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UNIT – I 

INTRODUCTION TO DATA STRUCTURES, SEARCHING AND 

SORTING 
 

What is data structure? 
 

“The way information is organized in the memory of a computer is called a data 

structure”. (OR) 

A data structure is a way of organizing data that considers not only the items stored, but also 

their relationship to each other. Advance knowledge about the relationship between data 

items allows designing of efficient algorithms for the manipulation of data. 

Definition of data structures 
 

• Many algorithms require that we use a proper representation of data to achieve efficiency. 

 
• This representation and the operations that are allowed for it are called data structures. 

 

• Each data structure allows insertion, access, deletion etc. 

 

Why do we need data structures? 
 

• Data structures allow us to achieve an important goal: component reuse 

 
• Once each data structure has been implemented once, it can be used over and over again in various 

applications. 

Common data structures are 

 

Stacks Queues Lists 

Trees Graphs Tables 

Classification of Data Structure: 
 

Based on how the data items or operated it will classified into 
 

1. Primitive Data Structure is one the data items are operated closest to the machine level instruction. 

Eg : int, char and double. 
 

2. Non-Primitive Data Structure is one that data items are not operated closest to machine level 

instruction. 

Linear Data Structure : In which the data items are stored in sequence order. 

Eg: Arrays, Lists, Stacks and Queues. 



Operations performed on any linear structure: 
 

1. Traversal – Processing each element in the list 

 

2. Search – Finding the location of the element with a given value. 

 

3. Insertion – Adding a new element to the list. 

 

4. Deletion – Removing an element from the list. 

 
5. Sorting – Arranging the elements in some type of order. 

 

6. Merging – Combining two lists into a single list. 

 

Non Linear Data Structure: In which the order of data items is not presence. 

Eg : Trees, Graphs. 

Searching Techniques: 
 

Searching is one of the most common problems that arise in computing. Searching is the 

algorithmic process of finding a particular item in a collection of items. A search typically 

answers either True or False as to whether the item is present. On occasion it may be 

modified to return where the item is found. Search operations are usually carried out on a key 

field. Well, to search an element in a given array, there are two popular algorithms available: 

1. Linear Search 

 

2. Binary Search 

 

Linear Search: 
 

Linear search is a very basic and simple search algorithm. In Linear search, we search an 

element or value in a given array by traversing the array from the starting, till the desired 

element or value is found. It compares the element to be searched with all the elements 

present in the array and when the element is matched successfully, it returns the index of the 

element in the array, else it return -1. Linear Search is applied on unsorted or unordered lists, 

when there are fewer elements in a list. 

Features of Linear Search Algorithm 
 

1. It is used for unsorted and unordered small list of elements. 

 

2. It has a time complexity of O(n), which means the time is linearly dependent on the number of elements, 

which is not bad, but not that good too. 

 

Source Code: 
 

def linear_search(obj, item, 

start=0): for i in range(start, 

len(obj)): 

if obj[i] == item: 

return i 

return -1 



arr=[1,2,3,4,5,6,7,8] 

x=4 

result=linear_search(arr,

x) if result==-1: 

print ("element does not exist") 

else: 

print ("element exist in position %d" %result) 

Binary Search: 
 

1. Binary Search is used with sorted array or list. In binary search, we follow the following steps: 

 
2. We start by comparing the element to be searched with the element in the middle of the list/array. 

3. If we get a match, we return the index of the middle element. 

 
4. If we do not get a match, we check whether the element to be searched is less or greater than in value than 

the middle element. 

5. If the element/number to be searched is greater in value than the middle number, then we pick the 

elements on the right side of the middle element(as the list/array is sorted, hence on the right, we will have all 

the numbers greater than the middle number), and start again from the step1. 

If the element/number to be searched is lesser in value than the middle number, then we pick 

the elements on the left side of the middle element, and start again from the step 1. Binary 

Search is  useful when there is large number of elements in an array and they are sorted. So a 

necessary condition for Binary search to work is that the list/array should be sorted. 

Features of Binary Search 
 

1. It is great to search through large sorted arrays. 

 

2. It has a time complexity of O(log n) which is a very good time complexity 

 

Source code: 

array =[1,2,3,4,5,6,7,8,9] 

defbinary_search(searchfor,

arr): lowerbound=0 

upperbound=len(array

)-1 found=False 

while found==False and 

lowerbound<=upperbound: 

midpoint=(lowerbound+upperbound)//2 

if 

array[midpoint]==searchf

or: found =True 

return found 

elif 

array[midpoint]<searchfor

: lowerbound=midpoint+1 

else: 

upperbound=midpoint-1 



return found 

searchfor=int(input("what are you searching 

for?")) if binary_search(searchfor,array): 

print ("element 

found") else: 

print ("element not found") 
 

Operations on Data Structures: 
 

The basic operations that are performed on data structures are as follows: 
 

Insertion: Insertion means addition of a new data element in a data structure. 
 

Deletion: Deletion means removal of a data element from a data structure if it is 

found. Searching: Searching involves searching for the specified data element in a 

data structure. Traversal: Traversal of a data structure means processing all the data 

elements present in it. Sorting: Arranging data elements of a data structure in a 

specified order is called sorting. 

Merging: Combining elements of two similar data structures to form a new data structure of the 

same type, is called merging. 

Sorting Techniques: 
 

Sorting is the basic operation in computer science. Sorting is the process of arranging data in 

some given sequence or order (in increasing or decreasing order). 

For example you have an array which contains 10 elements as follow: 
 

10, 3 ,6 12, 4, 17, 5, 9 
 

After sorting value must be: 
 

3, 4, 5, 6, 9, 10, 12, 17 
 

Bubble sort: 
 

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent 

elements if they are in wrong order. 

Example: 

First Pass: 

( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 

> 1. 

( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4 

( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2 

( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), 

algorithm does not swap them. 

Second Pass: 

( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ) 



( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

Now, the array is already sorted, but our algorithm does not know if it is completed. The 

algorithm needs one whole pass without any swap to know it is sorted. 
 

Third Pass: 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 

Source Code: 
 

# Python program for implementation of Bubble Sort 

 
def 

bubbleSort(arr): 

n = len(arr) 

 

# Traverse through all array 

elements for i in range(n): 

 
# Last i elements are already in 

place for j in range(0, n-i-1): 

 
# traverse the array from 0 to n-i-1 

# Swap if the element found is 

greater # than the next element 

if arr[j] > arr[j+1] : 

arr[j], arr[j+1] = arr[j+1], arr[j] 

 
# Driver code to test above 

arr = [64, 34, 25, 12, 22, 11, 90] 

 
bubbleSort(arr) 

 
print ("Sorted array 

is:") for i in 

range(len(arr)): 

print ("%d" %arr[i]) 
 

 
Selection sort: 
 

The selection sort algorithm sorts an array by repeatedly finding the minimum element 

(considering ascending order) from unsorted part and putting it at the beginning. The 

algorithm maintains two subarrays in a given array. 

1) The subarray which is already sorted. 

 

2) Remaining subarray which is unsorted. 



In every iteration of selection sort, the minimum element (considering ascending order) from 

the unsorted subarray is picked and moved to the sorted subarray. 

Source Code: 
 

# Python program for implementation of 

Selection # Sort 

import sys 

A = [64, 25, 12, 22, 11] 

# Traverse through all array 

elements for i in range(len(A)): 

 
# Find the minimum element in 

remaining # unsorted array 

min_idx = i 

for j in range(i+1, 

len(A)): if A[min_idx] 

> A[j]: 

min_idx = j 

 
# Swap the found minimum element with the first 

element A[i], A[min_idx] = A[min_idx], A[i] 

# Driver code to test 

above print ("Sorted 

array") 

for i in 

range(len(A)): 

print("%d" 

%A[i]) 

Insertion sort: 

Insertion sort is a simple sorting algorithm that works the way we sort playing cards in our 

hands. Algorithm 

Step 1 − If it is the first element, it is already sorted. return 1; 
 

Step 2 − Pick next element 
 

Step 3 − Compare with all elements in the sorted sub-list 
 

Step 4 − Shift all the elements in the sorted sub-list that is greater 

than the value to be sorted 

Step 5 − Insert the value 
 

Step 6 − Repeat until list is sorted 



Source Code: 

# Python program for implementation of Insertion 

Sort # Function to do insertion sort 
def insertionSort(arr): 

 

# Traverse through 1 to 

len(arr) for i in range(1, 

len(arr)): 

key = arr[i] 
 

# Move elements of arr[0..i-1], that 

are # greater than key, to one 

position ahead # of their current 

position 
j = i-1 
while j >=0 and key < 

arr[j] : arr[j+1] = 

arr[j] 
j -= 1 

arr[j+1] = key 

 
 

# Driver code to test 

above arr = [12, 11, 13, 

5, 6] 
insertionSort(arr) 
print ("Sorted array 

is:") for i in 

range(len(arr)): 

print ("%d" %arr[i]) 
Comparison of Sorting Algorithms: 

In this table, n is the number of records to be sorted. The columns "Best" ,"Average" and 

"Worst" give the time complexity in each case, under the assumption that the length of each 

key is constant, and that therefore all comparisons, swaps, and other needed operations can 

proceed in constant time. "Memory" denotes the amount of auxiliary storage needed beyond 

that used by the list itself, under the same assumption. The run times and the memory 

requirements listed below should be understood to be inside big O notation.Time Complexity 

comparison of Sorting Algorithms: 

Algorithm Data Structure Time Complexity 

  Best Average Worst 

Quick sort Array O(n log(n)) O(n log(n)) O(n^2) 

Merge sort Array O(n log(n)) O(n log(n)) O(n log(n)) 

Bubble Sort Array O(n) O(n^2) O(n^2) 

Insertion Sort Array O(n) O(n^2) O(n^2) 

Select Sort Array O(n^2) O(n^2) O(n^2) 



Space Complexity comparison of Sorting Algorithms: 
 
 

Algorithm Data Structure 
Worst Case Auxiliary Space 

Complexity 

Quick sort Array O(n) 

Merge sort Array O(n) 

Bubble Sort Array O(1) 

Insertion Sort Array O(1) 

Select Sort Array O(1) 

Bucket Sort Array O(nk) 



                                          UNIT – II 

                           LINEAR DATA STRUCTURES 

Stacks: Primitive operations 

 

“A stack is an ordered list in which all insertions and deletions are made at one end, called the 

top”. Stacks are sometimes referred to as Last In First Out (LIFO) lists 

Stacks have some useful terminology associated with them: 
 

 Push To add an element to the stack

 
 Pop To remove an element from the stock

 

 Peek To look at elements in the stack without removing them

 

 LIFO Refers to the last in, first out behavior of the stack

 

 FILO Equivalent to LIFO

 

 
 

 

Simple representation of a stack 
 

Given a stack S=(a[1],a[2], .. a[n]) then we say that a1 is the bottom most element and element 

a[i]) 

is on top of element a[i-1], 1<i<=n. 
 

Implementation of stacks using arrays 
 

1. array (static memory ). 

 
2. linked list (dynamic memory) 

 

The operations of stack is 
 

1. PUSH operations 

 

2. POP operations 

 

3. PEEK operations 

 

The Stack ADT 
 

A stack S is an abstract data type (ADT) supporting the following three methods: 



push(n):Inserts the item n at the top of stack 
 

pop() : Removes the top element from the stack and returns that top element. An error occurs 

if the stack is empty. 

peek() :Returns the top element and an error occurs if the stack is empty. 

1.Adding an element into a stack. ( called PUSH operations ) 

Adding element into the TOP of the stack is called PUSH operation. 
 

Check conditions : 
 

TOP = N , then STACK FULL 

 

where N is maximum size of the stack. 
 

PUSH algorithmprocedure add(item : items); 
 

{ 
 

add item to the global stack stack ; top is the current top of stack and n is its maximum size} 
 

begin 
 

if top = n then stackfull; top := 

top+1; stack(top) := item; 

end: {of add} 
 

Implementation in C using array: 
 

/* here, the variables stack, top and size are global 

variables */ void push (int item) 

{ 
 

if (top == size-1) 

printf(“Stack is 

Overflow”); else 

{ 
 

top = top + 1; 

stack[top] = 

item; 

} 
 

 

 

 



2. Deleting an element from a stack. ( called POP operations ) 

 

Deleting or Removing element from the TOP of the stack is called POP operations. 

Check Condition: 
 

TOP = 0, then STACK EMPTY 
 

Deletion in stack ( POP Operation ) 
 

procedure delete(var item : items); 
 

{ 
 

remove top element from the stack stack and put it in the item} 
begin 
 

if top = 0 then stackempty; item := 

stack(top); top := top-1; 

end; {of delete} 
 

3. Peek Operation: 

 

 Returns the item at the top of the stack but does not delete it.

 

 This can also result in underflow if the stack is empty.

 

Source Code: 
 

# Function to create a stack. It initializes size of 

stack as 0 def createStack(): 

stack = [] 

return 

stack 

# Stack is empty when stack size 

is 0 def isEmpty(stack): 

return len(stack) == 0 

# Function to add an item to stack. It increases size 

by 1 def push(stack, item): 

if(len(stack)==siz

e): 

print("overflow

") return 

stack.append(item) 

# Function to remove an item from stack. It decreases 

size by 1 def pop(stack): 

if 

(isEmpty(stack))

: 

print("underflow

") return 

return stack.pop() 

 



#Function to know peek element 

def peek(stack): 

if(isEmpty(stack)): 

print("stack 

empty") return 

else: 

n=len(stack) 

print("peek element is: ",stack[n-1]) 

 
#Function to display 

stack def display(stack): 

print(stack) 

 
# Driver program to test above 

functions stack = createStack() 

size=int(input("enter the size of 

stack")) 

print("Menu\n1.push(p)\n2.pop(o)\n3.peek(

e)") choice=1 

while choice!='q': 

print("enter your 

choice") ch=input() 

choice=ch.lower() 

if choice=='p': 

push(stack,int(input("enter a 

value"))) display(stack) 

elif choice=='o': 

pop(stack) 

display(stac

k) 

elif choice=='e': 

peek(stack) 

else: 

print("enter proper choice") 

 
Applications of stacks arithmetic 

 

1. It is very useful to evaluate arithmetic expressions. (Postfix Expressions) 

 

2. Infix to Postfix Transformation 

 
3. It is useful during the execution of recursive programs 

 
4. A Stack is useful for designing the compiler in operating system to store local variables inside a function 

block. 

5. A stack (memory stack) can be used in function calls including recursion. 

 

6. Reversing Data 

7. Reverse a List 



8. Convert Decimal to Binary 

 

9. Parsing – It is a logic that breaks into independent pieces for further processing 

 
10. Backtracking 

Examples : 

1. Infix notation A+(B*C) equivalent Postfix notation ABC*+ 

 

2. Infix notation (A+B)*C Equivalent Postfix notation AB+C* 

 

Expression evaluation and syntax parsing 
 

Calculators employing reverse Polish notation (also known as postfix notation )use  a stack 

structure to hold values. 

Expressions can be represented in prefix, postfix or infix notations. Conversion from one 

form of the expression to another form needs a stack. Many compilers use a stack for parsing 

the syntax of expressions, program blocks etc. before translating into low level code. Most of 

the programming languages are context-free languages allowing them to be parsed with stack 

based machines. Note that natural languages are context sensitive languages and stacks alone 

are not enough to interpret their meaning. 

Infix, Prefix and Postfix Notation: 
 

We are accustomed to write arithmetic expressions with the operation between the two 

operands: a+b or c/d. If we write a+b*c, however, we have to apply precedence rules to avoid 

the ambiguous evaluation (add first or multiply first?). 

There's no real reason to put the operation between the variables or values. They can just as 

well precede or follow the operands. You should note the advantage of prefix and postfix: the 

need for precedence rules and parentheses are eliminated. 
 

Infix Prefix Postfix 

a + b + a b a b + 

a + b * c + a * b c a b c * + 

(a + b) * (c - d) * + a b - c d a b + c d - * 

b * b - 4 * a * c   

40 - 3 * 5 + 1   

 

Source Code: 
 

# Python program to evaluate value of a postfix 

expression # Class to convert the expression 



class Evaluate: 
 

# Constructor to initialize the class 

variables def init (self, capacity): 

self.top = -1 
self.capacity = 

capacity 

# This array is used a 

stack self.array = [] 
 

# check if the stack is 

empty def isEmpty(self): 
return True if self.top == -1 else False 

 

# Return the value of the top of the 

stack def peek(self): 
return self.array[-1] 

 
# Pop the element from the 

stack def pop(self): 

if not 

self.isEmpty(): 

self.top -= 1 

return 

self.array.pop() else: 

return "$" 
 

# Push the element to the 

stack def push(self, op): 

self.top += 1 

self.array.append(o
p) 

 

# The main function that converts given infix 
expression # to postfix expression 

def evaluatePostfix(self, exp): 
 

# Iterate over the expression for 

conversion for i in exp: 

 

# If the scanned character is an 

operand # (number here) push it to 

the stack 

if i.isdigit(): 

self.push(i

) 
 

# If the scanned character is an operator, 

# pop two elements from stack and apply 

it. else: 

val1 = 

self.pop() val2 

= self.pop() 

self.push(str(eval(val2 + i + 



val1))) return int(self.pop()) 

# Driver program to test above 

function exp = "231*+9-" 
obj = Evaluate(len(exp)) 

print ("Value of {0} is {1}".format(exp, obj.evaluatePostfix(exp))) 
 

Application of stacks: 
 

Arithmetic Expressions: Polish Notation 
 

 An arithmetic expression will have operands and operators.

 

 Operator precedence listed below: Highest: ($) 

Next Highest :(*) and (/)

Lowest :(+) and (-) 
 

 For most common arithmetic operations, the operator symbol is placed in between its two operands. This 

is called infix notation.

Example: A + B , E * F 
 

 Parentheses can be used to group the operations.

 

Example: (A + B) * C 
 

 Accordingly, the order of the operators and operands in an arithmetic expression does not uniquely 

determine the order in which the operations are to be performed.

 Polish notation refers to the notation in which the operator symbol is placed before its two operands. This 

is called prefix notation.

Example: +AB, *EF 
 

 The fundamental property of polish notation is that the order in which the operations are to be performed 

is completely determined by the positions of the operators and operands in the expression.

 

 Accordingly, one never needs parentheses when writing expressions in Polish notation.

 

 Reverse Polish Notation refers to the analogous notation in which the operator symbol is placed after its 

two operands. This is called postfix notation.

Example: AB+, EF* 
 

Here also the parentheses are not needed to determine the order of the operations. 
 

The computer usually evaluates an arithmetic expression written in infix notation in two steps, 
 

1. It converts the expression to postfix notation. 

 

2. It evaluates the postfix expression. 

 

In each step, the stack is the main tool that is used to accomplish the given task. 



Algorithm postfix expression 
 

Initialize a stack, opndstk to be empty. 
 

{ 
 

scan the input string reading one element at a time into symb 
 

} 
 

While ( not end of input string ) 
 

{ 
 

Symb := next input character; 
 

If symb is an operand Then push (opndstk,symb) 
 

Else 
 

[symbol is an operator] 

 

 

Opnd1:=pop(opndstk); Opnd2:=pop(opndnstk); 
 

Value:=result of applying symb to opnd1 & opnd2 

Push(opndstk,value); Result := pop (opndstk); 

Example: 
 

6 2 3 + - 3 8 2 / + * 2 $ 3 + 
 

Symbol Operand 1 (A) Operand 2 (B) Value (A Ä B) STACK 

6    6 

2    6, 2 

3    6, 2, 3 

+ 2 3 5 6, 5 

- 6 5 1 1 

3    1, 3 

8    1, 3, 8 

2    1, 3, 8, 2 

/ 8 2 / 1, 3, 4 

+ 3 4 7 1, 7 



* 1 7 7 7 

2    7, 2 

$ 7 2 49 49 

3    49, 3 

+ 49 3 52 52 

The Final value in the STACK is 52. This is the answer for the given expression. 
 

(1) run time stack for function calls ( write factorial number calculation procedure) 
 

push local data and return address onto stack 
 

return by popping off local data and then popping off address and returning to it return value can 

be pushed onto stack before returning, popped off by caller 

(2) expression parsing 
 

e.g. matching brackets: [ ... ( ... ( ... ) [ ...( 

... ) ...] ... ) ... ] 
 

push left ones, pop off and compare with right ones 
 

4) Infix To Postfix Conversion 
 

Infix expressions are often translated into postfix form in which the operators appear after 

their operands. Steps: 

1. Initialize an empty stack. 

 

2. Scan the Infix Expression from left to right. 

 

3. If the scannned character is an operand, add it to the Postfix Expression. 

 

4. If the scanned character is an operator and if the stack is empty, then push the character to stack. 

5. If the scanned character is an operator and the stack is not empty, Then 

 

(a) Compare the precedence of the character with the operator on the top of the stack. 

 
(b) While operator at top of stack has higher precedence over the scanned character & stack is not empty. 

(i) POP the stack. 

 

(ii) Add the Popped character to Postfix String. ( c ) Push the scanned character to stack. 

 

6. Repeat the steps 3-5 till all the characters 

 

7. While stack is not empty, 



(a) Add operator in top of stack 

 

(b) Pop the stack. 

 

8. Return the Postfix string. 

 

Algorithm Infix to Postfix conversion ( without parenthesis) 
 

Opstk = the empty 

stack; while ( not end 

of input ) 

{  
 

symb = next input 

character; if ( symb is an 

operand ) 

add symb to the Postfix 

String else 

{ 
 

While( ! empty (opstk) && prec ( stacktop ( opstk), symb) ) 
 

{ 
 

topsymb = pop ( opstk ) 
 

add topsymb to the Postfix String; 
 

} / * end of while */ Push(opstk, symb); 
 

} /* end else */ 
 

} /* end while * / 
 

While( ! empty ( opstk ) ) 
 

{ 
 

topsymb = pop (opstk) 
 

add topsymb to the Postfix String 
 

} /* end of while */ 

Return the Postfix 

String. Source Code: 

# Python program to convert infix expression to postfix 
 



# Class to convert the 

expression import string 

class Conversion: 
 

# Constructor to initialize the class 

variables def init (self, capacity): 

self.top = -1 
self.capacity = 

capacity 

# This array is used a 

stack self.array = [] 

# Precedence 

setting self.output = 

[] 

self.precedence = {'+':1, '-':1, '*':2, '/':2, '^':3} 
 

# check if the stack is 

empty def isEmpty(self): 

return True if self.top == -1 else False 
 

# Return the value of the top of the 

stack def peek(self): 
return self.array[-1] 

 
# Pop the element from the 

stack def pop(self): 

if not 

self.isEmpty(): 

self.top -= 1 

return 
self.array.pop() else: 

return "$" 
 

# Push the element to the 

stack def push(self, op): 

self.top += 1 

self.array.append(o

p) 

 

# A utility function to check is the given 

character # is operand 

def isOperand(self, 

ch): return 

ch.isalpha() 
 

# Check if the precedence of operator is 

strictly # less than top of stack or not 

def notGreater(self, 

i): try: 
a = self.precedence[i] 
b = 

self.precedence[self.peek()] 

return True if a <= b else 

False 

except 



KeyError: 

return False 
 

# The main function that converts given infix 

expression # to postfix expression 

def infixToPostfix(self, exp): 
 

# Iterate over the expression for 

conversion for i in exp: 

# If the character is an operand, 

# add it to output 
if self.isOperand(i): 

self.output.append(

i) 

 
# If the character is an '(', push it to 

stack elif i == '(': 

self.push(i) 
 

# If the scanned character is an ')', pop 

and # output from the stack until and '(' 

is found elif i == ')': 

while( (not self.isEmpty()) and self.peek() != 

'('): a = self.pop() 

self.output.append(a) 

if (not self.isEmpty() and self.peek() != 
'('): return -1 

else: 

self.pop() 
 

# An operator is 

encountered else: 

while(not self.isEmpty() and self.notGreater(i)): 

self.output.append(self.pop()) 

self.push(i) 
 

# pop all the operator from the 

stack while not self.isEmpty(): 

self.output.append(self.pop()) 
 

result= 

"".join(self.output) 

print(result) 

# Driver program to test above 
function exp = "a+b*(c^d-

e)^(f+g*h)-i" 

obj = 

Conversion(len(exp)) 

obj.infixToPostfix(exp) 

 

 

 

 

 
 



QUEUE: 
 

“A queue is an ordered list in which all insertions at one end called REAR and deletions are 

made at another end called FRONT”. Queues are sometimes referred to as First In First 

Out (FIFO) 
 

Example 
 

1. The people waiting in line at a bank cash counter form a queue. 

 
2. In computer, the jobs  waiting in line to use the processor  for  execution. This queue is called 

Job Queue.  

Operations of Queue 

There are two basic queue operations. They are, 
 

Enqueue – Inserts an item / element at the rear end of the queue. An error occurs if the queue is 

full. 
 

Dequeue – Removes an item / element from the front end of the queue, and returns it to the 

user. An error occurs if the queue is empty. 

1. Addition into a queue 

 

procedure addq (item : items); 
 

{add item to the queue q} 
 

begin 
 

if rear=n then queuefull 
 

else begin 
 

rear :=rear+1; q[rear]:=item; 
 

end; end;{of addq} 
 

2. Deletion in a queue 

 

procedure deleteq (var item : items); 
 

{delete from the front of q and put into item} 
 

begin 
 

if front = rear then queueempty 
 

else begin 
 

front := front+1 item := q[front]; 
 

end;  



end  

Source Code: 

def   

enqueue(a,item

): global r 

global f 
 

if r==-1 and f==-

1: r=0 

f=0 

a.insert(r,ite

m) 

 

elif r==(n-1): 

print("overflow

") return 

else: 
r+=1 
a.insert(r,ite

m) display(a) 

def 

dequeue(a

): global r 

global f 

if r==(n-1) and f==(n-

1): item=a[f] 

r=-

1 
f=-

1 

elif r==-1 and f==-

1: 

print("underflow

") return 
else: 

item=a[f

] f+=1 

print("deleted item 

is:",item) display(a) 
 

def display(a): 

print("\ncurrent queue 

is:") for i in range(f,r+1): 

if f==-1 and r==-1: 

print("Queue is 

empty!") return 
print(a[i],end=" ") 
 

#DC 

n=int(input("enter the size of 
list")) a=[] 



r=- 

f=-

1 

print("Menu\n1.enqueue(e)\n2.dequeue(

d)") choice=1 

while choice!='q': 

print("enter your 

choice") ch=input() 

choice=ch.lower() 
if choice=='e': 

enqueue(a,int(input("enter a 

value"))) display(a) 

elif 

choice=='d

': 

dequeue(a) 

display(a) 
else: 

print("enter proper choice") 

Uses of Queues ( Application of queue ) 
 

Queues remember things in first-in-first-out (FIFO) order. Good for fair (first come first 

served) ordering of actions. 

Examples of use: (Application of stack ) 
 

1 scheduling 

 

processing of GUI events printing request 
 

2 simulation orders 

the events 

models real life queues (e.g. supermarkets checkout, phone calls on hold) 
 

Circular Queue : 
 

Location of queue is viewed in a circular form. The first location is viewed after the 

last one. Overflow occurs when all the locations are filled. 

 

 

rear 
 

 

 

 

 

 

 

front 
 

 

 

 

 



Algorithm Circular Queue Insert 
 

Void CQInsert ( int queue[ ], front, rear, item) 
 

{ 
 

if ( front = = 0 

) front = front 

+1; 

if ( ( ( rear = maxsize ) && ( front = = 1 ) ) || ( ( rear ! = 0 ) && ( front = rear +1))) 
 

{ 
 

printf( “ queue overflow “); if( rear = = 

maxsize ) rear = 1; 

else 

rear = rear + 1; q [ rear ] = item; 

} 

} 

Algorithm Circular Queue Delete 

int CQDelete ( queue [ ], front, rear ) 
 

{ 
 

if ( front = = 0 ) 
 

printf ( “ queue underflow 

“); else 

{ 
 

item = queue [ front ]; if(front = = rear ) 
 

{ 
 

front = 0; rear = 0; 
 

} 
 

else if ( front = = maxsize ) 
 

{ 
 

front = 1; 
 

} 
 

else 
 

front = front + 1; 
 

} 
 



return item; 
 

} 
 

Double ended queue (deque): 
 

Deque or Double Ended Queue is a generalized version of Queue data structure that allows insert 

and delete at both ends. 

Operations on Deque: 

Mainly the following four basic operations are performed on 

queue: insertFront(): Adds an item at the front of Deque. 

insertLast(): Adds an item at the rear of Deque. 

deleteFront(): Deletes an item from front of 

Deque. deleteLast(): Deletes an item from rear of 

Deque. 
 

In addition to above operations, following operations are also 

supported getFront(): Gets the front item from queue. 

getRear(): Gets the last item from queue. 

isEmpty(): Checks whether Deque is empty or 

not. isFull(): Checks whether Deque is full or 

not. 

Applications of Deque: 
 

Since Deque supports both stack and queue operations, it can be used as both. 
 

The Deque data structure supports clockwise and anticlockwise rotations in O(1) time which 

can be useful in certain applications. 

Also, the problems where elements need to be removed and or added both ends can be 

efficiently solved using Deque. 



UNIT – III                      

LINKED LIST 

Introduction to Linked List: 
 

A linked list is a linear collection of data elements, called nodes, where the linear order is 

given by means of pointers. Each node is divided into two parts: 

1. The first part contains the information of the element and 

 

2. The second part contains the address of the next node (link /next pointer field) in the list. 

 

The data items in the linked list are not in consecutive memory locations. They may be 

anywhere, but the accessing of these data items is easier as each data item contains the 

address of the next data item. 

Linked lists using dynamic variables: 
 

1. In array implementation of the linked lists a fixed set of nodes represented by an array is established at 

the beginning of the execution 

2. A pointer to a node is represented by the relative position of the node within the array. 

 

3. In array implementation, it is not possible to determine the number of nodes required for the linked list. 

Therefore; 

 

a. Less number of nodes can be allocated which means that the program will have overflow problem. 

b. More number of nodes can be allocated which means that some amount of the memory storage will be 

wasted. 

4. The solution to this problem is to allow nodes that are dynamic, rather than static. 

 

5. When a node is required storage is reserved /allocated for it and when a node is no longer needed, the 

memory storage is released /freed. 

Advantages of linked lists: 
 

1. Linked lists are dynamic data structures. i.e., they can grow or shrink during the execution of a program. 

 

2. Linked lists have efficient memory utilization. Here, memory is not pre-allocated. Memory is allocated 

whenever it is required and it is de-allocated (removed) when it is no longer needed. 

 

3. Insertion and Deletions are easier and efficient. Linked lists provide flexibility in inserting a data item at 

a specified position and deletion of the data item from the given position. 

4. Many complex applications can be easily carried out with linked lists. 

 

Disadvantages of linked lists: 
 

1. It consumes more space because every node requires a additional pointer to store address of the next 

node. 



2. Searching a particular element in list is difficult and also time consuming. 

 

Types of Linked Lists: 
 

Basically we can put linked lists into the following four items: 
 

1. Single Linked List. 

 

2. Double Linked List. 

 

3. Circular Linked List. 

 

4. Circular Double Linked List. 

 

A single linked list is one in which all nodes are linked together in some sequential manner. 

Hence, it is also called as linear linked list. 

A double linked list is one in which all nodes are linked together by multiple links which 

helps in accessing both the successor node (next node) and predecessor node (previous node) 

from any arbitrary node within the list. Therefore each node in a double linked list has two 

link fields (pointers) to point to the left node (previous) and the right node (next). This helps 

to traverse in forward direction and backward direction. 

A circular linked list is one, which has no beginning and no end. A single linked list can be 

made a circular linked list by simply storing address of the very first node in the link field of 

the last node. 

A circular double linked list is one, which has both the successor pointer and predecessor 

pointer in the circular manner. 

Comparison between array and linked list: 

 

ARRAY LINKED LIST 

Size of an array is fixed Size of a list is not fixed 

Memory is allocated from stack Memory is allocated from heap 

It is necessary to specify the number of elements 

during declaration (i.e., during 

It is not necessary to specify the number of 

elements during declaration (i.e., memory is 

compile time). allocated during run time). 

It occupies less memory than a linked list for the 

same number of elements. 
It occupies more memory. 

Inserting new elements at the front is potentially 

expensive because existing elements need to be 

shifted over to make room. 

 

Inserting a new element at any position can be 

carried out easily. 

Deleting an element from an array is not 

possible. 
Deleting an element is possible. 



Applications of linked list: 
 

1. Linked lists are used to represent and manipulate polynomial. Polynomials are expression containing terms 

with non zero coefficient and exponents. For example: 

P(x) = a0 X
n
 + a1 X

n-1
 + …… + an-1 X + an 

2. Represent very large numbers and operations of the large number such as addition, multiplication and 

division. 

3. Linked lists are to implement stack, queue, trees and graphs. 

 

4. Implement the symbol table in compiler construction. 

 

Single Linked List: 
 

The simplest kind of linked list is a singly-linked list, which has one link per node. This link 

points to the next node in the list, or to a null value or empty list if it is the final node. 

A singly linked list's node is divided into two parts. The first part holds or points to 

information about the node, and second part holds the address of next node. A singly linked 

list travels one way. 

 
 

 

 
The beginning of the linked list is stored in a "start" pointer which points to the first node. 

The first node contains a pointer to the second node. The second node contains a pointer to 

the third node, ... and so on. The last node in the list has its next field set to NULL to mark 

the end of the list. Code can access any node in the list by starting at the start and following 

the next pointers. 

The start pointer is an ordinary local pointer variable, so it is drawn separately on the left top 

to show that it is in the stack. The list nodes are drawn on the right to show that they are 

allocated in the heap. 

 

 



Implementation of Single Linked List: 
 
 

 

 

 

 
 

1.          Creating a structure with one data item and a next pointer, which will be pointing to next node   of 

the list. This is called as self-referential structure.Initialize the start pointer to be NULL.The basic 

operations in a single linked list are: 

 Creation.

 

 Insertion.

 

 Deletion.

 

 Traversing.

 

Advantages of singly linked list: 
 

1. Dynamic data structure. 

 

2. We can perform deletion and insertion anywhere in the list. 

 

3. We can merge two lists easily. 

Disadvantages of singly linked list: 
 

1. Backward traversing is not possible in singly linked list. 

 

2. Insertion is easy but deletion take some additional time, because disadvantage of backward traversing. 

 
Creating a node for Single Linked List: 

Creating a singly linked list starts with creating a node. Sufficient memory has to be allocated 

for  creating a node. The information is stored in the memory, allocated by using the malloc() 

function. The function getnode(), is used for creating a node, after allocating memory for the 

structure of type node, the information for the item (i.e., data) has to be read from the user, set 

next field to NULL and finally returns the address of the node 



 
 

 

Insertion of a Node: 
 

The new node can then be inserted at three different places namely: 
 

1. Inserting a node at the beginning. 

 

2. Inserting a node at the end. 

 

3. Inserting a node at intermediate position. 

 

Inserting a node at the beginning: 
 

The following steps are to be followed to insert a new node at the beginning of the list: 
 

1. Get the new node using getnode(). 

newnode = getnode(); 

2. If the list is empty then start = newnode. 

 

3. If the list is not empty, follow the steps given below: 

newnode -> next = start; start = newnode; 

 

 
Inserting a node at the end: 
 

1. The following steps are followed to insert a new node at the end of the list: 

 

2. Get the new node using getnode() 

newnode = getnode(); 

3. If the list is empty then start = newnode. 

 

4. If the list is not empty follow the steps given below: 

temp = start; 

while(temp -> next != NULL) 



1. temp = temp -> next; temp -> next = newnode; 

 

Inserting a node at intermediate position: 
 

1. The following steps are followed, to insert a new node in an intermediate position in the list: 

 

2. Get the new node using getnode(). 

newnode = getnode(); 

3. Ensure that the specified position is in between first node and last node. If not, specified position is 

invalid. This is done by countnode() function. 

4. Store the starting address (which is in start pointer) in temp and prev pointers. Then traverse the temp 

pointer upto the specified position followed by prev pointer. 

5. After reaching the specified position, follow the steps given below: prev -

> next = newnode; newnode -> next = temp; 

 
Deletion of a node: 
 

A node can be deleted from the list from three different places namely. 
 

1. Deleting a node at the beginning. 

 

2. Deleting a node at the end. 

 

3. Deleting a node at intermediate position. 

 

Deleting a node at the beginning: 
 

The following steps are followed, to delete a node at the beginning of the list: 
 

1. If list is empty then display „Empty List‟ message. 



2. If the list is not empty, follow the steps given below: 

 

i. temp = start; 

 

ii. start = start -> next; 

 

iii. free(temp); 

 

 

 

Deleting a node at the end: 
 

1. The following steps are followed to delete a node at the end of the list: 

 

2. If list is empty then display „Empty List‟ message. 

 

3. If the list is not empty, follow the steps given below: 

 

temp = prev = start; while(temp -> next != NULL) 
 

{ 
 

1. prev = temp; 

 

2. temp = temp -> next; 

 

} 
 

prev -> next = NULL; free(temp); 
 
 

 

 
Deleting a node at Intermediate position: 

The following steps are followed, to delete a node from an intermediate position in the list (List 

must contain more than two node). 

1. If list is empty then display „Empty List‟ message 

 

2. If the list is not empty, follow the steps given below. 

 

3. if(pos > 1 && pos < nodectr) 



{ 
 

temp = prev = start; ctr = 

1; while(ctr < pos) 

{ 

temp = temp -> next; ctr++; 

} 

 
prev -> next = temp -> next; 

free(temp); printf("\n node 

deleted.."); 

} 

 

 
Traversal and displaying a list (Left to Right): 

Traversing a list involves the following steps: 
 

1. Assign the address of start pointer to a temp pointer. 

 

2. Display the information from the data field of each node. 

 

Source Code: 
 

class Node: 

def init (self,data): 

self.data=data 

self.next=None 

 

class Sll: 

def init (self): 

self.start=None 

def createlist(self): 

n=int(input("enter number of 

node")) for i in range(n): 

data=int(input("enter 

balue")) 

newnode=Node(data) 

if self.start==None: 

self.start=newno

de 

else: 

temp=self.start 

while temp.next!=None: 

temp=temp.next 

temp.next=newno



de           def insertend(self): 

n=int(input("enter value")) 

newnode=Node(n

) if 

self.start==None: 

self.start=newno

de else: 

temp=self.start 

while 

temp.next!=None: 

temp=temp.next 

temp.next=newno

de    def insertmid(self): 

n=int(input("enter value")) 

newnode=Node(n) 

pos=int(input("enter 

position")) c=self.count() 

if self.start==NOne: 

self.start=newno

de 

else: 

if pos>1 and 

pos<=c: 

temp=self.start 

prev=temp 

i=1 

while i<pos: 

prev=temp 

temp=temp.ne

xt i=i+1 

pre.next=newnode 

newnode.next=temp 

 
def count(self): 

nc=0 

temp=self.sta

rt 

while 

temp!=None: 

nc+=1 

temp=temp.ne

xt 

print("number of nodes=%d" 

%nc) return nc 

 

def 

deletemid(self

): count=1 



if 

self.start==No

ne: 

print("empty") 

else: 

position=int(input("enter 

position")) c=self.count() 

if position>c: 

print("check position") 

if position>1 and 

position<c: 

temp=prev=self.start 

while count<position: 

rev=temp 

temp=temp.ne

xt 

count=count+1 

prev.next=temp.ne

xt del temp 

else: 

print("check position") 

 
def 

deleteend(self

): global prev 

if 

self.start==No

ne: 

print("empty") 

else: 

temp=self.sta

rt 

prev=self.star

t 

while 

temp.next!=None: 

prev=temp 

temp=temp.next 

prev.next=No

ne del temp 

 

def insertbegin(self): 

n=int(input("enter 

value")) 

newnode=Node(n) 

if self.start==None: 

self.start=newno

de 



else: 

temp=self.start 

newnode.next=temp 

self.start=newnode 

 

def 

deletebegin(self): 

global prev 

if 

self.start==No

ne: 

print("empty") 

else: 

temp=self.start 

newstart=self.start.ne

xt del temp 

self.start=newstart 

 
def display(self): 

print("elements in single linked list 

are:") if self.start==None: 

print("empty"

) else: 

temp=self.start 

print("%d" 

%(temp.data)) 

while temp.next!=None: 

temp=temp.next 

print("%d" 

%(temp.data)) 

 
### OUTSIDE CLASS 

def menu(): 

print("1. create list \n2. insert begin \n3. insertend \n4. insertmid \n5. deletebegin \n6. 

deleteend 

\n7. deletemid \n8. count \n9. display \n10. 

exit") def stop(): 

print("u r about to terminate program") 

exit(0) 

s=Sll() 

def default(): 

print("check ut input") 

menu() 

while True: 

menu={ 

1: s.createlist, 

2: s.insertbegin, 

3: s.insertend, 



 

4: s.insertmid, 
 

5: s.deletebegin, 
 

6: s.deleteend, 
 

7: s.deletemid, 
 

8: s.count, 
 

9: s.display, 
 

10: stop} 
 

option=int(input("enter ur choice")) 

menu.get(option)() 

reak; case 

10:del_at_mid(); break; 

case 11:exit(0); 
 

} 
 

} 
 

} 

Applications of Single Linked List to Represent Polynomial Expressions: 
 

The computer implementation requires implementing polynomials as a list of pairs of 

coefficient and exponent. Each of these pairs will constitute a structure, so a polynomial will 

be represented as a list of structures. A linked list structure that represents polynomials 5x
4
 – 

8x
3
 + 2x

2
 + 4x

1
 + 9x

0
 illustrates in figure ---- 

 

 
Sparse Matrix Manipulation: 
 

A sparse matrix is a matrix populated primarily with zeros as elements of the table. 
 

Example of sparse matrix 
 

[ 11 22  0  0  0  0  0 ] 
 

[  0 33 44  0  0  0  0 ] 
 

[ 0 0 55 66 77 0 0 ] 
 

[  0  0  0  0  0 88  0 ] 
 



[  0  0  0  0  0  0 99 ] 
 

The above sparse matrix contains only 9 nonzero elements of the 35, with 26 of those 

elements as zero. The basic data structure for a matrix is a two-dimensional array. Each entry 

in the array represents an element ai,j of the matrix and can be accessed by the two indices i 

and j. Traditionally, i indicates the row number (top-to-bottom), while j indicates the column 

number (left-to-right) of each element in the table. For an m×n matrix, enough memory to 

store up to (m×n) entries to represent the matrix is needed. 

Circular Linked List: 
 

It is just a single linked list in which the link field of the last node points back to the address 

of the first node. A circular linked list has no beginning and no end. It is necessary to establish 

a special pointer called start pointer always pointing to the first node of the list. 

 



The basic operations in a circular single linked list are: 
 

1. Creation. 

 

2. Insertion. 

 

3. Deletion. 

 

4. Traversing. 

 

Creating a circular single Linked List with ‘n’ number of nodes: 
 

The following steps are to be followed to create „n‟ number of nodes: 
 

1. Get the new node using getnode(). 

newnode = getnode(); 

2. If the list is empty, assign new node as start. 

start = newnode; 

3. If the list is not empty, follow the steps given below: 

 

temp = start; 
 

while(temp -> next != NULL) temp = temp -> 

next; temp -> next = newnode; 

4. Repeat the above steps „n‟ times. 

newnode -> next = start; 

Inserting a node at the beginning: 
 

The following steps are to be followed to insert a new node at the beginning of the circular list: 
 

1. Get the new node using getnode(). 

newnode = getnode(); 

2. If the list is empty, assign new node as start. start = newnode; 

newnode -> next = start; 

3. If the list is not empty, follow the steps given below: 

 

last = start; 
 

while(last -> next != start) last = last -> next; newnode -> next = start; start = 

newnode; last -> next = start; 



 

 
 

 

Inserting a node at the end: 
 

The following steps are followed to insert a new node at the end of the list: 
 

1. Get the new node using getnode(). 

newnode = getnode(); 

2. If the list is empty, assign new node as start. start = newnode; 

newnode -> next = start; 

3. If the list is not empty follow the steps given below: temp = start; 

while(temp -> next != start) temp = temp -> next; 

temp -> next = newnode; newnode -> next = start; 

 

 
Deleting a node at the beginning: 
 

The following steps are followed, to delete a node at the beginning of the list: 
 

 If the list is empty, display a message „Empty List‟.

 

 If the list is not empty, follow the steps given below: last = temp = start; 

while(last -> next != start)

last = last -> next; start = start -> 

next; last -> next = start; 



 
 

Deleting a node at the end: 
 

The following steps are followed to delete a node at the end of the list: 
 

1. If the list is empty, display a message „Empty List‟. 

 

2. If the list is not empty, follow the steps given below: 

temp = start; prev = start; 

while(temp -> next != start) 
 

{ 
 

prev = temp; 
 

temp = temp -> next; 
 

} 
 

prev -> next = start; 
 

3. After deleting the node, if the list is empty then start = NULL. 

 

 

Traversing a circular single linked list from left to right: 
 

The following steps are followed, to traverse a list from left to right: 
 

1. If list is empty then display „Empty List‟ message. 

 

2. If the list is not empty, follow the steps given below: temp = start; do 

{ 
 

temp = temp -> next; 
 

} while(temp != start); 



Source Code: 
 

# Python program to demonstrate circular linked list 

traversal # Structure for a Node 

class Node: 

# Constructor to create a new 

node def init (self, data): 

self.data = data 

self.next = 

None 

 

class CircularLinkedList: 

# Constructor to create a empty circular 

linked list def init (self): 

self.head = None 

# Function to insert a node at the beginning 

of a # circular linked list 

def push(self, data): 

ptr1 = Node(data) 

temp = self.head 

ptr1.next = 

self.head 

 
# If linked list is not None then set the 

next of # last node 

if self.head is not None: 

while(temp.next != 

self.head): 

temp = 

temp.next 

temp.next = ptr1 

 

else: 

ptr1.next = ptr1 # For the first 

node self.head = ptr1 

# Function to print nodes in a given circular linked 

list def printList(self): 

temp = self.head 

if self.head is not 

None: while(True): 

print "%d" 

%(temp.data), temp = 

temp.next 

if (temp == 

self.head): break 

 



# Driver program to test above 

function # Initialize list as empty 

cllist = CircularLinkedList() 

# Created linked list will be 11->2->56-

>12 cllist.push(12) 

cllist.push(56) 

cllist.push(2) 

cllist.push(11) 

 
print "Contents of circular Linked 

List" cllist.printList() 

 
Double Linked List: 

Doubly-linked list is a more sophisticated form of linked list data structure. Each node of the 

list contain two references (or links) – one to the previous node and other to the next node. 

The previous link of the first node and the next link of the last node points to NULL. In 

comparison to singly-linked list, doubly- linked list requires handling of more pointers but 

less information is required as one can use the previous links to observe the preceding 

element. It has a dynamic size, which can be determined only at run time. 

A double linked list is a two-way list in which all nodes will have two links. This helps in 

accessing both successor node and predecessor node from the given node position. It provides 

bi-directional traversing. Each node contains three fields: 

1. Left link. 

 

2. Data. 

 

3. Right link. 

 

The left link points to the predecessor node and the right link points to the successor node. 

The data field stores the required data. The basic operations in a double linked list are: 

1. Creation. 

 

2. Insertion. 

 

3. Deletion. 

 

4. Traversing. 

 
 



The beginning of the double linked list is stored in a "start" pointer which points to the first  

node. The first node‟s left link and last node‟s right link is set to NULL. 

 
 

 

 

 

 

 
Creating a node for Double Linked List: 
 

Creating a double linked list starts with creating a node. Sufficient memory has to be 

allocated for creating a node. The information is stored in the memory, allocated by using the 

malloc() function. 

Creating a Double Linked List with ‘n’ number of nodes: 
 

The following steps are to be followed to create „n‟ number of nodes: 
 

1. Get the new node using getnode(). 

newnode =getnode(); 

2. If the list is empty then start = newnode. 

 

3. If the list is not empty, follow the steps given below: 

 

i. The left field of the new node is made to point the previous node. 

 

ii. The previous nodes right field must be assigned with address of the new node. 

 

4. Repeat the above steps „n‟ times. 

 

 



Inserting a node at the beginning: 
 

The following steps are to be followed to insert a new node at the beginning of the list: 
 

1. Get the new node using getnode(). 

newnode=getnode(); 

2. If the list is empty then start = newnode. 

 

3. If the list is not empty, follow the steps given below: newnode -> right = start; start -> 

left = newnode; start = newnode; 

 

 
Inserting a node at the end: 
 

The following steps are followed to insert a new node at the end of the list: 
 

1. Get the new node using getnode() 

newnode=getnode(); 

2. If the list is empty then start = newnode. 

 

3. If the list is not empty follow the steps given below: temp = start; 

while(temp -> right != NULL) temp = temp -> right; 

temp -> right = newnode; newnode -> left = temp; 
 

 



Inserting a node at an intermediate position: 
 

The following steps are followed, to insert a new node in an intermediate position in the list: 
 

1. Get the new node using getnode(). 

newnode=getnode(); 

2. Ensure that the specified position is in between first node and last node. If not, specified position is 

invalid. This is done by countnode() function. 

3. Store the starting address (which is in start pointer) in temp and prev pointers. Then traverse the temp 

pointer upto the specified position followed by prev pointer. 

4. After reaching the specified position, follow the steps given below: newnode -> left = temp; newnode 

-> right = temp -> right; temp -> right -> left = newnode; temp -> right = newnode; 

 

Deleting a node at the beginning: 
 

The following steps are followed, to delete a node at the beginning of the list: 
 

1. If list is empty then display „Empty List‟ message. 

 

2. If the list is not empty, follow the steps given below: temp = start; start 

= start -> right; start -> left = NULL; free(temp); 

 
Deleting a node at the end: 
 

The following steps are followed to delete a node at the end of the list: 
 

1. If list is empty then display „Empty List‟ message 

 

2. If the list is not empty, follow the steps given below: temp = start; 

while(temp -> right != NULL) 



{ 
 

temp = temp -> right; 

} 
 

temp -> left -> right = NULL; free(temp); 
 
 

 
Deleting a node at Intermediate position: 
 

The following steps are followed, to delete a node from an intermediate position in the list (List 

must contain more than two nodes). 

1. If list is empty then display „Empty List‟ message. 

 

2. If the list is not empty, follow the steps given below: 

 

i. Get the position of the node to delete. 

 
ii. Ensure that the specified position is in between first node and last node. If not, specified position is 

invalid. 

iii. Then perform the following steps: 

 

if(pos > 1 && pos < nodectr) 

{ 

 
temp = start; i = 

1; while(i < pos) 

{ 

 
temp = temp -> right; i++; 

} 

 
temp -> right -> left = temp -> left; temp -> left -> right = temp -> right; 

free(temp); printf("\n node deleted.."); 

} 
 



Traversal and displaying a list (Left to Right): 
 

The following steps are followed, to traverse a list from left to right: 
 

1. If list is empty then display „Empty List‟ message. 

 

2. If the list is not empty, follow the steps given below: 

temp = start; while(temp != NULL) 

{ 
 

print temp -> data; temp = temp -> right; 
 

} 
 

Traversal and displaying a list (Right to Left): 
 

The following steps are followed, to traverse a list from right to left: 
 

1. If list is empty then display „Empty List‟ message. 

2. If the list is not empty, follow the steps given below: temp = start; 

while(temp -> right != NULL) temp = temp -> right; 

while(temp != NULL) 

{ 

 
print temp -> data; temp = temp -> left; 

} 

 
Source Code: 

Class 

Node(): 

def init (self, next_node=None, previous_node=None, data=None): 

self.next_node = next_node 

self.previous_node = previous_node 

self.data = data 

class LinkedList(): 

def init (self, node): 

assert isinstance(node, Node) 

self.first_node = node 

self.last_node = node 

def push(self, node): 

'''Pushes the node <node> at the "front" of the ll 

''' 

node.next_node = self.first_node 

node.previous_node = None 

self.first_node.previous_node = node 

self.first_node = node 

def pop(self): 



'''Pops the last node out of the list''' 

old_last_node = self.last_node 

to_be_last = self.last_node.previous_node 

to_be_last.next_node = None 

old_last_node.previous_node = None 

# Set the last node to the "to_be_last" 

self.previous_node = to_be_last 

return old_last_node 

def remove(self, node): 

'''Removes and returns node, and connects the previous and next 

nicely 

''' 

next_node = node.next_node 

previous_node = node.previous_node 

previous_node.next_node = next_node 

next_node.previous_node = previous_node 

# Make it "free" 

node.next_node = node.previous_node = None 

return node 

def str (self): 

next_node = self.first_node 

s = "" 

while next_node: 

s += "--({:0>2d})--\n".format(next_node.data) 

next_node = next_node.next_node 

return s 

return 

node1 = Node(data=1) 

linked_list = LinkedList(node1) 

for i in xrange(10): 

if i == 5: 

node5 = Node(data=5) 

linked_list.push(node5) 

else: 

linked_list.push(Node(data=i)) 

print linked_list 

print "popping" 

print linked_list.pop().data 

print "\n\n" 

print linked_list 

print "\n\n" 

linked_list.push(Node(data=10)) 

print "\n\n" 

print linked_list 

linked_list.remove(node5) 

print "\n\n" 

print linked_list 



Stack using linked list: 
 

# Python program for linked list implementation of 

stack # Class to represent a node 

class StackNode: 

# Constructor to initialize a 

node def init (self, data): 

self.data = data 

self.next = 

None 

 

class Stack: 

# Constructor to initialize the root of linked 

list def init (self): 

self.root = 

None def 

isEmpty(self): 

return True if self.root is None else 

False def push(self, data): 

newNode = 

StackNode(data) 

newNode.next = self.root 

self.root = newNode 

print ("%d pushed to stack" %(data)) 

 
def pop(self): 

if (self.isEmpty()): 

return float("-

inf") 

temp = self.root 

self.root = 

self.root.next popped 

= temp.data return 

popped 

 

def peek(self): 

if self.isEmpty(): 

return float("-

inf") 

return self.root.data 

 
# Driver program to test above 

class stack = Stack() 

stack.push(1

0) 

stack.push(2

0) 

stack.push(3



0) 

 
print ("%d popped from stack" 

%(stack.pop())) print ("Top element is %d 

" %(stack.peek())) 

 

Queue using linked list. 

# program to implement queues using linked list 

 
class stack(object): 

def init (self, value=None, 

next=None): self.value = value 

self.next = next 

 
def push(self, value): 

oldstack = stack(self.value, self.next) 

self.value = value 

self.next = oldstack 

 
def pop(self): 

outputval = self.value 

self.value, self.next = self.next.value, 

self.next.next return outputval 

def size(self): 

numelements = 0 

nextval = self.next 

while (nextval != 

None): nextval = 

nextval.next 

numelements += 1 

return numelements 

 
def isEmpty(self): 

if (self.value == 

None): return True 

else: 

return False 

class 

queue(object): def 

init (self): 

self.stack1 = 

stack() self.stack2 

= stack() 

def fillStack2(self): 

if (self.stack2.isEmpty()): 

while (not self.stack1.isEmpty()): 

self.stack2.push(self.stack1.pop()) 



def push(self, value): 

self.stack1.push(valu

e) self.fillStack2() 

return 

value def 

pop(self): 

if (self.stack2.isEmpty()): 

raise 

NameError('Queue.Empty') 

outputval = self.stack2.pop() 

self.fillStack2() 

return outputvala = queue() 

print ("pushed element 

is",a.push(2)) print ("pushed 

element is",a.push(3)) print 

("pushed element is",a.push(4)) 

print ("pushed element 

is",a.push(12)) print (" ------ ") 

print ("popped element 

is",a.pop()) print ("popped 

element is",a.pop()) print 

("popped element is",a.pop()) 

print (" ------------------------- ") 

print ("pushed element 

is",a.push(5)) print (" ------- ") 

print ("popped element 

is",a.pop()) print ("popped 

element is",a.pop()) 



UNIT – IV 
NON LINEAR DATA STRUCTURES 

 

 
 

Basic Concept: 
 

A tree is a non-empty set one element of which is designated the root of the tree while the 

remaining elements are partitioned into non-empty sets each of which is a sub-tree of the 

root. 

A tree T is a set of nodes storing elements such that the nodes have a parent-child relationship 

that satisfies the following 

• If T is not empty, T has a special tree called the root that has no parent. 

 

• Each node v of T different than the root has a unique parent node w; each node with parent w is a child of 

w. 

Tree nodes have many useful properties. The depth of a node is the length of the path (or the 

number  of edges) from the root to that node. The height of a node is the longest path from 

that node to its leaves. The height of a tree is the height of the root. A leaf node has no 

children -- its only path is up to its parent. 

 
 

 

Binary Tree: 
 

In a binary tree, each node can have at most two children. A binary tree is either empty or 

consists of  a node called the root together with two binary trees called the left sub-tree and 

the right sub-tree. 



 
 

Tree Terminology: 
 

Leaf node 
 

A node with no children is called a leaf (or external node). A node which is not a leaf is 

called an internal node. 

Path: A sequence of nodes n1, n2, . . ., nk, such that ni is the parent of ni + 1 for i = 1, 2,. . ., k - 1. 

The length of a path is 1 less than the number of nodes on the path. Thus there is a path of 

length zero  from a node to itself. 

Siblings: The children of the same parent are called siblings. 
 

Ancestor and Descendent If there is a path from node A to node B, then A is called an 

ancestor of B and B is called a descendent of A. 

Sub-tree: Any node of a tree, with all of its descendants is a sub-tree. 
 

Level: The level of the node refers to its distance from the root. The root of the tree has level 

O, and the level of any other node in the tree is one more than the level of its parent. 

The maximum number of nodes at any level is 2
n
. 

 

Height:The maximum level in a tree determines its height. The height of a node in a tree is 

the length of a longest path from the node to a leaf. The term depth is also used to denote 

height of the tree. 

Depth:The depth of a node is the number of nodes along the path from the root to that node. 
 

Assigning level numbers and Numbering of nodes for a binary tree: The nodes of a binary 

tree can be numbered in a natural way, level by level, left to right. The nodes of a complete 

binary tree can be numbered so that the root is assigned the number 1, a left child is assigned 

twice the number assigned its parent, and a right child is assigned one more than twice the 

number assigned its parent. 
 



Properties of Binary Trees: 
 

Some of the important properties of a binary tree are as follows: 
 

1. If h = height of a binary tree, then 

 
a. Maximum number of leaves = 2

h
 

 
b. Maximum number of nodes = 2

h
 
+
 
1
 - 1 

 
2. If a binary tree contains m nodes at level l, it contains at most 2m nodes at level l + 1. 

 
3. Since a binary tree can contain at most one node at level 0 (the root), it can contain at most 2

l
 node at 

level l. 

 
4. The total number of edges in a full binary tree with n node is n - 1. 

 
Binary Tree Representation: 

 
1. Array Representation of Binary Tree 

 
 

2. Linked List Representation of Binary Tree 

Array Representation of Binary Tree: 

A single array can be used to represent a binary tree. 
 

For these nodes are numbered / indexed according to a scheme giving 0 to root. Then all the 

nodes are numbered from left to right level by level from top to bottom. Empty nodes are also 

numbered. Then each node having an index i is put into the array as its i
th

 element. 

 
In the figure shown below the nodes of binary tree are numbered according to the given scheme. 

 

The figure shows how a binary tree is represented as an array. The root 3 is the 0
th

 element 

while its leftchild 5 is the 1
st
 element of the array. Node 6 does not have any child so its 

children i.e. 7 
th

 and 8  th element of the array are shown as a Null value. 



It is found that if n is the number or index of a node, then its left child occurs at (2n + 1)
th

 

position and right child at (2n + 2)th position of the array. If any node does not have any of its 

child, then null value is stored at the corresponding index of the array. 

Linked Representation of Binary Tree (Pointer based): 
 

 

 

 

Binary trees can be represented by links where each node contains the address of the left 

child and the right child. If any node has its left or right child empty then it will have in its 

respective link field, a null value. A leaf node has null value in both of its links. 

Binary Tree Traversal: 
 

Traversal of a binary tree means to visit each node in the tree exactly once. 
 

 

In a linear list nodes are visited from first to last, but a tree being a non linear one we need 

definite rules. Th ways to traverse a tree. All of them differ only in the order in which they 

visit the nodes. 

The three main methods of traversing a tree are: 
 

 In-order Traversal 

 
 Pre-order Traversal 

 

 Post-order Traversal 



In all of them we do not require to do anything to traverse an empty tree. All the traversal 

methods are base functions since a binary tree is itself recursive as every child of a node in a 

binary tree is itself a binary tree. 

In-order Traversal: 
 

To traverse a non empty tree in in-order the following steps are followed recursively. 
 

 Visit the Root 

 

 Traverse the left sub-tree 

 

 Traverse the right sub-tree 

 

The in-order traversal of the tree shown below is as follows. 
 

 
Algorithms:- 

 

In-order Traversal: 
 

Algorithm In-order(tree) 
 

1. Traverse the left sub-tree, i.e., call In-order(left-sub-tree) 

 

2. Visit the root. 

 

3. Traverse the right sub-tree, i.e., call In-order(right-sub-tree) 

So the function calls itself recursively and carries on the 

traversal. Pre-order Traversal: 

Algorithm Pre-order(tree) 
 

1. Visit the root. 

 

2. Traverse the left sub-tree, i.e., call Pre-order(left-sub-tree) 

 

3. Traverse the right sub-tree, i.e., call Pre-order(right-sub-tree) 



Post-order Traversal: 
 

Algorithm Post-order(tree) 
 

1. Traverse the left sub-tree, i.e., call Post-order(left-sub-tree) 

 

2. Traverse the right sub-tree, i.e., call Post-order(right-sub-tree) 

 

3. Visit the root. 

 

Time Complexity: O(n^2). 
 

Binary Search Tree: 
 

Binary Search Tree, is a node-based binary tree data structure which has the following 

properties: 
 

 The left sub-tree of a node contains only nodes with keys less than the node‟s key. 

 

 The right sub-tree of a node contains only nodes with keys greater than the node‟s key. 

 
 The left and right sub-tree each must also be a binary search tree. 

There must be no duplicate nodes. 

 

 

The above properties of Binary Search Tree provide an ordering among keys so that the 

operations like search, minimum and maximum can be done fast. If there is no ordering, then 

we may have to compare every key to search a given key. 

 
 

Searching a key 
 

To search a given key in Binary Search Tree, we first compare it with root, if the key is 

present at root, we return root. If key is greater than root‟s key, we recur for right sub-tree of 

root node. Otherwise we recur for left sub-tree. 

# A utility function to search a given key in 

BST def search(root,key) 

# Base Cases: root is null or key is present at 

root if root is None or root.val == key: 

return root 



# Key is greater than root's 

key if root.val < key: 

return search(root.right,key) 
 

# Key is smaller than root's 

key return 

search(root.left,key) 

Tree Variants strictly 

Binary tree: 

If every non-leaf node in a binary tree has nonempty left and right sub-trees, the tree is termed 

a strictly binary tree. Thus the tree of figure 7.2.3(a) is strictly binary. A strictly binary tree 

with n leaves always contains 2n - 1 nodes. 

 

 

 

 
Full Binary Tree: 
 

A full binary tree of height h has all its leaves at level h. Alternatively; All non leaf nodes of 

a full binary tree have two children, and the leaf nodes have no children. 

A full binary tree with height h has 2
h
 
+
 
1
 - 1 nodes. A full binary tree of height h is a strictly 

binary tree all of whose leaves are at level h. 

 

 
For example, a full binary tree of height 3 contains 2

3+1
 – 1 = 15 nodes. 

 

Complete Binary Tree: 
 

A binary tree with n nodes is said to be complete if it contains all the first n nodes of the 

above numbering scheme. 



A complete binary tree of height h looks like a full binary tree down to level h-1, and the 

level h is filled from left to right. 

 

 
 

Perfect Binary Tree: 
 

A Binary tree is Perfect Binary Tree in which all internal nodes have two children and all 

leaves are at same level. 

Following are examples of Perfect Binary Trees. 
 

18 
 

/ \ 
 

15 30 
 

/  \ / \ 
 

40 50 100 40 

 

 

18 
 

/ \ 
 

15 30 
 

A Perfect Binary Tree of height h (where height is number of nodes on path from root to leaf) 

has 2
h
 – 1 node. 

Example of Perfect binary tree is ancestors in family. Keep a person at root, parents as 

children, parents of parents as their children. 

Balanced Binary Tree: 
 

A binary tree is balanced if height of the tree is O(Log n) where n is number of nodes. For 

Example, AVL tree maintain O(Log n) height by making sure that the difference between 

heights of left and right subtrees is 1. Red-Black trees maintain O(Log n) height by making 

sure that the number of  Black nodes on every root to leaf paths are same and there are no 

adjacent red nodes. Balanced Binary Search trees are performance wise good as they provide 

O(log n) time for search, insert and delete. 



Application of Trees: 
 

1) One reason to use trees might be because you want to store information that naturally forms a hierarchy. For 

example, the file system on a computer: 

file system 
 

/ <-- root 
 

/ \ 
 

... home 
 

/ \ 
 

ugrad course 
 

/ / | \ 
 

... cs101 cs112 cs113 

 

 

2) If we organize keys in form of a tree (with some ordering e.g., BST), we can search for a 

given key in moderate time (quicker than Linked List and slower than arrays). Self-

balancing search trees like AVL and Red-Black trees guarantee an upper bound of O(logn) 

for search. 

 
3) We can insert/delete keys in moderate time (quicker than Arrays and slower than Unordered Linked Lists). 

Self-balancing search trees like AVL and Red-Black trees guarantee an upper bound of O(logn) for 

insertion/deletion. 

 
4) Like Linked Lists and unlike Arrays, Pointer implementation of trees don„t have an upper limit on number of 

nodes as nodes are linked using pointers. 

 
The following are the common uses of tree. 

 

1. Manipulate hierarchical data. 

2. Make information easy to search (see tree traversal). 

3. Manipulate sorted lists of data. 

4. As a workflow for compositing digital images for visual effects. 

5. Router algorithms 

 

Graphs: 
 

Basic Concepts: 
 

Graph is a data structure that consists of following two components: 
 

1. A finite set of vertices also called as nodes. 



2. A finite set of ordered pair of the form (u, v) called as edge. 

 

The pair is ordered because (u, v) is not same as (v, u) in case of directed graph (di-graph). 

The pair of form (u, v) indicates that there is an edge from vertex u to vertex v. The edges 

may contain weight/value/cost. 

Graph and its representations: 
 

Graphs are used to represent many real life applications: Graphs are used to represent 

networks. The networks may include paths in a city or telephone network or circuit network. 

Graphs are also used in social networks like linkedIn, facebook. For example, in facebook, 

each person is represented with a vertex(or node). Each node is a structure and contains 

information like person id, name, gender and locale. 

Following is an example undirected graph with 5 vertices. 
 

 
 

 

 
Following two are the most commonly used representations of graph. 

 

1. Adjacency Matrix 

 

2. Adjacency List 

 

There are other representations also like, Incidence Matrix and Incidence List. The choice of 

the graph representation is situation specific. It totally depends on the type of operations to be 

performed and ease of use. 

Adjacency Matrix: 
 

Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph. 

Let  the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge from vertex i to 

vertex j. Adjacency matrix for undirected graph is always symmetric. Adjacency Matrix is 

also used to represent weighted graphs. If adj[i][j] = w, then there is an edge from vertex i to 

vertex j with weight w. 

The adjacency matrix for the above example graph is: 



 
 

 

Adjacency Matrix Representation of the above graph 
 

Pros: Representation is easier to implement and follow. Removing an edge takes O(1) time. 

Queries like whether there is an edge from vertex ‗u„ to vertex ‗v„ are efficient and can be 

done O(1). 

Cons: Consumes more space O(V^2). Even if the graph is sparse (contains less number of 

edges), it consumes the same space. Adding a vertex is O(V^2) time. 

Adjacency List: 
 

An array of linked lists is used. Size of the array is equal to number of vertices. Let the array 

be array[]. An entry array[i] represents the linked list of vertices adjacent to the ith vertex. 

This representation can also be used to represent a weighted graph. The weights of edges can 

be stored in nodes of linked lists. Following is adjacency list representation of the above 

graph. 

 

 

 

 
Adjacency List Representation of the above 

Graph Breadth First Traversal for a Graph 

Breadth First Traversal (or Search) for a graph is similar to Breadth First Traversal of a tree 

The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same 

node again. To avoid processing a node more than once, we use a boolean visited array. 

For example, in the following graph, we start traversal from vertex 2. When we come to 

vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don„t 

mark visited vertices, then 2 will be processed again and it will become a non-terminating 

process. Breadth First Traversal of the following graph is 2, 0, 3, 1. 



 

 
 

 

Algorithm: Breadth-First Search Traversal BFS(V, 

E, s) for each u in V − {s} 

do color[u] ← WHITE d[u] ← infinity π[u] ← NIL color[s] ← 

GRAY d[s] ← 0 π[s] ← NIL Q ← {} 

ENQUEUE(Q, s) 
 

while Q is non-

empty do u ← 

DEQUEUE(Q) 

for each v adjacent to 

u do if color[v] ← 

WHITE 

then color[v] ← GRAY d[v] ← d[u] 

+ 1 π[v] ← u 

ENQUEUE(Q, v) DEQUEUE(Q) 
 

color[u] ← BLACK 
 

Source Code: 
 

# Program to print BFS traversal from a given 

source # vertex. BFS(int s) traverses vertices 

reachable from collections import defaultdict 

 

# This class represents a directed graph using 

adjacency # list representation 

class Graph: 
 

# Constructor 

def init (self): 

 
# default dictionary to store 

graph self.graph = 
defaultdict(list) 



 
# function to add an edge to 

graph def addEdge(self,u,v): 

self.graph[u].append(v) 
 

# Function to print a BFS of 

graph def BFS(self, s): 

 

# Mark all the vertices as not 

visited visited = 

[False]*(len(self.graph)) 
 

# Create a queue for 

BFS queue = [] 

 

# Mark the source node as visited and 

enqueue it queue.append(s) 

visited[s] = 

True while 

queue: 

# Dequeue a vertex from queue and 

print it s = queue.pop(0) 

print (s) 
 

# Get all adjacent vertices of the 

dequeued  # vertex s. If a adjacent has 

not been visited, # then mark it visited 

and enqueue it 
for i in self.graph[s]: 

if visited[i] == 

False: 

queue.append(i) 

visited[i] = True 

 
 

# Driver code 

# Create a graph given in the above 
diagram g = Graph() 

g.addEdge(0, 1) 
g.addEdge(0, 2) 
g.addEdge(1, 2) 
g.addEdge(2, 0) 
g.addEdge(2, 3) 
g.addEdge(3, 3) 

 

print ("Following is Breadth First Traversal (starting from vertex 

2)") g.BFS(2) 

 
 

 

 

 

 

 



 

Applications of Breadth First Traversal 

1) Shortest Path and Minimum Spanning Tree for unweighted graph In unweighted graph, the shortest path 

is the path with least number of edges. With Breadth First, we always reach a vertex from given source using 

minimum number of edges. Also, in case of unweighted graphs, any  spanning tree is Minimum Spanning Tree 

and we can use either Depth or Breadth first traversal for finding a spanning tree. 

2) Peer to Peer Networks. In Peer to Peer Networks like BitTorrent, Breadth First Search is used to find all 

neighbor nodes. 

3) Crawlers in Search Engines: Crawlers build index using Bread First. The idea is to start from source page 

and follow all links from source and keep doing same. Depth First Traversal can also be used for crawlers, but 

the advantage with Breadth First Traversal is, depth or  levels of built tree can be limited. 

4) Social Networking Websites: In social networks, we can find people within a given distance 

‗k„ from a person using Breadth First Search till ‗k„ levels. 
 

5) GPS Navigation systems: Breadth First Search is used to find all neighboring locations. 

 

6) Broadcasting in Network: In networks, a broadcasted packet follows Breadth First Search to reach all 

nodes. 

7) In Garbage Collection: Breadth First Search is used in copying garbage collection using Cheney„s 

algorithm. 
 

8) Cycle detection in undirected graph: In undirected graphs, either Breadth First Search or Depth First 

Search can be used to detect cycle. In directed graph, only depth first search can be used. 

9) Ford–Fulkerson algorithm In Ford-Fulkerson algorithm, we can either use Breadth First or Depth First 

Traversal to find the maximum flow. Breadth First Traversal is preferred as it reduces worst case time 

complexity to O(VE
2
). 

10) To test if a graph is Bipartite We can either use Breadth First or Depth First Traversal. 

 

11) Path Finding We can either use Breadth First or Depth First Traversal to find if there is a path between 

two vertices. 

12) Finding all nodes within one connected component: We can either use Breadth First or Depth First 

Traversal to find all nodes reachable from a given node. 

Depth First Traversal for a Graph 
 

Depth first search for a graph is similar to depth first traversal of a tree. The only catch here 

is, unlike trees, graphs may contain cycles, so we may come to the same node again. To avoid 

processing a      node      more      than      once,      we      use      a       Boolean       visited       

array. For  example, in the following graph, we start traversal from vertex 2. When we come 

to vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don„t 

mark visited vertices, then 2 will be processed again and it will become a non-terminating 

process. Depth First Traversal of the following graph is 2, 0, 1, 3 

http://en.wikipedia.org/wiki/Cheney%27s_algorithm
http://en.wikipedia.org/wiki/Cheney%27s_algorithm


 

 

Algorithm Depth-First Search 

 

The DFS forms a depth-first forest comprised of more than one depth-first trees. Each tree is 

made of edges (u, v) such that u is gray and v is white when edge (u, v) is explored. The 

following pseudocode for DFS uses a global timestamp time. 

DFS (V, E) 
 

for each vertex u in V[G] 
 

do color[u] ← WHITE π[u] ← 

NIL time ← 0 

for each vertex u in 

V[G] do if color[u] ← 

WHITE then DFS-

Visit(u) 

DFS-Visit(u) 
 

color[u] ← GRAY time ← time + 1 d[u] ← 

time for each vertex v adjacent to u 

do if color[v] ← 

WHITE then π[v] ← u 

DFS-Visit(v) color[u] ← BLACK time ← 

time + 1 f[u] ← time 

Source Code: 
 

# Python program to print DFS traversal 

from a # given given graph 

from collections import defaultdict 
 

# This class represents a directed graph 

using # adjacency list representation 

class Graph: 



# Constructor 
def init (self): 

 

# default dictionary to store 

graph self.graph = 

defaultdict(list) 
 

# function to add an edge to 

graph def addEdge(self,u,v): 
self.graph[u].append(v) 

 
# A function used by 

DFS def 
DFSUtil(self,v,visited): 

 

# Mark the current node as visited and print it 

visited[v]= True 
print (v), 

 
# Recur for all the vertices adjacent to this 

vertex for i in self.graph[v]: 

if visited[i] == False: 

self.DFSUtil(i, 

visited) 

 
 

# The function to do DFS traversal. It 

uses # recursive DFSUtil() 
def DFS(self,v): 

 
# Mark all the vertices as not 
visited visited = 

[False]*(len(self.graph)) 

 

# Call the recursive helper function to 

print # DFS traversal 
self.DFSUtil(v,visited) 

 
 

# Driver code 

# Create a graph given in the above 

diagram g = Graph() 
g.addEdge(0, 1) 
g.addEdge(0, 2) 

g.addEdge(1, 2) 
g.addEdge(2, 0) 
g.addEdge(2, 3) 
g.addEdge(3, 3) 

 

print ("Following is DFS from (starting from vertex 

2)") g.DFS(2) 

 
 

 

 

 

 



Applications of Depth First Search 
 

 

Depth-first search (DFS) is an algorithm (or technique) for traversing a graph. Following are 

the problems that use DFS as a building block. 

1) For an unweighted graph, DFS traversal of the graph produces the minimum spanning tree and all pair 

shortest path tree. 

2) Detecting cycle in a graph 

 

A graph has cycle if and only if we see a back edge during DFS. So we can run DFS for the 

graph and check for back edges. 

3) Path Finding 

 

We can specialize the DFS algorithm to find a path between two given vertices u and z. 
 

i) Call DFS(G, u) with u as the start vertex. 

 

ii) Use a stack S to keep track of the path between the start vertex and the current vertex. 

 

iii) As soon as destination vertex z is encountered, return the path as the contents of the stack 

 

4) Topological Sorting 

 

5) To test if a graph is bipartite 

 

6) Finding Strongly Connected Components of a graph A directed graph is called strongly connected if 

there is a path from each vertex in the graph to every other vertex. 



UNIT – V 

BINARY TREES AND HASHING 
 

 
 

Binary Trees 
 

A tree whose elements have at most 2 children is called a binary tree. Since each element in a 

binary tree can have only 2 children, we typically name them the left and right child. 

 
 

 

 

 

A Binary Tree node contains following parts. 
 

1. Data 

 

2. Pointer to left child 

 

3. Pointer to right child 

 

Properties of binary tree 
 

1) The maximum number of nodes at level ‘l’ of a binary tree is 2
l-1

. 

Here level is number of nodes on path from root to the node (including root and node). Level 

of root is 1. 

This can be proved by induction. 

For root, l = 1, number of nodes = 2
1-1

 = 1 

Assume that maximum number of nodes on level l is 2
l-1

 

Since in Binary tree every node has at most 2 children, next level would have twice nodes, i.e. 2 

* 2
l-1

 
 

      Maximum number of nodes in a binary tree of height ‘h’ is 2
h
 – 1. 

Here height of a tree is maximum number of nodes on root to leaf path. Height of a tree 

with single node is considered as 1. 

This result can be derived from point 2 above. A tree has maximum nodes if all levels have 

maximum nodes. So maximum number of nodes in a binary tree of height h is 1 + 2 + 4 + .. + 

2
h-1

. This is a simple geometric series with h terms and sum of this series is 2
h
 – 1. 

In some books, height of the root is considered as 0. In this convention, the above formula 

becomes 2h+1 – 1 



In a Binary Tree with N nodes, minimum possible height or minimum number of levels is ? 

Log2(N+1) ? 
This can be directly derived from point 2 above. If we consider the convention where height of a 
leaf 

node is considered as 0, then above formula for  minimum possible height becomes ? 

Log2(N+1) ? – 1 

 
 

2) A    Binary     Tree    with    L    leaves    has     at     least        ?    Log2L    ?    +    1        levels A Binary 

tree has maximum number of leaves (and minimum number of levels) when all levels are fully filled. Let all 

leaves be at level l, then below is true for number of leaves L. 

L  <=  2
l-1

  [From Point 

1] l = ? Log2L ? + 1 

where l is the minimum number of levels. 
 

3) In Binary tree where every node has 0 or 2 children, number of leaf nodes is always one 

more than nodes with two children. 

L = T + 1 
 

Where L = Number of leaf nodes 
 

T = Number of internal nodes with two children 
 

Operations on binary trees 
 

A binary tree is a binary search tree (BST) if and only if an inorder traversal of the binary tree 

results in a sorted sequence. The idea of a binary search tree is that data is stored according to 

an order, so that it can be retrieved very efficiently. 

A BST is a binary tree of nodes ordered in the following way: 
 

1. Each node contains one key (also unique) 

 

2. The keys in the left subtree are < (less) than the key in its parent node 

 

3. The keys in the right subtree > (greater) than the key in its parent node 

 

4. Duplicate node keys are not allowed. 

 

Here is an example of a BST 

 



Exercise : Draw the binary tree which would be created by inserting the following numbers 

in the order given 

50 30 25 75 82 28 63 70 4 43 74 35 
 

If the BST is built in a “balanced” fashion, then BST provides log time access to each element. 

Consider an arbitrary BST of the height k. The total possible number of nodes is 

given by k+1 

2 - 1 
 

In order to find a particular node we need  to  perform  one  comparison  on  each  level,  or  

maximum of(k+1) total. Now, assume that we know the number of nodes and we want to 

figure out the number of comparisons. We have to solve the following equation with respect 

to k: 

Assume that we have a “balanced” tree with n nodes. If the maximum number of 

comparisons to find an entry is (k+1), where k is the height, we have 

K+1 
 

2   - 1 = n 
 

we obtain 
 

k = log2(n+1) – 1 = O(log2n) 
 

This means, that a “balanced” BST with n nodes has a maximum order of log(n) levels, and 

thus it takes at most log(n) comparisons to find a particular node. This is the most important 

fact you need to know about BSTs. But building a BST as a balanced tree is not a trivial task. 

If the data is randomly distributed, then we can expect that a tree can be “almost” balanced, 

or there is a good probability that it would be. However, if the data already has a pattern, then 

just naïve insertion into a BST will result in unbalanced trees. For example, if we just insert 

the data 1, 2, 3, 4, 5 into a BST in the order they come, we will end up with a tree that looks 

like this: 
 

 

 
 

Binary search trees work well for many applications (one of them is a dictionary or help 

browser).  But they can be limiting because of their bad worst-case performance height = O(# 

nodes). Imagine a binary search tree created from a list that is already sorted. 

Clearly, the tree will grow  to  the  right  or  to  the  left.  A  binary  search  tree  with  this  

worst-  case structure is no more efficient than a regular linked list. A great care needs to be 

taken in order to keep the tree as balanced as possible. There are many techniques for 

balancing a tree including AVL trees, and Splay Trees. 



BST OPERATIONS 
 

There are a number of operations on BST‟s that are important to understand. 
 

Inserting a node 

A naïve algorithm for inserting a node into a BST is that, we start from the root node, if the 

node to insert is less than the root, we go to left child, and otherwise we go to the right child 

of the root. We continue this process (each node is a root for some sub tree) until we find a 

null pointer (or leaf node) where we cannot go any further. We then insert the node as a left 

or right child of the leaf node based on node is less or greater than the leaf node. We note that 

a new node is always inserted as a leaf  node. A recursive algorithm for inserting a node into a 

BST is as follows. Assume we insert a node N to tree T. if the tree is empty, the we return 

new node N as the tree. Otherwise, the problem of inserting is reduced to inserting the node N 

to left of right sub trees of T, depending on N is less or greater than T. A definition is as 

follows. 

Insert(N, T) = N if T is empty 
 

= insert(N, T.left) if N < T 
 

= insert(N, T.right) if N > T 

 

 

Searching for a node 
 

Searching for a node is similar to inserting a node. We start from root, and then go left or right  

until we find (or not find the node). A recursive definition of search is as follows. If the node 

is equal to root, then we return true. If the root is null, then we return false. Otherwise we 

recursively solve the problem for T.left or T.right, depending on N < T or N > T. A recursive 

definition is as follows. 

 

 
Search should return a true or false, depending on the node is found or 

not. Search(N, T) = false if T is empty 

=  true if T = N 
 

= search(N, T.left) if N < T 
 

= search(N, T.right) if N > T 
 

Deleting a node 
 

A BST is a connected structure. That is, all nodes in a tree are connected to some other 

node. For example, each node has a parent, unless node is the root. Therefore deleting a node 

could affect all sub trees of that node. For example, deleting node 5 from the tree 



 
 

could result in losing sub trees that are rooted at 1 and 9. Hence we need to be careful about 

deleting nodes from a tree. The best way to deal with deletion seems to be considering special 

cases. What if the node to delete is a leaf node? What if the node is a node with just one 

child? What if the node is an internal node (with two children). The latter case is the hardest 

to resolve. But we will find a way to handle this situation as well. 

Case 1 : The node to delete is a leaf node 
 

This is a very easy case. Just delete the node. We are done 
 

 

 

Case 2 : The node to delete is a node with one child. 
 

This is also not too bad. If the node to be deleted is a left child of the parent, then we connect 

the left pointer of the parent (of the deleted node) to the single child. Otherwise if the node to 

be deleted is a right child of the parent, then we connect the right pointer of the parent (of the 

deleted node) to single child. 

 

 
 



Case 3: The node to delete is a node with two children 
 

This is a difficult case as we need to deal with two sub trees. But we find an easy way to 

handle it. First we find a replacement node (from leaf node or nodes with one child) for the 

node to be deleted. We need to do this while maintaining the BST order property. Then we 

swap leaf node or node with one child with the node to be deleted (swap the data) and delete 

the leaf node or node with one child (case 1 or case 2) 

Next problem is finding a replacement leaf node for the node to be deleted. We can easily 

find this as follows. If the node to be deleted is N, the find the largest node in the left sub tree 

of N or the smallest node in the right sub tree of N. These are two candidates that can replace 

the node to be deleted without losing the order property. For example, consider the following 

tree and suppose we need to delete the root 38. 
 

 

 

Then we find the largest node in the left sub tree (15) or smallest node in the right sub tree 

(45) and replace the root with that node and then delete that node. The following set of images 

demonstrates this process. 
 

 

 

Balanced Search Trees 

 

AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights 

of left and right subtrees cannot be more than one for all nodes. 



An Example Tree that is an AVL Tree 
 

 

 
 

 

The above tree is AVL because differences between heights of left and right subtrees for 

every node is less than or equal to 1. 
 

An Example Tree that is NOT an AVL Tree 
 

 
 

The above tree is not AVL because differences between heights of left and right subtrees for 

8 and 18 is greater than 1. 

Why AVL Trees? 

Most of the BST operations (e.g., search, max, min, insert, delete.. etc) take O(h) time where 

h is the height of the BST. The cost of these operations may become O(n) for a skewed 

Binary tree. If we make sure that height of the tree remains O(Logn) after every insertion 

and deletion, then we can guarantee an upper bound of O(Logn) for all these operations. The 

height of an AVL tree is always O(Logn) where n is the number of nodes in the tree. 
 

Insertion 

To make sure that the given tree remains AVL after every insertion, we must augment the 

standard BST insert operation to perform some re-balancing. Following are two basic 

operations that can be performed to re-balance a BST without violating the BST property 

(keys(left) < key(root) < keys(right)). 

1) Left Rotation 

2) Right Rotation 

 

T1, T2 and T3 are subtrees of the 

tree rooted with y (on the left side) 

or x (on 



the right side) 
 

y x 
 

/ \ Right Rotation  / \ 

x   T3   - - - - - - - > T1 y 

/ \ < - - - - - - - / \ 
 

T1 T2 Left Rotation T2 T3 

Keys in both of the above trees follow 

the following order 

keys(T1) < key(x) < keys(T2) < key(y) < 

keys(T3) So BST property is not violated 

anywhere. 

Steps to follow for insertion 

Let the newly inserted node be w 

1) Perform standard BST insert for w. 

2) Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced node, y be the 

child of z that comes on the path from w to z and x be the grandchild of z that comes on the path from w to z. 

3) Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be 4 

possible cases that needs to be handled as x, y and z can be arranged in 4 ways. Following are the possible 4 

arrangements: 

a) y is left child of z and x is left child of y (Left Left Case) 

b) y is left child of z and x is right child of y (Left Right Case) 

c) y is right child of z and x is right child of y (Right Right Case) 

d) y is right child of z and x is left child of y (Right Left Case) 

 

Following are the operations to be performed in above mentioned 4 cases. In all of the cases, 

we only need to re-balance the subtree rooted with z and the complete tree becomes balanced 

as the height of subtree (After appropriate rotations) rooted  with  z  becomes  same  as  it  

was  before  insertion.  (See this video lecture for proof) 

 

 
a) Left Left Case 

 

T1, T2, T3 and T4 are subtrees. 
 

z y  

/ \ / \ 
 

y T4 Right Rotate (z) x z 

 

/ \ - - - - - - - - -> / \ / \ 
 

x  T3 T1 T2 T3 T4 

http://www.youtube.com/watch?v=TbvhGcf6UJU


/ \ 
 

T1 T2 
 

b) Left Right Case 
 

z z x 
 

/ \ /   \ /  \ 
 

y   T4  Left Rotate (y) x T4  Right Rotate(z) y z 
 

/ \ - - - - - - - - -> /  \ - - - - - - - -> / \ / \ 
 

T1  x y T3 T1 T2 T3 T4 
 

/ \ / \ 
 

T2  T3 T1 T2 
 

c) Right Right Case 
 

z y 
 

/  \ / \ 
 

T1  y Left Rotate(z) z x 
 

/  \   - - - - - - - -> / \ / \ 
 

T2   x T1 T2 T3 T4 
 

/ \ 
 

T3 T4 
 

d) Right Left Case 
 

z z x 
 

/ \ / \ /  \ 
 

T1   y   Right Rotate (y) T1   x Left Rotate(z)   z y 
 

/ \  - - - - - - - - -> /  \   - - - - - - - -> / \ / \ 
 

x T4 T2 y T1 T2 T3 T4 

/ \ 
 

/ \ 
 

T2 T3 T3 T4 
 

 

 

Inserti

on 



Examples: 
 

 

 

 

 
 

 



 
 

 

 

 

 
 

 

Implementation 

Following is the implementation for AVL Tree Insertion. The following implementation uses 

the recursive BST insert to insert a new node. In the recursive BST insert, after insertion, we 

get pointers to all ancestors one by one in a bottom-up manner. So we don‟t need parent 

pointer to travel up. The recursive code itself travels up and visits all the ancestors of the 

newly inserted node. 

1) Perform the normal BST insertion. 

2) The current node must be one of the ancestors of the newly inserted node. Update the height of the current 

node. 

3) Get the balance factor (left subtree height – right subtree height) of the current node. 

4) If balance factor is greater than 1, then the current node is unbalanced and we are either in Left Left case or 

left Right case. To check whether it is left left case or not, compare the newly inserted key  with the key in left 

subtree root. 

5) If balance factor is less than -1, then the current node is unbalanced and we are either in Right 



Right case or Right-Left case. To check whether it is Right Right case or not, compare 

the newly inserted key with the key in right subtree root. 

M way trees: 
 

A binary search tree has one value in each node and two subtrees. This notion easily 

generalizes to an M-way search tree, which has (M-1) values per node and M subtrees. M is 

called the degreeof the tree. A binary search tree, therefore, has degree 2. 

In fact, it is not necessary for every node to contain exactly (M-1) values and have exactly M 

subtrees. In an M-way subtree a node can have anywhere from 1 to (M-1) values, and the 

number of (non- empty) subtrees can range from 0 (for a leaf) to 1+(the number of values). M 

is thus a fixed upper  limit on how much data can be stored in a node. 

The values in a node are stored in ascending order, V1 < V2 < ... Vk (k <= M-1) and the 

subtrees are placed between adjacent values, with one additional subtree at each end. We can 

thus associate with each value a `left' and `right' subtree, with the right subtree of Vi being the 

same as the left subtree of V(i+1). All the values in V1's left subtree are less than V1 ; all the 

values in Vk's subtree are greater than Vk; and all the values in the subtree between V(i) and 

V(i+1) are greater than V(i) and less than V(i+1). 

 

 
For example, here is a 3-way search tree: 

 

In our examples it will be convenient to illustrate M-way trees using a small value of M. But 

bear in mind that, in practice, M is usually very large. Each node corresponds to a physical 

block on disk, and M represents the maximum number of data items that can be stored in a 

single block. M is maximized in order to speedup processing: to move from one node to 

another involves reading a block from disk 

- a very slow operation compared to moving around a data structure stored in memory. 
 

The algorithm for searching for a value in an M-way search tree is the obvious generalization 

of the algorithm for searching in a binary search tree. If we are searching for value X are and 

currently at node consisting of values V1...Vk, there are four possible cases that can arise: 

1. If X < V1, recursively search for X in V1's left subtree. 

 

2. If X > Vk, recursively search for X in Vk's right subtree. 

 

3. If X=Vi, for some i, then we are done (X has been found). 

 

4. the only remaining possibility is that, for some i, Vi < X < V(i+1). In this case recursively search for X in 

the subtree that is in between Vi and V(i+1). 



For example, suppose we were searching for 68 in the tree above. At the root, case (2) would 

apply,  so we would continue the search in V2's right subtree. At the root of this subtree, case 

(4) applies, 68 is between V1=55 and V2=70, so we would continue to search in the subtree 

between them. Now case 

(3) applies, 68=V2, so we are done. If we had been searching for 69, exactly the same processing would have 

occurred down to the last node. At that point, case (2) would apply, but the subtree we want to search in is 

empty. Therefore we conclude that 69 is not in the tree. 

Other the algorithms for binary search trees - insertion and deletion - generalize in a similar 

way. As with binary search trees, inserting values in ascending order will result in a 

degenerate M-way search tree; i.e. a tree whose height is O(N) instead of O(logN). This is a 

problem because all the important operations are O(height), and it  is  our aim to make them 

O(logN).  One solution to this  problem is  to force the tree to be height-balanced. 

B Trees: 
 

A B-tree is an M-way search tree with two special properties: 
 

1. It is perfectly balanced: every leaf node is at the same depth. 

 

2. Every node, except perhaps the root, is at least half-full, i.e. contains M/2 or more values (of course, it 

cannot contain more than M-1 values). The root may have any number of values (1 to M-1). 

Here is a 3-way B-tree containing the same values: 
 

Hashing and Collision: 
 

Suppose we want to design a system for storing employee records keyed using phone 

numbers. And we want following queries to be performed efficiently: 

1. Insert a phone number and corresponding information. 

 

2. Search a phone number and fetch the information. 

 

3. Delete a phone number and related information. 

 

We can think of using the following data structures to maintain information about different 

phone numbers. 

1. Array of phone numbers and records. 

 

2. Linked List of phone numbers and records. 

 

3. Balanced binary search tree with phone numbers as keys. 



4. Direct Access Table. 

 

For arrays and linked lists, we need to search in a linear fashion, which can be costly in 

practice. If we use arrays and keep the data sorted, then a phone number can be searched in 

O(Logn) time using Binary Search, but insert and delete operations become costly as we have 

to maintain sorted order. 

With balanced binary search tree, we get moderate search, insert and delete times. All of 

these operations can be guaranteed to be in O(Logn) time. 

Another solution that one can think of is to use a direct access table where we make a big 

array and use phone numbers as index in the array. An entry in array is NIL if phone number 

is not present, else the array entry stores pointer to records corresponding to phone number. 

Time complexity wise this solution is the best among all, we can do all operations in O(1) 

time. For example to insert a phone number, we create a record with details of given phone 

number, use phone number as index and store the pointer to the created record in table. 

This solution has many practical limitations. First problem with this solution is extra space 

required is huge. For example if phone number is n digits, we need O(m * 10
n
) space for 

table where m is size of a pointer to record. Another problem is an integer in a programming 

language may not store n digits. 

Due to above limitations Direct Access Table cannot always be used. Hashing is the solution 

that can be used in almost all such situations and performs extremely well compared to above 

data structures like Array, Linked List, Balanced BST in practice. With hashing we get O(1) 

search time on average (under reasonable assumptions) and O(n) in worst case. 

Hashing is an improvement over Direct Access Table. The idea is to use hash function that 

converts a given phone number or any other key to a smaller number and uses the small 

number as index in a table called hash table. 

Hash Function: A function that converts a given big phone number to a small practical 

integer value. The mapped integer value is used as an index in hash table. In simple terms, a 

hash function maps a big number or string to a small integer that can be used as index in hash 

table. 

A good hash function should have following properties 

1) Efficiently computable. 

2) Should uniformly distribute the keys (Each table position equally likely for each key) 

 

For example for phone numbers a bad hash function is to take first three digits. A better 

function is consider last three digits. Please note that this may not be the best hash function. 

There may be better ways. 

Hash Table: An array that stores pointers to records corresponding to a given phone number. 

An entry in hash table is NIL if no existing phone number has hash function value equal to 

the index for the entry. 

Collision Handling: Since a hash function gets us a small number for a big key, there is 

possibility that two keys result in same value. The situation where a newly inserted key maps 

to an already occupied slot in hash table is called collision and must be handled using some 

collision handling technique. Following are the ways to handle collisions: 

 Chaining: The idea is to make each cell of hash table point to a linked list of records that have same hash 

http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Hash_table


function value. Chaining is simple, but requires additional memory outside the table.

 Open Addressing: In open addressing, all elements are stored in the hash table itself. Each table entry 

contains either a record or NIL. When searching for an element, we one by one examine table slots until the 

desired element is found or it is clear that the element is not in the table.

Applications of hashing: 
 

Hashing provides constant time search, insert and delete operations on average. This is why 

hashing is one of the most used data structure, example problems are, distinct elements, 

counting frequencies of items, finding duplicates, etc. 

There are many other applications of hashing, including modern day cryptography hash 

functions. Some of these applications are listed below: 

 
 Message Digest

 Password Verification

 Data Structures(Programming Languages)

 

 Compiler Operation

 

 Rabin-Karp Algortithm

 

 Linking File name and path together 

Message Digest:

This is an application of cryptographic Hash Functions. Cryptographic hash functions are the 

functions which produce an output from which reaching the input is close to impossible. This 

property of hash functions is called irreversibility. 

Lets take an Example: 
 

Suppose you have to store your files on any of the cloud services available. You have to be 

sure that the files that you store are not tampered by any third party. You do it by computing 

“hash” of that file using a Cryptographic hash algorithm. One of the common cryptographic 

hash algorithms is SHA 

256. The hash thus computed has a maximum size of 32 bytes. So a computing the hash of 

large number of files will not be a problem. You save these hashes on your local machine. 

Now, when you download the files, you compute the hash again. Then you match it with the 

previous hash computed. Therefore, you know whether your files were tampered or not. If 

anybody tamper with the file, the hash value of the file will definitely change. Tampering the 

file without changing the hash is nearly impossible. 

Password Verification 
 

Cryptographic hash functions are very commonly used in password verification. Let‟s 

understand this using an Example: 

 
 

When you use any online website which requires a user login, you enter your E-mail and 

password to authenticate that the account you are trying to use belongs to you. When the 

password is entered, a hash of the password is computed which is then sent to the server for 

verification of the password. 
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The passwords stored on the server are actually computed hash values of the original 

passwords. This is done to ensure that when the password is sent from client to server, 

no sniffing is there. 

Data Structures(Programming Languages): 
 

Various programming languages have hash table based Data Structures. The basic idea 

is to create a key-value pair where key is supposed to be a unique value, whereas value 

can be same for different keys. This implementation is seen in unordered_set & 

unordered_map in C++, HashSet & HashMap in java, dict in python etc. 

Compiler Operation: 
 

The keywords of a programming language are processed differently than other 

identifiers. To differentiate between the keywords of a programming language(if, else, 

for, return etc.) and other identifiers and to successfully compile the program, the 

compiler stores all these keywords in a set which is implemented using a hash table. 

Rabin-Karp Algorithm: 
 

One of the most famous applications of hashing is the Rabin-Karp algorithm. This is 

basically a string-searching algorithm which uses hashing to find any one set of 

patterns in a string. A practical application of this algorithm is detecting plagiarism. 

Linking File name and path together: 
 

When moving through files on our local system, we observe two very crucial 

components of a file i.e. file_name and file_path. In order to store the correspondence 

between file_name and file_path the system uses a map(file_name, file_path)which is 

implemented using a hash table. 

 


