

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	FUNDAM	FUNDAMENTALS OF IMAGE PROCESSING			
Course Code	AEC552				
Programme	B.Tech				
Semester	VII EE	E			
Course Type	Open Elective - II				
Regulation	IARE - R1	6			
		Theory		Practio	cal
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Chief Coordinator	Mrs. M. Saritha , Assistant Professor				
Course faculty	Mrs. M. Sa	ritha , Assistant P	rofessor		

I. COURSE OVERVIEW:

This course is an introduction to the fundamental concepts and techniques in basic digital image processing and their applications to solve real life problems. The topics covered include Digital Image Fundamentals, Image Transforms, Image Enhancement, Restoration and Compression, Morphological Image Processing, Nonlinear Image Processing, and Image Analysis. Application examples are also included. Upon completion of this course, students will be familiar with basic image processing techniques for solving real problems. Student will also have sufficient expertise in both the theory of two-dimensional signal processing and its wide range of applications, for example, image restoration, image compression, and image analysis.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS011	II	Mathematical Transform Techniques	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Fundamentals of Image Processing	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	>	Quiz	>	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	~	Videos
×	✗ Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for continuous internal assessment (CIA) and 70 marks for semester end examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Quiz / AAT	Total Warks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency
DO 1	The transfer beautiful and the last the Court was	2	assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics,	2	Lectures,
	science, engineering fundamentals, and an engineering		Assignments,
	specialization to the solution of complex Engineering problems.		Exercises
PO 2	Problem analysis : Identify, formulate, review research literature,	1	Problem related
	and analyze complex engineering problems reaching		exercises
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 4	Conduct investigations of complex problems: Use research-	2	Design Exercises
	based knowledge and research methods including design of		
	experiments, analysis and interpretation of data, and synthesis		
	of the information to provide valid conclusions.		
PO 12	Life-long learning: Recognize the need for, and have the	2	Seminars
	preparation and ability to engage in independent and life-long		
	learning in the broadest context of technological change.		

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Problem Solving: Exploit the knowledge of high voltage	1	Seminars
	engineering in collaboration with power systems in		
	innovative, dynamic and challenging environment, for the		
	research based team work.		

PSO 2	Professional Skills: Identify the scientific theories, ideas,	-	-
	methodologies and the new cutting edge technologies in		
	renewable energy engineering, and use this erudition in their		
	professional development and gain sufficient competence to		
	solve the current and future energy problems universally.		
PSO 3	Modern Tools in Electrical Engineering: Comprehend the	=	-
	technologies like PLC, PMC, process controllers, transducers		
	and HMI and design, install, test, maintain power systems and		
	industrial applications.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:				
I	Understand the image fundamentals and the relationship between pixels.			
II	Understand the image enhancement techniques in spatial domain and frequency domain.			
III	Analyze the image restoration technique from degraded image using various filtering techniques.			
IV	Design segmentation of the image for boundary detection.			
V	Differentiate redundancy techniques and apply for image compression.			

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Review the fundamental concepts of	CLO 1	Understand the image fundamentals, image
	a Digital Image Processing System.		transforms, relationship between pixels.
	Analyze general terminology of	CLO 2	Explore sampling and quantization in terms of
	DIP. Examine various types of		images.
	Transforms	CLO 3	Analyze the types of transforms, properties
			mathematical proofs etc.,
		CLO 4	Determine the Advanced transforms,
			implementations using software's
CO 2	Examine various types of images,	CLO 5	Explore the Image enhancement in spatial domain,
	intensity transforms and image		different types of point processing.
	enhancement with spatial filtering.	CLO 6	Understand the Histogram , histogram
	Develop FT for Image		manipulation, Linear and nonlinear gray level
	Enhancement in frequency domain.		transformation
	Analyze images in the frequency	CLO 7	Analyze the Local or neighborhood operation,
	domain using various filters.		median filter processing, Spatial domain high pass
			filtering etc.

		CLO 8	Generating filters directly in the frequency
			domain, obtaining frequency domain filters from
			spatial filters
		CLO 9	Understand the filtering in frequency domain,
			smoothing and sharpening filters in frequency
			domain.
CO 3	Evaluate the model, approaches,	CLO 10	Understand the Image restoration degraded model
	and filtering techniques for image	CLO 11	Determine algebraic approach to restore and
	restoration.		inverse filtering.
		CLO 12	Understand Least mean square filters
		CLO 13	Determine the constrained least square restoration,
			restoration, image restoration
CO 4	Interpret image segmentation and	CLO 14	Illustrate the Image segmentation detection of
	representation techniques. Evaluate		discontinuities and edge linking and boundary
	the methodologies for image		detection.
	segmentation, restoration etc.,	CLO 15	Determine the threshold and the region oriented
			segmentation morphological image processing
			dilation and erosion.
		CLO 16	Understand structuring element decomposition,
			the strel function, opening and closing and hit
			and miss transform.
CO 5	Categorize various compression	CLO 17	Describe the image compression, redundancies
	techniques and interpret image		and removal methods.
	compression standards.	CLO 18	Understand fidelity criteria, image compression
			models, source encoder and decoder, error free
			compression
		CLO 19	Determine lossy compression, JPEG 2000
			standards

3 = High; 2 = Medium; 1 = Low

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to:	Mapped	Mapping
AEC552.01	CLO 1	Understand the image fundamentals, image	PO 1, PO2	1
		transforms, relationship between pixels.		
AEC552.02	CLO 2	Explore sampling and quantization in terms	PO 1, PO 2	1
		of images.	PO 4, PO 12	
AEC552.03	CLO 3	Analyze the types of transforms, properties	PO 2	1
		mathematical proofs etc.,		

		T	T	
AEC552.04	CLO 4	Determine the Advanced transforms,	PO 1, PO 2	2
		implementations using software's		
AEC552.05	CLO 5	Explore the Image enhancement in spatial	PO 1, PO 2	1
		domain, different types of point processing.		
AEC552.06	CLO 6	Understand the Histogram , histogram	PO 1, PO 2	1
		manipulation, Linear and nonlinear gray level		
		transformation		
AEC552.07	CLO 7	Analyze the Local or neighborhood	PO 2, PO 4	2
		operation, median filter processing, Spatial		
		domain high pass filtering etc.		
AEC552.08	CLO 8	Generating filters directly in the frequency	PO 1, PO 2	2
		domain, obtaining frequency domain filters		
		from spatial filters		
AEC552.09	CLO 9	Understand the filtering in frequency domain,	PO 1, PO 2	1
		smoothing and sharpening filters in	PO 4, PO 12	
		frequency domain.		
AEC552.10	CLO 10	Understand the Image restoration degraded	PO 4, PO 2	2
		model	,	
AEC552.11	CLO 11	Determine algebraic approach to restore and	PO 4	2
		inverse filtering.		
AEC552.12	CLO 12	Understand Least mean square filters	PO 1, PO 4	2
1126332.12	020 12	Shacistana Beast mean square inters	PO 12	2
AEC552.13	CLO 13	Determine the constrained least square	PO 1, PO 4	2
7HEC332.13	CLO 13	restoration, restoration, image restoration	PO 12	2
AEC552.14	CLO 14	Illustrate the Image segmentation detection of	PO 1, PO 4	2
AEC332.14	CLO 14	discontinuities and edge linking and	101,104	2
		boundary detection.		
AEG550.15	CL O 15		DO 1 DO 12	2
AEC552.15	CLO 15	Determine the threshold and the region	PO 1, PO 12	2
		oriented segmentation morphological image		
	~~~	processing dilation and erosion.	701704	
AEC552.16	CLO 16	Understand structuring element	PO 1, PO 2	2
		decomposition, the strel function, opening		
		and closing and hit and miss transform.		
AEC552.17	CLO 17	Describe the image compression,	PO 1, PO 12	1
		redundancies and removal methods.		
AEC552.18	CLO 18	Understand fidelity criteria, image	PO 1, PO 12	2
		compression models, source encoder and		
		decoder, error free compression		
AEC552.19	CLO 19	Determine lossy compression, JPEG 2000	PO 2, PO4	2
1	CLO 17	Betermine 1055y compression, vi 20 2000	102,10.	_

3 =High; 2 =Medium; 1 =Low

# XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course Outcomes		Program Outcomes (POs)							
(COs)	PO 1	PO 2	PO 4	PO 12	PSO 1				
CO 1	3	2	2	1	1				
CO 2		2		2					
CO 3	3	2	2	2	1				
CO 4	3	2	1		1				
CO 5	3	2		2					

3 = High; 2 = Medium; 1 = Low

# XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning				:	Progra	am Ou	itcome	es (PO	s)					am Spe mes (PS	
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	2											1	1		
CLO 2	1	2		1								1			
CLO 3		1													
CLO 4	2	1													
CLO 5	1														
CLO 6	1														
CLO 7	1			2											
CLO 8	2			3									1		
CLO 9	2	1		2								1	1		
CLO 10		1		2											
CLO 11		2		1											
CLO 12	3	1		1								3			
CLO 13	3			2								3	1		
CLO 14	1			2											
CLO 15	2											2			
CLO 16	1														
CLO 17	1											3			

CLO 18	1						3	1	
CLO 19		2					2	2	
CLO 20							2		

**3 = High; 2 = Medium; 1 = Low** 

## XIII. ASSESSMENT METHODOLOGIES-DIRECT:

CIE Exams	PO 1, PO2,	SEE Exams	PO 1, PO 2	Assignments	PO 1	Seminars	PO 1
	PSO1,		PO 4		PO 2		
	PO 4						
Laboratory	-	Student	=	Mini	_	Certification	-
Practices		Viva		Project			
Term Paper	-						

### XIV. ASSESSMENT METHODOLOGIES-INDIRECT:

•	Early Semester Feedback	•	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

# XV. SYLLABUS:

UNIT - I	INTRODUCTION
igital imaga funde	montals and image transforms digital image fundamentals, sempling and quantization

Digital image fundamentals and image transforms digital image fundamentals, sampling and quantization, relationship between pixels.

## UNIT - II IMAGE ENHANCEMENT

Introduction, image enhancement in spatial domain, enhancement through point processing, types of point processing, histogram manipulation, linear and non-linear gray level transformation, local or neighbourhood operation, median filter processing; Spatial domain high pass filtering, filtering in frequency domain, obtaining frequency domain filters from spatial filters, generating filters directly in the frequency domain, low pass (smoothing) and high pass (sharpening) filters in frequency domain.

## UNIT - III IMAGE RESTORATION

Image restoration degradation model, algebraic approach to restoration, inverse filtering. Least mean square filters, constrained least square restoration, interactive restoration

# UNIT - IV IMAGE SEGMENTATION

Image segmentation detection of discontinuities, edge linking and boundary detection, threshold, region oriented segmentation morphological image processing dilation and erosion, structuring element decomposition, the Strel function, erosion; Combining dilation and erosion: Opening and closing the hit and miss transformation.

## UNIT - V IMAGE COMPRESSION

Image compression: Redundancies and their removal methods, fidelity criteria, image compression models, source encoder and decoder, error free compression, lossy compression, JPEG 2000 standard.

#### **Text Books:**

- 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson, 3rd Edition, 2008.
- 2. S. Jayaraman, S. Esakkirajan, T. Veerakumar, "Digital Image Processing", TMH, 3rd Edition, 2010.

### **Reference Books:**

- Rafael, C. Gonzalez, Richard E woods, Stens L Eddings, "Digital Image Processing using MAT LAB", Tata McGraw Hill. 2nd Edition. 2010.
- 2. A.K. Jain, "Fundamentals of Digital Image Processing", PHI, 1 st Edition, 1989.
- 3. Somka, Hlavac, Boyle, "Digital Image Processing and Computer Vision", Cengage Learning, 1st Edition, 2008.
- 4. Adrain Low, "Introductory Computer vision Imaging Techniques and Solutions", Tata McGraw-Hill, 2nd Edition, 2008.
- 5. John C. Russ, J. Christian Russ, "Introduction to Image Processing & Analysis", CRC Press, 1st Edition, 2010.

### **Web References:**

- 1. https://imagingbook.com/
- 2. https://en.wikipedia.org/wiki/Digital_image_processing
- 3. http://www.tutorialspoint.com/dip/
- 4. http://www.imageprocessingplace.com/
- 5. http://web.stanford.edu/class/ee368/
- 6. https://sisu.ut.ee/dev/imageprocessing/book/1
- 7. https://in.mathworks.com/discovery/digital-image-
- 8. processing.html?requestedDomain=www.mathworks.com

### **E-Text Books:**

- 1. http://www.sci.utah.edu/~gerig/CS6640-F2010/dip3e_chapter_02.pdf
- 2. http://www.faadooengineers.com/threads/350-Digital-Image-Processing
- 3. http://newwayofengineering.blogspot.in/2013/08/anil-k-jain-fundamentals-of-digital.html
- 4. http://bookboon.com/en/digital-image-processing-part-one-ebook

### XVI. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Introduction to Digital image fundamentals and image	CLO 1	T1:1.4-1.5
	transforms digital image fundamentals		
3-5	Analyze sampling and quantization, relationship between	CLO 2	T1:2.4-2.5
	pixels and Image transforms		
6-8	Understand 2-D FFT, properties, Walsh transform, Hadamard	CLO 3	T1:2.6-2.6.8
	transform, discrete cosine transform,		
9-11	Determine Haar transform, Slant transform, Hoteling transform	CLO 4	T1:2.6-2.6.8
12-13	Introduction to image enhancement in spatial domain	CLO 5	T1:3.1-3.6

14-16	Understand enhancement through point processing, types of	CLO 5	T1:3.1-3.6
	point processing, histogram manipulation	CLO 6	
17-19	Understand linear and non-linear gray level transformation, local	CLO 6	T1:3.1-3.8
	or neighbourhood operation		
20-22	Understand median filter processing; Spatial domain high pass	CLO 7	T1:3.1-3.8
	filtering		
23-25	Understand filtering in frequency domain, obtaining frequency	CLO 8	T1:4.1-4.6
	domain filters from spatial filters, generating filters directly in		
	the frequency domain		
26-27	low pass (smoothing) and high pass (sharpening) filters in	CLO 8	T1:4.1-4.6
	frequency domain.		
28-30	Introduction to Image restoration degradation model, algebraic	CLO 10	T1:5.1-5.10
	approach to restoration	CLO 11	
31-32	Understand inverse filtering. Least mean square filters	CLO 12	T1:5.1-5.10
33-34	Understand constrained least square restoration, interactive	CLO 13	T1:5.1-5.10
	restoration		
35-36	Introduction to Image segmentation detection of discontinuities	CLO 14	T1:10.1-10.6
	and edge linking and boundary detection, threshold		
37-38	Understand region oriented segmentation morphological image	CLO 15	T1:10.1-10.6
	processing dilation and erosion		T1:9.1-9.6
39-41	Understand structuring element decomposition, the Strel	CLO 16	T1:9.1-9.6
	function, erosion; Combining dilation and erosion: Opening		
	and closing the hit and miss transformation		
42-43	Introduction to Image compression: Redundancies and their	CLO 18	T1:8.1-8.3
	removal methods, fidelity criteria, image compression models		
44-45	Understand source encoder and decoder, error free compression,	CLO 19	T1-8.1-8.1.7
	lossy compression, JPEG 2000 standard.		

# XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S.No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Digital Image Enhancement	Seminars	PO 1, PO 2	PSO 1
	Techniques			
2	Restoration Techniques	Seminars / Guest	PO 2, PO 4	PSO 1
3	Image Segmentation and Compression	Guest Lectures	PO 1	PSO 1
	Techniques			

# Prepared by:

Ms. M Saritha , Assistant Professor

HOD, EEE