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UNIT-I 

 

INTRODUCTION TO CONTROL SYSTEMS 

 
  1.1 Dynamical Systems-Input, Output-Process (plant)-Block Diagram representation. 
 

Dynamical systems are mathematical objects used to model physical phenomena whose state (or 

instantaneous description) changes over time. The models are widely used in control systems. The 

system state at time t is an instantaneous description of the system which is sufficient to predict the 

future states of the system without recourse to states prior to t. Physical model accurately describes 

the behavior of the physical process in so far as we are concerned. The basic components of a control 

system are: 
 

(a) Input or Objective of control 
 

(b) Plant or control system components 
 

(c) Outputs or Results. 
 

The basic relationship between these three components is shown in fig 1.1 below. 

 

 
 

Input Output 
 

 

Fig: 1.1 
 

In technical terms the objectives can be identified with inputs or actuating signal, u, and the results are 

called outputs or the controlled variable y. In general the objective of a control is to control the output 

in some predetermined manner by the inputs through the elements of control systems. 
 

Plant: A plant may be a piece of equipment, perhaps just a set of machine parts functioning together, 

the purpose of which is to perform a particular operation. 

Process: Any operation to be controlled is called a process. Examples are chemical, economic & 

biological processes. 
 

1.2 Block Diagram Representation 

 A control system may consist of a number of components. To show the function performed by each 

component, in control engineering, we commonly use a diagram called the block diagram. A block 

diagram of a system is pictorial representation of the function performed by each component and of 

the flow of signals. In block diagram all system variables are linked to each other through functional 

blocks. The functional block is a symbol for the mathematical operation on the input signal to the 

block that produces the output. The transfer function of the components is usually entered in the 

corresponding blocks, which are connected by arrows to indicate the direction of the flow of signals. 

Fig1.2 below shows the elements of the block diagram. 
 

 

Input Output 
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R(s) + E(s) 

- 
 
B(s) 

C(s) 

H(s) 

G(s) 

Block Diagram of a Closed Loop System for a single input single output System. Fig 1.3 below 

shows the block diagram of a closed loop system. The output C(s) is feedback to the summing point, 

where it is compared with reference input R(s). The output of the block C(s) is obtained by 

multiplying the transfer function G(s) by input to the block E(s). Output is measured by a sensor or 

measuring device whose transfer function is denoted by H(s). 
 

Summing point (Comparator) 
 

 

Fig 1.3 Block Diagram Representation  
 

  

1.3 Control Input, Noise, Function of control as Regulation, tracking-examples: 
 

Noise: A noise is a signal that tends to adversely affect the value of output of a system. It is undesired 

signal. Source of noise can be internal or external to the control system. For example all electrical 

components generate electrical noise at various frequencies. Electromagnetic interference may 

adversely affect the operation of control system and needs to be eliminated or system should be 

designed in such a way that its affects are minimized. 
 

Function of Control as Regulation: A control system can be used to keep the output constant 

irrespective of the variation in input. Example could be a voltage regulator whose output remains 

constant (hold) irrespective of the input voltage fluctuation. Another example is cyclo converter used 

in aircraft electrical system which keeps the frequency of the output voltage constant irrespective the 

speed of the engine. 
 

Function of Control as Tracking: A control system can be used for tracking the input. For example 

in guided air to air missile, seeker head of the IR missile keeps continuously tracking the target 

aircraft. Other example is command guidance system of surface to air missile where the ground radar 

keeps tracking the target aircraft till it is within the firing range of the missile system. 
 

  1.4 Sensitivity of output to Control Input, Noise and to System parameters, Robustness: 

All physical elements have properties that change with the environment and age; we cannot always 

consider the parameters of a control system to be completely stationary over the entire operating life 

of the system. For example, winding resistance of an electric motor changes as the temperature of the 

motor rises during the operation. In general, a good control system should be very insensitive to 

parameter variations but sensitive to the input command. We consider G to be gain parameter that 

may vary. The sensitivity of the gain of the overall system, M to variation of G is defined as 
 

Sensitivity  
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k 

m 

G. Similarly output should be insensitive to noise. 

 

 

 

 

Robustness: A robust system has the following properties: 
 

a) It is very sensitive to input command. 

b) It is insensitive to system parameter variations due to aging, temperature variations 

and other environmental conditions. 

c) It is insensitive to noise. 

d) It is insensitive to external disturbance. 

e) It has good tracking capability. 

f) It has small errors. 
 

1.5 Need for stable, effective (responsive), Robust Control:  

To be useful a control system should be stable. A stable system may be defined as one that will have 

a bounded response for all possible bounded input. A linear system will be stable if and only if all 

the poles of its transfer function are located on the left side of imaginary ( jω) axis 
 

1.6 Modeling of Dynamical system by Differential Equation- system parameters, order of the   

system: 
 

A dynamical system can be modeled using the differential equations. The differential is derived by 

finding the relation between input and output using mathematical equations governing the system. 

This can be demonstrated using a mechanical system consisting of spring, mass, damper system as 

shown in fig 1.5.1. 

 

 

 

u(t) 

 
 

 

    Y(t) 
 

 

 

b damper 

 

 

 

 

 

Fig 1.5: Mass, spring, damper system. 
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R 

Vi(t) i(t) C Vo(t) 

i(t) 

K is spring constant and b is coefficient of viscous damping.  

Spring force = k*x and  

Viscous force exerted by damper is b* dy/dt.  

dy/dt is the velocity of the mass m.  

The external force u (t) is the input to the system and displacement y(t) is measured from the 

equilibrium position in the absence of the external force. The system is single input and single output 

system. We can write the system equation after drawing the free body diagram of the mass which is 

shown in fig: 1.6 

  kx                u(t) 

m 
 
 

b * dy(t)/dt 
 

Fig 1.6: Free body diagram 
 

From the diagram, the system equation is (using Newton’s second law of motion):  

u(t)-k y(t)-b( dy /dt) = m d2y/dt2 

u(t) = m d2y/dt2 + k y(t) + b dy/dt 
 

Taking the Laplace transform of both sides 

 u(s) =( ms2 +b *s +k ) y(s) 

y(s)/u(s) = G(s) = 1/( ms2 +b* s +k) 
 

Order of the system: It is order of the differential equation governing the input and output. In this 

case system is governed by second order differential equation; hence order of the system is two. Order 

of the system can also be defined as highest power of s in the denominator of the transfer function. In 

this example highest power of s is two; hence it is a second order system. 
 

System Parameters: In the above example system parameters are mass m, spring constant k, and 

coefficient of viscous force b. 
 

Another example of modeling dynamical system using differential equation: 
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R(s) + E(s) 

- 
 
B(s) 

C(s) 

H(s) 

G(s) 

In the above RC network which is also called low pass filter, input is applied voltage Vi(t) and Output 

is Vo(t). Resistance is R and capacitance is C. Let us derive the model of this system using differential 

equation. 

Current passing through the circuit is  i(t). Vi(t) = R i(t) + Vo(t) 

Charge on the capacitor q = C Vo(t) 

Current i(t) is rate of change of charge q. 

hence dq /dt = c d Vo(t)/dt = i(t). Hence 

Vi (t) = RC d Vo(t)/dt + Vo(t) 
 

This is the first order differential equation; hence it is first order system. Solution of this equation 

will give the output for a given input. In this case system parameters are R and C. 
 

Taking the Laplace transform of both sides and assuming zero initial condition we get 

Vi(s) = RCs Vo(s) + Vo(s) 

Therefore transfer function G(s) = 1/ (1 +RC * s). 
 

1.7 Single input Single Output (SISO)  
 

SISO system in single input control and single controlled variable i.e. Output. A SISO closed loop 

system can be described the following block diagram Fig 1.7. 

 

Summing point (Comparator) 
 
 

Fig 1.7 
 

Analysis of a SISO closed loop system can be analyzed by finding the transfer function of the system.  

C(s) = G(s) * E(s) 

E(s) = R(s) – B(s) = R(s) – H(s) C(s) 

 

Eliminating E(s) from these equations  

C(s) = G(s) [R(s) – H(s) C(s)] 

Or C(s)/R(s) = G(s)/(1 + G(s) H(s)) 

 

Hence  

 

 

Hence we can find the output response for a given input if G(s) and H(s) are known. Example of 

SISO are attitude hold auto pilot where single input is desired pitch attitude and output in actual 
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Control System 

attitude of the aircraft. 
 

1.8 Multi input multi output system (MIMO). 
 

MIMO system has more than one input and output. for example in a four wheeler input is steering and 

force on accelerator and output is speed and direction of the vehicle. Hence we can say that it is an 

example of MIMO system. A MIMO system can be analyzed using the transfer function technique or 

using the state equation. Transfer function method is explained as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.8: MIMO 

 

The block diagram of a multiple variable system is shown in fig 1.9 in the vector matrix form. 
 

Summing point (Comparator) 

 

Fig 1.9: MIMO System 
 
 

Y(s) = G(s) U(s) 
 

U(s) = R(s) – B(s) 
 

B(s) = H(s) Y(s) 
  

Where Y(s) is the q × 1 output vector, U(s), R(s) & B(s) are all p × 1 vector. G(s) and H(s) are q × p 

and p× q transfer function matrix. 

M(s) = Y(s)/R(s) = [I + G(s) H(s)] -1 G(s)  

where I is identity matrix. Y(s) = M(s) R(s) 

 

r1(t) 

r2(t) 

rp(t) 

y1(t) 

y2(t) 

yq(t) 
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Output 

Input 

Output 

Input 

M(s) is called Matrix Transfer Function. 
 

 

 

1.9 Linear and Non linear System, Linearization of nonlinear Systems, Time invariant linear 

system: 
 

Linear and Non Linear System: A system is called linear if the principle of superposition applies. The 

principle of superposition states that the response produced by the simultaneous application of the 

different forcing functions is the sum of two individual responses. Hence for the linear system, the 

response to several inputs can be calculated by treating one input at a time and adding the results. It is 

this principle that allows one to build up complicated solutions to the linear differential equations from 

simple solutions. In an experimental investigation of a dynamical system, if cause and effect are 

proportional, thus implying that the principle superposition holds, then the system can be considered 

linear. 
 

Example: An amplifier can be considered as linear system if output varies proportional to an input. 

This may be true if the input signal is not very large and amplifier does not saturate as shown in fig 

1.9.1 

 

 

 

 

 

 
 

Fig 1.9.1: Linear system 
 

A non linear system is one where principle of superposition cannot be applied. Thus for nonlinear 

system the response to inputs cannot be calculated by treating one input at a time and adding the 

result. Although many physical systems are often represented by linear equations, in most cases actual 

relationships are not quite linear. In careful study of physical systems reveals that even so called linear 

systems are readily linear only in the limited operating range. For example output of an amplifier may 

saturate for large input signals. There may be a dead space that affects the small signal. Dampers used 

in physical systems may be linear for low velocity operation but may become non linear at high 

velocities, and the damping force may become proportional to the square of the operating velocity. 

This is shown in fig 1.9.2. 

 

 

 

 

 

 

 

 

Fig 1.9.2: Non Linear system 

 
 

Time- Invariant System Linear System: When parameters of a linear control system are stationary 

with respect to time during the operation of the system, the system is called time invariant linear 

system. For example in mass, spring damper system discussed above system parameters are spring 

constant k, damping force constant b and mass m. In case these parameters remain constant we say it 
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is linear time invariant system. Most physical systems contain elements that drift or vary with 

temperature. For example winding resistance of the motor will vary when motor is first excited & its 

temperature is rising. In guided missile system, mass of the missile decreases as the fuel on board is 

being consumed during the flight. 
 

1.10 Linearization of Non Linear System: To obtain a linear model we assume that variables deviate 

only slightly from some operating condition. Consider a system whose input is x (t) and output is y (t). 

The relationship between y(t) and x(t) is given by: 
 

Y = f(x)                 (1) 
 

If the normal operating condition corresponds to 𝑥̅ , 𝑦̅ , then above equation may be may be expanded 

into a Taylor series about this point as follows: 
 

             (2) 

 

Where 
𝑑𝑓   

and d2f/dx2 are evaluated at x = 𝑥̅ . If variation x - 𝑥̅ is x = 𝑥̅ s mall enough, we may neglect 
𝑑𝑥 

 

higher order terms in   x - 𝑥̅                                       , 
 

then equation can be written as:  

 

y = 𝑦̅ + k (x - 𝑥̅ );                (3) 

Where 𝑦̅ = f (𝑥̅ ) and k= 
𝑑𝑓 

 

𝑑𝑥 

 

evaluated at x = 𝑥̅ 

Then equation (3) can be written as: 
 

y - 𝑦̅ = k (x -𝑥̅)                (4) 
 

Which indicates that y- 𝑦̅ is proportional to x - 𝑥̅ . Equation (4) above gives linear mathematical 

model for the system given by equation (1) near the operating point x - 𝑥̅ , y - 𝑦̅ . 
 

Next consider a non linear system whose output y is function of two inputs x1 & x2, so that 

 

Y = f(x1, x2)              (5) 

 

To obtain a linear approximation to this model, we may expand equation into Taylor series about point 

x1, x2 Then equation (5) is: 

(6) 

Where partial derivatives are evaluated at x1 = ̅𝑥̅1 , x2 = ̅𝑥̅2  

Near the normal operating point, the higher order terms may be neglected. The linear mathematical 

model of the non linear system in the neighborhood of the normal operating condition is given by 

Y - 𝑦̅ =K1(x1- ̅𝑥̅1) + K2 (x2- ̅𝑥̅2)  
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Controlled 
Process 

Where y = f(x, y ) 

K1 =  , evaluated at x1 = 𝑥̅1, x2 = 𝑥̅2 

K2 =  , evaluated at x1 = 𝑥̅1, x2 = 𝑥̅2

 

Example problem:  

Linearise the nonlinear equation z = xy, in the region 5 ≤ x ≤ 7, 10 ≤ y ≤ 12. Find the error if the 

linearized equation is used to calculate the value of z when x=5; y=10. 

Solution: Since the region considered is, 5 ≤ x ≤ 7, 10 ≤ y ≤ 12, choose 𝑥̅  = 6, 𝑦̅ = 1 then 𝑧̅ = 𝑥̅  𝑦̅ 

=66. Let us obtain a linearized equation for the nonlinear equation near a point 𝑥̅ = 6 and 𝑦̅ = 11. 

Expanding the non linear equation into Taylor series about the point x= 𝑥̅ ,y= 𝑦̅ and neglecting the high 

order terms, 
 

z- 𝑧̅ = K1(x-𝑥 ̅ ) + K2 (y-̅𝑦 ) 
 

Where K1 =   evaluated at x =𝑥̅ , y = 𝑦̅ , K1= 11 
 

Where K2 =   evaluated at x =𝑥̅ , y = 𝑦̅ , K2= 6 

Hence linearized equation is 
 

z -66 = 11(x-6)+6(y-11) or z= 11x + 6y-66 

When x=5, y=10, z= 11*5 + ^*10-66 = 49. 

The exact value is z=xy=50. The error is then 50-49=1. In percentage, the error is 2%. 

 

 

1.11 The Concept of feedback- Open loop control, Closed loop Control, effect of feedback on 

input- output relation, stability, robustness. Merits of Feedback: 

 

 

 
 

Reference input r 
 

          Actuating signal u                 Controlled variable y  

 

 

 

Fig 1.10.1: Elements of an Open-Loop system 

 

 

 

 

 

Controller 
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An input signal or command r is applied to the controller, where output acts as the actuating signal u, 

the actuating signal then controls the controlled process that the controlled variable y will perform 

according to prescribed standards. In simple cases controller can be amplifier, mechanical linkage, 

filter or other control element, depending on the nature of the system. In more sophisticated cases, 

controller can be a computer such as a microprocessor. Open loop systems find application in many 

non-critical applications because of simplicity and economy. 
 

1.11.1 Closed Loop Control System:  What is missing in the open loop control system for more 

accurate & more adaptable control is a link or feedback from the output to input of the system. To 

obtain more accurate control, the controlled signal y should be fed back & compared with the reference 

input, and the actuating signal proportional to the difference of input and the output must be sent 

through the system to correct the error. Such a system is called closed loop system. Example of closed 

loop system is shown in the fig 1.10.2 below which is a room heating system. 

 

 
 

A thermostat senses the temperature and if it is lower than a set value the furnace is turned on. 

The furnace is turned off when the temperature exceeds the set value. 
 

Major Advantages of Open-loop control system are: 

1. Simple construction and ease of maintenance. 

2. Less expensive than corresponding closed loop system. 

3. There is no stability problem. 

4. Convenient when output is hard to measure or measuring the output precisely is 

economically not feasible. For example in the washing machine, it would be quite 

expensive to provide a device to measure the quality of the washer’s output, cleanliness of 

the clothes. 

 

The major disadvantages of open loop systems are as follows: 

1. Disturbance and changes in calibration cause errors, and the output may be different from what is 

desired. 

2. To maintain the required quality in the output, recalibration is necessary from time to time. 
 

1.12 Feedback and Its Effect, Robustness and merits of feedback control: In many control 

system application, the system designed must yield the performance that is robust i.e. insensitive to 

external disturbance, noise and parameter variations. Feedback in control system has the inherent 

ability of reducing the effect of external disturbance and parameter variations. 
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R(s) + E(s) 

- 
 
B(s) 

Feedback is not only for reducing the error between the reference input and the system output, it 

has many other significant effects on the performance of the control system. It has affects on such 

system performance characteristic such as stability, bandwidth, overall gain, disturbance and 

sensitivity. 
 

Let us consider a simple example of feedback control system shown in fig 1.10.3 
 

Summing point (Comparator) 
 
 

Fig 1.10.3 
 

We know that overall gain of the system is 
 

M(s) = Laplace transform of output/ Laplace transform of 

input. M(s) = C(s)/R(s) = G(s)/(1 + G(s) H(s)) 

(a) Effect of feedback on overall gain> the feedback affects the gain G(s) of a non feedback system 

by a factor of 1+ G(s) H(s). The quantity G(s) H(s) may include a minus sign, so the general 

effect of a feedback is that it may increase or decrease the gain G(s). In practical control system, 

G(s) and H(s) are functions of frequency, so the magnitude of the 1+G(s) H(s) may be greater 

than one in one frequency range but less than one in other frequency range. So the feedback can 

increase the system gain in one frequency range but decrease it in other. 

(b) Effect of Feedback on Stability. Stability is notion that describes whether the system will be able 

to follow the input command, or be useful in general. A system is said to be unstable if its out is 

out of control. If G(s) H(s) = -1 the output is infinite for any finite input. Therefore we may say 

that feedback can cause a system that is originally stable to become unstable. Feedback when used 

improperly can be harmful. It can be demonstrated that one of the advantages of incorporating 

feedback is that it can stabilize an unstable system. 

(c) Effect of Feedback on Sensitivity. All physical elements have properties that change with the 

environment and age; we cannot always consider the parameters of a control system to be 

completely stationary over the entire operating life of the system. For example, winding 

resistance of an electric motor changes as the temperature of the motor rises during the 

operation. In general, a good control system should be very insensitive to parameter variations 

but sensitive to the input command. We consider G(s) to be gain parameter that may vary. The 

sensitivity of the gain of the overall system, M(s) to variation of G(s) is defined as 
 

Sensitivity 

 

G. Similarly output should be insensitive to noise. 

C(s) 

H(s) 

G(s) 
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H 

G1 
G2 

Sensitivity of M with respect to G = 1/ [G(s) + H(s)]. 

This relationship shows that if G(s) H(s) is positive constant, the magnitude of sensitivity can be 

made arbitrarily small by increasing G(s) H(s), provided the system remains stable. In open loop 

system sensitivity = 1. We should note that G(s) H(s) is a function of frequency, the magnitude 1+ 

G(s) H(s) may be less than unity over some frequency range, so that feedback could be harmful to 

the sensitivity to parameter variations in certain cases. 

(d) Effect of Feedback on External Disturbance or Noise. The system with noise input n is 

shown in the figure 1.10.4 

 

-  n  + 
 

r  + y 
 

- 

 

 

 

 

 

Fig 1.10.4 

In the absence of 

feedback  Y= G2 *n (1) 

With presence of feedback, the system output due to noise n acting alone (i.e. r= 0) 

 Y = G2 *n/ (1+ G1 G2 H) (2) 

Comparing equation (1) and (2) shows that noise component in output is reduced by a factor of 1 + 

G1G2H. If the latter is greater than unity and system is kept stable. 

In summary we can say that feedback if used properly will make the system robust by reducing the 

effect parameter variations, noise and external disturbance. 

 

1.13  Loop Gain and Feedback Gain –Significance: A feedback system is shown in fig 1.10.3. Gain 

of the element in forward path is G(s) and the gain in the feedback path is H(s). Product G(s) H(s) is 

called Loop Gain and H(s) is called feedback gain. These are very significant in feedback control as 

they decide the stability, sensitivity, effect of noise & external disturbance and important in the design 

of control system as explained above. 
 

System Type, Steady State Error, Error Constant: 
 

System Type: A control system transfer function can be represented as: 
 

G(s) =(K (1+T1s)(1+T2s)…(1+Tm1 s+Tm2 s
2))/(sj (1+Ta s)(1+Tb s)…(1+Tn1 s+Tn2 s2)) 

 

Where K and all T’s are real constants. The system type represents order of the pole of G(s) at s=0. 

Thus the closed loop system having the forward path transfer function of above equation is type j, 

where j = 0, 1, 2… The following example illustrates the system type with reference to the form of 
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G(s): 
 

G(s) = K (1+0.5 s)/ ((s (1+ s) (1+2 s) (1+s+s2)) Type 1 
 

G(s) = K (1+ 2 s)/ (s3) Type 3 

Steady State Error: One of the objectives of control system is that the system output response follows 

a specific reference signal accurately in the steady state. The difference between the output and & 

reference input in the steady state is defined as the steady state err or  
 

Definition of steady state error with respect to system configuration: Let us consider a system as 

shown in fig 1.12.1 below. Error of the system may be defined as: 

e(t) = reference signal – y(t) 
 

Where reference signal in the signal that the output y(t) is to track. When the system has unity 

feedback ( H(s) = 1), the input r(t) is the reference signal, and the error is simply 
 

e (t) = r(t) – y(t) 

 

Summing point (Comparator) 
 

y(t) 
 

Y(s) 
 

 

 

 
 

Fig 1.12.1 

The steady state error is defined 

as ess = limt (𝑡) 
𝑡→∞ 

 

Types of Control System: Unity feedback system. Consider a control system with unity feedback. It 

can be represented by or simplified to the block diagram in fig 1.12.2 below. 

 

Fig 1.12.2: Unity feedback system 

The steady state error of the system is written as 

Ess = limt (𝑡) = limt (𝑠) = limt[ 𝑠(𝑅(𝑠) − 𝑦(𝑠))] 
𝑡→∞ 𝑠→0 𝑠→0 

 

= limt [(𝑠) − (𝑠)𝐺(𝑠)/(1 + 𝐺(𝑠)𝐻(𝑠)] 
𝑠→0 

 

=   limt 𝑠 (𝑠)/(1 + 𝐺(𝑠) 

R(s) + E(s) Y(s) 

- 

G(s) 

e (t) 

R(s) + E(s) 

r(t) - 

b (t), B(s) 
H(s) 

G(s) 
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Clearly ess depends on the characteristics of G(s). More specifically, we can show that ess depends 

on the number of poles that G(s) has at s = 0. This number is known as the TYPE of the control 

system. Or simply, system Type. We can show that the steady state error ess depends on the type of 

the control system. In general G(s) can be represented by: 
 

 G (s) =(K (1+T1s)(1+T2s)…(1+Tm1 s+Tm2 s
2))/(sj (1+Ta s)(1+Tb s)…(1+Tn1 s+Tn2 s2)) (2) 

 

Where K and all T’s are real constants. The system type represents order of the pole of G(s) at s=0. 

Thus the closed loop system having the forward path transfer function of above equation is type j, 

where j = 0, 1, 2… The following example illustrates the system type with reference to the form of 

G(s): 
 

G(s) = K (1+0.5 s)/ ((s (1+ s) (1+2 s) (1+s+s2)) Type 1 
 

G(s) = K (1+ 2 s)/ (s3) Type 3 

 

 

Steady state error of a system With Step input: when input r(t) to the control system is a step 

function with magnitude R, R(s) = R/s. the steady state error is written from equation (1) 

ess = limt 𝑠 𝑅(𝑠)/(1 + 𝐺(𝑠) = limt 𝑅/(1 + 𝐺(𝑠) = R/ (1+ limt 𝐺(𝑠)) 
𝑠→0 𝑠→0 𝑠→0 

 

For convenience, we define Kp = limt (𝑠) 
𝑠→ 

 

Hence ess = R/(1 + Kp) (3) 
 

We can see from equation (3) that for ess to be zero Kp must be infinite. If G(s) is as shown in equation 

(2) then for Kp to be infinite j must be at least equal to unity, that is , G(s) must have at least one pole 

at s = 0. Therefore we can summarize the steady state error due to step function input as follows: 

 

 

IMPORTANT   

 

 

 

 

 

 

 

 

Kp is known as position error constant. Steady 

State error with a Ramp function input: 

When the input is a ramp function with magnitude R, 
 

r(t) = R t where R is real constant, the Laplace transform of r(t) is 

R(s) R(s) = R/s2

Type 0 system: ess = R/(1+ Kp)= constant. Type 1 or  

higher system: ess = 0. 
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The steady state error is ess = lim 𝑅/(𝑠 + 𝑠 𝐺(𝑠)) = lim 𝑅/(𝑠𝐺(𝑠)) 
𝑠→0 𝑠→0 

 

We define the ramp error constant as Kv; where 
 

Kv = limt (𝑠) 
𝑠→0 

 

Then ess = R/Kv 

Hence for ess to be zero, Kv must be infinite. Using equation (2) we 

obtain Kv = limt 𝑠 (𝑠) = limt 𝐾 / s j-1 
𝑠→0 𝑠→0 

 

Thus for Kv to be infinite, j must at least be equal to 2, or the system must be type 2 or higher. 

The following conclusions may be stated with regard to steady state error with ramp input. 
 
 

 

 

Steady state error with of system with Parabolic Input: When input is described by the 

standard parabolic form, 

r(t) = R t2 /2 
 

The Laplace transform of r(t) = r/ s3 
 

The steady state error is ess = 
𝑅 

lim 
𝑠→0 G(𝑠) 

𝑠2 ; defining the parabolic error constant as Ka 

 

Ka = lim 
𝑠→0 

𝑠2 (𝑠) ; the steady state error becomes 

 

ess = R/Ka 
 

Following the pattern set with the step & ramp input, the steady state error due to parabolic input is 

zero if the system is 3 or greater. The following conclusions are made with regard to steady state 

error of a system with parabolic input. 

Type 0 system: ess = ∞ 
 

Type 1 system: ess = R/Kv = constant 

Type 2 or higher order: ess = 0 

Type 0 system: ess = ∞ 

Type 1 system: ess =∞ 

Type 2 system: ess = R/Ka = constant 

Type 3 or higher order: ess = 0 
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0 

∞ 

Example: consider a closed loop unity feedback system has the following transfer functions. The error 

constants and steady state errors are calculated for three basic inputs using the error constants; 
 

(𝑠+3.5) 

(a)   G(s)  =  
(𝑠+1.5)(𝑠+0.5) 

, H(s) =1 

For step input: step error constant Kp =∞ , ess = R/(1+Kp) = 0 

Ramp input: Kv = 4.2 K, ess = R/(4.2k) 

Parabolic Input: ka = 0, ess = R/ka = ∞ 

 
(b) Let G(s) = 5(s+1)/(( s2 (s+12)(s+5)) 

We can calculate the error constants and steady state error for three basic 

inputs: Step input: Kp = ∞ ; ess = R/(1+Kp) = 0 

Ramp input: Kv = ∞ , ess= R/Kv = 0 Parabolic 

input: Ka = 1/12,ess = R/Ka = 12R. 

 

1.14  Overall System stability: To be useful a control system should be stable. A stable system may 

be defined as the one that will have bounded response for all possible bounded input. A linear system 

will be stable if and only if all the poles of its transfer function are located on the left side of jw 

(imaginary axis) axis. 

Alternative definition Of Stability: if w (t) is the impulse response ( which is inverse Laplace 

transform of the transfer function, G(s)) 

 
limt 𝑤(𝑡) =0 
𝑡→∞ 

∫ 𝑤2(𝑡)𝑑𝑡 <∞ 

The most direct approach for investigating the stability of a linear system is to determine the 

location of poles of its transfer function. Often this is not very convenient as it requires evaluating 

the roots of a polynomial, the degree of which may be high. 

It is not necessary to determine the actual location of the poles of the transfer function for 

investigation of stability of a linear system. We only need to find out if the number of poles in the 

right of the s-plane is zero or not. 

 

The Routh-Hurwitz Criterion: Let the characteristic polynomial be given by: 

 
∆ (s) = a0 s n + a1 s n-1 + …+ a n-1 s + a n 

Then the Routh table is obtained as 

follows: s n a0 a2 a4 … 

s n-1 a1 a3 a5… 

s n-2 b1 b3 b5 

s n-3 c1 c3 c5 

. 

. 

s0 h1 

 
Where the first two rows are obtained from the coefficient of ∆s. The elements of the following rows 

are obtained as shown below: 

b 1 =( a1a2- a0 a3)/a1 ; b3 = (a1a4-a0 a5)/a1 

c1 = (b1 a3- a1 



 
IARE                                            FLIGHT CONTROL THEORY                                          Page | 18 

Source from Automatic Control Systems by Kuo, B.C 

 

b3)/b1 And so on. 

 

Routh-Hurwitz criterion states that the number of roots with positive real parts is equal to the number of 

changes in the Ist column of the Routh table. 

Example1: let ∆(s) = S4 + 5s3 +20 s2+ 40s + 50,  

The Routh table is as: 
s4 1 20 50 

s3 5 40 

s2 12 50 

s 230/12 

s0 50 

There are no sign changes in the Ist column which indicates no root in the right s-plane, and hence it is 

a stable system. 

Example 2: ∆(s) = s3 + s2+ 2s + 24 

 
s3 1 2 

s2 1 24 

s -22 

s0 50 

Two sign changes in the first column (i.e. from 1 to -22 and from -22 to 24) indicate two roots in the 

right half s-plane. Hence the system is unstable. 

 

1.15 Application of feedback in Stability Augmentation System, Control Augmentation, 

Automatic control-Examples: The FCS of an aircraft generally consists of three important parts. 

 

a) Stability Augmentation system (SAS): The SAS augments to the stability of the aircraft. It 

mostly does this by using the control surfaces to make the aircraft more stable. A good 

example of the SAS is the phugoid damper or similarly yaw damper. A phugoid damper uses 

the elevator to reduce the effects of phugoid; it damps it. The SAS is always on when the 

aircraft is flying. Without it, aircraft is less stable or possibly even unstable. 

 

b) Control Augmentation system (CAS): CAS is a helpful tool for the pilot to control the 

aircraft. It reduces the pilot work load. For example, the pilot can tell the CAS to ‘keep the 

current heading’. The CAS then follows this command. In this way, the pilot doesn’t 

continuously have to compensate for heading changes himself. 

 

c) Automatic Control System: Automatic control system (ACS) takes things one step further. It 

automatically controls the aircraft. It does this by calculating (for example) the roll angles of 

the aircraft that are required to stay on a given flight path. It then makes sure that these roll 

angles are achieved. In this way, airplane is controlled automatically. 

 

There are important differences between the above three systems. First of all, the SAS is always on, 

while the other two systems are only on when the pilot needs them. Second, there is the matter of 

reversibility. In the CAS and automatic control, the pilot feels the actions that are performed by the 

computer. In other words, when the computer decides to move a control panel, also the stick/pedals of 

the pilot move along. This makes these systems reversible. The SAS , on the other hand, is not 
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Fig 1.14.1 

Yaw rate 
 

Gyro 

Yaw 

damper c dr 

Aircraft Rudder 
 

servo 

reversible; the pilot doesn’t receive feedback. The reason is very simple. If the pilot would receive 

feedback, the only things he would feel are annoying vibrations. This is of course undesirable. 

 

 

1.15.1 Stability Augmentation System (SAS) for Improving Dynamic Stability. SAS augments to 

the stability of the aircraft. It mostly does this by using the control surfaces to make the aircraft more 

stable. A good example of part of the SAS is the Phugoid damper or simply a yaw damper. A Phugoid 

damper uses the elevator to reduce the effects of the phugoid: It damps it. 

 

 The SAS is always on when the aircraft is flying. Without it, the aircraft is less stable or possibly 

unstable. There is SASs for both the dynamic stability (where the Eigen motions don’t diverge) and the 

static stability (whether the equilibrium position itself is stable). We will examine the functioning of 

Yaw damper using feedback with the help of Fig 1.14.1 

 

 

r r 
 

 

 

 

 

 

 

rcorr r 
 

 

Fig 1.14.1: an overview of Yaw Damper System 

 

When an aircraft has a low speed at high altitude, the Dutch roll properties of the aircraft deteriorate. 

To prevent this, a yaw damper is used. The yaw damper gets its input (feedback) from the yaw rate 

gyro. It then sends a signal to the rudder servo. The rudder is then moved in such a way that the 

Dutch roll is damped more quickly than usual. As a designer, we can only influence the yaw damper. 

To analyze the system, we should know the transfer function of servo, aircraft dynamic and yaw rate 

gyro. Normally transfer function of gyro can be represented by H(s) =1. Actuators are slow and lag 

behind the input. So we can model the rudder servo as a lag transfer function, like 

H servo(s) = Kservo/ (1+ Tservo s). 

 
The time constant Tservo depends on the type of actuator. For slow electric actuator, T servo is 

approximately 0.25 seconds. However, for fast hydraulic actuator it is between 0.05 to 0.1 sec. 

Reference yaw rate r is to be supplied to the system. In case we do not have reference r, we can use a 

wash out circuit as controller.Transfer function of washout circuit is: 

H washout (s) = τ s/ (τs +1). 

A good approximation of τ is 4seconds. In the yaw damper transfer function we use proportional, 

integral and derivative control. If the rise time should be reduced, we use proportional controller. If 

the steady error needs to be reduced, we add an integral action. And if the transient response needs to 

be reduced (e.g. to reduce overshot) we apply a derivative action. In this way right value of Kp, Ki 

and Kd can be chosen. 
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1.15.2 Feedback for Acquiring Static Stability: Before an aircraft can be dynamically stable, it 

should be statically stable. In other words, we should have Cmα < 0 and Cnβ > 0. Normal aircraft 

already have this. But very maneuverable aircraft, like fighter aircraft, don’t. To make an aircraft 

statically stable, feedback is applied. The most important is the kind of feedback that is used. Angle of 

attack feedback is used for longitudinal control. In other words AOA is used as a feedback parameter. 

For AOA feedback, usually only a proportional gain Kα is used. Value of Kα can be calculated using 

various methods like root locus etc. 

Similarly for lateral stability sideslip feedback can be used. In this case also a nice gain Kβ can be 

chosen for the system. 
 

1.15.3 Control Augmentation System: We discussed previously SAS. This system can be seen as the 

inner loop of the aircraft control system. The control augmentation system is the outer loop. When we 

want to keep a certain pitch angle, velocity, roll angle, heading, or something similar, then we use the 

CAS. This way, the pilot work load can be reduced significantly. A control system used to hold the 

pitch attitude of the aircraft is shown in fig 1.14.3. 
 

 

 

 

 

R  θ 
 
 
 
 
 
 
 
 
 
 
                            rcorr 
    

  

Fig 1.14.3: An overview of the pitch attitude holding system 
 

The pitch attitude hold mode prevents pilots from constantly having to control the pitch attitude. 

Especially in turbulent air, this can get tiring for the pilot. This system uses the data from the vertical 

gyroscope as input (feedback). It then controls the aircraft trough the elevators. To be more precise, it 

sends a signal to the SAS, which then again uses this as a reference signal to control the servo. 
 

 Automatic control systems: ACS makes the aircraft to fly on its own. Examples of such systems are: 

following a glide slope, automatically flaring during landing, following localizer. 

 

 

 

 

1.16 Control System Components-sensors, transducers, servomotors, actuators, filters-

modeling, transfer function: 

1.16.1 Sensor: We can define a sensor as a device that converts a physical stimulus or input into a 

reliable output, which today would preferably be electronic, but which can also be communicated by 

other means such as visual and acoustic. The generic block diagram for a sensor is shown in fig 1.15.1 

which highlights the role of a sensor as an interface between a control system and the physical world. 
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Fig: 1.16.1: Sensor Block Diagram 

 

 

 

Sensors used in aircraft control system: 

(a) Pitot-static sensor: for sensing Pitot & Static pressure. 

(b) Temperature sensor: Thermo couple, resistance based. 

(c) Roll, Pitch, Yaw sensor: Mechanical, Laser Gyros. 

(d) Acceleration sensors: Inertial navigation based. 

(e) Velocity sensors: INS-GPS system based. 

(f) Angle of attack sensors 

(g) Angle of sideslip sensors. 

 

 

Application of sensor in aircraft auto-pilot: this shown in Fig 1.15.1 

Error Detector 
 

+ 

Desired Aircraft heading 
- 

Heading B(s) 

 

Fig 1.16.2: An overview of the Heading holding system 
 

1.16.2 Mathematical Modeling and transfer function of sensors. : Mathematical modeling of sensors 

can be derived by writing the differential equation governing input and output. Then taking the Laplace 

transform of both side of differential equation we can find the transfer function of the sensor. For 

example Gyros are generally very accurate in low frequency measurements, but not so good in high 

frequency regions. So, we can model a gyro as a low pass filter, being 

H gyro (s) = 1/(s +ωbr) 
The gyro break frequency (above which the performance starts to decrease) is quite high. In fact, it is 

usually higher than any of the important frequencies of the aircraft. Therefore, gyro can often be 

Heading 

Sensor 
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simply modeled as H(s) =1. In other words, it can be assumed that the gyro is sufficiently accurate. 

Transducer: A transducer is a device that transforms one form of energy into another. Transducers are 

generally made as small as possible, and the energy being transferred is small. Conversion between 

input and output is done quantitatively using a calibration process. Transducers use basic physical laws 

to measure physical parameters using sensing elements that is the part of transducer. The parameters 

measured in a servo control systems are position and motion while parameters measured in process 

control systems are temperature, flow, level, pressure and others. 

Examples of transducer: Potentiometer, LVDT (Linear variable differential transformers) 

tachometer, encoders. 

1.16.3 Mathematical Modeling and transfer function of transducer. A potentiometer is an 

electromechanical transducer that coverts mechanical energy into electrical energy. The input to the 

device is in the form of a mechanical displacement. When a voltage is applied across fixed terminals, 

the output voltage, which is measured variable, is proportional to the input displacement as shown in 

fig 1.15.2.E is the applied voltage across fixed terminal. The output voltage is proportional to the shaft 

position Ө(t). Then 

+ ᶿ 

E e(t) + 
 

- - 
 

e(t) = K Ө(t) ; where K is proportionality constant. Hence E(s) = K Ө(s); or 

transfer Function is E(s)/Ө(s) = K 

1.16.4 Mathematical model and Transfer function of tachometer: Tachometer is 

electromechanical device that convert mechanical energy into electrical energy. The output voltage is 

proportional to the angular velocity of the input shaft. The dynamics of a tachometer can be 

represented by the equation 

e(t) = Kt ( dӨ/dt) = Kt ω(t) 
Where e(t) is the output voltage(t) is the rotor displacement in radians, ω(t) is the rotor velocity, Kt is 

tachometer constant in V/rad/sec. the value of Kt is given as a catalog parameter in volts per 1000 rpm. 

Transfer function of the tachometer is obtained by taking the Laplace transform of both sides. 

E(s)/Ө(s) = s Kt 

Servomotor: servomotors are widely used in control system as position controller. A DC servomotor is 

basically a torque transducer that converts electrical energy into mechanical energy. The torque 

developed on the motor is directly proportional to the field flux and armature current. The relationship 

among the torque developed, the flux ф and current i a is 
 

Tm = Km ф ia 

 

In addition to the voltage, the back emf, which is proportional to the shaft velocity, tends to oppose the 

current flow. The relationship between the back emf and shaft velocity is E b = Kb ф ωm; where ωm is the 

shaft velocity. 

 

e a(t) = Ra ia(t) + La d (ia)/dt + eb(t) Tm (t) = Ki ia (t) 

eb (t) = Kb dӨm/dt = Kb  ωm(t) Jm d
2Ө/dt2 = Tm(t) –Bm dӨm/dt 
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Ὠm(s) 
1/s 

Ki 1/(Jm s+Bm) 

Where ia(t) = armature current 
 

La = armature inductance  

Ea(t) = applied voltage 
Eb (t) = back emf 

 Tm(t) = Motor torque  

Ki = Torque constant 
Kb = Back emf constant Ф = magnetic flux 

ω m(t ) = rotor armature velocity  

Jm = rotor inertia 
Bm = Viscous friction force 
 

 
 

ia (s) Tm(s) Өm(s) 

 

  

 

 

(s) 
Fig: 1.15.4 : transfer Function Block diagram 

 

The transfer function between the motor displacement & the input voltage  

𝐾𝑖 
Өm (s)/Ea(s) = 𝐿𝑎 𝐽𝑚 𝑠3+(𝑅𝑎𝑗𝑚+𝐵𝑚 𝐿𝑎)𝑠2+𝐾𝑏 𝑘𝑖+𝑅𝑎𝐵𝑚)𝑠 

1.16.5 Actuators Function, Modeling and Transfer function: An example of a controller for an 

aircraft system is a hydraulic actuator used to move to the control surface. A control valve on the 

actuator is positioned by either a mechanical or electrical input, the control valve ports hydraulic fluid 

under pressure to the actuator, and the actuator piston moves until the control valve shuts off the 

hydraulic fluid. A hydraulic actuator is shown below in fig 1.15.4.1. 

 

 

 
Hydraulic Control valve 

fluid under Pressure 

Mechanical output 
 

X 
 

Fig 1.15.5.1: Hydraulic actuator 
 

Clearly actuator piston cannot move instantaneously because it takes a finite time for the hydraulic 

fluid to move through the ports from the control valve. In response to a step unit, the resulting motion 

(x) of hydraulic actuator can be modeled as an exponential. 

x (t) = Z (1-𝑒−𝑎𝑡 ) 
 

Where Z is the final displacement value of the actuator. Generalized transfer function of the actuator is: 
 

Where X(s) is the Laplace transform of the output & E(s) is Laplace transform of input. Block 

+ 
Ea(s) 

- 
1/ (Ra +sLa) 

Kb 



 
IARE                                            FLIGHT CONTROL THEORY                                          Page | 24 

Source from Automatic Control Systems by Kuo, B.C 

 

a/(s+a) 

diagram of actuator with transfer function is shown in fig 1.15.4.2 
 

E(s) ᵟe (s) 
  

 

 Fig 1.15.5.2: Transfer function of a Actuator 

 

Filters, Purpose, Modeling and Transfer Function: A powerful tool available to the control engineer is 

compensation filters. Compensation filters can various forms and are very affective in tailoring the 

aircraft response. They are of the following types: 

 

(a) Lead Compensator/High Frequency Filter: Purpose, Modeling and Transfer Function: A 

lead compensator is used to quicken the system response by increasing natural frequency and/ or 

decreasing time constant. A lead compensator also increases the overall stability of the system. A 

simple lead compensator using simple RC network is shown below: 

 

U C R y  

 

 

Transfer function = τ s/ (τs +1).where τ= RC 
 

 

(b) Lag Compensator/High Frequency Filter: Purpose, modeling and Transfer Function. They 

are used to slow the system response by decreasing the natural frequency and/or increasing the time 

constant. They also tend to decrease the overall stability of the system. A simple lag network is 

shown in the figure below. They attenuate high frequencies like noise and disturbance. 
 

R 
 

Vi(t) C Vo(t)  

 

 

 

 

 

Transfer Function = 1/ (τs +1). Where τ= RC 

Fig: A simple Lag Network 
 

(c) Lead Lag filter. The combined benefits of lead compensator and lag compensator may be 

realized using lead-lag compensation. Common use of lead-lag compensator is the attenuation of a 

specific frequency range (sometimes called notch filter). For example, an aircraft structural 

resonant frequency can be filtered out with a lead-lag compensator if a feedback sensor is 

erroneously affected by that frequency.  

 

(d) Washout Filter. Another type of high pass filter which is used commonly in aircraft SAS is 

wash out filter. It is simply a case of the lead compensator where the zero is actually a 

differentiator. It has the transfer function as 
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G(s) 
G(2(s) G1(s) 

 

Low frequency signals are attenuated, or washed out. Only changes in the input are passed through. 

This valuable for aircraft feedback control because feeding back a parameter such as roll rate with a 

wash out filter, the SAS would constantly oppose the roll rate and decrease the performance. The 

gain for high frequencies is determined by the corner frequency& the wash out filter gain Kw. 

Additionally, phase lead is added at higher frequencies. 

 

 

1.17 COMPOSITION, REDUCTION OF BLOCK DIAGRAMS OF COMPLEX SYSTEMS-

RULES AND CONVENTIONS 
 

There are four basic components of a block diagram. First there are blocks themselves, describing the 

relationship between input and output quantities through a transfer function. There are summing 

points where output parts of two or more blocks are added algebraically. Third component is a take 

off point which represents the application of the total output from that point as input to some other 

block. Finally diagrams contain arrows, indicating unidirectional flow of signal in these diagrams. 

 

C(s) = G(s) U(s) 

 

Rules of Block Diagram Algebra: 

 
 

1. Combing cascade Blocks: Blocks connected in cascade can be replaced by a simple block 

diagram with transfer function equal to the product of the respective transfer functions. 

 

Rules of Block Diagram Algebra: 

 
 

1. Combining cascade Blocks: Blocks connected in cascade can be replaced by a simple 

block with transfer function equal to the product of the respective transfer function. This 

is shown below: 

 
 

R(s) C(s) R(s) C(s) 
  

G(s) = G1(s) G2(s) 
 

This is valid only if no loading effect on first block due to second block. 

 
 

2. Elimination of a feedback control: Let G(s) be the transfer function in the forward path, 

H(s) is transfer function of feedback path. Overall transfer function is shown in the fig 

below. 
 

Example: Determine the overall transfer function of the system shown in Fig 1.16.1 below. 
 
 

C(s) 
 

R(s) + 

- 
H1(s) 

G1(s) + 

- 

H2(s) 

G2(s) 



 
IARE                                            FLIGHT CONTROL THEORY                                          Page | 26 

Source from Automatic Control Systems by Kuo, B.C 

 

+ 
 

+ c(t) 

r(t) 

G2(s) 

G1(s) 

Y + 

+ Z G 
+ 

X + 

1/G 

G 

+ 

G 

G 

G 

Y 

1/G 

G 

G 

 

 

 

 

 
Fig 1.16.1 
 

 

c(t) 

r(t) 

 

 

 
 

3. Moving a Summing Point ahead of a block: Y 
 

 
 

X Z 
 

 

 

 

4. Moving a Summing point behind a Block: 

+Y X 

Z 

X Y 

 

 

5. Moving a pick-off point ahead of a Block: 

Y 

Y 

X Y X Y 

6. Moving a Pick-off Point behind a Block: 

 

X 
 

X Y 
 

X X 
 

Examples of Block Reduction: Find Y/R for the following blocks: 

 

 

 

R 
 

 

G1(s) + G2(s) 

+ 

+ Z 
G 

G 

+ 
+ 

+ C 

Y - + 

- 
H1 

G3 G2 G1 

G4 

G 
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𝐺1𝐺2𝐺3 + 𝐺1𝐺4 

 

 

 

 

Solution: Above block can be reduced as follows: We shift pick-off point after block G2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 
 

This can be reduced as follows: 
 

 
R(s) + C(s) 

 

 

 

 

 

Hence final transfer functi-on is: 
 

C(s)/R(s) 

= 

𝐺1𝐺4+𝐺1𝐺2𝐺3 

1+𝐺1𝐺2𝐻1+𝐺1𝐺2𝐺3+𝐺1𝐺4 
 

 

 

 

 

 

 

 

 
 

+ 

R C 
- 

𝐺2 

𝐺4 
G3 + 

𝐺1𝐺2 

1 + 𝐺1𝐺2𝐻1 

+ 
+ 

+ 
+ 

C 

Y - 

- 
H1 

G3 G2 G1 

G4/G2 

1 + 𝐺1𝐺2𝐻1 
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Problem 2: Reduce the block diagram & find C/R 

 

 
 

R 
 

 

 

 

 

 

 

 

 

 
 

Solution:   e2 = RG3 – 

CH1 E1= RG1 +e1 = 

RG2 +RG3-H1C C=e1 

G2 

C = (RG1+RG3 –H1C) 

G2 RG1G2 + RG3G2 = 

G2H1C +C 

C/R 

= 

𝐺1𝐺2+𝐺3𝐺2 
 

1+𝐻1𝐺2 

 

 SISO & MIMO System , Matrix Transfer Function: See Paragraph 1.7 above. 

C 

H1 

G2 
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UNIT- II 

 

MATHEMATICAL MODELLING OF DYNAMIC SYSTEMS 

 

2.1 Control System Performance-Time domain description- Output Response to Control inputs- 

Impulse response, characteristic parameters-relation to system parameters. 

2.1.1 Time domain description of a first order system: Consider the first order system shown in fig 2.1 

below. Physically the system may represent an RC circuit or the like. The input output relationship is 

given by 
 

C(s)/R(s) = 1/ (Ts+1)          (1) 
 

 

 

R(s) C(s) 
  

 

 

 

 
Fig 2. 1: First order System 

 

In the following section we will analyze the system response to such input as unit-step, unit-ramp, and a 

unit impulse function. The initial conditions are assumed to be zero. 
 

(a) Unit Step Response of First Order System: Since the Laplace transform of the unit step function is 

1/s, substituting R(s) = 1/s into equation (1) we obtain 
 

, Expanding C(S) into partial fraction gives 

           (2)  

Taking the inverse Laplace transform of equation (2), we obtain 

c (t) = 1- e−t/T, for t >= 0 (3) 

Equation (3) states that initially the output c(t) is zero and finally it becomes unity. One important 

characteristic of such exponential response curve c(t) is that at t= T , the value of c(t) is 0.632 or the 

response c(t) has reached 63.2% of its total change. This may be easily seen by substituting the t=T in 

c(t). That is c(T) = 1- 1/e = 0.632. Note that smaller the time constant T, the faster the system. Another 

important characteristic of the exponential response curve is that the slope of the tangent line at t = 0 is 

1/T. Since dc/dt at t=0 equals to 1/T ( e−t/T) at t=0 equals 1/T. The output would reach the final value a   t t= 

T, if it maintained its initial speed of response. We see that slope of the response curve c(t) decreases 

monotonically from 1/T at t=0 to zero at t=∞. In one time constant, the exponential response curve has 

gone from 0 to 63.2% of the final value. In two time constant, the response reaches 86.5% and at t=3T it 

reaches 95% of the final value. 

R(s) 
+ 

C(s) 

- 

1/Ts 
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(b) Unit-Impulse Response of the First Order System: For the unit-impulse input , R(s) = 1 and the 

output of the system of fig 2.1 can be obtained as 

 

Inverse Laplace transform of the above equation gives  for t>=0 

  

 

(a) Time Domain Description of a Second order System: Consider a typical second order system 

shown in fig 2(a) below. Servo system consists of a proportional controller and load elements (inertia and 

viscous friction element). Suppose we wish to control the output c in accordance with the input r. 
 

The equation for the load element is: 
 

JC¨ +  BC˙ = TWhere T is the torque produced by the proportional voltage gain K. By taking the Laplace 

transform of both side of the last equation, assuming zero initial condition, we obtain 
 

(Js2 + Bs) C(s) = T(s) 
 

So the transfer function between C(s) and T(s) is 

 

 
 

 

By using this transfer function; Fig 2(a) can be redrawn as Fig 2.2(b), the closed loop transfer is then 

obtained as 
 

C(s)/R(s) = K/ (Js2 +Bs +K) =( K/J)/(s2 + (B/J) s+(K/J)) 

+ 
J B C 

- 
K 
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n n 

 
Fig 2.2 (b) 

 

Step Response of a second order System: The closed loop transfer function of the system is 

C(s)/R(s) = K/(Js2 +Bs +K) =( K/J)/(s2 + (B/J) s+(K/J)) =ω 2/(s2 + 2ζ ω s +ωn2) 

Where K/J = ωn 2; B/J = + 2ζ ωn = 2σ 
 

Where σ is called the attenuation; ωn is called un damped natural frequency, and ζ is called the  damping 

ratio of the system. These are called system parameters. In terms of ζ and ωn , the given system can be 

modeled to the system shown in fig 3 below. And closed loop transfer function c(s)/R(s) can be written as 
 

C(s)/‘(s) =   ωn 2/(s2 + 2ζ ωn s +ωn 2) 
 

Characteristic equation is: s2 + 2ζ ωn s +ωn 2 = 0 
 

This form is called the standard form of the second order system. 

Fig 3: Second Order System 
 

The dynamic behavior of the second order system can be described in terms of two parameters ζ and ωn. If 

0 < ζ < 1, the closed loop poles are complex and lie in the left-half of s-plane. The system is called under 

damped, and the transient response is oscillatory. If ζ =0, the transient response does not die out. If ζ = 1 

the system is called critically damped. Over damped system correspond to ζ > 1. Let us consider the unit 

step response for all the three cases: under damped, critically damped (ζ = 1) and over damped (ζ > 1). 
 

Case 1: Under damped ( 0 < ζ <1). In this case C(s)/‘(s) can be written as: 
 

C(s)/‘(s) =    ωn 2 / ((s+ ζ ωn +jωd) (s+ ζ ωn -jωd)) 2 
 

Where ωd = ωn √1 − ζ2  . The frequency ωd is called damped natural frequency. For a unit step input,  

C(s) can be written as 

C(s)= ωn2/ ( s2 + 2ζ ωn s +ωn 2 )(s) 

+ 

R(s) - C(s) 

1 

�(�� + B) 

K 

+ 

R(s) - C(s) 

ωn 2/ (s(s + 2ζ ωn )) 
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d 

d 

2 

The inverse Laplace transform can be obtained easily if C(s) is written in the following form; 
 

1 2 

C(s) = 
c  

-  ( s+ 2ζ ωn )/ ( 
s 

+ 2ζ ωn s +ωn 2 ) 

 

We know that L -1 of (s+ζ ωn )/ ((s+ζ ωn)2 + ω 2 ) = e−ζωnt Cos ( ωd t ) 

And L -1 of ωd / ((s+ζ ωn)2 + ω 2 )= e−ζ ωnt Sin(ωd t) 

Hence the inverse Laplace transform of C(s) can be obtained as 
 

 

 
 

     1  -ζ ωn t 
=1- e Sin ( ωd 

√1−ζ 

 
 

t +tan -1   √1 − ζ2 / ζ) 
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If the damping ratio is zero, the response becomes un damped & oscillations continue indefinitely. In 

this case 
 

C (t) = 1- cos ( ωn t). 
 

Thus ωn represents un- damped natural frequency of the system. 
 

Critically damped case (ξ =1). If the two poles are equal, the system is said to be critically damped one. 

For a unit step input R(s) = 1/s & C(s) can be written as 

C(s) = ωn 2/((s+ωn)2 s) 
 

Hence c(t) = 1- e -ζ ωn t (1+ ωn t ) for t>= 0 
 

Over damped case: (ξ >1). Two poles are negative & unequal.  

 

 

Where s1 = (ζ + √ζ2 − 1)ωn , s2= (ζ- √ζ2 − 1)ωn ) 

Thus the response c (t) includes two decaying exponential terms. 
 

Impulse Response: Suppose input to a control system whose transfer function is G(s) is impulse input δ 

(t). In this case R(s) = 1, 
 

Hence output c(s) = G(s); hence c (t) = Laplace inverse of G(s). Hence another method of defining transfer 

function is: Transfer function of a control system is Laplace transform of unit impulse response. 

 

Characteristic Parameters & its relation to system parameters: For a second order system, system 

parameters are natural frequency ωn and damping constant ξ. These are related to characteristic 

parameters which are defined as following (time response characteristic parameters): Refer Fig 2.3 
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Fig: 2.3: Characteristic Parameters of second order System with unit step input. 

 

Characteristic Parameters of second order System: 
 

(i) Delay time, td. 

(ii) Rise time, tr. 

(iii) Peak time, tp. 

(iv) Maximum overshoots, Mp 

(v)Settling time, ts. 

(vi) Steady state error. 
 

These parameters are defined as follows: 

Delay time td: The delay time is the time required for the response to half the final value for the first 

time. The delay time is related to system parameters for a second order system by: 

td ≅ (1. 0.7ξ)/ωn ; 0< ξ < 1.0 

We can obtain a better approximation by using a second order equation td ≅ (1.1+ 0.25ξ + 0.469ξ 2)/ωn 

Rise time tr: The rise time is the time required for the response to rise from 10% to90% of its final 

value. 

Rise time tr ≅(0.8+2.5ζ)/ ωn 

Peak time Tp: The peak time Tp is the time required for the response to reach the first peak of the 

overshoot. 

Maximum Overshoot, Mp: The maximum overshoot is the maximum peak value of the response 

curve measured from unity. If the final steady state value of the response differs from unity, then it is 

common to use the maximum percent overshoot. It is defined by: 

Maximum percent overshoot = 100 *(c (t) – c (∞))/c (∞). The amount of maximum (percent) overshoot 

indicates the relative stability of the system. 

% Maximum overshoot = 100 e – (ζ /√1 − ζ2) π
 

Settling time ts: The settling time ts is the time required for the response curve to reach and stay within 
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n 

a range about the final value of size specified by absolute percentage of the final value (usually 2% or 

5%). 

Settling time for 5% 

ts ≅ 3.2/ (ζ ωn) for 0< ζ < 0.69 ts ≅ 

4.5ζ/ωn ; ξ > 0.69 

Steady state error for a unity feedback system is defined as the difference between output and input as time 

approaches infinity. We have already discussed steady state error in Unit-I. 

Impulse response of a second order System: For a unit-impulse input r(t) corresponding Laplace transform 

is unity, or R(s) = 1. The unit impulse response of the second order system is 

C(s) = ωn2/ ( s2 + 2ζ ωn s +ωn 2 ) 

The inverse Laplace transform of this equation yields the solution c (t) as follows: 

 C(t) = (ωn/√1 − ζ2 ) e -ζ ωn t Sin (ωn√1− ζ2 t), for t>=0 

For ζ = 1 

C(t) = ω 2 t e -ζ ωnt 
 

2.2Synthesis of response to arbitrary input functions from impulse response: As discussed previously 

Laplace transform of impulse response is nothing but transfer function G(s) of the control system. If C(s) is 

the Laplace transform of input r (t)( With Laplace transform R(s)); we get 

C(s) = R(s) G(s). 

If input is arbitrary function, we can find a Fourier transform of the input. For each frequency, we can find 

the output for a linear time invariant system. By applying the principle of superposition for a linear time-

invariant system we can get the response as sum of individual outputs. 

 

 
2.3 Review of Laplace Transforms- applications to differential equations, ‘ s’ domain description 

of input-output relations-transfer functions- system parameters-gain, poles and zeroes, Partial 

fraction decomposition of transfer functions-significance: 

2.3.1 Laplace Transform: 
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2.3.2 Definition of Laplace Transform: 
 

 

  

Example 2. 

 
 

 

 

2.3.3 Application of Laplace Transform to Solution of Differential Equations: 
 

A first order differential equation can be written as 
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Example of a second order differential Equation: 
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2.3.4 System Parameters-Gain, Poles, Zeroes: 
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Definition of Zero: 
 

 

2.3.7. Partial Fraction Decomposition of transfer functions-significance: Partial fraction 

decomposition helps in finding the out response for a given input. 
 

 
Where a0, a1, a2 are real coefficients. 

Let us discuss the case where G(s) has simple poles. G(s) can be written as: 
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Example: 
 

 

 

 

Hence G(s) can be written as: 
 

 

Partial Fraction when G(s) has multiple poles: 

 

Let G(s) = (s2+2s+3)/(s+1)3 
 

b1 

G(s) = 
c+1

 

b2 
+ 

c+2 
+ b3/(s+1)3 
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G(s) 

 

We can determine b1, b2, b3 by comparing the coefficient of s2, s1, so of both sides by multiplying both 

sides by (s+1)3. 

 Dominant Poles: The poles of the transfer function which are close the origin in s-plane is called the 

dominant poles because such poles affect the output response dominantly. Further the pole moves from the 

origin, less affect it has on the performance of the control system Relation of Transfer Function to 

Impulse Response: As already explained in the previous paragraphs, transfer function is equal to the 

Laplace transform of unit impulse response. 

 2.4 Frequency domain description-frequency response-gain phase shift-significance, Bode plots, 

Polar Plots, Frequency transfer functions, Characteristic parameters-corner frequencies, resonant 

frequencies, peak gain, band width-significance. First and second order systems- extension to 

higher order systems: 
 

 2.4.1 Frequency response: By the frequency response, we mean the steady state response of a system 

to a sinusoidal input. In frequency response method, we vary the frequency of input signal over certain 

range and study the resulting response. One advantage of the frequency response approach is that we can 

use the data obtained from the measurement on the physical system without deriving its mathematical 

model. 
 

 Frequency response of an open loop system: Consider the stable, linear time-invariant system shown 

below in fig 2.4.2. 

 

 

x(t) y(t) 
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And ф = ) = tan 

X(s) Y(s) 
 

Fig 2.4: Open loop system 
 

Y(s) = X(s) G(s) 
 

Let x (t) = X sinωt) 
 

Yss (t) = Ysin (ωt+ф); where Yss (t) is steady state out-put; Y = X|G(jω)| 

 

G(jω 
-1

[
Inaginary part of  G(jω)

]
 

real part of G(jω) 
 

Ф = Phase shift; Y = gain. 
 

A stable linear, time invariant system subject to a sinusoidal input will, at steady state, have a sinusoidal 

output of the same frequency as the input. But the amplitude and phase output will in general, be different 

from those of input. Amplitude  of  the  output  is  given  by  the  product  of  that  of  input  and |G(jω)| 

while the phase angle differs from that of input by the amount ф = ⌊G(jω) . The G(jω) is called the 

sinusoidal transfer function. The sinusoidal transfer function is obtained by substituting jω for s in the 

transfer function of the system. 

Example: Consider the system where transfer function G(s) is given by 

 

For the sinusoidal input x(t) = X sin(ωt), the steady state output can be found as follows: substituting jω 

for s in G(s) yield 
 

 

The amplitude ratio of output to the input is | = K/√1 + (ωT)2 

While the phase angle is ф = -tan -1 (Tω) 

Hence Yss = XK/(√1 + (ωT)2 ) * Sin (ωt - tan -1 Tω) 

 

2.4.2 Asymptotic (Bode) Plots. The Bode plot consists of two graphs. One is plot of the logarithmic of 

the magnitude of a sinusoidal transfer function, the other is a plot of the phase angle; both are plotted 

against the frequency on a logarithmic scale. The standard representation of the logarithmic magnitude of 

G(jω) is 20 log | | , where the base of the logarithm is 10. The unit used is decibel, usually denoted 

as dB. In the logarithmic representation, the curves are drawn as semi log paper, using the log scale for 

frequency & linear scale for either magnitude (in decibel) or phase angle (in degrees). The main 

advantages of using the Bode diagram is that multiplication of magnitude can be converted into addition. 

Furthermore, a simple method of sketching an approximate log-magnitude curve is available. It is based 

on asymptotic approximations. Such approximations by straight line asymptotes are sufficient if only 

rough information on the frequency response characteristic is needed. Should the exact curve be desired, 

corrections can be made easily to these basic asymptotic plot. 

Consider a control system with the following transfer function 
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Bode plot can be written in the following form: 

 

 

Gain & Phase cross Over Points: gain and phase cross over points on frequency-domain plots are 

important for analysis and design of control systems. 

Gain cross Over Point: the gain cross over point on the frequency plot of G(jω) is a point at which 

magnitude of G(jω) is unity. The frequency at the gain cross over point is called gain cross over 

frequency. 
 

Phase Cross Over Point: the phase cross over point on the frequency response curve of G(jω is a point at 

which phase angle of G(jω) = 180 degree. The frequency at the cross over point is called phase cross over 

frequency. 
 

 Polar Plot (Nyquist Plot: The Polar plot of a sinusoidal transfer function G(jω) is a plot of the 

magnitude of G(jω) versus the phase of G(jω) on polar co-ordinates as ω is varied from zero to infinity. 

Note that in polar plots a positive (negative) phase angle is measured counterclockwise (clockwise) from 

the positive real axis. Thus polar plot is also called Nyquist plot. 

Minimum Phase Systems & Non Minimum Phase Systems: Transfer function having neither poles nor 

zeros in the right-half of s-plane are minimum-phase transfer functions, where as those having pole and/or 

zeros in the right half s-plane are called non-minimum-phase transfer functions. Systems with minimum-phase 

transfer function are called minimum-phase system; where as those with non-minimum phase transfer 

functions are called non minimum-phase system. 

 
 

2.4.3 Frequency Domain Specifications (Characteristic parameters): 
 

In the design of linear system using frequency domain methods, it is necessary to define a set of 

specifications so that the performance of the system can be identified. The frequency domain 

specifications are often used. They are as follows: 
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Resonant Peak Mr: the resonant peak Mr is the maximum value of magnitude of M(jω). In general Mr 

gives indication of the relative stability of a stable closed loop system. Normally a large Mr corresponds 

to a large maximum overshoot of the step response. For most control systems Mr should be between 1.1 

to 1.5. Mr is shown in fig 2.4.7 below. 

Fig 2.4.7: Frequency response characteristics. 
 

Resonant Frequency ωr: it is frequency at which the peak resonance Mr occurs. 
 

Bandwidth (BW): The BW is the frequency at which magnitude of M (jω) drops to 70.7% of, or 3dB 

down from, its zero frequency value. In general, the BW of a control system gives an indication of the 

transient response properties in time domain. A large BW corresponds to a faster rise time, since higher 

frequencies are more easily passed through the system. BW also indicates the noise-filtering 

characteristic & the robustness of the system. The response represents a measure of sensitivity of a 

system to parameter variations. A robust system is one i.e. insensitivity to parameter variations. 

 

Summary of relation of system parameters with characteristic parameters: 
 

(a) Bandwidth and rise time are inversely proportional. 
 

(b) Therefore, the larger the bandwidth is, the faster the system will respond. 
 

(c) Increasing ωn increases BW and decreases rise time tr. 
 

(d) Increasing ζ decreases BW and increases tr. 
 

2.4.4. First and second order system-extension to higher order system: Frequency response method 

(Bode plot and Polar Plot) of second order system has been explained in the frequency response method. 

The plot can be extended to higher order systems. But calculation of time domain and frequency domain 

characteristic parameters becomes complex and tedious. Either they can be calculated using computer 

software (Mat lab) or higher order system can be simplified as second order system by considering only 

the dominant poles. Refer to paragraph 2.3.8 for discussion on the dominant poles. 
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2.5 System identification from input- output measurements-importance. Experimental 

determination of system transfer functions by frequency response measurements. Example: 

2.5.1 At times real world systems can be difficult to model mathematically. Fortunately there is a 

convenient frequency response approach that allows experimental determination of the system transfer 

function. Frequency response can be determined by inputting a sinusoidal input at a varying frequency 

into a system. The output magnitude and frequency, which will also be sinusoidal, are then measured. The 

relationship between the input and output sinusoid at each sinusoidal frequency is then compared to 

produce a magnitude and phase at each frequency. A Bode plot can be constructed. Fig 2.5.1 below shows 

a block diagram of this equipment setup. 

 

 

Output 

Fig 2.5.1: Experimental Frequency Response Setup. 
 

A minimum phase system has no poles or zeros in the right-half s-plane, while a non-minimum phase 

system has at least one pole or zero in the right half s-plane. This affects the phase of a system. If a system 

is known to be minimum phase, the system transfer function can be obtained from the magnitude plot 

alone. If it is not known in advance, then both the magnitude & phase information are needed. After the 

Bode plot has been made from the set of experimental magnitude and phase data at different frequencies, 

the system transfer function can be obtained. The problem is to fit asymptotic approximation lines at the 

corner frequencies to determine pole/zero locations. The general procedure for finding the system transfer 

function given an experimental frequency response is as follows: 
 

1. Find all single poles (-20 dB/decade changes). 
 

2. Find all single zeroes (+20 dB/decade changes) 
 

3. Find all double real poles (-40 dB/decade changes with no resonant peak.) 
 

4. Find all double real zeros (+ 40 dB/decade changes with no resonant peak). 
 

5. Find complex pole pairs (-40 dB/decade changes with a resonant peak) 
 

6. Find complex zeroes pairs (+40 dB /decade changes with a resonant undershoot). 
 

7. Find values for the Bode gain K (K = 1 or 0 dB before any pole/zero); if differentiator or integrator 

are present, look at the ω = 1 point where both have values of 0 dB. 

 

 

Measurement 
 

Device 

Unknown 
 

System 

Sine wave 
 

Generator 



 
IARE                                            FLIGHT CONTROL THEORY                                          Page | 47 

Source from Automatic Control Systems by Kuo, B.C 
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Controlled Process 

 

UNIT-III 

 

STEADY STATE RESPONSE ANALYSIS 

 
 

Introduction: A controlled process is shown in by the bock diagram below (fig 3.1): 

 

 

u (t) y(t) 
 

Control vector  Controlled variable (output vector) 

 Fig 3.1 Controlled Processes 

Control system specifications and design involves the following steps. 
 

(a) Determine what the system should do and how to do it (Performance and design specification). 
 

(b) Determine the controller or compensator configuration relative to how it is connected to the controlled 

process. 
 

(c) Determine the parameter values of the controller to achieve the design. 
 

3.1 Control System Performance requirements: 
 

3.1.1 Transient and Steady state specification –desired input-output relation-speed of response, 

stability, accuracy, steady state error, robustness. 

When an input is applied to a control system, the output may be oscillatory for some time before reaching 

the final or steady state value. Steady state value is the output as time approaches infinity. 

 

 

 

Fig 3.2 Transient and steady state response 

Transient response 

Steady state response 
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y (t) = 
1 

� 
e−t/

� 

Transient and steady state response of a control system with unit feedback is shown in the fig 3.2 above 

for a unit step input. Desired output is also a unit step function. As could be seen output y (t) reaches unity 

value as t approaches a large value. In the above control system we would like that output follows the 

input accurately. Which means system should not have any error or 100% accurate. But real world control 

problem seldom follows this because of various reasons like non-linearity, friction, aging of components 

etc. Transient response specifications can be specified in terms of rise time, delay time, settling time 

(speed of response), and percentage overshoot (Mp) etc. Steady error is the error between output and 

input as time approaches infinity. Robustness is the ability of the system to be insensitive to system 

parameter variations (like Gain etc) and to external disturbance and also to noise. 
 

3.1.2. Relations with system parameters; Example of first and second order system: Performance 

specifications discussed above are related to system parameters as discussed in the following paragraphs: 

(a) First order System. We know that a first order system is described by the following transfer function. 
 

G(s) = 1/(Ts+1); where T is called the time constant and is system parameter. The response of the system 

depends upon the time constant T. Lower the value of T, faster is the response. The response of the 

system to impulse input is given below ( fig 3.3): 

 

 

 
 

 

y(t) 
 

 
 

t 
 

Fig: 3.3: Response of a first order system to impulse input 

 
 

When the input is unit step function the out y (t) is given by the equation 

y (t) = = 1- e−t/T, for t >= 0. The response is given in the fig 3.4. 

1- e−t/T 

1 
 

Y (t) 
 

t 
 

 

Fig 3.4 Response of first order system to step input 

We find that for a step input steady state is zero for a first order system. Also we find that any change in 

system parameter T will affect the output, hence system is sensitive to parameter variation T due to aging 

of components which determine the value of T (e.g. Value of resistance and capacitance in a RC 

network). 
 

(b) Second order System: A second order system is characterized by the following transfer function: 
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+ 

- 

2 
ωn / (s(s + 2ζ ωn )) 

 

C(s)/R (s) =   ωn 2/ (s2 + 2ζ ωn s +ωn 2) 
 

ωn is called un damped natural frequency, and ζ is called the damping ratio of the system. These are called 

system parameters. Speed of response of second order system is defined by rise time, delay time, 

settling time. Stability of the system depends on damping ratio a ζ. Similarly steady state error depends on 

type of input. For a step input steady state error is zero. Block diagram of a second order system is given 

in fig 3.5. 

 

R(s) C(s) 

 

 

 

 

Fig: 3.5 Block Diagram Of Second Order System 
 

3.1.3 Specifications in time domain, frequency domain, and‘s’ domain: 
 

Specifications in time domain: Time domain specifications are as follows: 
 

a) Delay time, td. 

b) Rise time, tr. 

c) Peak time, tp. 

d) Maximum overshoots, Mp 

e) Settling time, ts 

f) Steady state error. 

These specifications are shown in the Fig 3.6 

Their relations with system parameters i.e. ωn and ζ are as follows: 

(i) Delay time td: The delay time is the time required for the response to half the final value for the first 

time. The delay time is related to system parameters for a second order system by: 

td ≅ (1. 0.7ξ)/ωn ; 0< ξ < 1.0 

We can obtain a better approximation by using a second order equation td ≅ 

(1.1+ 0.25ξ + 0.469ξ 2)/ωn 

(ii) Rise time tr: The rise time is the time required for the response to rise from 10% to90% of its final 

value. 

Rise time tr ≅(0.8+2.5ζ)/ ωn 

(iii) Peak time Tp: The peak time Tp is the time required for the response to reach the first peak of the 

overshoot. 

(iv) Maximum Overshoot, Mp: The maximum overshoot is the maximum peak value of the response 

curve measured from unity. If the final steady state value of the response differs from unity, then it is 

common to use the maximum percent overshoot. It is defined by: 

Maximum percent overshoot = 100 *(c (t) – c (∞))/c (∞). The amount of maximum (percent) overshoot 

indicates the relative stability of the system. 

% Maximum overshoot = 100 e – (ζ /√1 − ζ2) π
 

(v) Settling time ts: The settling time ts is the time required for the response curve to reach and stay 

within a range about the final value of size specified by absolute percentage of the final value (usually 2% 
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or 5%). 

Settling time for 5% 

ts ≅ 3.2/ (ζ ωn) for 0< ζ < 0.69 

ts ≅ 4.5ζ/ωn ; ξ > 0.69 

 

 

Fig 3.6: Second order system time domain specifications 

Specifications in frequency domain: Frequency domain specifications are as follows: 

 

 
(i) Resonant Peak Mr: the resonant peak Mr is the maximum value of magnitude of M (jω). In 

general Mr gives indication of the relative stability of a stable closed loop system. Normally a large 

Mr corresponds to a large maximum overshoot of the step response. For most control systems Mr 

should be between 1.1 to 1.5. Mr is shown in fig 2.4.7 below. 
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Fig 2.4.7: Frequency response characteristics. 

 

(ii)  Resonant Frequency ωr: it is frequency at which the peak resonance Mr occurs. 

(iii) Bandwidth (BW): The BW is the frequency at which magnitude of M (jω) drops to 70.7% of, or 3dB 

down from, its zero frequency value. In general, the BW of a control system gives an indication of the 

transient response properties in time domain. A large BW corresponds to a faster rise time, since higher 

frequencies are more easily passed through the system. BW also indicates the noise-filtering characteristic 

& the robustness of the system. The response represents a measure of sensitivity of a system to parameter 

variations. A robust system is one i.e. insensitivity to parameter variations. 
 

(iv) Gain Margin. It is a parameter which indicates the amount by which gain of a system can be 

increased before the system becomes unstable. It is specified in dB. A gain margin of <0 dB indicates 

instability. As a rule of thumb we would like to have GM > 6 dB. 
 

(v) Phase Margin: It is specified as an angle by which phase can be increased before the system becomes 

unstable. A phase margin < 0° indicates instability. As a rule of thumb, we would like to have 30°< PM < 

60°. 

3.1.3.3. Relation of Frequency Domain specifications with system parameters: Frequency domain 

specifications are related to system parameters by the following equations. 
 

(i) Resonant Frequency: ωr = ωn√1 − 2ζ2 

 
 

 

(ii) Resonant Peak: Mr = 1/(2ζ √1 − ζ2 ) ; for ζ ≤ 0.707 
 

(iii) Band width= ωn [(1 − 2ζ2) + √2 ζ ζ ζ 2 − 4 ζ 2 + 2] ½ 

 
3.1.4.‘s’ domain specifications: Transfer function of a control system is function of ‘s’ where s is a 

complex variable. Transfer function of a closed loop control system is given as: 
G(S) 

TF = 
1+G(S)K(S) 

; where G(s) is the transfer function of forward path element and H(s) is the transfer 

function of the element in the feedback path. We can use the characteristic equation in s to find the 

stability of the control system using Routh-Hurwitz criterion. Also for a given closed loop transfer 

function we can determine the poles and zeros which will affect the stability of a control system. Root- 

Locus method can be used to study the effect of system parameter variations on the stability of control 

system. As the poles move away from the origin of s-plane towards left half of imaginary axis system 

becomes more stable. Hence performance specifications can be specified in terms of position of poles and 

zeros. In general s-domain specifications provide following guide lines: 
 

(i) Complex-conjugate poles of the closed- loop transfer function lead to a step response that is under 

damped. If all the system poles are real, the step response is over damped. However, zeros of the closed 

loop transfer function may cause overshoot even if the system is over damped. 
 

(ii) The response of a system is dominated by those poles closest to the origin in the s-plane. Transients 

due to those poles farther to the left decay faster. 

(iii) The farther to the left in the s-plane the system‘s dominant poles are, the faster the system will 

respond and the greater its bandwidth will be. 
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(iv) When a pole and zero of a system transfer function nearly cancel each other, the portion of the system 

response associated with the pole will have a small magnitude. 
 

(v) Steady state error constants can be derived from the transfer function of the elements in the forward 

path and feedback path along with Laplace transform of input. 

 3.1.5 Conflicting requirements - need for compromise-scope for optimization: We have seen how 

system parameters ωn and ζ are related to system performance specifications in time and frequency 

domain. However many specifications are in conflict with one other. For example to have small rise time 

(faster response), we need to small damping factor ζ. However when ζ is reduced, it increases the 

overshoot. Similarly bandwidth also decreases with increase in ζ. Higher BW will lead to system getting 

affected by noise as noise enters easily in high bandwidth system.  These conflicting requirements can be 

suitably met by using compensation devices (called controllers) so that design specifications are met. 

Using suitable PID (Proportional, Integral, derivative) controller design specifications can be optimally 

met. 

3.1.6 The Primacy of Stability: Stability is of prime importance in control system. An unstable system is   

of no use. Let u (t), y(t), and g(t) be the input, output, and impulse response of a linear time-invariant 

system, respectively. With zero initial conditions, the system is said to be bounded-input bounded- output 

(BIBO) stable, or simply stable, if its output y (t) is bounded to a bounded input u(t). Roots of the 

characteristic equation determine the stability of a control system. If any of the roots lie on the right- half 

of the s-plane, system is unstable. Following methods are used for determining the stability of a control 

system, without involving root solving. 
 

(a) Routh-Hurwitz criterion. This criterion is an algebraic method that provides information on the 

absolute stability of a linear time-invariant system that has a characteristic equation with constant 

coefficients. The criterion tests whether any of the roots of the characteristic equation lie in the right – 

half s-plane. 

(b) Nyquist criterion. This criterion is a semi graphical method that gives information on the difference 

between the number of poles and zeros of the closed loop transfer function that are in the right-half s- 

plane by observing the behavior of the Nyquist plot of the loop transfer function. 

(c) Bode Diagram: This diagram is a plot of the magnitude of the loop transfer function G(jω)H(jω) in 

decibels and the phase of G(jω)H(jω) in degrees, all versus frequency ω. The stability of the closed loop 

system can be determined by observing the behavior of these plots. 

3.2 System synthesis-need for compensation-design of controllers-active, passive-series, feed 

forward, feedback controllers. 

3.2.1 Need for Compensation: The goal of compensation is to augment the performance of the response 

so that it falls within desired specifications. These specifications can be in time domain (rise time; delay 

time, settling time, peak overshoot, steady state error (accuracy), relative stability) or in frequency domain 

(resonant frequency, band width, gain margin, phase margin, resonant peak). This  can be done by placing 

a transfer function in various locations either inside or outside of the feedback loop. Figure 3.7 shows the 

three compensator locations-pre-filter, forward path (cascade), and  feedback. In many control systems, 

the compensation device is an electrical circuit. Other forms of compensators may include mechanical, 

hydraulic, and pneumatic devices. 

 

Feedback 

Aircraft Forward path 
Pre-filter 
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C 

R 

 
 

Fig 3.7 Compensator Locations 
 

3.2.2 Active and passive Compensators: Passive compensators can be realized using resistor and 

capacitor devices. Low pass filter, high pass filter, differentiator; integrator can be realized using passive 

electrical circuits. Active compensation devices use operational amplifiers (OP-Amp). A high pass filter 

 

Input Output 
 

 

 

 

Fig 3.8: High Pass Filter using passive compensator 
 

using passive compensator is shown above (Fig 3.8) using RC network. Same can be implemented using 

active compensator as shown below in fig 3.9. 
 

 
 

Fig 3.9: A high pass filter using active compensator (OP-Amp) 

 
 

 3.2.3 Series Compensation: A series compensator is shown in the fig 3.10 below. 
 

 
 

 

Fig 3.10: Series or Cascade Compensation. 
 

3.2.4. Feed Forward Compensation: Fig 3.11 and 3.12 show feed forward compensation. In fig 3.11, 

the feed forward controller Gcf (s) is placed in series with the closed –loop system, which has a controller 

Gc(s) in the forward path. In fig 3.12 the feed forward controller Gcf (s) is placed in parallel with the  

forward path. 

Fig 3.11: Feed forward compensation with series compensation (two degree of freedom) 

Input Output 
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+ 
_

 Kp 
2 ωn /(s(s+2ξωn)) 

 

3.2.5 Feedback Compensation: Feedback compensation is shown in fig 3.13 below. 
 
 

 

Fig 3.13: Feedback Compensation 
 

3.2 Proportional, integral, proportional plus derivative control-problem with derivative control. 
 

3.3.1 Proportional Control (P Controller): Fig 3.14 shows a second order prototype control system with 

proportional controller whose transfer function Gc(s) = Kp; (where Kp is proportional gain). 

 

 

R(s) Y(s) 

 

 

 

 

Fig 3.14: Proportional 

Controller Closed loop transfer function Y(s)/R(s) is given as 

M(s) = Kp ωn
2 / (s2 + 2 ξ ωn s + Kp ωn

2) 

We can see that un- damped natural frequency ωn has been increased to Kp √ωn . Since rise time is 

inversely proportional to un- damped natural frequency , proportional controller reduces the rise time. 

Another merit of proportional controller is its simplicity. However it increases the overshoot. Also there 

may be steady state error. 
 

3.3.2 Integral controller: An integral controller has transfer function as Gc(s) = KI /s. (KI is the integral 

Fig 3.12: Feed forward compensation (two degree of freedom) 
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R(s) E(s) 
+ 

U(s) 

+ 
Kp 

Kd s 

2 ωn /(s(s+2ξωn)) 

n n 

gain). A block diagram of integral controller is given in fig 3.15. 
 

 

Fig 3.15: An integral controller 
 

An integrator is an ideal low-pass compensator. It amplifies the low frequency (because Gc (ω) = KI/jω) 

while high frequencies are attenuated. The use of pure integral has the disadvantage of excessive lag. In 

addition, it has phase of -90° , which is a phase lag. This tends to slow down the response. An integral 

controller increases the system type by one; hence it reduces the steady state error. The disadvantage of 

the integral controller is that it makes the system less stable by adding the pole at the origin. 
 

 

 

 

3.3.3 Proportional plus Derivative Control (PD Control): A more usable type of high-pass filter is 

proportional plus derivative (PD) high-pass filter. The Block diagram of a PD controller is shown in 

fig 

 The transfer function of PD controller is Gc(s) = Kp +s Kd; where Kp is proportional gain and Kd is 

derivative gain. 

 

 

 

 
 

Y(s) 
 

 

 

 

 

Fig 3.16 PD Controller 
 

Forward path transfer function of the compensated system is: 
 

Y(s)/R(s) = Gc(s) Gp(s) = ω 2 (Kp+sKd)/(s(s+2ξω )); which shows that PD controller is equivalent to 

adding zero at s= -Kp/Kd to the forward path transfer function. 

Another way of looking at the PD controller is that since de(t)/dt represents slope of error, the PD 

controller is essentially an anticipatory control. That is, by knowing the slope, the controller can 

anticipate direction of error & use it to better control the process. Normally in a linear system, if the slope 

of e(t) or y(t) due to step input is large, a overshoot will subsequently occur. The derivative control 

measures the instantaneous slope of e(t), predicts the large overshoot ahead of time, and makes a proper 

corrective effort before the excessive overshoot actually occurs. The phase lead property may be used to 

improve the phase margin of the control system. 
 

R(s) Y(s) 
KI/s 

2 
ωn /(s(s+2ξωn)) 
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Advantages of PD Controller: 
 

(a) Improves damping and reduces maximum overshoot. 

(b) Reduces rise time and settling time. 

(c) Increases bandwidth. 

(d) Improves gain margin (GM), phase margin (PM) & Mr. 
 

Problem with derivative control: 
 

(a) May pass noise at higher frequencies. 

(b) Not effective for lightly damped or initially unstable system. 

(c) May require a large capacitor in circuit implementation. 
 

3.4 Lead, lag, lead-lag, wash-out, notch filters/networks-properties-effect on transfer function, 

stability, robustness-relative merits: 

3.4.1 Lead Compensator: Lead compensators are generally used to quicken the system response by 

increasing natural frequency and/or decreasing the time constant. Lead compensators also 

increase the overall stability of the system. A lead compensator has the general form 
 

b(c+a) 

TF lead compensator = 
a(c+b) 

; a < b 

The b/a simply keeps the steady-state value of the compensator as one. The practical limit in choosing the 

poles and zeros for the lead compensator is b < 10a. A common application of lead compensator is to 

cancel a pole at s = -a, which is slowing the time response or causing the system to be unstable. A 

washout filter is a special case of a lead compensator. Implementation of lead compensator using passive 

RC network is shown in Fig 3.17. 
 

 

Fig 3.17: Lead Circuit 
 

The movement of the compensator pole and zero is achieved by proper selection of the components in the 

electrical circuit (R1, R2 and C in fig 3.17). 

3.4.2 Lag Circuit: lag compensators are generally used to slow down the system response by decreasing 

natural frequency and/or increasing time constant. They also tend to decrease the overall stability of the 

system. Lag compensation may also reduce the steady-state error of a system. A lag compensator has 

the general form: 
 

b(c+a) 

TF lag compensator = 
a(c+b) 

; a> b 

With lag compensation, a pole is added to the right of a zero. The pole may be used to cancel a zero. A 

lag circuit using passive RC network is shown in Fig 3.18 below. 
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Fig 3.18: A lag compensator 
 

3.4.3 Lead-lag compensator: the combined benefit of lead compensator and lag compensator may be 

realized using lead-lag compensation. A lead-lag compensator has the general form 
 

bd(c+a)(c+c) 

TF lead-lag compensator = 
ac(c+b)(c+d) 

; a > b; a < c; c < d 

The (s+a)/(s+b) component represents the lag filter, and the (s+c)/(s+d) component represents the lead 

filter. Common use of lead-lag compensator is the attenuation of a specific frequency range  

(sometimes called a notch filter). For example, an aircraft structural resonant frequency can be filtered out 

with a lead-lag compensator if a feedback sensor is erroneously affected by that frequency. For the case 

where both the transients and steady response are unsatisfactory a lead-lag compensator can be used. Fig 

3.19 shows electrical circuit that could be used to create lag-lead compensator. 

 

Fig 3.19: Lag-lead Compensator 
 

3.4.4 Washout Filter: another type of high-pass filter is used commonly in aircraft stability 

augmentation system-a washout filter. It is a special case of lead compensator where the zero is actually a 

differentiator. It has the form; 

Gc (s) = Kw0 s/(s+b) 

In washout compensator low-frequency signals are attenuated, or washed out. Only changes in the inputs are 

passed through. This is valuable for aircraft feedback control because feeding back a parameter such as roll 

rate with a wash out filter will not affect the steady state roll rate. Without a wash out filter, the SAS system 

would constantly oppose the roll rate and decrease the aircraft performance. The gain for high frequency is 

determined by the corner frequency and the washout filter gain Kw0 . Additionally, the phase lead is added at 

lower frequencies. 
 

3.4.5 Notch Filter: A notch filter is a special case of lead-lag compensation or High-low-pass filter. It 

attenuates a very small frequency range. Typically, these filters are used to take out frequencies that may 

cause excitation of different aircraft dynamic modes. Transfer function is discussed under lead-lag 

compensator. 
 

3.5 Adaptive control-definition, merits, implementation-gain scheduling, Non- linear control, merits, 

constraints: 

3.5.1Adaptive control: 
 

Definition and Merits of adaptive control: Adaptive control is the method used by a controller which must 

adapt to a controlled system with parameters which vary, or are initially uncertain. For example, as an 

aircraft flies, its mass will slowly decrease as a result of fuel consumption; a control law is needed that 

adapts itself to such changing conditions. Adaptive control is different from robust control in that it does not 

need a priori information about the bounds on these uncertain or time-varying parameters; robust control 

guarantees that if the changes are within given bounds the control law need not be changed, while adaptive 

control is concerned with control law changing themselves. 
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y 
Plant Controller 

System 

Identification 

Adjustment 
 

Mechanism 

 

Implementation: The foundation of adaptive control is parameter estimation. Common methods of 

estimation include recursive least squares method. This method provides update laws which are used to 

modify estimates in real time (i.e. as the system operates). It is also called adjustable control. 

Following are adaptive control techniques. 
 

(a) Feed forward Adaptive Control. 

 

(b) Feedback Adaptive Control. 
 

Also there are two methods for Adaptive control implementation: 

 

(a) Direct method 

 

(b) Indirect Method. 
 

Direct methods are ones wherein the estimated parameters are those directly used in the adaptive controller. 

In contrast, indirect methods are those in which the estimated parameters are used to calculate required 

controller parameters. There are different categories of feedback adaptive control: 
 

(a) Adaptive pole placement 

 

(b) Gain scheduling. 
 

(c) Model Reference Adaptive Controllers. 
 

 

 

 

 

 

 

Block diagram of Model Identification Adaptive Control is shown in Fig 3.5.1 below: 

 

 
Plant Identification 

Plant Uncertainty 

 

u 
 

 
 

 

Fig 3.5.1: Model Identification Adaptive Control System 
 

 Non-linear Control. Non linear control is the area of control engineering specifically involved with the 

systems that are nonlinear (i.e. do not follow the principle of superposition), time-variant, or both. Many 
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3 

well-established analysis and design techniques exist for linear time-invariant (LTI) systems ( e.g., root-

locus, Bode Plot, Nyquist criterion, pole placement); however, one or both of the controller and  the 

system under control in general control system may not be an LTI system, and so these methods can not 

necessarily be applied directly. Non linear control theory studies how to apply existing linear methods to 

these more general control systems. Additionally, it provides novel control method that cannot be 

analyzed using LTI system theory. Even when LTI system theory can be used for the analysis and design 

of controller, a nonlinear controller can have attractive characteristics (e.g., simple implementation, 

increased speed, or decreased control energy); however, nonlinear control theory usually requires more 

rigorous mathematical analysis to justify its conclusions. Control design techniques for non-linear systems 

also exist. These can be divided into techniques which attempt to treat the system as a linear system in a 

limited range of operation and use well-known linear design techniques for each region like Gain 

Scheduling. 
 

Merits of a Non-linear Control System: (Why do we use non linear control?) 
 

(a) Tracking, Regulate state, state set point. 

(b) Ensure the desired stability properties. 

(c) Ensure appropriate transient. 

(d) Reduce the sensitivity to plant parameter variations. 

 

Why not always use a linear control? 

(a) It just may not work. 

Example:  = x + u3 

When u= 0, the equilibrium point x = 0 is unstable. 

Choose u = -k x 

Then  = x-k3 x3 

We see that system cannot be made asymptotically stable at x=0 

On the other hand, a non linear feedback does exist 

U(x) = -√kx 
 

Then  = x- k* x = (1-k) x ; Asymptotically stable if k > 1 

(b) Even if linear feedback exists, nonlinear may be better option. 

 
 

3.5.3 Gain Scheduling: In control theory, gain scheduling is an approach to control non linear system 

that uses a family of linear controllers, each of which provides satisfactory control for a different 

operating point of the system. One or more observable variables, called the scheduling variables, are used 

to determine what operating region the system is currently in and to enable the appropriate linear 

controller. For example in an aircraft flight control system, the altitude and mach number might be 

scheduling variables with different linear controller parameters ( and automatically plugged into the 

controller) for various combinations of these two variables. 
 

3.6 Feedback Controllers, Significance of Loop Transfer Function, and Loop Gain: 
 

3.6.1 Feedback Controllers: Although series controllers are most common because of their 

simplicity in implementation, depending on the nature of the system, sometimes there are 

advantages in placing a controller in a minor feedback loop as shown in fig 3.6.1. 
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n n a n 

 

 

Fig 3.6.1: A feedback controller 

For example a tachometer may be coupled directly to a dc motor not only for the purpose of speed 

indication, but more often improving the stability of the closed loop system by feeding back the output 

signal of the tachometer. In principle, the PID controller or phase-lead and phase- lag controllers can all, 

with varying degree of effectiveness, be applied as minor-loop feedback controllers. Under certain 

conditions, minor-loop control can yield systems that are more robust, that is, less sensitive to external 

disturbance or internal parameter variations. 
 

Rate-Feedback or Tachometer-Feedback Control: The principle of using the derivative control of the 

actuating signal to improve the damping of a closed-loop system can be applied to the output signal to 

achieve a similar effect. In other words, the derivative of the output signal is fed back and added 

algebraically to the actuating signal of the system. In practice, if the output variable is mechanical 

displacement, a tachometer may be used to convert mechanical displacement into an electrical signal that 

is proportional to the derivative of the displacement. Fig 3.6.2 shows the block diagram of a control 

system with a secondary path that feeds back the derivative of output. 

 
 

 

Fig 3.6.2: Control system with tachometer feedback. 
 

Transfer function of tachometer is denoted by Kt s , where Kt is tachometer constant, usually expressed in 

volts/radian per second for analytical purpose. 

Feedback compensation can be used to improve the damping of the system by incorporating an inner rate 

feedback loop. The stabilizing effect of the inner loop rate feedback can be demonstrated by a simple 

example. Suppose we have second- order system shown in fig 3.6.3. The amplifier gain can be adjusted to 

vary the system response. The closed loop transfer function for this system is given by 
 

M(s) = ka ω 2 / (s2 + 2 ξ ω s +k ω 2) 
 

Now we add an inner rate feedback loop as shown in fig 3.6.4, the closed loop transfer function can be 

obtained as follows. The inner loop transfer functions are 
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n n) 

H(s) 

G(s) 

E(s) 
 

E(s) 
+ 

B(s) 
- 

n 

 

G1(s) = ω 2 / (s(s+2 ξ ω ) 

H1(s) = kr s 

If we compare the closed loop-loop transfer function for the cases with and without rate feedback we 

observe that in the closed loop characteristic equation the damping has been increased by kr ω 2. The gain 

kr can be used to increase the system damping. 
 

 

Fig 3.6.3: A second order system 

 

 

Fig 3.6.4: A second order system with a rate feedback 

 

3.6.2 Significance of Loop Transfer function and Loop Gain: A closed loop control system is 

shown in fig 3.6.5. 

Comparator 
 

 
 

R(s) C(s) 
 

 

 

 

 

 

 

Fig 3.6.5: A closed-loop Control System 

 

R(s) = reference input 

 C(s) =output signal  

B(s) = Feedback signal 

E(s) = error signal 

G(s) = Open loop transfer function  

H(s) = Feedback transfer function G(s) 

H(s) = Loop transfer function. 

Overall transfer function of the closed loop system is 
 

G(s) 
M(s) =

1+G(s)K(s) 
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Denominator, 1+ G(s) H(s) = 0, is called characteristic equation. G(s) H(s) is loop transfer function (L(s)). 

Loop transfer function plays important role in design and performance analysis of control loop system. It 

determines absolute stability of system, steady state error, and time domain and frequency domain 

specifications. If we replace s by jω we get loop gain at frequency ω as |G(jω)H(jω)|. Phase angle is 

denoted by ⌊G(jω)(H(jω) . When gain becomes unity and phase angle becomes 180° system becomes 

unstable. Elements in the feedback could be a controller like tachometer or a PID controller. 
 

3.7 Stability of closed Loop System- Frequency response methods and root Locus Methods of 

analysis, and compensation: 
 

3.7.1 Stability of a closed loop system- Frequency response methods, Gain Margin, Phase Margin- 

interpretation, significance:  

The overall transfer function of a control system is given by 
 

M(s) = G(s)/ (1+G(s) H(s)) 
 

To find if the closed loop system is stable, we must determine whether F(s) = 1+G(s) H(s) has any root in 

the right half of the s-plane. For this purpose we can solve the characteristic equation and find its roots. 

We can also use Routh-Hurwitz criterion to check the number of roots which lie on the right half of the s-

plane. In frequency response method we can use Bode Plot, Root locus technique and/or Nyquist 

criterion to determine the relative stability of the system in terms of gain margin (GM) and phase 

margin (PM). 
 

a) Bode plot for determining the stability of a control system. We know that a Bode plot consists of 

loop gain in dB vs logarithm of frequency ω and phase angle Vs logarithm of frequency ω. From these 

two plots we can determine gain cross over and phase cross over points. The gain cross over point on the 

frequency plot of L(jω) [ L(jω) = G(jω) * H(jω)] is a point at which magnitude of L(jω) = 1 or 

|G(jω)H(jω)|dB = 0 dB. The frequency at the gain cross over point is called gain cross over frequency. 

Similarly phase crossover point on the frequency domain plot of L (jω) is a point at which phase angle of 

L(jω) = 180° . The frequency at the cross over point is called the phase cross over point. From these 

points we can determine the gain and phase margin. 
 

Gain Margin: The gain margin is defined as the additional gain required for making the system just 

unstable. It may be expressed either as a factor or in dB. 
 

The phase margin: It is defined as the additional phase lag required for making the system just unstable. 

It is expressed in degrees. 

This is shown in Fig 3.7.1 below: 
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Fig 3.7.1: Gain and Phase Margin from Bode Plot. 
 

b) Root Locus Methods of Analysis and Compensation. In designing a control system, it is 

desirable to investigate the performance of a control system when one or more parameters are 

varied. Characteristic equation plays an important role in the dynamic behavior or aircraft motion. 

The same is true for linear system. In control system design a powerful tool is available for 

analyzing the performance of a linear system. Basically, the technique provides graphical 

information in the s-plane on the trajectory of the roots of the characteristic equation for variations 

in one or more of the system parameters. Typically, most root locus plots consist of only one 

parameter variation. The Root Locus was introduced by W.R. Evans in 1949. The method allows 

the control engineer to obtain accurate time-domain response as well as frequency response 

information of closed loop control system. 

Recall the closed loop transfer function of a feedback control system is given as 
                              G(c) 

C(s)/R(s) =  
1+G(c)K(c) 

(1) 

The characteristic equation of the closed loop system is found by setting the denominator of the transfer 

function to zero. 

1+G(s) H(s) = 0 (2) 

The loop transfer function G(s) H(s) can be expressed in the factored form as follows 

 

 

Where z’s, p’s & k are zeros, poles & gain of the transfer function. The zeros are the roots of the 

numerator and poles are the roots of the denominator of the loop transfer function. As stated earlier, 

the root locus is graphical presentation of the trajectory of the roots of the characteristic equation or 

the poles of the closed loop transfer function for variation of one of the system parameters. Let us 
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examine the root locus plot for the above equation as k is varied. The characteristic equation can be 

written 

G(s) H(s) = -1        (3) 

                             (4) 

For the case k=0, the points on the root locus plots are the poles of the loop transfer function G(s) 

H(s). 

On the other hand for k→ ∞, the points on the root locus are zeros of the loop transfer function. 

Thus we see that roots of the closed loop transfer function migrate from the poles to the zero of the 

loop transfer function as k is varied from 0 to ∞. Furthermore, the points on the root locus for 

intermediate values of k must satisfy the equation 

 

Fig 3.7.2 below shows block diagram of a second order system. 
 
 

Fig 3.7.2: A second order control system 
 

The root locus diagram gives the roots of the closed loop characteristic equation as k is varied from 0    to 

∞ . When k = 0, roots are located at the origin & s= -2. As k is increased, the roots move along the real 

axis towards one another until they meet at s= -1. Further increase in k causes the roots to be complex and 

they move away from the real axis along a line perpendicular to the real axis. When the roots are 

complex, system is under damped and a measure of the system damping is obtained by measuring the 

angle drawn from the origin to the point on the complex portion of the root locus. The system damping 

ratio is given by ζ = cosθ 

 

The roots of the characteristic equation can be obtained by root solving algorithm that can be coded on 

digital computer (Like MATLAB). In addition there is simple graphical technique that can be used to 

rapidly construct the root locus diagram of a control system. Root locus of the control system shown in fig 

3.7.1 is drawn in fig 3.7.2 below. 
 

k→ ∞ 
 

k=0 

× −2  -1   × k  = 0  
 

 

 
 

k→ ∞ 

R(s) θ 
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1 

 

Fig 3.7.2 Root locus diagram of a second order system, whose forward path TF = k/(s(s+2)) 
 

3.8 Nyquist’s Criterion-stability margin, gain margin, phase margin, interpretation, significance. 
 

3.8.1 Nyquist Criterion: Let’s suppose we have a basic feedback system, with transfer function F(s) 

G(s)/(1+G(s) H(s)). F(s) now is called close loop transfer function. Also, G(s) is the feed forward 

transfer function and G(s) H(s) is the loop transfer function. We can make a Nyquist diagram of the  

loop transfer function G(s) H(s). This is done by replacing s by jω and plotting G (jω) H (jω) on polar plot 

by varying ω from 0 to∞. The Nyquist stability criterion now tells us something about the stability of 

the entire closed loop transfer function F(s). 

First we need to count the number of poles k of the transfer function G(s) H(s) with real part bigger than 

zero. (So, the number of poles in the right half plane).) Second, we need to count the number of net 

counterclockwise encirclements of the point -1 of the Nyquist diagram of G(s) H(s). If this number is 

equal to the number k, then the closed loop system is stable. Otherwise, it is unstable. 
 

3.8.2 Stability margin, gain margin, phase margin, interpretation, significance. In practical situations, 

in addition to finding out whether a closed loop system is table, if it is also desirable to determine 

how 

close it is to instability. This information can be readily determined from the open loop frequency 

response G (jω) H (jω). The proximity of the open loop frequency response to the point -1+j0 in the GH 

plane provides a quantitative measure of the relative stability of a closed loop system. Two commonly 

used measures of relative stability are gain and phase margin. These are defined below: 
 

(a) Gain Margin (GM). The gain margin is defined as the additional gain required for making the system 

just unstable. It may be expressed either as a factor or in decibels. GM is one of the most frequently used 

criterions for measuring the relative stability of control system. In the frequency response analysis, gain 

margin is used to indicate the closeness of the intersection of the negative real axis made by the Nyquist 

plot of loop transfer function G(jω) H(jω) to the (-1, j0) point. Before defining gain margin, let us first 

define the phase crossover on the Nyquist plot and the phase-crossover frequency. 
 

Phase Crossover. A phase crossover on the loop transfer function plot is a point at which the plot 

intersects the negative real axis. 

Phase-Crossover Frequency: The phase-crossover frequency ωp is the frequency at the phase cross over, 

or we write 

⌊L(jω) = 180° 
 

Gain margin of the closed loop system that has L(s) as its loop transfer function is defined as 
 

Gain margin = GM = 20 log10 
|L(jωp)|

 = -20 log10|L(jω)| dB 
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Gain margin is illustrated in the fig 3.8.1 below 

 

 

Fig 3.8.1: Definition of the gain margin in the polar coordinates. 

(b) Phase Margin. The phase margin is defined as the additional phase lag required for making the 

system just unstable. Gain margin alone is inadequate to indicate relative stability when system 

parameters other than loop gain are subject to variation. For example the two systems represented by 

L(jω) plots in fig 3.8.2 apparently have the same gain margin. However, locus A actually corresponds to a 

more stable system than locus B, since any change in system parameters that affect the phase of L (jω), 

locus B may easily be altered to enclose (-1,j0) point. Furthermore, e can show that system B actually  has 

a larger Mr, than system A. Let us first define gain crossover and gain-crossover frequency. 
 

Gain Crossover. The gain crossover is a point on the L(jω) plot at which the magnitude of L(jω) is equal 

to 1. 

Gain-crossover frequency: The gain cross-over frequency, ωg is the frequency of L (jω) at the gain 

crossover, or where 

|L(jωg | = 1 
 

The definition of phase margin is stated as: 
 

Phase margin is defined as the angle in degrees through which the L(jω) plot must be rotated about the 

origin so that the gain crossover passes through the (-1,j0) point. 

Phase margin (PM) = ⌊L(jωg) - 180° 
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Fig 3.8.2: Two systems having same gain margin but different relative stability. 

 

Fig 3.8.3 shows the Nyquist plot of a typical L(jω) plot, and the phase margin is shown as the angle 

between the line that passes through the gain crossover and the origin and the negative real axis of the 

L(jω)-plane. Phase margin is the amount of pure phase delay that can be added to the loop before the 

closed-loop system becomes unstable. 

 

Fig 3.8.3: Phase margin defined in the L(jω) –plane 
 

 Design of Robust Control System: In many control system, the system designed must not only satisfy 

the damping and accuracy specifications, but the control must also yield performance that is robust 

(insensitive) to parameter variations and external disturbance. Feedback in control systems has the 

inherent ability of reducing the effect of external disturbance and parameter variations. Unfortunately, 



 
IARE                                            FLIGHT CONTROL THEORY                                          Page | 70 

Source from Automatic Control Systems by Kuo, B.C 

 

� eθ δe θ Aircraft 

dynamics 

Vertical 

Gyro 

Elevator control 

servo 

robustness with conventional feedback configuration is achieved only with a high loop gain, which is 

normally detrimental to stability. Robustness improves the following: 
 

(a) Tracking performance (keeping the tracking error constant). 
 

(b) Disturbance rejection 
 

(c) Sensitivity to modeling error 
 

(d) Stability Margin (make stability robust) 
 

(e) Sensitivity to sensor noise. 
 

Let us consider the control system shown below in Fig 3.9. 

D(s) 
 

 

Fig 3.9: Control System with disturbance 
 

External disturbance is denoted by d (t), & we assume that amplifier gain K is subject to variations during 

operations. The input transfer function of the system when d (t) = 0 
 

M(s) = Y(s)/R(s) = K Gcf(s) Gc(s) Gp (s)/ (1+K Gc(s) Gp(s)) (1) 

And the disturbance-output transfer function when r(t) = 0 

T(s) = Y(s)/D(s) = 1/ (1+ K Gc(s) Gp(s)) (2) 

In general the design strategy is to select the controller Gc(s) so that the output y(t) is insensitive to the 

disturbance over all the frequency range in which the latter is dominant and the feed forward Gcf (s) is 

designed to achieve the desired transfer function between the input r(t) and the output y(t) 

Let us define the sensitivity of M(s) due to variations of K as 

 

This is identical to equation (2). Thus the sensitivity function and the disturbance-output transfer function 

are identical, which means that disturbance suppression and robustness with respect to variations in K can 

be designed with the same control scheme. 

3.10 Design of a multi loop feedback systems: Design of a multi loop feedback system is explained with 

an example of a pitch attitude hold auto pilot of a transport aircraft. Basic block diagram is shown in fig 

3.10.1 

 

 

θc 
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Fig 3.10.1: Block diagram of a pitch displacement auto pilot. 
 

To design the control system for this auto pilot we need the transfer function of each component. The 

transfer function of the elevator servo can be represented as a first order system 
 

θe/v =1/(τs+1) 

where δe,v and τ are the elevator deflection angle, input voltage, and servo motor time constant.  

The time constant can be assumed to be 0.1s. we can represent the aircraft dynamics by short-period 

approximation. The short period TF for the business jet aircraft can be shown to be 
 

∆θ 
 

∆δe 

 

= -2.0(s + 0.3)/(s(s2+0.65s+2.15)) 
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UNIT-IV 

 

AIRCRAFT RESPONSE TO CONTROLS 

 

4.1 Approximation to aircraft transfer functions. The longitudinal and lateral equations of motion 

are described by a set of linear differential equations. The transfer function gives the relationship 

between the output and input to a system. The transfer function is defined as the Laplace transform of 

output to the Laplace transform of input, with all initial conditions set to zero. Following assumptions 

are made in approximation to aircraft transfer functions. 

(a) We assume that aircraft motion consists of small deviations from its equilibrium flight conditions. 

(b) We assume that the motion of the aircraft can be analyzed by separating the equation into 

Longitudinal and Lateral motion (later consists of yawing motion and roll motion). 

4.1.1 Longitudinal Transfer Function Approximations: The longitudinal motion of an airplane 

(controls fixed) disturbed from its equilibrium flight condition is characterized by two oscillatory 

modes of motion. Fig 4.1 below illustrates these basic modes. We see that one mode is lightly damped 

& has a long period. This motion is called the long-period or phugoid mode. It occurs at constant 

angle of attack. The second basic mode is heavily damped & has a very short period & it is 

appropriately called the short- period mode. 

 

Fig 4.1 Phugoid and Short Period 

Oscillations Longitudinal differential equations 

can be written as: 

(  - ) -  + (g Cos )  =  +   

- +  - =  +   

- -  + ( )  =  +   

 

Where  and   are the aerodynamic and propulsive controls, respectively.If we take the Laplace 
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transform of above equations and divide by control deflection we can find the transfer function   , 

, / . These equations can be solved by Cramer’s Rule to find the transfer functions. 

Transfer functions can be expressed as two polynomials 

 =             

 =            

  =            

 = As4 + Bs3 +Cs2 +Ds + E 

State Variable Representation of Equation of Motion: When equations are written as a system of 

first- order differential equations, they are called state space or state variable equations and expressed 

mathematically as 

 

𝑥𝑥̇=  Ax  +  Bη;  where  x  is  the  state  vector  and  η  is  control  vector  &  the  A  &  B  contain  the  

aircraft’s dimensional stability derivative. The above differential equations of longitudinal motion can 

be further simplified as follows. 

 
In practice, the force derivatives Z q and 𝑍𝑍𝑤𝑤̇ usually are neglected because they contribute very little 

to the aircraft response. Therefore too simplify our presentation of the equations of motion in the 
state- space form we will neglect both these derivatives. Rewriting the equations in the state-space 
form 

=       +  

 

 

Where the state vector x and control vector η are given by 

x = ,  η =  ; and the matrices A and B are given by 

A= =       

B=    

 

4.1.1.1 Phugoid Mode Approximation: In this mode there is no change in angle of attack. 

 

=     

 = 

0

;; Making these assumptions, the homogeneous longitudinal state equations 
reduce to the following: 

=  
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The eigenvalues of the long period approximation are obtained by solving the equation 

 = 0 

 = 0 

Expanding the determinant yields 

-  -  = 0 ;  or 

= /2.0 

 

The frequency and damping ratio can be expressed as 

 =  

ξp = ; If we neglect compressibility effects, the frequency and damping ratios for the long-period 

motion can be approximated by the following equation: 

=   

ξp =  
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Notice that the frequency of oscillation and the damping ratio are inversely proportional to the forward 

speed and the lift-to-drag ratio, respectively. We see from this approximation that the phugoid damping 

is degraded as the aerodynamic efficiency (L/D) is increased. When pilots are flying an airplane under 

visual flight rules the phugoid damping and frequency can vary over a wide range and they will still 

find the airplane acceptable to fly. On the other hand, if they are flying the airplane under instrument 

flight rules low phugoid damping will become very objectionable. To improve the damping of the 

phugoid motion, the designer would have to reduce the lift-to-drag ratio of the airplane. Because this 

would degrade the performance of the airplane, the designer would find such choice unacceptable and 

would look for another alternative, such as an automatic stabilization system to provide the proper 

damping characteristics. 

 

1.2 Short-Period Approximation: An approximation to the short period mode of motion can be 

obtained by assuming ∆u = 0 and dropping the X-force equation. The longitudinal state-space 

equations reduce to the following: 

=   

 

This equation can be written in terms of the angle of attack by using the relationship 

   =       

 

In addition, one can replace the derivative due to w and  with derivative due to α and  by using the 

following equations. The definition of the derivative  is 

Mα =   =    =   =   

In a similar way we can show that 

=   and  =   

Using these expressions, the state equations for the short-period approximation can be written as 

=   

The eigenvalues of the state equation can again be determined by solving the equation 

 

= 0 

 

 

he characteristic equation for this determinant is 

 

-   +   -  = 0The approximate short-period roots can be obtained easily from the 

characteristic equation, 

 

=  /2    /2 

Or in terms of the damping and frequency 

=   
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 =  /(2  

 

 

4.1.2 Lateral Approximation of aircraft transfer function. The characteristic equation of aircraft 

lateral motion is characterized by the following equation. 

Aλ4 + B λ3 +Cλ2 + D λ +E = 0 

Where A, B, C, D & E are the functions of stability derivative, mass and inertia characteristic of the 

airplane. 

In general we find that the roots of the characteristic equation to be composed of two real roots and 

fair  of complex roots. The roots will be such that the airplane response can be characterized by the 

following motions. 

(a) A slowly convergent or divergent motion, called the spiral mode. 
(b) A highly convergent motion, called the rolling mode. 

(c) A lightly dumped oscillating motion having a low frequency, called the Dutch 

roll. Spiral mode is shown in fig 4.2. Roll mode in fig 4.3 and Dutch roll motion in 

Fig 4.4. 

  

Fig 4.2: Spiral Mode Fig 4.3 Roll Mode. 
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Fig 4.4: Dutch Roll Motion. 
 

 
 

(a) Spiral Approximation. The characteristic root of the spiral mode is 

 

λ spiral =        

 

The stability derivative  (dihedral effect) &  (yaw rate damping), are usually negative quantities. On 

the other hand,  (directional stability) &  (Roll moment due to yaw rate) are generally positive 

quantities. Hence condition for stable spiral mode is 
 

   

Increasing the dihedral effect 𝐿𝐿𝛽𝛽 and/or the yaw damping can be used to make the spiral mode stable. 

(b) Roll Approximation: λroll = Lp = -1/τ 
 

The magnitude of roll damping Lp can be determined by the wing & tail surfaces. 
 

(c) Dutch Roll approximations: If we consider that Dutch roll consists of side slipping & 

yawing motions, we get 

=   

 

Solving for the characteristic equation yields 

-  +       

 

From this expression we can determine the undamped natural frequency and the damping ratio as 

follows: 

ωnDR =         

 
 

=      

 
 

4.2 Control surface Actuators- Review: An example of a controller for an aircraft system is a 
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hydraulic actuator used to move to the control surface. A control valve on the actuator is positioned by 

either a mechanical or electrical input, the control valve ports hydraulic fluid under pressure to the 

actuator, and the actuator piston moves until the control valve shuts off the hydraulic fluid. A hydraulic 

actuator is shown below in fig 4.5. 

 

 
 

Hydraulic   Control 

valve fluid under Pressure 

Mechanical output 
 

X 
 

Fig 4.5: An Hydraulic Actuator. 
 

4.3 Response of aircraft to pilot’s control inputs, to atmosphere. 
 

4.3.1 Response of aircraft to Pilot’s control input: Response of an aircraft to control input or 

atmosphere can be done by considering step input and sinusoidal input. The step and sinusoidal input 

functions are important for two reasons. First, the input to many physical systems takes the form of 

either a step change or sinusoidal signal. Second, an arbitrary function can be represented by a series 

of step changes or a periodic function can be decomposed by means of Fourier analysis into a series of 

sinusoidal waves. If we know the response of a linear system to either a step or sinusoidal input, then 

we can construct the system’s response to an arbitrary input by the principle of superposition. 

Of particular importance to the study of aircraft response to control or atmospheric inputs is the 

steady- state response to a sinusoidal input. If the input to a control system is sinusoidal, then after the 

transients have died out the response of the system also will be sinusoid of the same frequency. The 

response of the system is completely described by the ratio of the output to input amplitude and the 

phase difference over the frequency range from zero to infinity. The magnitude and phase relationship 

between the input and output signals is called the frequency response. The frequency response can be 

obtained readily from the system transfer function by replacing the Laplace variable s by jω. The 

frequency response information is usually presented in graphical form using either rectangular, polar, 

log-log or semi-log plots as discussed in unit-II. Consider the transfer function, given by 

 

G(s) =   

 

Replacing the s by jω and rewriting the transfer function in polar form yields 

 

    M (ω) =   =      exp[j(  + …- - …)] 

Now, if we take the logarithm of this equation, we obtain 

   Log M (ω)  =log    =     log k + log  + log …-m log  -log -  

   log  - log -…     (1) 
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𝑠𝑠 

 

   And phase of G (j );    =  +  + … -m (90 ) - -…    

In practice, the log magnitude is often expressed in decibels (dB). The magnitude in decibels is found 

by multiplying each term in equation (1) by 20: 

Magnitude in dB = 20 log10  
 

The frequency response information of a transfer function is represented by two graphs, one of the 

magnitude and other of the phase angle, both versus the frequency on a logarithm scale. The plots are 

referred as Bode diagrams after H.W. Bode who made significant contribution to frequency response 

analysis. 

 

Let us see, how these plots can be used to analyze the response of aircraft to control inputs. Let us 

consider the longitudinal pitch angle to elevator transfer function that can be shown as indicated 

below, where the coefficient Aθ and B θ, and so forth are functions of the aircraft stability derivatives. 

The longitudinal pitch angle to elevator transfer function is as follows: 

 =           

This can be written in the factored form: 

=  

The magnitude and phase angle for the control transfer function is obtained by replacing s by 𝑗𝑗𝜔𝜔 as 

follows: 

=    

Phase angle    =  +   -  -  

 The frequency response for pitch attitude to control deflection for a typical business jet aircraft is 

shown in fig4.6. The amplitude ratios at both the phugoid and short-period frequencies are of 

comparable magnitude. At very large frequencies, the amplitude ratio is very small, which indicates 

that the elevator has negligible effect on the pitch attitude in this frequency range. The frequency 

response for the change in forward speed and angle of attack is shown in Fig 4.7 and 4.8 respectively. 

For the speed elevator transfer function the amplitude ratio is large at phugoid frequency and very 

small at the short- period frequency. It is because short-period motion occurs at essentially 

constant speed Fig 4.8 shows the amplitude ratio of the angle of attack to elevator deflection; here 

we see that the angle of attack (AOA) is constant at low frequencies. It is because in Phugoid mode 

AOA remains constant. The phase plot will show that there is a large phase lag in the response of the 

speed change to elevator inputs. The phase lags for α/𝛿𝛿 is much smaller, which means that the AOA 

will respond faster than the change in forward speed to an elevator input. 
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4.3.2 Aircraft Response to Atmosphere: The atmosphere is in a continuous state of motion. The 

winds and gusts created by the movement of the atmospheric air masses can degrade the performance 

and flying qualities of an airplane. In addition, the atmospheric gusts impose structural loads that must 

be accounted for in the structural design of an airplane. The velocity field within the atmosphere 

varies in both space and time in a random manner. This random velocity field is called atmospheric 

turbulence. The velocity field can be decomposed into a mean part and a fluctuating part. Because 

atmospheric turbulence is a random phenomenon it can be described only in a statistical term. To 

predict the effect of atmospheric disturbances on aircraft response requires a mathematical model. Let 

disturbance f(t) be an arbitrary function of time. When f(t) is stationary random process (stationary 

implies that the statistical properties 

are independent of time) , the mean square (t) is defined as 

  =  dt 

Where   represents a measure of the disturbance intensity. The disturbance function f(t) can be 

thought of as an infinite number of sinusoidal components having frequencies ranging from zero to 

infinity. That portion of   that occurs from ω to dω is called the power spectral density and 

denoted by the symbol ф(ω). The intensity of the random process can be related to power spectral 

density. 

The response of an airplane toa random disturbance such as atmospheric turbulence can be obtained 

from the power spectral density of the input function and the system transfer function. If G(jω) 

represents the system frequency response function, then the output  is given by 

=    

With above equation we can determine the response of an airplane at atmospheric disturbances. The 

transfer function G is the gust transfer function. There are different mathematical model of the 

atmospheric turbulence for aircraft response studies. These models give power spectral density for the 

turbulence velocities. 

4.4  The control task of the pilot: The control task of the pilot is to fly the aircraft safely in the 

assigned mission of the aircraft. For a passenger aircraft mission profile will consist of take-off, cruise 

and landing at the designated airport. Similarly a military aircraft being a weapon delivery platform 

should be able to strike the designated target accurately. To accomplish these missions pilot should be 

able to control and fly the aircraft accurately and maintain the designated route without fatigue. The 

aircraft should be controllable even when it is disturbed from its equilibrium position either by pilot’s 

action or by atmospheric turbulence. An airplane must have sufficient stability such that the pilot does 

not become fatigued by constantly having to control the airplane owing to external disturbance. 

Although airplanes with little or no inherent aerodynamic stability can be flown, they are unsafe to fly 

unless they are provided artificial stability by stability augmentation system. Two conditions are 

necessary for an airplane to fly its mission successfully. The airplane must be able to achieve 

equilibrium flight and it must have the capability to maneuver for a wide range of flight velocity and 

altitude. The stability and control characteristic of an airplane are referred to as the vehicle’s handling 

or flying qualities. Airplane with poor handling qualities will be difficult to fly and could be 

dangerous. An airplane will be considered of poor design if it is difficult to handle regardless of how 

outstanding the airplane’s performance might be. 
 

Precision tasks such as landing approach, tracking, and formation flying in military aircraft can only 
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be accomplished successfully if the aircraft’s dynamic stability characteristics are within the 

acceptable limits. Also pilot’s should have sufficient control authority (usually referred to as control 

power) to trim and maneuver the airplane throughout the flight envelop. Force per g should be 

uniform throughout the flight envelop. 

 

4.5. Flying qualities of aircraft-relation to airframe transfer function. 
 

 Flying Qualities of an Aircraft: The flying qualities of an airplane are related to the stability and 

control characteristics and can be defined as those stability and control characteristics important in 

forming the pilot’s impression of the aircraft. The pilot forms a subjective opinion about the ease or 

difficulty of controlling the airplane in steady and maneuvering flight. In addition to the longitudinal 

dynamics, the pilot’s impression of the airplane is influenced by the feel of the airplane, which is  

provided by the stick force and stick force gradients. The Department of Defense and Federal 

Aviation Administration has a list of specifications dealing with airplane handling qualities. These 

requirements are used by the procuring agencies to determine whether an airplane is acceptable for 

certification. The purpose of these requirements is to ensure that the airplane has flying qualities that 

place no limitation in the vehicle’s flight safety nor restrict the ability of the airplane to perform its 

intended mission. Military standard MIL-F_875C gives the requirements for military aircraft. 

As one might guess, the flying qualities expected by the pilot depend on the type of aircraft and the 

flight phase. Aircraft are classified according to size and maneuverability. Following are 

classifications, categories and levels of flying qualities defined as per MIL-F_875C requirements. 

(a) Classification of airplanes: Airplane can be placed in one of the following classes: 

Class I: Small, light airplanes 

Class II: Medium weight, low-to-medium maneuverability airplane 

Class III: Large, heavy, low-to-medium maneuverability airplanes. 

Class IV: High maneuverability airplanes 

(b) Flight Phase Category: Flight Phases descriptions of most military airplane mission are: 

Category A: Those non terminal Flight Phases that require rapid maneuvering, precision tracking, or 

precise flight-path control. Examples are air-to-air combat, ground attack, in-flight refueling, and 

close formation flying. 

Category B: Those non terminal Flight phases that are normally accomplished using gradual 

maneuvers and without precision tracking, although accurate flight path control may be required. 

Examples are climb, cruise, and descent. 

Category C: terminal Flight Phases normally accomplished using gradual maneuvers and usually 

require flight-path control. Examples are take-off, approach, go-around, and landing. 

(c) Level of flying qualities: The Levels are: 

Level 1: Flying qualities clearly adequate for the mission Flight Phase 

Level 2: Flying qualities adequate to accomplish the mission Flight Phase, but some increase in 

pilot work load or degradation in mission effectiveness, or both, exists. 

Level 3: Flying qualities such that the airplane can be controlled safely, but pilot work load is 

excessive or mission effectiveness is inadequate, or both. 
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Longitudinal flying qualities- relation to airframe transfer function: Extensive research has been 

done to relate the flying qualities of airplane with stability and control characteristic of an aircraft. The fig 

4.5.1 shows the relationship between the level of flying qualities and the damping ratio and un- damped 

natural frequency of short period mode. 

Fig 4.5.1 Short period flying qualities 

(a) Phugoid stability. The long period oscillations which occur when the airplane is disturbed from 

a stabilized airspeed following a disturbance shall meet the following requirements: 

Level 1:    at least 0.04 

Level 2:   at least 0 

Level 3: T2 at least 55 seconds (Where T2 is time to double amplitude) 
 

(b) Short period damping ratio limits: The equivalent short-period damping ratio, shall be within 

the limits of table 4.5.1 

Table 4.5.1: Short Period Damping Ratio Limits 
 

Level Category A & C 

Flight Phase 

Category B 

Flight Phase 
 Minimum Maximum Minimum Maximum 

1 0.35 1.30 0.30 2.0 

2 0.25 2.00 0.20 2.0 

3 0.15 - 0.15 - 

  4.5.3 Lateral flying qualities- relation to airframe transfer function: 
 

(a) Dutch Roll: The frequency ωnd and damping ratio ζd of the lateral-directional oscillations following a 

yaw disturbance input shall exceed the minimum value given in table 4.5.2 

(b) Roll mode: The roll- mode time constant, τR, shall be no greater than the appropriate value in 

table 4.5.3. 

Table 4.5.2: Minimum Dutch roll frequency and damping 
 

 Flight Phase 

Category 

Class Minimum 

ζd 

Minimum 
ωnd ζd rad/s 

Minimum 

ωnd rad/s Level 

 

 

 

A [Combat & 

Ground Attack] 

IV 0.4 - 1.0 

A I, IV 
II,III 

0.19 
0.19 

0.35 
0.35 

1.0 
0.4 
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1 
B All 0.08 0.15 0.4 

C I,IV 
II-Landing, III 

0.08 
0.08 

0.15 
0.10 

1.0 
0.4 

2 All All 0.02 0.05 0.4 

3 All All 0 0 0.4 

Table 4.5.3: Maximum roll time constant, seconds 
 

Flight 

Phase 

Category 

Class Level 

1 2 3 

A I,IV 1.0 1.4  

II,III 1.4 3.0 

B All 1.4 3.0 10 

C I,IV 1.0 1.4  

II-Ldg,III 1.4 3.0 

 

(c) Spiral Stability: The combined effect of spiral stability, flight-control-system characteristic and 

rolling moment change with speed shall be such that following a disturbance in bank of up to 20 

degrees, the time for the bank angle to double shall be greater than the value in table 4.6.5. 

Table 4.5.4: Spiral stability-minimum time to double amplitude 
 

Flight Phase 

Category 

 
Level 1 

 
Level 2 

 
Level 3 

A & C 12 sec 
20 sec 

8 sec 
8 sec 

4 sec 
4 sec B 

 

 4.6 Reversible and irreversible flight control systems. 
 

4.6.1 Reversible flight Control System. In a reversible flight control system (FCS), the cockpit 

controls are directly connected to the aircraft flight control surfaces through mechanical linkages such 

as cables, push rods and bell cranks. A reversible control system is shown in fig 4.7.1. There is no 

hydraulic actuator in this path and the muscle to move the control surface is provided directly by the 

pilot. With no hydraulic power on the aircraft, a reversible FCS will have the following characteristics 

(a) Movement of the stick and rudder will move the respective control surface, and hand movement of 

each control surface will result in movement of the respective cockpit control, hence the name 

“reversible”. 

(b) Reversible flight controls are used on light general aviation aircraft such as Cessna, Piper. They 

have the advantage of being relatively simple and “pilot feel” is provided directly by the air loads on 

each control surface being transferred to the stick or rudder pedals. They have the disadvantage of 

increasing stick and rudder forces as the speed of the aircraft increases. As a result, the control forces 

present may exceed the pilot’s muscular capabilities if the aircraft is designed to fly at high speed. 

(c) Two types of static stability must be considered with reversible FCS. Stick fixed stability implies 

that the control surfaces are held in a fixed position by the pilot during a perturbation. Stick free 

stability implies that the stick & rudder pedals are not held in fixed position by the pilot but rather left 

to seek their own position during a flight perturbation. The stick free stability is lower in magnitude 

than stick fixed stability. 
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Control stick Cable Bell crank 
    

Control surface 
 

Push rod 

 

 

Fig 4.6.1 Example of a reversible flight control system. 

 
 

4.6.2 Irreversible Flight control System. In an irreversible FCS, the cockpit controls are either 

directly or indirectly connected to a controller that transforms the pilot’s input into a commanded 

position for a hydraulic or electromechanical actuator. The most common form of an irreversible FCS 

connects the pilot’s displacement or force command from the stick or rudder pedals to a control valve 

on a hydraulic actuator. The control valve positions the hydraulic actuator that, in turn, moves the 

flight control surface. 

Nearly all high speed aircraft flying today have irreversible FCS. Fig 4.7.2 illustrates irreversible 

FCS. Following are the characteristics of irreversible FCS. 

(a) Such a system is called irreversible because manual movement of a control surface will not be 

transferred to movement of the stick or rudder pedals. 

 
 

Control stick Control Valve 

 

 

AFCS Actuator Control Surface 
 

Hydraulic Actuator 
 

 

Fig 4.6.2 Example of an irreversible flight control system. 
 

(b) Irreversible control systems behave essentially a stick fixed system when the aircraft undergoes a 

perturbation because the hydraulic actuator holds the control surface in the commanded position even 

if the pilot let go off the stick. 

(c) Irreversible FCS is also ideal for incorporation of AFCS functions such as inner loop stability & 

outer loop auto pilot m modes. 

(d) A disadvantage of irreversible FCS is that artificial pilot feel must be designed into the stick and 

rudder pedals because the air loads on the control surface are not transmitted back. Artificial feel may 

be provided using spring system on the stick. 

4.7 Pilot’s opinion rating: Flying qualities of an airplane is assessed by test pilot’s comment obtained 

from simulations and test flying of the aircraft. A structured rating scale for aircraft handling qualities 

was developed by NASA in the late 1960s called the Cooper-Harper rating scale. This rating applies 

Aircraft motion 

Sensor 

Automatic Flight Control 
 

System (AFCS) Computer 
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to specific pilot-in-loop tasks such as air-to-air tracking, formation flying, and approach. It does not 

apply to open-loop aircraft characteristics such as yaw response to a gust. Table 4.8 presents the 

Cooper-Harper rating scale. Aircraft controllability, pilot compensation (workload), and task 

performance are key factors in the pilot’s evaluation. A Cooper-Harper rating of “one” is highest or 

best and a rating of “ten” is the worst, indicating the aircraft cannot be controlled during a portion of 

the task and that improvement is mandatory. Rating of one through three generally correspond to 

Level 1 flying qualities, a rating of four through six corresponds to level 2 flying qualities, and a 

rating of seven trough nine corresponds to Level 3. 

 

 

 

 

Table 4.7: Cooper-Harper Scale 
 

Pilot 

rating 

Aircraft 

Characteristic 

Demand of Pilot Overall 

Assessment 

1 Excellent, highly 
desirable 

Pilot compensation not a factor for desired 
performance 

 

Good flying 

Qualities 2 Good, negligible 

deficiencies 

Pilot compensation not a factor for desired 

performance 

3 Fair, some mildly 

unpleasant 

deficiencies 

Minimal pilot compensation required for desired 

performance 
 

 

Flying qualities 

warrant 

improvement 

4 Minor but 

annoying 
deficiencies 

Desired performance requires moderate pilot 

compensation 

5 Moderately 

objectionable 

deficiencies 

Adequate performance requires considerable 

pilot compensation 

6 Very 

objectionable but 

tolerable 
deficiencies 

Adequate performance requires extensive pilot 

compensation 

7 Major 

deficiencies 

Adequate performance not attainable with 

maximum tolerable pilot compensation; 

Controllability not in question 

 
 

Flying quality 

deficiencies 

require 

improvement 

8 Major 

deficiencies 

Considerable pilot compensation is required for 

control 

9 Major 

deficiencies 

Intense pilot compensation is required to retain 

control 

10 Major 

deficiencies 

Control will be lost during some portion of 

required operation 

Improvement 

Mandatory 

 

4.8 Flying quality requirements: Pole-zero, frequency response and time-response specifications: 
 

4.8.1 Pole-zero specification: Poles are nothing but roots of the characteristic equation obtained from 

the transfer function. These roots are decided by natural frequency ωn and damping factor ξ. They are 

represented on the complex plane as shown in fig 4.8.1 below. 
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× 

jωd (Imaginary) 

ωd =ωn �1 − 𝜉𝜉2 

r =ωn 
 

ф 

-ξωn 
 

× 

 

 

 
 

a(Real) 
 

 

 

 
 

Fig 4.8.1: Root representation using the complex plane. 
 

These poles have influence on the flying quality. For example if we see the contours of the short-

period poles which are plotted on axes of un-damped natural frequency versus damping ratio, we can 

see the relation of these poles with pilot’s opinion. This is shown in Fig 4.9.2. this shows that most 

satisfactory pilot-opinion rating correspond to poles inside a closed contour bounded about 2.4 to 3.8 

rad/s, and by damping ratios of about 0.4 and 1.0, with its centre at about 3.0 rad/s and ξ = 0.65. This 

forms the basis of pole-position handling-qualities criteria. Similarly the position of the pitch-rate TF 

zero has been shown to correlate with pilot-opinion ratings of flying qualities. 

 

 

Fig 4.8.2: Short period flying quality 
 

4.8.2 Frequency-response Specifications. In general the goal of an aircraft control system designs 

should be to produce dominant close-loop poles that resemble the basic rigid-body poles, with 

satisfactory damping and natural frequency. In this concept the coefficients are determined for a low-

order TF that matches the frequency response of the actual transfer function, over a limited frequency 

range. The gain and phase are matched simultaneously by adjusting the coefficients of the low-order 

TF to minimize a cost function of the form 

  COST =               
 

Here n is the number of discrete frequencies    ) used,       ) is the difference in gain (in 

decibels) between the transfer functions at the frequency   , and   ) is the difference in phase 

( indegrees) at . The frequency range used is normally 0.3 to 10 rad/s, and20 to 30 discrete 

frequencies is needed. 

 

Another example frequency domain specification applied to aircraft control is the military standard 

requirement (MIL-F-9490). This provides stability criteria by specifying the minimum gain and phase 

margins that must be achieved in actuator path, with all other feedback paths closed. Typical values 
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are 6 dB gain margin and 30 degree phase margin. 

4.8.3 Time-response Specifications: Placing handling quality requirements on the time response has 

the advantage that a time response can be readily obtained from the full nonlinear model. It does, 

however, raise the problem of what type of test input to apply and which output variable to observe. In 

the case of longitudinal dynamics, it is natural to specify requirements on the pitch-rate response. 

However the fighter aircraft control systems are normally designed to give the pilot control over pitch 

rate at low speed and normal acceleration at high speed. This gives direct control over the variable 

that stresses the pilot. The two control systems must be blended together. A time-response criterion 

has made use of the short- period approximation. They have attempted to define an envelope inside 

which the pitch rate, angle of attack, or normal acceleration response to an elevator step input should 

lie. 

A time- history envelop criterion, called C* (t) (“C-star”) is in use. The C* criterion uses a linear 

combination of pitch rate and normal acceleration at the pilot,s station: 

C*(t) = anp + 12.4 q 
 

Here anp is the normal acceleration in g’s and q is the pitch rate in radians per second. The envelope 

for the C* criterion is shown in figure 4.9.3. If the response C*(t) to an elevator input falls inside the 

envelope, level-1 flying qualities on the pitch axis will hopefully be obtained.  

 

 

 

 

For fighter aircraft angle of attack should be basic response variable and it appears that the angle-of-

attack response corresponding to good handling qualities may be more like a good conventional step 

response (i.e. small overshoot and fast no oscillatory settling). 

 

 

Time (s) 

Fig 4.9.3: C* Envelope 

 

4.9 Stability Augmentation System- displacement and rate feedback: Stability Augmentation 

Systems (SAS) were generally the first feedback control systems intended to improve dynamic 

stability characteristic. They were also referred to as dampers, stabilizers and stability augmenters. 

These systems generally fed back an aircraft motion parameter, such as pitch rate, to provide a 

control deflection that opposed the motion and increased damping characteristics. The SAS has to be 

integrated with primary flight control system of the aircraft consisting of the stick, pushrod, cables, 

and bellcanks leading to the control surface or the hydraulic actuator that activated the control 

surface. Fig 4.10 presents a simplified SAS. SAS sensors and computers are normally dual 

redundant to improve the reliability. 
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Actuator Aircraft 

+ 

+ 

Adjustable Gain Vertical Gyro 

𝜃𝜃 

𝛿𝛿𝑙𝑙 

𝑎𝑎 

𝑠𝑠 + 𝑎𝑎 

4.10  

 

 

Control stick Control Surface Actuator 

 

 

SAS actuator Control surface 
 

Fig 4.10: Simplified SAS 
 

A closed loop system illustrating functions performed within a flight control computer is shown in fig 

4.11. 

 

 

θc θ 
 

 

 

 

 

 

 

 

 

 

Accomplished within a flight control computer 
 

Fig 4.11 Closed loop system illustrating the functions performed within a flight control 

computer 

The command signal and vertical gyro signal are input to the computer in the form of voltage or 

digital signals. Computer software multiplies the vertical gyro signal by the value of the adjustable 

gain (which is fixed for a final configuration), and then performs the comparator subtraction. Finally, 

the computer outputs the error signal (E) to an electromechanical actuator in the form of a voltage. 

The elctro- mechanical actuator converts the voltage to a mechanical displacement, which is input into 

the control valve of the aircraft hydraulic actuator. Many aircraft integrate the electromechanical 

actuator with the hydraulic actuator as one unit. 

 Displacement (Position) feedback as a tool in SAS. A generalized transfer function (TF) of a 

second order system can be written as: 
 

    X(s)/Y(s) =           

; X(s) is output; Y(s) is input.

Aircraft motion 

Sensor 

SAS 

Computer 
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Y(s) + X(s) 𝑋𝑋  (s) 

+ 

Variable 

Gain K2 

s 
𝜔𝜔𝑠𝑠 

2 

𝑠𝑠2 +2𝜉𝜉 𝜔  s + 𝜔𝜔 𝑠𝑠 
2 

 

The TF may represent short-period mode of an aircraft with natural frequency and damping ratio 

representing the dynamic characteristic of the basic airframe. Fig 4.12 represents a simple closed loop 

position feedback system. The term “position” refers to the fact that output variable (x) is feedback as 

itself (not as derivative of x). 

 
Figure 4.12: Position feedback system.  
 

 

   Aircraft Dynamics Rate Gyro 
 
 

 

 

 

 

 

 

 

 
 

Accomplished within Flight Control Computer 
 

Fig 4.13: Rate feedback SAS 

Closed-loop transfer function is 

X(s)/Y(s) =           
 

The closed-loop characteristic equation for the system is 
 

 = 0 

We can see from the above characteristic equation that the natural frequency of the open-loop &closed- 

loop system remains constant and is not affected by the value of K2. The closed loop damping ratio 

becomes 

 =  

Rate feedback allows the designer to increase the damping ratio as K2 is increased positively from zero. 

This provides a powerful design tool to tailor the handling qualities of an aircraft and meet dynamic 

stability damping ratio requirements. A rate feedback system typically involves adding a rate gyro to the 

aircraft to provide 𝑥𝑥̇ measurement and feedback signal shown in fig 4.13. The figure illustrates where 

the rate gyro fits into the system. A rate gyro is a sensor that outputs a voltage proportional to an angular 

rate. Most highly augmented aircraft have pitch rate (Q), roll rate (P), and yaw rate (R) gyros to tailor 

dynamic stability and response characteristics for all three rotational degrees of freedom. 
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4.9.3 Acceleration feedback: Fig 4.14 below shows a simple closed-loop acceleration feedback system. 

Acceleration refers to the fact that the second derivative of the output variable (x) is feedback. 

 

 

 

Closed-loop transfer function is 
 

X(s)/Y(s) =             

The closed loop characteristic equation for the system is 
 

+  s +  = 0 

 

The closed loop frequency becomes 
 

=  
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Aircraft 

Transfer 

function 

 

Closed loop damping ratio    =   

 

These equations indicate that natural frequency & damping ratio are decreased as K3 is increased 

positively from zero. With position, rate & acceleration feedback, we have the ability to increase or 

decrease the natural frequency & damping ratio of an open loop system. Handling qualities of an 

aircraft can be tailored with these tools & the roots of the characteristic equation can be positioned in 

the complex plane to meet stated requirements. In some cases, a combination of position, rate, and/or 

acceleration feedback is needed to achieve the desired characteristic. A multi loop system using all 

three types of system is shown in fig 4.15. 

 

 

 

Fig 4.15: A multi loop system using tree feedback loops. 
 

4.9.4 Determination of Gain, Conflict with the pilot inputs-Resolution: As brought in paragraph 

4.10.2 and 4.10.3, suitable value of gain can be selected in the feedback loop depending upon the desired 

specification depending upon the airframe natural frequency and damping ratio. A root locus technique 

can be used for multi loop feedback system as shown in Fig 4.15. First we start with inner most loop, 

keeping outer loops closed .i.e. K2 and K3 are made zero. Value of K1 is next determined. Procedure is 

repeated many times till design specifications are specified. 

One problem with SAS is the fact that the feedback loop provided a command that opposed pilot control 

inputs. As a result, the aircraft becomes less responsive for a given stick input. This is typically 

addresses with the addition of a washout filter in the feedback loop that attenuated the feedback signal 

Pilot command + 
  

- 
 

10% Authority 

 

Fig 4.16: Conflict resolution with pilot input using a washout filter. 
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Aircraft 

Transfer 

function 

Another approach for resolving conflict with the pilot input is Control Augmentation system 

discussed in the next section paragraph 4.11. 

4.10 Control Augmentation system: Control augmentation system (CAS) added a pilot command 

input into the flight control computer. A force sensor on the control stick was usually used to provide 

this command input. With CAS, a pilot stick input is provided to FCS in two ways- through the 

mechanical system and through the CAS electrical path. The CAS design eliminated the SAS problem 

of pilot inputs being opposed by the feedback. Fig 4.17 presents a simplified CAS. 

 

 

Control surface actuator 
 

Control stick 

Control surface 
 

CAS Actuator 

 
Fig 4.17: Simplified CAS 

 

With CAS, aircraft dynamic response is typically well-damped, and control response is scheduled 

with the control system gains to maintain desirable characteristic throughout the flight envelop. A 

block diagram of a typical CAS is presented in fig 4.18. 

 

 

+ 
 

Pilot Command - 50% authority 

 

 

Fig 4.18: Simplified diagram of CAS 
 

 

 

CAS provides dramatic improvement in aircraft handling qualities. Both dynamic stability and control 

response characteristics could be tailored and optimized for the mission of the aircraft. 

In case of high-performance military aircraft, where the pilot may have to maneuver the aircraft to its 

performance limits and perform tasks such as precision tracking of targets, specialized CAS are 

needed. FCS can provide the pilot with selectable “task tailored control laws”. For example, although 

the role of a fighter aircraft has changed to include launching missiles from long range, the 

importance of the classical dogfight is still recognized. A dogfight places a premium on high 

maneuverability and “agility” (ability to maneuver quickly) in the aircraft and control system that 

Aircraft motion 

Sensor 

CAS 

Computer 

Control 

input 

K Rate Gyro 

Control Surface 

Actuator 
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GF 

Aircraft & 

actuators 

Kα 

allows the pilot to take advantage of this maneuverability. In this situation a suitable controlled 

variable for pitch axis is the normal acceleration of the aircraft. This is the component of acceleration 

in the negative direction of body-fixed z-axis. It is directly relevant to performing a maximum-rate 

turn and must be controlled up to the structural limits of the airframe, or the pilot’s physical limits. 

Therefore, for a dogfight, a “g-command” control system is an appropriate mode of operation of the 

FCS. 

Another common mode of operation for a pitch-axis CAS system is a pitch rate command system. 

When a mission requires precise tracking of a target, by means of a sighting device, it has been found 

that a deadbeat response to pitch-rate commands is well suited to the task. Control of pitch rate is also 

the preferred system for approach and landing. A pitch rate CAS is shown in the fig 4.19. 
 

 

Fig 4.19: Pitch-rate control-augmentation 

A normal-acceleration control augmentation system is shown in fig 4.20. 
 

 
 

 
 

Fig 4.20: Normal Acceleration CAS 

  

  

4.11 Full authority fly-by-wire control: 
 

4.11.1 Functions and operation. Full authority fly-by-wire (FBW) system has no mechanical link 

from the control stick to actuator system. Basically FBW systems are CAS system without mechanical 

control system and provide the CAS full authority. The input from control stick, pedal and from 

motion sensors are converted into electrical signals and sent to FBW computer. Software inside the 
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FBW computer contains the control law which will command the control surfaces to move. However 

to improve the reliability, triple and quad redundancy in system components along with self-test 

software is used. Aircraft such as F-16, Mirage-2000 and Tejas have FBW FCS. The full authority 

provided by FBW allows significant tailoring of stability and control characteristics. This ability has 

led to FBW systems with several feedback parameters and weighting of feedback gains based on 

flight condition and other parameter. Fig 4.21 presents a simplified FBW system. 
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Fig 4.21: Simplified FBW 

Block diagram of F-16 longitudinal FBW system is shown in fig 4.22. 
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Fig 4.22: Simplified F-16 longitudinal FBW block diagram 

4.11.2 Advantages of FBW Control: 

(a) Increased performance: FBW enables a smaller tailplane, fin rudder to be used, 

thereby reducing both aircraft weight and drag, active control of the airplane and rudder 

making up for the reduction in natural stability. For a civil airliner, reducing the stability 

margin and compensating for the reduction with a FBW system thus results in lighter aircraft 

with better performance and better operating economics and flexibility than a conventional 

design, for example, the ability to carry additional freight. For a military aircraft, such as an 
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air superiority fighter, the FBW system enables aircraft configurations with negative 

stability to be used. This gives more lift, as the trim lift is positive, so that a lighter, more 

agile fighter can be produced- agility defined as the ability to change the direction of the 

aircraft’s velocity vector. An increase in instantaneous turn rate of 35% is claimed for some 

of the new agile fighters. 

(b) Reduced weight. Electrically signaled controls are lighter than mechanically signaled 

controls. FBW eliminates the bulk and mechanical complexity of mechanically signaled 

controls with their disadvantages of friction, backlask (mechanical lost motion), structure 

flexure problem, periodic rigging and adjustments. 

(c) FBW control stick: FBW flight control enables a small, compact pilot’s control stick to 

be used allowing more flexibility in cockpit layout. The displays are un-obscured. 

(d) Automatic stabilization. 

(e) Carefree Maneuvering. The FBW computer continuously monitors the aircraft’s state 

to assess how close it is to its maneuver boundaries. It automatically limit’s the pilot’s 

command inputs to ensure that the aircraft does not enter an unacceptable attitude or 

approach too near its limiting incidence angle ( approaching the stall) or carry out maneuver 

which would exceed the structure limits of the aircraft. A number of aircraft are lost each 

year due to flying too close to their maneuver limits and the very high workload in the event 

of a subsequent emergency. The FBW system can thus make a significant contribution to 

flight safety. 

(f) Ability to integrate additional controls. These controls need to be integrated 

automatically to avoid an excessive pilot-work-too many things to do at once: 

(i) Leading and trailing edge flaps for maneuvering and not just for take-off and landing 

(ii) Variable wing sweep 

(iii) Thrust vectoring 

(g) Ease of integration of the autopilot. The electrical interface and the maneuver 

command control of the FBW system greatly ease the autopilot integration task. The 

autopilot provides steering commands as pitch rate or roll rate commands to the FBW 

system. The relatively high bandwidth maneuver command ‘inner loop’ FBW system 

ensures that response to the outer loop autopilot commands is fast and well damped, 

ensuring good control of the aircraft flight path in the autopilot modes. A demanding 

autopilot mode performance is required for applications such as automatic landing, or, 

automatic terrain following at 100-200 ft above the ground at over 600 knots where the 

excursions from the demanded flight path must be kept small. 

(h) Aerodynamics versus ‘Stealth’: The concept of reducing the radar cross-section of an 

aircraft so that it is virtually undetectable has been given the name ‘stealth’ in the USA. 

Radar reflection returns are minimized by faceted surfaces which reflect radar energy away 

from the direction of the source, engine intake design and the extensive use of radar energy 

absorbing materials in the structure. Stealth considerations and requirements can conflict 

with aerodynamics requirements and FBW flight control is essential to give acceptable, safe 

handling across the flight envelop. 

 

 

4.12 Need for automatic Control: Fig 4.23 shows the altitude-mach envelope of a modern high-

performance aircraft; the boundaries of this envelop are determined by a number of factors. The low-

speed limit is set by the maximum lift that can be generated (the alpha limit in the figure), and the high-

speed limit follows a constant dynamic pressure contour (because of structural limits, including 

temperature). At high altitudes the speed becomes limited by the maximum engine thrust (which falls off 

with altitude). The altitude limit imposed on  the envelop is where the combination of airframe and 
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engine characteristics can no longer  produce a minimum rate of climb (this is the “service ceiling”). The 

basic aerodynamic coefficients (stability derivatives) vary with Mach number. Because of the large 

changes in aircraft dynamics, a dynamic mode that is stable and adequately damped in one flight 

condition may become unstable, or at least inadequately damped, in another flight condition. A lightly 

damped oscillatory mode may cause a great deal of discomfort to passengers or make it difficult for the 

pilot to control the trajectory precisely. These problems are overcome by using feedback control to 

modify the aircraft dynamics. The aircraft motion variables are sensed and used to generate signals that 

can be fed into the aircraft control-surface actuators, thus modifying the dynamic behavior. The 

feedback must be adjusted according to flight condition. The adjustment process is called gain 

scheduling because, in its simplest form, it involves only changing the amount of feedback as a function 

of scheduling variable. These scheduling variables will normally be measured dynamic pressure and/or 

Mach number. The signals from rate gyros, accelerometers, air data computer, and other sources are 

processed by the flight-control computer (FCC). The electrical output of the FCC is used to drive 

electro hydraulic valves, and these superimpose additional motion on the hydro mechanical control 

system. 

One may ask as to why use an FCC instead of pilot? There are several reasons for this. First of all, a 

computer has a much higher reaction velocity than a pilot. Also, it isn’t subject to concentration losses 

and fatigue. Finally, a computer can more accurately know the state of the aircraft is in. (Computer can 

handle huge amount of data better and also don’t need to read a small indicator to know, for example, 

the velocity or the height of the aircraft.) 
 

Fig 4.23 Aircraft altitude-Mach envelope 
 

Fig 4.24 shows how a fully powered aircraft control system might be implemented with mechanical, 

hydraulic, and electrical components. 

 

 

Fig 4.24: An electro-mechanical control system 
 

 

4.13. Autopilots-purpose, functioning-inputs-hold-command-track. 
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4.13.1 Autopilots-Purpose and Functioning, inputs-hold, command, track: Basic purpose of an 

auto- pilot is to reduce the pilot work load (pilot- relief auto-pilot). The auto-pilots are capable of 

maintaining (holding) constant attitude (pitch, roll, and heading), velocity, and altitude. They can also 

be coupled to instrument landing system during landing in bad weather conditions. In automatic 

terrain following mode they can be used to fly in a hilly terrain without much work load on the pilot. 

They can also be used as SAS. Auto-pilots are used for tracking a command instead of holding a 

reference value. In such cases reference command may be pitch-rate or normal acceleration. 

Maneuvering auto-pilots can be used in high performance fighter aircraft to give desired normal 

acceleration, turn rate and pitch-rate during various modes of combat (example dogfight, air-to-

ground target tracking). In hold autopilot a constant output is maintained like in heading hold mode 

present heading is maintained once the heading hold mode of the auto-pilot is engaged. In command 

input, auto-pilot is commanded (e.g. a new given heading or bank angle) to new state (bank angel, 

altitude, heading). 

4.14 Displacement autopilots-Pitch, yaw, bank, altitude and velocity hold-purpose, relevant 

simplified aircraft transfer functions, feedback signals: 

4.14.1 Displacement autopilot-pitch, yaw autopilot: One of the earliest auto-pilots to be used for 

aircraft control is the so-called displacement auto-pilot. A displacement type autopilot can be used to 

control the angular orientation of the airplane. Conceptually, the displacement autopilot works in the 

following manner. In a pitch attitude displacement autopilot, the pitch angle is sensed by a vertical 

gyro and compared with the desired pitch angle to create an error angle. The difference or error in 

pitch  attitude is used to produce proportional displacements of the elevator so that the error signal is 

reduced. Figure 4.25 is a block diagram of either a pitch or roll angle displacement autopilot. The 

heading angle of the airplane also can be controlled in a similar scheme. The heading angle is sensed 

by a directional gyro and the error signal is used to displace the rudder to reduce the error signal. A 

displacement heading auto pilot is shown in fig 4.26. 

4.14.2. Bank Attitude autopilot. The roll attitude of an airplane can be controlled by a simple bank 

angle autopilot as illustrated in fig 4.27. Conceptually the roll angle of the airplane can be maintained 

at whatever angle one desires. IN practice we would typically design the autopilot to maintain a wings 

level attitude or φ = 0. The autopilot is composed of a comparator, aileron actuator, aircraft equation 

of motion (i.e. transfer function), and an attitude gyro to measure the airplane’s roll angle. 

 

    θc eθ ɗe θ 

φc e φ ɗa φ 

 

 

 

 

Fig 4.25: A roll or pitch displacement autopilot 
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Fig 4.26: A heading displacement autopilot 
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Fig 4.27: Simple roll attitude control system 

 
4.14.3 Altitude hold autopilot: the altitude of an airplane can be maintained by an altitude hold 

autopilot. A simple altitude hold autopilot is shown in fig 4.28. Basically the autopilot is constructed to 

minimize the deviation between the actual altitude and the desired altitude. To analyze how such an 

autopilot would function we examine an idealized case. First we assume that the airplane’s speed will 

be controlled by a separate control system, second we neglect any lateral dynamics. With these 

restrictions we are assuming that the only motion possible is in vertical plane. The transfer functions 

necessary to perform the analysis are elevator servo and aircraft dynamics. The elevator transfer 

function can be represented as a first order lag as 

 =   

 

The aircraft dynamics can be represented by short period approximations. Next we need to find the 

transfer function ∆ℎ/∆𝛿 . This can be shown as 

 =   

 

The transfer function  can be obtained from /  in the following ways 

 =  ; hence (s) = s  

 

Hence   =  /  ) =   

 

 

 
h ref + 
      

- 
 

 

 

Fig 4.28: Altitude hold autopilot 
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4.15.4. Velocity Hold Autopilot: The forward speed of an airplane can be controlled by changing the 

thrust produced by the propulsion system. The function of the speed control system is to maintain some 

desired flight speed. This is accomplished by changing the engine throttle setting to increase or decrease 

the engine thrust. Figure 4.29 is simplified concept for a speed control system. The components that 

make up the system include a compensator, engine throttle, aircraft dynamics, and feedback path 

consisting of the velocity and acceleration feedback. 

 

 

 

∆ 𝑢𝑟e𝑓 
 

 

 

 

 
 

 

 
Figure 4.29: A block diagram for a speed control system 

 

 

4.15 Control actuators-Operation, analysis, Performance. Control surface actuators can be 

electrical, hydraulic, pneumatic, or some combination of the three. They are used to deflect the 

aerodynamic control surfaces. Operation, functioning and analysis of hydraulic actuator were done in 

paragraph 4.2. The transfer function is similar for each type. We will develop the control surface 

actuator transfer function for a servo based on an electric motor. The fig 4.30 shows the block 

diagram of a servo motor with constant magnetic field. Voltage applied is Vc(t). We assume that 

armature inductance is negligible and armature resistance is Ra. Motor is connected to a load whose 

moment of inertia is I. Load angular displacement is θ. Let back emf generated by the motor is Vb(t) 

which will be proportional to angular velocity  Let Ia be the current through the motor. Fig 4.30 

shows the block diagram of a motor. Then 

we write the following equation. Vc(t) = 

Ra Ia + Vb(t)           (1) 

   Vb(t)=  Bm       (2) 

 

Tm =Km Ia ;      (3)  

where Tm is the torque developed by the motor and Km is proportionality constant. 
 

Tm = I𝜃̈ (4) 
 

Taking the Laplace transform of equation (11), (2), (3), (4) 

we get  

Vc(s) = Ra Ia(s) +Vb(s) (5) 

Vb(s) = Bm s θ(s) (6) 
 

Tm(s) = Km Ia(s) (7) 

Tm(s) = I 𝑠𝑠2 θ(s) (8) 

 
Substituting the value of Vb(s) from equation (6) into equation (5) and simplifying 
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we get Ia(s)= (Vc(s) –Bm s θ(s))/ Ra (9) 

Hence substituting the value of Ia(s) from (9) into equation (7) and equating with (8) we 

get I 𝑠𝑠2 θ(s) = Km [(Vc(s) –Bm s θ(s))/ Ra] 

Ra I 𝑠𝑠2 θ(s) = Km Vc(s) –s Bm θ(s) 
 

A simple position control servo system can be developed from the control diagram shown in fig 4.31. 

The motor shaft angle, θ, can be replaced by the flap angle ɗf , of the control surface. For the positional 

feedback system the closed loop transfer function can be shown to have the following form: 
 

 =  

where k and  are defined in terms of characteristics of the servo, 

k= 1/kf and =     ; the time constant of the control surface servo is typically of the order of 0.1 s. 

 

 
ɗf 

 

 

 

 

 

 

 

 

 

Fig 4.31: Simple position control servo for control surface deflection. 

4.16 Feedback Signals: In auto-pilot signals are electrical signals which are output of sensors. 

These sensors could be attitude sensors (Pitch, bank and heading attitudes derived from gyros are 

inertial navigation system), rate sensors (aircraft body rates like pitch rate, roll rate, yaw rate), 

altitude sensor or velocity sensors. Feedback signal could also have a compensator or filter (washout 

filter). Purpose of the feedback signal is to improve the dynamic characteristic of the aircraft and 

produce a signal proportional to the output which is compared with the reference input. 

4.17 Maneuvering auto-pilots: pitch rate, normal acceleration, turn rate. 
 

4.17.1 Normal acceleration auto-pilot- Function and Application: A maneuvering auto pilot in a 

military fighter aircraft can provide the pilot with selectable “task tailored control laws”. For example, 

although the role of a fighter aircraft has changed to include launching missiles from long range, the 

importance of the classical dogfight is still recognized. A dogfight places a premium on high 

maneuverability and “agility” (ability to maneuver quickly) in the aircraft and control system that 

allows the pilot to take advantage of this maneuverability. In this situation a suitable controlled 

variable for pitch axis is the normal acceleration of the aircraft. This is the component of acceleration 

in the negative direction of body-fixed z-axis. It is directly relevant to performing a maximum-rate 

turn and must be controlled up to the structural limits of the airframe, or the pilot’s physical limits. 

Therefore, for a dogfight, a “g-command” control system or normal acceleration autopilot is an 

appropriate choice. 
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Following fig 4.32 shows the block diagram of normal acceleration autopilot. 
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Fig 4.32: Normal-acceleration command auto-pilot 

 

Normal acceleration is measured by an accelerometer which is [laced close to the pilot’s station, aligned 

along the body z-axis, and used as the feedback sensor for control of the elevator, the pilot has precise 

control over his z-axis g-load during high g-maneuvers. If 1g is subtracted from the accelerometer 

output, the control system will hold the aircraft approximately in level with no control input from the 

pilot. If the pilot blacks out from g-load, and relaxes any force on the control stick, the aircraft will 

return to 1 g flight. The normal acceleration an at a point P, fixed in the aircraft body, is defined to be 

the component acceleration at P in the negative-z direction of the body axes. The purpose of inner loop 

pitch rate feedback is to get faster response. 

4.17.2 Pitch rate Autopilot- function and application: In military aircraft, when a situation requires 

precise tracking of a target, by means of a sighting device, it has been found that a deadbeat response 

pitch-rate command is well suited to the task. Control of pitch rate is also the preferred system for 

approach and landing. Block diagram of a pitch rate autopilot system is shown in fig 4.33. 
 

Fig 4.33 Pitch rate autopilot 
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Proportional plus integral control is used to reduce the steady state error to provide more precise 

control. Inner loop alpha feedback is used when the pitch stiffness is inadequate. 

4.17.3 Turn-rate autopilot- function and application: During turn, if the turn is not coordinated 

(i.e. speed and bank angle do not match) aircraft is like to have side slip. A coordinated turn is 

defined as lateral acceleration of the aircraft cg (i.e. zero component of inertial acceleration on the 

body y-axis). Turn coordination is required for passenger comfort and, in fighter aircraft; it allows the 

pilot to function more effectively. In addition, by minimizing sideslip, it maintains maximum 

aerodynamic efficiency and also minimizes undesirable aerodynamic loading of the structure. 
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Automatic turn coordination is also useful for a remotely piloted vehicle performing video 

surveillance or targeting. In a coordinated turn, the aircraft maintains the same pitch angle and roll 

attitude with respect to the reference coordinate system, but heading changes continuously at constant 

rate. Therefore, the Euler-angle rate 𝜑𝜑̇ and 𝜃𝜃̇ are identically zero, and the rate 𝜓𝜓̇ is the turn rate. 

Under these conditions, the body-axes components of the angular velocity are 

P = -   Sin θ 

Q =   sin ф Cos θ  

R =   Cos ф Cos θ 

If the aircraft is equipped with angular-rate control systems on each axes these rates can be computed, 

and they can be used as the controller commands to produce a coordinated turn. In level flight, with 

small sideslip, the turn coordination constraint is given by 

   tan ф =  

 

If θ is small cos θ ≈ 1.0 then, for specified turn rate 𝜓𝜓̇ , the required pitch and yaw rate can be 

calculated and the roll rate can be neglected. This procedure is quite satisfactory level turn. 

Another coordination schemes include feedback of sideslip or lateral acceleration to the rudder, or 

computing just a yaw-rate command as a function of measured roll-angel. 

4.18Autopilot design by displacement & rate feedback-iterative methods, design by 

displacement feedback and series PID compensator-Zeigler & Nichols method: 

14.8.1Design of autopilot by displacement& rate feedback using iterative methods: Design of an 

autopilot by displacement & rate feedback is explained with an example of a pitch attitude hold auto 

pilot of a transport aircraft. Basic block diagram of a pitch hold auto pilot is shown in fig 4.33.For this 

design reference the reference pitch angle is compared with the actual pith angle measured by the 

pitch gyro to produce an error signal to activate the control surface actuator to deflect the control 

surface. Movement of the control surface causes the aircraft to achieve a new pitch orientation, which 

is feedback to close the loop. To design the control system for this auto pilot we need the transfer 

function of each component. The transfer function of the elevator servo can be represented as a first 

order system 
 

θe/v =ka/(τs+1) ; where δe,v, ka and τ are the elevator deflection angle, input voltage, elevator 

servo gain and servo motor time constant. The time constant can be assumed to be 0.1s. We can 

represent the aircraft dynamics by short-period approximation. The short period TF for the typical jet 

transport for example can be written as: 
 

∆𝜃 
 

∆𝛿e 
= -2.0(s + 0.3)/(s(s2+0.65s+2.15)) 

 

The fig 4.34 is the block diagram representation of the auto pilot. The problem now is one of 

determining  amplifier gain ka so that the control system will have the desired performance. Selection 

of ka can be determined using a root locus plot of transfer function. Fig 4.35 is the root locus plot for 

the typical jet aircraft pitch control autopilot. As the gain is increased from zero, the system damping 

decreases rapidly and the system becomes unstable. Even for low values ka, the system damping 

would be too low for satisfactory dynamic performance. The reason for poor performance is that the 

airplane has very little natural damping. To improve the design we could increase the damping of the 

short period mode by adding an inner loop feedback loop. Fig 4.36 is a block diagram representing of 

displacement auto pilot with pitch rate feedback for improved damping. In the inner loop the pitch 

rate  is measured by a rate gyro and fed back to be added with error signal generated by the difference 

in pitch attitude. Fig 4.37 shows the block diagram for the business jet where pitch rate is incorporated 

into the design. For this problem we have two parameters to select, namely the gains ka and krg. The 
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root locus method can be used to pick both parameters. The procedure is essentially a trial-and-error 

method. First,the root locus diagram is determined for the inner loop; a gyro gain is selected, and then 

the outer root locus plot is constructed. Several iterations may be required until the desired overall 

system performance is achieved. 

 

Fig 4.33 A pitch displacement autopilot 
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Fig 4.34 A pitch displacement autopilot 

 

Fig 4.35: Root locus plot of the system gain for pitch displacement autopilot 
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Fig 4.36: A pitch attitude autopilot employing pitch rate feedback 
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Fig 4.37: A pitch attitude autopilot employing pitch rate feedback 
 

4.18.2 PID controller or Ziegler-Nichols tuning rules: The simplest feedback controller is one for which 

the controller output is proportional to the error signal. Such a controller is called a proportional to the error 

signal. Such a controller is called a proportional control. Obviously the controller’s main advantage is its 

simplicity. It has the disadvantage that there may be a steady state error. The steady-state error can be 

eliminated by using an integral controller 

eo (s) = k i  or eo (s) = k i   where ki is the integral gain. 

The advantage of the integral controller is that the output is proportional to the accumulated error. The 

disadvantage of the integral controller is that we make the system less stable by adding the pole at the 

origin. Recall that the addition of a pole to the forward- path transfer function is to bend the root locus 

toward the right half s-plane. It is also possible to use a derivative controller defined as is that the controller: 
 

eo (t) = kd    or eo (s) =  kd s(s) 

 

The advantage of the derivative controller is that the controller will provide large corrections before the 

error becomes large. The major disadvantage of the derivative controller is that it will not produce a 

control output if the error is constant. Another difficulty of the derivative controller is its susceptibility to 

noise. The derivative controller in its present form would have difficulty with noise problem. This can be 

avoided by using a derivative controller of the form 

    eo (s) = kd 

 e(s) 
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The term 1/( 𝜏𝑠 + 1) attenuates the high- frequency components in the error signal, that is, noise, thus 

avoiding the noise problem. Each of the controller-providing proportional, integral, and derivative control-

has its advantages and disadvantages. The disadvantages of each controller can be eliminated by 

combining all three controllers into a single PID controller, or proportional, integral, and derivative, 

controller. 

The selection of the gains for the PID controller can be determined by a method developed by Ziegler 

and Nichols, who studied the performance of PID controllers by examining the integral of the absolute 

error (IAE): 

IAE =   

 

From their analysis they observed that when the error index was a minimum the control system responded 

to a step input as shown in fig 4.38. Note that second overshoot is one quarter of the magnitude of the 

maximum overshoot. Based on their analysis they derived a set of rules for selecting the PID gains. The 

gains kp, ki, and kd are determined in terms of two parameters, kpu, called the ultimate gain, and Tu, the 

period of oscillation that occurs at the ultimate gain. Table 4.9 gives the values for the gains for 

proportional (P), proportional-integral (PI), and the proportional-integral-derivative (PID) controllers. 

 

To apply this technique the root locus plot for the control system with the integral and derivative gains set 

to 0 must become marginally stable. That is, as proportional gain is increased the locus must intersect the 

imaginary axis. The proportional gain, kp , for which this occurs is called the ultimate gain, kpu. The purely 

imaginary roots, λ = , determine the value of Tu  . 

Tu =  

 

One additional restriction must be met: All other roots of the system must have negative real parts; that is, 

they must be in the left-hand portion of the complex s-plane. If these restrictions are satisfied the P, PI, or 

PID gains easily can be determined. 

    

Table 4.9 Gains for P, PI, and PID Controllers 
 

 
Type of controller kp k i kd 

P(proportional controller) kp = 0.5 kpu   

PI (proportional-integral 

controller) 

kp = 0.45 kpu k i = 0.45 kpu /(0.83 Tu )  

PID(Proportional-integral- 
derivative controller) 

kp = 0.6 kpu k i = 0.6 kpu /(0.5 Tu ) kd = 0.6 kpu (0.125 Tu ) 

 

 

Example Problem: Design a PID controller for the controller for the control system shown in fig 4.39. 

Fig 4.39 PID controller 
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Solution: the gains of the PID controller can be estimated using the Ziegler-Nichols method provided 

the root locus for the plant becomes marginally stable for some value of the proportional gain 𝑘𝑘𝑝𝑝 

when the integral and derivative control gains have been set to 0. The root locus plot for 

 G(s) =    

 

is shown in fig 4.40.The root locus plot meets the requirements for the Ziegler-Nichols method. Two 

branches of the root locus cross the imaginary axis and all other roots lie in the left half plane. The 

ultimate gain ku is found by finding the gain when the root locus intersects the imaginary axis. The 

locus intersects the imaginary axis at s= ±1.25j. The gain crossover point can be determined from 

the magnitude criteria: 
 

     = 1 

 

Substituting s = 1.25j into the magnitude criteria yields kpu = 19.8 

The period of un-damped oscillation Tu is obtained as follows: 
 

Tu =  
2𝜋   

=   
2𝜋 = 5.03 
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𝜔 1.25 
 

Knowing kpu and Tu the proportional, integral, and derivative gains kp, ki , and kd can be 

evaluated: kp = 0.6 kpu = (0.6)(19.8) = 11.88 

k i = 0.6 kpu /(0.5 Tu) = (0.6)(11.88)/[(0.5)(19.8)] = 0.72 
 

kd = 0.6 kpu (0.125Tu) = (0.6)(19.8)(0.125)(5.03) = 7.47 
 

The response of the control system to a step input is given in fig 4.41. 
 

4.19 Autopilots viewed as stability augmenters. Though autopilot in aircraft is used to reduce pilot 

workload, they can also be seen as stability augmenters. Job of an stability augmentation system (SAS) 

is to provide artificial stability for an airplane that has undesirable flying characteristics. As we know the 

inherent stability of an airplane depends on the aerodynamic stability derivatives. The magnitude of the 

derivatives affects both the damping and frequency of the longitudinal and lateral motions of an airplane. 

Also stability derivatives are functions of airplane’s aerodynamic and geometric characteristics. For a 

particular flight regime it would be possible to design an airplane to possess desirable flying qualities.  

For example, we know that the longitudinal stability coefficients are a function of the horizontal tail 

volume ratio. Therefore we could select a tail size and or location so that Cmq and Cmα provide the proper 

damping and frequency for the short-period mode. However, for an airplane that will fly throughout an 

extended flight envelop, one can expect the stability to vary significantly, owing primarily to changes in 

the vehicle’s configuration (lowering of flaps and landing gear) or Mach and Reynolds number effects 

on the stability coefficients. Because the stability derivatives vary over the flight envelop, the handling 

qualities also will change. Obviously, we could like to provide the flight crew with an airplane that has 

desirable handling qualities over its entire flight envelop. This is accomplished by employing SAS as a 

part of autopilot. A pitch rate demand auto-pilot using pitch rate feedback system is shown in fig 4.42. 

𝛿𝑙 𝛿𝑙𝑝 

 

Fig 4.42 Autopilot as SAS 

 

If the differential equation for an aircraft can be written as 

 

 + 0.071 +5.49θ = -6.71δe; then the damping ratio and the frequency are given by 

 = 0.015      ;  =2.34 rad/s 

For this short period characteristic the airplane has poor flying qualities. On examination of the flying 

qualities specifications, we see that to provide level1 flying qualities the short-period damping must be 

increased so that requirement  > 0.3. 

One means of improving the damping of the system is to provide rate feedback as shown in the fig 4.42 

above. The SAS provides artificial damping without interfering with the pilot’s control command. This is 
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𝑠𝑠 

accomplished by producing an elevator deflection in proportional to the pitch rate and adding it to the 

pilot’s control input. 

 

=  + k   ; where  is the part of elevator deflection created by the pilot. A rate gyro is used to 

measure the pitch rate and creates an electrical signal that is used to provide elevator deflections. If we 

substitute the expression for the elevator angle back into the equation of motion, we obtain 

  + (0.071 +5.49 θ = -6.71δep  

 

Comparing this equation with the standard form of a second- order system yields 

2ξ𝜔𝑠 =(0.071 + 6.71k) and 𝜔2 = 5.49 

The short period damping ratio is now a function of the gyro gain k and can be selected so that the 
damping ratio will provide level 1 handling qualities. For example if k is chosen to be 0.2, then the 
damping ratio ξ = 0. 

 

    4.20 Robust control: Refer also to unit-III notes paragraph number 3.9. 
 

4.20.1 Need for Robust Control: No mathematical system can exactly model a physical system. 

Uncertainty due to un-modeled dynamics and uncertain parameters is always present. Two additional 

causes of inconsistencies between the mathematical model and the physical system are intentional model 

simplification, such as linearization and model reduction and incomplete data from the model 

identification experiment. Robust control theory deals with the design and synthesis of controllers for 

plants with uncertainty. A robust control system deals with the various control and stability 

specifications of plant in the presence of uncertainty. Stability and control is one of the technical major 

challenges in the design of an aircraft. Aircraft control system must work satisfactorily in all flight 

conditions without any flight safety concerns. Aircraft is a very complex system having lot of 

uncertainty in un-modeled dynamics, non-linearity, sensor noise, actuator error, uncertain parameters. 

Also aircraft control system has to deal with the environment such as turbulence, wind shear, and wind 

gust. Control system has to provide stability and good handling qualities throughout the flight envelop 

of the aircraft in the presence of uncertainty. A robust control theory yields new design approaches for 

complex multivariable control systems. It has been specially developed for plants with uncertain 

parameters and environment. For example it has to deal with engine failure, battle damage etc. It offers a 

systematic approach in investigating the performance of control systems in presence of uncertainty. 

4.21 Typical autopilots of civil and military aircraft-description of design, construction, 

operation, performance. 

4.21.1 Operation and performance: Though there is some commonality between the autopilots 

installed on civil aircraft and military aircraft (strike aircraft, air defense fighters), the performance and 

task is more demanding on the military aircraft. In case of military strike aircraft, the autopilot in 

conjunction with terrain following guidance system can provide an all weather automatic terrain 

following capability. This enables the aircraft to fly at high speed (around 600 knots) at very low 

altitude (200 ft or less) automatically following the terrain profile to stay below the radar horizon of 

enemy radars. Maximum advantage of terrain screening can be taken to minimize the risk of detection 

and alerting the enemy’s defenses. The basic modes of autopilot in military/civil aircraft are: 

(a) Height hold. 
 

(b) Heading hold. 
 

(c) Velocity hold. 
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Flight Control 

Loop 

Flight path 
 

Kinematics 

 

 
 

(d) VOR/ILS coupled approach and landing. 
 

(e) Bank hold mode. 
 

In addition fighter aircraft are equipped with maneuvering autopilot which help the pilot to maneuver 

the aircraft to its operating limit of vertical acceleration (normal acceleration control auto pilot) or 

precise tracking of the target (Pitch-rate demand auto pilot). In case of maneuvering under very high 

g-loads, it may be possible for the pilot to be unconscious. Under this condition the stick control force 

exerted by the pilot is zero. The autopilot automatically brings the aircraft to 1-g condition (i.e. 

straight and level condition). In most of the modern military aircraft autopilot is coupled with the 

flight management system (FMS) which then provides the steering commands to the autopilot to fly 

the aircraft on the optimum flight path determined by the FMS from the flight path input by the pilot.  

In military aircraft there is requirement to accurate adherence to an optimum flight path and the 

ability to be at a particular position at a particular time for, say, flight refueling or join up with other 

co-operating aircraft is closely very important requirement. A general autopilot for military/civil 

aircraft is shown below (fig 4.43): 

Flight Path Deviation 

 
 

Fig 4.43 Autopilot loop 
 

The autopilot exercises guidance function in the outer loop and generates command to the inner flight 

control loop (may be FBW system). These commands are generally attitude commands which operate the 

aircraft’s control surfaces through a closed-loop control system so that the aircraft rotates about the pitch 

and roll axes until the measured pitch and bank angles are equal to the commanded angles. The changes 

in the aircraft’s pitch and bank angles then cause the aircraft flight path to change through the flight path 

kinematics. 
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4.21.2 Description of design: Description of design can be explained by taking example of a height 

hold pilot which is shown in fig 4.44. 

Tailplane/ elevator 

H 

 
Fig: 4.44 Height control: ADS (air data system), AHRS (Attitude heading & reference system) 

In modern aircraft INS provides both θ ,q and pitch rate. Height is controlled by altering the pitch attitude 

of the aircraft. The pitch rate command inner loop provides pitch rate gyro feedback enables a fast and 

well damped response to be achieved by the pitch attitude command autopilot loop. The pitch attitude 

command loop response is much faster than the height control loop response. The transfer function of 

flight path kinematics is derived as follows. 

VT sin γ = 𝐻̇ ; where VT is aircraft velocity which can be approximated to forward velocity, γ is flight 

path angle 

γ= θ-α 

 U (θ-α) H= dt 

 

Design involves determining the value of gain KH, Kq, Kθ and . This can be done through root locus, 

Bode plot provided aircraft transfer function and actuator transfer functions are known

Href + θD + 

- - 

+ 

+ AHRS 

𝐾𝐾𝐻𝐻  

Kθ KH 

η 

Servo 
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UNIT V 

 

FLYING QUALITIES OF AIRCRAFT 

 

5.1 Reversible and irreversible flight control systems.  

Transfer function models are used for linear time invariant (LTI) continuous time systems. These are 

called frequency response models due mainly to the interpretation of the Laplace transform variables s 

as complex frequency in contrast with differential equation models, which are time-domain models. 

Transfer function model has limitations as it cannot be applied to non-linear or linear time varying 

system. Furthermore these models cannot be used efficiently for systems of higher orders or multi 

variable system (MIMO). Time-domain models or state space models are especially suitable for use 

with computers. These models can be used to study the non-linear or time varying system. Another 

important feature of the state space representation is that it gives information about the internal 

behavior of the system, as well as the input-output behavior of the system. 

(a) In classical control design of feedback control is accomplished using the root locus technique and 

Bode methods. These techniques are very useful in designing many practical control problems. 

However design of control system using root locus or Bode technique is trial & error procedure. The 

major advantage of these techniques is their simplicity & ease of use. The advantage disappears 

quickly as complexity of the system increases. 

(b) With rapid development of high speed computers during the recent decade, a new approach to 

control system design has evolved. This new approach is called modern control theory. This theory 

permits a more systematic approach to control system design. In modern control theory, the control 

system is specified as a system of first-order differential equations. By formulating the problem in this 

manner, the control designer can fully exploit the digital computer for solving complex control 

problem. Another advantage of the modern control theory is that optimization techniques can be 

applied to design optimal control systems. 

5.2 State space modeling of dynamical systems-state variable definition-state equations, the 

output variable-the output equation-representation by vector matrix first order differential 

equations: 

5.2.1 State space modeling of dynamical system: The state space approach to control system design 

is a time domain method. The application of state variable technique to control problem is called 

modern control theory. The state equations are simply firs-order differential equations that govern the 

dynamics of the system being analyzed. It should be noted that any high order system can be 

decomposed into a set of first-order differential equation. 

In mathematical sense, state variables and state equations completely describe the system. 
 

Definition of State Variable: The state variable of a system are a minimum set of variables 

x1(t),x2(t)…xn(t) which, when known at time t0 and along with the input , are sufficient to determine 

the state of a system at any time t > t0. 

Modeling of Dynamical systems, State Equations, the output variable, the output equations: 

Once a physical system has been reduced to a set of differential equations, the equation can be written 

in a convenient matrix form as: 
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𝑥𝑥̇  = A x + B η (1) 
 

The output of the system is expressed in terms of state & control inputs as 

follows: y = C x + D η (2) 

The state, control, & output vectors are defined as follows: 

x =    ; State vector n 1  

 

η =   ; Control or input vector p 1 

 

y=  ; output Vector q  1. 

 

The matrix A, B, C, D are defined in the following manner 

 

A =     ; Plant matrix 

 

B=  ;    Control or input matrix n  

 

C =  ;     q  matrix 

 

D =  ;     q  matrix 
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𝑥𝑥   � 𝑥𝑥    x 

++ 

A 

Fig 5.2.1 is a sketch of the block diagram representation of the state equation. 

 
 
 

Fig 5.2.1: Block diagram representation of State equation. 

 

The state equations are set of first order differential equations. The matrices A & B may be either 

constant or functions of time. For aircraft equation of motion, the matrices are composed of an array 

of constants. The constants making up either A or B matrices are the stability & control derivatives of 

the airplane. If governing equations are of higher order, they can be reduced to a system of first order 

differential equations. For example suppose the physical system being modeled can be described by 

an nth order differential equation. 

 + a1 dn-1c(t)/ dtn-1  + a2 dn-2c(t))/dtn-2+…+an-1 dc(t)/dt +an c(t) = r(t) 

 

The variable c(t), r(t) are output & input variables respectively. The above differential equation can be 

reduced to a set of first-order differential equation by defining the state variable as follows: 

x1 (t) =c(t) 
 

x2 (t) = dc(t)/dt 
 

⋮ 
 

xn(t) = dn-1 c(t)/dtn-1 

The state equation can be written as 
 

𝑥𝑥 ̇ 1 (t) = x2(t) 
 

𝑥𝑥 ̇ 2(t) = x3(t) 
 

⋮ 
 

𝑥̇n (t) = -anx1(t)-a n-1x2(t)-…-a1xn (t) + r(t) 
 

Rewriting the equation in the state vector form yields 

𝑥 ̇ = A x + B η 
 

Where A & B are as shown below: 
 

 

A=  

 
 

+ 

+ 
y 

C 
η + 

+ 

B 

D 
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Output equation 
 

y= C x  ; 

Where   C= [1 0 0 … 0 0] 

5.3 General form of time invariant linear system: General form of linear time invariant system is 

given by 

𝑥𝑥 ̇ = A x + 

B η y = C 

x + D η 

y is the output. For linear time invariant system matrix A, B, C & D are constant and do not change 

with time. x is the state variable matrix; η is control or input vector. 

5.4 Matrix transfer function. State equations represent the complete internal description of a 

system where as the transfer function is only the input-output representations. Consequently the 

transfer function can be obtained uniquely from the state equations. 

= Ax + B u  (1); where u is the input and x is state variable matrix. 

   Taking the Laplace transform of both sides considering zero initial conditions, we       

get s X(s) = A x(s) + B u(s)  (2) 

∴ X (s) = (s I – A)-1 B U(s)          (3) 
 

Output equation is 
 

y = C x + D u; substituting the value of X(s) from equation (3) into Laplace transform of output 

equation; Y(s) = [C (s I-A)-1 B + D] U(s)         (4) 

Transfer function is obtained as 
 

G(s) = Y(s)/U(s) = C(s I-A)-1 B + D (5) 
 

G(s) is called matrix transfer function. 

−2 0 1 1 

Example on matrix transfer function: Let A =   ; B = ; C =  ; D =0 

Determine the matrix transfer function. 

Solution: 

s I – A =   
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D1 

x1 

D2 

M1 

Matrix of co-factors =   

Adjoint (s I –A) =   

Determinant (s I – A) = (s+2) (s2 + 3s +2) –s-3 = s3+5s2+7s+1 

 G(s) =     

 = (s2+4s+3)/ (s3+5s2+7s+1) Answer. 
 

Example of state space modeling of dynamical system: A mechanical system with two degree of 

freedom is shown in Fig 5.5. Derive the state equation of the system. 

 

 

 

 

 

D1𝑥𝑥̇2 D2 (𝑥𝑥̇2 - 𝑥𝑥̇1) k x1 

x2 f(t)  D2 (𝑥𝑥̇2 

- 𝑥𝑥̇1) Fig 5.6 Free Body Diagram 

f (t) 
 

Fig 5.5 Mass spring damper system with two degree of freedom 

 

Solution: Free body diagram is shown in fig 5.6. 

 

Writing the differential equation for mass M2 

M2  + (D1 + D2)  -D2  = f(t)   (1) 

M1  + D2  -D2  = 0   (2) 

We can transform them into a set of four Ist order differential equation by defining two more state variables. 

x3 = dx1/dt 

=x3           (3) 

x 4 = dx2/dt 

 2= x4       (4) 

Substituting these into equation (1) we get 

 M2  + (D1 + D2) x4 -D2 x3 = f (t)   (5) 

 M1  + D2 x3 1 – D2x4 = 0    (6) 

 From equation (5) and (6) we get 

4   = - ((D1 + D2)/ M2) x4 +D2 x3 + f (t)/ M2      (7) 

3= - (D2 x3- 1 + D2x4)/ M1     (8) 

Hence using equation (3), (4), (7) and (8), state equations are 
 

M2 M1 

M2 
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  =         +  f (t) 

 

Examples of State equation modeling of an Electrical Circuit: Consider an electrical network shown 

below. Find the state space equation, if input voltage is v (t) and output is vc(t). Resistance is R and 

inductance is L. 

 

 

 

 

 

 
Solution:     v (t) = R i(t) + L di/dt + vc (t)   (1) 

Let i(t) and vc(t)  be defined as state variables 

x1 = i(t) 

x2 = vc(t)  

i(t) = C d vc(t)/dt 

i.e.  C d x2 /dt = x1 

2 = x1/C 

From equation (1) we get 

v(t) = R x1 + L 1 + x2 

Hence, 

 1  = - x1 R/L - x2 /L + v (t)/L 

2 = x1/C; Hence state equation is 

 =   +  v(t) 

A =    ; B =   

Output equation:  y = x2; y=   

 

5.5 State Transition matrix, matrix exponential-properties: 

5.5.1 State transition matrix: The state transition matrix is defined as the matrix that satisfies the linear 

homogeneous state equation i.e. 

= Ax; Homogeneous state equation. 

x (0) =  ; Initial state at time t = 0. 

x(t) =  (t) x(0); where  (t) is the state transition matrix. 

 

5.5.2 State transition matrix by Laplace Transform. 

= Ax;   x (0) = =   
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Taking Laplace transform of the above equation, we get 

s x(s) –x (0) = Ax(s) 

(s I-A) x(s) = x(0) 

 x (s) = (s I-A) -1 x(0) 

The state transition matrix is obtained by taking the inverse Laplace transform of the above equation. 

  (t) = L -1 (s I – A) -1 

 

5.5.3 The state transition matrix by classical technique. State transition matrix can be found in the 

following manner. 

x (t) =  x (0) 

Where  is a matrix exponential & d ( )/dt = A . Substituting the above equation into homogeneous 

state equation shows that it is a solution. 

A  x (0) = A  x(0) 

 can be reduced by power series as follows: 

= I + A t + A2 t2 /  + A3 t3/  

  (t)     =  = I + A t + A2 t2 /  + A3 t3/  

 

5.5.4 Properties of the state Transition Matrix: 

1.  (0) =  = I 

2.  -1 =   

3.  (t1 + t2) =  = (t1)   (t2) 

4.  k =  (kt) 

 

5.6. Solutions of state equation.  Once the state transition matrix has been found, the solution to the non 

homogeneous equation can be determined as follows: 

 = A x + B η  

 

Taking the Laplace transform of both sides 

S x(s) – x (0) = A x(s) + B η (s) 

Solving for x(s) 

x (s) = (sI-A) -1 x(0) + (sI – A) -1 B η (s)  

Hence, x(t) =  (t) x(0) + L -1 (s I-A) -1 B η (s) 

x (t) = (t) x(0) +  d  

 

5.7 Numerical Solution of State Equations. 

 

The complete solution of the state equations was shown to be 

x (t) = (t) x(0) +  d           (1) 

The solution of equation (1) can be obtained numerically by replacing the continuous system by discrete 

time system. A sampling interval  is specified so that 

k  < t < (k + 1)  

The equation (1) can be rewritten as 

x k+1 = xk +   B η(  d    (2) 

If we assume the control vector η(  is constant over the time interval  then the integral can be evaluated 

B η(  d  = (I -   ) A -1 B k   (3) 

Substituting the solution of the integral back into equation (2) yields 

x k+1 =  xk + [  - I] A-1 B k      (4) 

This equation can be simplified further by letting 

M =          (5) 

N =  (   - I) A -1 B      (6) 

The solution vector can now be expressed as 
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x k+1 = M xk + N k      (7) 

Equation (7) can be used to determine the time domain solution; for example 

x1 = Mx0 + N η0 

x2 = M x1 + N η1 

x3 = Mx2  + N η2 

. 

. 

. 

xk+1 = M xk + ηk  

On combining these equations one obtains 

xk = M k x0 + N ηi 

Once a satisfactory time interval is selected the matrices M and N need be calculated only one time. These 

matrices can be evaluated by the matrix expression 

M =    = I + A  +  A2 2 … 

N =  (I + +  A  +  A2 2 …) B 

The number of terms required in the series expansion depends on the time interval  . 

 

5.8 Canonical transformation of state equations-significance-Eigen values-real distinct, repeated, 

complex. 

 

5.8.1 Canonical transformation (Diagonal Matrix) of state equations- significance: In formulating a 

physical system into space-space representation we must select a set of state variables to describe the 

system. The set of state variable we select may not be the most convenient from the point of the 

mathematical operations we need to perform to determine the solution of state equations. It is possible to 

define a transformation matrix, P, which will transform the original state equations into a more convenient 

form. To examine the characteristics of a given state equation it is useful to have the state equations in a 

canonical form where the plant matrix is diagonal matrix. In canonical form the state equations are 

decoupled. Further state transition matrix can be easily found once the state equations are transformed into 

canonical form. 

 

5.8.2 Method of Canonical Transformation. Consider a system that can be modeled by this state 

equation: 

 = A x + B η    (1) 

y= C x     (2) 

Where the plant matrix A is not diagonal matrix. Defining a new state vector z so that x and z are related by 

way of a transformation matrix P, 

x = P z     (3) 

Rewriting the state equation in terms of the new state vector z yields 

 = P-1 A P z + P-1 B η   (4) 

This can be written as 

  = Ʌ z +  η     (5) 

y =  z     (6) 

Where Ʌ is a diagonal matrix. The matrices Ʌ,  , and  are defined as 

Ʌ =  P-1 A P    (7) 

  =  P -1 B    (8) 

 = CP     (9) 

The transformed state equation has the same form as the original equation. If the transformation matrix P is 

chosen such that Ʌ is a diagonalized matrix then the equations is in canonical form. 

The transformation matrix P is determined from the eigenvectors of the plant matrix A. As has been shown 

earlier the Eigen values of A are determined by solving the following characteristic equations: 

= 0     (10) 

This yields the characteristic equation 
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λ n + an λn-1 + a n-1 λn-2 + … +a2 λ  + a1 = 0  (11) 

The roots of the characteristic equation are the eigenvalues of the system. The eigenvectors can be 

determined by solving the equations 

(λi I – A)Pi = 0 where i = 1,2,3,…,n   (12) 

The transformation matrix P is formed from the eigenvectors of the plant matrix. The eigenvectors form the 

columns of the transformation matrix as 

P = [P1 P2 P3 …Pn]    (13) 

 

5.8.2.1 Real Distinct Eigenvalues. For these non repeated real eigenvalues, the transformation matrix P 

depends on the eigenvalues of the plant matrix A. If the eigenvalues of A are real and distinct, the 

transformation matrix P is made up of the eigenvectors of A as follows: 

P = [P1 P2 P3 …Pn] 

We illustrate how the transformation is determined by the following example problem 

Example problem: Given the following state equations, determine the transformation matrix P so that new 

state equations are in the state canonical form. 

  =   +  [u] 

y =   

  =   

 

 

 

Solution:  First find the eigenvalues of A: 

= 0 

 = 0 

= 0 

Or   2+ 3  + 2 = 0 

  = -2 and   = -1 

The eigenvector for  = -1 is found using equation (12): 

   (λi I – A)Pi = 0  

 = 0 

-P11 – P21 = 0 

2 P11 + 2P21 = 0 

Both equations yield the same relationship between P11 and P21 . we will arbitrarily select 

P11 = 1  

P21 = -1 

The eigenvector for λ = -1 is 

P1 =  

In similar manner we can obtain the eigenvector for λ = -2. Solving equation (12) yields the following 

equation 

= 0 

Or     -2 -  = 0 

 

    2  + 1  = 0 

Again we will specify P12 = 1 and then solve for P22. The eigenvector P2 becomes 

P2 =  

The transformation matrix P now can be constructed by stacking the eigenvectors as follows: 
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P = [P1 P2] 

P =   

To determine the new state equation we need the inverse of P: 

P-1 =  

The diagonal matrix Ʌ is defined in terms of P and A: 

Ʌ = P-1 A P  

Ʌ =   

Ʌ =   

Where the eigenvalues are on the diagonal. 

In a similar manner   can be found. 

 = P-1 B 

=  

 =  

= CP 

=  

=  

 

New state equations are:  

    =   +  [u] 

 

 y =   

    =   

This example demonstrates an important property of canonical transformation. The eigenvalues and 

corresponding characteristic equation remain unchanged. The transformed plant matrix is purely diagonal 

matrix having the eigenvalues of the original A matrix along the diagonal. The state transition matrix can be 

shown to be the following: 

 (t) =  =  or 

 (t) =    

The solution of the transformed state equation would be: 

z (t) = (t) z(0) +  d   

   = =    +  =   

The output of the system is given by 

y= z =   

y= 3-2   

  

5.8.2.2 Repeated Eigenvalues:  Where the eigenvalues are repeated, the procedure outlined for the distinct 

eigenvalues produces a singular transformation matrix. The eigenvectors for the repeated roots are the 

same; therefore, two or more columns of the transformation matrix are identical, which results in a 

nonsingular matrix. For repeated eigenvalues an almost diagonal matrix, called a Jordan matrix, can be 

obtained. The Jordan matrix is. 
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Ʌ =  

Notice that the diagonal immediately above the repeated eigenvalues is composed of ones. The eigenvectors 

associated with the distinct eigenvalues are determined as before. For the  repeated eigenvalues the 

eigenvectors are determined using the following relationships: 

   (λi I – A)P1 = 0   

   (λi I – A)P2 = - P1     (14) 

    (λi I – A)Pm = -Pm-1    

 

 

Example Problem: Given the state-space equations 

 = A x + B η  

Where 

A =  ; B =  

Determine the transformation matrix P so that the new state equations are in the Jordan canonical form. 

Solution: The transformation matrix P is determined from the eigenvectors of the A matrix: 

= 0 

= 3 + 4 2+5  +2 

The roots of the characteristic equation are  = -2,  = -1,  = -1. We have a repeated eigenvalues  = -1. 

The eigenvalues for the repeated roots are determined using equation (14): 

(λi I – A)P1 = 0 

(λi I – A)P2 = - P1   

The eigenvector P1 is determined from the following equations 

  = 0 

-P11 + P 21+ 3 P31 = 0 

6P11-P21 + 2P31=0 

-5P11 + 2 P21 + 3 P31 = 0 

From the first two equations we can eliminate P21: 

5P11 + 5P32 = 0 

Let P11 = 1 then P 31 = -1 

From the first equation 

-P11 + P 21+ 3 P31 = 0; or 

P21 = P11 -3P31 = 4 

The eigenvector P1 is as follows: 

P1 =   

The second eigenvector for  = -1 is determined from the equation (λi I – A) P2 = - P1: 

-P12 + P22 +3 P32 = -1 

6P12-P22+2P32= -4 

-5P12 + 2P22 + 3P32 = 1  

Eliminating P22 from the two equations yields 

5P12 + 5P32 = -5 

Let P12 = 1, therefore P32 = -2.  Substituting P12 and P32 into the first equation yields P22:  

P22 = -1 + P12 – 3P32 = 6 
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The second eigenvector is 

P2 =   

The eigenvector for the distinct eigenvalue  = -2 is found in usual way: 

P3 = =   

The transformation matrix P is formed by stacking the eigenvector: 

P = [P1 P2 P3] 

P =  

 

5.8.2.3 Complex Eigenvalues: In many engineering problems the eigenvalues may be complex. If the 

complex eigenvalues are not of multiple order then the procedure outlined earlier for the distinct 

eigenvalues can be used to determine the transformation matrix, P. this  will result in complex matrix. 

 

5.9 Controllability and Observability-definition-significance: 

 

5.9.1 Controllability- Definition & Significance:  Controllability is concerned with whether the states of 

the dynamic system are affected by the control input. A system is said to be completely controllable if there 

exists a control that transfers any initial state xi (t) to any final state xf (t) in some finite time. If one or more 

of the states are unaffected by the control, the system is not completely controllable. Controllability plays 

important role in design of control system. If a system is state controllable, then it is possible to use a linear 

control law to achieve a specific eigenvalues.  

A mathematical definition of controllability for a linear dynamic system can be expressed as follows: 

If the dynamic system can be described by the state equation: 

   = A x + B η   where x and  η are the state and control vectors of the order n and m, respectively, then 

the necessary and sufficient condition for the system to be  completely controllable is that the rank of the 

matrix P is equal to the number of states. The matrix P is constructed from the A & B matrices in the 

following ways:  

P = [B, AB, A2B, … An-1 B] 

The rank of a matrix is defined as the largest non-zero determinant. 

 

 

5.9.2 Observability-Definition & Significance: Observability deals with whether the state of the system 

can be identified from the output of a system. A system is said to be completely observable if any state x 

can be determined by the measurement of the output y (t) over a finite time interval. If one or more states 

cannot be identified from the output of the system, the system is not observable. Observalibility plays an 

important role in design of state observer which is used when it is not possible to measure a particular state 

due to various reasons. 

A mathematical test for the observability of an nth order system given by the equations: 

 = A x + B η  

y = Cx + D η  

is given as follows: 

The necessary and sufficient condition for a system to be completely observable is that the matrix U, 

defined as 

U = [CT, AT CT… (AT) n-1 CT] is of the rank n. 

 

Example problem 1: Determine whether the system that follows is state controllable and observable. The 

A, B and C matrices of the state and output equation are 

A =  
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B =   

C =  

 

Solution: The controllability matrix, V, is defined for this problem as: 

V =  

AB =   =   

V =   

The rank of V is of the same as the order of the system. Therefore the system is state controllable. 

The observability matrix, U, for this example is 

U = [CT, AT CT]  

A T C T =    =  

U =  

The rank of the observability matrix also is of the same order of the system. Therefore the system is state 

observable. 

Example problem 2: Consider the system represented by the following equation 

     =   +  [u] 

Determine whether the system is state controllable. 

Solution: For a second-order system the controllability matrix is defined as  

V= [B    AB] 

The matrix product AB follows:  

AB = =   

The controllability matrix can now be expressed as 

V =   

The determinant of V is 0, which means the rank of the matrix is less than the order of the system. 

Therefore the system is not state controllable. 

 

5.10 Digital Control-Overview, Advantages and Disadvantages: 

5.10.1 Digital Control Overview and Implementation: A digital control takes an analog signal, samples it 

with an analog to digital converter (A/D), processes the information in the digital domain, and the converts 

the signal to analog with a digital-to-analog converter. The key here is to provide redundant paths in the 

event of hard ware failure. An overall digital flight control block diagram is shown below in Fig 5.10. Here 

the signal comes from a sensing device, such as gyro. Next, it is fed in parallel along multiple paths to an 

analog to digital (A/D) converter. After the signal is in the digital form, the flight control computer executes 

the control algorithms. The output from the flight control computers is then fed to a digital-to-analog (D/A) 

converter, which in turn operate an actuator. 
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Fig 5.10: Block diagram of a Digital Control Implementation 

 

5.10.2 Digital Control Advantages: 

 

1. They are more versatile than analog because they can be easily programmed without changing the 

hardware. 

2. It is easy to implement gain scheduling to vary flight control gains as the aircraft dynamics change with 

flight conditions. 

3. Digital components in the form of electronic parts, transducers and encoders are often more reliable, 

more rugged, and more compact than analog equipments. 

4. Multi mode and more complex digital control laws can be implemented because of fast, light, and 

economical micro-processors. 

5. It is possible to design “Robust” controller that can control the aircraft for various flight conditions 

including some mechanical failures. 

6. Improved sensitivity with sensitive control elements that require relatively low energy levels. 

 

5.10.3 Disadvantages of Digital Control. 

 

1. The lag associated with sampling process reduces the system stability. 

2. The mathematical analysis and system design of a sampled data system is more complex. 

3. The signal information may be lost because it must be digitally reconstructed from an analog signal. 

4. The complexity of the control process is in the software implemented control algorithm that may contain 

error. 

5. Software verification becomes critical because of the safety of flight issue. Software errors can cause the 

aircraft to crash.  

 

 


