

LECTURE NOTES

ON

ADVANCED DATA STRUCTURES

2019 – 2020

M.Tech I Semester (IARE-R18)

Ms. S Swarajya Laxmi, Assistant Professor

Department of Computer Science and Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

UNIT – I

INTRODUCTION TO DATA STRUCTURES, SEARCHING AND

SORTING

What is data structure?

“The way information is organized in the memory of a computer is called a data

structure”. (OR)

A data structure is a way of organizing data that considers not only the items stored, but also

their relationship to each other. Advance knowledge about the relationship between data

items allows designing of efficient algorithms for the manipulation of data.

Definition of data structures

• Many algorithms require that we use a proper representation of data to achieve efficiency.

• This representation and the operations that are allowed for it are called data structures.

• Each data structure allows insertion, access, deletion etc.

Why do we need data structures?

• Data structures allow us to achieve an important goal: component reuse

• Once each data structure has been implemented once, it can be used over and over again in various

applications.

Common data structures are

Stacks Queues Lists

Trees Graphs Tables

Classification of Data Structure:

Based on how the data items or operated it will classified into

1. Primitive Data Structure is one the data items are operated closest to the machine level instruction.

Eg : int, char and double.

2. Non-Primitive Data Structure is one that data items are not operated closest to machine level

instruction.

Linear Data Structure : In which the data items are stored in sequence order.

Eg: Arrays, Lists, Stacks and Queues.

Operations performed on any linear structure:

1. Traversal – Processing each element in the list

2. Search – Finding the location of the element with a given value.

3. Insertion – Adding a new element to the list.

4. Deletion – Removing an element from the list.

5. Sorting – Arranging the elements in some type of order.

6. Merging – Combining two lists into a single list.

Non Linear Data Structure: In which the order of data items is not presence.

Eg : Trees, Graphs.

Searching Techniques:

Searching is one of the most common problems that arise in computing. Searching is the

algorithmic process of finding a particular item in a collection of items. A search typically

answers either True or False as to whether the item is present. On occasion it may be

modified to return where the item is found. Search operations are usually carried out on a key

field. Well, to search an element in a given array, there are two popular algorithms available:

1. Linear Search

2. Binary Search

Linear Search:

Linear search is a very basic and simple search algorithm. In Linear search, we search an

element or value in a given array by traversing the array from the starting, till the desired

element or value is found. It compares the element to be searched with all the elements

present in the array and when the element is matched successfully, it returns the index of the

element in the array, else it return -1. Linear Search is applied on unsorted or unordered lists,

when there are fewer elements in a list.

Features of Linear Search Algorithm

1. It is used for unsorted and unordered small list of elements.

2. It has a time complexity of O(n), which means the time is linearly dependent on the number of elements,

which is not bad, but not that good too.

Source Code:

def linear_search(obj, item,

start=0): for i in range(start,

len(obj)):

if obj[i] == item:

return i

return -1

arr=[1,2,3,4,5,6,7,8]

x=4

result=linear_search(arr,

x) if result==-1:

print ("element does not exist")

else:

print ("element exist in position %d" %result)

Binary Search:

1. Binary Search is used with sorted array or list. In binary search, we follow the following steps:

2. We start by comparing the element to be searched with the element in the middle of the list/array.

3. If we get a match, we return the index of the middle element.

4. If we do not get a match, we check whether the element to be searched is less or greater than in value than

the middle element.

5. If the element/number to be searched is greater in value than the middle number, then we pick the

elements on the right side of the middle element(as the list/array is sorted, hence on the right, we will have all

the numbers greater than the middle number), and start again from the step1.

If the element/number to be searched is lesser in value than the middle number, then we pick

the elements on the left side of the middle element, and start again from the step 1. Binary

Search is useful when there is large number of elements in an array and they are sorted. So a

necessary condition for Binary search to work is that the list/array should be sorted.

Features of Binary Search

1. It is great to search through large sorted arrays.

2. It has a time complexity of O(log n) which is a very good time complexity

Source code:

array =[1,2,3,4,5,6,7,8,9]

defbinary_search(searchfor,

arr): lowerbound=0

upperbound=len(array

)-1 found=False

while found==False and

lowerbound<=upperbound:

midpoint=(lowerbound+upperbound)//2

if

array[midpoint]==searchf

or: found =True

return found

elif

array[midpoint]<searchfor

: lowerbound=midpoint+1

else:

upperbound=midpoint-1

return found

searchfor=int(input("what are you searching

for?")) if binary_search(searchfor,array):

print ("element

found") else:

print ("element not found")

Operations on Data Structures:

The basic operations that are performed on data structures are as follows:

Insertion: Insertion means addition of a new data element in a data structure.

Deletion: Deletion means removal of a data element from a data structure if it is

found. Searching: Searching involves searching for the specified data element in a

data structure. Traversal: Traversal of a data structure means processing all the data

elements present in it. Sorting: Arranging data elements of a data structure in a

specified order is called sorting.

Merging: Combining elements of two similar data structures to form a new data structure of the

same type, is called merging.

Sorting Techniques:

Sorting is the basic operation in computer science. Sorting is the process of arranging data in

some given sequence or order (in increasing or decreasing order).

For example you have an array which contains 10 elements as follow:

10, 3 ,6 12, 4, 17, 5, 9

After sorting value must be:

3, 4, 5, 6, 9, 10, 12, 17

Bubble sort:

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent

elements if they are in wrong order.

Example:

First Pass:

(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5

> 1.

(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4

(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2

(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5),

algorithm does not swap them.

Second Pass:

(1 4 2 5 8) –> (1 4 2 5 8)

(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

Now, the array is already sorted, but our algorithm does not know if it is completed. The

algorithm needs one whole pass without any swap to know it is sorted.

Third Pass:

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

Source Code:

Python program for implementation of Bubble Sort

def

bubbleSort(arr):

n = len(arr)

Traverse through all array

elements for i in range(n):

Last i elements are already in

place for j in range(0, n-i-1):

traverse the array from 0 to n-i-1

Swap if the element found is

greater # than the next element

if arr[j] > arr[j+1] :

arr[j], arr[j+1] = arr[j+1], arr[j]

Driver code to test above

arr = [64, 34, 25, 12, 22, 11, 90]

bubbleSort(arr)

print ("Sorted array

is:") for i in

range(len(arr)):

print ("%d" %arr[i])

Selection sort:

The selection sort algorithm sorts an array by repeatedly finding the minimum element

(considering ascending order) from unsorted part and putting it at the beginning. The

algorithm maintains two subarrays in a given array.

1) The subarray which is already sorted.

2) Remaining subarray which is unsorted.

In every iteration of selection sort, the minimum element (considering ascending order) from

the unsorted subarray is picked and moved to the sorted subarray.

Source Code:

Python program for implementation of

Selection # Sort

import sys

A = [64, 25, 12, 22, 11]

Traverse through all array

elements for i in range(len(A)):

Find the minimum element in

remaining # unsorted array

min_idx = i

for j in range(i+1,

len(A)): if A[min_idx]

> A[j]:

min_idx = j

Swap the found minimum element with the first

element A[i], A[min_idx] = A[min_idx], A[i]

Driver code to test

above print ("Sorted

array")

for i in

range(len(A)):

print("%d"

%A[i])

Insertion sort:

Insertion sort is a simple sorting algorithm that works the way we sort playing cards in our

hands. Algorithm

Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater

than the value to be sorted

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

Source Code:

Python program for implementation of Insertion

Sort # Function to do insertion sort
def insertionSort(arr):

Traverse through 1 to

len(arr) for i in range(1,

len(arr)):

key = arr[i]

Move elements of arr[0..i-1], that

are # greater than key, to one

position ahead # of their current

position
j = i-1
while j >=0 and key <

arr[j] : arr[j+1] =

arr[j]
j -= 1

arr[j+1] = key

Driver code to test

above arr = [12, 11, 13,

5, 6]
insertionSort(arr)
print ("Sorted array

is:") for i in

range(len(arr)):

print ("%d" %arr[i])
Comparison of Sorting Algorithms:

In this table, n is the number of records to be sorted. The columns "Best" ,"Average" and

"Worst" give the time complexity in each case, under the assumption that the length of each

key is constant, and that therefore all comparisons, swaps, and other needed operations can

proceed in constant time. "Memory" denotes the amount of auxiliary storage needed beyond

that used by the list itself, under the same assumption. The run times and the memory

requirements listed below should be understood to be inside big O notation.Time Complexity

comparison of Sorting Algorithms:

Algorithm Data Structure Time Complexity

 Best Average Worst

Quick sort Array O(n log(n)) O(n log(n)) O(n^2)

Merge sort Array O(n log(n)) O(n log(n)) O(n log(n))

Bubble Sort Array O(n) O(n^2) O(n^2)

Insertion Sort Array O(n) O(n^2) O(n^2)

Select Sort Array O(n^2) O(n^2) O(n^2)

Space Complexity comparison of Sorting Algorithms:

Algorithm Data Structure
Worst Case Auxiliary Space

Complexity

Quick sort Array O(n)

Merge sort Array O(n)

Bubble Sort Array O(1)

Insertion Sort Array O(1)

Select Sort Array O(1)

Bucket Sort Array O(nk)

 UNIT – II

 LINEAR DATA STRUCTURES

Stacks: Primitive operations

“A stack is an ordered list in which all insertions and deletions are made at one end, called the

top”. Stacks are sometimes referred to as Last In First Out (LIFO) lists

Stacks have some useful terminology associated with them:

 Push To add an element to the stack

 Pop To remove an element from the stock

 Peek To look at elements in the stack without removing them

 LIFO Refers to the last in, first out behavior of the stack

 FILO Equivalent to LIFO

Simple representation of a stack

Given a stack S=(a[1],a[2], .. a[n]) then we say that a1 is the bottom most element and element

a[i])

is on top of element a[i-1], 1<i<=n.

Implementation of stacks using arrays

1. array (static memory).

2. linked list (dynamic memory)

The operations of stack is

1. PUSH operations

2. POP operations

3. PEEK operations

The Stack ADT

A stack S is an abstract data type (ADT) supporting the following three methods:

push(n):Inserts the item n at the top of stack

pop() : Removes the top element from the stack and returns that top element. An error occurs

if the stack is empty.

peek() :Returns the top element and an error occurs if the stack is empty.

1.Adding an element into a stack. (called PUSH operations)

Adding element into the TOP of the stack is called PUSH operation.

Check conditions :

TOP = N , then STACK FULL

where N is maximum size of the stack.

PUSH algorithmprocedure add(item : items);

{

add item to the global stack stack ; top is the current top of stack and n is its maximum size}

begin

if top = n then stackfull; top :=

top+1; stack(top) := item;

end: {of add}

Implementation in C using array:

/* here, the variables stack, top and size are global

variables */ void push (int item)

{

if (top == size-1)

printf(“Stack is

Overflow”); else

{

top = top + 1;

stack[top] =

item;

}

2. Deleting an element from a stack. (called POP operations)

Deleting or Removing element from the TOP of the stack is called POP operations.

Check Condition:

TOP = 0, then STACK EMPTY

Deletion in stack (POP Operation)

procedure delete(var item : items);

{

remove top element from the stack stack and put it in the item}
begin

if top = 0 then stackempty; item :=

stack(top); top := top-1;

end; {of delete}

3. Peek Operation:

 Returns the item at the top of the stack but does not delete it.

 This can also result in underflow if the stack is empty.

Source Code:

Function to create a stack. It initializes size of

stack as 0 def createStack():

stack = []

return

stack

Stack is empty when stack size

is 0 def isEmpty(stack):

return len(stack) == 0

Function to add an item to stack. It increases size

by 1 def push(stack, item):

if(len(stack)==siz

e):

print("overflow

") return

stack.append(item)

Function to remove an item from stack. It decreases

size by 1 def pop(stack):

if

(isEmpty(stack))

:

print("underflow

") return

return stack.pop()

#Function to know peek element

def peek(stack):

if(isEmpty(stack)):

print("stack

empty") return

else:

n=len(stack)

print("peek element is: ",stack[n-1])

#Function to display

stack def display(stack):

print(stack)

Driver program to test above

functions stack = createStack()

size=int(input("enter the size of

stack"))

print("Menu\n1.push(p)\n2.pop(o)\n3.peek(

e)") choice=1

while choice!='q':

print("enter your

choice") ch=input()

choice=ch.lower()

if choice=='p':

push(stack,int(input("enter a

value"))) display(stack)

elif choice=='o':

pop(stack)

display(stac

k)

elif choice=='e':

peek(stack)

else:

print("enter proper choice")

Applications of stacks arithmetic

1. It is very useful to evaluate arithmetic expressions. (Postfix Expressions)

2. Infix to Postfix Transformation

3. It is useful during the execution of recursive programs

4. A Stack is useful for designing the compiler in operating system to store local variables inside a function

block.

5. A stack (memory stack) can be used in function calls including recursion.

6. Reversing Data

7. Reverse a List

8. Convert Decimal to Binary

9. Parsing – It is a logic that breaks into independent pieces for further processing

10. Backtracking

Examples :

1. Infix notation A+(B*C) equivalent Postfix notation ABC*+

2. Infix notation (A+B)*C Equivalent Postfix notation AB+C*

Expression evaluation and syntax parsing

Calculators employing reverse Polish notation (also known as postfix notation)use a stack

structure to hold values.

Expressions can be represented in prefix, postfix or infix notations. Conversion from one

form of the expression to another form needs a stack. Many compilers use a stack for parsing

the syntax of expressions, program blocks etc. before translating into low level code. Most of

the programming languages are context-free languages allowing them to be parsed with stack

based machines. Note that natural languages are context sensitive languages and stacks alone

are not enough to interpret their meaning.

Infix, Prefix and Postfix Notation:

We are accustomed to write arithmetic expressions with the operation between the two

operands: a+b or c/d. If we write a+b*c, however, we have to apply precedence rules to avoid

the ambiguous evaluation (add first or multiply first?).

There's no real reason to put the operation between the variables or values. They can just as

well precede or follow the operands. You should note the advantage of prefix and postfix: the

need for precedence rules and parentheses are eliminated.

Infix Prefix Postfix

a + b + a b a b +

a + b * c + a * b c a b c * +

(a + b) * (c - d) * + a b - c d a b + c d - *

b * b - 4 * a * c

40 - 3 * 5 + 1

Source Code:

Python program to evaluate value of a postfix

expression # Class to convert the expression

class Evaluate:

Constructor to initialize the class

variables def init (self, capacity):

self.top = -1
self.capacity =

capacity

This array is used a

stack self.array = []

check if the stack is

empty def isEmpty(self):
return True if self.top == -1 else False

Return the value of the top of the

stack def peek(self):
return self.array[-1]

Pop the element from the

stack def pop(self):

if not

self.isEmpty():

self.top -= 1

return

self.array.pop() else:

return "$"

Push the element to the

stack def push(self, op):

self.top += 1

self.array.append(o
p)

The main function that converts given infix
expression # to postfix expression

def evaluatePostfix(self, exp):

Iterate over the expression for

conversion for i in exp:

If the scanned character is an

operand # (number here) push it to

the stack

if i.isdigit():

self.push(i

)

If the scanned character is an operator,

pop two elements from stack and apply

it. else:

val1 =

self.pop() val2

= self.pop()

self.push(str(eval(val2 + i +

val1))) return int(self.pop())

Driver program to test above

function exp = "231*+9-"
obj = Evaluate(len(exp))

print ("Value of {0} is {1}".format(exp, obj.evaluatePostfix(exp)))

Application of stacks:

Arithmetic Expressions: Polish Notation

 An arithmetic expression will have operands and operators.

 Operator precedence listed below: Highest: ($)

Next Highest :(*) and (/)

Lowest :(+) and (-)

 For most common arithmetic operations, the operator symbol is placed in between its two operands. This

is called infix notation.

Example: A + B , E * F

 Parentheses can be used to group the operations.

Example: (A + B) * C

 Accordingly, the order of the operators and operands in an arithmetic expression does not uniquely

determine the order in which the operations are to be performed.

 Polish notation refers to the notation in which the operator symbol is placed before its two operands. This

is called prefix notation.

Example: +AB, *EF

 The fundamental property of polish notation is that the order in which the operations are to be performed

is completely determined by the positions of the operators and operands in the expression.

 Accordingly, one never needs parentheses when writing expressions in Polish notation.

 Reverse Polish Notation refers to the analogous notation in which the operator symbol is placed after its

two operands. This is called postfix notation.

Example: AB+, EF*

Here also the parentheses are not needed to determine the order of the operations.

The computer usually evaluates an arithmetic expression written in infix notation in two steps,

1. It converts the expression to postfix notation.

2. It evaluates the postfix expression.

In each step, the stack is the main tool that is used to accomplish the given task.

Algorithm postfix expression

Initialize a stack, opndstk to be empty.

{

scan the input string reading one element at a time into symb

}

While (not end of input string)

{

Symb := next input character;

If symb is an operand Then push (opndstk,symb)

Else

[symbol is an operator]

Opnd1:=pop(opndstk); Opnd2:=pop(opndnstk);

Value:=result of applying symb to opnd1 & opnd2

Push(opndstk,value); Result := pop (opndstk);

Example:

6 2 3 + - 3 8 2 / + * 2 $ 3 +

Symbol Operand 1 (A) Operand 2 (B) Value (A Ä B) STACK

6 6

2 6, 2

3 6, 2, 3

+ 2 3 5 6, 5

- 6 5 1 1

3 1, 3

8 1, 3, 8

2 1, 3, 8, 2

/ 8 2 / 1, 3, 4

+ 3 4 7 1, 7

* 1 7 7 7

2 7, 2

$ 7 2 49 49

3 49, 3

+ 49 3 52 52

The Final value in the STACK is 52. This is the answer for the given expression.

(1) run time stack for function calls (write factorial number calculation procedure)

push local data and return address onto stack

return by popping off local data and then popping off address and returning to it return value can

be pushed onto stack before returning, popped off by caller

(2) expression parsing

e.g. matching brackets: [... (... (...) [...(

...) ...] ...) ...]

push left ones, pop off and compare with right ones

4) Infix To Postfix Conversion

Infix expressions are often translated into postfix form in which the operators appear after

their operands. Steps:

1. Initialize an empty stack.

2. Scan the Infix Expression from left to right.

3. If the scannned character is an operand, add it to the Postfix Expression.

4. If the scanned character is an operator and if the stack is empty, then push the character to stack.

5. If the scanned character is an operator and the stack is not empty, Then

(a) Compare the precedence of the character with the operator on the top of the stack.

(b) While operator at top of stack has higher precedence over the scanned character & stack is not empty.

(i) POP the stack.

(ii) Add the Popped character to Postfix String. (c) Push the scanned character to stack.

6. Repeat the steps 3-5 till all the characters

7. While stack is not empty,

(a) Add operator in top of stack

(b) Pop the stack.

8. Return the Postfix string.

Algorithm Infix to Postfix conversion (without parenthesis)

Opstk = the empty

stack; while (not end

of input)

{

symb = next input

character; if (symb is an

operand)

add symb to the Postfix

String else

{

While(! empty (opstk) && prec (stacktop (opstk), symb))

{

topsymb = pop (opstk)

add topsymb to the Postfix String;

} / * end of while */ Push(opstk, symb);

} /* end else */

} /* end while * /

While(! empty (opstk))

{

topsymb = pop (opstk)

add topsymb to the Postfix String

} /* end of while */

Return the Postfix

String. Source Code:

Python program to convert infix expression to postfix

Class to convert the

expression import string

class Conversion:

Constructor to initialize the class

variables def init (self, capacity):

self.top = -1
self.capacity =

capacity

This array is used a

stack self.array = []

Precedence

setting self.output =

[]

self.precedence = {'+':1, '-':1, '*':2, '/':2, '^':3}

check if the stack is

empty def isEmpty(self):

return True if self.top == -1 else False

Return the value of the top of the

stack def peek(self):
return self.array[-1]

Pop the element from the

stack def pop(self):

if not

self.isEmpty():

self.top -= 1

return
self.array.pop() else:

return "$"

Push the element to the

stack def push(self, op):

self.top += 1

self.array.append(o

p)

A utility function to check is the given

character # is operand

def isOperand(self,

ch): return

ch.isalpha()

Check if the precedence of operator is

strictly # less than top of stack or not

def notGreater(self,

i): try:
a = self.precedence[i]
b =

self.precedence[self.peek()]

return True if a <= b else

False

except

KeyError:

return False

The main function that converts given infix

expression # to postfix expression

def infixToPostfix(self, exp):

Iterate over the expression for

conversion for i in exp:

If the character is an operand,

add it to output
if self.isOperand(i):

self.output.append(

i)

If the character is an '(', push it to

stack elif i == '(':

self.push(i)

If the scanned character is an ')', pop

and # output from the stack until and '('

is found elif i == ')':

while((not self.isEmpty()) and self.peek() !=

'('): a = self.pop()

self.output.append(a)

if (not self.isEmpty() and self.peek() !=
'('): return -1

else:

self.pop()

An operator is

encountered else:

while(not self.isEmpty() and self.notGreater(i)):

self.output.append(self.pop())

self.push(i)

pop all the operator from the

stack while not self.isEmpty():

self.output.append(self.pop())

result=

"".join(self.output)

print(result)

Driver program to test above
function exp = "a+b*(c^d-

e)^(f+g*h)-i"

obj =

Conversion(len(exp))

obj.infixToPostfix(exp)

QUEUE:

“A queue is an ordered list in which all insertions at one end called REAR and deletions are

made at another end called FRONT”. Queues are sometimes referred to as First In First

Out (FIFO)

Example

1. The people waiting in line at a bank cash counter form a queue.

2. In computer, the jobs waiting in line to use the processor for execution. This queue is called

Job Queue.

Operations of Queue

There are two basic queue operations. They are,

Enqueue – Inserts an item / element at the rear end of the queue. An error occurs if the queue is

full.

Dequeue – Removes an item / element from the front end of the queue, and returns it to the

user. An error occurs if the queue is empty.

1. Addition into a queue

procedure addq (item : items);

{add item to the queue q}

begin

if rear=n then queuefull

else begin

rear :=rear+1; q[rear]:=item;

end; end;{of addq}

2. Deletion in a queue

procedure deleteq (var item : items);

{delete from the front of q and put into item}

begin

if front = rear then queueempty

else begin

front := front+1 item := q[front];

end;

end

Source Code:

def

enqueue(a,item

): global r

global f

if r==-1 and f==-

1: r=0

f=0

a.insert(r,ite

m)

elif r==(n-1):

print("overflow

") return

else:
r+=1
a.insert(r,ite

m) display(a)

def

dequeue(a

): global r

global f

if r==(n-1) and f==(n-

1): item=a[f]

r=-

1
f=-

1

elif r==-1 and f==-

1:

print("underflow

") return
else:

item=a[f

] f+=1

print("deleted item

is:",item) display(a)

def display(a):

print("\ncurrent queue

is:") for i in range(f,r+1):

if f==-1 and r==-1:

print("Queue is

empty!") return
print(a[i],end=" ")

#DC

n=int(input("enter the size of
list")) a=[]

r=-

f=-

1

print("Menu\n1.enqueue(e)\n2.dequeue(

d)") choice=1

while choice!='q':

print("enter your

choice") ch=input()

choice=ch.lower()
if choice=='e':

enqueue(a,int(input("enter a

value"))) display(a)

elif

choice=='d

':

dequeue(a)

display(a)
else:

print("enter proper choice")

Uses of Queues (Application of queue)

Queues remember things in first-in-first-out (FIFO) order. Good for fair (first come first

served) ordering of actions.

Examples of use: (Application of stack)

1 scheduling

processing of GUI events printing request

2 simulation orders

the events

models real life queues (e.g. supermarkets checkout, phone calls on hold)

Circular Queue :

Location of queue is viewed in a circular form. The first location is viewed after the

last one. Overflow occurs when all the locations are filled.

rear

front

Algorithm Circular Queue Insert

Void CQInsert (int queue[], front, rear, item)

{

if (front = = 0

) front = front

+1;

if (((rear = maxsize) && (front = = 1)) || ((rear ! = 0) && (front = rear +1)))

{

printf(“ queue overflow “); if(rear = =

maxsize) rear = 1;

else

rear = rear + 1; q [rear] = item;

}

}

Algorithm Circular Queue Delete

int CQDelete (queue [], front, rear)

{

if (front = = 0)

printf (“ queue underflow

“); else

{

item = queue [front]; if(front = = rear)

{

front = 0; rear = 0;

}

else if (front = = maxsize)

{

front = 1;

}

else

front = front + 1;

}

return item;

}

Double ended queue (deque):

Deque or Double Ended Queue is a generalized version of Queue data structure that allows insert

and delete at both ends.

Operations on Deque:

Mainly the following four basic operations are performed on

queue: insertFront(): Adds an item at the front of Deque.

insertLast(): Adds an item at the rear of Deque.

deleteFront(): Deletes an item from front of

Deque. deleteLast(): Deletes an item from rear of

Deque.

In addition to above operations, following operations are also

supported getFront(): Gets the front item from queue.

getRear(): Gets the last item from queue.

isEmpty(): Checks whether Deque is empty or

not. isFull(): Checks whether Deque is full or

not.

Applications of Deque:

Since Deque supports both stack and queue operations, it can be used as both.

The Deque data structure supports clockwise and anticlockwise rotations in O(1) time which

can be useful in certain applications.

Also, the problems where elements need to be removed and or added both ends can be

efficiently solved using Deque.

UNIT – III

LINKED LIST

Introduction to Linked List:

A linked list is a linear collection of data elements, called nodes, where the linear order is

given by means of pointers. Each node is divided into two parts:

1. The first part contains the information of the element and

2. The second part contains the address of the next node (link /next pointer field) in the list.

The data items in the linked list are not in consecutive memory locations. They may be

anywhere, but the accessing of these data items is easier as each data item contains the

address of the next data item.

Linked lists using dynamic variables:

1. In array implementation of the linked lists a fixed set of nodes represented by an array is established at

the beginning of the execution

2. A pointer to a node is represented by the relative position of the node within the array.

3. In array implementation, it is not possible to determine the number of nodes required for the linked list.

Therefore;

a. Less number of nodes can be allocated which means that the program will have overflow problem.

b. More number of nodes can be allocated which means that some amount of the memory storage will be

wasted.

4. The solution to this problem is to allow nodes that are dynamic, rather than static.

5. When a node is required storage is reserved /allocated for it and when a node is no longer needed, the

memory storage is released /freed.

Advantages of linked lists:

1. Linked lists are dynamic data structures. i.e., they can grow or shrink during the execution of a program.

2. Linked lists have efficient memory utilization. Here, memory is not pre-allocated. Memory is allocated

whenever it is required and it is de-allocated (removed) when it is no longer needed.

3. Insertion and Deletions are easier and efficient. Linked lists provide flexibility in inserting a data item at

a specified position and deletion of the data item from the given position.

4. Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists:

1. It consumes more space because every node requires a additional pointer to store address of the next

node.

2. Searching a particular element in list is difficult and also time consuming.

Types of Linked Lists:

Basically we can put linked lists into the following four items:

1. Single Linked List.

2. Double Linked List.

3. Circular Linked List.

4. Circular Double Linked List.

A single linked list is one in which all nodes are linked together in some sequential manner.

Hence, it is also called as linear linked list.

A double linked list is one in which all nodes are linked together by multiple links which

helps in accessing both the successor node (next node) and predecessor node (previous node)

from any arbitrary node within the list. Therefore each node in a double linked list has two

link fields (pointers) to point to the left node (previous) and the right node (next). This helps

to traverse in forward direction and backward direction.

A circular linked list is one, which has no beginning and no end. A single linked list can be

made a circular linked list by simply storing address of the very first node in the link field of

the last node.

A circular double linked list is one, which has both the successor pointer and predecessor

pointer in the circular manner.

Comparison between array and linked list:

ARRAY LINKED LIST

Size of an array is fixed Size of a list is not fixed

Memory is allocated from stack Memory is allocated from heap

It is necessary to specify the number of elements

during declaration (i.e., during

It is not necessary to specify the number of

elements during declaration (i.e., memory is

compile time). allocated during run time).

It occupies less memory than a linked list for the

same number of elements.
It occupies more memory.

Inserting new elements at the front is potentially

expensive because existing elements need to be

shifted over to make room.

Inserting a new element at any position can be

carried out easily.

Deleting an element from an array is not

possible.
Deleting an element is possible.

Applications of linked list:

1. Linked lists are used to represent and manipulate polynomial. Polynomials are expression containing terms

with non zero coefficient and exponents. For example:

P(x) = a0 X
n
 + a1 X

n-1
 + …… + an-1 X + an

2. Represent very large numbers and operations of the large number such as addition, multiplication and

division.

3. Linked lists are to implement stack, queue, trees and graphs.

4. Implement the symbol table in compiler construction.

Single Linked List:

The simplest kind of linked list is a singly-linked list, which has one link per node. This link

points to the next node in the list, or to a null value or empty list if it is the final node.

A singly linked list's node is divided into two parts. The first part holds or points to

information about the node, and second part holds the address of next node. A singly linked

list travels one way.

The beginning of the linked list is stored in a "start" pointer which points to the first node.

The first node contains a pointer to the second node. The second node contains a pointer to

the third node, ... and so on. The last node in the list has its next field set to NULL to mark

the end of the list. Code can access any node in the list by starting at the start and following

the next pointers.

The start pointer is an ordinary local pointer variable, so it is drawn separately on the left top

to show that it is in the stack. The list nodes are drawn on the right to show that they are

allocated in the heap.

Implementation of Single Linked List:

1. Creating a structure with one data item and a next pointer, which will be pointing to next node of

the list. This is called as self-referential structure.Initialize the start pointer to be NULL.The basic

operations in a single linked list are:

 Creation.

 Insertion.

 Deletion.

 Traversing.

Advantages of singly linked list:

1. Dynamic data structure.

2. We can perform deletion and insertion anywhere in the list.

3. We can merge two lists easily.

Disadvantages of singly linked list:

1. Backward traversing is not possible in singly linked list.

2. Insertion is easy but deletion take some additional time, because disadvantage of backward traversing.

Creating a node for Single Linked List:

Creating a singly linked list starts with creating a node. Sufficient memory has to be allocated

for creating a node. The information is stored in the memory, allocated by using the malloc()

function. The function getnode(), is used for creating a node, after allocating memory for the

structure of type node, the information for the item (i.e., data) has to be read from the user, set

next field to NULL and finally returns the address of the node

Insertion of a Node:

The new node can then be inserted at three different places namely:

1. Inserting a node at the beginning.

2. Inserting a node at the end.

3. Inserting a node at intermediate position.

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

1. Get the new node using getnode().

newnode = getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty, follow the steps given below:

newnode -> next = start; start = newnode;

Inserting a node at the end:

1. The following steps are followed to insert a new node at the end of the list:

2. Get the new node using getnode()

newnode = getnode();

3. If the list is empty then start = newnode.

4. If the list is not empty follow the steps given below:

temp = start;

while(temp -> next != NULL)

1. temp = temp -> next; temp -> next = newnode;

Inserting a node at intermediate position:

1. The following steps are followed, to insert a new node in an intermediate position in the list:

2. Get the new node using getnode().

newnode = getnode();

3. Ensure that the specified position is in between first node and last node. If not, specified position is

invalid. This is done by countnode() function.

4. Store the starting address (which is in start pointer) in temp and prev pointers. Then traverse the temp

pointer upto the specified position followed by prev pointer.

5. After reaching the specified position, follow the steps given below: prev -

> next = newnode; newnode -> next = temp;

Deletion of a node:

A node can be deleted from the list from three different places namely.

1. Deleting a node at the beginning.

2. Deleting a node at the end.

3. Deleting a node at intermediate position.

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

1. If list is empty then display „Empty List‟ message.

2. If the list is not empty, follow the steps given below:

i. temp = start;

ii. start = start -> next;

iii. free(temp);

Deleting a node at the end:

1. The following steps are followed to delete a node at the end of the list:

2. If list is empty then display „Empty List‟ message.

3. If the list is not empty, follow the steps given below:

temp = prev = start; while(temp -> next != NULL)

{

1. prev = temp;

2. temp = temp -> next;

}

prev -> next = NULL; free(temp);

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the list (List

must contain more than two node).

1. If list is empty then display „Empty List‟ message

2. If the list is not empty, follow the steps given below.

3. if(pos > 1 && pos < nodectr)

{

temp = prev = start; ctr =

1; while(ctr < pos)

{

temp = temp -> next; ctr++;

}

prev -> next = temp -> next;

free(temp); printf("\n node

deleted..");

}

Traversal and displaying a list (Left to Right):

Traversing a list involves the following steps:

1. Assign the address of start pointer to a temp pointer.

2. Display the information from the data field of each node.

Source Code:

class Node:

def init (self,data):

self.data=data

self.next=None

class Sll:

def init (self):

self.start=None

def createlist(self):

n=int(input("enter number of

node")) for i in range(n):

data=int(input("enter

balue"))

newnode=Node(data)

if self.start==None:

self.start=newno

de

else:

temp=self.start

while temp.next!=None:

temp=temp.next

temp.next=newno

de def insertend(self):

n=int(input("enter value"))

newnode=Node(n

) if

self.start==None:

self.start=newno

de else:

temp=self.start

while

temp.next!=None:

temp=temp.next

temp.next=newno

de def insertmid(self):

n=int(input("enter value"))

newnode=Node(n)

pos=int(input("enter

position")) c=self.count()

if self.start==NOne:

self.start=newno

de

else:

if pos>1 and

pos<=c:

temp=self.start

prev=temp

i=1

while i<pos:

prev=temp

temp=temp.ne

xt i=i+1

pre.next=newnode

newnode.next=temp

def count(self):

nc=0

temp=self.sta

rt

while

temp!=None:

nc+=1

temp=temp.ne

xt

print("number of nodes=%d"

%nc) return nc

def

deletemid(self

): count=1

if

self.start==No

ne:

print("empty")

else:

position=int(input("enter

position")) c=self.count()

if position>c:

print("check position")

if position>1 and

position<c:

temp=prev=self.start

while count<position:

rev=temp

temp=temp.ne

xt

count=count+1

prev.next=temp.ne

xt del temp

else:

print("check position")

def

deleteend(self

): global prev

if

self.start==No

ne:

print("empty")

else:

temp=self.sta

rt

prev=self.star

t

while

temp.next!=None:

prev=temp

temp=temp.next

prev.next=No

ne del temp

def insertbegin(self):

n=int(input("enter

value"))

newnode=Node(n)

if self.start==None:

self.start=newno

de

else:

temp=self.start

newnode.next=temp

self.start=newnode

def

deletebegin(self):

global prev

if

self.start==No

ne:

print("empty")

else:

temp=self.start

newstart=self.start.ne

xt del temp

self.start=newstart

def display(self):

print("elements in single linked list

are:") if self.start==None:

print("empty"

) else:

temp=self.start

print("%d"

%(temp.data))

while temp.next!=None:

temp=temp.next

print("%d"

%(temp.data))

OUTSIDE CLASS

def menu():

print("1. create list \n2. insert begin \n3. insertend \n4. insertmid \n5. deletebegin \n6.

deleteend

\n7. deletemid \n8. count \n9. display \n10.

exit") def stop():

print("u r about to terminate program")

exit(0)

s=Sll()

def default():

print("check ut input")

menu()

while True:

menu={

1: s.createlist,

2: s.insertbegin,

3: s.insertend,

4: s.insertmid,

5: s.deletebegin,

6: s.deleteend,

7: s.deletemid,

8: s.count,

9: s.display,

10: stop}

option=int(input("enter ur choice"))

menu.get(option)()

reak; case

10:del_at_mid(); break;

case 11:exit(0);

}

}

}

Applications of Single Linked List to Represent Polynomial Expressions:

The computer implementation requires implementing polynomials as a list of pairs of

coefficient and exponent. Each of these pairs will constitute a structure, so a polynomial will

be represented as a list of structures. A linked list structure that represents polynomials 5x
4
 –

8x
3
 + 2x

2
 + 4x

1
 + 9x

0
 illustrates in figure ----

Sparse Matrix Manipulation:

A sparse matrix is a matrix populated primarily with zeros as elements of the table.

Example of sparse matrix

[11 22 0 0 0 0 0]

[0 33 44 0 0 0 0]

[0 0 55 66 77 0 0]

[0 0 0 0 0 88 0]

[0 0 0 0 0 0 99]

The above sparse matrix contains only 9 nonzero elements of the 35, with 26 of those

elements as zero. The basic data structure for a matrix is a two-dimensional array. Each entry

in the array represents an element ai,j of the matrix and can be accessed by the two indices i

and j. Traditionally, i indicates the row number (top-to-bottom), while j indicates the column

number (left-to-right) of each element in the table. For an m×n matrix, enough memory to

store up to (m×n) entries to represent the matrix is needed.

Circular Linked List:

It is just a single linked list in which the link field of the last node points back to the address

of the first node. A circular linked list has no beginning and no end. It is necessary to establish

a special pointer called start pointer always pointing to the first node of the list.

The basic operations in a circular single linked list are:

1. Creation.

2. Insertion.

3. Deletion.

4. Traversing.

Creating a circular single Linked List with ‘n’ number of nodes:

The following steps are to be followed to create „n‟ number of nodes:

1. Get the new node using getnode().

newnode = getnode();

2. If the list is empty, assign new node as start.

start = newnode;

3. If the list is not empty, follow the steps given below:

temp = start;

while(temp -> next != NULL) temp = temp ->

next; temp -> next = newnode;

4. Repeat the above steps „n‟ times.

newnode -> next = start;

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the circular list:

1. Get the new node using getnode().

newnode = getnode();

2. If the list is empty, assign new node as start. start = newnode;

newnode -> next = start;

3. If the list is not empty, follow the steps given below:

last = start;

while(last -> next != start) last = last -> next; newnode -> next = start; start =

newnode; last -> next = start;

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

1. Get the new node using getnode().

newnode = getnode();

2. If the list is empty, assign new node as start. start = newnode;

newnode -> next = start;

3. If the list is not empty follow the steps given below: temp = start;

while(temp -> next != start) temp = temp -> next;

temp -> next = newnode; newnode -> next = start;

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If the list is empty, display a message „Empty List‟.

 If the list is not empty, follow the steps given below: last = temp = start;

while(last -> next != start)

last = last -> next; start = start ->

next; last -> next = start;

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

1. If the list is empty, display a message „Empty List‟.

2. If the list is not empty, follow the steps given below:

temp = start; prev = start;

while(temp -> next != start)

{

prev = temp;

temp = temp -> next;

}

prev -> next = start;

3. After deleting the node, if the list is empty then start = NULL.

Traversing a circular single linked list from left to right:

The following steps are followed, to traverse a list from left to right:

1. If list is empty then display „Empty List‟ message.

2. If the list is not empty, follow the steps given below: temp = start; do

{

temp = temp -> next;

} while(temp != start);

Source Code:

Python program to demonstrate circular linked list

traversal # Structure for a Node

class Node:

Constructor to create a new

node def init (self, data):

self.data = data

self.next =

None

class CircularLinkedList:

Constructor to create a empty circular

linked list def init (self):

self.head = None

Function to insert a node at the beginning

of a # circular linked list

def push(self, data):

ptr1 = Node(data)

temp = self.head

ptr1.next =

self.head

If linked list is not None then set the

next of # last node

if self.head is not None:

while(temp.next !=

self.head):

temp =

temp.next

temp.next = ptr1

else:

ptr1.next = ptr1 # For the first

node self.head = ptr1

Function to print nodes in a given circular linked

list def printList(self):

temp = self.head

if self.head is not

None: while(True):

print "%d"

%(temp.data), temp =

temp.next

if (temp ==

self.head): break

Driver program to test above

function # Initialize list as empty

cllist = CircularLinkedList()

Created linked list will be 11->2->56-

>12 cllist.push(12)

cllist.push(56)

cllist.push(2)

cllist.push(11)

print "Contents of circular Linked

List" cllist.printList()

Double Linked List:

Doubly-linked list is a more sophisticated form of linked list data structure. Each node of the

list contain two references (or links) – one to the previous node and other to the next node.

The previous link of the first node and the next link of the last node points to NULL. In

comparison to singly-linked list, doubly- linked list requires handling of more pointers but

less information is required as one can use the previous links to observe the preceding

element. It has a dynamic size, which can be determined only at run time.

A double linked list is a two-way list in which all nodes will have two links. This helps in

accessing both successor node and predecessor node from the given node position. It provides

bi-directional traversing. Each node contains three fields:

1. Left link.

2. Data.

3. Right link.

The left link points to the predecessor node and the right link points to the successor node.

The data field stores the required data. The basic operations in a double linked list are:

1. Creation.

2. Insertion.

3. Deletion.

4. Traversing.

The beginning of the double linked list is stored in a "start" pointer which points to the first

node. The first node‟s left link and last node‟s right link is set to NULL.

Creating a node for Double Linked List:

Creating a double linked list starts with creating a node. Sufficient memory has to be

allocated for creating a node. The information is stored in the memory, allocated by using the

malloc() function.

Creating a Double Linked List with ‘n’ number of nodes:

The following steps are to be followed to create „n‟ number of nodes:

1. Get the new node using getnode().

newnode =getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty, follow the steps given below:

i. The left field of the new node is made to point the previous node.

ii. The previous nodes right field must be assigned with address of the new node.

4. Repeat the above steps „n‟ times.

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

1. Get the new node using getnode().

newnode=getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty, follow the steps given below: newnode -> right = start; start ->

left = newnode; start = newnode;

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

1. Get the new node using getnode()

newnode=getnode();

2. If the list is empty then start = newnode.

3. If the list is not empty follow the steps given below: temp = start;

while(temp -> right != NULL) temp = temp -> right;

temp -> right = newnode; newnode -> left = temp;

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the list:

1. Get the new node using getnode().

newnode=getnode();

2. Ensure that the specified position is in between first node and last node. If not, specified position is

invalid. This is done by countnode() function.

3. Store the starting address (which is in start pointer) in temp and prev pointers. Then traverse the temp

pointer upto the specified position followed by prev pointer.

4. After reaching the specified position, follow the steps given below: newnode -> left = temp; newnode

-> right = temp -> right; temp -> right -> left = newnode; temp -> right = newnode;

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

1. If list is empty then display „Empty List‟ message.

2. If the list is not empty, follow the steps given below: temp = start; start

= start -> right; start -> left = NULL; free(temp);

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

1. If list is empty then display „Empty List‟ message

2. If the list is not empty, follow the steps given below: temp = start;

while(temp -> right != NULL)

{

temp = temp -> right;

}

temp -> left -> right = NULL; free(temp);

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the list (List

must contain more than two nodes).

1. If list is empty then display „Empty List‟ message.

2. If the list is not empty, follow the steps given below:

i. Get the position of the node to delete.

ii. Ensure that the specified position is in between first node and last node. If not, specified position is

invalid.

iii. Then perform the following steps:

if(pos > 1 && pos < nodectr)

{

temp = start; i =

1; while(i < pos)

{

temp = temp -> right; i++;

}

temp -> right -> left = temp -> left; temp -> left -> right = temp -> right;

free(temp); printf("\n node deleted..");

}

Traversal and displaying a list (Left to Right):

The following steps are followed, to traverse a list from left to right:

1. If list is empty then display „Empty List‟ message.

2. If the list is not empty, follow the steps given below:

temp = start; while(temp != NULL)

{

print temp -> data; temp = temp -> right;

}

Traversal and displaying a list (Right to Left):

The following steps are followed, to traverse a list from right to left:

1. If list is empty then display „Empty List‟ message.

2. If the list is not empty, follow the steps given below: temp = start;

while(temp -> right != NULL) temp = temp -> right;

while(temp != NULL)

{

print temp -> data; temp = temp -> left;

}

Source Code:

Class

Node():

def init (self, next_node=None, previous_node=None, data=None):

self.next_node = next_node

self.previous_node = previous_node

self.data = data

class LinkedList():

def init (self, node):

assert isinstance(node, Node)

self.first_node = node

self.last_node = node

def push(self, node):

'''Pushes the node <node> at the "front" of the ll

'''

node.next_node = self.first_node

node.previous_node = None

self.first_node.previous_node = node

self.first_node = node

def pop(self):

'''Pops the last node out of the list'''

old_last_node = self.last_node

to_be_last = self.last_node.previous_node

to_be_last.next_node = None

old_last_node.previous_node = None

Set the last node to the "to_be_last"

self.previous_node = to_be_last

return old_last_node

def remove(self, node):

'''Removes and returns node, and connects the previous and next

nicely

'''

next_node = node.next_node

previous_node = node.previous_node

previous_node.next_node = next_node

next_node.previous_node = previous_node

Make it "free"

node.next_node = node.previous_node = None

return node

def str (self):

next_node = self.first_node

s = ""

while next_node:

s += "--({:0>2d})--\n".format(next_node.data)

next_node = next_node.next_node

return s

return

node1 = Node(data=1)

linked_list = LinkedList(node1)

for i in xrange(10):

if i == 5:

node5 = Node(data=5)

linked_list.push(node5)

else:

linked_list.push(Node(data=i))

print linked_list

print "popping"

print linked_list.pop().data

print "\n\n"

print linked_list

print "\n\n"

linked_list.push(Node(data=10))

print "\n\n"

print linked_list

linked_list.remove(node5)

print "\n\n"

print linked_list

Stack using linked list:

Python program for linked list implementation of

stack # Class to represent a node

class StackNode:

Constructor to initialize a

node def init (self, data):

self.data = data

self.next =

None

class Stack:

Constructor to initialize the root of linked

list def init (self):

self.root =

None def

isEmpty(self):

return True if self.root is None else

False def push(self, data):

newNode =

StackNode(data)

newNode.next = self.root

self.root = newNode

print ("%d pushed to stack" %(data))

def pop(self):

if (self.isEmpty()):

return float("-

inf")

temp = self.root

self.root =

self.root.next popped

= temp.data return

popped

def peek(self):

if self.isEmpty():

return float("-

inf")

return self.root.data

Driver program to test above

class stack = Stack()

stack.push(1

0)

stack.push(2

0)

stack.push(3

0)

print ("%d popped from stack"

%(stack.pop())) print ("Top element is %d

" %(stack.peek()))

Queue using linked list.

program to implement queues using linked list

class stack(object):

def init (self, value=None,

next=None): self.value = value

self.next = next

def push(self, value):

oldstack = stack(self.value, self.next)

self.value = value

self.next = oldstack

def pop(self):

outputval = self.value

self.value, self.next = self.next.value,

self.next.next return outputval

def size(self):

numelements = 0

nextval = self.next

while (nextval !=

None): nextval =

nextval.next

numelements += 1

return numelements

def isEmpty(self):

if (self.value ==

None): return True

else:

return False

class

queue(object): def

init (self):

self.stack1 =

stack() self.stack2

= stack()

def fillStack2(self):

if (self.stack2.isEmpty()):

while (not self.stack1.isEmpty()):

self.stack2.push(self.stack1.pop())

def push(self, value):

self.stack1.push(valu

e) self.fillStack2()

return

value def

pop(self):

if (self.stack2.isEmpty()):

raise

NameError('Queue.Empty')

outputval = self.stack2.pop()

self.fillStack2()

return outputvala = queue()

print ("pushed element

is",a.push(2)) print ("pushed

element is",a.push(3)) print

("pushed element is",a.push(4))

print ("pushed element

is",a.push(12)) print (" ------ ")

print ("popped element

is",a.pop()) print ("popped

element is",a.pop()) print

("popped element is",a.pop())

print (" ------------------------- ")

print ("pushed element

is",a.push(5)) print (" ------- ")

print ("popped element

is",a.pop()) print ("popped

element is",a.pop())

UNIT – IV
NON LINEAR DATA STRUCTURES

Basic Concept:

A tree is a non-empty set one element of which is designated the root of the tree while the

remaining elements are partitioned into non-empty sets each of which is a sub-tree of the

root.

A tree T is a set of nodes storing elements such that the nodes have a parent-child relationship

that satisfies the following

• If T is not empty, T has a special tree called the root that has no parent.

• Each node v of T different than the root has a unique parent node w; each node with parent w is a child of

w.

Tree nodes have many useful properties. The depth of a node is the length of the path (or the

number of edges) from the root to that node. The height of a node is the longest path from

that node to its leaves. The height of a tree is the height of the root. A leaf node has no

children -- its only path is up to its parent.

Binary Tree:

In a binary tree, each node can have at most two children. A binary tree is either empty or

consists of a node called the root together with two binary trees called the left sub-tree and

the right sub-tree.

Tree Terminology:

Leaf node

A node with no children is called a leaf (or external node). A node which is not a leaf is

called an internal node.

Path: A sequence of nodes n1, n2, . . ., nk, such that ni is the parent of ni + 1 for i = 1, 2,. . ., k - 1.

The length of a path is 1 less than the number of nodes on the path. Thus there is a path of

length zero from a node to itself.

Siblings: The children of the same parent are called siblings.

Ancestor and Descendent If there is a path from node A to node B, then A is called an

ancestor of B and B is called a descendent of A.

Sub-tree: Any node of a tree, with all of its descendants is a sub-tree.

Level: The level of the node refers to its distance from the root. The root of the tree has level

O, and the level of any other node in the tree is one more than the level of its parent.

The maximum number of nodes at any level is 2
n
.

Height:The maximum level in a tree determines its height. The height of a node in a tree is

the length of a longest path from the node to a leaf. The term depth is also used to denote

height of the tree.

Depth:The depth of a node is the number of nodes along the path from the root to that node.

Assigning level numbers and Numbering of nodes for a binary tree: The nodes of a binary

tree can be numbered in a natural way, level by level, left to right. The nodes of a complete

binary tree can be numbered so that the root is assigned the number 1, a left child is assigned

twice the number assigned its parent, and a right child is assigned one more than twice the

number assigned its parent.

Properties of Binary Trees:

Some of the important properties of a binary tree are as follows:

1. If h = height of a binary tree, then

a. Maximum number of leaves = 2

h

b. Maximum number of nodes = 2

h

+

1
 - 1

2. If a binary tree contains m nodes at level l, it contains at most 2m nodes at level l + 1.

3. Since a binary tree can contain at most one node at level 0 (the root), it can contain at most 2

l
 node at

level l.

4. The total number of edges in a full binary tree with n node is n - 1.

Binary Tree Representation:

1. Array Representation of Binary Tree

2. Linked List Representation of Binary Tree

Array Representation of Binary Tree:

A single array can be used to represent a binary tree.

For these nodes are numbered / indexed according to a scheme giving 0 to root. Then all the

nodes are numbered from left to right level by level from top to bottom. Empty nodes are also

numbered. Then each node having an index i is put into the array as its i
th

 element.

In the figure shown below the nodes of binary tree are numbered according to the given scheme.

The figure shows how a binary tree is represented as an array. The root 3 is the 0
th

 element

while its leftchild 5 is the 1
st
 element of the array. Node 6 does not have any child so its

children i.e. 7
th

 and 8 th element of the array are shown as a Null value.

It is found that if n is the number or index of a node, then its left child occurs at (2n + 1)
th

position and right child at (2n + 2)th position of the array. If any node does not have any of its

child, then null value is stored at the corresponding index of the array.

Linked Representation of Binary Tree (Pointer based):

Binary trees can be represented by links where each node contains the address of the left

child and the right child. If any node has its left or right child empty then it will have in its

respective link field, a null value. A leaf node has null value in both of its links.

Binary Tree Traversal:

Traversal of a binary tree means to visit each node in the tree exactly once.

In a linear list nodes are visited from first to last, but a tree being a non linear one we need

definite rules. Th ways to traverse a tree. All of them differ only in the order in which they

visit the nodes.

The three main methods of traversing a tree are:

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

In all of them we do not require to do anything to traverse an empty tree. All the traversal

methods are base functions since a binary tree is itself recursive as every child of a node in a

binary tree is itself a binary tree.

In-order Traversal:

To traverse a non empty tree in in-order the following steps are followed recursively.

 Visit the Root

 Traverse the left sub-tree

 Traverse the right sub-tree

The in-order traversal of the tree shown below is as follows.

Algorithms:-

In-order Traversal:

Algorithm In-order(tree)

1. Traverse the left sub-tree, i.e., call In-order(left-sub-tree)

2. Visit the root.

3. Traverse the right sub-tree, i.e., call In-order(right-sub-tree)

So the function calls itself recursively and carries on the

traversal. Pre-order Traversal:

Algorithm Pre-order(tree)

1. Visit the root.

2. Traverse the left sub-tree, i.e., call Pre-order(left-sub-tree)

3. Traverse the right sub-tree, i.e., call Pre-order(right-sub-tree)

Post-order Traversal:

Algorithm Post-order(tree)

1. Traverse the left sub-tree, i.e., call Post-order(left-sub-tree)

2. Traverse the right sub-tree, i.e., call Post-order(right-sub-tree)

3. Visit the root.

Time Complexity: O(n^2).

Binary Search Tree:

Binary Search Tree, is a node-based binary tree data structure which has the following

properties:

 The left sub-tree of a node contains only nodes with keys less than the node‟s key.

 The right sub-tree of a node contains only nodes with keys greater than the node‟s key.

 The left and right sub-tree each must also be a binary search tree.

There must be no duplicate nodes.

The above properties of Binary Search Tree provide an ordering among keys so that the

operations like search, minimum and maximum can be done fast. If there is no ordering, then

we may have to compare every key to search a given key.

Searching a key

To search a given key in Binary Search Tree, we first compare it with root, if the key is

present at root, we return root. If key is greater than root‟s key, we recur for right sub-tree of

root node. Otherwise we recur for left sub-tree.

A utility function to search a given key in

BST def search(root,key)

Base Cases: root is null or key is present at

root if root is None or root.val == key:

return root

Key is greater than root's

key if root.val < key:

return search(root.right,key)

Key is smaller than root's

key return

search(root.left,key)

Tree Variants strictly

Binary tree:

If every non-leaf node in a binary tree has nonempty left and right sub-trees, the tree is termed

a strictly binary tree. Thus the tree of figure 7.2.3(a) is strictly binary. A strictly binary tree

with n leaves always contains 2n - 1 nodes.

Full Binary Tree:

A full binary tree of height h has all its leaves at level h. Alternatively; All non leaf nodes of

a full binary tree have two children, and the leaf nodes have no children.

A full binary tree with height h has 2
h

+

1
 - 1 nodes. A full binary tree of height h is a strictly

binary tree all of whose leaves are at level h.

For example, a full binary tree of height 3 contains 2

3+1
 – 1 = 15 nodes.

Complete Binary Tree:

A binary tree with n nodes is said to be complete if it contains all the first n nodes of the

above numbering scheme.

A complete binary tree of height h looks like a full binary tree down to level h-1, and the

level h is filled from left to right.

Perfect Binary Tree:

A Binary tree is Perfect Binary Tree in which all internal nodes have two children and all

leaves are at same level.

Following are examples of Perfect Binary Trees.

18

/ \

15 30

/ \ / \

40 50 100 40

18

/ \

15 30

A Perfect Binary Tree of height h (where height is number of nodes on path from root to leaf)

has 2
h
 – 1 node.

Example of Perfect binary tree is ancestors in family. Keep a person at root, parents as

children, parents of parents as their children.

Balanced Binary Tree:

A binary tree is balanced if height of the tree is O(Log n) where n is number of nodes. For

Example, AVL tree maintain O(Log n) height by making sure that the difference between

heights of left and right subtrees is 1. Red-Black trees maintain O(Log n) height by making

sure that the number of Black nodes on every root to leaf paths are same and there are no

adjacent red nodes. Balanced Binary Search trees are performance wise good as they provide

O(log n) time for search, insert and delete.

Application of Trees:

1) One reason to use trees might be because you want to store information that naturally forms a hierarchy. For

example, the file system on a computer:

file system

/ <-- root

/ \

... home

/ \

ugrad course

/ / | \

... cs101 cs112 cs113

2) If we organize keys in form of a tree (with some ordering e.g., BST), we can search for a

given key in moderate time (quicker than Linked List and slower than arrays). Self-

balancing search trees like AVL and Red-Black trees guarantee an upper bound of O(logn)

for search.

3) We can insert/delete keys in moderate time (quicker than Arrays and slower than Unordered Linked Lists).

Self-balancing search trees like AVL and Red-Black trees guarantee an upper bound of O(logn) for

insertion/deletion.

4) Like Linked Lists and unlike Arrays, Pointer implementation of trees don„t have an upper limit on number of

nodes as nodes are linked using pointers.

The following are the common uses of tree.

1. Manipulate hierarchical data.

2. Make information easy to search (see tree traversal).

3. Manipulate sorted lists of data.

4. As a workflow for compositing digital images for visual effects.

5. Router algorithms

Graphs:

Basic Concepts:

Graph is a data structure that consists of following two components:

1. A finite set of vertices also called as nodes.

2. A finite set of ordered pair of the form (u, v) called as edge.

The pair is ordered because (u, v) is not same as (v, u) in case of directed graph (di-graph).

The pair of form (u, v) indicates that there is an edge from vertex u to vertex v. The edges

may contain weight/value/cost.

Graph and its representations:

Graphs are used to represent many real life applications: Graphs are used to represent

networks. The networks may include paths in a city or telephone network or circuit network.

Graphs are also used in social networks like linkedIn, facebook. For example, in facebook,

each person is represented with a vertex(or node). Each node is a structure and contains

information like person id, name, gender and locale.

Following is an example undirected graph with 5 vertices.

Following two are the most commonly used representations of graph.

1. Adjacency Matrix

2. Adjacency List

There are other representations also like, Incidence Matrix and Incidence List. The choice of

the graph representation is situation specific. It totally depends on the type of operations to be

performed and ease of use.

Adjacency Matrix:

Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph.

Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge from vertex i to

vertex j. Adjacency matrix for undirected graph is always symmetric. Adjacency Matrix is

also used to represent weighted graphs. If adj[i][j] = w, then there is an edge from vertex i to

vertex j with weight w.

The adjacency matrix for the above example graph is:

Adjacency Matrix Representation of the above graph

Pros: Representation is easier to implement and follow. Removing an edge takes O(1) time.

Queries like whether there is an edge from vertex ‗u„ to vertex ‗v„ are efficient and can be

done O(1).

Cons: Consumes more space O(V^2). Even if the graph is sparse (contains less number of

edges), it consumes the same space. Adding a vertex is O(V^2) time.

Adjacency List:

An array of linked lists is used. Size of the array is equal to number of vertices. Let the array

be array[]. An entry array[i] represents the linked list of vertices adjacent to the ith vertex.

This representation can also be used to represent a weighted graph. The weights of edges can

be stored in nodes of linked lists. Following is adjacency list representation of the above

graph.

Adjacency List Representation of the above

Graph Breadth First Traversal for a Graph

Breadth First Traversal (or Search) for a graph is similar to Breadth First Traversal of a tree

The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same

node again. To avoid processing a node more than once, we use a boolean visited array.

For example, in the following graph, we start traversal from vertex 2. When we come to

vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don„t

mark visited vertices, then 2 will be processed again and it will become a non-terminating

process. Breadth First Traversal of the following graph is 2, 0, 3, 1.

Algorithm: Breadth-First Search Traversal BFS(V,

E, s) for each u in V − {s}

do color[u] ← WHITE d[u] ← infinity π[u] ← NIL color[s] ←

GRAY d[s] ← 0 π[s] ← NIL Q ← {}

ENQUEUE(Q, s)

while Q is non-

empty do u ←

DEQUEUE(Q)

for each v adjacent to

u do if color[v] ←

WHITE

then color[v] ← GRAY d[v] ← d[u]

+ 1 π[v] ← u

ENQUEUE(Q, v) DEQUEUE(Q)

color[u] ← BLACK

Source Code:

Program to print BFS traversal from a given

source # vertex. BFS(int s) traverses vertices

reachable from collections import defaultdict

This class represents a directed graph using

adjacency # list representation

class Graph:

Constructor

def init (self):

default dictionary to store

graph self.graph =
defaultdict(list)

function to add an edge to

graph def addEdge(self,u,v):

self.graph[u].append(v)

Function to print a BFS of

graph def BFS(self, s):

Mark all the vertices as not

visited visited =

[False]*(len(self.graph))

Create a queue for

BFS queue = []

Mark the source node as visited and

enqueue it queue.append(s)

visited[s] =

True while

queue:

Dequeue a vertex from queue and

print it s = queue.pop(0)

print (s)

Get all adjacent vertices of the

dequeued # vertex s. If a adjacent has

not been visited, # then mark it visited

and enqueue it
for i in self.graph[s]:

if visited[i] ==

False:

queue.append(i)

visited[i] = True

Driver code

Create a graph given in the above
diagram g = Graph()

g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)

print ("Following is Breadth First Traversal (starting from vertex

2)") g.BFS(2)

Applications of Breadth First Traversal

1) Shortest Path and Minimum Spanning Tree for unweighted graph In unweighted graph, the shortest path

is the path with least number of edges. With Breadth First, we always reach a vertex from given source using

minimum number of edges. Also, in case of unweighted graphs, any spanning tree is Minimum Spanning Tree

and we can use either Depth or Breadth first traversal for finding a spanning tree.

2) Peer to Peer Networks. In Peer to Peer Networks like BitTorrent, Breadth First Search is used to find all

neighbor nodes.

3) Crawlers in Search Engines: Crawlers build index using Bread First. The idea is to start from source page

and follow all links from source and keep doing same. Depth First Traversal can also be used for crawlers, but

the advantage with Breadth First Traversal is, depth or levels of built tree can be limited.

4) Social Networking Websites: In social networks, we can find people within a given distance

‗k„ from a person using Breadth First Search till ‗k„ levels.

5) GPS Navigation systems: Breadth First Search is used to find all neighboring locations.

6) Broadcasting in Network: In networks, a broadcasted packet follows Breadth First Search to reach all

nodes.

7) In Garbage Collection: Breadth First Search is used in copying garbage collection using Cheney„s

algorithm.

8) Cycle detection in undirected graph: In undirected graphs, either Breadth First Search or Depth First

Search can be used to detect cycle. In directed graph, only depth first search can be used.

9) Ford–Fulkerson algorithm In Ford-Fulkerson algorithm, we can either use Breadth First or Depth First

Traversal to find the maximum flow. Breadth First Traversal is preferred as it reduces worst case time

complexity to O(VE
2
).

10) To test if a graph is Bipartite We can either use Breadth First or Depth First Traversal.

11) Path Finding We can either use Breadth First or Depth First Traversal to find if there is a path between

two vertices.

12) Finding all nodes within one connected component: We can either use Breadth First or Depth First

Traversal to find all nodes reachable from a given node.

Depth First Traversal for a Graph

Depth first search for a graph is similar to depth first traversal of a tree. The only catch here

is, unlike trees, graphs may contain cycles, so we may come to the same node again. To avoid

processing a node more than once, we use a Boolean visited

array. For example, in the following graph, we start traversal from vertex 2. When we come

to vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don„t

mark visited vertices, then 2 will be processed again and it will become a non-terminating

process. Depth First Traversal of the following graph is 2, 0, 1, 3

http://en.wikipedia.org/wiki/Cheney%27s_algorithm
http://en.wikipedia.org/wiki/Cheney%27s_algorithm

Algorithm Depth-First Search

The DFS forms a depth-first forest comprised of more than one depth-first trees. Each tree is

made of edges (u, v) such that u is gray and v is white when edge (u, v) is explored. The

following pseudocode for DFS uses a global timestamp time.

DFS (V, E)

for each vertex u in V[G]

do color[u] ← WHITE π[u] ←

NIL time ← 0

for each vertex u in

V[G] do if color[u] ←

WHITE then DFS-

Visit(u)

DFS-Visit(u)

color[u] ← GRAY time ← time + 1 d[u] ←

time for each vertex v adjacent to u

do if color[v] ←

WHITE then π[v] ← u

DFS-Visit(v) color[u] ← BLACK time ←

time + 1 f[u] ← time

Source Code:

Python program to print DFS traversal

from a # given given graph

from collections import defaultdict

This class represents a directed graph

using # adjacency list representation

class Graph:

Constructor
def init (self):

default dictionary to store

graph self.graph =

defaultdict(list)

function to add an edge to

graph def addEdge(self,u,v):
self.graph[u].append(v)

A function used by

DFS def
DFSUtil(self,v,visited):

Mark the current node as visited and print it

visited[v]= True
print (v),

Recur for all the vertices adjacent to this

vertex for i in self.graph[v]:

if visited[i] == False:

self.DFSUtil(i,

visited)

The function to do DFS traversal. It

uses # recursive DFSUtil()
def DFS(self,v):

Mark all the vertices as not
visited visited =

[False]*(len(self.graph))

Call the recursive helper function to

print # DFS traversal
self.DFSUtil(v,visited)

Driver code

Create a graph given in the above

diagram g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)

g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)

print ("Following is DFS from (starting from vertex

2)") g.DFS(2)

Applications of Depth First Search

Depth-first search (DFS) is an algorithm (or technique) for traversing a graph. Following are

the problems that use DFS as a building block.

1) For an unweighted graph, DFS traversal of the graph produces the minimum spanning tree and all pair

shortest path tree.

2) Detecting cycle in a graph

A graph has cycle if and only if we see a back edge during DFS. So we can run DFS for the

graph and check for back edges.

3) Path Finding

We can specialize the DFS algorithm to find a path between two given vertices u and z.

i) Call DFS(G, u) with u as the start vertex.

ii) Use a stack S to keep track of the path between the start vertex and the current vertex.

iii) As soon as destination vertex z is encountered, return the path as the contents of the stack

4) Topological Sorting

5) To test if a graph is bipartite

6) Finding Strongly Connected Components of a graph A directed graph is called strongly connected if

there is a path from each vertex in the graph to every other vertex.

UNIT – V

BINARY TREES AND HASHING

Binary Trees

A tree whose elements have at most 2 children is called a binary tree. Since each element in a

binary tree can have only 2 children, we typically name them the left and right child.

A Binary Tree node contains following parts.

1. Data

2. Pointer to left child

3. Pointer to right child

Properties of binary tree

1) The maximum number of nodes at level ‘l’ of a binary tree is 2
l-1

.

Here level is number of nodes on path from root to the node (including root and node). Level

of root is 1.

This can be proved by induction.

For root, l = 1, number of nodes = 2
1-1

 = 1

Assume that maximum number of nodes on level l is 2
l-1

Since in Binary tree every node has at most 2 children, next level would have twice nodes, i.e. 2

* 2
l-1

 Maximum number of nodes in a binary tree of height ‘h’ is 2
h
 – 1.

Here height of a tree is maximum number of nodes on root to leaf path. Height of a tree

with single node is considered as 1.

This result can be derived from point 2 above. A tree has maximum nodes if all levels have

maximum nodes. So maximum number of nodes in a binary tree of height h is 1 + 2 + 4 + .. +

2
h-1

. This is a simple geometric series with h terms and sum of this series is 2
h
 – 1.

In some books, height of the root is considered as 0. In this convention, the above formula

becomes 2h+1 – 1

In a Binary Tree with N nodes, minimum possible height or minimum number of levels is ?

Log2(N+1) ?
This can be directly derived from point 2 above. If we consider the convention where height of a
leaf

node is considered as 0, then above formula for minimum possible height becomes ?

Log2(N+1) ? – 1

2) A Binary Tree with L leaves has at least ? Log2L ? + 1 levels A Binary

tree has maximum number of leaves (and minimum number of levels) when all levels are fully filled. Let all

leaves be at level l, then below is true for number of leaves L.

L <= 2
l-1

 [From Point

1] l = ? Log2L ? + 1

where l is the minimum number of levels.

3) In Binary tree where every node has 0 or 2 children, number of leaf nodes is always one

more than nodes with two children.

L = T + 1

Where L = Number of leaf nodes

T = Number of internal nodes with two children

Operations on binary trees

A binary tree is a binary search tree (BST) if and only if an inorder traversal of the binary tree

results in a sorted sequence. The idea of a binary search tree is that data is stored according to

an order, so that it can be retrieved very efficiently.

A BST is a binary tree of nodes ordered in the following way:

1. Each node contains one key (also unique)

2. The keys in the left subtree are < (less) than the key in its parent node

3. The keys in the right subtree > (greater) than the key in its parent node

4. Duplicate node keys are not allowed.

Here is an example of a BST

Exercise : Draw the binary tree which would be created by inserting the following numbers

in the order given

50 30 25 75 82 28 63 70 4 43 74 35

If the BST is built in a “balanced” fashion, then BST provides log time access to each element.

Consider an arbitrary BST of the height k. The total possible number of nodes is

given by k+1

2 - 1

In order to find a particular node we need to perform one comparison on each level, or

maximum of(k+1) total. Now, assume that we know the number of nodes and we want to

figure out the number of comparisons. We have to solve the following equation with respect

to k:

Assume that we have a “balanced” tree with n nodes. If the maximum number of

comparisons to find an entry is (k+1), where k is the height, we have

K+1

2 - 1 = n

we obtain

k = log2(n+1) – 1 = O(log2n)

This means, that a “balanced” BST with n nodes has a maximum order of log(n) levels, and

thus it takes at most log(n) comparisons to find a particular node. This is the most important

fact you need to know about BSTs. But building a BST as a balanced tree is not a trivial task.

If the data is randomly distributed, then we can expect that a tree can be “almost” balanced,

or there is a good probability that it would be. However, if the data already has a pattern, then

just naïve insertion into a BST will result in unbalanced trees. For example, if we just insert

the data 1, 2, 3, 4, 5 into a BST in the order they come, we will end up with a tree that looks

like this:

Binary search trees work well for many applications (one of them is a dictionary or help

browser). But they can be limiting because of their bad worst-case performance height = O(#

nodes). Imagine a binary search tree created from a list that is already sorted.

Clearly, the tree will grow to the right or to the left. A binary search tree with this

worst- case structure is no more efficient than a regular linked list. A great care needs to be

taken in order to keep the tree as balanced as possible. There are many techniques for

balancing a tree including AVL trees, and Splay Trees.

BST OPERATIONS

There are a number of operations on BST‟s that are important to understand.

Inserting a node

A naïve algorithm for inserting a node into a BST is that, we start from the root node, if the

node to insert is less than the root, we go to left child, and otherwise we go to the right child

of the root. We continue this process (each node is a root for some sub tree) until we find a

null pointer (or leaf node) where we cannot go any further. We then insert the node as a left

or right child of the leaf node based on node is less or greater than the leaf node. We note that

a new node is always inserted as a leaf node. A recursive algorithm for inserting a node into a

BST is as follows. Assume we insert a node N to tree T. if the tree is empty, the we return

new node N as the tree. Otherwise, the problem of inserting is reduced to inserting the node N

to left of right sub trees of T, depending on N is less or greater than T. A definition is as

follows.

Insert(N, T) = N if T is empty

= insert(N, T.left) if N < T

= insert(N, T.right) if N > T

Searching for a node

Searching for a node is similar to inserting a node. We start from root, and then go left or right

until we find (or not find the node). A recursive definition of search is as follows. If the node

is equal to root, then we return true. If the root is null, then we return false. Otherwise we

recursively solve the problem for T.left or T.right, depending on N < T or N > T. A recursive

definition is as follows.

Search should return a true or false, depending on the node is found or

not. Search(N, T) = false if T is empty

= true if T = N

= search(N, T.left) if N < T

= search(N, T.right) if N > T

Deleting a node

A BST is a connected structure. That is, all nodes in a tree are connected to some other

node. For example, each node has a parent, unless node is the root. Therefore deleting a node

could affect all sub trees of that node. For example, deleting node 5 from the tree

could result in losing sub trees that are rooted at 1 and 9. Hence we need to be careful about

deleting nodes from a tree. The best way to deal with deletion seems to be considering special

cases. What if the node to delete is a leaf node? What if the node is a node with just one

child? What if the node is an internal node (with two children). The latter case is the hardest

to resolve. But we will find a way to handle this situation as well.

Case 1 : The node to delete is a leaf node

This is a very easy case. Just delete the node. We are done

Case 2 : The node to delete is a node with one child.

This is also not too bad. If the node to be deleted is a left child of the parent, then we connect

the left pointer of the parent (of the deleted node) to the single child. Otherwise if the node to

be deleted is a right child of the parent, then we connect the right pointer of the parent (of the

deleted node) to single child.

Case 3: The node to delete is a node with two children

This is a difficult case as we need to deal with two sub trees. But we find an easy way to

handle it. First we find a replacement node (from leaf node or nodes with one child) for the

node to be deleted. We need to do this while maintaining the BST order property. Then we

swap leaf node or node with one child with the node to be deleted (swap the data) and delete

the leaf node or node with one child (case 1 or case 2)

Next problem is finding a replacement leaf node for the node to be deleted. We can easily

find this as follows. If the node to be deleted is N, the find the largest node in the left sub tree

of N or the smallest node in the right sub tree of N. These are two candidates that can replace

the node to be deleted without losing the order property. For example, consider the following

tree and suppose we need to delete the root 38.

Then we find the largest node in the left sub tree (15) or smallest node in the right sub tree

(45) and replace the root with that node and then delete that node. The following set of images

demonstrates this process.

Balanced Search Trees

AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights

of left and right subtrees cannot be more than one for all nodes.

An Example Tree that is an AVL Tree

The above tree is AVL because differences between heights of left and right subtrees for

every node is less than or equal to 1.

An Example Tree that is NOT an AVL Tree

The above tree is not AVL because differences between heights of left and right subtrees for

8 and 18 is greater than 1.

Why AVL Trees?

Most of the BST operations (e.g., search, max, min, insert, delete.. etc) take O(h) time where

h is the height of the BST. The cost of these operations may become O(n) for a skewed

Binary tree. If we make sure that height of the tree remains O(Logn) after every insertion

and deletion, then we can guarantee an upper bound of O(Logn) for all these operations. The

height of an AVL tree is always O(Logn) where n is the number of nodes in the tree.

Insertion

To make sure that the given tree remains AVL after every insertion, we must augment the

standard BST insert operation to perform some re-balancing. Following are two basic

operations that can be performed to re-balance a BST without violating the BST property

(keys(left) < key(root) < keys(right)).

1) Left Rotation

2) Right Rotation

T1, T2 and T3 are subtrees of the

tree rooted with y (on the left side)

or x (on

the right side)

y x

/ \ Right Rotation / \

x T3 - - - - - - - > T1 y

/ \ < - - - - - - - / \

T1 T2 Left Rotation T2 T3

Keys in both of the above trees follow

the following order

keys(T1) < key(x) < keys(T2) < key(y) <

keys(T3) So BST property is not violated

anywhere.

Steps to follow for insertion

Let the newly inserted node be w

1) Perform standard BST insert for w.

2) Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced node, y be the

child of z that comes on the path from w to z and x be the grandchild of z that comes on the path from w to z.

3) Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be 4

possible cases that needs to be handled as x, y and z can be arranged in 4 ways. Following are the possible 4

arrangements:

a) y is left child of z and x is left child of y (Left Left Case)

b) y is left child of z and x is right child of y (Left Right Case)

c) y is right child of z and x is right child of y (Right Right Case)

d) y is right child of z and x is left child of y (Right Left Case)

Following are the operations to be performed in above mentioned 4 cases. In all of the cases,

we only need to re-balance the subtree rooted with z and the complete tree becomes balanced

as the height of subtree (After appropriate rotations) rooted with z becomes same as it

was before insertion. (See this video lecture for proof)

a) Left Left Case

T1, T2, T3 and T4 are subtrees.

z y

/ \ / \

y T4 Right Rotate (z) x z

/ \ - - - - - - - - -> / \ / \

x T3 T1 T2 T3 T4

http://www.youtube.com/watch?v=TbvhGcf6UJU

/ \

T1 T2

b) Left Right Case

z z x

/ \ / \ / \

y T4 Left Rotate (y) x T4 Right Rotate(z) y z

/ \ - - - - - - - - -> / \ - - - - - - - -> / \ / \

T1 x y T3 T1 T2 T3 T4

/ \ / \

T2 T3 T1 T2

c) Right Right Case

z y

/ \ / \

T1 y Left Rotate(z) z x

/ \ - - - - - - - -> / \ / \

T2 x T1 T2 T3 T4

/ \

T3 T4

d) Right Left Case

z z x

/ \ / \ / \

T1 y Right Rotate (y) T1 x Left Rotate(z) z y

/ \ - - - - - - - - -> / \ - - - - - - - -> / \ / \

x T4 T2 y T1 T2 T3 T4

/ \

/ \

T2 T3 T3 T4

Inserti

on

Examples:

Implementation

Following is the implementation for AVL Tree Insertion. The following implementation uses

the recursive BST insert to insert a new node. In the recursive BST insert, after insertion, we

get pointers to all ancestors one by one in a bottom-up manner. So we don‟t need parent

pointer to travel up. The recursive code itself travels up and visits all the ancestors of the

newly inserted node.

1) Perform the normal BST insertion.

2) The current node must be one of the ancestors of the newly inserted node. Update the height of the current

node.

3) Get the balance factor (left subtree height – right subtree height) of the current node.

4) If balance factor is greater than 1, then the current node is unbalanced and we are either in Left Left case or

left Right case. To check whether it is left left case or not, compare the newly inserted key with the key in left

subtree root.

5) If balance factor is less than -1, then the current node is unbalanced and we are either in Right

Right case or Right-Left case. To check whether it is Right Right case or not, compare

the newly inserted key with the key in right subtree root.

M way trees:

A binary search tree has one value in each node and two subtrees. This notion easily

generalizes to an M-way search tree, which has (M-1) values per node and M subtrees. M is

called the degreeof the tree. A binary search tree, therefore, has degree 2.

In fact, it is not necessary for every node to contain exactly (M-1) values and have exactly M

subtrees. In an M-way subtree a node can have anywhere from 1 to (M-1) values, and the

number of (non- empty) subtrees can range from 0 (for a leaf) to 1+(the number of values). M

is thus a fixed upper limit on how much data can be stored in a node.

The values in a node are stored in ascending order, V1 < V2 < ... Vk (k <= M-1) and the

subtrees are placed between adjacent values, with one additional subtree at each end. We can

thus associate with each value a `left' and `right' subtree, with the right subtree of Vi being the

same as the left subtree of V(i+1). All the values in V1's left subtree are less than V1 ; all the

values in Vk's subtree are greater than Vk; and all the values in the subtree between V(i) and

V(i+1) are greater than V(i) and less than V(i+1).

For example, here is a 3-way search tree:

In our examples it will be convenient to illustrate M-way trees using a small value of M. But

bear in mind that, in practice, M is usually very large. Each node corresponds to a physical

block on disk, and M represents the maximum number of data items that can be stored in a

single block. M is maximized in order to speedup processing: to move from one node to

another involves reading a block from disk

- a very slow operation compared to moving around a data structure stored in memory.

The algorithm for searching for a value in an M-way search tree is the obvious generalization

of the algorithm for searching in a binary search tree. If we are searching for value X are and

currently at node consisting of values V1...Vk, there are four possible cases that can arise:

1. If X < V1, recursively search for X in V1's left subtree.

2. If X > Vk, recursively search for X in Vk's right subtree.

3. If X=Vi, for some i, then we are done (X has been found).

4. the only remaining possibility is that, for some i, Vi < X < V(i+1). In this case recursively search for X in

the subtree that is in between Vi and V(i+1).

For example, suppose we were searching for 68 in the tree above. At the root, case (2) would

apply, so we would continue the search in V2's right subtree. At the root of this subtree, case

(4) applies, 68 is between V1=55 and V2=70, so we would continue to search in the subtree

between them. Now case

(3) applies, 68=V2, so we are done. If we had been searching for 69, exactly the same processing would have

occurred down to the last node. At that point, case (2) would apply, but the subtree we want to search in is

empty. Therefore we conclude that 69 is not in the tree.

Other the algorithms for binary search trees - insertion and deletion - generalize in a similar

way. As with binary search trees, inserting values in ascending order will result in a

degenerate M-way search tree; i.e. a tree whose height is O(N) instead of O(logN). This is a

problem because all the important operations are O(height), and it is our aim to make them

O(logN). One solution to this problem is to force the tree to be height-balanced.

B Trees:

A B-tree is an M-way search tree with two special properties:

1. It is perfectly balanced: every leaf node is at the same depth.

2. Every node, except perhaps the root, is at least half-full, i.e. contains M/2 or more values (of course, it

cannot contain more than M-1 values). The root may have any number of values (1 to M-1).

Here is a 3-way B-tree containing the same values:

Hashing and Collision:

Suppose we want to design a system for storing employee records keyed using phone

numbers. And we want following queries to be performed efficiently:

1. Insert a phone number and corresponding information.

2. Search a phone number and fetch the information.

3. Delete a phone number and related information.

We can think of using the following data structures to maintain information about different

phone numbers.

1. Array of phone numbers and records.

2. Linked List of phone numbers and records.

3. Balanced binary search tree with phone numbers as keys.

4. Direct Access Table.

For arrays and linked lists, we need to search in a linear fashion, which can be costly in

practice. If we use arrays and keep the data sorted, then a phone number can be searched in

O(Logn) time using Binary Search, but insert and delete operations become costly as we have

to maintain sorted order.

With balanced binary search tree, we get moderate search, insert and delete times. All of

these operations can be guaranteed to be in O(Logn) time.

Another solution that one can think of is to use a direct access table where we make a big

array and use phone numbers as index in the array. An entry in array is NIL if phone number

is not present, else the array entry stores pointer to records corresponding to phone number.

Time complexity wise this solution is the best among all, we can do all operations in O(1)

time. For example to insert a phone number, we create a record with details of given phone

number, use phone number as index and store the pointer to the created record in table.

This solution has many practical limitations. First problem with this solution is extra space

required is huge. For example if phone number is n digits, we need O(m * 10
n
) space for

table where m is size of a pointer to record. Another problem is an integer in a programming

language may not store n digits.

Due to above limitations Direct Access Table cannot always be used. Hashing is the solution

that can be used in almost all such situations and performs extremely well compared to above

data structures like Array, Linked List, Balanced BST in practice. With hashing we get O(1)

search time on average (under reasonable assumptions) and O(n) in worst case.

Hashing is an improvement over Direct Access Table. The idea is to use hash function that

converts a given phone number or any other key to a smaller number and uses the small

number as index in a table called hash table.

Hash Function: A function that converts a given big phone number to a small practical

integer value. The mapped integer value is used as an index in hash table. In simple terms, a

hash function maps a big number or string to a small integer that can be used as index in hash

table.

A good hash function should have following properties

1) Efficiently computable.

2) Should uniformly distribute the keys (Each table position equally likely for each key)

For example for phone numbers a bad hash function is to take first three digits. A better

function is consider last three digits. Please note that this may not be the best hash function.

There may be better ways.

Hash Table: An array that stores pointers to records corresponding to a given phone number.

An entry in hash table is NIL if no existing phone number has hash function value equal to

the index for the entry.

Collision Handling: Since a hash function gets us a small number for a big key, there is

possibility that two keys result in same value. The situation where a newly inserted key maps

to an already occupied slot in hash table is called collision and must be handled using some

collision handling technique. Following are the ways to handle collisions:

 Chaining: The idea is to make each cell of hash table point to a linked list of records that have same hash

http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Hash_table

function value. Chaining is simple, but requires additional memory outside the table.

 Open Addressing: In open addressing, all elements are stored in the hash table itself. Each table entry

contains either a record or NIL. When searching for an element, we one by one examine table slots until the

desired element is found or it is clear that the element is not in the table.

Applications of hashing:

Hashing provides constant time search, insert and delete operations on average. This is why

hashing is one of the most used data structure, example problems are, distinct elements,

counting frequencies of items, finding duplicates, etc.

There are many other applications of hashing, including modern day cryptography hash

functions. Some of these applications are listed below:

 Message Digest

 Password Verification

 Data Structures(Programming Languages)

 Compiler Operation

 Rabin-Karp Algortithm

 Linking File name and path together

Message Digest:

This is an application of cryptographic Hash Functions. Cryptographic hash functions are the

functions which produce an output from which reaching the input is close to impossible. This

property of hash functions is called irreversibility.

Lets take an Example:

Suppose you have to store your files on any of the cloud services available. You have to be

sure that the files that you store are not tampered by any third party. You do it by computing

“hash” of that file using a Cryptographic hash algorithm. One of the common cryptographic

hash algorithms is SHA

256. The hash thus computed has a maximum size of 32 bytes. So a computing the hash of

large number of files will not be a problem. You save these hashes on your local machine.

Now, when you download the files, you compute the hash again. Then you match it with the

previous hash computed. Therefore, you know whether your files were tampered or not. If

anybody tamper with the file, the hash value of the file will definitely change. Tampering the

file without changing the hash is nearly impossible.

Password Verification

Cryptographic hash functions are very commonly used in password verification. Let‟s

understand this using an Example:

When you use any online website which requires a user login, you enter your E-mail and

password to authenticate that the account you are trying to use belongs to you. When the

password is entered, a hash of the password is computed which is then sent to the server for

verification of the password.

86

The passwords stored on the server are actually computed hash values of the original

passwords. This is done to ensure that when the password is sent from client to server,

no sniffing is there.

Data Structures(Programming Languages):

Various programming languages have hash table based Data Structures. The basic idea

is to create a key-value pair where key is supposed to be a unique value, whereas value

can be same for different keys. This implementation is seen in unordered_set &

unordered_map in C++, HashSet & HashMap in java, dict in python etc.

Compiler Operation:

The keywords of a programming language are processed differently than other

identifiers. To differentiate between the keywords of a programming language(if, else,

for, return etc.) and other identifiers and to successfully compile the program, the

compiler stores all these keywords in a set which is implemented using a hash table.

Rabin-Karp Algorithm:

One of the most famous applications of hashing is the Rabin-Karp algorithm. This is

basically a string-searching algorithm which uses hashing to find any one set of

patterns in a string. A practical application of this algorithm is detecting plagiarism.

Linking File name and path together:

When moving through files on our local system, we observe two very crucial

components of a file i.e. file_name and file_path. In order to store the correspondence

between file_name and file_path the system uses a map(file_name, file_path)which is

implemented using a hash table.

