
LECTURE NOTES

ON

Engineering Optimization

III B. TECH V SEMESTER

(IARE-R16)

Prepared By:

Mrs.TVanaja,

Assistant Professor

DEPARTMENT OF MECHANICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING
(AUTONOMOUS)

DUNDIGAL, HYDERABAD - 500 043

1

UNIT – I
INTRODUCTION

Optimization in the design process

In the design process (from the basic ideas to the detailed digital mockup of the product),

many aspects should be taken into account.

These requirements are usually connected to safety or economy of the product, but also the

manufacturing, using repairing considerations come to the fore. For example the designer has

to develop cheapest product, while a large number of additional conditions should be met.

Figure 1.1.: The main steps of solving engineering optimization problem [1.1]

A real design process is usually not a linear sequence, but some steps are repeated, to obtain

better solution. The main steps of solving engineering optimization can be seen in Figure 1. It

is worth to remark, that the result of the design process, is depending on the accuracy of the

introduced steps. For example, if a shape optimization should be taken and the structural res-

ponses are calculated numerically, than the error of the structural analysis, can result in accu-

racy in the optimized shape too. The error can come from mesh density or form the incorrect

modeling of the real boundary conditions as well.

Last time the usage of 3D CAD systems and numerical structural analysis techniques has been

increased in the industrial applications. This is because; using these tools wide range of de-

sign processes can be covered. On the other hand the ―time to market‖ became first objective

so the computer-aided technique arises in the early stages of the design process. The modern

numerical simulation tools provide an opportunity to decrease the number of the costly and

time consuming physical experiments. Although the advanced numerical simulation tools and

optimization procedures has a significant role in the product development in the reduction of

the time, but the whole design process cannot be automated.

In case of solving structural optimization task we can choose from analytical and numerical

methods. The analytical methods are often not suitable for the analysis of complex engineer-

ing problems, so this educational material mainly deals with the numerical techniques of the

structural optimization. The numerical procedures based on iterative searching techniques

which lead to an approximate solution. The searching process continues until the so-called

convergence condition is satisfied, so we are sufficiently near the optimal solution.

1.2. The basic elements of an optimization model

1.2.1. Design variables and design parameters

A structural system can be described by a set of quantities, some of which are viewed as va-

riables during the optimization process. Those quantities defining a structural system that are

fixed during the automated design are called pre assigned parameters or design parameters

and they are not varied by the optimization algorithm. Those quantities that are not pre

assigned are called design variables. The pre assigned parameters, together with the design

variables, will completely describe a design.

From the mathematical point of view three types of design variables can be distinguished:

The design variables can be considered as continuous or discrete variables. Generally it is

easier to work with continuous design variables, but a part of the real world problems contains

discrete type of design variables. An intermediate solution, when we know that a large num-

ber of discrete design variable values should be considered, then it will be categorized as

pseudo discrete. In this case, we solve the task considering this variable a continuous design

variable and after the solution the closest possible discrete values will be checked.

From the physical point of view there are four types of the design variables:

1. Mechanical or physical properties of the material (Material design variable)
Material selection presents a special problem. Conventional materials; have discrete proper-

ties, as for example a choice is to be made from a discrete set of materials. If there have a few

numbers of materials, the task is easier, if we perform the structural analysis for each material

separately and comparing the results to choose the optimum material. A typical application is

for reinforced composite materials to determine the angles of the reinforcements. Such type of

design variables can be considered to be continuous ones.

2. topology of the structure, connecting members of the scheme, or the number of members of

the interface schema; (Topology Design Variables)

The topology of the structure can be optimized automatically in certain cases when members

are allowed to reach zero size. This permits elimination of some uneconomical members dur-

ing the optimization process. An example of a topology design variable is if we looking for

the optimal truss structure considering one design variable for each truss element (1 if the

member exists or 0 if the member is absent). This type of design variables, according to the

mathematical classification is not continuous.

3. The shape of the structure (Configurationally or Geometric Design Variables)

This type of design variable leads us to the field of shape optimization. In case of machine

design application, the geometry of the part should be modified close to the stress concentra-

tion areas, in order to reduce the stresses. On other hands, the material can be removed in the

low stress areas, in order to make the structure lighter. So we are looking the best possible

shape of the machine part. For example the variable surface of the structure can be described

by B-Spline surfaces and the control nodes of such splines can be chosen as a design variable.

This is a typical example for shape optimization, and these types of design variables are

usually belong to the continuous category.

4. Cross-Sectional Design Variables or the dimensions of the built-in elements

Mainly for historical reasons, size-optimization is a separate category, which has got the sim-

plest design variables. For example, the cross-sectional areas of the truss structure, the mo-

ment of inertia of a flexural member, or the thickness of a plate are some examples of this

class of design variable. In such cases the design variable is permitted to take only one of a

discrete set of available values. However, as discrete variables increase the computational

time, the cross- sectional design variables are generally assumed to be continuous.

The design variables and design parameters are together clearly define the structure. If the

design variables are known in a given design point, this completely defines the geometry and

other properties of the structure. In order to guarantee this, the chosen design variables must

be independent to each other.

1.2.2. Optimization constraints

Some designs are useful solutions to the optimization problem, but others might be inadequate

in terms of function, behaviour, or other considerations. If a design meets all the requirements

placed on it, it will be called a feasible design. In most cases, the starting design is a feasible

design. The restrictions that must be satisfied in order to produce a feasible design are called

constraints.

From a physical point of view the constraints can be separated into two groups:

Constraints imposed on the design variables and which restrict their range for reasons other

than behaviour considerations will be called design constraints or side constraints. The geo-

metrical optimization constraints describes the lower the upper limit of the design variables.

These are expressed in an explicit form of the design variables. These could be for example a

minimum and maximum thickness of the plate.

Constraints that derive from behaviour requirements will be called behaviour constraints. Li-

mitations on the maximum stresses, displacements, or buckling strength are typical examples

Of behaviour constraints. This type of constraints based on a result of a structural analysis.

Explicit and implicit behaviour constraints are both encountered in practical design. Explicit

behaviour constraints are often given by formulas presented in design codes or specifications.

From the mathematical point of view, in most cases, constraints may usually be expressed as

a set of inequalities:

Gjxi=0 (j=1,...,m ; i=1,...,n), (1.1)

Where m is the number of inequality constraints and xiis the vector of design variables. In a

structural design problem, one has also to consider equality constraints of the general form:

h jxi=0 (j=m+1,...,p), (1.2)

Where p-mis the number of equalities. In many cases equality constraints can be used to elim-

inate variables from the optimization process, thereby reducing their number.

The equality-type constraints can be used to reduce the number of design variables. This type

of constraints may represent also various design considerations such as a desired ratio be-

tween the width of a cross section and its depth.

We may view each design variable as one dimension in a design space and any particular set

of variables as a point in this space. In case of two design variables the design space reduces

to a plan, but in the general case of n variables, we have an n-dimensional hyperspace. A de-

sign which satisfies all the constraints is a feasible design. The set of values of the design va-

riables that satisfy the equation gj(xi) = 0 forms a surface in the design space. It is a surface in

the sense that it cuts the space into two regions: where one where gj(xi) > 0 and the other

gj(xi)<0. The design space and the constraint surfaces for the three-bar truss example are

shown in Figure 1.2. The set of all feasible designs form the feasible region. Points on the

surface are called constrained designs. The j
th

 constraint is said to be active in a design point

for which gj (xi) = 0 and passive if gj (xi) <0. If gj(xi) > 0 the constraint is violated and the cor-

responding design is infeasible.

Figure 1.2.: Optimality constraints in the space of the design variables

1.2.3. The objective function

There usually exist an infinite number of feasible designs. In order to find the best one, it is

necessary to form a function of the variables to use for comparison of feasible design alterna-

tives. The objective function (or cost function) is the function whose least value is usually-

wanted in an optimization procedure. It is a function of the design variables and it may

represent the weight, the cost of the structure, or any other criterion by which some possible

designs are preferred to others. We always assume that the objective function (Z = F(xi)), is to

be minimized, which entails no loss of generality since the minimum of -F(xi) occurs where

the maximum of F(xi) takes place (see Figure 1.3). The selecting the objective function has

got a significant impact on the entire optimization process. For example, if the cost of the

structure is assumed to be proportional to its weight, then the objective function will represent

the weight. The weight of the structure is often of critical importance, but the minimum

weight is not always the cheapest. In general, the objective function represents the most im-

portant single property of a design, but it may represent also a weighted sum of a number of

properties. A general cost function may include the cost of materials, fabrication, transporta-

tion, operation, repair, and many other cost factors. In this case, large numbers of members

are considered in the form of the objective function, where it is appropriate to analyze the

impact of certain members of the product price. Special attention should be paid to the com-

ponents, which can result a "nearly constant" objective function. They are not worth to take

into account. It is not true, that the most complex objective function gives the best results. In

general, the objective function is a nonlinear function of the design variables.

Figure 1.3.: The local extremum of the goal function

It is also possible to optimize simultaneously for multiple objective function, but this is only

recommended if dominant objective function could not be selected, or the objective functions

are in contradiction. This is the field of multi-objective optimization. The simplest solution

technique is if we create a weighted sum of the objective functions and solve the problem as a

standard optimization problem with only one objective function.

Pareto has developed the theory of the multi-objective optimization in 1896. It is important to

note that the solution of an optimization problem with one goal function is generally a design

point in the space of the design variables, while the solution of the Pareto-optimization prob-

lem is a set of design points, called Pareto front. A Pareto optimal solution is found if there is

no other feasible solution that would reduce some objective function without causing a simul-

taneous increase in at least one other objective function.

We illustrated this complicated field with an example about „Optimization of Geometry for

Car Bag‖ (this example was solved by company Sigma technology using the IOSO optimiza-

tion software: www.iosotech.com), which can be found in the attached database for exam-

ples.

1.2.4. Formulating the optimization problem

The general formulation of the constrained optimization problem in the n dimensional Eucli-

dian space is the following:

(1.3)

This is an optimization problem with one goal function (F(xi)), with inequality (g(xi)) and

equality(h(xi)) constraints is formulated for n design variable.

.

http://www.iosotech.com/

UNIT - II

SINGLE-VARIABLEOPTIMIZATION

Only single-variable functions are considered in this chapter. These methods will be used in

later chapters for multi-variable function optimization.

2.1. Optimality Criteria

Sufficient conditions of optimality:

Suppose at point x*, the first derivative is zero and the first nonzero higher order derivative is

denoted by n

(i) If n is odd, x* is a point of inflection

(ii) If n is even, x* is a local optimum

(a) If that derivative is positive, x* is a local minimum

(b) If that derivative is negative, x* is a local maximum.

2.2. Bracketing Algorithms

Finds a lower and an upper bound of the minimum point

2.2.1. Exhaustive Search

Figure 2.1 The exhaustive search method uses equally spaced points.

The exhaustive search method can be used to solve problems where the interval in which the

optimum is known to lie is finite. Let xs and xf denote, respectively, the starting and final points of

the interval of uncertainty.† The exhaustive search method consists of evaluating the objective

function at a predetermined number of equally spaced points in the interval (xs , xf), and reducing

the interval of uncertainty using the assumption of unimodality. Suppose that a function is defined on

the interval (xs ,xf) and let it be evaluated at eight equally spaced interior points x1 to x8. Assuming

that the function values appear as shown in Fig. 5.6, the minimum point must lie, according to the

assumption of unimodality, between points x5 and x7. Thus the interval (x5, x7) can be considered as

the final interval of uncertainty. In general, if the function is evaluated at n equally spaced points in

the original interval of uncertainty of length L0 = xf− xs , and if the optimum value of the

function(among the n function values) turns out to be at point xj , the final interval of uncertainty

Region-EliminationMethods

FIBONACCI METHOD

As stated earlier, the Fibonacci method can be used to find the minimum of a function of one

variable even if the function is not continuous. This method, like many other elimination

methods, has the following limitations:

1. The initial interval of uncertainty, in which the optimum lies, has to be known.

2. The function being optimized has to be unimodal in the initial interval of uncertainty.

3. The exact optimum cannot be located in this method. Only an interval known as the final

interval of uncertainty will be known. The final interval of uncertainty can be made as small as

desired by using more computations.

4. The number of function evaluations to be used in the search or the resolution required has to

be specified before hand. This method makes use of the sequence of Fibonacci numbers, {Fn},

for placing the experiments. These numbers are defined as

F0 = F1 = 1

Fn= Fn−1 + Fn−2, n = 2, 3, 4, . . .

which yield the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,. . . .

Procedure. Let L0 be the initial interval of uncertainty defined by a ≤ x ≤ b and n be the total

number of experiments to be conducted. DefineL∗2 =Fn−2FnL0 (5.5) and place the first two

experiments at points x1 and x2, which are located at a distance of L∗2 from each end of L0.†

This gives‡x1 = a + L∗2 = a +Fn−2Fn L0 x2 = b − L∗2 = b −Fn−2 FnL0 = a +Fn−1 FnL0

Discard part of the interval by using the unimodality assumption. Then there remains a smaller

interval of uncertainty L2 given by§ L2 = L0 − L∗2 = L0_1 −Fn−2 Fn_=Fn−1 FnL0

Thus after conducting n − 1 experiments and discarding the appropriate interval in each step, the

remaining interval will contain one experiment precisely at its middle point. However, the final

experiment, namely, the nth experiment, is also to be placed at the center of the present interval

of uncertainty. That is, the position of the nth experiment will be same as that of (n − 1)th one,

and this is true for whatever value we choose for n. Since no new information can be gained by

placing the nth experiment exactly at the same location as that of the (n − 1)th experiment, we

place the nth experiment very close to the remaining valid experiment, as in the case of the

dichotomous search method. This enables us to obtain the final interval of uncertainty to within

Limits.

The Golden Section Search method is used to find the maximum or minimum of a unimodal

function. (A unimodal function contains only one minimum or maximum on the interval [a,b].

To make the discussion of the method simpler, let us assume that we are trying to find the

maximum of a function. The previously introduced Equal Interval Search method is somewhat

inefficient because if the interval is a small number it can take a long time to find the maximum

of a function. To improve this efficiency, the Golden Section Search method is suggested.

UNT -III

MULTI-VARIABLEOPTIMIZATION

Functions of multiple variables (N variables) are considered for minimization here. Duality

principle can be used to apply these methods to maximization problems.

1.1. Optimality Criteria

A stationary point x is minimum, maximum, or saddle-point if

negative definite, or 2f (x)

2f (x) is positive definite,

Necessary Conditions: For x* to be a local minimum,

Semi definite.

f (x*) =0 and
2f (x*) is positive

Sufficient Conditions: f (x*) =0 and
2f (x*) is positive definite than, x* is an isolated

local minimum of f (x) .

1.2. Direct Search Methods

Use only function values; no gradient information is used.

1.2.1. Simplex Search Method

– A simplex is a set of (N -1) points. At each iteration, a new simplex is created from the

current simplex by fixed transition rules.

– The worst point is projected a suitable distance through the centroid of the remaining

points.

Algorithm:

Step1: Choose L >1,

initialsimplex
1
.

(0, 1), and a termination parameter β . Create an

Step2: Find xh (the worst point), xl (the best point), and xg (next to the

worst point). Calculate xc

Step3: Calculate the reflected point xr ,2xc , xh . Set xnew= xr .

If f (xr)= f(xl) ,set xnew= (1)xc xh (expansion).

Else if f(xr) > f(xh) ,set xnew (<)xc< xh (contraction).

Else if f(xg)> f(xr)> f(xh),set xnew> xc< xh (contraction).

Calculate f(xnew) and replace xh byxnew .

Else go to Step 2.

1.2.2. Powell's Conjugate Direction Method

– Most successful direct search method

– Uses history of iterations to create new search directions

– Based on a quadratic model

– Generate N conjugate directions and perform one-dimensional search in each direction

one at a time

Parallel Subspace Property: Given a quadratic function q(x) , two arbitrary but distinct

points x(1

)

and x
(2)

 , and a direction d. If y(1) is the solution to min q (x(1) d) and y(2) is

the solution to min q (x(2) d) , then the direction

(y(2) y(1))T Cd Diagonal matrix.

a) b)

(y(2) y(1)) is C-conjugate to d or

Figure 3.1 Illustration of the paralell subspace property with two arbitrary points and an arbitrary search direction in

(a). The same can also be achieved from one point and two coordinate points in(b).

Instead of using two points and a direction vector to create one conjugate direction, one point

and coordinate directions can be used to create conjugate directions (Figure3.1).

Extended Parallel Subspace Property: In higher dimensions, if from x(1

)

the point y(1) is

found after searches along each of m(< n) conjugate directions, and similarly if from x(2) the

point y(2) is found after searches along each of m conjugate directions, s(1), s
(2)

,…, s
(m)

,

then the vector (y(2) y(1)) will be the conjugate to all of the m previous directions.

Algorithm:

Step1: Choose a starting point

x(0)

and a set of N linearly independent

directions; possibly s(i) e(i) for i=1, 2,…, N.

Step2: Minimize along N unidirectional search directions using the previous

minimum point to begin the next search. Begin with the search s(1)
direction and end with

s
(N)

 . Thereafter, perform another unidirectional search along s
(1)

 .

Step3: Form a new conjugate direction d using the extended parallel subspace

property.

Step4: If d is small or search directions are linearly independent,

Terminate.

Else replace s
(j)

 s
(j1)

 for all j,N,N=1,...,2.Set s(1) = d / d and go to Step 2.

A test is required to ensure linear independence of conjugate directions. If the function is

quadratic, exactly N loops through steps 2 to 4 are required. If the function is quadratic,

exactly (N -1) loops through Steps 2 to 4 is required. Since in every iteration of the above

algorithm exactly (N -1) unidirectional searches are necessary, a total of (N -1) (N -1)or

(N 2-1) unidirectional searches are necessary to find N conjugate directions. Thereafter, one

final unidirectional search is necessary to obtain the minimum point. Thus, in order to find the

minimum of a quadratic objective function, the conjugate direction method requires a total of

N
2
 unidirectional searches.

Disadvantages:

– It takes usually more than N cycles for non quadratic functions
– One-dimensional searches may not be exact, so directions may not be conjugate

– May halt before the optima is reached

Consider the Himmelblau function:

Minimize

in the interval 0 = x1, x2 =5 .

Step1: We begin with a point x(0)= (0, 4)T. We assume initial search

directions as s(1)= (1, 0)T and s(2)= (0,1)T.

Step2: We first find the minimum point along the search direction s
(1)

 . Any

point along that direction can be written as x
p
= x

(0)
= s

(1)
 , where is a scalar quantity

expressing the distance of the point x
p
 from x

(0)
 . Thus, the point x

p
 can be written as

xp= (0, 4)T. Now the two-variable function

variable as
f(x1,x2) can be expressed in terms of one

,

i

which represents the function value of any point along the direction s(1) and passing through

x
(0)

. Since we are looking for the point for which the function value is minimum, we may

differentiate the above expression with respect to and equate to zero. But in any arbitrary

problem, it may not be possible to write an explicit expression of the single-variable function

F(X) and differentiate. In those cases, the function F(X) can be obtained by substituting

each variable xi by x
p
. Thereafter, any single-variable optimization methods, as described

in,can be used to find the minimum point. The first task is to bracket the minimum and the n

the subsequent task is to find the minimum point. Here, we could have found the

exact minimum solution by differentiating the single-variable function F (X) with respect to

and then equating the term to zero, but we follow the more generic procedure of numerical

differentiation, a method which will be used in many real-world optimization problems. Using

the bounding phase method in the above problem we find that the minimum is bracketed in

the interval (1,4) and using the golden section search we obtain the minimum 2.083

with three decimal places of accuracy. Thus, x(1) (2.083, 4.000)T.

Similarly, we find the minimum point along the second search

direction

x
(1)

 . A general point on that line is 2.083..

s(2) from the point

The optimum point found using a combined application of the bounding phase and the
golden section search method is 1,592 and the corresponding point is

x(2)= (2.083, 2.408)T.

From the point x
(2)

 , we perform a final unidirectional search along the first search direction

and obtain the minimum point x(3)= (2.881, 2.408)T.

Step3:According to the parellel subspace property, we find the new conjugate

direction.

2.881, 2.408 .083,4.000
T
 0.798

Step4: The magnitude of search vector d is not small.Thus, the new conjugate

search directions are

.

This completes one iteration of Powell's conjugate direction method. Figure 3.2 shows the

new conjugate direction on a contour plot of the objective function. With these new search

directions we now proceed to Step2.

Figure 3.2 Two iterations of Powell’s conjugate direction method.

Step2: A single- variable minimization along the search direction s(1) from

the point x(3)= (2.881, 2.408)T results in the new point x(4)= (3.063, 2.045)T. If the

objective function had been a quadratic function, we would have achieved the optimum point

at this step. However, it is interesting to note that the solution x(4) is close to the true mini-

mum of the function. One more unidirectional search along s(2) from the point x(4) results in

the point x(5)= (2.988,2.045)T. Another minimization along s(1)
results in

x(6) = (3.008,2.006)T f (x(6) = 0.004).

Step3: The new conjugate direction is

The unit vector along this direction is (0.816, 0.578)T.

Step4: The new pair of conjugate search directions are

s(1)= (0.448, , 0.894)T

and s(2)=(0.055, 0.039)T respectively. The search direction d (before normalizing) may be

considered to be small and therefore the algorithm may terminate.

We observe that in one iteration of Step 2, (N -1) unidirectional searches are necessary.

Thus, computationally this method may be expensive. In terms of the storage requirement, the
algorithm has to store (N -1) points and N search directions at any stage of the iteration.

1.3. Gradient-based Methods

– Direct search methods are expensive

– Gradient-based methods assume existence of

– All methods employ

f(x) , f (x) , and 2f (x)

i

Where x (k)
is the step length and s(x(k)) is the search direction.

– Usually, x(k) is selected to minimize the function in s(x(k)) direction. Update search

direction iteratively.

Numerical Gradient Approximation

• In real-world engineering problems, gradients are often difficult to calculate.

• Even if they are available, their computation could be erro rprone

• Numerically gradients are computed:

Thecomputationofthefirstderivativewithrespecttoeachvariablerequirestwofunction

evaluations , thustotaling2N function evaluations forth complete first derivative vector.

The computation of the second derivative x
2
f /x

2
 requires three function evaluations, but

the second-order partial derivative
2f /(xi, x j) requires four function evaluations. Thus,

the computation of Hessian matrix requires

symmetry of the matrix).

Cauchy's Method (Steepest Descent)

(2N
2
1) function evaluations (assuming the

Greatest decrease in

Algorithm:

s(x(k)) f (x) direction.

point

Step1: Choose a maximum number of iterations M to be performed, an initial

x
(0)

 , two termination parameters and set k = 0 .

Step2: Calculate f (x(k)) , the first derivative at the point x(k) .

Step3: If f (x
(k)

) x1, Terminate.

Else if k M ,Terminate.

Else go to Step 4.

2

Step4: Perform a unidirectional search to find x(k) usingx2 such that /(

f(x(k-1)) f(x(k) (k) f (x(k))) is minimum. One criterion for termination is when

 (x
(k-1)

) f (x
(k)

) 2.

Step5: Is

Else set k , k-1 and go to Step 2.

Cauchy's method works well when

1.3.1. Newton's Method

x(0)

1? If yes, Terminate.

is far away from x*.

Use a search direction s(x(k)) >2f (x(k))1>f (x(k)) .

Algorithm: Same as Cauchy's method except step 4 is modified:

Step4: Perform a line search to find (k) using 2 such that

f(x(k-1)) f(x(k) (k)2f (x(k))1f (x(k))) is minimum.

Newton's method works well when

1.3.2. Marquardt's Method

x(0) is close to x*.

– A compromise between Cauchy's and Newton's method.

– When the point is far away from the optimum, Cauchy's method is used and when the

point is close to the optimum Newton„s method is used.

Algorithm:

Step1: Choose a starting point, x
(0)

 , the maximum number of iterations, M,

and a termination parameter, . Set k = 0 and x(0)
= 10

4

Step2: Calculate f (x(k)).

(a large number).

Step3: If

Else go to Step 4

f (x
(k)

) or k= M , Terminate.

Set

Step 4:

x(k 1) ? x(k) > s(x(k)) .

Step5: Is

Else go to Step7.

f(x(k-1)) f(x(k)) ? If yes, go to Step 6.

Step6: Set (k- 1) 1(k) , k ,k1, and go to Step2.

Step7: Set
(k)

 2
(k)

and go to Step4.

Need to compute Hessian matrix, which may be cumbersome.

x(k 1) x(k)

x(k)

UNIT-IV

MULTI VARIABLE CONSTARINED OPTIMIZATION

In the previous section we optimized (i.e. found the absolute extrema) a function on a region that

contained its boundary. Finding potential optimal points in the interior of the region isn‟t too bad in

general, all that we needed to do was find the critical points and plug them into the function.

However, as we saw in the examples finding potential optimal points on the boundary was often a

fairly long and messy process.

In this section we are going to take a look at another way of optimizing a function subject to given

constraint(s). The constraint(s) may be the equation(s) that describe the boundary of a region

although in this section we won‟t concentrate on those types of problems since this method just

requires a general constraint and doesn‟t really care where the constraint came from.

So, let‟s get things set up. We want to optimize (i.e. find the minimum and maximum value of) a

function, f(x,y,z) subject to the constraint g(x,y,z)=k. Again, the constraint may be the equation that

describes the boundary of a region or it may not be. The process is actually fairly simple, although

the work can still be a little overwhelming at times.

1. Solve the following system of

equations.∇f(x,y,z)=λ∇g(x,y,z)g(x,y,z)=k∇f(x,y,z)=λ∇g(x,y,z)g(x,y,z)=k

2. Plug in all solutions, (x,y,z) from the first step into f(x,y,z) and identify the minimum and

maximum values, provided they exist and ∇g≠→0∇g≠0→ at the point.

The constant λ, is called the Lagrange Multiplier.

Notice that the system of equations from the method actually has four equations, we just wrote the

system in a simpler form. To see this let‟s take the first equation and put in the definition of the

gradient vector to see what we get.

⟨fx,fy,fz⟩=λ⟨gx,gy,gz⟩=⟨λgx,λgy,λgz⟩

In order for these two vectors to be equal the individual components must also be equal. So, we

actually have three equations here.

Fx=λgxfy

These three equations along with the constraint, g(x,y,z)=cg(x,y,z)=c, give four equations with four

unknowns x, y, z, and λ. Note as well that if we only have functions of two variables then we won‟t

have the third component of the gradient and so will only have three equations in three

unknowns x, y, and λ. As a final note we also need to be careful with the fact that in some cases

minimums and maximums won‟t exist even though the method will seem to imply that they do. In

every problem we‟ll need to make sure that minimums and maximums will exist before we start the

problem.

3

The Method of Lagrange Multipliers is a useful way to determine the minimum or maximum of a

surface subject to a constraint. It is an alternative to the method of substitution and works

particularly well for non-linear constraints. For the following examples, all surfaces will be denoted

as f (x, y) and all constraints as g(x, y) = c . The process follows an algorithm of steps which reveal

another relationship between the input variables that was neither given nor evident beforehand. We

can use this relationship in conjunction with the constraint to determine critical points of the surface

on the constraint.

The Method of Lagrange Multipliers follows these steps:

1) Given a multivariable function f (x, y) and a constraint g(x, y) = c , define the Lagrange function

to be L(x, y) = f (x, y) − λ(g(x, y) − c), where λ (lambda) is multiplied (distributed) through the

constraint portion.

2) Determine the partial derivatives Lx and Ly .

3) Set the partial derivatives Lx and Ly equal to zero.

 4) Make note of any immediate solutions for x and y that satisfy = 0 Lx and Ly = 0 . Often there are

none, so proceed to step 5.

5) Isolate the λ in each equation.

6) Equate the two λ equations, dropping out the λ altogether.

 7) Reduce the equation from step 6 as far as possible. This is the relationship between x and y that

shall be substituted into the constraint.

 8) Substitute this equation into the constraint and algebraically solve for the variable that remains.

This is where the critical points start to be determined.

9) Solve for the other variable by re-evaluating your results in step 8 back into the constraint.

If just one critical point results, you cannot necessarily determine if it is a minimum or maximum

just by itself, so you must study the shape of the surface and make inferences based on its shape and

the relative location of the constraint (this is where a contour map helps). If two or more points

result, then minima and maxima are easily determined by comparing their z-values. Some points

may be neither minima nor maxima and are then ignored.

Kuhn – Tucker conditions for unconstrained optimization with inequality constraints.

In mathematical optimization, the Karush–Kuhn–Tucker (KKT) conditions, also known as

the Kuhn–Tucker conditions, are first derivative tests (sometimes called first-order) necessary

conditions for a solution in nonlinear programming to be optimal, provided that some regularity

conditions are satisfied.

Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the

method of Lagrange multipliers, which allows only equality constraints. Similar to the Lagrange

approach, the constrained maximization (minimization) problem is rewritten as a Lagrange function

whose optimal point is a saddle point, i.e. a global maximum (minimum) over the domain of the

choice variables and a global minimum (maximum) over the multipliers, which is why the Karush–

Kuhn–Tucker theorem is sometimes referred to as the saddle-point theorem

Suppose we have a function f, which we wish to maximise, together with some constraints, gi≤ ci,

which must be satisfied. This leads us to the problem

Max f(x) subject
g1(x) ≤
c1g2(x) ≤
c2

gm(x) ≤ cm

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/First-order_condition
https://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
https://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
https://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
https://en.wikipedia.org/wiki/Nonlinear_programming
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_(or_constraint_qualifications)
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_(or_constraint_qualifications)
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_(or_constraint_qualifications)
https://en.wikipedia.org/wiki/Lagrange_multipliers
https://en.wikipedia.org/wiki/Saddle_point

L
∂xi

xi≥ 0

We have seen how to solve this problem with equality constraints; we introduce a number of mul-

tipliers λ1,.. . ,λm and form the Lagrangian which we partially differentiate with respect to each

xiand each λjand set equal to 0, to get a system of m + n equations with n m variables.

For the inequality case, we do a similar thing. First we form the Lagrangian, L:

L = f(x) + λ1(c1 − g1(x)) + · · · + λm(cm− gm(x))

Result1 The Kuhn-Tucker conditions, which are necessary (but not sufficient) for a point to be a

maximum are:

∂
∂xi

≤0 xi≥0 xi
∂L

 = 0 for all i=1...n

gj(x)≤cj λj≥0 λj(c−gj(x))=0 for all j=1...m

So, for each variable xi we have 3 conditions which must be met; similarly for each constraint

(and hence λ), we have 3 conditions which must be met. Each point that is a solution to this

equation system is a possible candidate for the maximum.

Once we have established all the points, we need to check them individually to see which is the

real maximum.

The conditions are called the complementary slackness conditions. This is because for each set

of three conditions, either the first or these condition can be slack (i.e. not equal to zero),but the

third condition ensures that they cannot both be non-zero.

Notes: This is a maximum only problem. To do a minimisation, you need to maximise the function

−f (x). Secondly, notation in books varies, so some state the constrant conditions as gj(x) ≥ cj, in

which case the signs of some of the terms in the Lagrangian are altered.

Example 1 max f (x1, x2) = 4x1 + 3x2 subject to g(x1, x2) = 2x1 + x2 ≤ 10 and x1, x2 ≥ 0. We first form the

Lagrangian:

L=4x1+3x2+λ(10−2x1−x2)

Hence, the necessary conditions for a point to be a maximum are:

Lx1 = 4 − 2λ≤0 x1≥0 x1(4 − 2λ) =0

Lx2 = 3 − λ≤0 x2≥0 x2(3 − λ) =0

2x1+x2−10≤0 λ≥0 λ(10−2x1−x2) =0

We solve this set of inequalities and equations to find points which may be maxima. Let 1 (ii)

denote the second condition on the first line etc.

1(iii): x1(4 − 2λ) = 0 ⇒x1 = 0 or λ =2

Suppose λ = 2. Then:
2(i): 3 −λ ≤ 0 ⇒ 1 ≤ 0

which is clearly false. Hence, we must have that x1 = 0. Then:

5

2(iii): x2(3 − λ) = 0 ⇒x2 = 0 or λ = 3

We can see that, if x2=0 (to get x1=0):

3(iii): 10λ = 0 ⇒λ = 0

But this contradicts 1 (i). So, we have x1 = 0 and λ = 3.Hence:

3(iii): 3(10 − x2) = 0 ⇒x2 =10

So, we have solved the system and found the only solution, which is x1 = 0, x2 = 10, λ = 3 and

hence f (x1, x2) = 30. As before with equality constraints, λ measures the increase in f (x1, x2) for

a one unit increase in the constraint(i.e.increasingc1=10by1).

In general,solving such systems can be very tedious (although not difficult) if there are more than

4 variables and constraints in total. What you need to do is just plug away at every possible

combi- nation and eliminate those that do not fitth e conditions.

 f(x) to find whether they are the maximum.

For certain types of systems, we can assume the point(s) we find are maxima. This occurs if the

function and the functions gi satisfy some more conditions, known as the Kuhn-Tucker

sufficiency conditions to check them individually to see which is the real maximum.

The conditions are called the complementary slackness conditions. This is because for each set

of three conditions, either the first or these condition can be slack (i.e.not equal to zero), but the

third condition ensures that they cannot both be non-zero.

Notes: This is a maximum only problem. To do a minimisation, you need to maximise the function

−f (x). Secondly, notation in books varies, so some state the constrant conditions as gj(x) ≥ cj, in

which case the signs of some of the terms in the Lagrangian are altered.

Example 1 max f (x1, x2) = 4x1 + 3x2 subject to g(x1, x2) = 2x1 + x2 ≤ 10 and x1, x2 ≥ 0. We first form the

Lagrangian:

L=4x1+3x2+λ(10−2x1−x2)

Hence, the necessary conditions for a point to be maximum are:

Lx1 = 4 − 2λ≤0 x1≥0 x1(4 − 2λ) =0

Lx2 = 3 − λ≤0 x2≥0 x2(3 − λ) =0

2x1+x2−10≤0 λ≥0 λ(10−2x1−x2) =0

We solve this set of inequalities and equations to find points which may be maxima. Let 1 (ii)

denote the second condition on the first line etc.

1(iii): x1(4 − 2λ) = 0 ⇒x1 = 0 or λ =2

Suppose λ = 2. Then:

2(i): 3 −λ ≤ 0 ⇒ 1 ≤ 0

which is clearly false. Hence, we must have that x1 = 0. Then:

 (iii): x2(3 − λ) = 0 ⇒x2 = 0 or λ =3

We can see that, if x2=0 (to get x1=0):

(iii): 10λ = 0 ⇒λ = 0

But this contradicts 1 (i). So, we have x1 = 0 and λ = 3.

Hence:

iii): 3(10 − x2) = 0 ⇒x2 =10

So, we have solved the system and found the only solution, which is x1 = 0, x2 = 10, λ = 3 and

hence f (x1, x2) = 30. As before with equality constraints, λ measures the increase in f (x1, x2) for

a one unit increase in the constraint (i.e. increasing c1=10by1).

In general, solving such systems can be very tedious (although not difficult) if the are more than 4

variables and constraints into. What you need to do is just plug away at every possible combi-

nation and eliminate those that do not fitth conditions. When you have eliminated all impossible

points, you will be left with a few candidate points which you must then check by substitution into

f(x) to find whether they are the maximum.

For certain types of systems, we can assume the point(s) we find are maxima. This occurs if the

function f and the functions gi satisfy some more conditions, known as the Kuhn-Tucker

sufficiency conditions.

Result 2 If the following conditions are satisfied:

1. f (x) is differentiable and concave in the non negative or than t

2. each constraint function gi(x) is differentiable and convex in the non negative or than

3. a point x0 satisfies the Kuhn-Tucker conditions

then the point x0 is a maximum. [The nonnegative or than t is the region where each xi≥ 0]

Example2 Suppose f(x,y)=2x+3y and g(x,y)=x
2
+y

2
≤2. Show that f and g satisfy the Kuhn-Tucker

sufficiency conditions and hence find the maxima of f(x, y).

Well, all linear functions are both convex and concave, so f is certainly concave, and is clearly

differentiable. As for g(x, y): we can show g is convex by showing the differential d
2
g is positive

definite. The Hessian matrix associated with g is:

So clearly |H1|, |H2|>0, so g is convex. Hence, any candidate points we find will automatically be

maxima. As before, we form the Lagrangian:

7

3

L = 2x + 3y + λ(2 − x
2
 − y

2
)

The Kuhn-Tucker conditions imply that:

(1) Lx= 2 − 2λx≤0 x≥0 x(2 − 2λx) =0

(2) Ly= 3 − 2λy≤0 y≥0 y(3−2λy)=0 (3)
 x

2
 + y

2
≤2 λ≥0 λ(2−x

2
−y

2
) = 0

(iii) implies that either x=0 or λx=1. If x=0, then 1 (i) cannot be satisfied, hence λx=1.

Similarly, λy= 2 from (iii) (and clearly x, y, λ >0). Substituting these values for x and y in

(iii), and noting that λ >0,we ge

As λ >0, we must have λ = 1 hence and x = 1 and we have a maximum at this point

UNIT-V

GEOMETRIC AND INTEGER PROGRAMMING

Geometric-Programming

Geometric programming origin at edin 1961 with Zener‟s discovery (1,2,3,4,5) of an inge- nious

method for designing equipment at minimum total cost– a method that is applicable when the

component capital costs and operating costs can be expressed in terms of the design variables via a

certain type of generalized polynomial [one whose exponents need not be positive integers].

Unlike competing analytical methods, which require the solution of a system of non linear

equations derived from the differential calculus, this method requires the solution of a system of linear

equations derived from both the differential calculus and certain in genious transformations. Unlike

competing numerical methods, which minimize the total cost by either “direct search” or steepest the

irnumerous descendants], this method provides formulas that show how the minimum total cost and

associated optimal design depend on the design parameters [such as the unit material costs and power

costs, which are determined externally and hence can not be set by thedesigner].

In1962, Duffin(6,7) significantly enlarged the class of generalized polynomials that can be

minimized with this method – by introducing an ingenious analogue of the “dual vari-ational

principles” that characterize the “network duality” originating from the two “Kir- choff laws” and

“Ohm‟s laws” (originally discovered in the context of electrical networks). In 1964, Duffin and

Peterson (8, 9) extended this “geometric programming duality” and associated methodology to the

minimization of generalized polynomials subject to in equality constraints on other generalized

polynomials.In essence, that development provided a non linear generalization of “linear programming

duality”– one that is frequently applicable to the optimal design of sophisticated equipment and

complicated systems [such as motors, transformers, generators, heat exchangers, power plants and

their associated systems].

In 1967, Duffin, Peterson and Zener (10) published the first book on geometric pro- gramming

t

Q

design. In 1971, Zener (11) published a short introductory book to make geometric pro- gramming

more accessible to design engineers. More recent developments and publications are discussed in later

sections.

An elementary example: The optimal design of a power line

Suppose the capital cost is simply proportion at the volume of the line, namely the product of its

desired length L [a design parameter] and its cross-sectional area t [an independent design variable or

decision variable]. In particular then, the capital cost is CL where C [a design parameter] is the cost

per unit volume of the material making up the line. Also, suppose the operating cost is simply

proportional to the power loss, which is known to be proportional to both L and the line resistivity R

[a design parameter] as well as to the square of the carried current I [a design parameter] while being

inversely proportional to In particular then, the operating cost is where the proportionality constant

D[a design parameter] is determined from the predicted life time of the line as well as the present and

future unit power costs [via standard accounting procedures for expressing the sum of all such costs as

a “present value” determined by interest rates]. In summary, the problem is to find the cross-sectional

area t > 0 that minimizes the total cost

P (t) = c1t
1
+ c2t

−1
 for given coefficients c1 = CL and c2=DLRI

2
. (1)

Such an optimal cross-sectional area t∗ exists, because the positivity of the coefficients c1 and c2

clearly implies that, for t>0, the continuous function P (t) >0 and P (t) → +∞ as either t → 0+ or t →

+∞.

Generalized polynomials

The “objective function” P (t) defined by equation (1) is an example of a “generalized

polynomial ”P(t)= Ti–namely, a sum of terms Ti=cit each of which is a given coefficient ci [usually

determined by design parameters] multiplied into a product tj of the independen t design variables tj

raised to appropriate powers aij, termed exponents. In the “single-variable” generalized polynomial (1),

the independent design variable t is the single scalar variable t1 while the exponents a11 = 1 and a21 =

−1. In the “multi-variable” generalized polynomial

the independent design variable t is the vector variable (t1, t2) while the exponents a11 =−1, a12 = 2, a21

= −1/2 and a22 = −3. Since non-integer exponents aij are mathematically permissible and are, in fact,

needed in many applications, the “natural domain” of a generalized polynomial P (t) is normally t > 0

[meaning that each component tj of t is positive]

so that t
−1/2

 , for example, is defined and real-valued.

 either because of the relevant geometric, physical or economic laws, or because the log of

maijm

a posymonomial Ti= citj is a linear function ln ci+
Σ

aij lntj of the logs, ln tj, of

its independent design variables tj– which makes it relatively easy to use in analytically

approximating empirically determined relations (via “linear regression analysis”). Consequently, it is

not surprising that many realistic optimization problems can be modelled accurately with generalized

polynomials of one type or another.

Traditional calculus and numerical approaches

The differential-calculus approach to minimizing our power-line example P (t), given by equation (1),

is to solve the “optimality condition” dP/dt= 0 for t; that is, solve

c1 − c2t
−2

= 0. (2)

The solution to this nonlinear equation, easily accomplished analytically in this simple case, gives the

optimal design [or“ optimal solution”]

j j

9.2

which in turn provides the minimum total cost [or “minimum value” or “optimal value”]

P ∗= P (t∗) = (c1c2)
1/2 + (c1c2)

1/2 = 2(c1c2)
1/2 = 2(CLDLRI

2
)1/2 = 2LI(CDR)1/2.

However, more complicated “posynomial minimization problems” [with more terms Ti and/or more

independent variables tj] usually can not be solved analytically by solving the appropriate optimality

condition – namely, dP/dt= 0 in the single-variable case, or its multi-variable version ∇P = 0. Prior to the

creation of geometric programming, such minimization problem had to be solved numerically, either via

a type of Newton-Raphson method applied to dP/dt=0 [or ∇P=0], or via a direct-search or descent

method applied directly to P (t). Since all such numerical methods require specific values for the

posynomial coefficients ci, they provide only a specific optimal solution t∗ and optimal value P∗, which

are optimal only for the specific coefficient values ci and hence a very limited range of design- parameter

values.

INTEGER PROGRAMMING

The linear -programming models that have been discussed thus for all have been continuous, in

the sense that decision variables are allowed to be fractional. Often this is a realistic assumption.

For instance, we might easily produce 102
3

gallons of a divisible good such as wine. It also might

be reasonable to accept a solution giving an hourly production of automobiles at 58
1

if the model

were based upon a verage hourly production, and the production had the interpretation of

production rates.

Integer programming models a ris e in practically every area of application of mathematical

programming. To develop a preliminary appreciation for the importance of these models, we

introduce, in this section, three areas where integer programming has played an important role in

supporting managerial decisions. We do not provide the most intricate available formulations in

each case, but rather give basic models and suggest possible extensions.

Capital Budgeting In a typical capital-budgeting problem, decisions involve the selection of a

number of potential investments. The investment decisions might be to choose among possible plant

locations, to select a configuration of capital equipment, or to settle upon a set of research-and-

development projects. Often it makes no sense to consider partial investments in these activities,

and so the problem becomes a go–no-go integer program, where the decision variables are taken to

be x j 0 or 1, indicating that the j th investment is rejected or accepted. Assuming that c j is the

contribution resulting from the j th investment and that ai j is the amount of resource i , such as cash

=
=

or manpower, used on the j th investment, we can state the problem formally as

The objective function incorporates transportation and variable warehousing costs, in addition

to fixed costs for operating warehouses. The constraints (2) indicate that each customer‟s demand

must be met. The summation over the shipment variables xij in the ith constraint of (3) is the

amount of the good shipped from warehouse i. When the warehouse is not opened, yi0 and the

constraint specifies that nothing can be shipped from the warehouse. On the other hand, when the

warehouse is opened and yi1, the constraint simply states that the amount to be shipped from

warehouse can be no larger than the total demand, which is always true. Consequently, constraints

(3) imply restriction (ii) as proposed above.

Although over simplified, this model forms the core for sophisticated and realistic distribution

models incorporating such features as:

1. multi-echelon distribution systems from plant to warehouse to customer;

2. capacity constraints on both plant production and warehouse through put;

3. economies of scale in transportation and operating costs;

4. service considerations such as maximum distribution time from warehouses to customers;

5. multiple products; or

6. conditions preventing splitting of orders (in the model above, the demand for any customer can

be supplied from several warehouses).

These features can be included in the model by changing it in several ways. For example,

warehouse capacities are incorporated by replacing the term involving yi in constraint (3) with yi

Ki, where Ki is the through put capacity of ware house i; multi-echel on distribution may require

triple- subscripted variables xijk denoting the amount to be shipped, from plant it ustomer k

through warehouse j . Further examples of how the simple warehousing model described here can

be modified to incorporate the remaining features mentioned in this list are given in the exercises

at the end of the chapter.

9.1 FORMULATING INTEGERPROGRAMS

The illustrations in the previous section not only have indicated specific integer-programming

applications, but also have suggested how integer variables can be used to provide broad modeling

capabilities beyond those available in linear programming. In many applications, integrality

restrictions reflect natural indivisibilities of the problem under study. For example, when deciding

how many nuclear aircraft carriers to have in th U.S. Navy, fractional solutions clearly are

meaningless, since the optimal number is on the order of one or two. In these situations, the

decision variables are inherently integral by the nature of the decision-making problem.

This is not necessarily the case in every integer-programming application, as illustrated by the

capital- budgeting and the warehouse-location models from the last section. In these models,

integer variables arise from (i) logical conditions, such as if a new product is developed, then a

new plant must be constructed, and from (ii) non-linearities such as fixed costs for opening a

warehouse. Considerations of this nature are so important for modeling that we devote this

section to analyzing and consolidating specific integer- programming formulation techniques,

which can be used as tools for a broad range of applications. When formulating LP's we often

found that, strictly, certain variables should have been regarded as taking integer values but, for

the sake of convenience, we let them take fractional values reasoning that the variables were

likely to be so large that any fractional part could be neglected. Whilst this is acceptable in some

situations, in many cases it is not, and in such cases we must find a numeric solution in which the

variables take integer values.

http://people.brunel.ac.uk/~mastjjb/jeb/or/lp.html

9.2

Problems in which this is the case are called integer programs (IP's) and the subject of solving such

programs is called integer programming (also referred to by the initials IP).

IP's occur frequently because many decisions are essentially discrete (such as yes/no, go/no-go) in

that one (or more) options must be chosen from a finite set of alternatives.

Note here that problems in which some variables can take only integer values and some variables can

take fractional values are called mixed-integer programs (MIP's).

As for formulating LP's the key to formulating IP's is practice. Although there are a number of

standard "tricks" available to cope with situations that often arise in formulating IP's it is probably

true to say that formulating IP's is a much harder task than formulating LP's.

We consider an example integer program below.

Capital budgeting

There are four possible projects, which each run for 3 years and have the following characteristics.

 Capital requirements (£m)

Project Return (£m) Year 1 2 3

1 0.2 0.5 0.3 0.2

2 0.3 1.0 0.8 0.2

3 0.5 1.5 1.5 0.3

4 0.1 0.1 0.4 0.1

Available capital (£m) 3.1 2.5 0.4

We have a decision problem here: Which projects would you choose in order to maximise the

total return?

Capital budgeting solution

We follow the same approach as we used for formulating LP's - namely:

 variables

 constraints

 objective.

We do this below and note here that the only significant change in formulating IP's as opposed to

formulating LP's is in the definition of the variables.

Variables

Here we are trying to decide whether to undertake a project or not (a "go/no-go" decision). One

"trick" in formulating IP's is to introduce variables which take the integer values 0 or 1 and

represent binary decisions (e.g. do a project or not do a project) with typically:

 the positive decision (do something) being represented by the value 1; and

 the negative decision (do nothing) being represented by the value 0.

Such variables are often called zero-one or binary variables

http://people.brunel.ac.uk/~mastjjb/jeb/or/lp.html

To define the variables we use the verbal description of

xj = 1 if we decide to do project j (j=1,...,4)

 = 0 otherwise, i.e. not do project j (j=1,...,4)

Note here that, by definition, the xj are integer variables which must take one of two possible values

(zero or one).

Constraints

The constraints relating to the availability of capital funds each year are

0.5x1 + 1.0x2 + 1.5x3 + 0.1x4 <= 3.1 (year 1)

0.3x1 + 0.8x2 + 1.5x3 + 0.4x4 <= 2.5 (year 2)

0.2x1 + 0.2x2 + 0.3x3 + 0.1x4 <= 0.4 (year 3)

Objective

To maximise the total return - hence we have

maximise 0.2x1 + 0.3x2 + 0.5x3 + 0.1x4

This gives us the complete IP which we write as

maximise 0.2x1 + 0.3x2 + 0.5x3 + 0.1x4

subject to

0.5x1 + 1.0x2 + 1.5x3 + 0.1x4 <= 3.1

0.3x1 + 0.8x2 + 1.5x3 + 0.4x4 <= 2.5

0.2x1 + 0.2x2 + 0.3x3 + 0.1x4 <= 0.4

xj = 0 or 1 j=1,...,4

Note:

 in writing down the complete IP we include the information that xj = 0 or 1 (j=1,...,4) as a

reminder that the variables are integers

 you see the usefulness of defining the variables to take zero/one values - e.g. in the objective

the term 0.2x1 is zero if x1=0 (as we want since no return from project 1 if we do not do it) and

0.2 if x1=1 (again as we want since get a return of 0.2 if we do project 1). Hence effectively

the zero-one nature of the decision variable means that we always capture in the single term

0.2x1 what happens both when we do the project and when we do not do the project.

 you will note that the objective and constraints are linear (i.e. any term in the

constraints/objective is either a constant or a constant multiplied by an unknown). In this

course we deal only with linear integer programs (IP's with a linear objective and linear

constraints). It is plain though that there do exist non-linear integer programs - these are,

however, outside the scope of this course.

 whereas before in formulating LP's if we had integer variables we assumed that we could

ignore any fractional parts it is clear that we cannot do so in this problem e.g. what would be

the physical meaning of a numeric solution with x1=0.4975 for example?

Extensions to this basic problem include:

9.2

 projects of different lengths

 projects with different start/end dates

 adding capital inflows from completed projects

 projects with staged returns

 carrying unused capital forward from year to year

 mutually exclusive projects (can have one or the other but not both)

 projects with a time window for the start time.

How to amend our basic IP to deal with such extensions is given here.

In fact note here that integer programming/quantitative modelling techniques are increasingly being

used for financial problems.

Solving IP's

For solving LP's we have general purpose (independent of the LP being solved) and computationally

effective (able to solve large LP's) algorithms (simplex or interior point).

For solving IP's no similar general purpose and computationally effective algorithms exist.

Indeed theory suggests that no general purpose computationally effective algorithms will ever be

found. This area is known as computational complexity and concerns NP-completeness. It was

developed from the early 1970's onward and basically is a theory concerning "how long it takes

algorithms to run". This means that IP's are a lot harder to solve than LP's.

Solution methods for IP's can be categorised as:

 general purpose (will solve any IP) but potentially computationally ineffective (will only solve

relatively small problems); or

 special purpose (designed for one particular type of IP problem) but potentially

computationally more effective.

Solution methods for IP's can also be categorised as:

 optimal

 heuristic

An optimal algorithm is one which (mathematically) guarantees to find the optimal solution.

It may be that we are not interested in the optimal solution:

 because the size of problem that we want to solve is beyond the computational limit of known

optimal algorithms within the computer time we have available; or

 we could solve optimally but feel that this is not worth the effort (time, money, etc) we would

expend in finding the optimal solution.

In such cases we can use a heuristic algorithm - that is an algorithm that should hopefully find a

feasible solution which, in objective function terms, is close to the optimal solution. In fact it is often

the case that a well-designed heuristic algorithm can give good quality (near-optimal) results.

http://people.brunel.ac.uk/~mastjjb/jeb/or/ipexten.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/solvelp.html

For example a heuristic for our capital budgeting problem would be:

 consider each project in turn

 decide to do the project if this is feasible in the light of previous decisions

Applying this heuristic we would choose to do just project 1 and project 2, giving a total return of 0.5,

which may (or may not) be the optimal solution.

Hence we have four categories that we potentially need to consider:

 general purpose, optimal

 general purpose, heuristic

 special purpose, optimal

 special purpose, heuristic.

Note here that the methods presented below are suitable for solving both IP's (all variables integer)

and MIP's (mixed-integer programs - some variables integer, some variables allowed to take

fractional values).

General purpose optimal solution algorithms

We shall deal with just two general purpose (able to deal with any IP) optimal solution algorithms for

IP's:

 enumeration (sometimes called complete enumeration)

 branch and bound (tree search).

We consider each of these in turn below. Note here that there does exist another general purpose

solution algorithm based upon cutting planes but this is beyond the scope of this course.

Enumeration

Unlike LP (where variables took continuous values (>=0)) in IP's (where all variables are integers)

each variable can only take a finite number of discrete (integer) values.

Hence the obvious solution approach is simply to enumerate all these possibilities - calculating the

value of the objective function at each one and choosing the (feasible) one with the optimal value.

For example for the capital budgeting problem considered above there are 2
4
=16 possible solutions.

These are:

x1 x2 x3 x4

0 0 0 0 do no projects

0 0 0 1 do one project

0 0 1 0

0 1 0 0

1 0 0 0

0 0 1 1 do two projects

9.2

0 1 0 1

1 0 0 1

0 1 1 0

1 0 1 0

1 1 0 0

1 1 1 0 do three projects

1 1 0 1

1 0 1 1

0 1 1 1

1 1 1 1 do four projects

Hence for our example we merely have to examine 16 possibilities before we know precisely what the

best possible solution is. This example illustrates a general truth about integer programming:

What makes solving the problem easy when it is small is precisely what makes it become very

hard very quickly as the problem size increases

This is simply illustrated: suppose we have 100 integer variables each with 2 possible integer values

then there are 2x2x2x ... x2 = 2
100

 (approximately 10
30

) possibilities which we have to enumerate

(obviously many of these possibilities will be infeasible, but until we generate one we cannot check it

against the constraints to see if it is feasible or not).

This number is plainly too many for this approach to solving IP's to be computationally practicable.

To see this consider the fact that the universe is around 10
10

 years old so we would need to have

considered 10
20

 possibilities per year, approximately 4x10
12

 possibilities per second, to have solved

such a problem by now if we started at the beginning of the universe.

Be clear here - conceptually there is not a problem - simply enumerate all possibilities and choose the

best one. But computationally (numerically) this is just impossible.

IP nowadays is often called "combinatorial optimisation" indicating that we are dealing with

optimisation problems with an extremely large (combinatorial) increase in the number of possible

solutions as the problem size increases.

Branch and bound (tree search)

The most effective general purpose optimal algorithm is LP-based tree search (tree search also being

called branch and bound). This is a way of systematically enumerating feasible solutions such that the

optimal integer solution is found.

Where this method differs from the enumeration method is that not all the feasible solutions are

enumerated but only a fraction (hopefully a small fraction) of them. However we can

still guarantee that we will find the optimal integer solution. The method was first put forward in the

early 1960's by Land and Doig.

Consider our example capital budgeting problem. What made this problem difficult was the fact that

the variables were restricted to be integers (zero or one). If the variables had been allowed to be

fractional (takes all values between zero and one for example) then we would have had an LP which

we could easily solve. Suppose that we were to solve this LP relaxation of the problem [replace xj = 0

http://people.brunel.ac.uk/~mastjjb/jeb/or/lprelax.html

or 1 j=1,...,4 by 0 <= xj <= 1 j=1,...,4]. Then using the package we get x2=0.5, x3=1, x1=x4=0 of value

0.65 (i.e. the objective function value of the optimal linear programming solution is 0.65).

As a result of this we now know something about the optimal integer solution, namely that it is <=

0.65, i.e. this value of 0.65 is a (upper) bound on the optimal integer solution. This is because when

we relax the integrality constraint we (as we are maximising) end up with a solution value at least that

of the optimal integer solution (and maybe better).

Consider this LP relaxation solution. We have a variable x2 which is fractional when we need it to be

integer. How can we rid ourselves of this troublesome fractional value? To remove this

troublesome fractional value we can generate two new problems:

 original LP relaxation plus x2=0

 original LP relaxation plus x2=1

then we will claim that the optimal integer solution to the original problem is contained in one of

these two new problems. This process of taking a fractional variable (a variable which takes a

fractional value in the LP relaxation) and explicitly constraining it to each of its integer values is

known as branching. It can be represented diagrammatically as below (in a tree diagram, which is

how the name tree search arises).

We now have two new LP relaxations to solve. If we do this we get:

 P1 - original LP relaxation plus x2=0, solution x1=0.5, x3=1, x2=x4=0 of value 0.6

 P2 - original LP relaxation plus x2=1, solution x2=1, x3=0.67, x1=x4=0 of value 0.63

This can be represented diagrammatically as below.

To find the optimal integer solution we just repeat the process, choosing one of these two problems,

choosing one fractional variable and generating two new problems to solve.

http://people.brunel.ac.uk/~mastjjb/jeb/or/software.html

9.2

Choosing problem P1 we branch on x1 to get our list of LP relaxations as:

 P3 - original LP relaxation plus x2=0 (P1) plus x1=0, solution x3=x4=1, x1=x2=0 of value 0.6

 P4 - original LP relaxation plus x2=0 (P1) plus x1=1, solution x1=1, x3=0.67, x2=x4=0 of value

0.53

 P2 - original LP relaxation plus x2=1, solution x2=1, x3=0.67, x1=x4=0 of value 0.63

This can again be represented diagrammatically as below.

At this stage we have identified a integer feasible solution of value 0.6 at P3. There are no fractional

variables so no branching is necessary and P3 can be dropped from our list of LP relaxations.

Hence we now have new information about our optimal (best) integer solution, namely that it lies

between 0.6 and 0.65 (inclusive).

Consider P4, it has value 0.53 and has a fractional variable (x3). However if we were to branch on

x3 any objective function solution values we get after branching can never be better (higher) than

0.53. As we already have an integer feasible solution of value 0.6 P4 can be dropped from our list of

LP relaxations since branching from it could never find an improved feasible solution. This is known

as bounding - using a known feasible solution to identify that some relaxations are not of any interest

and can be discarded.

Hence we are just left with:

 P2 - original LP relaxation plus x2=1, solution x2=1, x3=0.67, x1=x4=0 of value 0.63

Branching on x3 we get

 P5 - original LP relaxation plus x2=1 (P2) plus x3=0, solution x1=x2=1, x3=x4=0 of value 0.5

 P6 - original LP relaxation plus x2=1 (P2) plus x3=1, problem infeasible

Neither of P5 or P6 lead to further branching so we are done, we have discovered the optimal integer

solution of value 0.6 corresponding to x3=x4=1, x1=x2=0.

The entire process we have gone through to discover this optimal solution (and to prove that it is

optimal) is shown graphically below.

You should be clear as to why 0.6 is the optimal integer solution for this problem, simply put if there

were a better integer solution the above tree search process would (logically) have found it.

Note here that this method, like complete enumeration, also involves powers of two as we progress

down the (binary) tree. However also note that we did not enumerate all possible integer solutions (of

which there are 16). Instead here we solved 7 LP's. This is an important point, and indeed why tree

search works at all. We do not need to examine as many LP's as there are possible solutions. Whilst

the computational efficiency of tree search differs for different problems it is this basic fact that

enables us to solve problems that would be completely beyond us were we to try complete

enumeration.

You may have noticed that in the example above we never had more than one fractional variable in

the LP solution at any tree node. This arises due to the fact that in constructing the above example I

decided to make the situation as simple as possible. In general we might well have more than one

fractional variable at a tree node and so we face a decision as to which variable to choose to branch

on. A simple rule for deciding might be to take the fractional variable which is closest in value to 0.5,

on the basis that the two branches (setting this variable to zero and one respectively) may well perturb

the situation significantly.

Good computer packages (solvers) exist for finding optimal solutions to IP's/MIP's via LP-based tree

search. Many of the computational advances in IP optimal solution methods (e.g. constraint

aggregation, coefficient reduction, problem reduction, automatic generation of valid inequalities) are

included in these packages. Often the key to making successful use of such packages for any

particular problem is to put effort into a good formulation of the problem in terms of the variables and

constraints. By this we mean that for any particular IP there may be a number of valid formulations.

Deciding which formulation to adopt in a solution algorithm is often a combination of experience and

trial and error.

Constraint logic programming (CLP), also called constraint programming, which is essentially branch

and bound but without the bound, can be of use here if:

 the problem cannot be easily expressed in linear mathematics

9.2

 the gap between the LP relaxation solution and the IP optimal solution is so large as to render

LP-based tree search impracticable.

General purpose heuristic solution algorithms

Essentially the only effective approach here is to run a general purpose optimal algorithm and

terminate early (e.g. after a specified computer time).

Special purpose optimal solution algorithms

If we are dealing with one specific type of IP then we might well be able to develop a special purpose

solution algorithm (designed for just this one type of IP) that is more effective computationally than

the general purpose branch and bound method given earlier. These are typically tree search

approaches based upon generating bounds via:

 dual ascent

 lagrangean relaxation and:

o subgradientoptimisation; or

o multiplier adjustment.

Such algorithms, being different for different problems, are really beyond the scope of this course but

suffice to say:

 such algorithms draw upon the concepts, such as branch and bound, outlined previously

 such algorithms often use linear programming via LP relaxation

 such algorithms take advantage of the structure of the constraints of the IP they are solving.

 different methods have different computational performance and their general behaviour is

that each method is computationally effective up to a certain size of problem and then

becomes computationally ineffective (as the effort needed to obtain an optimal solution begins

to increase exponentially in terms of the size of problem considered).

A large amount of academic effort in this field is devoted to generating methods that out-perform

previous methods for the same problem.

On a personal note this is an area with which I am familiar and special purpose algorithms can be

very effective (e.g. a problem dealing with the location of warehouses and involving some 500,000

continuous variables, 500 zero-one variables and 500,000 constraints solved in some 20 minutes).

They can be very successful compared with general purpose optimal algorithms (perhaps an order of

magnitude or more in terms of the size of problem that can be solved).

You should be clear though why a special purpose optimal algorithm can be so computationally more

effective than a general purpose optimal algorithm, it is because you have to put intellectual

effort into designing the algorithm!

Special purpose heuristic solution algorithms

With regard to heuristics we have a number of generic approaches in the literature, for example:

 greedy

http://people.brunel.ac.uk/~mastjjb/jeb/or/lprelax.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/struct.html

 interchange

 bound based heuristics (e.g. lagrangean heuristics)

 tabu search

 simulated annealing

 population heuristics (e.g. genetic algorithms)

By generic here we mean that there is a general framework/approach from which to build an

algorithm. All of these generic approaches however must be tailored for the particular IP we are

considering. In addition we can design heuristics purely for the particular problem we are considering

(problem-specific heuristics).

Structured problems

To illustrate the concept of structure in a mathematical program consider the following LP:

maximise c1x1 + c2x2 + c3x3 + c4 x 4 + c5x5 + c6x6

subject to

x1+x2<= 1

x3+x4<= 1

x5+x6<= 1

xi>= 0 i=1,...,6

where the ci>=0 i=1,...,6 are known constants.

Whilst it is plain that we could solve this LP (via a computer package using simplex or interior point)

it is obvious that the constraints of this LP have a special structure - namely

 each variable appears in just one constraint; and

 each constraint involves only two variables.

Using this information it is clear that the optimal solution of this LP can be obtained by inspection

(technically in polynomial time) and is given by

x1 = 1 if c1>=c2

 = 0 otherwise

x2 = 1-x1

x3 = 1 if c3>=c4

 = 0 otherwise

x4 = 1-x3

x5 = 1 if c5>=c6

 = 0 otherwise

x6 = 1-x5

with the optimal objective function value being given by

max[c1,c2] + max[c3,c4] + max[c5,c6]

i.e. we have obtained the optimal solution without using a complicated algorithm (and, in computer

terms, at considerably less computational cost).

In essence structured problems are problems which can be formulated as LP's/IP's but which, because

of the structure of the constraints, can be solved much more efficiently by algorithms which take

9.2

advantage of this structure (as compared with solving them by using the general LP (simplex/interior

point) or IP (tree search) algorithms).

Examples of structured problems considered in this course are:

 network analysis (PERT/CPM)

 network flow (i.e. assignment, transportation, transhipment and maximum flow)

 shortest path

 spanning tree .

LP relaxation

For any IP we can generate an LP (called the LP relaxation) from the IP by taking the same objective

function and same constraints but with the requirement that variables are integer replaced by

appropriate continuous constraints

e.g. xi = 0 or 1 can be replaced by the two continuous constraints xi >= 0 and xi <= 1

We can then solve this LP relaxation of the original IP.

For example consider the IP for the capital budgeting problem considered before.

The LP relaxation of this IP is given by:

maximise 0.2x1 + 0.3x2 + 0.5x3 + 0.1x4

subject to

0.5x1 + 1.0x2 + 1.5x3 + 0.1x4 <= 3.1

0.3x1 + 0.8x2 + 1.5x3 + 0.4x4 <= 2.5

0.2x1 + 0.2x2 + 0.3x3 + 0.1x4 <= 0.4

xj <= 1 j=1,...,4

xj >= 0 j=1,...,4

If we solve this LP then:

 the LP solution might turn out to have all variables taking integer values at the LP optimal

solution - if so we have found the optimal integer solution (in such a case we have been lucky

and the LP is said to be "naturally integer").

However for the LP relaxation of the capital budgeting problem the LP solution is x1=0, x2=0.5, x3=1,

x4=0, so we have been unlucky.

If we have variables taking fractional values at the LP optimal solution then we can round these to the

nearest integer value. If we do this then:

http://people.brunel.ac.uk/~mastjjb/jeb/or/netanal.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/netflow.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/graph.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/graph.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/ip.html#capitalbud

 this may lead to certain constraints being violated (i.e. we have an infeasible solution) - this

may, or may not, be important.

For example if we round the LP solution given above to x1=0, x2=1, x3=1, x4=0 then the constraints

relating to the amount of available capital in year 3 is violated.

 the solution may be feasible (all constraints satisfied) but the solution may not be the optimal

integer solution.

For example if we round the LP solution given above to x1=0, x2=0, x3=1, x4=0 then all the

constraints are satisfied and we have a feasible solution of value 0.5.

In fact for this particular (very small) problem this is not the optimal solution. In general we can say

that the rounded LP relaxation solution is almost certainly non-optimal and may be very non-optimal

(in the sense that the objective function value of the rounded LP relaxation solution is very far away

from the objective function value of the optimal integer solution).

In general the solution process used in many LP based IP packages is

 specify the IP: objective, constraints, integer variables (typically xj = integer between 0 and n).

 automatically generate the LP relaxation: same objective as IP, same constraints as IP with the

addition of 0<=xj<=n, variables as before but no longer required to be integer

 use the tree search procedure to generate the optimal solution to the IP.

Integer programming formulation examples

Capital budgeting extension

For the integer programming problem given before related to capital budgeting suppose now that we

have the additional condition that either project 1 or project 2 must be chosen (i.e. projects 1 and 2 are

mutually exclusive). To cope with this condition we enlarge the IP given above in the following

manner.

This condition is an example of an either/or condition "either project 1 or project 2 must be chosen".

In terms of the variables we have already defined this condition is "either x1 = 1 or x2 = 1". The

standard trick for dealing with either/or conditions relating to two zero-one variables is to add to the

IP the constraint

 x1 + x2 = 1

To verify that this mathematical description is equivalent to the verbal description "either x1 = 1 or

x2 = 1" we use the fact that x1 and x2 are both zero-one variables.

Choose any one of these two variables (x1, say) and tabulate, for each possible value of the chosen

variable, the meaning of the corresponding mathematical and verbal descriptions as below.

Variable value Mathematical description Verbal description

x1 + x2 = 1 "either x1 = 1 or x2 = 1"

x1 = 0 x2 = 1 x2 = 1

http://people.brunel.ac.uk/~mastjjb/jeb/or/ip.html#tree
http://people.brunel.ac.uk/~mastjjb/jeb/or/ip.html#capbud

9.2

x1 = 1 1 + x2 = 1 x2 = 0

i.e. x2 = 0

It is clear from this tabulation that the mathematical and verbal descriptions are equivalent with the

proviso that we have interpreted the condition "either x1 = 1 or x2 = 1" as meaning that the case x1 =

1 and x2 = 1 (both projects 1 and 2 chosen) cannot occur. If this is not so (i.e. both projects 1 and 2

can be chosen) then we replace the constraint x1 + x2 = 1 by the constraint x1 + x2 >= 1 (i.e. at least

one of projects 1 and 2 must be chosen).

Note here that, in general, we can regard formulating a problem as translating a verbal description of

the problem into an equivalent mathematical description. What we have presented above is a similar

process - translating a specific "either ... or ..." verbal description into an equivalent mathematical

description. Whilst it is not usual to go to the lengths of a complete tabulation (as shown above) to

verify that the verbal and mathematical descriptions are equivalent a complete tabulation is helpful in

clarifying thought and detecting incorrect mathematical descriptions.

Other problems

The main areas in which IP is used in practice include:

 imposition of logical conditions in LP problems (such as the either/or condition dealt with

above)

 blending with a limited number of ingredients

 depot location

 job shop scheduling

 assembly line balancing

 airline crew scheduling

 timetabling

Integer programming example

Recall the blending problem dealt with before under linear programming. To remind you of it we

reproduce it below.

Blending problem

Consider the example of a manufacturer of animal feed who is producing feed mix for dairy cattle. In

our simple example the feed mix contains two active ingredients and a filler to provide bulk. One kg

of feed mix must contain a minimum quantity of each of four nutrients as below:

Nutrient A B C D

gram 90 50 20 2

The ingredients have the following nutrient values and cost

 A B C D Cost/kg

Ingredient 1 (gram/kg) 100 80 40 10 40

http://people.brunel.ac.uk/~mastjjb/jeb/or/lp.html#blend
http://people.brunel.ac.uk/~mastjjb/jeb/or/lp.html

Ingredient 2 (gram/kg) 200 150 20 - 60

What should be the amounts of active ingredients and filler in one kg of feed mix?

Blending problem solution

Variables

In order to solve this problem it is best to think in terms of one kilogram of feed mix. That kilogram is

made up of three parts - ingredient 1, ingredient 2 and filler so: let

x1 = amount (kg) of ingredient 1 in one kg of feed mix

x2 = amount (kg) of ingredient 2 in one kg of feed mix

x3 = amount (kg) of filler in one kg of feed mix

where x1 >= 0, x2 >= 0 and x3 >= 0.

Constraints

 balancing constraint (an implicit constraint due to the definition of the variables)

x1 + x2 + x3 = 1

 nutrient constraints

100x1 + 200x2 >= 90 (nutrient A)

80x1 + 150x2 >= 50 (nutrient B)

40x1 + 20x2 >= 20 (nutrient C)

10x1 >= 2 (nutrient D)

Note the use of an inequality rather than an equality in these constraints, following the rule we put

forward in the Two Mines example, where we assume that the nutrient levels we want are lower

limits on the amount of nutrient in one kg of feed mix.

Objective

Presumably to minimise cost, i.e.

minimise 40x1 + 60x2

which gives us our complete LP model for the blending problem.

Suppose now we have the additional conditions:

 if we use any of ingredient 2 we incur a fixed cost of 15

 we need not satisfy all four nutrient constraints but need only satisfy three of them (i.e.

whereas before the optimal solution required all four nutrient constraints to be satisfied now

the optimal solution could (if it is worthwhile to do so) only have three (any three) of these

nutrient constraints satisfied and the fourth violated.

9.2

Give the complete MIP formulation of the problem with these two new conditions added.

Solution

To cope with the condition that if x2>=0 we have a fixed cost of 15 incurred we have the standard

trick of introducing a zero-one variable y defined by

y = 1 if x2>=0

 = 0 otherwise

and

 add a term +15y to the objective function

and add the additional constraint

 x2 <= [largest value x2 can take]y

In this case it is easy to see that x2 can never be greater than one and hence our additional constraint is

x2<= y.

To cope with condition that need only satisfy three of the four nutrient constraints we introduce four

zero-one variables zi (i=1,2,3,4) where

zi = 1 if nutrient constraint i (i=1,2,3,4) is satisfied

 = 0 otherwise

and add the constraint

 z1+z2+z3+z4 >= 3 (at least 3 constraints satisfied)

and alter the nutrient constraints to be

 100x1 + 200x2 >= 90z1

 80x1 + 150x2 >= 50z2

 40x1 + 20x2 >= 20z3

 10x1 >= 2z4

The logic behind this change is that if a zi=1 then the constraint becomes the original nutrient

constraint which needs to be satisfied. However if a zi=0 then the original nutrient constraint becomes

 same left-hand side >= zero

which (for the four left-hand sides dealt with above) is always true and so can be neglected - meaning

the original nutrient constraint need not be satisfied. Hence the complete (MIP) formulation of the

problem is given by

minimise 40x1 + 60x2 + 15y

subject to

x1 + x2 + x3 = 1

100x1 + 200x2>= 90z1

80x1 + 150x2>= 50z2

40x1 + 20x2>= 20z3

10x1>= 2z4

z1 + z2 + z3 + z4>= 3

x2<= y

zi = 0 or 1 i=1,2,3,4

y = 0 or 1

xi>= 0 i=1,2,3

Integer programming example

In the planning of the monthly production for the next six months a company must, in each month,

operate either a normal shift or an extended shift (if it produces at all). A normal shift costs £100,000

per month and can produce up to 5,000 units per month. An extended shift costs £180,000 per month

and can produce up to 7,500 units per month. Note here that, for either type of shift, the cost incurred

is fixed by a union guarantee agreement and so is independent of the amount produced.

It is estimated that changing from a normal shift in one month to an extended shift in the next month

costs an extra £15,000. No extra cost is incurred in changing from an extended shift in one month to a

normal shift in the next month.

The cost of holding stock is estimated to be £2 per unit per month (based on the stock held at the end

of each month) and the initial stock is 3,000 units (produced by a normal shift). The amount in stock

at the end of month 6 should be at least 2,000 units. The demand for the company's product in each of

the next six months is estimated to be as shown below:

Month 1 2 3 4 5 6

Demand 6,000 6,500 7,500 7,000 6,000 6,000

Production constraints are such that if the company produces anything in a particular month it must

produce at least 2,000 units. If the company wants a production plan for the next six months that

avoids stockouts, formulate their problem as an integer program.

Hint: first formulate the problem allowing non-linear constraints and then attempt to make all the

constraints linear.

Solution

Variables

The decisions that have to be made relate to:

 whether to operate a normal shift or an extended shift in each month; and

 how much to produce each month.

Hence let:

xt = 1 if we operate a normal shift in month t (t=1,2,...,6)

9.2

 = 0 otherwise

yt = 1 if we operate an extended shift in month t (t=1,2,...,6)

 = 0 otherwise

Pt (>= 0) be the amount produced in month t (t=1,2,...,6)

In fact, for this problem, we can ease the formulation by defining three additional variables - namely

let:

zt = 1 if we switch from a normal shift in month t-1 to an extended

shift in month t (t=1,2,...,6)

 = 0 otherwise

It be the closing inventory (amount of stock left) at the end

of month t (t=1,2,...,6)

wt = 1 if we produce in month t, and hence from the production

constraints Pt >= 2000 (t=1,2,...,6)

 = 0 otherwise (i.e. Pt = 0)

The motivation behind introducing the first two of these variables (zt, It) is that in the objective

function we will need terms relating to shift change cost and inventory holding cost. The motivation

behind introducing the third of these variables (wt) is the production constraint "either Pt = 0 or Pt >=

2000", which needs a zero-one variable so that it can be dealt with using the standard trick for

"either/or" constraints.

In any event formulating an IP tends to be an iterative process and if we have made a mistake in

defining variables we will encounter difficulties in formulating the constraints/objective. At that point

we can redefine our variables and reformulate.

Constraints

We first express each constraint in words and then in terms of the variables defined above.

 only operate (at most) one shift each month

xt + yt<= 1 t=1,2,...,6

Note here that we could not have made do with just one variable (xt say) and defined that variable to

be one for a normal shift and zero for an extended shift (since in that case what if we decide not to

produce in a particular month?).

Although we could have introduced a variable indicating no shift (normal or extended) operated in a

particular month this is not necessary as such a variable is equivalent to 1-xt-yt.

 production limits not exceeded

Pt<= 5000xt + 7500yt t=1,2,...,6

Note here the use of addition in the right-hand side of the above equation where we are making use of

the fact that at most one of xt and yt can be one and the other must be zero.

 no stockouts

It>= 0 t=1,2,...,6

 we have an inventory continuity equation of the form

closing stock = opening stock + production - demand

where I0 = 3000. Hence letting Dt = demand in month t (t=1,2,...,6) (a known constant) and assuming

 that opening stock in period t = closing stock in period t-1 and

 that production in period t is available to meet demand in period t

we have that

It = It-1 + Pt - Dt t=1,2,...,6

As noted above this equation assumes that we can meet demand in the current month from goods

produced that month. Any time lag between goods being produced and becoming available to meet

demand is easily incorporated into the above equation. For example for a 2 month time lag we replace

Pt in the above equation by Pt-2 and interpret It as the number of goods in stock at the end of month t

which are available to meet demand i.e. goods are not regarded as being in stock until they are

available to meet demand. Inventory continuity equations of the type shown are common in

production planning problems.

 the amount in stock at the end of month 6 should be at least 2000 units I6>= 2000

 production constraints of the form "either Pt = 0 or Pt >= 2,000".

Here we make use of the standard trick we presented for "either/or" constraints. We have already

defined appropriate zero-one variables wt (t=1,2,...,6) and so we merely need the constraints

Pt<= Mwt t=1,2,...,6

Pt>= 2000wt t=1,2,...,6

Here M is a positive constant and represents the most we can produce in any period t (t=1,2,...,6). A

convenient value for M for this example is M = 7500 (the most we can produce irrespective of the

shift operated).

 we also need to relate the shift change variable zt to the shifts being operated

The obvious constraint is

zt = xt-1yt t=1,2,...,6

since as both xt-1 and yt are zero-one variables zt can only take the value one if both xt-1 and yt are one

(i.e. we operate a normal shift in period t-1 and an extended shift in period t). Looking back to the

verbal description of zt it is clear that the mathematical description given above is equivalent to that

verbal description. (Note here that we define x0 = 1 (y0 = 0)).

This constraint is non-linear. However we are told that we can first formulate the problem with non-

linear constraints and so we proceed. We shall see later how to linearise (generate equivalent linear

constraints for) this equation.

9.2

Objective

We wish to minimise total cost and this is given by

SUM{t=1,...,6}(100000xt + 180000yt + 15000zt + 2It)

Hence our formulation is complete.

Note that, in practise, we would probably regard It and Pt as taking fractional values and round to get

integer values (since they are both large this should be acceptable). Note too here that this is a non-

linear integer program.

Comments

In practice a model of this kind would be used on a "rolling horizon" basis whereby every month or so

it would be updated and resolved to give a new production plan.

The inventory continuity equation presented is quite flexible, being able to accommodate both time

lags (as discussed previously) and wastage. For example if 2% of the stock is wasted each month due

to deterioration/pilfering etc then the inventory continuity equation becomes It = 0.98It-1 + Pt -

Dt. Note that, if necessary, the objective function can include a term related to 0.02It-1 to account for

the loss in financial terms.

In order to linearise (generate equivalent linear constraints) for our non-linear constraint we again use

a standard trick. Note that that equation is of the form

 A = BC

where A, B and C are zero-one variables. The standard trick is that a non-linear constraint of this type

can be replaced by the two linear constraints

 A <= (B+C)/2 and

 A >= B+C-1

To see this we use the fact that as B and C take only zero-one values there are only four possible

cases to consider:

B C A = BC A <= (B+C)/2 A >= B+C-1

Becomes

0 0 A = 0 A <= 0 A >= -1

0 1 A = 0 A <= 0.5 A >= 0

1 0 A = 0 A <= 0.5 A >= 0

1 1 A = 1 A <= 1 A >= 1

Then, recalling that A can also only take zero-one values, it is clear that in each of the four possible

cases the two linear constraints (A <= (B+C)/2 and A >= B+C-1) are equivalent to the single non-

linear constraint (A=BC).

Returning now to our original non-linear constraint

 zt = xt-1yt

this involves the three zero-one variables zt, xt-1 and yt and so we can use our general rule and replace

this non-linear constraint by the two linear constraints

zt<= (xt-1 + yt)/2 t=1,2,...,6

andzt>= xt-1 + yt - 1 t=1,2,...,6

Making this change transforms the non-linear integer program given before into an equivalent linear

integer program.

Integer programming example 1996 MBA exam

A toy manufacturer is planning to produce new toys. The setup cost of the production facilities and

the unit profit for each toy are given below. :

Toy Setup cost (£) Profit (£)

1 45000 12

2 76000 16

The company has two factories that are capable of producing these toys. In order to avoid doubling

the setup cost only one factory could be used.

The production rates of each toy are given below (in units/hour):

 Toy 1 Toy 2

Factory 1 52 38

Factory 2 42 23

Factories 1 and 2, respectively, have 480 and 720 hours of production time available for the

production of these toys. The manufacturer wants to know which of the new toys to

produce, where and how many of each (if any) should be produced so as to maximise the total profit.

 Introducing 0-1 decision variables formulate the above problem as an integer program.

(Do not try to solve it).

 Explain briefly how the above mathematical model can be used in production planning.

Solution

Variables

We need to decide whether to setup a factory to produce a toy or not so let fij = 1 if factory i (i=1,2) is

setup to produce toys of type j (j=1,2), 0 otherwise

We need to decide how many of each toy should be produced in each factory so let xij be the number

of toys of type j (j=1,2) produced in factory i (i=1,2) where xij >=0 and integer.

Constraints

 at each factory cannot exceed the production time available

9.2

x11/52 + x12/38 <= 480

x21/42 + x22/23 <= 720

 cannot produce a toy unless we are setup to do so

x11 <= 52(480)f11

x12 <= 38(480)f12

x21 <= 42(720)f21

x22 <= 23(720)f22

Objective

The objective is to maximise total profit, i.e.

maximise 12(x11+ x21) + 16(x12+ x22) - 45000(f11 + f21) - 76000(f12 + f22)

Note here that the question says that in order to avoid doubling the setup costs only one factory could

be used. This is not a constraint. We can argue that if it is only cost considerations that prevent us

using more than one factory these cost considerations have already been incorporated into the model

given above and the model can decide for us how many factories to use, rather than we artificially

imposing a limit via an explicit constraint on the number of factories that can be used.

The above mathematical model could be used in production planning in the following way:

 enables us to maximise profit, rather than relying on an ad-hoc judgemental approach

 can be used for sensitivity analysis - for example to see how sensitive our production planning

decision is to changes in the production rates

 enables us to see the effect upon production of (say) increasing the profit per unit on toy 1

 enables us to easily replan production in the event of a change in the system (e.g. a reduction

in the available production hours at factory one due to increased work from other products

made at that factory)

 can use on a rolling horizon basis to plan production as time passes (in which case we perhaps

need to introduce a time subscript into the above model)

Integer programming

A project manager in a company is considering a portfolio of 10 large project investments. These

investments differ in the estimated long-run profit (net present value) they will generate as well as in

the amount of capital required.

Let Pj and Cj denote the estimated profit and capital required (both given in units of millions of £) for

investment opportunity j (j=1,...,10) respectively. The total amount of capital available for these

investments is Q (in units of millions of £)

Investment opportunities 3 and 4 are mutually exclusive and so are 5 and 6. Furthermore, neither 5

nor 6 can be undertaken unless either 3 or 4 is undertaken. At least two and at most four investment

opportunities have to be undertaken from the set {1,2,7,8,9,10}.

The project manager wishes to select the combination of capital investments that will maximise the

total estimated long-run profit subject to the restrictions described above.

Formulate this problem using an integer programming model and comment on the difficulties of

solving this model. (Do not actually solve it).

What are the advantages and disadvantages of using this model for portfolio selection?

Solution

Variables

We need to decide whether to use an investment opportunity or not so let xj = 1 if we use investment

opportunity j (j=1,...,10), 0 otherwise

Constraints

 total amount of capital available for these investments is Q

SUM{j=1,...,10}Cjxj <= Q

 investment opportunities 3 and 4 are mutually exclusive and so are 5 and 6

x3 + x4 <= 1

x5 + x6 <= 1

 neither 5 nor 6 can be undertaken unless either 3 or 4 is undertaken

x5 <= x3+ x4

x6 <= x3+ x4

 at least two and at most four investment opportunities have to be undertaken from the set

{1,2,7,8,9,10}

x1 + x2 + x7 + x8 + x9 + x10 >= 2

x1 + x2 + x7 + x8 + x9 + x10 <= 4

Objective

The objective is to maximise the total estimated long-run profit i.e.

maximise SUM{j=1,...,10}Pjxj

The model given above is a very small zero-one integer programming problem with just 10 variables

and 7 constraints and should be very easy to solve. For example even by complete (total) enumeration

there are just 2
10

 = 1024 possible solutions to be examined.

The advantages and disadvantages of using this model for portfolio selection are:

 enables us to maximise profit, rather than relying on an ad-hoc judgemental approach

 can be easily extended to deal with a larger number of potential investment opportunities

9.2

 can be used for sensitivity analysis, for example to see how sensitive our portfolio selection

decision is to changes in the data

 the model fails to take into account any statistical uncertainly (risk) in the data, it is a

completely deterministic model, for example project j might have a (known or estimated)

statistical distribution for its profit Pj and so we might need a model that takes this distribution

into account

Integer programming example 1994 MBA exam

A food is manufactured by refining raw oils and blending them together. The raw oils come in two

categories:

 Vegetable oil:

o VEG1

o VEG2

 Non-vegetable oil:

o OIL1

o OIL2

o OIL3

The prices for buying each oil are given below (in £/tonne)

VEG1 VEG2 OIL1 OIL2 OIL3

115 128 132 109 114

The final product sells at £180 per tonne. Vegetable oils and non-vegetable oils require different

production lines for refining. It is not possible to refine more than 210 tonnes of vegetable oils and

more than 260 tonnes of non-vegetable oils. There is no loss of weight in the refining process and the

cost of refining may be ignored.

There is a technical restriction relating to the hardness of the final product. In the units in which

hardness is measured this must lie between 3.5 and 6.2. It is assumed that hardness blends linearly

and that the hardness of the raw oils is:

VEG1 VEG2 OIL1 OIL2 OIL3

8.8 6.2 1.9 4.3 5.1

It is required to determine what to buy and how to blend the raw oils so that the company maximises

its profit.

 Formulate the above problem as a linear program. (Do not actually solve it).

 What assumptions do you make in solving this problem by linear programming?

The following extra conditions are imposed on the food manufacture problem stated above as a result

of the production process involved:

 the food may never be made up of more than 3 raw oils

 if an oil (vegetable or non-vegetable) is used, at least 30 tonnes of that oil must be used

 if either of VEG1 or VEG2 are used then OIL2 must also be used

Introducing 0-1 integer variables extend the linear programming model you have developed to

encompass these new extra conditions.

Solution

Variables

We need to decide how much of each oil to use so let xi be the number of tonnes of oil of type i used

(i=1,...,5) where i=1 corresponds to VEG1, i=2 corresponds to VEG2, i=3 corresponds to OIL1, i=4

corresponds to OIL2 and i=5 corresponds to OIL3 and where xi >=0 i=1,...,5

Constraints

 cannot refine more than a certain amount of oil

x1 + x2 <= 210

x3 + x4 + x5 <= 260

 hardness of the final product must lie between 3.5 and 6.2

(8.8x1 + 6.2x2 + 1.9x3 + 4.3x4 + 5.1x5)/(x1 + x2 + x3 + x4 + x5) >= 3.5

(8.8x1 + 6.2x2 + 1.9x3 + 4.3x4 + 5.1x5)/(x1 + x2 + x3 + x4 + x5) <= 6.2

Objective

The objective is to maximise total profit, i.e.

maximise 180(x1 + x2 + x3 + x4 + x5) - 115x1 - 128x2 - 132x3 - 109x4 - 114x5

The assumptions we make in solving this problem by linear programming are:

 all data/numbers are accurate

 hardness does indeed blend linearly

 no loss of weight in refining

 can sell all we produce

Integer program

Variables

In order to deal with the extra conditions we need to decide whether to use an oil or not so let yi = 1 if

we use any of oil i (i=1,...,5), 0 otherwise

Constraints

 must relate the amount used (x variables) to the integer variables (y) that specify whether any

is used or not

x1 <= 210y1

x2 <= 210y2

x3 <= 260y3

9.2

x4 <= 260y4

x5 <= 260y5

 the food may never be made up of more than 3 raw oils

y1 + y2 + y3 + y4 + y5 <= 3

 if an oil (vegetable or non-vegetable) is used, at least 30 tonnes of that oil must be used

xi >= 30yi i=1,...,5

 if either of VEG1 or VEG2 are used then OIL2 must also be used

y4 >= y1

y4 >= y2

Objective

The objective is unchanged by the addition of these extra constraints and variables.

Integer programming example 1985 UG exam

A factory works a 24 hour day, 7 day week in producing four products. Since only one product can be

produced at a time the factory operates a system where, throughout one day, the same product is

produced (and then the next day either the same product is produced or the factory produces a

different product). The rate of production is:

Product 1 2 3 4

No. of units produced per hour worked 100 250 190 150

The only complication is that in changing from producing product 1 one day to producing product 2

the next day five working hours are lost (from the 24 hours available to produce product 2 that day)

due to the necessity of cleaning certain oil tanks.

To assist in planning the production for the next week the following data is available:

 Current Demand (units) for each day of the week

Product stock 1 2 3 4 5 6 7

 (units)

1 5000 1500 1700 1900 1000 2000 500 500

2 7000 4000 500 1000 3000 500 1000 2000

3 9000 2000 2000 3000 2000 2000 2000 500

4 8000 3000 2000 2000 1000 1000 500 500

Product 3 was produced on day 0. The factory is not allowed to be idle (i.e. one of the four products

must be produced each day). Stockouts are not allowed. At the end of day 7 there must be (for each

product) at least 1750 units in stock.

If the cost of holding stock is £1.50 per unit for products 1 and 2 but £2.50 per unit for products 3 and

4 (based on the stock held at the end of each day) formulate the problem of planning the production

for the next week as an integer program in which all the constraints are linear.

Solution

Variables

The decisions that have to be made relate to the type of product to produce each day. Hence let:

 xit = 1 if produce product i (i=1,2,3,4) on day t (t=1,2,3,4,5,6,7) = 0 otherwise

In fact, for this problem, we can ease the formulation by defining two additional variables - namely

let:

 Iit be the closing inventory (amount of stock left) of product i (i=1,2,3,4) on day t (t=1,2,...,7)

 Pit be the number of units of product i (i=1,2,3,4) produced on day t (t=1,2,...,7)

Constraints

 only produce one product per day

x1t + x2t + x3t + x4t = 1 t=1,2,...,7

 no stockouts

Iit>= 0 i=1,...,4 t=1,...,7

 we have an inventory continuity equation of the form

closing stock = opening stock + production - demand

Letting Dit represent the demand for product i (i=1,2,3,4) on day t (t=1,2,...,7) we have

I10 = 5000

I20 = 7000

I30 = 9000

I40 = 8000

representing the initial stock situation and

Iit = Iit-1 + Pit - Diti=1,...,4 t=1,...,7

for the inventory continuity equation.

Note here that we assume that we can meet demand in month t from goods produced in month t and

also that the opening stock in month t = the closing stock in month t-1.

 production constraint

9.2

Let Ri represent the work rate (units/hour) for product i (i=1,2,3,4) then the production constraint is

Pit = xit[24Ri] i=1,3,4 t=1,...,7

which covers the production for all except product 2 and

P2t = [24R2]x2t - [5R2]x2tx1t-1 t=1,...,7

i.e. for product 2 we lose 5 hours production if we are producing product 2 in period t and we

produced product 1 the previous period. Note here that we initialise by

x10 = 0

since we know we were not producing product 1 on day 0. Plainly the constraint involving P2t is non-

linear as it involves a term which is the product of two variables. However we can linearise it by

using the trick that given three zero-one variables (A,B,C say) the non-linear constraint

 A = BC

can be replaced by the two linear constraints

 A <= (B + C)/2 and

 A >= B + C - 1

Hence introduce a new variable Zt defined by the verbal description

Zt = 1 if produce product 2 on day t and product 1 on day t-1

 = 0 otherwise

Then

Zt = x2tx1t-1 t=1,...,7

and our non-linear equation becomes

P2t = [24R2]x2t - [5R2]Zt t=1,...,7

and applying our trick the non-linear equation for Zt can be replaced by the two linear equations

Zt<= (x2t + x1t-1)/2 t=1,...,7

Zt>= x2t + x1t-1 - 1 t=1,...,7

 closing stock

Ii7>= 1750 i=1,...,4

 all variables >= 0 and integer, (xit) and (Zt) zero-one variables

Note that, in practise, we would probably regard (Iit) and (Pit) as taking fractional values and round to

get integer values (since they are both quite large this should be acceptable).

Objective

We wish to minimise total cost and this is given by

SUM{t=1,...,7}(1.50I1t + 1.50I2t + 2.50I3t + 2.50I4t)

Note here that this program may not have a feasible solution, i.e. it may simply not be possible to

satisfy all the constraints. This is irrelevant to the process of constructing the model however. Indeed

one advantage of the model may be that it will tell us (once a computational solution technique is

applied) that the problem is infeasible.

Integer programming example 1987 UG exam

A company is attempting to decide the mix of products which it should produce next week. It has

seven products, each with a profit (£) per unit and a production time (man-hours) per unit as shown

below:

Product Profit (£ per unit) Production time (man-hours per unit)

1 10 1.0

2 22 2.0

3 35 3.7

4 19 2.4

5 55 4.5

6 10 0.7

7 115 9.5

The company has 720 man-hours available next week.

 Formulate the problem of how many units (if any) of each product to produce next week as an

integer program in which all the constraints are linear.

Incorporate the following additional restrictions into your integer program (retaining linear

constraints and a linear objective):

 If any of product 7 are produced an additional fixed cost of £2000 is incurred.

 Each unit of product 2 that is produced over 100 units requires a production time of 3.0 man-

hours instead of 2.0 man-hours (e.g. producing 101 units of product 2 requires 100(2.0) +

1(3.0) man-hours).

 If both product 3 and product 4 are produced 75 man-hours are needed for production line set-

up and hence the (effective) number of man-hours available falls to 720 - 75 = 645.

