INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	EMBED	EMBEDDED SYSTEMS				
Course Code	AEC016	AEC016				
Programme	B.Tech					
Semester	VII E	VII ECE				
Course Type	Core					
Regulation	IARE - R16					
	Theory					
		Theory		Pract	tical	
Course Structure	Lecture		Credits	Prace Laboratory	tical Credits	
Course Structure	Lecture 3		Credits 3			
Course Structure Chief Coordinator	3		3			

I. COURSE OVERVIEW:

2 0 0 0

Embedded systems course is continuous of the Microprocessor and Microcontrollers, is intended to designing, implementation and Test of embedded applications. The topics covered are definition of embedded systems, history, classification, and major applications. Introduction to microcontroller and its interfacing, embedded firmware design and development, RTOS, task scheduling, threads, multitasking, task communication, task synchronization. Understand need of microcontrollers in development of various projects and to know operating systems and RTOS.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACS007	IV	Operating Systems	4
UG	AEC013	VI	Microprocessors and Microcontrollers	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Embedded Systems	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs	
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos	
×	Open Ended Experiments							

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for SEE. Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows: Two full questions with "either" or "choice" are drawn from each unit of the syllabus. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the theoretical concepts and derivation capabilities.
50 %	To test the analytical and problem solving skills.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks of which 25 marks for problem solving and 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for C

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	Total Marks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Lectures, Assignments
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Lectures, Assignments
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	1	One minute videos
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	1	Lectures

3 = **High**; **2** = **Medium**; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand, analyze and	2	Seminars
	develop computer programs in the areas related to algorithms,		
	system software, multimedia, web design, big data analytics,		

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
	and networking for efficient analysis and design of computer -		
	based systems of varying complexity.		
PSO 2	Software Engineering Practices: The ability to apply	-	-
	standard practices and strategies in software service		
	management using open-ended programming environments		
	with agility to deliver a quality service for business success.		
PSO 3	Successful Career and Entrepreneurship: The ability to	-	-
	employ modern computer languages, environments, and		
	platforms in creating innovative career paths to be an		
	entrepreneur, and a zest for higher studies.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:						
Ι	Imbibe knowledge about the basic functions, structure, concepts and applications of Embedded					
	Systems.					
II	Understand Real time operating system concepts.					
III	Analyze different tools for development of embedded software.					
IV	Be acquainted the architecture of advanced processors.					

IX. COURSE OUTCOMES (COs):

COs	Course Outcomes	CLO's	Course Learning Outcome
CO1	Understand the basic concepts of	CLO 1	Understand basic concept of
	embedded system and various		embedded systems.
	applications and characteristics,	CLO 2	Analyze the applications in various
	formalisms for system design of		domains of embedded system.
	embedded system design	CLO 3	Develop the embedded system and
			Design process and tools with
			examples.
		CLO 4	Understand characteristics and quality
			attributes of embedded systems,
			formalisms for system design.
CO2	Discuss the concepts of C and develop	CLO 5	Understand the basic programming of
	the C programming examples with		c and its looping structure.
	Keil IDE, and understand the concepts	CLO 6	Analyze the embedded C
	of interfacing modules using		programming in Keil IDE, and
	embedded C.		compiling and building the hardware.

COs	Course Outcomes	CLO's	Course Learning Outcome
		CLO 7	Understand different concepts of
			display and keyboard interfacing
			using embedded C.
		CLO 8	Understand different concepts of
			serial communication using
			embedded C and user interfacing
CO3	Understand the fundamentals of	CLO 9	Remember the basics of operating
	RTOS and its programming and Task		system and its commands.
	communication, Task	CLO 10	Understand and analyze the RTOS
	synchronization with its issues and		concepts for firmware development.
	techniques.	CLO 11	Remember how to choose an RTOS,
			task scheduling, semaphores and
			queues, hard real-time scheduling
			considerations.
		CLO 12	Understand the task communication,
			its programming and Task
			synchronization with its issues and
			techniques.
CO4	Develop an examples using	CLO 13	Develop host and target machines for
	embedded software and understand		linking to embedded software.
	the debugging techniques.	CLO 14	Develop debugging techniques for
			testing on host machine with
			examples.
CO5	Discuss the concepts of advanced	CLO 15	Remember the advanced processors
	processors like ARM and SHARC		such as ARM and SHARC.
	and protocols of I2C and CAN bus.	CLO 16	Understand the bus protocols such as
			I2C and CAN bus.
		CLO 17	Design an application based on
			advanced technological changes.

3 = High; 2 = Medium; 1 = Low

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
AEC016.1	CLO 1	Understand basic concept of embedded systems.	PO 1	2
AEC016.2	CLO 2	Analyze the applications in various domains of embedded system.	PO 1	2
AEC016.3	CLO 3	Develop the embedded system and Design	PO 1	1
		process and tools with examples.	PO 5	

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
AEC016.4	CLO 4	Understand characteristics and quality attributes	PO 1	1
		of embedded systems, formalisms for system	PO 5	
		design.		
AEC016.5	CLO 5	Understand the basic programming of c and its	PO 3	3
		looping structure.		
AEC016.6	CLO 6	Analyze the embedded C programming in Keil	PO 3	1
		IDE, and compiling and building the hardware.		
AEC016.7	CLO 7 Understand different concepts of display and		PO 3	2
		keyboard interfacing using embedded C.		
AEC016.8	CLO 8	Understand different concepts of serial	PO 1	2
		communication using embedded C and user	PO 5	
		interfacing		
AEC016.9	CLO 9	Remember the basics of operating system and	PO 5	1
		its commands.		
AEC016.10	CLO 10	Understand and analyze the RTOS concepts for	PO 1	3
		firmware development.		
AEC016.11	CLO 11	Remember how to choose an RTOS, task	PO 1	2
		scheduling, semaphores and queues, hard real-	PO 12	
		time scheduling considerations.		
AEC016.12	CLO 12	Understand the task communication, its	PO 12	1
		programming and Task synchronization with its		
		issues and techniques.		
AEC016.13	CLO 13	Develop host and target machines for linking to	PO 1	2
		embedded software.	PO 3	
AEC016.14	CLO 14	Develop debugging techniques for testing on	PO 1	2
		host machine with examples.	PO 3	
AEC016.15	CLO 15	Remember the advanced processors such as	PO 3	1
		ARM and SHARC.		
AEC016.16	CLO 16	Understand the bus protocols such as I2C and	as I2C and PO 3 1	
		CAN bus.		
AEC016.17	CLO 17	Design an application based on advanced	PO 1	2
		technological changes.	PO 3	

3 = High; **2** = Medium; **1** = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Outcomes (COs)		Program Specific Outcomes (PSOs)			
× ,	PO1	PO3	PO5	PO12	PSO1
CO 1	2			1	2
CO 2	1	3	2	1	1
CO 3	1	1			
CO 4		3	1		1
CO 5	2		1	1	2

3 = High; **2** = Medium; **1** = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

2	PO2	PO3	PO4		Program Outcomes (POs)								Program Specific Outcomes (PSOs)	
				PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
_												1		
2												1		
1				1										
		2												
		3												
		1												
		2												
2				2								2		
				1								1		
3														
2											2	1		
											1			
2		2										3		
		1												
		1										3		
	1 2 3 2 2	1 2 3 2 2 2	1 2 3 1 2 2 3 2 3 2 2 2 1 1	1 2 3 1 2 2 3 1 2 2 3 1 2 2 1 1	1 1 1 2 3 1 1 2 2 2 2 2 1 1 3 1 2 2 1 1 2 2 1 1 1 1 1 1	1 1 2 1 3 1 1 2 2 2 2 2 1 1 3 1 2 2 1 1 3 1 2 2 1 1 3 1 1 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 2 2 1 1 2 2 1 1 3 1 1 1 3 1 1 1 3 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 2 1 1 1 1 3 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 3 1 1 1 1 3 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1	1 1	1 1	1 1

3 = High; **2** = Medium; **1** = Low

CIE Exams	PO1, PO3, PO5, PO12, PSO1	SEE Exams	PO1, PO3, PO5, PO12, PSO1	Assignments	PO 1, PO 3	Seminars	PSO 1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO3, PO5, PO12, PSO1						

XIII. ASSESSMENT METHODOLOGIES – DIRECT

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit-I	EMBEDDED COMPUTING					
systems, o system de	Definition of embedded system, embedded systems vs. general computing systems, history of embedded systems, complex systems and microprocessor, classification, major application areas, the embedded system design process, characteristics and quality attributes of embedded systems, formalisms for system design, design examples					
Unit-II	INTRODUCTION TO EMBEDDED C AND APPLICATIONS					
unaligned systems p program, bounce; A	structures, register allocation, function calls, pointer aliasing, structure arrangement, bit fields, data and endianness, inline functions and inline assembly, portability issues; Embedded rogramming in C, binding and running embedded C program in Keil IDE, dissecting the building the hardware; Basic techniques for reading and writing from I/O port pins, switch applications: Switch bounce, LED interfacing, interfacing with keyboards, displays, D/A and ersions, multiple interrupts, serial data communication using embedded C interfacing					
Unit-III	RTOS FUNDAMENTALS AND PROGRAMMING					
multiproce hard real- memory,	system basics, types of operating systems, tasks and task states, process and threads, essing and multitasking, how to choose an RTOS ,task scheduling, semaphores and queues, time scheduling considerations, saving memory and power. Task communication: Shared message passing, remote procedure call and sockets; Task synchronization: Task eation synchronization issues, task synchronization techniques, device drivers.					
Unit-IV	EMBEDDED SOFTWARE DEVELOPMENT TOOLS					
	target machines, linker/locators for embedded software, getting embedded software into the tem; Debugging techniques: Testing on host machine, using laboratory tools, an example					
Unit-V	INTRODUCTION TO ADVANCED PROCESSORS					
instruction	Introduction to advanced architectures: ARM and SHARC, processor and memory organization and instruction level parallelism; Networked embedded systems: Bus protocols, I2C bus and CAN bus; Internet-EnAnalyzed systems, design example-Elevator controller.					
Text Bool	ks:					
 Shibu K.V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2nd Edition, 2009. Raj Kamal, "Embedded Systems: Architecture, Programming and Design", Tata McGraw-Hill Education, 2nd Edition, 2011. Andrew Sloss, Dominic Symes, Wright, "ARM System Developer's Guide Designing and Optimizing System Software", 1st Edition, 2004. 						

Reference Books:

- Wayne Wolf, " Computers as Components, Principles of Embedded Computing Systems 1. Design", Elsevier, 2nd Edition, 2009.
- Dr. K. V. K. K. Prasad, "Embedded / Real-Time Systems: Concepts, Design & Programming", dreamtech publishers, 1st Edition, 2003. 2.
- Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley & Sons, 3rd Edition, 3. 2006.
- 4.
- Lyla B Das, "Embedded Systems", Pearson Education, 1st Edition, 2012. David E. Simon, "An Embedded Software Primer", Addison-Wesley, 1st Edition, 1999. 6. Michael J. Pont, "Embedded C", Pearson Education, 2nd Edition, 2008. 5.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Definition of embedded system vs general computing system	CLO 1	T1-1.1
	history of embedded systems		
3-4	complex systems and microprocessor, classification, major	CLO 1	T1-1.2
	application areas, the embedded system design process,		
	characteristics and quality attributes of embedded systems,		T1-1.3
5-6	formalisms for system design,	CLO 2	
7	Design examples.	CLO 3	T2-1.4
	C looping structures, register allocation, function calls, pointer		T2-1.5
8-9	aliasing	CLO 3	
10.12	structure arrangement, bit fields, unaligned data and	CT O 2	R2-1.2
10-12	endianness, inline functions and inline assembly,	CLO 3	
12.14	portability issues; Embedded systems programming in C,		T2 1 2
13-14	binding and running embedded C program in Keil IDE,	CLO 4	T3-1.3
15-16	dissecting the program, building the hardware; Basic	CLO 4	T3-2.4
	techniques for reading and writing from I/O port pins, switch		
	bounce		
17-18	Applications: Switch bounce, LED interfacing, interfacing with	CLO 6	T3-2.5
	keyboards, displays.		
19-20	A/D conversions, multiple interrupts, serial data	CLO 4	T3-2.6
	communication using embedded C interfacing		
21-22	D/A conversion.	CLO 5	T3-2.7
23-24	Operating system basics, types of operating systems, tasks and	CLO 5	T3-2.8
	task states		
25-26	process and threads, multiprocessing and multitasking, how to	CLO 5	T3-2.9
	choose an RTOS ,task scheduling, semaphores		

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
27-28	queues, hard real-time scheduling considerations, saving	CLO 7	R2-3.1
29-30	memory and power. Task communication: Shared memory, message passing, remote procedure call and sockets; Task synchronization:	CLO 7	R2-3.2
31-32	Taskcommunicationsynchronizationissues,tasksynchronization techniques.	CLO 7	R2-3.3
33-34	device drivers	CLO 8	R2-3.4
35-36	Host and target machines,	CLO 8	R2-3.5
37-38	linker/locators for embedded software,	CLO 9	R2-3.6
39-40	getting embedded software into the target system; Debugging techniques:	CLO 10	R3-3.7
41-42	Testing on host machine, using laboratory tools,	CLO 10	R3-3.8
43-44	example programs	CLO 10	R3-4.1
45-46	example programs	CLO 11	R3-4.2
47-48	Introduction to advanced architectures	CLO 11	R3-4.3
49-50	ARM and SHARC, processor and memory organization	CLO 12	R3-4.4
51-52	instruction level parallelism; Networked embedded systems:	CLO 12	R3-4.5
53-54	Bus protocols, I2C bus and CAN bus	CLO 13	T2-8.1
55-56	Internet-Analyzed systems,	CLO 13	T2-8.2
57-58	Design example-Elevator controller.	CLO 14	T2-8.3
59-60	Example programs.	CLO 14	T2-8.4

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs	Relevance with PSOs
1	Advanced embedded systems with real time examples.	Guest Lectures	PO 5	PSO 1
2	Real time operating system concepts which applicable to advanced systems.	Seminars / NPTEL	PO 1	PSO 1
3	Design of elevator controller.	NPTEL	PO 3	PSO 1

Prepared by: Mr. Md Khadir, Assistant Professor