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Optimization is the act of obtaining the best result under given
circumstances.

Optimization can be defined as the process of finding the
conditions that give the maximum or minimum of a function.

The optimum seeking methods are also known as mathematical
programming techniques and are generally studied as a part of
operations research.

Operations research is a branch of mathematics concerned with
the application of scientific methods and techniques to decision
making problems and with establishing the best or optimal
solutions.



TABLE 1.1 Methods of Operations Research

Mathematical Programming
Techniques

Stochastic Process
Techniques

Statistical Methods

Calculus methods

Calculus of variations

Nonlinear programming

Geometric programming

Quadratic programming

Linear programming

Dynamic programming

Integer programming

Stochastic programming

Separable programming

Multiobjective programming

Network methods: CPM and
PERT

Game theory

Simulated annealing

Genetic algorithms

Neural networks

Statistical decision theory
Markov processes
Queueing theory
Renewal theory
Simulation methods
Reliability theory

Regression analysis

Cluster analysis, pattern
recognition

Design of experiments

Discriminate analysis
(factor analysis)




Mathematical optimization problem:
minimize f,(x)

subject tog.(x)<b, 1=1....m

fo: R R: objective function
X=(Xy, .....,x,,): design variables (unknowns of the problem,

they must be linearly independent)
gi: R" R:(i=1,...,m): inequality constraints

The problem is a constrained optimization problem



« If a point x* corresponds to the minimum value of the function
f (x), the same point also corresponds to the maximum value of
the negative of the function, -f (x). Thus optimization can be
taken to mean minimization since the maximum of a function
can be found by seeking the minimum of the negative of the
same function.
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Figure 1.1 Minimum of f(x) is same as maximum of —f(x).




Constraints

Behaviour constraints: Constraints that represent limitations on the
behaviour or performance of the system are termed behaviour or
functional constraints.

Side constraints: Constraints that represent physical limitations on
design variables such as manufacturing limitations.



In civil engineering, the objective is usually taken as the
minimization of the cost.

In mechanical engineering, the maximization of the mechanical
efficiency is the obvious choice of an objective function.

In aerospace structural design problems, the objective function for
minimization is generally taken as weight.

In some situations, there may be more than one criterion to be
satisfied simultaneously. An optimization problem involving
multiple objective functions is known as a multiobjective
programming problem.



With multiple objectives there arises a possibility of conflict, and one
simple way to handle the problem is to construct an overall objective

function as a linear combination of the conflicting multiple objective
functions.

Thus, If f; (X) and f, (X) denote two objective functions, construct a
new (overall) objective function for optimization as:

where o, and a, are constants whose values indicate the relative
Importance of one objective function to the other.



Classification of optimization problems

Classification based on:

Constraints
Constrained optimization problem
Unconstrained optimization problem

Nature of the design variables
Static optimization problems
Dynamic optimization problems




Classification based on:

Physical structure of the problem
Optimal control problems
Non-optimal control problems

Nature of the equations involved
Nonlinear programming problem
Geometric programming problem
Quadratic programming problem
Linear programming problem



Classification based on:

Permissable values of the design variables
Integer programming problems
Real valued programming problems

Deterministic nature of the variables
Stochastic programming problem
Deterministic programming problem



UNIT - 1I

SINGLE VARIABLE OPTIMIZATION



Useful in finding the optimum solutions of continuous and
differentiable functions

These methods are analytical and make use of the techniques of
differential calculus in locating the optimum points.

Since some of the practical problems involve objective functions that
are not continuous and/or differentiable, the classical optimization
technigues have limited scope In practical applications.



A function of one variable f (x) has a relative or local minimum at x =
x* if f(x*) < f(x*+h) for all sufficiently small positive and negative
values of h

A point x* is called a relative or local maximum if f (x*) > f(x*+h)
for all values of h sufficiently close to zero.

LT

"I" Global minima

Local minima



A function f (x) Is said to have a global or absolute minimum at x* if f
(x*) < f(x) for all x, and not just for all x close to x*, in the domain
over which f (x) is defined.

Similarly, a point x* will be a global maximum of f (x) if f(x*) > 7(x)

for all x in the domain.
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Figure 2.1 Relative and global minima.



derivative df (x) /dx = f’(x) exists as a finite number at X = x*,
then /" (x*)=0

The theorem does not say that the function necessarily will have
a minimum or maximum at every point where the derivative is
zero. e.g. f7(x)=0 at x= 0 for the function shown in figure.
However, this point is neither a minimum nor a maximum. In

eneral, a point x* at which <’ —" i~ ~~ll~d ~ ~tationary point.
flx)
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The theorem does not say what happens if a minimum or a
maximum occurs at a point x* where the derivative fails to
exist. For example, in the figure

lim f(x*+hr)]— 1) _ e (positive)or m™ (negative)
depending on whether h approaches zero through positive or
negative values, respectively. Unless the numbers or are
equal, the derivative f” (x*) does not exist. If /" (x*) does not
exist, the theorem is not applicable.

fix)
' g Negative slope m~

fixt) fe e T




Let /7(x*)=f"(x*)=...=f™D(x*)=0, but f"(x*) # 0. Then f(x*) is
A minimum value of f (x) if f ™W(x*) > 0 and n is even
A maximum value of f (x) if f W(x*) <0 and n is even
Neither a minimum nor a maximum if n is odd

Determine the maximum and minimum values of the function:

Solution: Since f’(x)=60(x*-3x3+2x2)=60x?(x-1)(x-2),
f’(x)=0 at x=0,x=1, and x=2.

The second derivative is:

At x=1, f”(x)=-60 and hence x=1 is a relative maximum. Therefore,
f—f(x=1)=12

At x=2, f”(x)=240 and hence x=2 is a relative minimum. Therefore,
f.=f(x=2) =-11



Solution cont’d:
At x=0, f”’(x)=0 and hence we must investigate the next derivative.

Since  at x=0, x=0 is neither a maximum nor a minimum, and it is an
Inflection point.




« Exhaustive search algorithm (given f(x). a & b)

Step 1 set x;,=a. Ax=(b-a)/n (n1s the number of
intermediate points). ¥, =x, +Ax. and x; =x, +Ar,

Step 2 1If flx,))z f(x,) = f(x;), the minimum point lies in (x.x3),
Terminate:
Else x;, =x,.x, =x,.X; =, + Ax, and go to Step 3.

Step 3 Isx; =D 7 Ifyes, go
to Step 2:

Else no minimum
exists in (a.b) or a boundary
point (a or b) 1s the minimum
point.




Interval Halving Method

Step 1 Choose a lower bound a and an upper bound b. Choose
also a small number €. Let x —(q+b)/2.L =L=b-a.
Compute fx).

Step 2 Set x,=a+L/4, x,=b—L/4. Compute f(x,) and f(x,).

Step 3 If f(x) < f(x,) set b=x,:x, =% go to Step 5:
Else go to Step 4.

Step 4 1If f(x,) <f(x) {a =X, X, = X, 20 to step 5}
Else {a =x;: b =x,: go to step 5}.

Step 5 Calculate L=Db-alf|L|<& Terminate;
Else go to Step 2. ;




EXAMPLE
Minimize flx)=x*+ 5% in the mterval (0.5).

Stepl: £=107: a=0: b=5: L, =5: x, =25 :f(x )=27.85.
Step 2: x,=1.25:x,=3.75
S(x)=44.7. f(x,) =284

Step 3: IS f(x)=<f(x,)? NO.
Step 4 IS f(x)<f(x,)? NO.
hence [1.25-3.75] 1.ea=1.25: Db=3.75.

Step 5: L=2.5: a=1.25:b=3.75: x,=2.5:
x, =125+2) =1.875 x,=3.75-2>/ =3.125:
f(x)=323. f(x,)=27.05




« Step3 IS f(x)<f(x,)? NO.

+ Step4 IS f(x) < f(x,)? YES.
a=2.5. b=3.75; x,, =3.125
« Step5 L=1.25 (3.75-2.5)

1
¥

[teration continues




Successive Quadratic Estimation

» A quadratic curve 1s fitted through three
points

» Start with three points x,, X, and X,

Interpolated

+function, g(z)
\‘
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» A general quadratic function 1s

f(x)= o +a; (X = x;) + @, (x = x ) (X =)

» If (1, x,), (1, X,) and (13, X;) are known,

_ IV W (L)
ﬂ'ﬂ f; 1 II_'IL} 1= I Iz][{ J }

e Minima lies at

- X +X a
y=t17h 4

2 2a,




Algorithm

S1: Let x, be the mitial pomt, A be the step size,
X, =X; TA

S2: Compute f(x,) and f(x,)

S3: If f(x,) > f(x,) Let x5=x,+2 A else x;=X;- A,
Compute (x;)

S4: Determine f_; = min(f,.f,.f;) and X

mun

S5: Compute x

S 6: If ‘fmr- -/® and
all known points

S7: Save the best poimnt and neighbouring points.
Goto 4.

r.-jare small, optima 1s best of




Bracketing Method based on unimodal property of objective function

1) Assume an interval [a,b] with a minima in the range
2) Consider x1 and x2 within the interval.
3) Find out values of f at x=x1,x2 and Compare f{x1) and f(x2)
a) If f(x1) = f(x2) then eliminate [x2,b] and set new interval [a,x2]
b) If f{x1) = f(x2) then eliminate [a,x1] and set new interval [x1,b]
c) If f(x1) = f(x2) then eliminate [a,x1] & [x2,b] and set new interval [x1,x2]

f(x) f(x)
f iy
f2
f1 f(x) i1 2
f1
- 1
E'I x1 =2 !l }x fE 4 X X
1 2




Advantage of Fibonacci Series

* Fibonacci Series: F,=F,=1; F =F_,+F .,
* Hence: 1,1,2,3,5,8,13,21,34,...

* L-bo=Laa

* Hence one point
is always pre-
calculated




Fibonacci Search Algorithm

* Step 1: L=b-a; k = 2; Decide n;
* Step 2: L;=[E=4+1F;+1]L w=a+L,  x,=b-1L,
* Step 3:
— Compute either f(x1) or f(x2) (whichever is not
computed earlier)
— Use region elimination rule

—Setnewaandb

If k=n, TERMINATE else k=k+1 and GOTO Step
2




Golden Section Search Algorithm

Step 1: L=b-a; k = 1; Decide g, map a, b to a'=0; b’'=1
Step 2: L =b’-a’

— w,=a’+0.618L,

— w,=b’-0.618L,,

Step 3:

— Compute either f(w,) or f(w,) (whichever is not computed
earlier)

— Use region elimination rule
— Setnew a’ and b’

If |L,|<e TERMINATE else k=k+1 and GOTO Step 2




Function f(x) is
0.65 —[0.75/(1+x7)] — 0.65*x*tan}(1/x) is minimized using golden section method with n=6

A=0B=3

“*The location of first two expt. Points are defined by L, = 0.3821 ,= (0.382)(3.0)= 1.146

X1=1.1460 x2 =3.0-1.1460 = 1.854 with f1=-0.208 f2=-0.115

Since f1<f2 delete [x,3.0] based on assumption of unimodality and new interval of

uncertainty obtained is [0,x2] = [0, 1.854]

<*The third experiment point is placed at x3 =0 + (x2-x1) = 1.854 — 1.146 = 0.708.

f3=-0.288943 f1=-0.208

Since f3<f1 delete interval [x1,x2].
The new interval of uncertainty is [0,x1] = [0, 1.146]




“* The fourth experiment point is placed at x4 =0 + (x1-x3) = 0.438.
f4=-0.308951 f3=-0.288943

Since f4<f3 delete interval [x3,x1].

The new interval of uncertainty is [0,x3] = [0,0.7080]

* The fifth experiment point is placed at x5 = 0 + (x3-x4) = 0.27.
fA=-0.308951 = f5=-0.278

Since f4<f5 delete interval [0,x5].

The new interval of uncertainty is [x5,x3] = [0.27,0.7080]

“*The last experiment point is placed at x6 = x5 + (x3-x4) = 0.54.
f4=-0.308951 f6=-0.308234

Since f4<f6 delete interval [x6,x3].

The new interval of uncertainty is [x5,x6] = [0.27,0.54]

Ratio of final interval to initial interval is 0.09.




Bounding Phase Method

$Step 1

Choose an initial guess X0 and an increment D. Set K=0
$+Step 2

If f(X0- |D|)=>f(X0)=>f(X0+ |D|) then Dis+ve

f(X0 - |D|) < f(X0) < f(X0+ |D|) then D is —ve

else goto step 1
% Step3

Set Xp., = X, + 2¥*D
% Stepd

If #(X,.q J<f(X,). Set K=K+1 and goto step 3

else, the minimum lies in the interval(X,_, ,X;., ) and terminate

If D is large, accuracy is poor.



Minimize f(x) = x* +54/x ;
“5Step 1 Choose an initial guess X, = 0.6 and an increment D =0.5. Set K =0
“Step 2 Calculate f(X, - |D|) = f(0.1)= 540.010 f(X,) = (0.6)= 90.36
f(X,+ |D|) =(1.1)=50.301 We observe f(0.1)>f(0.6)>f(1.1) therefore D is +ve = 0.5
#Step3 Set X, =X, +2°*D X, = 1.1
“Stepd If f(X; ) = 50.301 < f(X,). Set K =1 and goto step 3

Next guess X, =X, +2*D=2.1

*f(X,) = 30.124<f(X,) therefore set K=2 and goto step 3

*Next guess X3 =X, +2%*D=4.1

*f(¥;) = 29.981<f(X,) therefore set K=3 and goto step 3

*Next guess X,=X;+ 23*D f(X,) = 72.277>f(X;).

*Thus terminate with interval (2.1,8.1)

With D = 0.5 the bracketing is poor.

If D =0.001, the obtained interval is (1.623,4.695).
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MULTI VARIABLE UNCONSTRAINED OPTIMIZATION



» If a function f(x) 1s defined 1n the interval
a < x< b and has a relative mmimum at
x =x* where a < x* < b, and 1t the
derivative df(x)/dx = f’(x) exists as a finite

number at x = x*, then /'(x*)=0




Proof -

* It 1s g1ven that
f'(x)=1im f(x*+h;‘f(x*)....................1

h—0

Exists as a definite number, which we want to
prove to be zero. Since x* 1s a relative minimum,
we have

f=fix*+h)
for all values of / sufficiently close to zero. Hence

f(-"*Jrh)—f{I*)}{] if h>0
) =

fare) = f G _ o
e E

<0




Thus equation / gives the limit as / tends to
zero through positive values as

o) >0

while / gives the limit as / tends to zero
through negative values as

fx%) <0

The only way to satisfy both the equations
above 1s to have

[ =0

This proves the theorem




o Letf'(x*) = f7(x*) = ..........=fTD(x¥
(x*)=0, but f7(x*)=0
* Then f(x) 1s
(1) a minimum value of ffx) if /W (x*)>0 and n
1S even ;
* (11) a maximum value of f{x) if /™(x*)<0 and
— 1seven :

* (111) nerther a maximum nor a mimimum 1f » 1s
odd.




* Proof : Applying Taylor’s theorem with reminder
after » terms. we have

fe*+h) = (f )+ If (r*)+—f (%) (h"_;),f“" " (%)
Fl

+h—Tf':“J(x*+i9f?} ﬁ}?‘ D<@ <1
!

Smce [f'(x*)=f"(x*)=.... = " (xF) =0

Hence the above equatiﬂu becomes

f(x*+h)—f(x*)—( ) 7 (x*+an)




When » 1s even, /i"/n! 1s positive mrrespective of
wether h 1s positive or negative, and hence
™ (x*+h)-f{x*) will have the same sign as that of

S (%)

Thus x* will be
Relative minimum if /7(x*) is positive
Relative maximum if /7(x*) is negative

When n 1s odd /#/n! changes sign with the change
in the sign of /7 and hence the point x * 1s neither
MAax1mui Nor a MInimum.

In this case point x * 1s called a point of inflection




Gradient based Methods

Algorithms require derivative information

Many real world problems, difficult to obtain
information about derivatives

— Computations involved
— Nature of problem
Still gradient methods are effective and popular

Recommended to use in problems where derivative
information available

Global optimum occurs where gradient is zero

the search process terminates where gradient is zero
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UNIDIRECTIONAL SEARCH Min Point

- CONSIDEER A DIRECTION S
x(a)=x+as

- REDUCE TO
Min f(«x)

- SOLVE AS
A SINGLE VARIABLE PROBLEM




Uni directional search (example)

Min {(x,, X,) = (¥x,-10)? + (x,-10)?
S =(2, 5) (search direction)
X =(2, 1) (Initial guess)




Hooke Jeeves pattern search

* Pattern Search ---

— Create a set of search directions iteratively
— Should be linearly independent

* A combination of exploratory and pattern moves

— Exploratory — find the best pomt in the vicinity of the
current point

— Pattern — Jump 1n the direction of change. 1f better then
continue, else reduce size of exploratory move and
confinue




Exploratory move

Current solution 1s x; set1=1; x =x¢

S2: f . =min (f, 7, f); set x corresponding
tof .

mun

S3:If1=N,goto4d;else1=1+1,gotol

S4: It x # X, success, else failure




Pattern Move

« S1: Choose x©, A, forI=1, 2, ...N, ¢, and
setk=10

* S2: Perform exploratory move with x¥ as
base point;

— If success, x¥*1 =x, go to 4 else goto 3
o S3: If |A] < e, terminate
— Elseset A, = A,/ o --- V1, go to 2




Example :
Consider the Himmelblau function:

J(xxy) = (x5 +x, —11)7 + (o +x; = 7)°
Solution

Step 1 Selection of initial conditions
1. Initial Point : x@ =(0.0)7
2. Increment vector : A=(0.5,0.5)"
3. Reduction factor : o =2

4. Termination parameter : & =107

5. Iteration counter :




+ Step 2
Perform an Iteration of the exploratory move

with base point as x = x©

Thusweset x=x% =(0,0)" and i=1

The exploratory move will be performed with the
following steps




Steps for the Exploratory move

Step 1 : Explore the vicinity of the variable xi
Calculate the function values at three points
(x@+Ax =(0.5.0.5) £* = £((05,05)7)=157.81

x@ =(0,0)7 f=f(0,0)7")=170

(x@ —A X =(-05.05" 7 =/(-0505)")=17181
Step 2 : Take the Minimum of above function and
corresponding point
Step 3 : As i=1: all variables are not explored
Increment counter /=2 and explore second variable.

First iteration completed




Stepl: At this point the base pointis  x =(0.5,0)" explore
the variable x2 and calculate the function values.

7= £((05,0.5")=144.12
f=£((0.5,01)=157.81
£~ = £((0.5.-0.5)")=165.62

Step 2 : fmin = 144.12 and point , x=(0.5,0.5)

Step 3 : As i=2 move to the step 4 of the exploratory move
Step 4 : ( of the Exploratory move )

Since x # x° the move 1s success and we set
x=(0.5,0.5)"




« As the move is success. set x” =x=(0.5.0.5)" move
to step 4

STEP 4 : We set k=1 and perform Pattern move
P, =G + P = x))=2(0.5.0.5" —(0,0)" =@.D”

Step 5 : Perform another exploratory move as before
and with x::' as the base point.

The new point is x=(1.5.1.5)"
Set the new point x** =x=(1.5.1.5)7
Step 6 : f(x*)=63.12 is smaller than f(x")=144.12

Proceed to next step to perform another pattern move




STEP 4 : Set k=2 and create a new point
¥, =2x® —xM)=(2.52.57
Note: as x““is better than x, a jump along the direction

(x® —x) is made, this will take search closer to
[rue minimum

STEP 5 : Perform another exploratory move to find any
better point around the new point.

Performing the move on both variables we have
New point
¥ =3.0,2.0)

This point 1s the frue minimum point




In the example the minimum of the Hookes-Jeeves
algorithm happen in two iterations : this may not be
the case always

Even though the minimum point 1s reached there 1s
no way of finding whether the optimum 1s reached
or not

The algorithm proceeds until the norm 1f the
increment vector is small.

STEP 6 : function value at new point
F(x*)=0< f(x*)=63.12

Thus move on to step 4




Step 2 : Perform an exploratory move with the
following as current point x® =(3.0,2.0)7

The exploratory move on both the variables 1s failure
and we obtain x =(3.0,2.0)7

thus we proceed to Step 3

Step 3 : Since||A| is not small reduce the increment
vector and move to Step 2.

The new increment vector 1s A =(0.125.0.125)"

The algorithm now continues with step 2 and step 3
until H&H is smaller than the termination factor.

The final solution is x =(3.0.2.0)" with the function
value 0




POWELL’S CONJUGATE DIRECTION METHOD

For a quadratic function IN 2 VARIABLES
- TAKE 2 POINTS x! & x? AND
- A DIRECTION d’

IF vyl IS A SOLUTION OF MIN  f(x'+d) &
y2IS A SOLUTION OF MIN  £(x 4 id)

THEN  (y-y!) IS CONJUGATETO d

OPTIMUM LIES ALONG (y*-yY)




Alternate to the above method

- One point (x') and both coordinate
directions ((1.0)" and (0,1)")

- Can be used to create a pair of conjugate
directions (d and (3> —y'))

z(t) o)

1

Ty
(b)

- AR b TMciecdion of b wasallad suhenaca nranerty with




» Point(y') obtained by unidirectional search
along (1.0)" from the point (') .

* Point (x*) obtained by unidirectional search
along (0.1)” from the point (")

« Point(y’) obtamned by unidirectional search
along (L0)" from the point(x®)

The figure shown also follows the Parallel
Subspace Property.

This requires Three Unidirectional searches.




Thus the point ¥ can be written as x*=(a,4)*

Now the two variable function can be expressed in
terms of one variable

F(a)=(a" =7) +(a +9)°

We are looking for the point which the function value
1S mInIMmum.

== Following the procedure of numerical differentiation.
Using the bounding phase method. the mimmimmum 1s
bracketed in the interval (/,4). and using the golden
search method the minimum a*=2.083 with three
decimals places of accuracy. Thus x/ = (2.083,4.00)1




Step 3 : According to the parallel subspace property.
we find the new conjugate direction
s =(10)7
Step 4 : the magnitude of search vector d 1s not
small. Thus the new conjugate search direction are

s® =(0.798,-1.592)7 /H(O.798=—1.592)T H
= (0.448,—0.894)7

This completes one iteration of Powell’s conjugate
direction method.




Step 2 : A single variable minimization along the search
direction s from the point x®)=(2.881.2.408)T results
in the new point x = (3.063,2.045)

One more unidirectional search along the s* from the
point x* results 1n the point x°. Another minimization
along s! results n x°

Step 3 : the new conjugate direction 1s
d=(x'9 —x™)=(0.055,-0.039)
The unit vector along this direction 1s ( 0.816,-0.578)




Step 4 : The new pair of conjugate search direction
are

sW =(0.448.-0.894)" s =(0.055,-0.039)7

The search direction d ( before normalizing ) may
be considered to be small and therefore the
algorithm may be terminated
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Langrangian Method

» The Lagrangian approach transfers a constrained optimization
problem into

» an unconstrained optimization problem and
» a pricing problem.

» T he new function to be optimized is called the Lagrangian.

» For each constraint, a shadow price is introduced, called a
Lagrange multiplier.

» In the new unconstrained optimization problem a constraint
can be violated, but only at a cost.

» The pricing problem is to find shadow prices for the
constraints such that the solutions to the new and the original
optimization problem are identical.

» L(x,y)=1f(x,y)+ g(x,y)+Xg(x,y) +...+ Akgk(x,y).




. Make an informed guess about which constraints are binding
at the optimum.

. Suppose there are k™ such constraints. Set the Lagrange
multipliers for all other kK — k™ constraints to zero, i.e. ignore
these constraints.

. Solve the first-order conditions
OL/Ix =0,0L/0y = 0,

together with the conditions that the k™ constraints hold with
equality. Note that we obtain a system of k™ 4+ 2 equations for
the same number of unknowns.

. Check whether the solution is indeed an unconstrained
optimum of the Lagrangian. This may be difficult.

. Check that the Lagrange multipliers are all non-negative and
that the solution (x*, y*) satisfies all the constraints.

. If 4) or 5) are violated, start again at 1) with a new guess.




» Suppose we are given numbers A1, As. ...\ and a pair of
numbers (x*, y*) such that

» A1, Ao, ... Ak, i.e. Lagrange multipliers are nonnegative;

» (x*,y") satisfies all the constraints, i.e.
g(x*,y*) =2 0,Yk=1,2,.,K;

> (x*,y*) is an unconstrained maximum of the Lagrangian L;

» The complementary slackness conditions A g (x*, y*) = 0 are
satisfied, i.e. either the kth Lagrange multiplier is zero or the
kth constraint binds.

» Then (x*,y") is a maximum for the constrained maximization
problem.




The Lagrangian approach does not immediately tell us, which
constraints are binding in the optimum. We have to start with
an informed guess using all problem-specific information.

We write down the Lagrangian assuming that only certain
constraints bind.

We solve the system of simultaneous equations consisting of
the FOCs and the binding constraints.

We check if the solution satisfies the other constraints and
that Lagrange multipliers are nonnegative.

We check if the solution found is an unconstrained optimum
of the Lagrangian.




» Suppose only constraint g is binding.
» The FOCs are then

of __\ 9

Ix 1 ox Ox '

of dg
_ _}‘(1

dy dy

» We can get rid of A; to obtain the following system to solve:

of JOx  Og1/0x
of /9y  0g1/dy’

gi(x,y)=0.




Kuhn Tucker Conditions

Given general problem

min f(z)

zeR"
subject to h;(z) <0, i=1,...m
li(x)=0, j=1,...7r

The Karush-Kuhn-Tucker conditions or KKT conditions are:

e 0€0f(x)+ > udhi(x)+ Y v;0l;(x) (stationarity)
i=1 j=1

e u;-hi(z) =0 for all i (complementary slackness)

o hi(x) <0, £;(x) =0 forall i,j (primal feasibility)

e u; >0 for all 2 (dual feasibility)




Let 2™ and uw*, v* be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater’s condition). Then

f@™) = g(u,v")
= min f(z)+ Y ufhi(z)+ Y vit;(z)
i=1 j=1

reR"

< f@) + ) uthi(at) + ) viti(a)
i=1 j=1
< f(z%)

In other words, all these inequalities are actually equalities




Two things to learn from this:

e The point * minimizes L(z,u*,v*) over x € R™. Hence the
subdifferential of L(x,u*, v*) must contain 0 at x = x*—this
is exactly the stationarity condition

e We must have Y ", u*hi(z*) = 0, and since each term here
is < 0, this implies uXh;(x*) = 0 for every i—this is exactly
complementary slackness

Primal and dual feasibility obviously hold. Hence, we've shown:

If * and w™,v™ are primal and dual solutions, with zero duality
gap, then z*, u*, v* satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity
of our problem, i.e. of f.h;, {;)




If there exists x*, u*, v* that satisfy the KKT conditions, then

g(u*,v*) = f(a*) + Y urhi(a*) + ) vit;(a*)
i=1 j=1
= f(z%)

where the first equality holds from stationarity, and the second
holds from complementary slackness

Therefore duality gap is zero (and z* and u*, v* are primal and
dual feasible) so x* and u*,v* are primal and dual optimal. l.e.,
we've shown:

If 2* and u*,v* satisfy the KKT conditions, then x* and u*, v*

are primal and dual solutions




Quadratic programming

Quadratic with equality constraints

Consider for @) = 0,

. L T
min — Tr+c x
rckn 2 Q

subject to Az =0
E.g., as in Newton step for mingcpn f(x) subject to Az =1b

Convex problem, no inequality constraints, so by KKT conditions:
x is a solution if and only if

Q AT x| | —c

A 0 wl| | 0
for some wu. Linear system combines stationarity, primal feasibility
(complementary slackness and dual feasibility are vacuous)




Example from B & V page 245: consider problem

T

;1’51[1&1}1 — z; log(av; + ;)
1=

subject to x > 0, 1Tz=1

Information theory: think of log(a; 4+ x;) as communication rate of
1th channel. KKT conditions:

—1/(es+z;))—u; +v=0, i=1,...n
wi-z; =0, i=1,...n, >0, 1Tz=1, u>0

Eliminate u:

1/(j+z;) <v, i=1,...n
(v —1/(a; +x;)) =0, i=1,...n, >0, 1Tz=1




Let’s return the lasso problem: given response y € R™, predictors
A € R™P (columns Ay, ... A,), solve

1
in —|ly — Az|* + A
min S|y — Az|[" + Allz(;

KKT conditions:
AT (y — Az) = Xs

where s € d||z||1, i.e.,
(1} ifx>0

sie s {—1} ifx; <0
—1,1] if 25 =0

Now we read off important fact: if |[AT (y — Az)| < A, then z; = 0
.. we'll return to this problem shortly




UNIT-V

GEOMETRIC AND INTEGER PROGRAMMING



Integer Programming

Integer programming is a branch of mathematical programming or optimization.
A general mathematical programming problem can be stated as
max f(x) reScCR"Y, (1)

where f is called the objective function and it is a function defined on S, and S
is the so-called constfraint set or admissible set.

Every = € S 1s called a feasible solution. Moreover., if there is #* such that

oo > f(z*) = f(x)

for all x € S. then x* 1s called an optimal solution to (1).

The goal of mathematical programming is to establish if an optimal solution

exists and to find one. or all. optimal solutions.




An integer programming problem is a mathematical programming problem in

which
ScZz™ cC IR,

where Z™ is the set of all n-dimensional vectors with integer components.

A mixed integer programming problem 1s a mathematical programming problem

in which at least one. but not all. of the components of x € S are required to be
integer.

From an applied point of view. it i1s convenient to regard problem (1) as a model

of decision making in which S represents the set of admissible decisions and f
assigns a utility or profit to each r € 5.




The problem (1) 1s called a linear programming (LP) problem if

f=cx S={xr|Azxr=b,z = 0},

where c € R'V™™, A € IR™ ™ and b € IR™*!. Moreover. the inequality = = 0
has to be understood componentwise. i.e. x; = (0 for all 1.

Note that the set S'is convex. j.e. ifzr € Sandy € Sthenar+ (1 —a)y € S
forall « € [0, 1].

A set defined by linear constraints 1s called a polyhedron or a polytope.




Minimization problems can be rewritten as maximization problems noting that

— min(—f(z)) = max f(z).

Inequality constraints can be converted into equality constraints by adding

auxiliary variables. For example
ar<b < ar+s=0 s52=10,

and
ar>b < ar—t=0 t=0.

The variables s and t are known as slack or surplus variables.




The LP problem obtained by dropping the integrality constraint from the ILP

problem (2) will be referred to as the corresponding LP problem.

In general. the problem

Py : max f(x) r €5
is said to be a relaxation of the problem

Ps : max f(x) r € 5o

if
S1 2 5s.

Similarly. P 1s said to be a restriction of F;.




The concepts of relaxation and restriction are often used in mathematical

programming. Note that if 2° is an optimal solution to P; and =* is an optimal

solution to P then
f(z%) = f(z*).

Moreover. if £° € S5 then z° 1s an optimal solution to Ps.
An important special case of the ILP problem 1s the so-called binary ILP
problem described by

max exr
Az = b (3)
r > (0 binary.

(x binary means r; = O or ; = 1 for all 2.)




Capital budgeting. A firm has n projects to undertake but. because of budget

restrictions. not all can be selected.

Project j has a present value of ¢;. and requires an investment of a;; in the fime

period 2. where ¢ = 1, - - -, m. The capital available in time period 7 1s b;.

The problem of maximizing the total present value subject to the budget

constraints can be written as

T
max ZJ:]_ CJEJ
T R
ST jage; <bi,  i=1l.-,m

x; = 0,1, 1=1,---.,n

where x; = 1 if the project j is selected and x; = 0 if the project 7 is not

selected.




Dichotomies. Consider the problem max f(z) with = € S subject to

g(z) =0 or h(z) = 0. (4)
This 1s in general a difficult problem. However. the dichotomy (4) is equivalent
to
glz) = og

hz) > (1-0)h
i) binary,

where g and h are known finite lower bounds on g and A. In fact.

d=0=g(z) =0 and h(z) = h

d=1=g(z) =g and h(z) = 0.




The fixed charge problem. In general the cost of an activity is a nonlinear

function of the activity level x. given by
d+ecr tftax =0

f{I):{U ifz=0.

If d > 0 and f is to be minimized, we have the problem

min cx + dy

r = 0
r—uy < 0
y = 0,1,

where y 1s an indicator of whether or not the activity 1s undertaken. and u 1s a

known. finite. upper bound for z. The second constraint guarantees that x > (0

implies y = 1.




The plant location problem. Consider n customers. the j-th one requiring b;

units of a commodity. There are m locations in which plants may operate to
satisfy the demands.

There 1s a fixed charge of d; for opening plant 7. and the unity cost for supplying

customer j from plant 7 is ¢;;. The capacity of plant 7 1s J;.

The problem i1s
m T
min zﬂijIz‘j + diy;
i=1 j=1
Z?:l Tij = bi

> i—1 T —hiyi <0
xi; = 0, yi =0, 1.




The knapsack problem. Suppose n different types of scientific equipment are

considered for inclusion on a space vehicle.
Let c; be the scientific value per unit and a; the weight per unit of the j-th type.

If the total weight limitation is b. the problem of maximizing the total value of

the equipment taken i1s

T
max E Cj.T.j
=1

Z_;l:]_ ajT; E b

x; = 0, integer,

where x; is the number of units of the j-th type included.




The feasible region is the shaded area in the figure.
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The optimum of the relaxed (non-integer) problem is located at (%, %] with a

value of the objective function equal to ?%.




Enumeration. Without plotting the admissible set it 1s possible to obtain an

upper bound on the number of feasible points.
The first constraint. together with nonnegativity of the x;. implies 0 < z; < 5.
The third constraint implies 0 < x; < 3.

This limits the feasible points to 24 (16 are infeasible. and 8 are feasible).

By total enumeration one could find the optimal point (x1, z9) = (3,1).




With some work one can reduce the number of candidate optimal solutions.

Adding the first and second constraints yields 229 < 5. which implies o < 2.

and reduces the upper bound on the number of feasible points to 12.

Note that the feasible point (3, 0) yields a value of the objective function equal
to 6. Thus every optimal solution should be such that 2z, 4+ x5 > 6.

The above. together with o < 2 yields 2z = 4.

In summary. we have reduced the number of candidate optimal points to 6:

(2,0) (2,1) (2,2) (3,00 (3,1) (3,2).




Of these points. (2,0) and (2, 1) yields a value of the objective smaller than 6.

Moreover. since the non-integer optimum of the objective 1s T%: it follows that
2r1 + x9 < T, which rules out (3, 2).

The candidates for optimality have been reduced to
(2,2) (3,0) (3,1),

from which. by direct computation. one obtains the optimum (3, 1).

The main 1dea of enumeration methods 1s thus to explore, explicitly or

implicitly. a set of integer points containing the set of adnmussible points.




Suppose the set S = {x | Ar = b, > 0 integer} of feasible solutions of an

ILP problem is bounded. hence contains a finite number of points.

Define the convex hull of 5. namely
S+:{y|y:Zﬂ:iﬂ:i, a = 0, Zaf:l,mi e S}

Then
SCSTCT={x| Az =b,z = 0}

and the optimal solution of

max cr re S

can be computed solving

max caT re ST,




The computation of ST is in general very difficult. and involves several cuts.

In practice. a small number of good cuts 1s enough to generate a LP problem
with an mteger solution. which coincides with the solution of the given ILP

problem.

For the considered example. from the optimal solution of the corresponding LP

problem one has

3
211 —|—1'g£71=?2:.-:1 + 19 < 7.

Moreover

2r1 taxo < Tandxy 2 0= 22, < 7= 2 < 3.




max 2ry + =9

r1+ 0 <5hH — 11+ 1o <0 bry + 229 < 21

r; = 0 Integer

and

max 211 + o

1+ 10 <H —r1+ 10 <0 bxr1 + 220 < 21
ry <3 2r1 + 29 <7
IEED

have the same optimal solution (the point (3, 1)) which is integer.







Thank you




