
1

UNIT-I

INTRODUCTION TO EMBEDDED
SYSTEMS

Definition of embedded system

2

INTRODUCTION

 An embedded system is a combination of computer hardware and

software, either fixed in capability or programmable, designed for a

specific function or functions within a larger system.

 An embedded system is an electronic system, which includes a single chip

microcomputers (Microcontrollers) like the ARM or Cortex or Stellaris LM3S1968.

 Examples of embedded systems include washing machines, printers,

automobiles, cameras, industrial machines and more.

 He

CHARACTERISTICS OF AN EMBEDDED SYSTEM

3

Characteristics of an Embedded System: The important characteristics of an
embedded system are

• Speed (bytes/sec) : Should be high speed
•

• Power (watts) : Low power dissipation
•

• Size and weight: As far as possible small in size and low weight
•

• Accuracy (% error) : Must be very accurate
•

• Adaptability: High adaptability and accessibility.
•

• Reliability: Must be reliable over a long period of time.

Categories of embedded systems

4

Embedded system VS Generalpurpose system

5

Embedded System VS General Purpose System

• The difference between an embedded system and a general purpose computer
system is one of purpose, and to a much lesser extent, design.

• While a general purpose system can be used for many things, an embedded
system is only meant for one purpose.

• General Purpose Systems The difference between an embedded system and a
general purpose computer system is one of purpose, and to a much lesser
extent, design.

• While a general purpose system can be used for many things, an embedded
system is only meant for one purpose. General Purpose Systems

Embedded system VS Generalpurpose system

6

General Purpose Systems

• A general purpose computer system is what you think of when someone says
the word "computer.“

• The defining feature of a general purpose computer is that it can be
reconfigured for a new purpose.

• In the early days of digital computers, this involved actually rewiring the entire
system.

• Today, most end users aren't even aware that this is happening, as the process
has become completely transparent.

Embedded system VS Generalpurpose system

7

Embedded Systems:

• An embedded system is a little harder to pin down. It is dedicated to a single
purpose, or a small set of purposes.

• Embedded systems can be found in nearly every single piece of modern electronics-
-in fact, they are the electronics.

• A modern television, a portable music player, a computer-controlled air conditioning
system or virtually anything made in the last 10 years that isn't a general purpose
system and requires electricity: that is what an embedded system is

HISTORY OF AN EMBEDDED SYSTEMS

8

• Embedded systems date back to the 1960s.

• Charles Stark Draper developed an integrated circuit (IC) in 1961 to reduce the size and
weight of the Apollo Guidance Computer, the digital system installed on the Apollo
Command Module and Lunar Module.

• The first computer to use ICs, it helped astronauts collect real-time flight data.

• In 1968, the first embedded system for a vehicle was released; the Volkswagen 1600
used a microprocessor to control. I

• t
• 1987, the first embedded operating system, the real-time VxWorks, was released by

Wind River, followed by Microsoft's Windows Embedded CE in 1996.

• By the late 1990s, the first embedded Linux products began to appear. Today, Linux is
used in almost all embedded devices.

https://whatis.techtarget.com/definition/integrated-circuit-IC
https://whatis.techtarget.com/definition/microprocessor-logic-chip
https://searchdatacenter.techtarget.com/definition/Linux-operating-system

Classification of embedded system

9

Embedded systems can be classified into three different types:

small scale embedded systems, medium scale embedded systems, and

sophisticated embedded systems.

1) Small scale embedded systems: These usually use 8 bit or 16 bit

microcontrollers, and have minimum hardware and software. They are so small and

require little power they may be powered by a battery.

2) Medium scale embedded systems: They use either one or a few 16 bit or 32 bit

microcontrollers, and hardware and software is more complex as compared to

small scale embedded systems.

3) Sophisticated embedded systems: The most complex of the three classifications

mentioned.

Major applications of Embedded systems

10

Characteristics and Quality Attributes of Embedded Systems.

11

Characteristics of embedded system:

• Application and Domain specific

• Reactive and Real time

• Operation in harsh environment

• Distributed

• Small size and weight

• Power concerns

Characteristics and Quality Attributes of Embedded Systems

12

QUALITY ATTRIBUTES OF EMBEDDED SYSTEM
There are two types of quality attributes are:-
1. Operational Quality Attributes.

• Response
• Throughput
• Reliability
• Maintainability
• Scheduled or Periodic Maintenance
• Maintenance to unexpected failure
• Security and Safety

2. Non-Operational Quality Attributes.
• Testability and Debug-ability
• Evolvability
• Portability
• Time to prototype and market
• Per unit and total cost

13

UNIT-II

Typical Embedded System

General Purpose and Domain Specific Processors

14

• General purpose processors (GPP) are designed for general purpose
computers such as PCs or workstations. The computation speed of a
GPP is the main concern and the cost of the GPP is usually much
higher than tha of DSPs and microcontrollers. All techniques that can
increase CPU speed have been applied to GPPs.

• Generally a DSP processor has separate program and data memories.
This allows the processor to fetch an instruction, while simultaneously
fetching operands or storing results for a previous instruction. Often it
is also possible to fetch multiple data from memory in one clock cycle
by using multiple busses and multi port memories or multiple
independent data memories

ASICs

15

An application-specific integrated circuit is an integrated circuit (IC) customized for a
particular use, rather than intended for general-purpose use. For example, a chip
designed to run in a digital voice recorder or a high-efficiency bitcoin miner is an
ASIC. Application-specific standard products (ASSPs) are intermediate between ASICs
and industry standard integrated circuits like the 7400 series or the 4000 series

PLDs

16

A programmable logic device is an electronic component used to build
reconfigurable digital circuits. Unlike integrated circuits which consist of logic
gates and have a fixed function, a PLD has an undefined function at the time of
manufacture

Commercial Off-The-Shelf Components (COTS)

17

Short for commercial off-the-shelf, an adjective that describes
software or hardware products that are ready-made and
available for sale to the general public. For example, Microsoft
Office is a COTS product that is a packaged software solution for
businesses

Memory: ROM

18

Read-only memory (ROM) is a type of non-volatile memory used in computers and
other electronic devices. Data stored in ROM cannot be electronically modified
after the manufacture of the memory device. Read-only memory is useful for
storing software that is rarely changed during the life of the system, sometimes
known as firmware. Software applications for programmable devices can be
distributed as plug-in cartridges containing read-only memory.

Memory:

19

There are two main kinds of semiconductor memory
• Volatile
• Non volatile

• Examples of non-volatile memory are flash memory (used as secondary
memory) and ROM, PROM, EPROM and EEPROM memory (used for
storing firmware such as BIOS).

• Examples of volatile memory are primary storage, which is typically dynamic
random-access memory (DRAM), and fast CPU cache memory, which is
typically static random-access memory (SRAM) that is fast but energyconsuming,
offering lower memory areal density than

RAM

20

 Random-access memory is a form of computer memory that can be read
and changed in any order, typically used to store working data and machine
code. A random-access memory device allows data items to be read or
written in almost the same amount of time irrespective of the physical
location of data inside the memory.

 RAM contains multiplexing and demultiplexing circuitry, to connect the data
lines to the addressed storage for reading or writing the entry. Usually more
than one bit of storage is accessed by the same address, and RAM devices
often have multiple data lines and are said to be "8-bit" or "16-bit", etc.
devices.

Memory according to the type of Interface,

21

DSP processor data paths are optimized to provide extremely high performance on
certain kinds of arithmetic-intensive algorithms. However, a powerful data path is, at
best, only part of a high-performance processor. To keep the data path fed with data
and to store the results of data path operations, DSP processors require the ability to
move large amounts of data to and from memory quickly.

DSP processor data paths are designed to perform a multiply-accumulate operation in
one instruction cycle. This means that the arithmetic operations required for one tap
can be computed in one instruction cycle. However, to achieve this performance, the
processor must be able to make several accesses to memory within one instruction
cycle. Specifically, the processor must:

• fetch the multiply-accumulate instruction,
• read the appropriate data value from the delay line,
• read the appropriate coefficient value, and
• write the data value to the next location in the delay line to shift data through the
delay line.

Thus, the processor must make four accesses to memory in one instruction cycle if the
multiply-accumulate operation is to execute in a single instruction cycle. In practice,
some processors use other techniques (as discussed later) to reduce the actual number
of memory accesses needed to three or even two. Nevertheless, all processors require
multiple memory accesses within one instruction cycle. This level of memory bandwidth
is needed for many important DSP algorithms.

Memory Shadowing

22

Shadow memory is a technique used to track and store information on computer
memory used by a program during its execution. Shadow memory consists of
shadow bytes that map to individual bits or one or more bytes in main memory.
These shadow bytes are typically invisible to the original program and are used
to record information about the original piece of data.

Memory selection for Embedded Systems

23

• Many types of memory devices are available for use in
modern computer systems.

• As an embedded software engineer, you must be aware
of the differences between them and understand how to
use each type effectively.

• The names of the memory types frequently reflect the
historical nature of the development process and are
often more confusing than insightful.

Sensors and Actuators

24

• A sensor is a device that changes a physical parameter to an electrical
output. As against, an actuator is a device that converts an electrical signal to
a physical output. ... Sensor generates electrical signals while
an actuator results in the production of energy in the form of heat or motion

• Sensors and Actuators are essential elements of the embedded systems.
These are used in several real-life applications such as flight control system in
an aircraft, process control systems in nuclear reactors, power plants that
require to be operated on an automated control. Sensors and Actuators
mainly differ by the purpose both provide, the sensor is used to monitor the
changes in the environment by using measurands while the actuator is used
when along with monitoring the control is also applied such as to control the
physical change

Sensors and Actuators

25

Sensors

26

• Sensor is transducer that converts physical stimulus from one form into a more
useful form to measure stimulus.

ACTUATORS

27

Actuators that convert the controller command signal into a change in a physical
parameter.. the change is usually mechanical..(e.g..position or velocity..)

Communication Interface: Onboard and External
Communication Interfaces.

28

• Onboard communication Interface. The communication channel which interconnects the
various components within an embedded product is referred as device/broad level
communication interface. The product level communication interface is responsible for
data transfer between the E.S and other devices or modules

• SoCs (System on a Chip) include external interfaces, typically for communication
protocols. These are often based upon industry standards such as USB, FireWire,
Ethernet, USART, SPI, HDMI, I²C, etc. These interfaces will differ according to the
intended application. Wireless networking protocols such as Wi-Fi, Bluetooth, 6LoWPAN
and near-field communication may also be supported.

• When needed, SoCs include analog interfaces including analog-to-digital and digital-to-
analog converters, often for signal processing. These may be able to interface with
different types of sensors or actuators, including smart transducers. They may interface
with application-specific modules or shields Or they may be internal to the SoC, such as if
an analog sensor is built in to the SoC and its readings must be converted to digital
signals for mathematical processing.

29

UNIT-III

EMBEDDED FIRMFARE

Embedded firmware:

30

Embedded firmware is the flash memory chip that stores
specialized software running in a chip in an embedded device to control its
functions.

Firmware in embedded systems fills the same purpose as a ROM but can be
updated more easily for better adaptability to conditions or interconnecting with
additional equipment.

For example, embedded software may run on ROM chips. Also, embedded
software is often the only computer code running on a piece of hardware while
firmware can also refer to the chip that houses a computer’s EFI or BIOS, which
hands over control to an OS that in turn launches and controls programs..

Reset circuit:

31

The reset circuit is essential to ensure that the device is not operating at a
voltage level where the device not guaranteed to operate. During system
power ON. The reset signal brings the internal registers and the different
hardware system of the processor/controller to a known state and starts the
firmware execution from the reset vector.

The reset signal can be either active high (the processor undergoes reset
when the reset pin of the processor is at logic high) or active low(the processor
undergoes reset when the pin of the processor is at logic low).since the
processor operation is synchronized to a clock signal, the reset pulse should be
wide enough to give time for the clock oscillator to stabilize before the internal
reset state starts.

Some microprocessors/controllers contain built in internal reset circuitry and
they don’t require external reset circuitry. Figure illustrates a resistor capacitor
based passive reset circuit for active high and low configurations. The reset
pulse width can be adjusted by changing the resistance value R and
capacitance value C.

RC Based reset circuit

32

Figure : RC based Reset circuit

Brown-out Protection Circuit:

33

Brown-out protection circuit prevents the processor/controller from unexpected
program execution behavior when the supply voltage to the processor/controller
falls below a specified voltage.

The processor behavior may not be predictable if the supply voltage falls below
the recommended operating voltage. It may lead to situations like data
corruption.

A brown-out protection circuit holds the processor/controller in reset state,
when the operating voltage falls below the threshold, until it rises above the
threshold voltage.

External Brown out protection circuit

34

 Certain processors/controllers support built in brown-out protection circuit

which monitors the supply voltage internally

 If the processor/controller doesn’t integrate a built-in brown-out protection

circuit, the same can be implemented using external passive circuits or

supervisor ICs

 The zener diode D and transistor Q forms the heart of the circuit. The

transistor conducts always when the supply voltage VCC is greater than that

of the sum of VBE and VZ.

 The transistor stops conducting when the supply voltage falls below the sum

of VBE and VZ. The values of the resistors can be selected based on the

electrical characteristics.

Oscillator Unit:

35

A microprocessor/microcontroller is a digital device made up of digital combinational and
sequential circuits .

The instruction execution of a microprocessor/controller occurs in sync with a clock signal.

The oscillator unit of the embedded system is responsible for generating the precise clock
for the processor.

Certain processor/controller chips may not contain a built-in oscillator unit and require
the clock pulses to be generated and supplied externally.

OSCILLATOR:

36

 Quartz crystal Oscillators are example for clock pulse generating devices.

 The total system power consumption is directly proportional to the clock

frequency. The power consumption increase with the increase in the clock

frequency .

 The accuracy of the program execution depends on the accuracy of the clock

signal. The accuracy of the clock frequency of the crystal oscillator is

normally expressed in terms of parts per million.

Real Time Clock (RTC):

37

The system component responsible for keeping track of time. RTC holds
information like current time (In hour, minutes and seconds) in 12 hour /24 hour
format, date, month, year, day of the week etc and supplies timing reference to
the system.
RTC is intended to function even in the absence of power. RTCs are available in
the form of Integrated Circuits from different semiconductor manufacturers like
Maxim/Dallas, ST Microelectronics etc .
The RTC chip contains a microchip for holding the time and date related
information and backup battery cell for functioning in the absence of power, in a
single IC package.
The RTC chip is interfaced to the processor or controller of the embedded
system.
For Operating System based embedded devices. a timing reference is essential
for synchronizing the operations of the OS kernel. The RTC can interrupt the OS
kernel by asserting the interrupt line of the processor/controller to which the RTC
interrupt line is connected.

Watch Dog Timer (WDT):

38

A timer unit for monitoring the firmware execution.

Depending on the internal implementation, the watchdog timer increments
or decrements a free running counter with each clock pulse and generates a
reset signal to reset the processor if the count reaches zero for a down counting
watchdog, or the highest count value for an up counting watchdog.

If the watchdog counter is in the enabled state, the firmware can write a zero
(for up counting watchdog implementation) to it before starting the execution
of a piece of code (subroutine or portion of code which is susceptible to
execution hang up) and the watchdog will start counting. If the firmware
execution doesn’t complete due to malfunctioning, within the time required by
the watchdog to reach the maximum count, the counter will generate a reset
pulse and this will reset the processor.

If the firmware execution completes before the expiration of the watchdog
timer the WDT can be stopped from action.

WATCH DOG TIMER

39

 Most of the processors implement watchdog as a built-in component and provides

status register to control the watchdog timer (like enabling and disabling watchdog

functioning) and watchdog timer register for writing the count value. If the

processor/controller doesn’t contain a built in watchdog timer, the same can be

implemented using an external watchdog timer IC circuit.

Embedded Firmware Design & Development languages:

40

The embedded firmware is responsible for controlling the various peripherals of
the embedded hardware and generating response in accordance with the
functional requirements of the product.

The embedded firmware is the master brain of the embedded system.

The embedded firmware imparts intelligence to an Embedded system.

It is a one time process and it can happen at any stage.

There exist two basic approaches for the design and implementation of
embedded firmware, namely.
•The Super loop based approach
•The Embedded Operating System based approach

Embedded firmware Design Approaches

41

The decision on which approach needs to be adopted for firmware
development is purely dependent on the complexity and system requirements.

1.Embedded firmware Design Approaches – The Super loop:
The Super loop based firmware development approach is Suitable for
applications that are not time critical and where the response time is not so
important (Embedded systems where missing deadlines are acceptable).

It is very similar to a conventional procedural programming where the code is
executed task by task

The tasks are executed in a never ending loop.

Pros and Cons:

42

Pros:
Doesn’t require an Operating System for task scheduling and monitoring and
free from OS related overheads
Simple and straight forward design
Reduced memory footprint
Cons:
Non Real time in execution behavior (As the number of tasks increases the
frequency at which a task gets CPU time for execution also increases)
Any issues in any task execution may affect the functioning of the product (This
can be effectively tackled by using Watch Dog Timers for task execution
monitoring)
Enhancements:
Combine Super loop based technique with interrupts Execute the tasks (like

keyboard handling) which require Real time attention as Interrupt Service routines.

Embedded firmware Design Approaches – Embedded OS
based Approach:

43

2.Embedded firmware Design Approaches – Embedded OS based Approach:

The embedded device contains an Embedded Operating System which can be one
of:
A Real Time Operating System (RTOS)
A Customized General Purpose Operating System (GPOS)
The Embedded OS is responsible for scheduling the execution of user tasks and the
allocation of system resources among multiple tasks
It Involves lot of OS related overheads apart from managing and executing user
defined tasks
Microsoft® Windows XP Embedded is an example of GPOS for embedded devices.

Embedded firmware Development Languages/Options

44

Embedded firmware Development Languages/Options
1.Assembly Language

2.High Level Language
Subset of C (Embedded C)
Subset of C++ (Embedded C++)
Any other high level language with supported Cross-compiler

3.Mix of Assembly & High level Language
Mixing High Level Language (Like C) with Assembly Code
Mixing Assembly code with High Level Language (Like C)
Inline Assembly

Embedded firmware Development Languages/Options

45

Embedded firmware Development Languages/Options – Assembly Language
‘Assembly Language’ is the human readable notation of ‘machine language’
‘Machine language’ is a processor understandable language
Machine language is a binary representation and it consists of 1s and 0s
Assembly language and machine languages are processor/controller dependent
An Assembly language program written for one processor/controller family will not
work with others
Assembly language programming is the process of writing processor specific
machine code in mnemonic form, converting the mnemonics into actual processor
instructions (machine language) and associated data using an assembler
The general format of an assembly language instruction is an Op code followed by
Operands
The Op code tells the processor/controller what to do and the Operands provide the
data and information required to perform the action specified by the op code
It is not necessary that all op code should have Operands following them. Some of
the Op code implicitly contains the operand and in such situation no operand is
required. The operand may be a single operand, dual operand or more

2.Assembly Language – Source File to Hex File

Translation:

46

2.Assembly Language – Source File to Hex File Translation:

The Assembly language program written in assembly code is saved as .asm (Assembly

file) file or a .src (source) file or a format supported by the assembler

The software utility called ‘Assembler’ performs the translation of assembly code to

machine code

The assemblers for different family of target machines are different. A51 Macro

Assembler from Keil software is a popular assembler for the 8051 family micro c

ontroller.

Figure : Assembly Language to machine language
conversion process

Advantages:

47

1 .Efficient Code Memory & Data Memory Usage (Memory Optimization):
The developer is well aware of the target processor architecture and memory
organization, so optimized code can be written for performing operations.
This leads to less utilization of code memory and efficient utilization of data
memory.

2. High Performance:
Optimized code not only improves the code memory usage but also improves the
total system performance.
Through effective assembly coding, optimum performance can be achieved for
target processor.

3.Low level Hardware Access:
Most of the code for low level programming like accessing external device specific
registers from OS kernel ,device drivers, and low level interrupt routines, etc are
making use of direct assembly coding.

4.Code Reverse Engineering:
It is the process of understanding the technology behind a product by extracting
the information from the finished product.
It can easily be converted into assembly code using a dis-assembler program for
the target machine.

Drawbacks:

48

1. High Development time:
The developer takes lot of time to study about architecture , memory
organization, addressing modes and instruction set of target
processor/controller.
More lines of assembly code is required for performing a simple action.
2. Developer dependency:
There is no common written rule for developing assembly language based
applications.
3. Non portable:
Target applications written in assembly instructions are valid only for that
particular family of processors and cannot be re-used for another target
processors/controllers.
If the target processor/controller changes, a complete re-writing of the
application using assembly language for new target processor/controller is
required.

Embedded firmware Development Languages/Options

49

. Embedded firmware Development Languages/Options – High Level Language

The embedded firmware is written in any high level language like C, C++
A software utility called ‘cross-compiler’ converts the high level language to target
processor specific machine code
The cross-compilation of each module generates a corresponding object file. The object
file does not contain the absolute address of where the generated code needs to be
placed (a re-locatable code) on the program memory
The software program called linker/locater is responsible for assigning absolute address
to object files during the linking process
The Absolute object file created from the object files corresponding to different source
code modules contain information about the address where each instruction needs to be
placed in code memory
A software utility called ‘Object to Hex file converter’ translates the absolute object file
to corresponding hex file (binary file)

50

Advantages:
Reduced Development time:
Developer requires less or little knowledge on internal hardware details and
architecture of the target processor/Controller.
Developer independency:
The syntax used by most of the high level languages are universal and a program
written high level can easily understand by a second person knowing the syntax of the
language
Portability:
An Application written in high level language for particular target processor
/controller can be easily be converted to another target processor/controller specific
application with little or less effort
Drawbacks:
The cross compilers may not be efficient in generating the optimized target processor
specific instructions
Target images created by such compilers may be messy and non optimized in terms of
performance as well as code size
The investment required for high level language based development tools (IDE) is high
compared to Assembly Language based firmware development tools.

Mixing High level language like ‘C’ with Assembly Language

51

2. Mixing High level language like ‘C’ with Assembly Language (‘C’ with Assembly
Language)
The source code is already available in assembly language and routine written in a high
level language needs to be included to the existing code.
The entire source code is planned in Assembly code for various reasons like optimized
code, optimal performance, efficient code memory utilization and proven expertise in
handling the assembly.
The functions written in ‘C’ use parameter passing to the function and returns values to
the calling functions.
3. In line Assembly:
Inline assembly is another technique for inserting the target processor/controller specific
assembly instructions at any location of source code written in high level language ‘C’
Inline Assembly avoids the delay in calling an assembly routine from a ‘C’ code.
Special keywords are used to indicate the start and end of Assembly instructions.

52

UNIT-IV
RTOS BASED EMBEDDED SYSTEM DESIGN

Operating System Basics

53

An Operating system (OS) is a piece of software that controls

the overall operation of the Computer. It acts as an interface

between hardware and application programs .It facilitates the

user to format disks, create, print, copy, delete and display files,

read data from files ,write data to files , control the I/O

operations, allocate memory locations and process the

interrupts etc.

Operating System Basics..

54

It provides the users an interface to the hardware

resources. In a multiuser system it allows several users to

share the CPU time, share the other system resources

and provide inter task communication, Timers, clocks,

memory management and also avoids the interference of

different users in sharing the resources etc. Hence the OS

is also known as a resource manager.

Types of operating systems

55

An Operating system (OS) is nothing but a piece of software that controls

the overall operation of the Computer. It acts as an interface between

hardware and application programs .It facilitates the user to format disks,

create ,print ,copy , delete and display files , read data from files ,write

data to files ,control the I/O operations , allocate memory locations and

process the interrupts etc. It provides the users an interface to the

hardware resources.

Types of operating systems..

56

In a multiuser system it allows several users to share the CPU time, share

the other system resources and provide inter task communication,

Timers, clocks, memory management and also avoids the interference of

different users in sharing the resources etc. Hence the OS is also known

as a resource manager.

There are three important types of operating systems .They are

(i).Embedded Operating System (ii). Real time operating system and

(iii).Handheld operating system.

REAL TIME SYSTEMS:

57

Real-time systems are those systems in which the correctness of the

system depends not only on the Output, but also on the time at which

the results are produced (Time constraints must be strictly followed).

Real time systems are two types. (i) Soft real time systems and (ii) Hard

real time systems. A Soft real time system is one in which the

performance of the system is only degraded but, not destroyed if the

timing deadlines are not met.

REAL TIME OPERATING SYSTEM (RTOS)

58

It is an operating system that supports real-time applications by

providing logically correct result within the deadline set by the user. A

real time operating system makes the embedded system into a real time

embedded system. The basic structure of RTOS is similar to regular OS

but, in addition, it provides mechanisms to allow real time scheduling of

tasks.

Though the real-time operating systems may or may not increase the

speed of execution, but they provide more precise and predictable timing

characteristics than general-purpose OS.

The figure below shows the embedded system with RTOS.

REAL TIME OPERATING SYSTEM (RTOS)

59

All the embedded systems are not designed

with RTOS. Low end application systems do

not require the RTOS but only High end

application oriented embedded systems which

require scheduling alone need the RTOS.

For example an embedded system which

measures Temperature or Humidity etc. do not

require any operating system. Whereas a

Mobile phone , RADAR or Satellite system

used for high end applications require an

operating system.

Task

60

A task is a basic unit or atomic unit of execution that can be scheduled by

an RTOS to use the system resources like CPU, Memory, I/O devices etc. It

starts with reading of the input data and of the internal state of the task,

and terminates with the production of the results and updating the

internal state. The control signal that initiates the execution of a task is

provided by the operating system.

There are two types of tasks.

(i)Simple Task(S-Task) and

(ii) Complex Task(C-Task).

Task States

61

At any instant of time a task can be in one of the following states:

(i)Dormant (ii). Ready (iii). Running and (iv).Blocked.

When a task is first created, it is in the dormant task. When it is added to

RTOS for scheduling, it is a ready task. If the input or a resource is not

available, the task gets blocked.

Task States

62

An Idle Task does nothing .The idle task has the lowest priority.

void Idle task(void)

{

While(1);

}

Creation of a Task

63

A task is characterized by the parameters like task name , its priority , stack

size and operating system options .To create a task these parameters must

be specified .A simple program to create a task is given below.

result = task-create(“Tx Task”, 100,0x4000,OS_Pre-emptiable); /*task

create*/ if (result = = os_success)

{ /*task successfully created*/

}

Process or Task:

64

Embedded program (a static entity) = a collection of firmware modules.

When a firmware module is executing, it is called a process or task . A task

is usually implemented in C by writing a function. A task or process simply

identifies a job that is to be done within an embedded application.

When a process is created, it is allocated a number of resources by the OS,

which may include: – Process stack – Memory address space – Registers

(through the CPU) – A program counter (PC) – I/O ports, network

connections, file descriptors, etc.

Threads

65

A process or task is characterized by a collection of resources that

are utilized to execute a program. The smallest subset of these

resources (a copy of the CPU registers including the PC and a stack)

that is necessary for the execution of the program is called a thread.

A thread is a unit of computation with code and context, but no

private data.

Process and Threads

66

PROCESS AND THREADS:

The process is an execution of a program whereas thread is an

execution of a program driven by the environment of a process.

Another major point which differentiates process and thread is

that processes are isolated with each other whereas threads share

memory or resources with each other.

PROCESS vs THREADS

67

Process Thread

1) System calls involved in process. 1) No system calls involved.

2) Context switching required. 2) No context switching required.

3) Different process have different

copies of code and data.

3) Sharing same copy of code and

data can be possible among different

threads..

4) Operating system treats different

process differently.

4) All user level threads treated as

single task for operating system.

5) If a process got blocked,

remaining process continue their

work.

5) If a user level thread got blocked, all

other threads get blocked since they

are treated as single task to OS.

(Noted: This is can be avoided in

kernel level threads).

6) Processes are independent.

6) Threads exist as subsets of a

process. They are dependent.

7) Process run in separate memory

space.

7) Threads run in shared memory

space. And use memory of process

which it belong to.

8) Processes have their own

program counter (PC), register set,

and stack space.

8) Threads share Code section, data

section, Address space with other

threads.

9) Communication between

processes requires some time.

9) Communication between processes

requires less time than processes.

10) Processes don’t share the

memory with any other process.

10) Threads share the memory with

other threads of the same process

11) Process have overhead. 11) Threads have no overhead.

MULTI PROCESSING AND MULTI TASKING:

68

MULTI PROCESSING AND MULTI TASKING:

Multiprogramming – A computer running more than one program at a time (like

running Excel and Firefox simultaneously).

Multiprocessing – A computer using more than one CPU at a time.

Multitasking – Tasks sharing a common resource (like 1 CPU). Multithreading is an

extension of multitasking.

MULTI PROCESSING

69

Multiprocessing –

In a uni-processor system, only one process executes at a time. Multiprocessing is the use

of two or more CPUs (processors) within a single Computer system. The term also refers

to the ability of a system to support more than one processor within a single computer

system. Now since there are multiple processors available, multiple processes can be

executed at a time. These multi processors share the computer bus, sometimes the clock,

memory and peripheral devices also.

MULTI PROCESSIN WORKING

70

Multi processing system’s working –

 With the help of multiprocessing, many processes can be executed

simultaneously. Say processes P1, P2, P3 and P4 are waiting for execution. Now

in a single processor system, firstly one process will execute, then the other, then

the other and so on.

 But with multiprocessing, each process can be assigned to a different processor

for its execution. If its a dual-core processor (2 processors), two processes can be

executed simultaneously and thus will be two times faster, similarly a quad core

processor will be four times as fast as a single processor.

MULTI PROCESSING

71

Multitasking

72

A multitasking environment allows applications to be constructed as

a set of independent tasks, each with a separate thread of execution

and its own set of system resources. The inter-task communication

facilities allow these tasks to synchronize and coordinate their

activity. Multitasking provides the fundamental mechanism for an

application to control and react to multiple, discrete real-world

events and is therefore essential for many real-time applications.

Multitasking….

73

Multitasking creates the appearance of many threads of execution

running concurrently when, in fact, the kernel interleaves their

execution on the basis of a scheduling algorithm. This also leads to

efficient utilization of the CPU time and is essential for many

embedded applications where processors are limited in computing

speed due to cost, power, silicon area and other constraints. In a

multi-tasking operating system it is assumed that the various tasks

are to cooperate to serve the requirements of the overall system.

Multitasking….

74

Co-operation will require that the tasks communicate with each

other and share common data in an orderly an disciplined manner,

without creating undue contention and deadlocks. The way in which

tasks communicate and share data is to be regulated such that

communication or shared data access error is prevented and data,

which is private to a task, is protected. Further, tasks may be

dynamically created and terminated by other tasks, as and when

needed.

Multitasking….

75

Task Scheduler

76

Task scheduler is one of the important component of the Kernel .Basically

it is a set of algorithms that manage the multiple tasks in an embedded

system. The various tasks are handled by the scheduler in an orderly

manner. This produces the effect of simple multitasking with a single

processor. The advantage of using a scheduler is the ease of implementing

the sleep mode in microcontrollers which will reduce the power

consumption considerably (from mA to µA). This is important in battery

operated embedded systems.

Task Scheduler….

77

The task scheduler establishes task time slots. Time slot width and

activation depends on the available resources and priorities.

A scheduler decides which task will run next in a multitasking system. Every

RTOS provides three specific functions.

(i).Scheduling (ii) Dispatching and (iii). Inter-process communication and

synchronization.

The scheduling determines ,which task ,will run next in a multitasking

system and the dispatches perform the necessary book keeping to start the

task and Inter-process communication and synchronization assumes that

each task cooperate with others.

Process or Task:

78

Embedded program (a static entity) = a collection of firmware modules.

When a firmware module is executing, it is called a process or task . A task

is usually implemented in C by writing a function. A task or process simply

identifies a job that is to be done within an embedded application.

When a process is created, it is allocated a number of resources by the OS,

which may include: – Process stack – Memory address space – Registers

(through the CPU) – A program counter (PC) – I/O ports, network

connections, file descriptors, etc.

Threads

79

A process or task is characterized by a collection of resources that

are utilized to execute a program. The smallest subset of these

resources (a copy of the CPU registers including the PC and a stack)

that is necessary for the execution of the program is called a thread.

A thread is a unit of computation with code and context, but no

private data.

Multitasking

80

A multitasking environment allows applications to be constructed as

a set of independent tasks, each with a separate thread of execution

and its own set of system resources. The inter-task communication

facilities allow these tasks to synchronize and coordinate their

activity. Multitasking provides the fundamental mechanism for an

application to control and react to multiple, discrete real-world

events and is therefore essential for many real-time applications.

Multitasking….

81

Multitasking creates the appearance of many threads of execution

running concurrently when, in fact, the kernel interleaves their

execution on the basis of a scheduling algorithm. This also leads to

efficient utilization of the CPU time and is essential for many

embedded applications where processors are limited in computing

speed due to cost, power, silicon area and other constraints. In a

multi-tasking operating system it is assumed that the various tasks

are to cooperate to serve the requirements of the overall system.

Multitasking….

82

Co-operation will require that the tasks communicate with each

other and share common data in an orderly an disciplined manner,

without creating undue contention and deadlocks. The way in which

tasks communicate and share data is to be regulated such that

communication or shared data access error is prevented and data,

which is private to a task, is protected. Further, tasks may be

dynamically created and terminated by other tasks, as and when

needed.

83

UNIT-V
TASK COMMUNICATION

Semaphores

84

A semaphore is nothing but a value or variable or data which can control

the allocation of a resource among different tasks in a parallel

programming environment. So, Semaphores are a useful tool in the

prevention of race conditions and deadlocks; however, their use is by no

means a guarantee that a program is free from these problems.

Semaphores which allow an arbitrary resource count are called counting

semaphores, whilst semaphores which are restricted to the values 0 and 1

(or locked/unlocked, unavailable/available) are called binary semaphores.

Semaphores…

85

Semaphores…

86

Types of Semaphores: There are three types of semaphores

Binary Semaphores,

Counting Semaphores and

Mutexes.

Message Queues

87

The Message Queues, are used to send one or more messages to a task

i.e. the message queues are used to establish the Inter task

communication. Basically Queue is an array of mailboxes. Tasks and ISRs

can send and receive messages to the Queue through services provided by

the kernel. Extraction of messages from a queue follow FIFO or LIFO

structure.

Message Queues…

88

Applications of message queue are

 Taking the input from a keyboard

To display output

Reading voltages from sensors or transducers

Data packet transmission in a network

In each of these applications, a task or an ISR deposits the message in the

message queue. Other tasks can take the messages. Based on our

application, the highest priority task or the first task waiting in the queue

can take the message. At the time of creating a queue, the queue is given

a name or ID, queue length, sending task waiting list and receiving task

waiting list.

Saving Memory and Power

89

Saving memory:

Embedded systems often have limited memory.

RTOS: each task needs memory space for its stack.

The first method for determining how much stack space a task needs is to

examine your code

The second method is experimental. Fill each stack with some

recognizable data pattern at startup, run the system for a period of time

Saving Memory and Power…

90

Program Memory:

Limit the number of functions used

Check the automatic inclusions by your linker: may consider

writing own functions.

Include only needed functions in RTOS

Consider using assembly language for large routines

Saving Memory and Power…

91

Data Memory

Consider using more static variables instead of stack variables

On 8-bit processors, use char instead of int when possible.

Saving Memory and Power…

92

Saving power:

The primary method for preserving battery power is to turn off parts or all

of the system whenever possible.

Most embedded-system microprocessors have at least one power-saving

mode.

The modes have names such as sleep mode, low-power mode, idle mode,

standby mode, and so on.

A very common power-saving mode is one in which the microprocessor

stops executing instructions, stops any built-in peripherals, and stops its

clock circuit.

Saving Memory and Power…

93

Shared memory:

In this model stored information in a

shared region of memory is

processed, possibly under the

control of a supervisor process.

An example might be a single node

with multiple cores.

share a global memory space

cores can efficiently exchange/share

data.

Message Passing

94

In this model, data is shared by sending and receiving messages between

co-operating processes, using system calls. Message Passing is particularly

useful in a distributed environment where the communicating processes

may reside on different, network connected, systems. Message passing

architectures are usually easier to implement but are also usually slower

than shared memory architectures.

Remote Procedure Call (RPC)

95

RPC allows programs to call procedures located on other machines.

When a process on machine A calls' a procedure on machine B, the

calling process on A is suspended, and execution of the called

procedure takes place on B. Information can be transported from the

caller to the callee in the parameters and can come back in the

procedure result. No message passing at all is visible to the

programmer. This method is known as Remote Procedure Call, or

often just RPC.

Remote Procedure Call (RPC)…

96

It can be said as the special case of message-passing model. It has

become widely accepted because of the following features: Simple

call syntax and similarity to local procedure calls. Its ease of use,

efficiency and generality. It can be used as an IPC mechanism

between processes on different machines and also between

different processes on the same machine.

Sockets

97

Sockets (Berkley sockets) are one of the most widely used communication

APIs. A socket is an object from which messages and are sent and

received. A socket is a network communication endpoint.

In connection-based communication such as TCP, a server application binds

a socket to a specific port number. This has the effect of registering the

server with the system to receive all data destined for that port. A client

can then rendezvous with the server at the server's port, as illustrated

here: Data transfer operations on sockets work just like read and write

operations on files. A socket is closed, just like a file, when communications

is finished.

Sockets…

98

Network communications are conducted through a pair of cooperating

sockets, each known as the peer of the other.

Processes connected by sockets can be on different computers (known as a

heterogeneous environment) that may use different data representations.

Data is serialized into a sequence of bytes by the local sender and

deserialized into a local data format at the receiving end.

TASK SYNCHRONISATON

 In general ,a task must synchronize its activity with

other task to execute a multithreaded program properly

 Consider a situation where two processor try to access a

shared memory area where one process tries to write to

memory allocation when other process try to read

 This scenario leads to conflicts i.e, task synchronization

issue

TASK SYNCHRONIZATION ISSUES

 Deadlock : It creates a situation where none of the
processes are able to make any progress in their
execution

 The different condition favouring a deadlock situation
are:-

i) Mutual exclusion : The condition in which a process
can hold one resource at a time

eg: Hardware in a embedded device

ii) Hold and wait : The condition in which a process hold
a shared resource by acquiring the lock controlling the
shared access and waiting for additional resource held by
other processor

iii) No resource preemption : The criteria that operating
system cannot take back a resource from a process which
is currently holding it and resource can only be released
voluntarily by the processor holding it

TASK SYNCHRONIZATION ISSUES

iv) Circular wait : A process is waiting for a resource

which is currently held by another process which in turn

waiting for a resource held by the first resource .In general

,there exists a set of waiting process p0,p1,….pn with p0 is

waiting for a resource held by p1 and p1 is waiting for a

resource held by p0,..pn is waiting for a resource held by

p0 and p0 is waiting for resource held by pn and so on

…This forms a circular wait queue

TASK SYNCHRONIZATION ISSUES

 Deadlock Handling:

The OS may adopt any of the following techniques to

detect and prevent deadlock condition

i)Ignore Deadlocks: Always assume that the system

design is deadlock free .This is acceptable for the reason

the cost of removing a deadlock is large compared to the

chance of happening a deadlock

TASK SYNCHRONIZATION ISSUES

 Detect and Recover: This approach suggests the
detection of a deadlock situation and recovery from
it. This is similar to the deadlock condition that may
arises at a traffic condition .When the vehicles from
different direction compete to cross the junction ,
deadlock condition is resulted

 Avoid Deadlocks: Deadlock is avoided by the careful
resource allocation techniques by operating system .It
is similar to the traffic light mechanism at junctions at
avoid the traffic jam

TASK SYNCHRONIZATION ISSUES

 Live lock : It is similar to a deadlock ,except that the
status of the process involved in the live lock
constanly change with regard to one another. In this
process are not in the waiting state and they are
running concurrently

 Starvation :It occurs when a low priority program is
requesting for a system resource, but are not able to
execute because a higher priority program utilizing
that resource for an extended period.

TASK SYNCHRONIZATION ISSUES

 Prevent Deadlocks : Prevent the deadlock condition

by negating the below condition of the deadlock
situation

i) Ensure that a process does not hold any other
resources, when it request a resource.

ii) A process must request all its required resource and
the resources should be allocated before the process
begins its execution

TASK SYNCHRONIZATION ISSUES

Producer–consumer/Bounded Buffer problem

 A thread/process which produces a data is called
‘Producer thread/process’ and a thread /process
which consumes the data produced by a producer
thread/process is known as ‘consumer
thread/process’.

 The producer thread keeps on producing data and
puts it in the buffer and the consumer thread keeps
on consuming the data from the buffer . which may
leads to cause two cases

TASK SYNCHRONIZATION ISSUES

i) If the producer produces the data at a faster rate
than the rate at which it is consumed by consumer
this lead to ‘buffer overrun’.

ii) If the consumer consumes data at a faster rate than
the rate at which it is produced by the producer, this
leads to ‘buffer under run’.

 The producer-consumer problem can be rectified in
various method.one simple solution is ‘sleep and
wake-up’.

TASK SYNCHRONIZATION ISSUES

Readers and Writers Problem:

The Readers-writers problem is common issue observed
in processes competing for limited shared resources .
The Reader-writers problem is characterized by multi
processes trying to read and write the shared data
concurrently

TASK SYNCHRONIZATION ISSUES

Priority Inversion : It is the combination of blocking
based process synchronisation and pre-emptive priority
scheduling.

 Priority Inversion is a condition in which a high
priority task needs to wait for a low priority task to
release a resource which is shared between the high
priority task and low priority task, and a medium
priority task which doesn’t require the shared resource
continues its execution by preempting the low priority
task.

TASK SYNCHRONIZATION ISSUES

Selecting the right RTOS is a critical step in any
embedded software development project. Selecting the
wrong RTOS could affect project costs, time to market
and have real-time implications on the behavior of the
system. When selecting an RTOS, teams usually focus
just on cost but there are seven characteristics that
should be considered. Let’s examine each on

HOW TO CHOOSE RTOS

 Characteristic #1 – Performance

 RTOS performance is a critical factor to consider when selecting
an RTOS. All RTOSes are NOT created equal and an attempt to
save a few dollars can cost orders of magnitude more. When it
comes to performance, developers have a variety of factors that
need to be considered. First, memory requirements such as
ROM, flash and RAM footprints need to be considered. RTOSes
are powerful and with that power comes additional code and
data needs. Second, processing speed such as interrupt latency
and context switch times should be reviewed. A high quality
RTOS will document these parameters for a variety of
architectures and clock speeds.

HOW TO CHOOSE RTOS

 Characteristic #3 – Cost

 Undoubtedly one of the largest, if not only thought about RTOS
characteristic is cost. Despite the huge efforts required in labor
to develop robust software, no one wants to pay for it!
Developers need to get over it and probably evaluate what an
RTOS may really cost. A few considerations for commercial
RTOSes are the upfront costs for licensing and any recurring
licenses such as royalties. In additional to these obvious costs,
developers need to also consider the total cost of ownership for
the RTOS. That is, the cost to learn, setup, integrate and debug
the selected operating system. Total cost of ownership for an
open source RTOS can potentially exceed that of a commercially
purchased RTOS due to lack of support, poor code quality and
so forth.

HOW TO CHOOSE RTOS

HOW TO CHOOSE RTOS

Characteristic #4 – Ecosystem
Having the best performance, features and cost doesn’t mean a
thing if there isn’t a large and vibrant community to support the
RTOS. A software products ecosystem is a critical piece of the
selection process in order to ensure ease of integration, support
and product lifetime. When developers investigate an RTOS
ecosystem, they should determine whether the RTOS is
supported and adopted by their industry and the embedded
software industry as a whole. They should determine whether
there is support for a variety of architectures and processors or
whether the RTOS is just a one trick pony. The availability of
numerous examples and ports is also an important indicator that
the RTOS is supported and has a strong community of users
around it.

HOW TO CHOOSE RTOS

Characteristic #5 – Middleware
Many RTOSes come with middleware components or have
third parties who have developed components that integrate
into the RTOS. Developers should evaluate their RTOSes
middleware and determine what the integration effort might
be. Sometimes the integration is seamless while other times it
is an obvious nightmare. Some RTOSes lack support for
middleware and open source components need to be
integrated which can lead to a variety of time consuming
integration issues. Verify that the middleware has common
components such as USB, TCP/IP, file systems and graphics
generators before jumping in with both feet.

 Characteristic #6 – Vendor

 Take a good hard look at the vendor who developed, maintains
and distributes the RTOS. Do they have a good track record
dating back at least five, ten or fifteen years? Examine their
source code and documentation. A good supplier with have
meticulous documentation that answers many of the questions
that would arise while integrating the RTOS into the system. No
matter how good documentation gets, it will never be perfect.
Testing how fast the vendor is to respond to question and
support issues could be critical and save precious time and
money getting the product out the door. Don’t just blindly trust.
Be an engineer and put the vendor to the test and see if they
squirm or roll up their sleeves

HOW TO CHOOSE RTOS

 Characteristic #7 – Engineering Team

 The characteristic of RTOS selection that is probably the most
common to overlook is the engineering team. The RTOS that is
selected should minimize the labor intensity for the team and
allow them to focus on product differentiators rather than
increase it as they learn how to integrate and setup an RTOS. As
much as we like to grow professionally as engineers, we should
attempt to select an RTOS we are familiar with and can work
most efficiently with. Sometimes development doesn’t work
out that way but we should at least try

HOW TO CHOOSE RTOS

