presence of conductors.

e Method of images replaces the original boundary by an appropriate image charges. These equivalent
charges are at the image positions of the original charges, and are called image charges, and this method
is called the method of images

Figure 1. Point charge and its Image charge.

¢ By this method, we avoid solving Poisson's or Laplace's equation but rather utilize the fact that a
conducting surface is an equipotential.

e Although the method does not apply to all electrostatic problems, it can reduce a formidable problem to a
simple one.

e In applying the image method, two conditions must always be satisfied

e The image charge(s) must be located in the conducting region.

e The image charge(s) must be located such that on the conducting surface(s) the potential is zero or constant.

e The first condition is necessary to satisfy Poisson's equation, and the second condition ensures that the
boundary conditions are satisfied. Let us now apply the image theory to two specific problems.

A Point Charge Above a Grounded Conducting Plane: -

o Consider a point charge Q placed at a distance d from a perfect conducting plane of infinite extent as in

Figure.

Q(0,0,d)

Grounded
plane conductor

- i
S Q,

Figure 2. Point charge at a distance d on z-axis

nd

e The electric field at point P (X, y, z) is given by
E=E +E
__QR, —QR_
CA4me,R.} Amg R’

e The distance vectors R, and R. are given by
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R, =(xY,2)—(0,0,d)=(x,y,z—d)
_=(%y,2)—(0,0,—d)=(x,y,z+d)
So, the electric field becomes

Q | xa,+ya, +(z-d)a, xa,+ya, +(z+d)a,

3 3
[xz +y2+(z—d)2]2 [x2+y2+(z+d)2}2
It should be noted that when z = 0, E has only the z-component, confirming that E is normal to the
conducting surface.

E=

The potential at P is easily obtained from using V = —J.j E.dl

Thus
V=V, +V.
B
dreyR,  AngyR_

v-2 - L l 1
472'80 [X2+y2+(z_d)2:|§ [X2+y2+(z+d)2]§

The surface charge density of the induced charge can also be obtained from E as

pS = Dn :gOE|Z:0

~Qd 1
[xz +y2+d2]2

The total induced charge on the conducting plane is

Q=[pds =" [ | ¥
4 [xz +y2i+ dZJE
By changing variables, x> +y* = p*  dxdy = pd pd¢
—Qd J'ZHI d¢dp
27r50 [,02 +d2]§

Above integration will give

Qi = _Q
as expected, because all flux lines terminating on the conductor would have terminated on the image
charge if the conductor were absent.
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A Line Charge above a Grounded Conducting Plane: -
e Consider an infinite charge with density p, C/m located at a distance d from the grounded conducting

plane z = 0. The infinite line charge p, may be assumed to be at x = 0, z = d and the image charge

density - p, at x =0, z = -d so that the two are parallel to the y-axis.
e The electric field at point P (X, y, 2) is given by
E=E +E

__ P P
drgyp, Ay p,

e The distance vectors p, and p, are given by
p=(%Yy,2)—(0,y,d)=(x,0,z-d)
P, =(xYy,2)-(0,y,-d)=(x,02z+d)
e S0, the electric field becomes
P [xaX +(z—d)a, xa, +(z+d)az}

C27g,| X+(z-d)?  xP+(z+d)?
e It should be noted that when z = 0, E has only the y-component, confirming that E is normal to the
conducting surface.

e The potential at P is easily obtained from using V = —f E.dl
e Thus
V=V +V

\Y :—ilnpl— A Inp,
27, 27,

V=Pl A
27e, P,

e Substituting p, =|p;|and p, =|p,| , the above equation modifies to

v__A ln{x%(z—df}z

21, | X2 +(z+d)?

e The surface charge density of the induced charge can also be obtained from E as

) ps:DnzgoE

z=0
__pd
7(x* +d?)

e The total induced charge on the conducting plane (z=0) is

— __pdz  dx
pi—IdeX— 7 J'2’2’X2+d2

e By letting, Xx=d tan «, the above equation becomes
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e Above integration will give

as expected.
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UNIT — 11
MAGNETOSTATICS

Magnetic Scalar and Vector Potentials:

In studying electric field problems, we introduced the concept of electric potential that simplified the computation
of electric fields for certain types of problems. In the same manner let us relate the magnetic field intensity to a
scalar magnetic potential and write:

VXH =T )
Therefore, Kl [_v}r’“j R 3
But using vector identity, K [TV} =0 we find that H=-VV, is valid only where J =0 Thus the scalar

magnetic potential is defined only in the region where J =0 Moreover, Vy in general is not a single valued
function of position.

This point can be illustrated as follows. Let us consider the cross section of a coaxial line as shown in fig 1.

In the region 2°° {b, J =0 and 270

—
"
= .
Y
]
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Fig. 1: Cross Section of a Coaxial Line

If V,, is the magnetic potential then,

ar
_‘g{,;=_l bl
o dg
_ L
2mo
!
S = — it
" 2??'@
0 ALEES
If we set V., = 0 at %= 0then c=0 and 2
. !
CAtg=g Vs —d@%
2T

We observe that as we make a complete lap around the current carrying conductor , we reach % again but V,, this
time becomes

L
e ™ EJ-‘T[% +2m)

We observe that value of V,, keeps changing as we complete additional laps to pass through the same point. We

= _ Edi=0
introduced V., analogous to electostatic potential V. But for static electric fields, Vr & =0ang E]S ,

—

o =+ Hedl=1
whereas for steady magnetic field V= Owherever = 0put T even if J = E:'along the path of
integration.

We now introduce the vector magnetic potential which can be used in regions where current density may be zero
or nonzero and the same can be easily extended to time varying cases. The use of vector magnetic potential
provides elegant ways of solving EM field problems.

= ~ v (wxd|=0 = —
Since ¥-& = Uand we have the vector identity that for any vector A , ( ) , We can write B=WxA

Here, the vector field 4 is called the vector magnetic potential. Its SI unit is Wh/m. Thus if can find Aofa given

current distribution, 5 can be found from ﬂthrough a curl operation.
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We have introduced the vector function <4 and related its curl to & . A vector function is defined fully in terms

of its curl as well as divergence. The choice of V.4 is made as follows.

TR RA= ;NXE =,uff

........................................... 4)

By using vector identity, VXVx4 =?WH} o S (5)

VOB =T A=4T (6)
Great deal of simplification can be_ﬁ achieved if we choose VA= 0,
Putting VA= 0 we get Vid=-ud which is vector poisson equation.
In Cartesian coordinates, the above equation can be written in terms of the components as

= (7a)

i (7b)

R e (7¢)

for which the solution is

V=LJE@', R=|r-r]
47 o R

— v
WA= e —
In case of time varying fields we shall see that df | which is known as Lorentz condition, V being the

electric potential. Here we are dealing with static magnetic field, so V.A4=0

By comparison, we can write the solution for Ax as

o [ F
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Computing similar solutions for other two components of the vector potential, the vector potential can be written

Pl i.a!"u'
4 R

This equation enables us to find the vector potential at a given point because of a volume current density J
Similarly for line or surface current density we can write

ﬁ=i2[£df'
L 3 (12)
A=-H Eds'

dad B

respectively. ... (13)

The magnetic flux Wthrough a given area S is given by

W= lgd;
............................................. (14)
Substituting & =V »*A
= l[vxﬁ.af;: =c£ﬁdf
......................................... (15)

Vector potential thus have the physical significance that its integral around any closed path is equal to the
magnetic flux passing through that path.

Forces due to Magnetic Fields, Ampere’s Force Law:

Magnetic field due to a solenoid and a toroid:

A solenoid is essentially a long current loop with closely packed circular turns. The length of the solenoid is very
large compared to the diameter of the turns. In diagram shown below, current enters the page from the top and
goes behing the page at the bottom. It leads to addition of the magnetic field due to the turns inside the solenoid
and cancellation outside.

‘L \ 4 VL
YvY
N
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The magnetic field can be calculated by Ampere’s law and it gives,

Field inside = pugnl, where n is the number of turns per unit length of the solenoid. The field outside thec
solenoid is zero. The same result can be obtained by use of Biot Savart’s law, which is left as an exercise.

A toroid looks like a doughnut with a central hole and current carrying wires wound over its core. The core is
usually made of iron or some such magnetic metal.

Take a circular loop of radius r concentric with the toroid. The amount of current enclosed by the loop is NI
where N is the total number of turns and I is the current in each turn. By Ampere’s law, the field is given by
2nRB = pgNI
UoNI .
0
2r

B =

where in the last step we have explicitly shown that the field is cuircumferential. The field outside the toroid is
zero because the Amperian loop would enclose zero current as current both goes in and comes out through the
loop. Likewise, inside the hole the field would also be zero as it would not thread any current. Note that unlike in
the case of a solenoid, the field is not uniform.

Force Between Current Loops

We have seen that a magnetic field exerts a force on a moving charge. Since a current loop contains moving
charge, it follows that such a loop would experience a force in a magnetic field. Further, since the magnetic field
in which a loop experiences a force must have its origin in another current source, two
current carrying circuits would exert force on each other.

Consider two such circuits, numbered 1 and 2.

0 _ di,
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Consider the field due to the current element Id_li in circuit 1. At a position 7, — 77, the field is given by Biot
Savart’s law,

Mo d—h)x(r_z)—r_l))

dB, =
Y T PIE

The net magnetic field at this point is given by summing over the contribution due to all elemental current
comprising the circuit. Since the circuit 2 contains moving charges, the element Id_lz) experiences a force due to

this field which is given by Izd_l; X dBT. By summing over all the current elements in circuit 2, we get the force
exerted by circuit 1 on circuit 2 is given by

5 dly x (dl; x (75 — 7))
Fua = e § § =

This is a very clumsy expression and can be evaluated only in cases of simple geometry.

By symmetry it follows that the force on circuit 1 due to current in circuit 2 is given by

5 dly x (dl; x (77 = 73))
F21:_I112§f |r_2’—r_1)|3

Inductances and Magnetic Energy:

Inductance and Inductor:

Resistance, capacitance and inductance are the three familiar parameters from circuit theory. We have already
discussed about the parameters resistance and capacitance in the earlier chapters. In this section, we discuss about
the parameter inductance. Before we start our discussion, let us first introduce the concept of flux linkage. If in a

coil with N closely wound turns around where a current | produces a flux ¢ and this flux links or encircles each

of the N turns, the flux linkage # is defined as h= N';é. In a linear medium, where the flux is proportional to the
current, we define the self inductance L as the ratio of the total flux linkage to the current which they link.

To further illustrate the concept of inductance, let us consider two closed loops C; and C, as shown in the figure
1, S; and S, are respectively the areas of C; and C, .

IARE Electromagnetic Theory and Transmission Lines Page | 56



Fig 1

If a current I, flows in C, , the magnetic flux B; will be created part of which will be linked to C, as shown in
Figure 4.10.

fly = .I‘Sg BrdSs

In a linear medium, %a is proportional to | ;. Therefore, we can write
¢'ri:4 = ’I'lﬂfl

where L;, is the mutual inductance. For a more general case, if C, has N, turns then

hoy = My
and Mg =Lpd)
M
Ly = —
or 4

i.e., the mutual inductance can be defined as the ratio of the total flux linkage of the second circuit to the current
flowing in the first circuit.

As we have already stated, the magnetic flux produced in C; gets linked to itself and if C; has N; turns then

Ay = Nlﬂl, where i is the flux linkage per turn.

Therefore, self inductance

llIlill

Lu[c::-r.-f.as defined Earliarj _ 4

As some of the flux produced by I; links only to C; & not C.,.
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Ay =Ny > Mg, = A,

dh
Lu: ,;ﬂn J?—-'11:
1 and

dl,

Further in general, in a linear medium,

Inductance per unit length of a very long solenoid:

Let us consider a solenoid having n turns/unit length and carrying a current I. The solenoid is air cored.

JAYAYATATATARIR
ViViViViViVaRE

Fig 2: A long current carrying solenoid

The magnetic flux density inside such a long solenoid can be calculated as
E= Hond s

where the magnetic field is along the axis of the solenoid.

If S is the area of cross section of the solenoid then
=B85 = pguly

The flux linkage per unit length of the solenoid
h=ng= wn’ IS

~- The inductance per unit length of the solenoid

L =% = S
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Inductance of an N turn toroid carrying a filamentary current I.

Fig 3: N turn toroid carrying filamentary current |.

Solution: Magnetic flux density inside the toroid is given by

Let the inner radius is 'a' and outer radius is 'b". Let the cross section area 'S' is small compared to the mean radius

a+h
S| = 5
of the toroid

Then total flux

= N*“_fg
ira

and flux linkage

_ uNIS
Prire

A

The inductance

s A pdS
I Zmy

Energy stored in Magnetic Field:
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So far we have discussed the inductance in static forms. In earlier chapter we discussed the fact that work is
required to be expended to assemble a group of charges and this work is stated as electric energy. In the same
manner energy needs to be expended in sending currents through coils and it is stored as magnetic energy. Let us
consider a scenario where we consider a coil in which the current is increased from 0 to a value I. As mentioned
earlier, the self inductance of a coil in general can be written as

[ G0 ydd
i i
o Ldi=Ndg

If we consider a time varying scenario,

&y
di

dg
We will later see that ¢ is an induced voltage.
i

Sv=L—
dt js the voltage drop that appears across the coil and thus voltage opposes the change of current.

Therefore in order to maintain the increase of current, the electric source must do an work against this induced
voltage.

AW =vidt
= Lidi

W:Fhﬁ:lﬂg
1}

& 2 (Joule)

which is the energy stored in the magnetic circuit.
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Maxwell’s Equations: For Steady Fields in Point Form and Integral Form:

In our study of static fields so far, we have observed that static electric fields are produced by electric charges,
static magnetic fields are produced by charges in motion or by steady current. Further, static electric field is a
conservative field and has no curl, the static magnetic field is continuous and its divergence is zero. The
fundamental relationships for static electric fields among the field quantities can be summarized as:

VXE=0 (5.1a)
ViD=g (5.1b)
For a linear and isotropic medium,
D=¢ck (5.1¢)

Similarly for the magnetostatic case

V=0 (5.2a)
VRHA=J (5.2b)
B=ud (5.2¢)

It can be seen that for static case, the electric field vectors & and £’and magnetic field vectors & and 7 form
separate pairs.

In this chapter we will consider the time varying scenario. In the time varying case we will observe that a
changing magnetic field will produce a changing electric field and vice versa.

We begin our discussion with Faraday's Law of electromagnetic induction and then present the Maxwell's
equations which form the foundation for the electromagnetic theory.
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Faraday's Law of electromagnetic Induction:

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting loop when the
magnetic flux linking the loop changed. In terms of fields, we can say that a time varying magnetic field produces
an electromotive force (emf) which causes a current in a closed circuit. The guantitative relation between the
induced emf (the voltage that arises from conductors moving in a magnetic field or from changing magnetic
fields) and the rate of change of flux linkage developed based on experimental observation is known as Faraday's
law. Mathematically, the induced emf can be written as

_4¢
Emf= & Volts (1)

where ¢ is the flux linkage over the closed path.
d
Anon zero @ may result due to any of the following:
(a) time changing flux linkage a stationary closed path.
(b) relative motion between a steady flux a closed path.
(c) a combination of the above two cases.
The negative sign in equation (1) was introduced by Lenz in order to comply with the polarity of the induced
emf. The negative sign implies that the induced emf will cause a current flow in the closed loop in such a
direction so as to oppose the change in the linking magnetic flux which produces it. (It may be noted that as far as

the induced emf is concerned, the closed path forming a loop does not necessarily have to be conductive).

If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic flux linking the coil
induces an emf in each turn of the coil and total emf is the sum of the induced emfs of the individual turns, i.e.,

_yee
Emf = dt  Volts (2)

By defining the total flux linkage as

A=Np ©
The emf can be written as
B dA
Emf = ot (4)

IARE Electromagnetic Theory and Transmission Lines Page | 62



Continuing with equation (1), over a closed contour 'C' we can write

?Eﬁ?
Emf=J¢ (5)

where £ is the induced electric field on the conductor to sustain the current.

Further, total flux enclosed by the contour 'C ' is given by

é= [Bds
l ] (6)

Where S is the surface for which 'C' is the contour.

From (5) and using (6) in (1) we can write

§.Bdl=-2q Bas

)
By applying stokes theorem
We can write
ﬁ?><}§==-—§£i
ot (8)

which is the Faraday's law in the point form

¢

Transformer EMF: We have said that non zero @£ can be produced in a several ways. One particular case is
when a time varying flux linking a stationary closed path induces an emf. The emf induced in a stationary closed
path by a time varying magnetic field is called a transformer emf .

As shown in figure 1, a transformer consists of two or more numbers of coils coupled magnetically through a
common core. Let us consider an ideal transformer whose winding has zero resistance, the core having infinite

permittivity and magnetic losses are zero.
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I m—
N 4| ez (1)
e ——
- \
Primary
winding Secondary
winding

Core

Fig 1: Transformer with secondary open

These assumptions ensure that the magnetization current under no load condition is vanishingly small and can be
ignored. Further, all time varying flux produced by the primary winding will follow the magnetic path inside the
core and link to the secondary coil without any leakage. If N; and N, are the number of turns in the primary and
the secondary windings respectively, the induced emfs are

g =M @

i (9a)
ey = I, @

et (9b)

(The polarities are marked, hence negative sign is omitted. The induced emf is +ve at the dotted end of the
winding.)
a_Mm

'Eﬂ Nﬂ (10)

i.e., the ratio of the induced emfs in primary and secondary is equal to the ratio of their turns. Under ideal
condition, the induced emf in either winding is equal to their voltage rating.

n_Mm
v, M (11)

where 'a' is the transformation ratio. When the secondary winding is connected to a load, the current flows in the
secondary, which produces a flux opposing the original flux. The net flux in the core decreases and induced emf
will tend to decrease from the no load value. This causes the primary current to increase to nullify the decrease in
the flux and induced emf. The current continues to increase till the flux in the core and the induced emfs are
restored to the no load values. Thus the source supplies power to the primary winding and the secondary winding
delivers the power to the load. Equating the powers
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W=y

3:4_""1_'5'_1_-3"';'1

HBovy 8y M
Further,

i, N, —i, M, = 0

(12)

(13)

(14)

i.e., the net magnetomotive force (mmf) needed to excite the transformer is zero under ideal condition.

Motional EMF: Let us consider a conductor moving in a steady magnetic field as shown in the fig 2.

= Os

Fig 2

—

If a charge Q moves in a magnetic field £ | it experiences a force

(15)

This force will cause the electrons in the conductor to drift towards one end and leave the other end positively
charged, thus creating a field and charge separation continuous until electric and magnetic forces balance and an
equilibrium is reached very quickly, the net force on the moving conductor is zero.

Fo. o
—=yx B

¢ can be interpreted as an induced electric field which is called the motional electric field

Em =yx B (16)

| | o ¢ vxBdl

If the moving conductor is a part of the closed circuit C, the generated emf around the circuit is J« :
This emf is called the motional emf.
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UNIT -1
UNIFORM PLANE WAVES

Reflection/ Refraction of Plane waves

A plane wave is a wave of constant frequency and amplitude with wavefronts that are an infinitely long straight
line. Plane waves travel in the direction perpendicular to the wavefronts. Although they are a mathematical
abstraction, many physical waves approximate plane waves far from their source. Consider the figure
given below which shows incident and reflected wave fronts when a plane wave fronts travels towards a plane
reflecting surface.

From the figure we define Reflection and Refraction.

Reflection:
It is the change in direction of a wavefront at an interface between two different media so that the wave front
returns into the medium from which it originated.

The laws of reflections are verified using Huygens’s Principle. The incident ray, the reflected ray and normal to
the reflecting surface lie in one plane which is perpendicular to the reflecting surface. The angle of incidence
equals angle of reflection.

|3 p——

reflected wave

transmitted wave

medium 1 medium 2

incident wave

Refraction:

When a wave travels from one medium to another at a specific angle other than 90° or 0°, the line of the travel of
the wave changes at the interface because of a change in wave velocity. This phenomenon is called refraction.

Refraction is the bending of waves when passes through a different medium.Reflection is the process in which
light waves falls on a surface and bounces back.

In refraction, the sine of angle between the incident ray and normal maintains a constant ratio with the sine of
angle of refracted ray and normal. Snell’s Law of refraction is proved using Huygens’s principle

The incident ray, the refracted ray and the normal to the refracting surface lie in the same plane.

Snell’s Laws
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Law of reflection
Law of refraction

v

: Normal incidence
Incident = Angl:e of zero Reflected
raypath raypath
Angle
of incidence
(1) Angle

of reflection

Refractive index = n,

Medium 1
=<2/ Medium 2
Angle / A Refractive index = ns
of refraction Refracted
i wave

Snell's law:
Ny sini=nssinr

Law of reflection

According to this law, sine of angle of incidence is equal to the sine of angle of reflection.

or

Law of refraction

According to this law,

sin@; = sinf,

n,sinf; = n,sinb,

sinf; nq

sinf;
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where ‘n’ is the refractive index and it is defined as the ratio of speed of light in free space to the speed of light

. . . (4
in medium.i.en = -
and

ng=— Ny, =—

n_ v

n; %_vl

Slnet nq (%]

Therefore - =—=—
sin; n, v
Finally we write,
sinf, n; v, 1, &
sing; n, v, n &

When a plane wave propagating in a homogeneous medium encounters an interface with a different medium, a
portion of the wave is reflected from the interface while the remainder of the wave is transmitted. The reflected
and transmitted waves can be determined by enforcing the fundamental electromagnetic field boundary
conditions at the media interface.

The proportion of reflection and transmission depends on the constitutive parameters of the media such as n, €, p,
and o.There are two cases of the incidence by which the uniform plane wave is incident at the boundary.

I.  Normal Incidence
Il.  Obligue Incidence

Normal Incidence

When a uniform plane wave incidences normally to the boundary between the two media, it is known as
normal incidence.

Obligue Incidence

When a uniform plane wave incidences obliquely to the boundary between the two media, it is known as
oblique incidence.

Reflection of a Plane Wave at Normal Incidence - Dielectric Boundary :
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In case of plane wave in air incident normally upon the surface of conductor the wave is entirely reflected. Since
there can be no loss within a perfect conductor ,none of the energy is observed. As a result amplitude of E and H
in the reflected and incident are same and only difference is in the direction of power flow.
The expression of incident wave

Ee?™
The expression for reflected wave

Ee™
E. must be determined from boundary conditions tangential component of E must be continuous across the
boundary and E is zero within the conductor. The tangential component of E just outside the conductor must also
be zero. The amplitude of reflected electric field strength is equal to that of the of the incident electric field
strength, but its phase has been reversed on reflection.

E.=-E

Perfect conductor
8—’3
N

AL RRRRY

N

A

The resultant electric field strength at any point a distance —x from the x=0 plane will be the sum of field
strengths of the incident and reflected waves at that point and will be given by

Er(x)= Ee?™+ E.e™
=E(e" )
=-2j E;sinPx
Er(x,t)=Re{-2jEsinpx ¢}
If E;is chosen to be real
E+(x,t)=2Essinpx sinot
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The incident and reflected waves combine to produce a standing wave. The magnitude of electric field varies
sinusoidally with distance from the reflecting plane.it has a maximum value of twice the electric field strength of
the incident wave at distance from the surface that are odd multiples of a quarter wavelength

The magnetic field strength must be reflected without reversal of phase. If both magnetic and electric field
strengths were reversed, there would be no reversal of direction of energy propagation. The amplitude of
reflected electric field strength is equal to that of the of the incident electric field strength, but its phase has been
same on reflection

Hr(X)= Hie?P+ H, e
= Hi(e™+ &™)
=2H;cospx
If H;is chosen to be real
“Hr(x,t)=Re{H(x)e""}
=2HjcosPx cosmt
The incident and reflected waves combine to produce a standing wave. The magnitude of magnetic field varies
sinusoidally with distance from the reflecting plane.it has a maximum value at the surface of the conductor and at
multiples of a half wavelength from the surface where as the zero points occur at odd multiples of a quarter
wavelength from the surface. From the boundary conditions for H it follows that there must be a surface current

of J;amperes per meter such that Js=Ht(at x=0)
That ET and HT are 90 degrees apart in time phase ,replacing —j by its equivalent e and combining this with

e term to give 81 Low o
Er(x,tH)=Re{2E;sinfx ¢’ ¢}

=2EsinBx cos(wt-m/2)
Like Hr=2Hcospx cosmt shows that ET and HT differ in time phase by x /2 radians
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Reflection of a Plane Wave Normal Incidence - Conducting Boundary:

Consider a uniform plane wave striking interface between perfect dielectric and perfect conductor.

material (1) | material (2)
H ;
P
: perfect
E, conductor
E;
H"-\_
& - X
H i .
"
E1,U1,01=0| o= -

For medium 2 the intrinsic impedance is 0. i.e n, = 0.
Therefore, the transmission coefficient is given by

_2n2
T=—"=
Ny + 1M1

And the reflection coefficient is given by

=—771+772= B
Ny +12

From the values of transmission coefficient and reflection coefficient, it is clear that the wave is totally reflected
and there is no transmitted wave in medium 2.

Since magnitude of reflection coefficient is equal to one, the entire power is reflected from the conducting
boundary.

This case is exactly identical to the Transmission Line with the short circuit load.

We therefore have two waves with equal amplitude travelling in opposite directions. Therefore in dielectric
medium, we get Standing waves. The electric field becomes zero in the planes which are parallel to the conducting
boundary and are located at distances which are multiple of A/2.
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Standing Waves

Standing wave is also known as stationary wave.

It occurs when incident wave combines with reflected wave.

Two sine waves with the same Amplitude, Wavelength and Frequency travelling in opposite directions will
interfere and produce a combined wave . The waveform of the combined waves, on average has No Net
Propagation of Energy and is known as standing wave.

Direction of red Way (Direction of blue wave

to:%\/\/\
NI S/ S/ S/
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In the above figure red wave represents incident wave, and blue wave represents reflected wave.

A standing wave pattern is an interference phenomenon. It is formed as the result of the perfectly timed
interference of two waves passing through the same medium. A standing wave pattern is not actually a wave;
rather it is the pattern resulting from the presence of two waves (sometimes more) of the same frequency with
different directions of travel within the same medium.

Standing wave is denoted by E;,
It is given by

Eis = E;+E,
Problem:

A uniform plane wave in air is normally incident on an infinitely thick slab. If the refractive index of glass slab is
1.5, then find the percentage of the incident power that is reflected from the air — glass interface.

Sol.
Medium 1 Medium 2
ny n, =1.5
H1= Ko H2 = Ko
€1=6€p €2=€0E;

If mny,n, arerefractive indices and v, ,v, are the velocities

n v, Ve 1

no B V4 B VH2€2 B 1.5
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Reflection of a Plane Wave Oblique Incidence - Conducting Boundary (Perpendicular Polarization)

We have discussed the case of normal incidence where electromagnetic wave traveling in a lossless medium
impinges normally at the interface of a second medium. In this section we shall consider the case of oblique
incidence. As before, we consider two cases

. When the second medium is a perfect conductor.
. When the second medium is a perfect dielectric.

A plane incidence is defined as the plane containing the vector indicating the direction of propagation of the
incident wave and normal to the interface. We study two specific cases when the incident electric field Ei is
perpendicular to the plane of incidence (perpendicular polarization) and Ei is parallel to the plane of incidence
(parallel polarization). For a general case, the incident wave may have arbitrary polarization but the same can be
expressed as a linear combination of these two individual cases.

Oblique Incidence at a plane conducting boundary
PerpendicularPolarization

A

/,‘.‘. P Perfect Conductor
- /—\__,/
af

6, —

0, /___\_____/ z
ax
B Xz —
0)=0 g ==

As the EM field inside the perfect conductor is zero, the interface reflects the incident plane wave. axi

And a, respectively represent the unit vector in the direction of propagation of the incident and reflected
waves Oi is the angle of incidence and Or is the angle of reflection.

We find that
a, =4a,sing +4a, coso,

Since the incident wave is considered to be perpendicular to the plane of incidence, which for the present case
happens to be xz plane, the electric field has only y-component.

IIEi (x,2) =4, Eioe’wlé‘“i'é

_ A —jpBi(xsing,+zcos6,)
=4, Ee
Therefore,

The corresponding magnetic field is given by
r

r E ) -
H,(x,2) = i[ém x E, (X, z)] =—19(-4,cosO +4,sin @ e Avearzeon)
Ui Th
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Direction of propagation of reflected wave
a,=4a,:ind —a,coso.
Reflected wave inside medium 1

1 ) )
E (x,2)= éy Eroe_Jﬂl(Xsmgr—ZCOSHr)

Boundary condition at z=0

E,(x,0) = E,(x,0) + E, (x,0)
— aA‘y(Eioefjﬂlxsing, + Eroe—jﬂlxsiner)

“Eo=-F, & 6=6
Total field in medium 1,

E,(x,2) = E, (X, 2)+ E, (%, 2)

=0

=é E (e—jﬂlzcosﬂ, _ejﬂlzcosﬂ, )e—jﬁlxsinﬂ,

y —i0
=4, j2E,sin(Bzcos g )e
"

H, (X, y) =-2 &[éx cos 0, cos( /3, cos

i

2} )e—jﬂlxsinei
i

+4, jsin @ sin(,zcos A )e~ A4 }

Reflection of a Plane Wave Oblique Incidence -Conducting Boundary (Parallel Polarization)

In this case also axi and axr are given by equations above. Here Hi and Hr have only y component

Perfect Conductor

gi=0

0y =

With reference to above fig the field components can be written as:

Direction of propagation of incident wave
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a,=4,sing +a,cosé,
Incident wave inside medium 1,

1 ) I
A A s —iBa; R

E.(x,2) =E,(4,cos0 —4,sing)e /i

=E,, (4, cos@ —4,sin g)e MAbendrzcosa)

|l’|i (x,2) = éy &e—iﬂl(xsinaﬂcosei)
Ui

Direction of propagation of reflected wave
a, =4,sing -4, coso,
Reflected wave inside medium 1
E.(x,2) = E. (4 cos@ +4, sin g, )e AcsnG2cosh)

r =
—_A4 0 A—if(xsin6,—zcosb,)
H (x,z)=-4, —%e 4

Ui
Boundary condition at z=0
E,=0 (z=0)

—> (Eio CcOs 9| )e*jﬁlXSing. + (Ero COos gr)e_jﬁlxsmgr =0 for all X,

" E,=-E, 6,=9

ro 10

Hence the total field in medium 1,

E,(x,2) = E,(x, ) + E, (x,2)

=—2E,[4,jcos@ sin(Bzcosd) +4,sind cos(Bzcosd)]e

I—Ill(x, 2)= Illi(x, 7)+ I-Ilr(x, 2)
4 2 Eio ~ifxsing
=4, TCOS(ﬂlZ cosé)e
1

Once again, we find a standing wave pattern along z for the x and y components of E and H,while a, on uniform
plane wave propagates along x with a phase velocity Since, for this propagating wave, magnetic field is in
transverse direction, such waves are called transverse magnetic or TM waves
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Oblique incidence: Interface between dielectric media:

We will consider the problem of a plane wave obliquely incident on a plane interface between two dielectric
media.

If a plane wave is incident at an angle from medium 1. The interface plane defines the boundary between the
media. The plane of incidence contains the propagation vector and is both perpendiculars to the interface
plane and to the phase planes of the wave.

We will first consider two particular cases (polarizations) of this problem as follows:

= The electric field is in the x-z plane (parallel polarization)

= The electric field is in normal to the x-z plane (perpendicular polarization)

Any arbitrary incident plane wave can be expressed as a linear combination of these two principal
polarizations. The plane of incidence is that plane containing

= The normal vector to the interface and

= The direction of propagation vector of the incident wave

Perpendicular Polarization The electric field is perpendicular to the plane of incidence and the magnetic
field is parallel to the plane of incidence. The fields are configured as in the Transverse Electric (TE) modes.
Parallel Polarization The magnetic field is perpendicular to the plane of incidence and the electric field is
parallel to the plane of incidence. The fields are configured as in the Transverse Magnetic (TM) modes.

H;|

Medium 1 Medium 2
(=1, 41) (&2, 12)
z=0

Medium 1 Medium 2

(&1, 1) (&2, 12)
z=0

(a) Perpendicular polarization i i
(b) Parallel polarization

Fig.1 Obligue incidence of plane EM wave at a media interface.

Perpendicular polarization (TE):

In this case, electric field vector is perpendicular to the x-z plane, hence, it will have component along the y-
axis. Since the electric field is transversal to the plane of incidence.
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Incident

wave E

H;
Medium 1 Medium 2
(6, =0) (o, =0)

z=0
i i
e Let us assume that the incident wave propagates with a propagation vector 7, = ﬁl (loss less medium) in

the x-z plane and makes an angle &, (incident propagation vector) with the normal.
= Using direction cosines the direction of propagation of incidence wave can be written as

1
ani = axsind +a, cosé,

1 | 1 1 1 1
7..F=p.r=(axsing +a; cosf).(xax +za.)

= Similarly the direction of propagation of reflected wave (-ve z direction) and transmitted wave can be
written as can be written as

ani =axsing. —a, cosé.
7.F=p.r=(axsing, —a, cos,).(xax +za.)

ani =axSsing, +a, coso,

1 1 1 1
t t . :
y.F=p.r=(axsing, +a.cosd,).(Xxax +za.)
e The electric field phasors for the perpendicular polarization can be written as

|IE-(X Z) = IayE_ g JA(xsinG +zcos6l)
A io

|IE (X Z) = Iayl"E_ e—iﬂl(xsiner—zcosar)
r ! 10

IE (X Z) — Ia.y’Z'E e_jﬂl(XSingﬁ-Zcos&t)
LA to

e Similarly the magnetic field phasors can be obtained by using the relation
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un r o r o

Hi(x,z) = 1[V x E, (X, z)] _E (—axcosé, +a,sing, Je~ Aacxsndrzcosd)
Ui ™

un r o r o

He(x,2) = l[v x E, (X, z)] _ I (axC0SO, +a,sing, Je~ Aleintrzeost)
i Ui

un r o r .

Hi(x,2) = il:v y Et(X, Z):I _ TE.O (—axCOSlgt +azsin6’t )e*Jﬂl(XS|n91+ZCOSQt)
i 1,

At the boundary interface (z=0) equating the tangential components of electric field and magnetic field. The
electric field has tangential E, component, but the magnetic field has x- and z- components and tangential
component of magnetic field is only x- component at the interface.

E, (x,0)+E,, (x,0) = E, (x,0)
LHwix(X,O) + ii'urx(X,O) = L|ililt><(X,(.-))

e Boundary at z=0 gives

e—jﬂlxsiné} _|_1—~e—jﬂlxsim9r — z_e—jﬁzxsin@t

1 Cipxsing . L s r o
——COSQie jBixsing, +—C039re iBixsin6; :—COSHte jBoxsing;

n T 7,

e If E, and Hy are to be continuous at the interface z = 0 for all x, then, this x variation must be the same on
both sides of the equations (also known as phase matching condition)

Bsiné = B sin@. =,sing,

e Follows Snell's law

6=6

e Now we can simplify above two equations by applying Snell’s

e The above two equations has two unknowns t and I" and it can be solved easily as follows

1+T=7

—lcosé?i +£cos¢9r = —icosé?I
™ Ui Up)

(icosé'i —£coserji =7
Ui Ui Cos 6,

r - Ew _1,C086 —1,C086
. 17,08 0, + 17, COS 6,

 _EBo_ 21, oS 6,

* E, 17,0086, +1,C0S6,

10

Eio
E

e For normal incidence, it is a particular case and put

IARE

6=6,=6,
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Parallel polarization (TM):

= Assume the wave is propagating obliquely along an arbitrary direction a, and the electric field vector is
parallel to the plane of incidence (x-z plane) and the magnetic field vector is hormal to the plane of
incidence

Reflected x4
wave

Anr

v
/

E;

Incident \
-

wave H’!J
1

Medium 1 Medium 2

(a=0)

i i
e Let us assume that the incident wave propagates with a propagation vector 7, = ﬁl (loss less medium) in

the x-z plane and makes an angle &, (incident propagation vector) with the normal.
= Using direction cosines the direction of propagation of incidence wave can be written as

1
ani =axsing +a, cosé,

1 | 1 . 1 1 1
y..F=p.r=(axsing +a.cosd).(xax +za:)

= Similarly the direction of propagation of reflected wave (-z direction ) and transmitted wave can be
written as can be written as

ani =axsing, —a, coso.
7.F=p X =(axsing, —a, cos,).(xax +za.)
1 1 . 1
ani =axSINO, +a, cosf,

1 1 1 1
7. =p.r=(axsing, +a. cosf).(xax +za.)

e The Magnetic field phasors for the perpendicular polarization can be written as
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ut re ...
Hi(X Z) = ayieﬂﬂl(xsmqﬂcosgi)

i
L|1|‘:Ir(X, Z) = _(;y F_Eioe—iﬂl(xsine,—zcoser)
Th
l|£|ut (x,2) = 5y T_Eioe_jﬁz(XSinel+Zcosal)
U

u 1 f ) )
Ei(x,2) = E, (axC0s6, —a,sing, e 1/ 0intzcos)

e Similarly the electric field phasors can be obtained by using the relation

u r r o
Ei(X,z) =——[V x H,(x,2)] = E,,(axc0s6, —a.sing, )e~ Atndrzesd)
e,
u r r H —jpBi(xsing,—zcosb,)
Er(X,2) =~ . [V xH,(x,2)]=TE,(axcos6, +a.sing, )e
1
ur r ro .
E«(X,2) =——[V xH,(X,2)] = 7E, (axc0s6, — asing, Je AsnArzcod)

2z

e At the boundary interface (z=0) equating the tangential components of magnetic field and electric field. The
magnetic field has tangential H, component, but the electric field has x- and z- components and tangential
component of electric field is only x- component at the interface.

l|i|uiy(x,0)+ Llllilry(X,O) = lIiluty(x,o)
I'Eix(x,O) + I'Erx(x,O) = I'Etx(x,O)
e Boundary at z=0 gives
cos@e "% 4 T cos@e "% = rcosGe %

ie—jﬁlxsina, _ Ee—j/)’lxsiner — ie—jﬂzxsinel
Th Th Ui
e If E, and Hy are to be continuous at the interface z = 0 for all x, then, this x variation must be the same on

both sides of the equations (also known as phase matching condition)

B.siné = pB,sin6. = f,sing,
Follows Snell's law

6 =0

I r

BREWSTER ANGLE

Before going to Brewster angle we have to know the difference between polarized wave and unpolarized waves.

For unpolarized waves the electric fields are in many directions as shown in figure, e.g. unpolarized light
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Where as in polarized waves the electric field vector is either vertical or horizontal as shown in figure below.

We can convert unpolarized light into polarized light by passing the light through a polarizing filter.

IARE Electromagnetic Theory and Transmission Lines Page | 82



Incident ray

_ Reflected ray
(unpolarised)

(polarised)

Refracted ray
(slightly polarised)

When unpolarized wave is incident obliquely at Brewster angle 6z, only the component with perpendicular

polarization (Horizontal polarization) will be reflected, while component with parallel polarization will not be
reflected.

It is also called as Polarizing angle.

At Brewster angle, the angle between reflected ray and refracted ray is 90°.

It is denoted by 0p

It is given by
2 n;
tanBg = |— = —
€ ng
_1 |%2 _q D2
@g=tan™! |[= = tan™! =
€1 ny
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Application:

Polaroid sunglasses: The polarization axes of the lenses are vertical as the glare usually comes from reflection
off horizontal surfaces.

unpolarized
light

glare greatly

Dlasses reduced

. transmit only
b verticall larized
= ¥ po

direct light
not reduced
as much

as glare

light partially polarized
in tha horizontal plana
by reflection

CRITICAL ANGLE

When light travels from one medium to another it changes speed and is refracted. If the light rays are travelling
for a less dense material to a dense medium they are refracted towards the normal and if they are travelling from
a dense to less dense medium they are refracted away from the normal.

For total internal reflection to occur the light must travel from a dense medium to a less dense medium (e.g. glass
to air or water to air).

As the angle of incidence increases so does the angle of refraction. When the angle of incidence reaches a value
known as the critical angle the refracted rays travel along the surface of the medium or in other words are
refracted to an angle of 90°. The critical angle for the angle of incidence in glass is 42°.

When the angle of incidence of the light ray reaches the critical angle (42°) the angle of refraction is 90°. The
refracted ray travels along the surface of the denser medium in this case the glass.
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90°

air | Refrac;ed ray

glass

Critical angle = 42°

Incident ray

According to the law of refraction,

IARE

n,sinf; = n,sinb;

Slnet nq &1

Slnel ny &

if 6; = 6 then 6, = >
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TOTAL INTERNAL REFLECTION

When the angle of incidence of the light ray is greater than the critical angle then no refraction takes place.
Instead, all the light is reflected back into the denser material in this case the glass. This is called total internal
reflection.

normal

air
glass

Incident ray 5 Reflected ray

angle greater than
critical angle (c)

SURFACE IMPEDANCE

It is defined as the ratio of the tangential component of the electric field to the surface current density at the
conductor surface.

It is given by

— Etan
Is

Where E,,, is the tangential component parallel to the surface of the conductor.

Z, Q

And J, is the surface current density.
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Poynting vector and theorem:

Electromagnetic waves transport throughout space the energy and momentum arising from a set of
charges and currents (the sources).

If the electromagnetic waves interact with another set of charges and currents in a receiver, information
(energy) can be delivered from the sources to another location in space.

The energy and momentum exchange between waves and charges and currents is described by the
Lorentz force equation.

Derivation of Poynting’s Theorem

Poynting’s theorem concerns the conservation of energy for a given volume in space.
Poynting’s theorem is a consequence of Maxwell’s equations

e Time-Domain Maxwell’s curl equations in differential form

VxE=—K, —K, 22
=T T bt

VxH =343, +2
* Recall a vector identity ot

V-(ExH)=H Vx

Im
|
m
<
X
I

~E-VxH=-E.J,-E-J,-E- 2
ot
HVxE=-HK ~H K -H 2
ot
V-(ExH)=H-VxE-E-VxH
= H K, ~H K, ~H- P
ot
oD

» Forsimple, lossless media, we have
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* Hence, we have the form of Poynting’s theorem valid in simple, lossless media:

0A_jon_10
A Ao 2a™)
01l 1

JE-3,+8 Ki)dv:—aJ(EgE2+— szdv

Physical Interpretation of the Terms in Poynting’s Theorem
IoEzdv+jamH 2dv
\Y \Y

represent the instantaneous power dissipated in the electric and magnetic conductivity losses, respectively, in
volume V. represent the total electromagnetic energy stored in the volume V.

represents the flow of instantaneous power out of the volume V through the surface S

* In words the Poynting vector can be stated as “The sum of the power generated by the sources, the
imaginary power (representing the time-rate of increase) of the stored electric and magnetic energies, the
power leaving, and the power dissipated in the enclosed volume is equal to zero.”

S=ExH
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We define a new vector called the (instantaneous) Poynting vector as

e Poynting vector has units of W/mZ.

e The Poynting vector has the same direction as the direction of propagation.

e The Poynting vector at a point is equivalent to the power density of the wave at that point.
Time-Average Poynting Vector

* The time-average Poynting vector can be computed from the instantaneous Poynting vector as

S.(1)=2 fs(e.a

po
» The time-average Poynting vector can also be computed as

S.r) = Re[Ext]
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Power Loss in a Conductor:

The resistance of the slab along the direction of the current £ is

>7

dR=pl/A = /s dz

The ohmic loss in the slab is

dw=|I(2)[dR

Substituting for 1(z) we get

dW=|cEqe™dz|* (1/ odz)

:G|E0|2 ehzazdz

The total loss per unit area of the conductor surface therefore is
W= I o[Eo| e?*dz
= o|Eq["[e*/-20]

W= 6|Eof20. = c/20([y?*|/ 6°) |Js*

Substituting for y and a , the 1oszs per unit area of the conducting surface is
W=R,|Js|
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The power loss is proportional to the surface resistance which increases with frequency and decreases with
conductivity. Higher the conductivity lesser the loss and for ideal conductor when the conductivity is
infinite the ohmic loss is zero.

PROBLEMS:

1. A uniform plane wave is travelling at a velocity 2.5%10° m/s having wavelength A=0.25nm in a non
magnetic good conductor .calculate the frequency of the wave and the conductivity of the medium
1.6*10° simen/m.

Solution formulae:

1.f=(v/A)
2.v=(w/P)
3.p=2xnf/v

2. A 300MHZ uniform plane wave propagates through fresh water for which p=1,6=78,0 =0
Find attenuation constant, phase constant, wavelength , intrinsic impedance.
Solution Formulae:
1.Phase constant p=o V pe
2n=V/e

3. Find the skin depth and surface resistance of a copper conductor at 100MHz having conductivity
6=5.8*%10" , 1,=100.

Solution Formulae:
Skin depth s=\ (2/opo)

4. For a wave travelling in air the electric field is given by E=6cos(wt-fz)ax at frequency 10MHZ
calculate B,H and average pointing vector .

Solution Formulae:
p=2m/A
A=v/f
E/H=\|w/e
H=(E/mp)
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UNIT - IV
TRANSMISSION LINES CHARACTERISTICS
Transmission Lines and Types:

Definition: Any physical structure that will guide an electromagnetic wave place to place is called a
Transmission Line.

Types of Transmission Lines:-

1)Open wire line

2)Coaxial cable

3)Waveguide s a)Rectangular
b)Circular

4)Optical Fibre Cable

Open wire line:

A transmission line consisting of two spaced parallel wires supported by insulators, at the proper distance to give
adesired value of surge impedance. Also known as open-wire feeder. Open wire cable is a two-conductor flat
cable used as a balanced transmission line to carry radio frequency (RF) signals. It is constructed of two stranded
copper or copper-clad steel wires, held a precise distance apart by a plastic (usually polyethylene) ribbon. The
uniform spacing of the wires is the key to the cable's function as a transmission line; any abrupt changes in
spacing would reflect some of the signal back toward the source. The plastic also covers and insulates the wires.

INSULATING
SPACERS

Fig: Open wire line

Coaxial cable:

Coaxial cable, or coax is a type of electrical cable that has an inner conductor surrounded by a tubular insulating
layer, surrounded by a tubular conducting shield. Many coaxial cables also have an insulating outer sheath or
jacket. The term coaxial comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial
cable was invented by English engineer and mathematician Oliver Heaviside, who patented the design in 1880.
Coaxial cable differs from other shielded cables because the dimensions of the cable are controlled to give a
precise, constant conductor spacing, which is needed for it to function efficiently as a transmission line.
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Fig: Coaxial cable

Wavequide:

A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of
energy by restricting expansion to one dimension or two. There is a similar effect in water waves constrained
within a canal, or guns that have barrels which restrict hot gas expansion to maximize energy transfer to their
bullets. Without the physical constraint of a waveguide, wave amplitudes decrease according to the inverse
square law as they expand into three dimensional space.

There are different types of waveguides for each type of wave. The original and most common meaning is a
hollow conductive metal pipe used to carry high frequency radio waves, particularly microwaves.

The geometry of a waveguide reflects its function. Slab waveguides confine energy in one dimension, fiber or
channel waveguides in two dimensions. The frequency of the transmitted wave also dictates the shape of a
waveguide: an optical fiber guiding high-frequency light will not guide microwaves of a much lower frequency.
As a rule of thumb, the width of a waveguide needs to be of the same order of magnitude as the wavelength of the
guided wave.

Fig: wave guide

Optical Fibre:

An optical fiber or optical fibre is a flexible, transparent fiber made by drawing glass (silica) or plastic to a
diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light
between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit
transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead
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of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic
interference, a problem from which metal wires suffer excessively. Fibers are also used for illumination and
imaging, and are often wrapped in bundles so that they may be used to carry light into, or images out of confined
spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications,
some of them being fiber optic sensors and fiber lasers.

Fig: optical fibre

At low frequencies, the circuit elements are Lumped voltage and current waves affect the entire circuit at the
same time.

At microwave frequencies Voltage and current waves do not affect the entire circuit at the same time

The circuit must be broken down into unit sections within which the circuit elements are considered to be
lumped

Basic Transmission Line:

It is convenient to describe a transmission line in terms of its line parameters, which are
1)Resistance per unit length R,
2)Inductance per unit length L,
3)Conductance per unit length G,
4)Capacitance per unit length C.

For Each Line

LC=pe and G/C =o/e
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The line parameters R, L, G, and C are not discrete or lumped but distributed as shown in Figure.

R A: 5L Az LA L R A
I : : S : L+ Al
o——- A\AN—TTM YY" — "\N\———0
' AL A '
v, Vst AV,
\- ' A

O g /l\ O

Fig: Basic Transmission line

Transmission line Equations:

If we are familiar with low frequency circuits and the circuit consists of lumped impedance elements (R, L,
C), we treat all lines(wires) connecting the various circuit elements as perfect wires, with no voltage drop and
no impedance associated to them.

This is a reasonable procedure as long as the length of the wires is much smaller than the wavelength of the
signal and at any given time, the measured voltage and current are the same for each location on the same
wire.

e Let us try to explore what happens, when the signal propagates as a wave of voltage and current along the
line at sufficiently high frequencies

e For sufficiently high frequencies, wavelength is comparable to the length of a conductor, so the positional
dependence impedance properties (position dependent voltage and current) of wire cannot be neglected,
because it cannot change instantaneously at all locations

e (Consider a uniform transmission line is a “distributed circuit” that we can describe as a cascade of identical
cells with infinitesimal length. So, our first goal is to represent the uniform transmission line as a distributed
circuit and determine the differential voltage and current behavior of an elementary cell of the distributed
circuit.

e Once that is known, we can find a global differential equation that describes the entire transmission line by
considering a cascaded network (subsections) of these equivalent models.

e In order to analyze the transmission wave behavior and positional dependence impedance properties, the line
possess a certain series inductance and resistance. In addition, there is a shunt capacitance between the
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conductors, and even a shunt conductance if the medium insulating the wires is not perfect. We use the
concept of shunt conductance, rather than resistance, because it is more convenient for adding the parallel
elements of the shunt.

e \We can represent the uniform transmission line with the distributed circuit below (general lossy line) and the
impedance parameters L, R, C, and G represent:

L = series inductance per unit length

R = series resistance per unit length

C = shunt capacitance per unit length
G = shunt conductance per unit length.

L dz R dz L dz R dz
Cdz—= G dz Cdz—= G dz
dz dz

le e )l

[ g '

= Each cell of the distributed circuit will have impedance elements with values: Ldz, Rdz, Cdz, and Gdz,
where dz is the infinitesimal length of the cells

= Let us assume a differential length dz of transmission line ,V(z),1(z) are voltage and current at point P

and V(z)+dV, I(z)+dl are voltage and current at point Q

 Ldz R dz -
I1(2) o_fm\_NW\ < I (@+d]
V (z) CdzZZ= G dz V(z)+dV

I dz

= The series inductance determines the variation of the voltage from input to output of the cell, according
to the sub-circuit below
Ldz Rdz

B —

V (z) 1 (z) V(z)+dV

(RN T’

\ dz

= Similarly, the shunt admittance determines the variation of the voltage and current from input to output
of the cell shown below

—0Q
]
[
[
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1(z) tar T @)rdl

Cdz = G dz V (z)+dV

mmn o NN

For a differential length dz of transmission line ,the series impedance and shunt admittance of the
elemental length can be written as

(R+ jolL)dz

(G+ joC)dz
The corresponding circuit voltage and current equation is

V+dV -V =—I(R+ jolL)dz (1)
| +dl -1 =V (G+ joC)dz (2)
From which we obtain a first order differential equation

N IR+ jol) 3)
z

dl .

—=-V(G+ joC) 4)

dz

We have a system of coupled first order differential equations that describe the behavior of voltage and
current on the transmission line

It can be easily obtained by a set of uncoupled equations by differentiating equation (3) and (4) with
respect to the coordinate z

dd i i
~ - (R L 5
2 OIZ( + jol) (5)
d?l dv i
— -1 (G C 6
7 OIZ( + joC) (6)

Substitute equation (4) in equation (5) and equation (3) in equation (6), we obtain the second order
differential equations

dav : :
o =(G+ joC)(R+ joL)V (7)
d?l : :
d?:(G+ joC)(R+ joL)I (8)

These equations can be written in terms of propagation constant y
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d’l

Let the constant term y can be represented as propagation constant, which is written as
Y=o+ = \/(G + JoC)(R+ jolL)
v is the complex propagation constant, which is function of frequency
a is the attenuation constant in nepers per unit length, g is the phase constant in radians per unit length

The solution of the second order transmission line equation is
V =ae™ +be™" (11)
| =ce™ +de™ (12)
Where, a, b, ¢, and d are the constants

Equation (11) and (12) represent the standard solutions of the wave equations, which are similar to the
solution of uniform plane wave equations.

The terms " and €™** can be represented as backward and forward wave along z-direction.
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Determination of the constant terms:

IARE

Let the solutions of the transmission line wave equations can written as

V =ae" +be™ )

| =ce™ +de™ (2)

To determine the constants a,b,c, and d , the above equations can be written in terms of hyperbolic
functions, where substitute

e" =cosh yz +cosh yz (3)

e =coshyz —cosh yz (4)
Substitute equation (3) and (4) in equations (1),(2)

V = a(cosh yz + cosh yz) + b(cosh yz — cosh yz) (5)

I =c(coshyz + cosh yz) +d (cosh yz — cosh yz) (6)

V =(a+b)coshyz +(a—b)sinhyz (7

| =(c+d)coshyz+(c—d)sinhyz (8)

The constants a+b, a-b, c+d, and c-d can be replaced by another constant terms A, B,C, and D
respectively.
So, the equations (7) and (8) can be written as

V = Acoshyz + Bsinhyz 9)

I =Ccoshyz+ Dsinhyz (10)
In order to reduce the four constant terms to two constant terms, we write the relation between V and | by
considering the following basic differential equations

v I(R+ jol) (11)
dz

—d—I:V(G+ joC) (12)
dz

Substitute equation (9) in equation (11)
_d(Acoshyz + Bsinhyz)

=1(R+ joL) (13)
dz
Differentiating equation (13) in terms of z, we obtain
—y(Asinhyz+Bcoshyz =1 (R+ joL) (14)
= From the above equation(14) the current | can be written in terms of constants A and B as
Y .
———(Asinhyz+Bcoshyz =1 15
R jol) ( ¥ Y (15)
Where v is propagation constant, which is y = \/(G + JoC)(R+ joL) and substitute in equation (15),
we obtain
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JG+ j(DC?(R-l- jol) (Asinhyz+Bcoshyz = | (16)
(R+ jolL)

= The equation can be simplified and written as

— %(AsinhyZJchoshyz:I
\j + jo

—Zi(Asinh yz+Bcoshyz =1 (17)
0

=  Where Z, is another constant and can be called as characteristic impedance along the line

(R+ jolL)
Zy= |——F=
(G+ joC)
= Form equation (9) and equation (17) the solution of voltage and current wave equation in terms of
constants A and B can be re written as

V = Acoshyz + Bsinhyz (18)

1 .
| = A (Asinhyz + Bcoshyz) (19)
0
= Now the constants A and B can be obtained by applying initial conditions of the transmission line at Z=0
= Let V and I be the source voltage and current respectively. At the source end, Z=0 the voltage V= V,,
current 1= I then the equations (18) and (19) can be simplified as

V, = Acosh y(0) + Bsinhy(0)

I, = _Zi (Asinhy(0) + B cosh y(0))

0

V,=A
-1.Z,=8B
= Substitute A and B values in equation (18) and equation (19), we obtain
V =V, coshyz—1,Z,sinhyz (20)
I =—\Z/—Ssinhyz+ I, coshyz (21)

0
= These equations are called transmission line equations. The can represent voltage and current at any point
z from the source voltage and current.
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Infinite Transmission Line:

| infinite length -

s

Switch

Battery

-

If a line of infinite length is considered then all the power fed into it will be absorbed. The reason is as we move
away from the input terminals towards the load, the current and voltage will decrease along the line and become
zero at an infinite distance, because the voltage drops across the inductor and current leaks through the
capacitor. By considering this hypothetical line of infinite line an important terminal condition is formed.

Let V; be the sending end voltage and I be the sending end current and Z be the input impedance which is given
by

Current at any point distance x from sending end is given by
I =ceP* +de
The value of ¢ & d can now determined by considering an infinite line.

At the sending end x=0 and I =I,.

Iy=c+d
At the receiving end, [=0 and x=c0.
O = C * OO,
o # 0,

therefore c = 0.
if c=0,thenl; =d
thereforel = I;e™F*

The above equation gives current at any point of an infinite line.
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And V =Ve P

Similarly the above equation gives voltage at any point of an infinite line.

Infinite line is equivalent to a finite line terminated in its Z,

When a finite length of line is joined with a similar kind of infinite line, their total input impedance is same as
that of infinite line itself, because they together make one infinite line however the infinite line alone presents an
impedance Z, at its input PQ because the input impedance of an infinite line is Z,.

It is therefore concluded that a finite line has an impedance Z,when it is terminated in Z,
Or A finite line terminated by its Z, behaves as an infinite line.

Let a finite length of I’ is terminated by its characteristic impedance Z, and is having voltage and current Vg and
Ir at terminating end.

Therefore Loy =—
Putting x = I,V = Vi, I = I in general equations, we have
Vg = Vscoshpl — IsZ,sinhpl
Vs |
I = Iscoshpl — =—sinhpl
Zo

Dividing VR by Iz we will get the value of Zo.

_ Ve Vscoshpl — IsZysinhpl
= E =

Z, v
Igcoshpl — Z—S sinhpl
0

Multiplying right hand side numerator and denominator by Zs we get,

7 - Vscoshpl — IsZ,sinhpl Z,
) = —o

Iscoshpl — g—ssinhpl Zo
0

Z, Iscoshpl — Vssinhpl = Vscoshpl — IsZ,sinhpl

Zols(coshpl + sinhpl) = Z,(coshpl + sinhpl)

Therefore
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Vs
VS = Zols and ZO = -
s

But? is the input impedance of the line( Z;,, = Z,))
S

Therefore Z;,, = Z,

Thus the input impedance of a finite line terminated in its characteristic impedance is the characteristic
impedance of the line. Since the input impedance of an infinite line is the characteristic impedance of the line.

Therefore a finite line terminated in its Zo is equivalent to an infinite line as both will have an input impedance of
Lo,
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CHARACTERISTIC IMPEDANCE AND PROPAGATION CONSTANT:

Equivalent-circuit model of transmission line section:

i(z, t) N {2+ Az,0)

&

% 4
vz, 1) z vz + Az, 1)

e

R(Q/m), L(H/m), G(S/m), C(F/m)

Transmission line equations: In higher-frequency range, the transmission line model is utilized to analyze EM

power flow.
Ve A @Y o @Y [ d
Az ’ ot - oz ot
Jigeanh-iat g, o @ | A g o
AZ ’ ot oz ot

Set v(z,t)=Re[V(2)e"], i(z,t)=Re[I(z)e'"]

—‘2—\2’= (R+ jol)1(2) dZ’(Z) = (R+ jol)(G + joCV (2) = ¥V (2)

=1 4 = zz2 _
- =G+ jeCNV () dd'z(zz) — R+ jol)(G + jaC)1(2) = 771 (2)

where y=a+j8= /(R + joL)(G + jaC) =V(z) =V, e +V,e*, 1(2)=1,"e" +1,e"

Characteristic impedance: ZO:VO+ = —VL_ = R+ Jol = 7_ = R+ !a)L
| 4 G+ jaoC G+ joC

0 IO

Note:

1. International Standard Impedance of a Transmission Line is Z;=50Q2.
2. Intransmission-line equivalent-circuit model, G#1/R.
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The ratio of Forward Voltage and Current waves is always Z, , and the ratio of the Backward Voltage and
Current waves is always - Z, . The parameters y and Z, completely define the voltage and current behaviour on a
transmission line. These two parameters are related to R, L, G, and C, and the frequency of the signal. In
transmission line analysis knowledge of y and Z, is adequate and the explicit knowledge of R, L, G, C is rarely
needed.

Eg. A d-c generator of voltage and internal resistance is connected to a lossy transmission line characterized by a
resistance per unit length R and a conductance per unit length G. (a) Write the governing voltage and current
transmission-line equations. (b) Find the general solutions for V(z) and 1(2).

(Sol) (@) @ =0=y =/(R+ joL)(G + joC) =/RG

dAV (2)
dz®

= RGV(2),

d? I(z)
. =RGI(2)

(b) V(z) =V, e "F7 +V,e¥F%, 1(2) = 156777 +1,e'F¢?
Lossless line (R=G=0):

1

7/=a+jﬂ=ja)\/ﬁz>a=0, ﬁ:w\/ﬁ, v, = Z =

ﬁ

=R, + X, =R, \E X, =0

Low-loss line (R<<wL, G<<ao():

y=a+ip= Jw\/_(1+—(—+ = z%(R\/%+G\/g),ﬁ:a) LC, sz\/i_c

L
Z. ~ |[—[+— (-
0 c[ mw(L cn

Distortionless line (R/L=G/C):

7=a+jﬂ=\/%(R+ja)L):>a=R\/§, f=w-LC, Vp=%, ZO=\/E

Large-loss line (wL<<R, o C<< G):

y = \/(R+ja)L)(G+ja)C) a+ jf= JRG - (1+JwL)y(1+ Ja)c)}/ \/@[l+ Ja)( +—)]
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ca~vRG. =21 1C v Ry v 2t S e R

L T T e ﬁ)

7, [Briok _ R dokys g deyn_ R dold o
+ JaC

GROUP VELOCITY AND PHASE VELOCITY
PHASE VELOCITY

A single (infinite) wave is described by the expression cos(wt — kx) or sin[ 2r A (x — vt)] or equivalent. The
pattern travels with a velocity (actually a speed)

=L T = fA = w/k v, is what matters with interference.

GROUP VELOCITY

An infinite wave is unrealistic. A real wave has to have beginning and end. The overall shape is called the
envelope. Various shapes are possible - abrupt or gentle. vy = do /dk is the velocity of the envelope.

Ilustration

Consider two waves almost in step.

They have o1, k1 and ©2, k2 (and A1, A2...)

Write the means and differences ® = ol1+®w2/ 2 , k =k1+k2 /2

Ao =wl-02/2 ,Ak=kl-k2/2

the original quantities can be expressed in terms of these w1 = ® + Aw, ©2 = ® — Aw etc

Adding the two waves gives a total wave

i(wlt-klIx i(w2t-k2x)

e )+e

This can be written

e i(ot+tAot—kx—Akx) +e i(ot—Aot—kx+Akx)

Take out a common factor:

e i(ot—kx) (e i(Aot—Akx) +e i(—Aot+Akx) )

Remembering cos® = e *+e 7 /2
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this is 2cos(Aot — Akx)e ™ The first term is clearly the envelope. It has small wavenumber and frequency and
so a long wavelength and period. It travels with velocity vg = Aw/Ak. This generalises vy = dw/ dk

Finding v often vp is known from measurements or from basic principles. Take the expression for v, and write
o/k for vy in it. Turn all the A and f etc terms into @ and k. Then differentiate with respect to k. This gives an
expression involving do /dk from which v4 can be extracted.

As a trivial example, suppose vp is constant (i.e. independent of wavelength) with value c. Then ® = ck and
LOSS LESS LINE:

A transmission line is said lo be lossless if the conductors of the line are perfect (o, =) and the
dielectric medium separating them is lossless (o= 0).

R=0=G
This is a necessary condition for a line to be lossless.
Thus for such a line, the following Parameters are
Propagation Constant Y'=jp = jo V(LC)
Attenuation Constant o=0
Phase Constant = o V(LC)
Velocity 9 =o/p
Then X0 =0 Z0=R0=\L/C
Distortion Less Line:

A transmission line has a distributed inductance on each line and a distributed capacitance between the
two conductors. We will consider the line to have zero series resistance and the insulator to have infinite
resistance (a zero conductance or perfect insulator).

A signal normally consists of a band of frequencies; wave amplitudes of different frequency components
will be attenuated differently in a lossy line as o is frequency dependent. This results in distortion.

A distortion less line is one in which the attenuation constant « is frequency independent while the phase
constant [} is linearly dependent on frequency. From the general expression for a and B [in eq. (10)], a
distortion less line results if the line parameters are such that

R/L=G/C
Thus for a distortion less line
Y = V[RG(1+joL/R)(1+joC/G)]

We know that
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Y=0+jB
then

a =VRG

B = V(LC)

Impedance of the line is

)

G(1+T) -

JR/G=,/L/C

Resistance

Ro =/R/G=,/L/C XO= 0
Phase Velocity:
9=o/p =1 VLC

The phase velocity is independent of frequency because the phase constant § Linearly depends on
frequency. We have shape distortion of signals unless « and u are independent of frequency. u and Z,
remain the same as for lossless lines.

A lossless line is also a distortion less line, but a distortion less line is not necessarily lossless. Although
lossless lines are desirable in power transmission, telephone lines are required to be distortion less.
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DISTORTION LESS LINE:

A transmission line is said to be distortion less if the attenuation constant ‘%’ is frequency independent,

white the phase constant is linearly dependent of frequency. From the general equations of « & 3, the
distortionless line results, if the line parameters are such that,

sl -+
Olo

_ ’R+ij

ZO_ G+jwc
el \ﬁ
c@or  NC

x=P=/(R + jwL)(G + jwc)

jR (1 +ja)£)G(1 s
R G

P = VRG(1+jw )

o =+/RG, f= wVLC

_w_ 1
Vp_ﬁ_wm \/2_6[

CONCLUSIONS:

» The phase velocity is independent of frequency because, the phase constant of g, linearly

= — [phase velocity]

depends upon frequency. We have distortions of signals unless « & V, are independent of

frequency.

» Both Vp and Zy remains the same for loss less line.

> Aloss less line is also a distortion less line, but a distortion less line is not necessarily loss less.

Loss less lines are desirable in power transmission telephone lines are to b distortion less.

Vp=2 = \f
f
Condition for Minimum Attenuation:
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™ =+RG, wVLC

From the equation the attenuation of a line is expressed by attenuation constant DC as

x =%\/(RG + w?LC) + /R? + w2I2(G? + w?C?)

It is observed that o< depends on the four primary constants in addition to the frequency. The Value of L for
minimum attenuation.

Let us assume the three line constants C,G and R including w are constant and only L may be varied .

Therefore, differentiating above value of o, W.R.T L and equating it to zero, we get

dx _1 |1 202L(G2+w?C?
=== |= ( )__ w2cl]=0
dL 2 |2 (yRZ+0?L2(G2+02C2)

By cross multiplying

®?L(G*+w?C?)

2¢ =
—wC=0
VRZ+w2L2(G2+w2C?)

ao’{L G2+w?C2 =(02/C

R%+@2L2

After cancellation remaining terms are

L*VG2 + 02C2% = C VR? + 0?l2
Squaring on both sides

L?(G? + ®?C?) = C (R? + 0?1?)

L?G%= C2R?

LG=CR

ala
=]

The condition is similar to the distortion less line. Therefore, the value of &< obtained in above equation is some
for line with minimum attenuation. From the final equation if only L is variable, the attenuation is minimum

when L = CG—R H/km.
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This result is important because, in practice, L is normally less than desired value and hence the attenuation of a
line can be reduced by increasing L artificially.

LOADING OF TRANSMISSION LINES: loading is a method of increasing the series inductance of a line by
the addition of external inductance its purpose is to improve the performance of the line by reducing attenuation

and distortion

TYPES OF LOADING:

1.
2.

Continuous loading (iron wire)
Lumped loading(copper wire )

In this type of iron bar or other magnetic material is wound to the bar to be load. This increasing
permeability of surrounding medium and thereby increasing conducting.
» This is measured at and increase in inductance up to 65mH/km.
» It is quite expensive. Furthermore eddy current and hysteresis loses in the magnetic material
increase the primarily loss,

The inductance of a line can be increased by the introduction of loading coil of uniform intervals. This
method of loading is more convenient.

LOADED LINES

The delay and frequency distortion is introduced by a cable. Let us consider a typical 16 gauge paper insulated
cable pair whose line parameters:

R = 42.1ohms/km
G = 1.5 g mhos/km

C =0.062 pF/km

L =1 mH/km.
Therefore, R= 42'1_3 -42.1 X103
L 1X12
-6
62 13X10 " _ 50242 X 103
(o) 0.062 X 10
R G
ThUS, I >>E .

Hence, distortion less and minimum attenuation conditions as expressed by and are not satisfied.
However, both the conditions can be approached in four ways:

0] Reduce R. this will decrease the attenuation but will require large conductors, which in
turn causes an increase in cable size and cost. Reduction of T will also lower |Z,|.
(i) Increase G. this can be accomplished by lowering conductor insulation or by introducing

shunt conductance along the line. This is a poor solution because it increases losses.

Increasing G also lowers |z|.
(i) Decrease C . This will increase the spacing between conductor, resulting increase of cable

size and cost. Decreasing C increases |z,| although lowera.

IARE Electromagnetic Theory and Transmission Lines Page |

111



(iv) Increase L. this decreases a and reduces distortion and hence offers the  best
approach to achieve distortion less and minimum attenuation condition

LOADING:

The advantage of loading is not so great — on open wire line which have an appreciable inductance of their own
and so have much less distortion than cable. As a result the practice of loading open wire line has been
abandoned. the loading practice is, therefore normally restricted to cables only. There are three type of loading in
practice this day:

(i)

(i)

(i)

Continuous loading. A type of iron or some other magnetic material as numeral is wound round the
conductor to be loaded thus increasing the permeability of the surrounding medium and thereby
increasing inductance. This method can give an increase in inductance upto about 65 mH per km but,
it is quite expensive due to laborious construction. Therefore, continuous loading is used only on
ocean cables, where the problem of making water — tight joints at loading points renders lumped
loading difficult. Furthermore, repair of a creak in the cable would normally result in alteration in the
loading coil spacing for that section resulting in irregularity.

Patch loading. This type of loading employs sections of continuously loaded cable separated by
section of unloaded cable in the way the advantage of continuous loading is obtained but the cost is
greatly reduced. In fact, in submarine cable, it has been found unnecessary to use continuous loading
over the entire cable to obtain the required reduction in attenuation and desired result without
continuous loading over the entire length of the cable .the typical length for the section is normally
quarter kilometer.

Lumped loading. the inductance of a line can also be increased by the introduction of loading coil or
uniform intervals. This is called lumped loading. As already explained in Art 5.6 that a lumped
loaded line behaves as a low pass filter. This method of loading is more convenient than continuous
loading provided that a limited frequency ranged upto f. the loading coils have a certain resistance
and thus, increasing total effective inductance increases R.

Problem 1:
An air line has characteristic impedance of 702 and a phase constant of 3Rafm at 100MHz calculate the
inductance per meter and capacitance per meter of the line .

Solution:

Air line is nothing but loss less line.
For loss less line,

R=0,G=0

zoz\/é =B=jw VLC

P=jwVLC
1
Vo= T

L
Zo- Ne -1
_ja)\/LC_ja)c
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C :+ = 68.PF/m.
27X100X106 (70)

7, \E L = Z2c= (70)%(68.2X10™2)
= 334.2nH/m

Problem 2:

1. Addistortion less line has Z,=60£2 X=20mvP/m, VP=0.6C, where c is the speed of line in vacuum. Find
R, L, G, C,and A at 1I00MHz.

R _G
L ¢
20: é
% =vRG, B=wVLC

-1
V= =
Rc=GL
G:RL—C
u:x::w/R(;:R%
D‘C:i

Zy

C = —— = 92.59pF/m

PZy

2

G === 0.33 = 333ps/m

Zo | =333nH/m.
Vp

Problem 3:

Calculate Primary constants for loop kilometer are R = 196Q, C=0.09mF, L=0.71mH and leakage conductance is
negligible. Calculate intrinsic impedance and propagation constant for

f=22H; Z = R+jwL
2nf
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w =27f = 196+ (2000) (0.7mH) 1)

=21 (£2) = 196+j(L.4)

2m
Z =196.00 £0.40
y = GHwC
=j (2000)(0.09)mf)
0.18 ]
Y =0.18290
Z

Zoz ;

Z,=+/1088 2 — 89.6
=172 —89.6/2
=32.98 2 — 89.6/2
=32.98 2 — 44.8

P=yzy
=/(196.00 £0.40)(0.18290)
=5.93245.2

Problem1:

An open wire transmission line terminated in its characteristic impedance has the following primary constant at
1KHz. R=6 Q/km,L=2 mH/km,G=0.5 u0,C=0.005 uF/km. Calculate the phase velocity and attenuation in
decibels suffered by a signal in a length of 100 kms.

Problem2:

The primary constants of a cable are R=80 /km,L=2 mH /km and G=0.3 uO /km.C=0.01 uF/km. Calculate the
secondary constants at a frequency of 1KHz.

Problem3:

A generator of 1V, 1 KHz supplies power to a 100 km long line terminated in Z, and having the following
constants, R = 10.4 Q/km, L = 0.00367 H/km, G = 0.8x10® ¥0/km and C = 0.00835x10® F/km. Calculate Z,,
attenuation constant o, phase constant 3, wavelength A and velocity V.

Problem3:

A loss less transmission line has 115 Q characteristic impedance. The line is terminated in a load impedance of
100-j250 Q. The maximum voltage measured on the line is 120V. Find the maximum current and minimum
voltage on the line.
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UNIT -V
UHF TRANSMISSION LINES AND APPLICATIONS

Input Impedance Relations:-

e Let the voltage and current transmission line equations at any point on the line from the source
end can be written as
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V =V, coshyz—1,Z,sinhyz

V, .
| =——=sinhyz+ I, coshyz
Z0

Suppose, a transmission line, which is terminated with some load impedance Zr at a distance I
‘from the load and the voltage and current at the terminating end can be written as Vg and Ig
respectively.

So that at z= |, the voltage and current can be written as

Vi =V, coshyl —1,Z, sinhyl

V, .
I =—==sinhyl + 1, coshyl
ZO

Now the load impedance from the terminating point can be written as

ViV coshyl—1.Z,sinhyl
ZR = —=

Ir —V—Ssinh vl + 1, coshyl
ZO

By taking the cross multiplication the above equation can be written as

Zy (—\Z/—Ssinh vl + 1, cosh yIJ =V, coshyl —1.Z,sinhyl
0

Take the current Is on both sides, the above equation can be written as

1,Zg (_ IVE sinh yl + cosh ylj =1 (\%cosh vl —=Z,sinh ylj

s=0 S

Now the ratio of \I/—S can be written as the source impedance or input impedance (Z;, or Zs). So,
S
the above equation can be modified as
Zg (—=Zgsinhyl +Z; coshyl) = Z, (Z, coshyl - Z, sinhyl)

Modify the above equation by separating Zs terms,

Zg (—Zgsinhyl +Z; coshyl) = Z, (Z, coshyl - Z, sinhyl)
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Zy(Zysinhyl +Z coshyl ) =(Z,Z, coshyl + Z,Z sinhyl)

(Zysinhyl +Zg coshyl)

Z, =7
®(Zycoshyl +Zgsinhyl)

S

e Where Zs is the source impedance, which is also called input impedance. So, the input
impedance can be written as

(Zysinhyl+Zg coshyl)

Z. =7Z.=2Z
®(Zycoshyl +Z; sinhyl)

n S

e The above expression can be written in terms of hyperbolic tan functions as

(Zytanhyl +Z;)

Z,. =2, =7
% (Zy+Zg tanhyl)

n S

e The above expression represents input impedance of a general transmission, which is terminated
with load impedance at a distance ‘/’ from the source end.

e Now, consider a special case, If the line is lossless line (attenuation constant a=0) the
propagation constant y can be written as

Y=o+ jB=0+jB
e S0, the input impedance can be written as

(Z, tanh jpl+Z;)
(Zy+Zg tanh jBl)

Z,=2,=2,

n S

e The hyperbolic tan function tanhjpl can be written as tanh jpl = jtanhl, therefore the input
impedance can be written as

(iZotanBl+2Zy)
(Zy+ jZg tanpl)

Z.=2,=2,
e We, now express some special cases from the above general lossless line input impedance

relations.

Case i: When the line is terminated with characteristics impedance, i.e. Zr=2,

(iZytanBl+2,)
Zin:ZO(Z . ~— %0
o+ JZytanpl)
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e So, the line is terminated with characteristic impedance, the input impedance is equal to the
characteristic impedance. This condition is called matched load condition, which means that
there are no reflections from the load.

Case ii: When the line is terminated with open circuited, i.e. Zg=infinity (),

(jZ,tanBl+Z5)
Zin =Zg (Z :
o+ iZg tanpl)

e Take Zr common from the above expression, the equation reduces to

(j?’tanBHlJ
Zin :Zoc :Zo R

ZO -
— 4+t |
(ZRJFJ anBj

1
7 =Zpe=Zy———
Zin =Zoc =—JZ, cotpl

Case iii: When the line is terminated with short circuited, i.e. Zr=0,

(iZotanBl+2Z5)
"0 (2o + jZg tanl)

Substitute ZR= 0 in the above expression, the equation reduces to
Ziy =Zsc = JZy tan Bl

Note: If the line is terminated with open circuit or short circuit, the input impedance can be purely
imaginary. Depending on the value of length of the line, it may be capacitive or inductive.

e Moreover, from the short circuit and open circuit impedance relations, the characteristic
impedance can be written as

Z
ZorZeo =(jZ,tan Bl 0
ocZsc = (i, B)jtanBI

Zoczsc = Zg

\/ Zoclsc =2
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e From the above relation, it can be concluded, the characteristic impedance of the line can be
measured from open and short circuit Transmission line.

Transmission Line with Load Impedance: -

e In previous lecture, we have derived the expression for input impedance of a transmission line, if the
source voltage and source current is known to us.

In this lecture, we are deriving similar expression, if we know the reinitiating voltage and current,
instead of source voltage and current.

To derive the input impedance expression, consider a basic transmission line, which is terminated at
a distance I, with known terminating voltage and current.

The voltage and current equations, which was derived in our previous lectures with two unknown
constants can be rewritten here as

V = Acoshyz + Bsinhyz

| = —Zi(Asinh vz + Bcoshyz)
0

Where, A and B are constants, Z, is the characteristic impedance.

Now the terminating voltage and current at a distance z=Ican be written as

Vg = Acoshyl + Bsinhyl

Ir = —Zi(Asinh vl +Bcoshyl)
0

To derive the constants A and B, the above voltage and current equations can be multiplied with

coshyl and sinh+l , respectively and add the resultant equations. Then, we get the constants A as

V, coshyl = Acosh? yl + Bsinhyl cosh yl

Iz sinhyl = —Zi(Asinh2 vl + Bsinh yl cosh yl)
0

Vi coshyl +Z, 5 sinhyl = Acosh? yl + Bsinhvyl coshyl — Asinh?yl — Bsinhyl coshyl
V; coshyl +Z, 5 sinhyl = A(cosh? yl —sinh? 1)

e Therefore,

Vi coshyl +Z,lgsinhyl = A
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psinhyl

e Similarly, the constant B can be obtained by multiplying voltage equation wit and current

h coshyl

equation wit , and adding both the equations, we obtain B as

Vg sinhyl —Z, 1 coshyl = Asinhyl coshyl + B cosh® yl — Asinhyl coshyl — Bsinh? vl
V; coshyl —Z, 1 5 sinhyl = B(cosh? yl —sinh? y1)
Vi coshyl —=Z,lg sinhyl =B

e Substituting the values of A and B in the basic equation, we obtain voltage and current at any point
from the terminating point, which can be written as

V =V coshy(l -z) +\£—Rsinh v(I-2)
0

| :\é—Rsinh v(I=2)+ 1z coshy(l -2)
0

e Where, | —zis the distance from the terminating end.
¢ Now from the above expressions, the input impedance z=0 can be written as

Vg =Vg coshy(1-0) + 1:Z,sinhy(1 -0)

Is :\é—Rsinhy(l —0)+ 1z coshy(I-0)
0

Vs _ Vg coshyl +1gZ;sinhyl

ls V—Rsinh vl + I coshyl
Z0

(Zytanhyl +Z;)
(Zy+Zg tanhyl)

n

Ilustrative problem

A source with 50 Q source impedance drives a 50 Q2 transmission line that is 1/8 of wavelength long, terminated
inaload Z, =50 —j25 Q. Calculate:

(i) The reflection coefficient, I'_ (ii) VSWR, (iii) The input impedance seen by the source.

Solution: The given problem can be represented with the following figure
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50Q

- Z,=50Q |7
] —
X J
Y
A8
(i) The reflection coefficient,
1—* — ZL _ZO
bz, +Z,
50— j25)-50 00
_(S02029)50_ 5 g
(50— 125)+50
(il) VSWR
1+ |
VSWR = =1.64
1_|FL|

(iii)The input impedance seen by the source, Z;,

To calculate input impedance, it needs to calculate the electrical length, Sl =

Therefore,

Reflection and Reflction Coefficient: -

_7 Z +JZ,tan gl

in

°Z,+jz, tan gl
_ 50 50— J25+ j50

50+ j50 + 25
=30.8- j3.8Q

=50—j25£)
mh_z
A8 4

Consider a transmission line terminated in a load of impedance Zr which is not equal to the characteristic

impedance, the incident wave from the source will be reflected at the termination.

IARE
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The phenomenon of wave being reflected from termination is called reflection.
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e So, in general, there will be forward and backward waves going in the line. Hence, the general
transmission line consists of both incident and reflection waves. These can be written from the solutions
of transmission line wave equations as

V =ae*"” +bhe™

| = Zio(be‘YZ - ae”z)

e Where, e e7" are the reflected and incident waves, respectively.

e Now the reflection coefficient is defined as the ratio of reflected voltage/current to the incident
voltage/current. From the above equations, the voltage and current reflection coefficient can be written

as,
ae+yZ
=
be™"*
ae ™"
r=-
be "

e To determine the constants in the reflection coefficient expressions shown above, we have to consider the
voltage and current from termination. So, the distance measured from termination in opposite direction
can be expressed as x=-z, the expressions can be simplified as

V =ae " +be”™

| = Zio(byx — ae‘VX)

o Now at the load point i.e. x=0, the voltage V=V and current I=lr. So, the above equations can be
simplified as

Vip=a+b

(b-a)

oL
R Z,
e Solving the above two equations, we obtain

Ve+1RZy
2

b

Similarly,
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Vi =152
R™RZ0 _ 4
2
+yz
e Substitute these equations on voltage or current reflection coefficient expression I" = e we obtain
e
Ve —1rZg pt?
2
Iy =r——"%5—
Vr +1rZ, o7
2
Ve — 1rZ, e
2
N=-—v—~%¢-—
Ve +1rZ o7
2
e The above equations can be simplified as
Vi - Zoe+yz
|
Ty =
R 177"
IR
\i _ Zoe"'YZ
|
r=- VR
R 17"
IR

Vs, . . . ..
e Where, —R is the load impedance Zg, therefore the voltage/current reflection coefficient becomes
R

ZR - Zoe+yz

v = -
Zp+Zpe™"

Z R - Zoe+yz

Fl :_Z —'YZ
r+Z,€

e From the above expression it can be observed that the reflection coefficient completely depends on load
impedance and characteristic impedance.

o Foralossless line, the reflection coefficient can be expressed as
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_ Zg-Zet?

Yz Ze

Z, -2,
Zo+Z,e

| =
¢ Now the magnitude of the voltage/current reflection coefficient can be expressed as
Z,

_ ZR_
[Fun|= Ze+Z,

e Now, we will consider some special cases for reflection coefficient

Case i: When the line is terminated with characteristics impedance, i.e. Zr=Z,,

ZO_ZO

Zy+Z,

Irl=

e So, the line is terminated with characteristic impedance, the magnitude of reflection coefficient equal to
zero. This condition is called matched load condition, which means that there are no reflections from the
load.

Case ii: When the line is terminated with open circuited, i.e. Zg=infinity ()

Case iii: When the line is terminated with short circuited, i.e. Zz=0,

Zp+2,

Irl=

o If the line is terminated with open circuit or short circuit, the magnitude of reflection coefficient is equal
to one. Which indicate the complete wave is reflected from the terminating point. The Table below shows
the behavior of voltage and current at the end of an open circuited or shorted transmission line

Table 1: Reflection properties of open and shorted transmission lines

Transmission Line Effect on voltage Effect on current
Termination
open circuit 100% reflection no phase shift 100% reflection 180 deg phase shift
short circuit 100% reflection 180 deg phase shift 100% reflection no phase shift
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Standing Wave Ratio: -

e When a transmission line (cable) is terminated by an impedance that does not match the characteristic
impedance of the transmission line, not all of the power is absorbed by the termination.

e Part of the power is reflected back down the transmission line. So that the forward (or incident) signal
mixes with the reverse (or reflected) signal cause a standing wave pattern along the transmission line.

e The standing wave pattern along the transmission line is as shown in Figure 1. So, the degree of
voltage/current mismatch on the transmission line can be measured by a quantity called standing wave
ratio(SWR). This can be measured either voltage/current or power using standing wave ratio meter.

Original Signal
Standing Wave l

Reflection

v

Figure 1. Standing wave pattern representation from incident and reflected wave

e The voltage SWR can be defined as the ratio of maximum voltage to minimum voltage along the line.

V,
VSWR] = |-max
Vmin
o  Where, V. Vo are the maximum and minimum voltages of the standing waves.

e The maximum voltage occurs when the incident and reflected waves are added and minimum voltage
occurs when the incident and reflected waves are subtracted. Therefore, the SWR can be written in terms
of incident and reflected voltages as

IVSWR| — Vmax|: |Vi|+lvr|
Vmin‘ [Vi|_|vr|
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1+ \\ir
VSWR|= ——
1-|Vr

Vi

Vo . .
e But, we know the ratio V—r is the reflection coefficientI .
[

e Now the VSWR in terms of reflection coefficient can be written as

1+|r
SWR|=—F—

o Similarly, the reflection coefficient in terms of SWR can be written as

| |_|VSWR|—1
- VSWR|+1

o Now, we will consider some special cases for SWR

Case i: When the reflection coefficient |F| =0

1+/0|
SWR|=——==1
Case ii: When the reflection coefficient |F| =t1
VSWR| = LT
1-1

Illustrative Problem

A source with 50 Q source impedance drives a 50 Q transmission line that is 1/8 of wavelength long, terminated
inaload Z, =50 —j25 Q. Calculate:

(i)The reflection coefficient, I'_ (ii) VSWR, (iii) The input impedance seen by the source.

Solution:The given problem can be represented with the following figure
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50Q

Z,=50Q Z,[F50-i25Q
) —
Y,
Y
A/8
(i) The reflection coefficient,
Fl_ — ZL _ZO
Z +Z,
_ (50— 1.25)—50 0242617
(50— 125)+50
(ii) VSWR
1+ |
VSWR = =1.64
1_|FL|

(iii)The input impedance seen by the source, Z;,

2z
2

Tocalculate input impedance ,it needs to calculate the electrical length, Sl =

|~

E
4
Therefore,

_7 Z +jZ,tan gl
"0z, +jz tan gl
:5050— j.25+ 150

50+ j50+ 25

=30.8—j3.8Q

UHF Lines as Circuit Elements: -

e The lossless transmission lines at ultra-high frequency considered as circuit elements from the special
cases of
v A short at the load,
v An open at the load.

e We know the short circuited and open circuited input impedance are purely imaginary. Those short
circuited and open circuited impedance equations can be rewritten as below.
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Zoe = JZytanl

As the distance | increases from terminating point, the short and open circuit impedance changes and is
purely reactive. Depending on the length of the line, the impedance can be either inductive or capacitive.

Now to study the effect on the length of short circuit and open circuit line, the following special cases
with different length are studied.

Case i: When the length of the line is less than quarter wavelength (0 <l< &j ,

Let I:& , then BI:E
8 4

So that,
Zsc = JZo tan% = JZ,
. T -
Zoc == 140 COtZ ==1Z,

A

Therefore, for first quarter wave length (O <l< §) the short-circuited line acts as inductive and open

circuited line acts as capacitive

Case ii: When the length of the line is greater than quarter wavelength, but less than half wave

length (& <l< &j ,
4 2

Let | :&, then Bl _2n
3 3
So that,
. 2n .
Zsc = 1o tan? =-j/3Z,
, 2n .
Zoc == 140 COt? = j\/3Z,
A | A
Therefore, for length | 4 <i< 2 ], the short-circuited line acts as capacitive and open circuited line acts
as inductive.
IARE
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Case iii: When the length of the line is equal to quarter wavelength [I = %) :

Let |:& , then [3I:E
4 2
So that,
Zye = JZ, tang:iroo

A

Therefore, for quarter wave length ( 4), the short-circuited line looks like a parallel resonant circuit

(parallel resonant circuit impedance is infinity at resonance frequency) and open circuited line looks like
a series resonant circuit (series resonant circuit impedance zero at resonance frequency)

Case iv: When the length of the line is equal to a half wavelength (I = %J :

Let I:% , then Bl=n

So that,
Zye = jZytant=0

Zoc =—JZycot =t

A

Therefore, for half wave length (I 2), the short-circuited line looks like a series resonant circuit

(series resonant circuit impedance zero at resonance frequency) and open circuited line looks like a series
resonant circuit (parallel resonant circuit impedance is infinity at resonance frequency)

Note: -These conditions repeat with multiple one-quarter or one-half wavelengths line.

Impedance Transformation: -

e A transmission line terminated with some impedance, Zg, other than the characteristic impedance, Zo,
input impedance of a transmission line depends on its length, terminating impedance, which is given by

s 7 (Zytanhyl +Zy)
" 70(Z, + Zg tanhyl)
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e  Where v is the line propagation constant

e Thus, to match the input impedance to deliver maximum power to the load, a short section of
transmission line is added to the main transmission line.

e The important short section transmission lines with different lengths are studied here.

e In many situations, the transmission line will have no appreciable loss along the length of the line. So, the

effect of these short section transmission lines, are studied for a lossless line.

e For a lossless line, the attenuation constant is zero and the propagation constant reduces jp, so that the

input impedance relation reduces to

(jZ,tanBl+Zy)
"2y + jZg tan Bl

e Now the important short length of transmission lines are considered with different cases

Case (i) Eight wavelength transmission line (I = %J

LetI:& , then [3I:E
8 4

So that,
(jz0 tann+ZRj
4
Zin :ZO T
(ZO + jZg tan j
B (iZo+ZR)
Zin _ZO .
(Zo + JZR)

. L A
Case (ii) Quarter wavelength transmission line (I = ZJ

LetI:& ., then BI:E
4 2

So that,

IARE Electromagnetic Theory and Transmission Lines Page |
130



2
Zin :Z_O
Zy

Zo = ZinZR

e Which can be called as quarter-wave impedance transformer.

e In other words, if the transmission line is precisely one-quarter wavelength long, the input impedance is
inversely proportional to the load impedance.

A
e Suppose a 50 Q line needs to be matched to a 100 Q load. So that, to eliminate reflections we insert a —

section of transmission line with 70.7€2 characteristic impedance to act as an impedance transformer

Case (iii) Half wavelength transmission line (I = %J

LetI:% , then Bl=mn

So that,

(jiZotanm+2Zg)
(Zy+ jZg tanT)

n

Zp

Z- :ZOZ—
0

n

=ZR

A . .
e A 2 length line transfers the load impedance to the source end.

Impedance Matching: -

e Impedance matching is one of the important aspects of high frequency circuit analysis.

o When UHF line is terminated with load impedance which is not equal to characteristics impedance, a
mismatch occurs.
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e To avoid reflections and power loss from transmission line sections impedance matching techniques can
be used. There are various impedance matching techniques which are discussed in the following:
Quarter Wavelength Transformer

e A quarter wave length of line is generally used

. For matching a resistive load to a transmission line
o For matching two resistive loads
. For matching two transmission lines with unequal characteristic impedances

'''' Ay tieath by |

; Zoy .

i Transformer |
Zor > ] Ze2
—t E__

e 2|

A B

Zo1 Zgp

Figure 1 Quarter wave length of line for different cases

o By the introduction of the quarter wavelength transmission line acting as a transformer and perfectly
matched in between the three cases mentioned above. That is the impedance seen towards right at A
(Figure 1), and impedance seen towards left at B should be same.

e For the transformer we have two parameters to control, the characteristic impedance of the transformer
section, and the length of the transformer section.

e Let us assume that the characteristic impedance of the transformer section isZ,, . So, for quarter wave

length, the transformer inverts the normalized impedance. Therefore, the impedance seen at A towards
right in Figure (a) would be
1 Z, 2

X

Z,= Z
" RIZ, ™ R

e For matching at A, Z,,, should be equal to Z; .i.e.

2
zEax _z,
= Z,, =vRZ,

e Two resistive impedances can be matched by a section of a transmission line which is quarter-
wavelength long and has characteristic impedance equal to the geometric mean of the two resistances.
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e The quarter wavelength transfer is commonly used at the junction of two transmission lines of unequal
characteristic impedances.
Disadvantages

e This technique needs special line of characteristics impedance for every pair of resistances to be matched.

e To add quarter wave length, we have to cut the main transmission line

e To avoid the above disadvantages other methods can be used, which are either open or short circuited
transmission line attached at some position parallel to main transmission line. Those techniques are
called stub matching.

Stub Matching-

The main advantage of this stub matching is

e The length and characteristic impedance remains same
e Since the stub is added in shunt, there is no need to cut the main line
e The susceptance of the stub can be adjusted for perfect matching
The choice of open or shorted stub may depend in practice on a number of factors.

e A short-circuited stub is less prone to leakage of electromagnetic radiation and is somewhat easier to
realize.

e Open circuited stub may be more practical for certain types of transmission lines, for example microstrips
where one would have to drill the insulating substrate to short circuit the two conductors of the line.

e Moreover, based on the number of parallel stubs connected to the line stub matching techniques can be
classified into two types

v Single-Stub Matching Technique
v Double Stub Matching Technique

Single stub matching: -

e In this section, a short-circuited section (stub) of a transmission line connected in parallel to the main
transmission line (Figure 2). since the stub is connected in parallel, so it is easy to deal with admittance
analysis instead of impedance.

e There are two design parameters for single stub matching:
4 The location of the stub with reference to the load can be represented as dguy
v The length of the stub line Lstub
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Yg=1/Zg YR=1/ZR

Figure 2. Stub matching technique
e For proper impedance matching, the admittance at the location of the stub can be written as

1
YA =Ystub +Y(dstub) = Y0 = Z_

0

e Which is show in in Figure 3.

1

Yy =Ygup + ¥ (dseup ) = Yo =
\7_1 H\_’ 0

Input admittance Line admittance at location

of the stub line .1, before the stub is applied

.
e

‘ ¥ (dseun)

I"(Lg YR = 1/ZR

leub

‘ dsmb

Figure 3. Admittance of location and length of stub

Location of the stub:-

e To determine the length and location of the short circuited stubs, consider the input impedance of a
lossless transmission line and convert it to admittance.
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o Let the input impedance of the loss line can be written as

Z(dgy) =2, =2, Zet -JZO tan 7
Z,+ jZ, tan gl

e Converting the impedance into admittance,
_y Yq + Y, tan gl

"0Y 4+ jY, tan gl

e The normalized admittance can be written as

Y—R+jtanﬂl
y :ﬂ:—YO
Yo 1+jY—Rtan,8I
Y0
Y,  Ys+itanpl

Yin = Y, 1+ jy.tan Al

e Separating the real and imaginary parts by rationalizing

:[ Yo+ jtan Al ](1— v tanﬂlj

in

1+ jy, tan gl )\ 1— jy, tan gl
Vet Ygtan® Bl—jy.“tan Sl + jtan Al
" 1+y. tan? gl

Yo (L+tan® Bl) j(1-y,’)tan Bl
= +
1+ytan’ gl - 1+y. tan’ Al

For no reflection, at a distance I=dg,, the real part of the admittance is unity.

Thatis Re[Y,]=Y, or y,=1

1+tan® Sd
S0 at 1=dgup, yR( - zﬁ S“‘b) =1
1+ yR tan ﬂdstub
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yR (1+ tanz ﬂdstub) =1+ yR2 tan2 ﬂdstub

(yR - sz)tanz Bdgy, =1-Yg
1-ye _ 1
(yR_sz) Yr

e
s

dg,, = 2—”tan 1( i]
A

tan2 IBdstub =

Y,

P

e Therefore, the location of short circuited stub is

IARE

Im[yin] = bs =

dstub = i tan - ﬁ
2r Zq

At this location the imaginary part of susceptanceb, of y, can be written as

(1— sz)tan ﬂl . (1_ sz)tan ﬁdstub

1+y.2tan? Bl 1+y. tan? Ad

C(L-y)tan gl (1-ye’)tan Bd,

S ol+yltan? gl 14y tan’ fd,,

1+ szi \ij(l+ Yr)
Yr
v
ie. b= Yo _Yo Yo
Ye R Y0
Yo

Therefore, at length dg, the input admittance is
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yin :1+ Jbs
e If short circuited stub added parallelly at this point with susceptance equl to — jb,, then the admittance
becomes perfectly matched
e Thatis
Yin =1+ Jbs - Jbs
yin =
e Therefore, matching is achieved

=YO

Length of the stub: -

o Now to determine the length of the short-circuited stub, which was represented in Figure 2, consider the
short-circuited stub impedance and convert in to admittance.

e Thatis

Z = jX,=jZ,tan gl

SC

Ysc :_st :_jYO COtﬂI

e The required normalized suspetance of the short circuited stub b, can be written as

B
b, =— =cot gl
v B

S
0

Equating this with

Y, —Y

cot fL,, = ==

RYO

or

Y

tan AL, = S——
Yo _YR

e Converting into impedance,
IARE Electromagnetic Theory and Transmission Lines Page |

137



Z.Z
tanﬁl-stub= 1 : i
Z, Z,
_ ZRZO
_ZR_ZO

e Therefore, the length of short circuited stub is

L —itan‘l[ VZeLo
stub T 2

~— — | forZ,>Z

L itan—{_JZRZo
stub 272_

0 ZR

JforZ0 >Zy

o Any load impedance can be matched to the line by using single stub technique. The drawback of this
approach is that if the load is changed, the location of insertion may have to be moved.

Smith Chart-Configuration and Applications:

* For complex transmission line problems, the use of the formulae becomes increasingly difficult and
inconvenient. An indispensable graphical method of solution is the use of Smith Chart.
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1.0

1.0

» The Smith Chart is used for analyzing and designing transmission-line circuits.
» Impedances represented by normalized values, Zy,

+ Reflection coefficient is 1+ K
Z —

T 1-K
1 1-K . .
— ==——(dimensionless)
z, 1+K
» Horizontal line: The horizontal line running through the center of the Smith chart represents either the
resistive ir the conductive component. Zero resistance or conductance is located on the left end and
infinite resistance or conductance is located on the right end of the line.

« Normalized load admittance is Y. =

» Circles of constant resistance and conductance: Circles of constant resistance are drawn on the Smith
chart tangent to the right-hand side of the chart and its intersection with the centerline. These circles of
constant resistance are used to locate complex impedances and to assist in obtaining solutions to
problems involving the Smith chart.

* Lines of constant reactance: Lines of constant reactance are shown on the Smith chart with curves that
start from a given reactance value on the outer circle and end at the right-hand side of the center line.

IARE Electromagnetic Theory and Transmission Lines Page |
139



A= 180

e =90

Short-circuit

load

=021
=054 -3+
044
-0.54
.61
074
-84
—)94

Open-circuit
load

S Unit circle

]

b = 270° or 90

Fig. Smith Chart (location of maxima and minima)

The types of problems for which Smith charts are used include te following:

1)
2)
3)
4)
5)
6)
7)
8)

9)

IARE

Plotting a complex impedance on a Smith chart

Finding VSWR for a given load

Finding the admittance for a given impedance

Finding the input impedance of a transmission line terminated in a short or open.
Finding the input impedance at any distance from a load Z,.

Locating the first maximum and minimum from any load

Matching a transmission line to a load with a single series stub.

Matching a transmission line with a single parallel stub

Matching a transmission line to a load with two parallel stubs.
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Plotting a Complex Impedance:

To locate a complex impedance, Z = R+-jX or admittance Y = G +- jB on a Smith chart, normalize the
real and imaginary part of the complex impedance.

Locating the value of the normalized real term on the horizontal line scale locates the resistance circle

Locating the normalized value of the imaginary term on the outer circle locates the curve of constant
reactance.

The intersection of the circle and the curve locates the complex impedance on the Smith chart.

Finding the VSWR for a given load:

Normalize the load and plot its location on the Smith chart.

Draw a circle with a radius equal to the distance between the 1.0 point and the location of the normalized
load and the center of the Smith chart as the center.

The intersection of the right-hand side of the circle with the horizontal resistance line locates the value of
the VSWR.

Finding the Input Impedance at any Distance from the Load:

The load impedance is first normalized and is located on the Smith chart.

The VSWR circle is drawn for the load.

A line is drawn from the 1.0 point through the load to the outer wavelength scale.

To locate the input impedance on a Smith chart of the transmission line at any given distance from the

load, advance in clockwise direction from the located point, a distance in wavelength equal to the
distance to the new location on the transmission line.

Power Loss:

Return Power Loss: When an electromagnetic wave travels down a transmission line and encounters a
mismatched load or a discontinuity in the line, part of the incident power is reflected back down the line.

The return loss is defined as:
I:)return = 10 IOglO I:)i/pr
Preturn = 20 Ioglo 1/G

Mismatch Power Loss: The term mismatch loss is used to describe the loss caused by the reflection due
to a mismatched line. It is defined as
Pmismatch =10 |0910 I:)i/(Pi - Pr)
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