
MICROPROCESSORS INTERFACING AND

APPLICATIONS

VI Semester –IT IARE-R16

A.Y: 2019-2020

Institute of Aeronautical Engineering

COURSE OUTCOMES

2

CO1

Describe the concepts of Architectures of 8085 and 8086
with its functionalities and understand the addressing
modes and instructions sets of 8086.

CO2

Describe Minimum mode and maximum mode of operation
of 8086 and Analyze the Assembly language programs
involving in various arithmetic and logical operations.

CO3 Discuss the importance of 8255 ,8257 and explain
interfacing of I/O device with different modules.

CO4
Analyze the various synchronous and asynchronous serial
data transfer schemes in 8086 and importance of 8251

CO5 Understand the advanced 16 and 32 bit microprocessors
architectures and its features.

UNIT-I

OVERVIEW OF 8086

MICROPROCESSOR

3

COURSE LEARNING OUTCOMES

4

CL01
Differentiate between 8085 and 8086 microprocessors
architectures and its functionalities.

CLO2
Describe the internal Architecture of 8086 microprocessor
and explain its functionalities.

CLO3 Describe in detail about functions of general purpose
register and 8086 flag register with its functions.

CLO4

Explain various addressing modes and instruction set
present in 8086 microprocessors and Describe in detail
about the concept of interrupt, types of interrupts 8086
microprocessor.

CLO5
Understand and apply the fundamentals and procedures
and assembler directives of assembly level programming of
microprocessors.

CLO6 Develop low level languages like ALP in 8086
microprocessor systems for real time applications

Introduction to 8085

microprocessor

5

Introduction to processor:

 A processor is the logic circuitry that responds to and
processes the basic instructions that drives a computer.

 The term processor has generally replaced the term central
processing unit . The processor in a personal computer or
embedded in small devices is often called a microprocessor.

 The processor (CPU, for Central Processing Unit) is the
computer's brain. It allows the processing of numeric data,
meaning information entered in binary form, and the
execution of instructions stored in memory.

6

Evolution of Microprocessor:

7

 A microprocessor is used as the CPU in a
microcomputer. There are now many different
microprocessors available.

 Microprocessor is a program-controlled device, which
fetches the instructions from memory, decodes and
executes the instructions. Most Micro Processor are single-
chip devices.

 Microprocessor is a backbone of computer system. which is
called CPU

 Microprocessor speed depends on the processing speed
depends on DATA BUS WIDTH.

 A common way of categorizing microprocessors is by
the no. of bits that their ALU can Work with at a time

 The address bus is unidirectional because the address
information is always given by the Micro Processor to
address a memory location of an input
/ output devices.

 The data bus is Bi-directional because the same bus is used
for transfer of data between Micro Processor and memory
or input / output devices in both the direction.

 It has limitations on the size of data. Most
Microprocessor does not support floating-point
operations.

 Microprocessor contain ROM chip because it
contain instructions to execute data.

 Storage capacity is limited. It has a volatile memory. In
secondary storage device the storage capacity is larger. It is
a nonvolatile memory.

8

Primary devices are: RAM (Read / Write memory, High
Speed, Volatile Memory) / ROM (Read only memory, Low
Speed, Non Voliate Memory)

9

Secondary devices are: Floppy disc / Hard disk

Compiler:

Compiler is used to translate the high-level language
program into machine code at a time. It doesn’t require
special instruction to store in a memory, it stores
automatically. The Execution time is less compared to
Interpreter

RISC and CISC processors

10

RISC (Reduced Instruction Set Computer):

11

 RISC stands for Reduced Instruction Set Computer. To execute
each instruction, if there is separate

 electronic circuitry in the control unit, which produces all the
necessary signals, this approach of the design of the control
section of the processor is called RISC design. It is also called
hardwired approach.

Examples of RISC processors:

 IBM RS6000, MC88100

 DEC’s Alpha 21064, 21164 and 21264processors

Features of RISC Processors:

12

 The standard features of RISC processors are listed below:

 RISC processors use a small and limited number of
instructions.

having high

 RISC machines mostly uses hardwired control unit.

 RISC processors consume less power and are
performance.

 Each instruction is very simple and
consistent.

 RISC processors uses simple addressing
modes.

 RISC instruction is of uniform fixed length

CISC (Complex Instruction Set Computer):

13

 CISC stands for Complex Instruction Set Computer. If the
control unit contains a number of microelectronic circuitry
to generate a set of control signals and each micro circuitry
is activated by a micro code, this design approach is called
CISC design.

Examples of CISC processors are:

 Intel 386, 486, Pentium, Pentium Pro, Pentium II, Pentium III

 Motorola’s 68000, 68020, 68040, etc.

Features of CISC Processors:

14

 CISC chips have a large amount of different and
complex instructions.

 CISC machines generally make use of complex addressing
modes.

 Different machine programs can be executed on CISC
machine.

 CISC machines uses micro-program control unit.

 CISC processors are having limited number of registers

Architecture of 8086

microprocessor

15

Architecture :

16

 8086 Microprocessor is divided into two functional units,
i.e.,
EU(Execution Unit) and BIU (Bus Interface Unit).

EU (Execution Unit):

• Execution unit gives instructions to BIU stating from where
to fetch the data and then decode and execute those
instructions.

• Its function is to control operations on data using the
instruction decoder & ALU.

• EU has no direct connection with system buses as shown
in the above figure, it performs operations over data
through BIU.

17

 BIU(Bus Interface Unit):

BIU takes care of all data and addresses transfers on the buses for

the EU like sending addresses, fetching instructions from the

memory, reading data from the ports and the memory as well as

writing data to the ports and the memory. EU has no direction

connection with System Buses so this is possible with the BIU. EU

and BIU are connected with the Internal Bus.

18

Instruction queue:

19

• BIU contains the instruction queue. BIU gets up to 6 bytes

of next instructions and stores them in the instruction

queue. When EU executes instructions and is ready for its

next instruction, then it simply reads the instruction from

this instruction queue resulting in increased execution

speed.

 Segment register:

• BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the

addresses of instructions and data in memory, which are

used by the processor to access memory locations.

• It also contains 1 pointer register IP, which holds the

address of the next instruction to executed by the EU.

20

Special functions of general

purpose register

21

AX & DX registers:

 In 8 bit multiplication, one of the operands must be in AL.

The other operand can be a byte in memory location or in

another 8 bit register. The resulting 16 bit product is stored

in AX, with AH storing the MS byte.

 In 16 bit multiplication, one of the operands must be in AX.

The other operand can be a word in memory location or in

another 16 bit register. The resulting 32 bit product is stored

in DX and AX, with DX storing the MS word and AX storing

the LS word.

22

BX register :

• In instructions where we need to specify in a general

purpose register the 16 bit effective address of a memory

location, the register BX is used (register indirect).

23

CX register :

24

 In Loop Instructions, CX register will be always used as the

implied counter. In I/O instructions, the 8086 receives into or

sends out data from AX or AL depending as a word or byte

operation.

 In these instructions the port address, if greater than FFH

has to be given as the contents of DX register.

 Ex : IN AL, DX
DX register will have 16 bit address of the I/P device

 Segment register:

 BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the

addresses of instructions and data in memory, which are used

by the processor to access memory locations.

 It also contains 1 pointer register IP, which holds the address

of the next instruction to executed by the EU.

25

8086 Flag Register and

Function of 8086 Flags

26

Flag Register

27

 Flag Register contains a group of status bits called flags that
indicate the status of the CPU or the result of arithmetic
operations.

 There are two types of flags:

 The status flags which reflect the result of executing an
instruction. The programmer cannot set/reset these flags
directly.

 The control flags enable or disable certain CPU operations.
The programmer can set/reset these bits to control the
CPU's operation.

 Nine individual bits of the status register are used as control

flags (3 of them) and status flags (6 of them).The remaining

7 are not used.

 A flag can only take on the values 0 and 1. We say a flag is

set if it has the value 1.The status flags are used to record

specific characteristics of arithmetic and of logical

instructions.

28

29

8086 flag register

 Control Flags: There are three control flags

 The Direction Flag (D): Affects the direction of moving data
blocks by such instructions as MOVS, CMPS and SCAS. The
flag values are 0 = up and 1 = down and can be set/reset by
the STD (set D) and CLD (clear D) instructions.

 The Interrupt Flag (I): Dictates whether or not system
interrupts can occur. Interrupts are actions initiated by
hardware block such as input devices that will interrupt the
normal execution of programs. The flag values are 0 =
disable interrupts or 1 = enable interrupts and can be
manipulated by the CLI (clear I) and STI (set
I) instructions.

30

 The Trap Flag (T): Determines whether or not the CPU is
halted after the execution of each instruction. When this
flag is set (i.e. = 1), the programmer can single step through
his program to debug any errors. When this flag = 0 this
feature is off. This flag can be set by the INT 3 instruction.

 Status Flags: There are six status flags

 The Carry Flag (C): This flag is set when the result of an
unsigned arithmetic operation is too large to fit in the
destination register. This happens when there is an end
carry in an addition operation or there an end borrows in a
subtraction operation. A value of 1
= carry and 0 = no carry.

31

 The Overflow Flag (O): This flag is set when the result of a
signed arithmetic operation is too large to fit in the
destination register (i.e. when an overflow occurs). Overflow
can occur when adding two numbers with the same sign (i.e.
both positive or both negative). A value of 1
= overflow and 0 = no overflow.

 The Sign Flag (S): This flag is set when the result of an
arithmetic or logic operation is negative. This flag is a copy of
the MSB of the result (i.e. the sign bit). A value of 1 means
negative and 0 = positive.

32

 The Zero Flag (Z): This flag is set when the result of an
arithmetic or logic operation is equal to zero. A value of 1
means the result is zero and a value of 0 means the result is
not zero.

 The Auxiliary Carry Flag (A): This flag is set when an
operation causes a carry from bit 3 to bit 4 (or a borrow
from bit 4 to bit 3) of an operand. A value of 1 = carry and 0
= no carry.

 The Parity Flag (P): This flags reflects the number of 1s in the
result of an operation. If the number of 1s is even its value =
1 and if the number of 1s is odd then its value = 0.

33

Addressing Modes of 8086

34

Addressing Modes of 8086:
 Addressing mode indicates a way of locating data or

operands. Depending up on the data type used in the
instruction and the memory addressing modes, any
instruction may belong to one or more addressing modes or
same instruction may not belong to any of the addressing
modes.

 The addressing mode describes the types of operands and
the way they are accessed for executing an instruction.
According to the flow of instruction execution, the
instructions may be categorized as

 Sequential control flow instructions and
 Control transfer instructions.

35

Addressing Modes

 Sequential control flow instructions are the instructions
which after execution, transfer control to the next
instruction appearing immediately after it (in the sequence)
in the program. For example the arithmetic, logic, data
transfer and processor control instructions are Sequential
control flow instructions.

 The control transfer instructions on the other hand transfer
control to some predefined address or the address somehow
specified in the instruction, after their execution. For
example INT, CALL, RET & JUMP instructions fall under this
category.

36

Addressing Modes

 The addressing modes for Sequential and control flow
instructions are explained as follows.

 Immediate addressing mode:

 In this type of addressing, immediate data is a part of
instruction,
and appears in the form of successive byte or bytes.

Example: MOV AX, 0005H.

 In the above example, 0005H is the immediate data
.The immediate data may be 8- bit or 16-bit in size.

37

Addressing Modes

Direct addressing mode:

 In the direct addressing mode, a 16-bit memory address
(offset)
directly specified in the instruction as a part of it.

Example: MOV AX, [5000H].

Register addressing mode:

 In the register addressing mode, the data is stored in a
register and it is referred using the particular register. All
the registers, except IP, may be used in this mode.

Example: MOV BX, AX

38

Addressing Modes

Register indirect addressing mode:

 Sometimes, the address of the memory location which
contains data or operands is determined in an indirect way,
using the offset registers. The mode of addressing is known
as register indirect mode.

 In this addressing mode, the offset address of data is in
either BX or SI or DI Register. The default segment is either
DS or ES.
Example: MOV AX, [BX].

39



Addressing Modes

 Indexed addressing mode:

 In this addressing mode, offset of the operand is stored one
of the index registers. DS & ES are the default segments for
index registers SI & DI respectively.

Example: MOV AX, [SI]

 Here, data is available at an offset address stored in SI in DS.

 Register relative addressing mode:

 In this addressing mode, the data is available at an effective
address formed by adding an 8-bit or 16-bit displacement
with the content of any one of the register BX, BP, SI & DI in
the default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

40

Addressing Modes

 Based indexed addressing mode:
 The effective address of data is formed in this addressing

mode, by adding content of a base register (any one of BX or
BP) to the content of an index register (any one of SI or DI).
The default segment register may be ES or DS.
Example: MOV AX, [BX][SI]

 Relative based indexed:
 The effective address is formed by adding an 8 or 16-bit

displacement with the sum of contents of any of the base
registers (BX or BP) and any one of the index registers, in a
default segment.
Example: MOV AX, 50H [BX] [SI]

41

Addressing Modes

 Addressing Modes for control transfer instructions:

 Intersegment

 Intersegment direct

 Intersegment indirect

 Intrasegment

 Intrasegment direct

 Intrasegment indirect

42

Addressing Modes

 Intersegment direct:

 In this mode, the address to which the control is to be
transferred is in a different segment. This addressing mode
provides a means of branching from one code segment to
another code segment. Here, the CS and IP of the
destination address are specified directly in the instruction.

Example: JMP 5000H: 2000H;

 Jump to effective address 2000H in segment 5000H.

43

Addressing Modes

 Intersegment indirect:

 In this mode, the address to which the control is to be
transferred lies in a different segment and it is passed to the
instruction indirectly, i.e. contents of a memory block
containing four bytes,
i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The
starting address of the memory block may be referred using
any of the addressing modes, except immediate mode.

• Example: JMP [2000H].

Jump to an address in the other segment specified at
effective address 2000H in DS.

44

Addressing Modes

 Intrasegment direct mode:

 In this mode, the address to which the control is to be
transferred lies in the same segment in which the control
transfers instruction lies and appears directly in the instruction
as an immediate displacement value. In this addressing mode,
the displacement is computed relative to the content of the
instruction pointer.

45

Addressing Modes

 The effective address to which the control will be transferred is
given by the sum of 8 or 16 bit displacement and current
content of IP. In case of jump instruction, if the signed
displacement (d) is of 8-bits (i.e. -128<d<+127), it as short jump
and if it is of 16 bits (i.e. - 32768<d<+32767), it is termed as
long jump.

Example: JMP SHORT LABEL.

46

Addressing Modes

 Intrasegment indirect mode:

 In this mode, the displacement to which the control is to
be transferred is in the same segment in which the
control transfer instruction lies, but it is passed to the
instruction directly. Here, the branch address is found as
the content of a register or a memory location.

 This addressing mode may be used in unconditional
branch
instructions.

 Example: JMP [BX]; Jump to effective address stored in BX.

47

Addressing Modes

Instruction set of 8086

48

 The Instruction set of 8086 microprocessor is classified
into 7 Types, they are:-

• Data transfer instructions

• Arithmetic& logical instructions

• Program control transfer instructions

• Machine Control Instructions

• Shift / rotate instructions

• Flag manipulation instructions

• String instructions

49

INSTRUCTION SET OF 8086

Data Transfer instructions

50

 Data transfer instruction, as the name suggests is for the
transfer of data from memory to internal register, from
internal register to memory, from one register to another
register, from input port to internal register, from internal
register to output port etc

MOV instruction

 It is a general purpose instruction to transfer byte or word
from register to register, memory to register, register to
memory or with immediate addressing.

 General Form:
 MOV destination, source
 Here the source and destination needs to be of the same

size,
that is both 8 bit or both 16 bit.

 MOV instruction does not affect any flags.

Example:-
 MOV BX, 00F2H;load the immediate number 00F2H in BX

register

 MOV CL, [2000H];Copy the 8 bit content of the
memory

location, ata displacement of
2000H from data

segment base to the CL register

51

MOV [589H], BX;
Copy the 16 bit content of BX register on to the memory
location,
which at a displacementof 589H from the data segment

base.

MOV DS, CX;Move the content of CX to DS

PUSH instruction

 The PUSH instruction decrements the stack pointer by two
and
copies the word from source to the location where stack
pointer now points. Here the source must of word size
data. Source can be a general purpose register, segment
register or a memory location.

52

The PUSH instruction first pushes the most significant byte to
sp-1, then the least significant to the sp-2. Push instruction
does not affect any flags.

53

Example:-

 PUSH CX ; Decrements SP by 2, copy content of CX to the
stack
(figure shows execution of this instruction)

 PUSH DS ; Decrement SP by 2 and copy DS to stack

 POP instruction

The POP instruction copies a word from the stack location
pointed by the stack pointer to the destination. The
destination can be a General purpose register, a segment
register or a memory location. Here after the content is
copied the stack pointer is automatically incremented by
two.

 The execution pattern is similar to that of the PUSH

instruction. Example: POP CX; Copy a word from the top of

the stack to CX and increment SP by 2.
54

Move 8 bit data from 30F8H port

Move 16 bit data from 30F8H port

Copy contents of AL to 8 bit port 047H

55

 IN & OUT instructions

 The IN instruction will copy data from a port to the
accumulator. If 8 bit is read the data will go to AL andif 16 bit
then to AX. Similarly OUT instruction is used to copy data from
accumulator to an output port.

 Both IN and OUT instructions can be done using direct
and indirect addressing modes.

Example:

 IN AL, 0F8H; Copy a byte from the port 0F8H to AL

 MOV DX, 30F8H;Copy port address in DX

 IN AL, DX;

 IN AX, DX;

 OUT 047H, AL;

 MOV DX, 30F8H;Copy port address in DX

XCHG instruction

 The XCHG instruction exchanges contents of the destination and
source. Here destination and source can be register and register
or register and memory location, but XCHG cannot interchange
the value of 2 memory locations.

General Format

 XCHG Destination, Source

Example:

 XCHG BX, CX; exchange word in CX with the word inBX

 XCHG AL, CL; exchange byte in CL with the byte in AL

 XCHG AX, SUM[BX];here physical address, which isDS+SUM+[BX].
The content at physical address and the content of AX are
interchanged.

56

Instruction set of 8086

(Arithmetic Instructions in 8086)

57

Arithmetic Instructions: ADD, ADC, INC, AAA, DAA

58

Mnemonic Meaning Format Operation Flags

affected

ADD Addition ADD D,S (S)+(D)  (D)

carry  (CF)

ALL

ADC Add with

carry

ADC D,S (S)+(D)+(CF)  (D)

carry  (CF)

ALL

INC Incrementby

one

INC D (D)+1  (D) ALL but CY

AAA ASCII adjust

for addition

AAA If the sum is >9,AH

is incremented by 1

AF,CF

DAA Decimal

adjust for

addition

DAA Adjust AL for decimal

Packed BCD

ALL

Arithmetic Instructions–SUB, SBB, DEC, AAS, DAS, NEG

59

Mnemonic Meaning Format Operation Flags
affected

SUB Subtract SUB D,S (D) - (S)  (D)
Borrow  (CF)

All

SBB Subtract

with

borrow

SBB D,S (D) - (S) - (CF)  (D) All

DEC Decrement

by one

DEC D (D) - 1  (D) All but CF

NEG Negate NEG D All

DAS Decimal

adjust for

subtraction

DAS Convert the result in ALto

packed decimal format

All

AAS ASCII

adjust for

subtraction

AAS (AL) difference

(AH) dec by 1 if borrow

CY,AC

Multiplication and Division

60

61

Instruction set of 8086

(Logical Instructions in 8086)

62

AND instruction

 This instruction logically ANDs each bit of the source

byte/word with the corresponding bit in the destination

and stores the result in destination. The source can be an

immediate number, register or memory location, register

can be a register or memory location.

 The CF and OF flags are both made zero, PF, ZF, SF are

affected by the operation and AF is undefined.

63

 General Format:

 AND Destination, Source

Example:

64

;suppose BL=1000 0110 and AL = 1100
after the operation BL would be BL=

 AND BL, AL
1010 then
1000 0010.

 AND CX, AX ;CX <= CX AND AX

 AND CL, 08 ;CL<= CL AND (0000 1000)

OR instruction

 This instruction logically ORs each bit of the source
byte/word with the corresponding bit in the destination
and stores the result in destination. The source can be an
immediate number, register or memory location, register
can be a register or memory location.

 The CF and OF flags are both made zero, PF, ZF, SF are
affected by
the operation and AF is undefined.

 General Format:

 OR Destination, Source

65

Example:

66

 OR BL, AL; suppose BL=1000 0110 and AL = 1100 1010 then after the operation

BL would be BL= 1100 1110.

 OR CX, AX;CX <= CX AND AX

 OR CL, 08;CL<= CL AND (0000 1000)

NOT instruction

 The NOT instruction complements (inverts) the contents of an operand register

or a memory location, bit by bit. The examples are as follows:

Example:

 NOT AX (BEFORE AX= (1011)2= (B) 16 AFTER EXECUTION AX= (0100)2= (4)16).

 NOT [5000H]

XOR instruction

 The XOR operation is again carried out in a similar way to the
AND and OR operation. The constraints on the operands are
also similar. The XOR operation gives a high output, when the
2 input bits are dissimilar. Otherwise, the output is zero. The
example instructions are as follows:

Example:

○ XOR AX,0098H

○ XOR AX,BX

○ XOR AX,[5000H]

67

 Shift / Rotate Instructions

 Shift instructions move the binary data to the left or right

by shifting them within the register or memory location.

They also can perform multiplication of powers of 2+n

and division of powers of 2-n.

 There are two type of shifts logical shifting and

arithmetic shifting, later is used with signed numbers

while formerwith unsigned.

68

 SHL/SAL instruction

 Both the instruction shifts each bit to left, and places the MSB in
CF and LSB is made 0. The destination can be of byte size or of
word size, also it can be a register or a memory location. Number
of shifts is indicated by the count.

 All flags are affected.

 General Format:

 SAL/SHL destination, count

Example:

 MOV BL, B7H;

 BL is made B7HSAL BL, 1;

 shift the content of BL register one place to left.

 Before execution,

 CY B7,B6 B5 B4 B3 B2 B1 B0

69

 SHR instruction

 This instruction shifts each bit in the specified destination to the
right and 0 is stored in the MSB position. The LSB is shifted into
the carry flag. The destination can be of byte size or of word size,
also it can be a register or a memory location. Number of shifts is
indicated by the count.

 All flags are affected

 General Format: SHR destination, count

Example:

 MOV BL, B7H;BL is made B7H

 SHR BL, 1;shift the content of BL register one place to the right.

 Before execution,

B7 B6 B5 B4 B3 B2 B1 B0 CY

70

 After execution,

 B7 B6 B5 B4 B3 B2 B1 B0 CY

 ROL instruction

 This instruction rotates all the bits in a specified byte or word to
the left some number of bit positions. MSB is placed as a new
LSB and a new CF. The destination can be of byte size or of
word size, also it can be a register or a memory location.
Number of shifts is indicated by the count.

 All flags are affected

71

 General Format: ROL destination, count

Example:

 MOV BL, B7H;BL is made B7H

 CY B7 B6 B5 B4 B3 B2 B1 B0

 ROL BL, 1;rotates the content of BL register one place to
the left.

Before execution,

 CY B7 B6 B5 B4 B3 B2 B1 B0

72

 ROR instruction
 This instruction rotates all the bits in a specified byte or

word to the right some number of bit positions. LSB is
placed as a new MSB and a new CF. The destination can be
of byte size or of word size, also it can be a register or a
memory location. Number of shifts is indicated by the
count.

 General Format: ROR destination,

count Example:

 MOV BL, B7H; BL is made B7H
 ROR BL, 1;shift the content of BL register one place

to the right.
 Before execution,
 B7 B6 B5 B4 B3 B2 B1 B0 CY

73

 RCR instruction
 This instruction rotates all the bits in a specified byte or

word to the right some number of bit positions along with
the carry flag. LSB is placed in a new CF and previous carry is
placed in the new MSB. The destination can be of byte size
or of word size, also it can be a register or a memory
location. Number of shifts is indicated by the count.

 All flags are affected
 General Format: RCR destination, count

Example:
 MOV BL, B7H;BL is made B7H
 RCR BL, 1;shift the content of BL register one place to the

right.

74

INSTRUCTION SET OF 8086

75

String Instruction Basics

76

 Source DS:SI, Destination ES:DI

– You must ensure DS and ES are correct

– You must ensure SI and DI are offsets into DS
and ES
respectively

 Direction Flag (0 = Up, 1 = Down)

– CLD - Increment addresses (left to right)

– STD - Decrement addresses (right to

String ControlInstructions

77

1) MOVS/ MOVSB/ MOVSW

Dest string name, src stringname

This instruction moves data byte or word from location
in DS
to location in ES.

2) REP / REPE / REPZ / REPNE / REPNZ

Repeat string instructions until specified conditions
exist.

This is prefix a instruction.

String ControlInstructions

78

4) SCAS / SCASB / SCASW
Scan a string byte or string word.
Compares byte in AL or word in AX. String address is to be loaded in DI.

5) STOS / STOSB / STOSW
Store byte or word in a string.
Copies a byte or word in AL or AX to memory location pointed by
DI.

6) LODS / LODSB /LODSW
Load a byte or word in AL or AX

Copies byte or word from memory location pointed by SI into AL or
AX register.

5. Program Execution TransferInstructions

79

 instructions are similar to branching or looping instructions. These

instructions include unconditional jump or loop instructions.

 Classification:

 Unconditional transfer instructions

 Conditional transfer instructions

 Iteration control instructions

 Interrupt instructions

Unconditional transferinstructions

80

 CALL: Call a procedure, save return address onstack

 RET: Return from procedure to the main program.

 JMP: Goto specified address to get next instruction

CALL instruction: The CALL instruction is used to transfer

execution of program to a subprogram or procedure.

CALL instruction

81

 Near call

1.Direct Near CALL: The destination address is specified in the
instruction itself.

2.Indirect Near CALL: The destination address is specified in any16-

bit register, except IP.

 Far call

1.Direct Far CALL: The destination address is specified in the
instruction itself. It will be in different Code Segment.

2.Indirect Far CALL: The destination address is specified in two word

memory locations pointed by a register.

JMP instruction

82

The processor jumps to the specified location rather than
the

instruction after the JMP instruction.

 Intra segment jump

 Inter segment jump

RET

RET instruction will return execution from a procedure to
the

next instruction after the CALL instruction in the calling
program.

Conditional TransferInstructions

83

• JA/JNBE: Jump if above / jump if not below or equal

• JAE/JNB: Jump if above /jump if notbelow

• JBE/JNA: Jump if below or equal/ Jump if not above

• JC: jump if carry flag CF=1

• JE/JZ: jump if equal/jump if zero flagZF=1

• JG/JNLE: Jump if greater/ jump if not less than orequal.

Conditional Transfer Instructions

84

• JGE/JNL: jump if greater than or equal/ jump if not less
than

• JL/JNGE: jump if less than/ jump if not greater than or
equal

• JLE/JNG: jump if less than or equal/ jump if not greater
than

• JNC: jump if no carry (CF=0).

• JNE/JNZ: jump if not equal/ jump if not zero(ZF=0)

Conditional TransferInstructions

85

• JNO: jump if no overflow(OF=0)

• JNP/JPO: jump if not parity/ jump if parity
odd(PF=0)

• JNS: jump if not sign(SF=0)

• JO: jump if overflow flag(OF=1)

• JP/JPE: jump if parity/jump if parityeven(PF=1)

• JS: jump if sign(SF=1).

Iteration Control Instructions

86

 These instructions are used to execute a series of instructions for

certain number of times.

 LOOP: Loop through a sequence of instructions until CX=0.

instructions while LOOPE/LOOPZ : Loop through a sequence of

ZF=1 and instructions CX = 0.

 LOOPNE/LOOPNZ : Loop through a sequence of instructions while

ZF=0 and CX =0.

 JCXZ : jump to specified

Interrupt Instructions

87

Two types of interrupt instructions:

 Hardware Interrupts (External Interrupts)

 Software Interrupts (Internal Interrupts and
Instructions)

Hardware Interrupts:

• INTR is a maskable hardware interrupt.

• NMI is a non-maskable interrupt.

Software Interrupts

88

• INT : Interrupt program execution, call serviceprocedure

 INTO : Interrupt program execution if OF=1

• IRET: Return from interrupt service procedure to main
program.

High Level Language Interface Instructions

89

ENTER : enter procedure.

address within specified array

LEAVE:Leave procedure.

BOUND: Check if effective

bounds.

Processor ControlInstructions

90

I. Flag set/clear instructions

 STC: Set carry flag CF to 1

 CLC: Clear carry flag CF to0

 CMC: Complement the state of the carry flagCF

 STD: Set direction flag DF to 1 (decrement stringpointers)

 CLD: Clear direction flag DF to0

 STI: Set interrupt enable flag to 1(enable INTRinput)

 CLI: Clear interrupt enable Flag to 0 (disable INTRinput)

II. External Hardware synchronizationinstructions

91

HLT: Halt (do nothing) until interrupt or reset.

WAIT: Wait (Do nothing) until signal on the test pin islow.

from

ESC: Escape to external coprocessor such as 8087 or 8089.

LOCK: An instruction prefix. Prevents another processor

taking the bus while the adjacent instruction executes.

NOP: No operation. This instruction simply takes up three clock

cycles and does no processing.

Assembler Directives

92

Assembler Directives

93

 ASSUME

 DB

 DD

 DQ

 DT

 DW

-

-

-

-

-

Defined Byte.

Defined Double Word

Defined Quad Word

Define Ten Bytes

Define Word

 ASSUME Directive- The ASSUME directive is

94

used to tell the
assembler that the name of the logical segment should be used for
a specified segment. The 8086 works directly with only 4 physical
segments: a Code segment, a data segment, a stack segment, and
an extra segment.

Example:

ASUME CS:CODE ;This tells the assembler that the logical segment
named CODE contains the instruction statements for the program
and should be treated as a code segment.

ASSUME DS:DATA ;This tells the assembler that for any instruction
which refers to a data in the data segment, data will found in the
logical segment DATA.

 DB - DB directive is used to declare a byte- type variable or to
store a byte in memory location.

 Example:

95

1. PRICE DB 49h, 98h, 29h ;Declare an array of 3 bytes,
named as PRICE and initialize.

2. NAME DB ‘ABCDEF’ ;Declare an array of 6
bytes and initialize with ASCII code for letters

3. TEMP DB 100 DUP(?) ;Set 100 bytes of storage
in memory and give it the name as TEMP, but leave the 100
bytes uninitialized. Program instructions will load values into
these locations.

 DW-The DW directive is used to define a variable

96

of type word or
to reserve storage location of type word in memory.

 Example:

 MULTIPLIER DW 437Ah ; this declares a variable of type word and
named it as MULTIPLIER. This variable is initialized with the value
437Ah when it is loaded into memory to run.

 EXP1 DW 1234h, 3456h, 5678h ; this declares an array of
3 words and initialized with specified values.

 STOR1 DW 100 DUP(0); Reserve an array of 100 words of
memory and initialize all words with 0000.Array is named as STOR1.

 END-END directive is placed after the last statement of a
program to tell the assembler that this is the end of the
program module. The assembler will ignore any statement
after an END directive.

 ENDP-ENDP directive is used along with the name of the
procedure to indicate the end of a procedure to the
assembler

97

Example:

 SQUARE_NUM PROCE ; It start the procedure ;Some

steps to find the square root of a number

 SQUARE_NUM ENDP ;Hear it is the End for the
procedure

 END

 ENDP

 ENDS

 EQU

 EVEN -

 EXTRN -

98

End Program

- End Procedure

- End Segment

Equ-ate

Align on Even Memory Address

 ENDS - This ENDS directive is used with name of the
segment to
indicate the end of that logic segment.

Example: CODE SEGMENT ;Hear it Start the logic
segment

containing code ;

 CODE ENDS ;End of segment named as CODE

 GLOBAL - Can be used in place of a PUBLIC directive or in place
of an
EXTRN directive.

99

 GROUP-Used to tell the assembler to group the logical statements
named after the directive into one logical group segment,
allowing the contents of all the segments to be accessed from the
same group segment base.

 INCLUDE - Used to tell the assembler to insert a block of source
code from the named file into the current source module.

 LABEL- Used to give a name to the current value in the location
counter.

 NAME- Used to give a specific name to each assembly module
when programs consisting of several modules are written.

E.g.: NAME PC_BOARD

100

 OFFSET- Used to determine the offset or displacement of a
named data item or procedure from the start of the segment
which contains it.

E.g.: MOV BX, OFFSET PRICES

 ORG- The location counter is set to 0000 when the assembler
starts reading a segment. The ORG directive allows setting a
desired value at any point in the program.

E.g.: ORG 2000H

 PROC- Used to identify the start of a

procedure. E.g.: SMART_DIVIDE PROC

FAR

 PTR- Used to assign a specific type to a variable or to a

label. E.g.: INC BYTE PTR[BX] tells the
101

 PUBLIC- Used to tell the assembler that a specified name or
label will be accessed from other modules.

 SEGMENT- Used to indicate the start of a logical segment.

E.g.: CODE SEGMENT indicates to the assembler the start of
a logical segment called CODE

 SHORT- Used to tell the assembler that only a 1
byte displacement is needed to code a jump instruction.

E.g.: JMP SHORT NEARBY_LABEL

 TYPE - Used to tell the assembler to determine the type of a
specified variable.

E.g.: ADD BX, TYPE WORD_ARRAY is used where we want to
increment BX to point to the next word in an array of
words.

102

Simple Programs of 8086

103

Write an assembly language program for addition of two 8-

bit numbers using 8086 microprocessors.

104

DATA SEGMENT

A1 DB 50H

A2 DB 51H

RES DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AL,A1

MOV BL,A2

ADD AL,BL

MOV RES,AL

MOV AX,4C00H

INT 21H

CODE ENDS

END START

Write an assembly language program to find the factorial of given

number using 8086 microprocessors.

105

DATA SEGMENT

FIRST DW 03H

SEC DW 01H

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AX,SEC

MOV CX,FIRST

L1: MUL CX

DEC CX

JCXZ L2

JMP L1

L2: INT 3H

CODE ENDS

END START

Write an assembly language program to find the sum of squares

using 8086 microprocessors.

106

DATA SEGMENT

NUM DW 5H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

MOV DS,AX

MOV CX,NUM

MOV BX,00

L1: MOV AX,CX

MUL CX

ADD BX,AX

DEC CX

JNZ L1

MOV RES,BX

INT 3H

CODE ENDS

END START

Procedures and Macros

107

Procedures:

108

 While writing programs, it may be the case that a particular
sequence of instructions is used several times. To avoid
writing the sequence of instructions again and again in the
program, the same sequence can be written as a separate
subprogram called a procedure.

Defining Procedures:

 Assembler provides PROC and ENDP directives in order to
define procedures. The directive PROC indicates beginning
of a procedure. Its general form is:

Procedure_name PROC [NEAR|FAR]

Passing parameters to and from procedures:

109

The data values or addresses passed between
procedures and main program are called parameters.
There are four ways of passing parameters:

 Passing parameters in registers

 Passing parameters in dedicated memory locations

 Passing parameters with pointers passed in registers

 Passing parameters using the stack

MACROS:

110

 When the repeated group of instruction is too short or not
suitable to be implemented as a procedure, we use a MACRO.
A macro is a group of instructions to which a name is given.
Each time a macro is called in a program, the assembler will
replace the macro name with the group of instructions.

Defining MACROS:

 Before using macros, we have to define them. MACRO
directive informs the assembler the beginning of a macro. The
general form is:

 Macro_name MACRO argument1, argument2, …

 Arguments are optional. ENDM informs the assembler the
end of

the macro. Its general form is : ENDM

Procedures Macros

Accessed by CALL and RET

mechanism during program execution

Accessed by name given to macro

when

defined during assembly

Machine code for instructions only put

in memory once

Machine code generated for

instructions

each time called

Parameters are passed in registers,

memory locations or stack

Parameters passed as part of statement

which calls macro

Procedures uses stack Macro does not utilize stack

A procedure can be defined anywhere

in program using the directives PROC

and ENDP

A macro can be defined anywhere in

program using the directives MACRO

and ENDM

Procedures takes huge memory for

CALL(3 bytes each time CALL is

used) instruction

Length of code is very huge if macro’s

are called for more number of times

111

Differences

UNIT-II

8086 AEESMBLY LANGUAGE

PROGRAMMING

112

COURSE LEARNING OUTCOMES

113

CLO7
Describe Minimum mode and maximum mode of operation
and timing diagram of 8086 microprocessor

CLO8
Explain various Assembly language programs involving
logical, branch and call instructions.

CLO9 Evaluation of arithmetic expressions, string manipulation,
sorting using various Assembly language programs.

Minimum mode operation in

8086

114

Minimum mode operation in 8086:

115

 In a minimum mode 8086 system, the microprocessor 8086 is operated
in minimum mode by strapping its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor
chip itself. There is a single microprocessor in the minimum mode
system.

 The remaining components in the system are latches, transceivers, clock
generator, memory and I/O devices. Some type of chip selection logic
may be required for selecting memory or I/O devices, depending upon
the address map of the system.

 Latches are generally buffered output D-type flip-flops like 74LS373 or
8282. They are used for separating the valid address from the
multiplexed address/data signals and are controlled by the ALE signal
generated by 8086.

116

 Transceivers are the bidirectional buffers and sometimes
they are called as data amplifiers. They are required to
separate the valid data from the time multiplexed
address/data signals.

 They are controlled by two signals namely, DEN and DT/R.

 The DEN signal indicates the direction of data, i.e. from or to
the processor. The system contains memory for the monitor
and users program storage.

 Usually, EPROM is used for monitor storage, while RAM for
users
program storage. A system may contain I/O devices.

117

Maximum mode operation in

8086

118

• In the maximum mode, the 8086 is operated by

strapping the MN/MX pin to ground.

• In this mode, the processor derives the status signal S2, S1,

S0. Another chip called bus controller derives the control

signal using this status information.

• In the maximum mode, there may be more than

one microprocessor in the system configuration.

119

• The components in the system are same as in the minimum

mode system.

• The basic function of the bus controller chip IC8288 is to

derive control signals like RD and WR (for memory and I/O

devices), DEN, DT/R, ALE etc. using the information by the

processor on the status lines.

• The bus controller chip has input lines S2, S1, S0 and

CLK. These inputs to 8288 are driven by CPU.

120

Maximum mode

121

 It derives the outputs ALE, DEN, DT/R, MRDC, MWTC,
AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins
are especially useful for multiprocessor systems.

 AEN and IOB are generally grounded. CEN pin is usually
tied to
+5V. The significance of the MCE/PDEN output depends
upon the
status of the IOB pin.

 If IOB is grounded, it acts as master cascade enable to
control cascade 8259A, else it acts as peripheral data enable
used in the multiple bus configurations.

122

 INTA pin used to issue two interrupt acknowledge pulses to
the interrupt controller or to an interruptingdevice.

 IORC, IOWC are I/O read command and I/O write command
signals respectively.

 These signals enable an IO interface to read or write the data
from or to the address port.

 The MRDC, MWTC are memory read command and memory
write command signals respectively and may be used as
memory read or write signals.

123

 The MRDC, MWTC are memory read command and memory
write command signals respectively and may be used as
memory read or write signals.

 All these command signals instructs the memory to accept
or send data from or to the bus.

 For both of these write command signals, the advanced
signals namely AIOWC and AMWTC are available.

124

Here the only difference between in timing diagram
between minimum mode and maximum mode is the status
signals used and the available control and advanced
command signals.

R0, S1, S2 are set at the beginning of bus cycle.8288 bus
controller will output a pulse as on the ALE and apply a
required signal to its DT / R pin during T1.

In T2, 8288 will set DEN=1 thus enabling transceivers, and
for an input it will activate MRDC or IORC. These signals are
activated until T4. For an output, the AMWC or AIOWC is
activated from T2 to T4 and MWTC or IOWC is activated
from T3 to T4.

125

Timing diagram for

minimum mode

126

Write Cycle Timing Diagram for
Minimum Mode

127

 The working of the minimum mode configuration system can

be better described in terms of the timing diagrams rather

than qualitatively describing the operations.

 The opcode fetch and read cycles are similar. Hence the

timing diagram can be categorized in two parts, the first is

the timing diagram for read cycle and the second is the

timing diagram for write cycle.

128

Bus Request and Bus Grant Timings in Minimum Mode System
of 8086

129

Timing diagram for

maximum mode

130

Memory Read Timing Diagram in Maximum
Mode of 8086

131

Memory Write Timing in Maximum mode of 8086

132

Memory interfacing to 8086

(Static RAM and EPROM)

133

 Interface two 4Kx8 EPROMS and two 4Kx8 RAM chips
with 8086. select suitable maps.

134

135

136

Assembly language programs

using logical, branch& call

instructions

137

Programs using logical ,Branch and call instructions.

Data segment

138

Mov [di],ax

Int 03h

Code ends

End

Org 2000h

N1 dw 5678h

N2 dw 2345h

Data ends

Code segment

Assume cs:code,ds:dats

Mov ax,data

Mov ds,ax

Mov DI,2040h

Mov ax,N1

AND ax,bx

Assembly language programs

2)Data segment

 Org 2000h

 N1 dw 5678h

 N2 dw 2345h

 Data ends

 Code segment

 Assume cs:code,ds:dats

 Mov ax,data

 Mov ds,ax

 Mov DI,2040h

 Mov ax,N1

 MOV bx,N2

 OR ax,bx

 Mov [di],ax

 Int 03h

 Code ends

 End

139

Assembly language programs

3)Data segment

140

 Org 2000h

 N1 dw 5678h

 N2 dw 2345h

 Data ends

 Code segment

 Assume cs:code,ds:dats

 Mov ax,data

 Mov ds,ax

 Mov DI,2040h

 Mov ax,N1

 MOV bx,N2

 xor ax,bx

 Mov [di],ax

 Int 03h

 Code ends

 End

Assembly language

programs

4)Data segment

 Org 2000h

 N1 dw 5678h

 Data ends

 Code segment

 Assume cs:code,ds:dats

 Mov ax,data

 Mov ds,ax

 Mov DI,2040h

 Mov ax,N1

 SHL ax,04

 Mov [di],ax

 Int 03h

 Code ends

 End

141

Assembly language programs

Programs using logical ,Branch and call instructions.

1)Data segment

142

. Mov [di],ax

. Int 03h

. Code ends

. End

 Org 2000h

 N1 dw 5678h

 Data ends

 Code segment

 Assume cs:code,ds:dats

 Mov ax,data

 Mov ds,ax

 Mov DI,2040h

 Mov ax,N1

 SHR ax,04

Assembly language programs

2)Data segment

 Org 2000h

 N1 dw 5678h

 Data ends

 Code segment

 Assume cs:code,ds:dats

 Mov ax,data

 Mov ds,ax

 Mov DI,2040h

 Mov ax,N1

 ROR ax,02

 Mov [di],ax

 Int 03h

 Code ends

 End

143

Assembly language programs

3)Data segment

144

 Org 2000h

 N1 dw 5678h

 Data ends

 Code segment

 Assume cs:code,ds:dats

 Mov ax,data

 Mov ds,ax

 Mov DI,2040h

 Mov ax,N1

 RCR ax,03

 Mov [di],ax

 Int 03h

 Code ends

 End

Assembly language

programs

4)Data segment

 Org 2000h

 N1 dw 5678h

 Data ends

 Code segment

 Assume cs:code,ds:dats

 Mov ax,data

 Mov ds,ax

 Mov DI,2040h

 Mov ax,N1

 RCL ax,04

 Mov [di],ax

 Int 03h

 Code ends

 End

145

Assembly language programs

Sorting

146

Assembly language program to sort the given numbers in

Ascending order

147

ASSUME CS: CODE

CODE SEGMENT

START:

UP1:

UP:

MOV AX,0000H

MOV CH, 0004H

DEC CH

MOV CL, CH

MOV SI, 2000H

MOV AL, [SI]

INC SI

CMP AL, [SI]

DOWN:

148

JC DOWN

XCHG AL,

[SI] DEC SI

MOV [SI], AL

INC SI

DEC CL

JNZ UP

DEC CH

JNZ UP1

INT 3

CODE ENDS

END START

Assembly language program to sort the given numbers

in Descending order

149

ASSUME CS: CODE

CODE SEGMENT

START:

UP1:

UP:

MOV AX, 0000H

MOV CH, 0004H

DEC CH

MOV CL, CH

MOV SI, 2000H

MOV AL, [SI]

INC SI

CMP AL, [SI]

DOWN:

150

JNC DOWN

XCHG AL, [SI]

DEC SI

MOV [SI], AL

INC SI

DEC CL

JNZ UP

DEC CH

JNZ UP1

I NT 3

CODE ENDS
END START

Evaluation of arithmetic expressions

151

An Assembly program for performing the following operation
Z= ((A-B)/10*C)

DATA SEGMENT
A DB 60
B DB 20
C DB 5
Z DW?
ENDS
CODE SEGMENT
ASSUME DS: DATA CS: CODE

152

START: MOV AX, DATA
MOV DS, AX
MOV AH, 0
MOV AL, A

; Clear content of AX
; Move A to register AL

; Subtract AL and B

; Multiply C to AL

; Move 10 to register BL

; Divide AL content by BL

; Move content of AX to Z

153

SUB AL, B

MUL C

MOV BL, 10

DIV BL

MOV Z, AX

MOV AH, 4CH

INT 21H

ENDS

END START

Evaluation of string manipulation

154

Program For String Transfer

155

; start of data segmentDATA SEGMENT

STR1 DB 'HOW ARE YOU'

LEN EQU $-STR1

STR2 DB 20 DUP (0)

DATA ENDS

CODE SEGMENT

; end of data segment

; start of code segment

ASSUME CS: CODE, DS: DATA, ES: DATA

START: MOV AX, DATA ; initialize data segment

MOV DS, AX

MOV ES, AX

LEA SI, STR1

LEA DI, STR2

156

MOV CX, LEN

CLD
and

; initialize extra segment for string operations

; SI points to starting address of string at ; STR1

; DI points to starting address of where the string
has to be transferred

; load CX with length of the string

; clear the direction flag for auto increment SI;
DI

; the source string is moved to destination
till CX=0(after every move CX is;

; terminate the process

; end of code segment

REP MOVSB
address
decremented)

MOV AH, 4CH

INT 21H

CODE ENDS

END START

; start of data segment

157

Program To Reverse A String

DATA SEGMENT

STR1 DB 'HELLO'

LEN EQU $-STR1

STR2 DB 20 DUP (0)

DATA ENDS

CODE SEGMENT

; end of data segment

; start of code segment

ASSUME CS: CODE, DS: DATA, ES: DATA

START: ; initialize data segmentMOV AX, DATA

MOV DS, AX

MOV ES, AX

UP:

158

LEA SI, STR1

LEA DI, STR2+LEN-1

MOV CX, LEN

CLD

LODSB

STD

STOSB

LOOP UP

MOV AH, 4CH

INT 21H

CODE ENDS

END START

UNIT-III

8255 PROGRAMMABLE

PERIPHERAL INTERFACE (PPI)

159

COURSE LEARNING OUTCOMES

160

CLO10
Identify the importance of various modes of 8255 operation
and interfacing to 8086.

CLO11

Discuss the interfacing diagram of I/O devices with
keyboard, stepper motor, 7-segment display, LCD and
digital to analog and analog to digital converter.

CLO12 Explain in detail about the importance of DMA,interrupt
and interrupt sub routines in 8086 microprocessor

Introduction to 8255 (PIO)

161

8255-PROGRAMMABLE PERIPHERALINTERFACE

84
194

 It has 24 input/output lines

 24 lines divided into 3ports

• Port A(8bit)

• Port B(8bit)

• Port C upper(4 bit), Port C Lower (4bit)

All the above 3 ports can act as input or output
ports

Block Diagram

85
195

BLOCK DIAGRAM OF 8255

Data Bus buffer

86
196

 It is a 8-bit bidirectional Data bus.

 Used to interface between 8255 data bus with system bus.

 The internal data bus and Outer pins D0-D7 pins are

connected in internally.

 The direction of data buffer is decided by Read/Control
Logic.

Read/Write ControlLogic
Address Bus.This is getting the input signals from control

bus and

Control signal are RD and WR.

Address signals are A0, A1, and CS

8255 operation is enabledor
disabled by

CS.

Group A and B get the Control Signal from CPU and send the

commandto the individual control blocks.

Group A send the control signal to port A and Port C (Upper)

PC7-PC4. Group B send the control signal to port B and Port C

(Lower) PC3-PC0. 87
197

PORT A:

88
198

 This is a 8-bit buffered I/O latch.

 It can be programmed by mode 0 , mode 1, mode2.

PORT B:

This is a 8-bit buffer I/O latch.

It can be programmed by mode 0 and mode 1.

PORTC:
 This is a 8-bit Unlatched buffer Input and an Output latch.

 It is spitted into two parts.

 It can be programmed by bit set/resetoperation.

8255-PROGRAMMABLE PERIPHERAL INTERFACE

90
199

Pin Description of 8255

91
200

PA7-PA0: These are eight port A lines that acts as either latched
output or buffered input lines depending upon the
control word loaded into the control word register.

PC7-PC4: Upper nibble of port C lines. They may act as either
output latches or input buffers lines. This port also
can be used for generation of handshake lines in
mode 1 or mode 2.

PC3-PC0: These are the lower port C lines, other details are
the same as PC7-PC4 lines.

PB0-PB7: These are the eight port B lines

Pin Description of 8255

169

RD: This is the input line driven by the microprocessor and
should be low to indicate read operation to8255.

 WR: This is an input line driven by the microprocessor. A low
on

this line indicates writeoperation.

CS : This is a chip select line. If this line goes low, it enables the
8255 to respond to RD and WR signals, otherwise RD and WR
signal are neglected.

A1-A0: These are the address input lines and are driven by the
microprocessor.

RESET: The 8255 is placed into its reset state if this input line is
a logical 1. All peripheral ports are set to the inputmode.

Various modes of 8255

operation and interfacing to

8086

170

Various modes of 8255:

171

These are two basic modes of operation of 8255. I/O mode
and Bit Set-Reset mode (BSR).

In I/O Mode, the 8255 ports work as programmable I/O
ports, while in BSR mode only port C (PC0-PC7) can be used
to set or reset its individual port bits.

Under the I/O mode of operation, further there are three
modes of operation of 8255, so as to support different types
of applications, mode 0, mode 1 and mode 2.

 Mode 0 (Basic I/O mode): This mode is also called as basic
input/output Mode. This mode provides simple input and
output capabilities using each of the three ports. Data can
be simply read from and written to the input and output
ports respectively, after appropriate initialization.

172

Mode 1: (Strobed input/output mode) in this mode the
handshaking control the input and output action of the
specified port. Port C lines PC0-PC2, provide strobe or
handshake lines for port B.

This group which includes port B and PC0-PC2 is called as
group B for Strobed data input/output. Port C lines PC3-PC5
provides strobe lines for port A.

This group including port A and PC3-PC5 from group A. Thus
port C is utilized for generating handshake signals.

173

 Mode 2 (Strobed bidirectional I/O): This mode of operation of
8255 is also called as strobed bidirectional I/O. This mode of
operation provides 8255 with additional features for
communicating with a peripheral device on an 8-bit data bus.

 Handshaking signals are provided to maintain proper data
flow and synchronization between the data transmitter and
receiver.

 The interrupt generation and other functions are similar to
mode
1.

174

 BSR Mode:

In this mode any of the 8-bits of port C can be set or reset
depending on D0 of the control word. The bit to be set or
reset is selected by bit select flags D3, D2 and D1 of the
CWR as given in table.

175

8255 interfacing with 8086:

176

Interfacing Keyboard

177

Keyboard Interfacing:

178

switches are connected in a In most keyboards, the key
matrix of Rows and Columns.

meaningful data from a keyboard requires three Getting
Major tasks:

• Detect a key press
• Debounce the key press.
• Encode the key press (produce a standard code for

the
pressed
key).

 Logic ‘0’ is read by the microprocessor when the key is
pressed.

Key Debounce:

Whenever a mechanical push-bottom is pressed or released
once, the mechanical components of the key do not change the
position smoothly; rather it generates a transient response.
These may be interpreted as the multiple pressures and
responded accordingly

179

180

181

182

Keyboard Interfacing Program:

Assume that base address of 8255 is 8000H. So, addresses
of ports will be as follows.

PORT A = 8000H (ROWS)

PORT B = 8002H (COLUMNS)

CONTROL PORT = 8006H

DATA SEGMENT

CNTLPRT EQU 8006H

PORTA EQU 8000H

PORT B EQU 8002H

DELAY EQU 6666 ; Delay constant
for 20ms.

183

Keyboard Interfacing Program:

TABLE DB 30H, 31H, 32H, 33H, 34H, 35H, 36H, 37H, 38H,
39H, 41H, 42H, 43H, 44H, 45H, 46H

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA

MOV DS, AX.

MOV AL, 82H

MOV DX, CNTLPRT

OUT OX, AL

184

XOR AL, AL MOV

DX, PORTA OUT

DX, AL MOV DX,

PORTB

RDCOL: IN AL, DX

AND AL, 0FH CMP

AL, 0FH JNE

RDCOL MOV CX,

DELAY

SELF: LOOP SELF

IN AL,DX AND

AL, 0FH CMP

AL,0FH JNE

RDCOL

RDAGN: IN AL,DX

AND AL, 0FH

JE RDAGN

MOV DX, DELAY

SELF1: LOOP SELF1

IN AL, DX
217

ENROW:

186

CCODE:

NXTCOL:

AND AL, 0FH

JE RDAGN

MOV AL, 0FEH

MOV BL, AL

MOV DX, PORTA

OUT DX, AL

MOV DX, PORTB

IN AL, DX

AND AL, 0FH

CMP AL, 0FH

JNE CCODE

ROL BL, 1

MOV AL, BL

JMP ENROW

MOV CL, 0

ROR AL, 1

JNC CHKROW

INC CL

CHKROW:

NXTROW:

187

CALADR:

JMP NXTCOL

MOV DL, 0

ROR BL, 1

JNC CALADR

ADD DL, 4

JMP NXTROW

ADD DL, CL

MOV AL, DL

LEA BX, TABLE

XLAT

INT 3

CODE ENDS

END START

Displays

188

Multiplexed Display:

189

Program for Multiplexed Display: Assume

base address of 8255 to be FFF8H

Address of port A = FFF8H

190

Address of port B = FFFAH

Address of control port = FFFEH

Algorithm:
1. Turn ON Q0 (Q1 to Q7 OFF) by applying a logical low to base of Q0 as

transistor.

2. Send seven segment code for D0 (LSD) i.e., digit 0'

3. After 1ms turn OFF Q0 turn on Q1, so Q] will be ON and Q0 and Q2 ~ Q7
Will be OFF.

4. Send seven segment code for D1 i.e., digit 1.

5. After 1ms turn off Q1 and turn on Q2. So Q2 will be ON and Q0 Q1 and
Q3-Q7 will be OFF.

6. Repeat the process for all 8 digits. It completes one cycle.

7. Start the cycle again.

Program for multiplexed Display:

191

DATA SEGMENT

PORT A EQU OFFF8H

PORT B EQU OFFFAH

CNTLPRT EQU OFFFEH

DELAY EQU 012CH

DIGITS DB 1, 2,3,4,6,7,8,9

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START:

REPEAT:

MOV AX, DATA

MOV DS, AX

MOV DX, CNTL PRT

MOV AL, 80H

OUT DX, AL

MOV BH, 8

LEA SI, DIGITS

MOV BL, 0FEH

SELF:

MOV AL, BL

MOV DX, PORT A

OUT DX, AL

MOV AL, [SI]

MOV DX, PORTB

OUT DX, AL

MOV CX, DELAY

LOOP SELF

INC SI

ROL BL, 1

DEC BH

JNZ BACK

JMP REPEAT

CODE ENDS

END START

8279 Stepper motor and
actuators

192

 Stepper motor is often used in computer systems. Normally DC and
AC motors move smoothly in a circular fashion.

 Stepper motor is a DC motor, specially designed, which moves in
discrete or fixed step and thus complete one rotation of 360
degrees. To rotate the shaft of the motor a sequence of pulses are
applied to the windings in a predefined sequence.

 The number of pulses required to complete one rotation depends
on the number of teeth on the rotor. Hence rotation Per pulse
sequence is 3600/NT where NT is the number of teeth on rotor.

 If NT is equal to 200 then one step rotation will be of 1.80. The
motors are generally available to move in steps of 0.90 to 30° i.e.
The step size range is 0.90 -36°.

193

Programs for Stepper Motor Rotation:

194

1. Program to rotate the stepper motor continuously in
clockwise direction for following specification

NT = Number of teeth on rotor = 200

Speed of motor = 12 rotations/minute.

CPU frequency = 10MHz

DATA SEGMENT

PORTC EQU 8004H

CNTLPRT EQU 8006H

DELAY EQU 14705

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

195

START: MOV AX, DATA

MOV DS, AX

MOV AL, 80H

MOV DX, CNTLPORT

OUT DX, AL

MOV AL, 33H

MOV DX, PORTC

BACK: OUT DX, AL

ROR AL, 1

MOV CX, DELAY

SELF: LOOP SELF

DELAY LOOP FOR 25Ms

JMP BACK

CODE ENDS

END START

196

Digital to analog converter

interfacing

197

DAC0800 8-bit Digital to Analog Converter

 The DAC 0800 is a monolithic 8-bit DAC manufactured by
National Semiconductor.

 It has settling time around 100ms and can operate on a
range of power supply voltages i.e. from 4.5V to +18V.

 Usually the supply V+ is 5V or +12V.

 The V-pin can be kept at a minimum of -12V.

198

199

Interfacing DAC0808 with 8086

Intersil‟s AD 7523 is a 16 pin DIP, multiplying digital to analog
converter, containing R-2R ladder(R=10KΩ) for digital to analog
conversion along with single pole double through NMOS
switches to connect the digital inputs to the ladder.

200

Pin Diagram of AD7523

201

 The supply range extends from +5V to +15V , while Vref may
be anywhere between -10V to +10V. The maximum analog
output voltage will be +10V, when all the digital inputs are at
logic high state. Usually a Zener is connected between OUT1
and OUT2 to save the DAC from negative transients.

An operational amplifier is used as a current to voltage
converter at the output of AD 7523 to convert the current
output of AD7523 to a proportional output voltage

 It also offers additional drive capability to the DAC output. An
external feedback resistor acts to control the gain. One may
not connect any external feedback resistor, if no gain control is
required.

2

202

Interfacing of AD7523

Analog to digital converter

interfacing

203

Block Diagram of ADC 0808/0809

204

Pin Diagram of ADC 0808/0809

205

Timing Diagram Of ADC 0808.

206

Interfacing ADC0808 with
8086

207

Interrupt structure of 8086

208

Interrupt structure of 8086

209

Vector interrupt table,

interrupt service routines

210

Vector interrupt
table

211

Introduction to DOS and BIOS

interrupts

212

BIOS INTERRUPT

 INT 10H – Video Screen

 The option is chosen by putting a specific value in
register AH

 The video screen is text mode is divided into 80
columns and 25 rows

 A row and column number are associated with each
location on the screen with the top left corner as 00,00
and the bottom right corner as 24,79. The center of the
screen is at 12,39 or (0C,27 in hex)

 Specific registers has to be set to specific values
before invoking INT 10H

213

BIOS INTERRUPT

 Function 06 – clear the screen

 AH = 06

 AL = 00

 BH = 07

 CH = 00

 CL = 00

 DH = 24

 DL = 79

214

; function number

; page number

; normal attribute

; row value of start point

; column value of start point

; row value of ending point

; column value of ending point

; function number

; cursor

 Function 02 – setting the cursor to a specific location

 AH = 06

 DH = row

 DL = column ; position

BIOS INTERRUPT

; function number

; currently viewed page

215

 Function 03 – get the current cursor position

 AH = 03

 BH= 00

 The position is returned in DH = row and DL = column



 Function 0E – output a character to the screen

 AH = 0E ; function number

 AL = Character to be displayed

 BH = 00

 BL = 00

; currently viewed page

; default foreground color

BIOS INTERRUPT

 Function 09 – outputting a string of data to the monitor

 AH = 09 ; function number

 DX = offset address of the ASCII data to be displayed,

data segment is assumed

 The ASCII string must end with the dollar sign $

 Function 02 – outputting a single character to the

monitor

 AH = 02 ; function number

 DL = ASCII code of the character to be displayed

 Function 01 – inputting a single character, with an echo

 AH = 01 ; function number.After the interrupt AL = ASCII

code of the input and is echoed to the monitor

216

DOS INTERRUPT

 Function 0A – inputting a string of data from the keyboard
 AH = 0A ; function number
 DX = offset address at which the string of data is stored (buffer

area), data
 segment is assumed and the string must end with <RETURN>
 After execution:
 DS:DX = buffer in bytes (n characters + 2)
 DS:DX+1 = number of entered characters excluding the return

key
 DS:DX+2 = first character input
 · · ·
 DS:DX+n = last character input
 To set a buffer, use the following in the data segment:
 Buffer DB 10, ? , 10 DUP(FF)

217

DOS INTERRUPT

 Function 07 – inputting a single character from the keyboard
without an echo

 AH = 07 ; function number

 Waits for a single character to be entered and provides it in AL

 INT16 – Keyboard Programming

 Function 01 – check for a key press without waiting for theuser

 AH = 01

 Upon execution ZF = 0 if there is a key pressed

 Function 00 – keyboard read

 AH = 00

 Upon execution AL = ASCII character of the pressed key

 Note this function must follow function 01

218

DOS INTERRUPT

Need for DMA,DMA Data transfer

Method

219

 Direct memory access (DMA) is a feature of modern computer
systems that allows certain hardware subsystems to read/write
data to/from memory without microprocessor intervention,
allowing the processor to do other work.

 Used in disk controllers, video/sound cards etc, or between
memory locations.

 Typically, the CPU initiates DMA transfer, does other operations
while the transfer is in progress, and receives an interrupt from
the DMA controller once the operation is complete.

 Can create cache coherency problems (the data in the cache may
be different from the data in the external memory after DMA)

220

Need For DMA

DMA Data Transfer Method

221

 The I/O device asserts the appropriate DRQ signal for the
channel.

 The DMA controller will enable appropriate channel, and ask the
CPU to release the bus so that the DMA may use the bus. The
DMA requests the bus by asserting the HOLD signal which goes to
the CPU.

 The CPU detects the HOLD signal, and will complete executing the
current instruction. Now all of the signals normally generated by
the CPU are placed in a tri-stated condition (neither high or low)
and then the CPU asserts the HLDA signal which tells the DMA
controller that it is now in charge of the bus.

 The CPU may have to wait (hold cycles).

222

 DMA activates its -MEMR, -MEMW, -IOR, -IOW output signals,
and the address outputs from the DMA are set to the target
address, which will be used to direct the byte that is about to
transferred to a specific memory location.

 The DMA will then let the device that requested the DMA
transfer know that the transfer is commencing by asserting the -
DACK signal.

 The peripheral places the byte to be transferred on the bus Data
lines.

 Once the data has been transferred, The DMA will de-assert the -
DACK2 signal, so that the FDC knows it must stop placing data on
the bus.

223

 The DMA will now check to see if any of the other DMA channels
have any work to do. If none of the channels have their DRQ lines
asserted, the DMA controller has completed its work and will now
tri-state the -MEMR, -MEMW, -IOR, -IOW and address signals.

 Finally, the DMA will de-assert the HOLD signal. The CPU sees this,
and de-asserts the HOLDA signal. Now the CPU resumes control of
the buses and address lines, and it resumes executing instructions
and accessing main memory and the peripherals.

224

8237-DMA Controller

225

Pin diagram

226

 Block Diagram

227

8237 Internal Registers

228

 CAR

 The current address register holds a 16-bit memory address used
for the DMA transfer.

 each channel has its own current address
register for this purpose.

 When a byte of data is transferred during a DMA operation, CAR
is either incremented
or decremented. depending on how it is programmed

 CWCR

 The current word count register programs a channel for the
number of bytes to transferred during a DMA action.

CR(Command Register)

229

 The command register programs the operation of the 8237 DMA
controller.

 The register uses bit position 0 to select the memory-to-memory
DMA transfer mode.

 Memory-to-memory DMA transfers use DMA channel

 DMA channel 0 to hold the source address

 DMA channel 1 holds the destination address

230

BA and BWC

 The base address (BA) and base word count (BWC) registers are
used when auto-initialization is selected for a channel.

 In auto-initialization mode, these registers are used to reload the
CAR and CWCR after the DMA action is completed.

MR (Mode Register)

 The mode register programs the mode of operation for a channel.

 Each channel has its own mode register as selected by bit
positions 1 and 0.

 Remaining bits of the mode register select operation, auto-
initialization, increment/decrement, and mode for the channel

231

232

RR(Request Register)

233

 The request register is used to request a DMA transfer via software.

 very useful in memory-to-memory transfers, where an external

signal is not available to begin the DMA transfer

234

Request Register

MR(Mask Register)

 The mask register set/reset sets or clears the channel mask.

 if the mask is set, the channel is disabled.

 The RESET signal sets all channel masks
to disable them

235

MSR

The mask register clears or sets all of
the masks with one command instead of individual channels,as
with the MRSR.

236

SR(Status Register)

237

 The status register shows status of each DMA channel. The TC bits
indicate if the channel has reached its terminal count (transferred
all its bytes).

 When the terminal count is reached, the DMA transfer is
terminated for most modes
of operation.

 The request bits indicate whether the DREQ input for a given
channel is active.

238

Status Register

DMA Controller-8257

239

 Here is a list of some of the prominent features of 8257 −

 It has four channels which can be used over four I/O devices.

 Each channel has 16-bit address and 14-bit counter.

 Each channel can transfer data up to 64kb.

 Each channel can be programmed independently.

 Each channel can perform read transfer, write transfer and verify
transfer operations.

 It generates MARK signal to the peripheral device that 128 bytes
have

 been transferred.

 It requires a single phase clock.

 Its frequency ranges from 250Hz to 3MHz.

240

Features of 8257

8257 Pin Description

 The following image shows the pin diagram of a 8257 DMA
controller

241

Block Diagram of 8257

242

Terminal Count Register:

243

 Mode Set Register:

244

 Status Register:

245

246

UNIT-IV

SERIAL DATA TRANSFER

SCHEMES

247

COURSE LEARNING OUTCOMES

248

CLO13
Analyze and understand various synchronous and
asynchronous serial data transfer schemes in 8086.

CLO14
Develop and design the interfacing circuit diagram of
8251USART with 8086 processor.

CLO15 Understand the high- speed serial communications
standards, USB.

Asynchronous and synchronous

data transfer schemes

249

Data Transfer Schemes

Data Transfer Schemes

250

 Even in shorter distance communications, serial computer buses

are becoming more common because of a tipping point where

the disadvantages of parallel busses (clock skew, interconnect

density) outweigh their advantage of simplicity.

 The serial port on your PC is a full-duplex device meaning that it

can send and receive data at the same time. In order to be able to

do this, it uses separate lines for transmitting and receiving data.

251

Data Transfer Schemes

Advantages of serial communications:

 Requires fewer interconnecting cables and hence

occupies less space.

 "Cross talk" is less of an issue, because there are fewer

conductors compared to that of parallel communication

cables.

 Many IC s and peripheral devices have serial interfaces.

 Clock skew between different channels is not an issue.

 Cheaper to implement.

252

Data Transfer Schemes

 SERIAL DATA TRANSMISSION MODES
When data is transmittedbetween two pieces ofequipment,
three communication modes of operation can be used.

 Simplex: In a simple connection, data is transmitted in one
direction only. For example, from a computer to printer that
cannot send status signals back to the computer.

 Half-duplex:In a half-duplex connection,two-way transfer
of
data is possible, but only in one direction at a time.

 Full duplex: In a full-duplex configuration, both ends can
send and receive data simultaneously, which technique is
common in our PCs.

253

Data Transfer Schemes

 SERIAL DATA TRANSFER SCHEMS

 There are two ways to synchronize the two ends

of the communication.

○ Synchronous data transmission

○ Asynchronous data transmission

254

Data Transfer Schemes

Synchronous Data Transmission

255

Data Transfer Schemes

 The synchronous signaling methods use two different signals. A

pulse on one signal line indicates when another bit of

information is ready on the other signal line.

 In synchronous transmission, the stream of data to be

transferred is encoded and sent on one line, and a periodic

pulse of voltage which is often called the "clock" is put on

another line, that tells the receiver about the beginning and

the ending of each bit

256

Data Transfer Schemes

 Advantages: The only advantage of synchronous data transfer is

the Lower overhead and thus, greater throughput, compared

to asynchronous one.

 Disadvantages:

 Slightly more complex

 Hardware is more expensive

257

Data Transfer Schemes

Data Transfer Schemes

258

 The asynchronous signaling methods use only one signal. The

receiver uses transitions on that signal to figure out the

transmitter bit rate (known as auto baud) and timing.

 A pulse from the local clock indicates when another bit is ready.

That means synchronous transmissions use an external clock,

while asynchronous transmissions are use special signals along

the transmission medium.

259

Data Transfer Schemes

Asynchronous communication is the commonly prevailing
communication method in the personal computer industry, due
to the reason that it is easier to implement and has the unique
advantage that bytes can be sent whenever they are ready, no
need to wait for blocks of data to accumulate.

260

Data Transfer Schemes

Advantages:

 Simple and doesn't require much synchronization on
both

261

not as

hardware

critical

can be

as for

made

communication sides.The timing is

synchronous transmission; therefore

cheaper.

 Set-up is very fast, so well suited for applications where messages

are generated at irregular intervals, for example data entry from

the keyboard.

Data Transfer Schemes

Disadvantages:

 One of the main disadvantages of asynchronous technique is

the large relative overhead, where a high proportion of the

transmitted bits are uniquely for control purposes and thus

carry no useful information.

262

Data Transfer Schemes

Introduction to 8251 (USART)

263

Pin diagram of 8251

264

USART

265

Block diagram of 8251

Sections of 8251A

266

 Data Bus buffer

 Read/Write Control Logic

 Modem Control

 Transmitter
 CS – Chip Select

 Receiver

Data Bus Buffer

D0-D7 : 8-bit data bus used to read or write status, command word or data

Read/Write Control logic
 C/D – Control/Data

 WR: When signal is low, the MPU either writes.

 RD : When signal goes low, the MPU either reads.

 RESET : A high on this signal reset 8252A.

Control Register

267

 16-bit register for a control word consist of two independent
bytes namely mode word & command word.

 Mode word : Specifies the general characteristics of operation
such as baud, parity, number of bits etc.

 Command word : Enables the data transmission and reception.

 Register can be accessed as an output port when the Control/Data
pin is high.

Status register

 Checks the ready status of theperipheral.

 Status word register provides the information concerning register
status and transmission errors.

Dataregister

 Used as an input and output port when the C/D is low.

268

8251 USART Architecture

269

Modem Control

is ready when DSR - Data Set Ready : Checks if the Data Set
communicating with a modem.

DTR - Data Terminal Ready : Indicates that the device is ready
to accept data when the 8251 is communicating with a modem.
 CTS - Clear to Send : If its low, the 8251A is enabled to transmit the

serial data provided the enable bit in the command byte is set to‘1’.
 RTS - Request to Send Data : Low signal indicates the modem that the

receiver is ready to receive a data byte from the modem.

Transmitter section

 Accepts parallel data from MPU & converts them into serialdata.

 Has two registers:

• Buffer register : To hold eight bits

• Output register : To convert eight bits into a stream of serial bits.

270

ReceiverSection

271

Mode word & command word for 8251

272

Status word register of8251

273

TTL to RS 232C and RS232C to

TTL conversion

274

RS-232 defines serial, asynchronouscommunication

• Serial - bits are encoded and transmitted one at a time (as opposedto
parallel transmission)

• Asynchronous - characters can be sent at any time and bits
are not individually synchronized

275

Electrical Characteristics

276

with respect to system

 Single-ended

• One wire per signal, voltage levels are
common (i.e. signalground)

 Mark: –3V to–15V

• represent Logic 1, Idle State (OFF)

 Space: +3 to +15V

• represent Logic 0, Active State (ON)

 Usually swing between –12V to+12V

 Recommended maximum cable length is 15m, at 20kbps

25-Pin RS232 Connector 9-Pin RS232 Connector

277

Mechanical Characteristics
 25-pin connector

 Use male connector on DTE and female connector onDCE.

Function of Signals

278

 TD: transmitted data

 RD: receiveddata

 DSR: data set ready

• indicate whether DCE is poweredon.

 DTR: data terminalready

• indicate whether DTR is powered on

• turning off DTR causes modem to hang up the line

 RI: ring indicator

• ON when modem detects phonecall.
 DCD: data carrierdetect

• ON when two modems have negotiated successfully
and the carrier signal is established on thephoneline.

 RTS: request to send

• ON when DTE wants to send data

• Used to turn on and off modem’s
carrier signal in multi-point (i.e. multi-drop) lines

• Normally constantly ON in point-to-point lines

 CTS: clear to send

• ON when DCE is ready to receive data.

 SG: signal ground

279

 Voltage levels, slew rate, and short-circuit behavior are typically
controlled by a line driver(MC 1488) that converts from the
USART's logic levels (TTL levels) to RS-232 compatible signal
levels, and a receiver (MC 1489) that converts RS-232 compatible
signal levels to the USART's logic levels (TTL levels).

280

Sample program of serial data

transfer

281

Assembly Language Program to transmit 100 bytes of data string
starting at location 2000:5000H.
Asynchronous mode control word for transmitting 100 bytes of
data:

282

ASSUME CS: CODE

CODE SEGMENT

283

START: MOV AX, 2000H

MOV DS,AX ; DS points to byte string segment

MOV SI,5000H ; SI points to byte string

MOV CL,64H ; Length of string in CL (hex)

MOV AL,0FEH ; Mode control word to D0 –D7

OUT 0FEH,AL

MOV AX,11H ; Load command word

OUT 0FE,AL ; to transmit enable and error reset

WAIT : IN AL,0FEH ; Read status

AND AL,01H ; Check transmitter enable

JZ WAIT ; bit, if zero wait for the transmitter to be
ready

MOV AL,[SI] ; If ready, first byte of string data

OUT 0FCH, AL ; is transmitted

INC SI ; Point to next byte
DEC CL ; Decrement counter

JNZ WAIT ; If CL is not zero, go for next byte

MOV AH,4CH

INT 21H

CODE ENDS

END START
284

Assembly Language Program to receive 100 bytes of data string
and store it at 3000:4000.

285

ASSUME CS:CODE

CODE SEGMENT

START : MOV AX,3000H

MOV DS,AX ; Data segment set to 3000H

MOV SI,4000H ; Pointer to destinationoffset

MOV CL,64H ; Byte count in CL

MOV AL,7EH ; Only one stop bit for

OUT OFEH,AL ; receiver is set

MOV AL,14H ; Load command word toenable

NXTBT :

286

READY:

OUT 0FEH,AL ; the receiver and disable transmitter

IN AL,OFEH ; Read status

AND AL,38H ; Check FE, OE and PE

JZ READY ; If zero, jump to READY

MOV AL,14H ; If not zero, clear them

OUT OFEH,AL

IN AL,0FEH ; Check RXRDY, if receiver is not ready

AND AL,02H

JZ READY ; wait

IN AL,0FCH ; If it is ready,

MOV [SI],AL ; receive the character

INC SI ; Increment pointer to next byte

DEC CL ; Decrement counter

JNZ NXTBT; Repeat, if CL is not zero

MOV AH, 4CH

INT 21H

CODE ENDS

END START

287

Sample program of serial data

transfer

288

Program To Test 8251 Receiving Part

289

DSEG SEGMENT
ORG 0000: 3000H

DSEG ENDS
CSEG SEGMENT

ORG 0000: 4000H
ASSUME CS : CSEG, DS : DSEG

START: MOV AX, 00H
MOV SS, AX
MOV SP, 2000H
MOV DS, AX
CLI
CLD
MOV BX, 0202H
PUSH CS
POP AX

; ICW1

290

MOV [BX], AX
MOV BX, 200H
LEA AX, CS: SRVC2
MOV [BX], AX
MOV DX, FFD8H
MOV AL, 13H
OUT DX, AL
MOV DX, FFDAH
MOV AL, 80H
OUT DX, AL
MOV AL, 0FH
OUT DX, AL
MOV AL, 0FEH
OUT DX, AL
MOV BX, EXT_RAM_LC
MOV DX, CTL_8253

MOV AL, 76H
OUT DX, AL
MOV DX, TMR1_8253
MOV AL, <CNT_BAUD_9600_MODE16
OUT DX, AL
MOV AL, >CNT_BAUD_9600_MODE16
OUT DX, AL
STI
MOV DX, CTL_8251
MOV AL, 00H
OUT DX, AL
NOP
NOP
NOP
NOP

291

OUT DX, AL
NOP
NOP
NOP
NOP
OUT DX, AL
MOV DX, CTL_8251
MOV AL, 40H
OUT DX, AL
NOP
NOP
NOP
NOP
MOV DX, CTL_8251
MOV AL, MODE_WORD16
OUT DX, AL

292

BACK1:

293

SRVC2:

NOP
NOP
NOP
NOP
MOV DX, CTL_8251
MOV AL, 36H
OUT DX, AL
NOP
JMP BACK1
MOV DX, DATA_8251
IN AL, DX
IN AL, DX
NOP
NOP
NOP
NOP

AHEAD2:

294

TERM:

CMP AL, 0DH
JNZ AHEAD2
MOV AH, 00
MOV SI, AX
CALL FAR DBDT
MOV BX, EXT_RAM_LC
JMP TERM
MOV [BX], AL
INC BX
STI
IRET

CSEG ENDS
END

Introduction to high speed

serial communications

standards, USB

295

USB Features:

296

Simple Connectivity
Simple cables
One interface for many devices
Automatic configuration
No user Setting
Hot pluggable
Data transfer rates
Coexistence with IEEE 1394
Reliability
Low cost
Low power consumption
Flexibility
Operating system support

USB System:

297

The Figure shows the basic components of USB system. It consists of USB
host, USB device and USB cable. The USB host is a personal computer (PC)
and devices are scanner, printer etc. There will be only one host in the USB
system; however there can be 127 devices in the USB system.

Cables:

298

USB cables are designed to ensure correct connections are always
made. By having different connectors on host and devices, it is possible
to connect, two hosts or two devices together.

USB requires a shielded cable containing 4 wires. Two of these, D+
and D-, from a twisted pair responsible for carrying a differential data
signal, as well as some single-ended signal states. The signals on these
two wires are referenced to the (third) GND wire.

The fourth wire is called VBUS, and carries a nominal 5V supply, which
may be used by a device for power.

CLASSIFICATION:

299

Modes of Data Transfer can be broadly divided into two
types:

1. PARALLEL TRANSFER

2. SERIAL TRANSFER

Modes of Data Transfer can also be divided into

1. SYNCHRONOUS TRANSMISSION

2. ASYNCHRONOUS TRANSMISSION

USB HOST:

300

controller. The host is responsible for detecting
The USB host communicates with the devices using a USB host

and enumerating
devices, managing bus access, performing error checking, providing and
managing power, and exchanging data with the devices.

USB DEVICE :
A USB device implements one or more USB functions where a function

functions are keyboards, webcam, speakers, or a mouse.
provides one specific capability to the system. Examples of USB

The
requirements of the USB functions are described in the USB class
specification.

CONTROL TRANSFERS:

301

Control transfers are used to configure and retrieve informationabout
the device capabilities.

a. BULK TRANSFERS: Bulk transfers are intended for devices that
exchange large amounts of data where the transfer can take all of
the available bus bandwidth.

b. INTERRUPT TRANSFERS: Interrupt transfers are designed to support
devices with latency constrains.

c. ISOCHRONOUS TRANSFERS:: Isochronous transfers are used by
devices that require data delivery at a constant rate with a certain
degree of error-tolerance.

UNIT-V
ADVANCED MICROPROCESSORS

302

COURSE LEARNING OUTCOMES

303

CLO16

Understand basic architecture of 16 bit and 32 bit
microprocessors with the help of GDT, LDT and multitasking
and addressing modes.

CLO17
Flag register 80386: Architecture, register organization,
memory access in protected mode

CLO18 Analyze the various advanced microprocessors internal
architectures for 80X86 by paging and technical features.

80286 Microprocessor

Architecture

304

Salient features of 80286

305

 High performance microprocessor with memory
management and protection

 80286 is the first member of the family of advanced
microprocessors with built-in/on-chip memory management
and protection abilities primarily designed for multi-
user/multitasking systems

 Available in 8 MHz, 10 MHz & 12.5 MHz clock frequencies

 80286 is upwardly compatible with 8086 in terms of
instruction set.

 80286 have two operating modes namely real address mode
and virtual address mode.

Salient features of 80286:

 In real address mode, the 80286 can address up to 1Mb of
physical memory address like 8086.

 In virtual address mode, it can address up to 16 Mb of physical
memory address space and 1 GB of virtual memory address
space.

 80286 has some extra instructions to support operating system
and memory management.

 In protected virtual address mode, it is source code compatible
with 8086.

 The performance of 80286 is five times faster than the

standard 8086.

306

Bus and memory sizes

307

 The 80286 CPU, with its 24-bit address bus is able toaddress
16MB of physical memory.

 1GB of virtual memory for each task

Microprocessor Data bus

width

Address bus

width

Memory size

8086 16 20 1M

80186 16 20 1M

80286 16 24 16M

Operating Modes:

308

Intel 80286 has 2 operating modes:

Real Address Mode :
 80286 is just a fast 8086 --- up to 6 times faster
 All memory management and protection mechanisms are

disabled
 286 is object code compatible with 8086

Protected Virtual Address Mode
 80286 works with all of its memory management and

protection capabilities with the advanced instructionset.
 it is source code compatible with 8086

80286 Microprocessor

Architecture(cont.)

309

80286 Architecture:

310

1.Bus Interface unit

2.Instruction unit

3.Execution unit

4.Address unit

311

Functional Parts:

Bus Interface Unit

312

 Performs all memory and I/O read and write operations.

 Take care of communication between CPU and a coprocessor.

 Transmit the physical address over address bus A0 –A23.

 Prefetcher module in the bus unit performs this task of

prefetching.

 Bus controller controls the prefetcher module.

 Fetched instructions are arranged in a 6 – byte prefetch queue.

Instruction Unit

313

 Receive arranged instructions from 6 byte prefetch queue.

 Instruction decoder decodes up to 3 prefetched instruction and

are latched them onto a decoded instruction queue.

 Output of the decoding circuit drives a control circuit in the

Execution unit.

Execution unit

314

 EU executes the instructions received from the decoded

instruction queue sequentially.

 Contains Register Bank.

 contains one additional special register called Machine status

word (MSW) register --- lower 4 bits are only used.

 ALU is the heart of execution unit.

 After execution ALU sends the result either over data bus or back

to the register bank.

Address Unit

315

 Calculate the physical addresses of the instruction and data that

the CPU want to access

 Address lines derived by this unit may be used to address

different peripherals.

 Physical address computed by the address unit is handed over

to the BUS unit.

Registers (Real/Protected mode)

316

REGISTER ORGANIZATION OF 80286:

The 80286 CPU contains almost the same set of registers, as
in 8086, namely

Eight 16-bit general purpose registers (AX, BX, CX, DX)

Four 16-bit segment registers (CS, SS, DS, ES)

Status and control registers (SP, BP, SI, DI)

Instruction Pointer (IP)

Two 16-bit register - FLAGS, MSW

Two 16-bit register - LDTR and TR

Two 48-bit register - GDTR and IDTR

317

318

Flag Register

319

 The initial protected mode, released with the 286, was not widely
used;

 for example, it was used by Microsoft xenix (around
1984),coherent and minix. Several shortcomings such as the
inability to access the BIOS or DOS calls due to inability to switch
back to real mode without resetting the processor prevented
widespread usage.

 Acceptance was additionally hampered by the fact that the 286
only allowed memory access in 16 bit segments via each of four
segment registers, meaning only 4*2 bytes, equivalent to 256
kilobytes, could be accessed at a time Because changing a
segment register in protected mode caused a 6-byte segment
descriptor to be loaded into the CPU from memory

320

 The segment register load instruction took many
tens of processor cycles, making it much slower
than on the 8086; therefore, the strategy of
computing segment addresses on-the-fly in order
to access data structures larger than
128 kilobytes (the combined size of the two data
segments) became impractical, even for those few
programmers who had mastered it on the
8086/8088

321

Privilege levels

322

There are four types of privilege levels

 00 - kernel level (highest privilege level)

 01 - OS services

 10 - OS extensions

 11 - Applications (lowest privilege level)

 Each task assigned a privilege level, which indicates thepriority
or privilege of that task.

 It can only changed by transferring the control, using gate
descriptors, to a new segment.

 A task executing at level 0, the most privileged level, canaccess
all the data segment defined in GDT and LDT of the task.

 A task executing at level 3, the least privileged level, will havethe
most limited access to data and other descriptors.

323

324

Descriptor cache

325

Base Address
 32 bit starting memory address of the segment Segment

Limit

 20 bit length of the segment. (More specifically, the address
of the last accessible data, so the length is one more that the
value stored here.) How exactly this should be interpreted
depends on other bits of the segment descriptor.

G=Granularity
 If clear, the limit is in units of bytes, with a maximum of 220

bytes. If set, the limit is in units of 4096-byte pages, for a
maximum of 232 bytes.

326

Base Address

327

• D=Default operand size
If clear, this is a 16-bit code segment; if set, this is a 32-bit segment
• L=Long-mode segment
If set, this is a 64-bit segment (and D must be zero), and code in this segment
uses the 64-bit instruction encoding
• AVL=Available
For software use, not used by hardware

• D=Default operand size
If clear, this is a 16-bit code segment; if set, this is a 32-bit segment
• L=Long-mode segment
If set, this is a 64-bit segment (and D must be zero), and code in this segment
uses the 64-bit instruction encoding
• AVL=Available
For software use, not used by hardware

P=Present

 If clear, a "segment not present" exception is generated on any
reference to this segment

DPL=Descriptor privilege level

 Privilege level required to access this descriptor

C=Conforming

 Code in this segment may be called from less-privileged levels

R=Readable

 If clear, the segment may be executed but not read from

A=Accessed

 This bit is set to 1 by hardware when the segment is accessed,
and cleared by software

328

Memory access in GDT and LDT

329

Memory access in GDT and LDT

330

 The Global Descriptor Table or GDT is a data structure used
by Intel x86-

family processors starting with the 80286 in order to define the

characteristics of the various memory areas used during

program execution, including the base address, the size and

access privileges like execute- ability and write-ability.

 There is also a Local Descriptor Table (LDT). While the LDT
contains memory segments which are private to a specific
program, the GDT contains global segments.

 The x86 processors have facilities for automatically switching
the current LDT on specific machine events, but no facilities for
automatically switching the GDT.

331

Memory access in GDT and LDT

Memory access in GDT and LDT

332

In GDT or LDT

333

Memory access in GDT and LDT

Memory Accessing In GDT or LDT

• A segment cannot be accessed, if its descriptor does not exist in

either LDT or GDT.

• Set of descriptor (descriptor table) arranged in a proper sequence

describes the complete program.

334

Memory access in GDT and LDT

• The descriptor is a block of contiguous memory location

containing information of a segment, like

• Segment base address

• Segment limit

• Segment type

• Privilege level – prevents unauthorized access

• Segment availability in physical memory

• Descriptor type

• Segment use by another task

335

Memory access in GDT and LDT

 The Global Descriptor Table or GDT is a data structure used by

Intel x86-family processors starting with the 80286 in order to

define the characteristics of the various memory areas used

during program execution, including the base address, the size

and access privileges like execute- ability and write-ability.

336

Memory access in GDT and LDT

 Local Descriptor Table (LDT). While the LDT contains memory

segments which are private to a specific program, the GDT contains

global segments. The x86 processors have facilities for automatically

switching the current LDT on specific machine events, but no

facilities for automatically switching the GDT.

337

Memory access in GDT and LDT

Differentiate between GDT and LDT.

 LDT is actually defined by a descriptor inside the GDT, while the GDT

is directly defined by a linear address.The lack of symmetry between

both tables is underlined by the fact that the current LDT can be

automatically switched on certain events, notably if TSS-based

multitasking is used, while this is not possible for theGDT.

 The LDT also cannot store certain privileged types of memory

segments.

338

Memory access in GDT and LDT

 The LDT is the sibling of the Global Descriptor Table (GDT)
and similarly defines up to 8191 memory segments
accessible to programs.

 LDT (and GDT) entries which point to identical memory
areas are called aliases.

 Instruction to load GDT is LGDT(Load Global Descriptor

Table) and instruction to load LDT is LLDT(Load Global

Descriptor Table). Both are privileged instructions.

339

Memory access in GDT and LDT

Multitasking

340

Multitasking

 multitasking is the concurrent execution of multiple tasks

(also known as processes) over a certain period of time.

New tasks can interrupt already started ones before they

finish, instead of waiting for them to end.

 As a result, a computer executes segments of multiple tasks

in an interleaved manner, while the tasks share common

processing resources such as central processing unit (CPUs)

and main memory.

341

Multitasking

context switch

 Multitasking automatically interrupts the running program,

saving its state (partial results, memory contents and

computer register contents) and loading the saved state of

another program and transferring control to it.

 This “context switch" may be initiated at fixed time intervals

(pre-emptive multitasking), or the running program may be

coded to signal to the supervisory software when it can be

interrupted (cooperative multitasking).

342

Multitasking

Features of Multitasking

 It allows more efficient use of the computer hardware; where a

program is waiting for some external event such as a user input

or an input/output transfer with a peripheral to complete, the

central processor can still be used with another program.

 In a time sharing system, multiple human operators use the

same processor as if it was dedicated to their use, while

behind the scenes the computer is serving many users by

multitasking their individual programs.

343

Multitasking

 In multiprogramming systems, a task runs until it must wait for an

external event or until the operating system's scheduler forcibly

swaps the running task out of the CPU.

344

Multitasking

Applications :

 Real-time systems such as those designed to control

industrial robots, require timely processing;

 a single processor might be shared between calculations of

machine movement, communications, and user interface.

345

Multitasking

Advantages

 Often multitasking operating systems include measures to

change the priority of individual tasks, so that important jobs

receive more processor time than those considered less

significant.

 Depending on the operating system, a task might be as large as

an entire application program, or might be made up of smaller

threads that carry out portions of the overall program.

346

Multitasking

Addressing modes for 80286

347

Multitasking

 multitasking is the concurrent execution of multiple tasks

(also known as processes) over a certain period of time.

New tasks can interrupt already started ones before they

finish, instead of waiting for them to end.

 As a result, a computer executes segments of multiple tasks

in an interleaved manner, while the tasks share common

processing resources such as central processing unit (CPUs)

and main memory.

348

Addressing Modes

context switch

 Multitasking automatically interrupts the running program,

saving its state (partial results, memory contents and

computer register contents) and loading the saved state of

another program and transferring control to it.

 This “context switch" may be initiated at fixed time intervals

(pre-emptive multitasking), or the running program may be

coded to signal to the supervisory software when it can be

interrupted (cooperative multitasking).

349

Addressing Modes

Features of Multitasking

 It allows more efficient use of the computer hardware; where a

program is waiting for some external event such as a user input

or an input/output transfer with a peripheral to complete, the

central processor can still be used with another program.

 In a time sharing system, multiple human operators use the

same processor as if it was dedicated to their use, while

behind the scenes the computer is serving many users by

multitasking their individual programs.

350

 In multiprogramming systems, a task runs until it must wait
for an external event or until the operating
system's scheduler forcibly swaps the running task out
of the CPU.

351

Applications :

 Real-time systems such as those designed to control

industrial robots, require timely processing;

 a single processor might be shared between calculations

of machine movement, communications, and user

interface.

352

Addressing Modes

Advantages

 Often multitasking operating systems include measures to

change the priority of individual tasks, so that important jobs

receive more processor time than those considered less

significant.

 Depending on the operating system, a task might be as large as

an entire application program, or might be made up of smaller

threads that carry out portions of the overall program.

353

Direct addressing mode:

 In the direct addressing mode, a 16-bit memory address
(offset)

directly specified in the instruction as a part of it.

Example: MOV AX, [5000H].

Register addressing mode:

 In the register addressing mode, the data is stored in a
register and it is referred using the particular register. All the
registers, except IP, may be used in this mode.

Example: MOV BX, AX

354

Addressing Modes

Register indirect addressing mode:

 Sometimes, the address of the memory location which

contains data or operands is determined in an indirect way,

using the offset registers. The mode of addressing is known

as register indirect mode.

 In this addressing mode, the offset address of data is in
either BX or SI

or DI Register. The default segment is either DS or ES.

Example: MOV AX, [BX].

355

Addressing Modes

Indexed addressing mode:

 In this addressing mode, offset of the operand is stored one
of the index registers. DS & ES are the default segments for
index registers SI & DI respectively.

Example: MOV AX, [SI]

 Here, data is available at an offset address stored in SI in DS.

Register relative addressing mode:

 In this addressing mode, the data is available at an effective
address formed by adding an 8-bit or 16-bit displacement
with the content of any one of the register BX, BP, SI & DI in
the default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

356

Addressing Modes

Based indexed addressing mode:
 The effective address of data is formed in this addressing

mode, by adding content of a base register (any one of BX or
BP) to the content of an index register (any one of SI or DI).
The default segment register may be ES or DS.
Example: MOV AX, [BX][SI]

Relative based indexed:
 The effective address is formed by adding an 8 or 16-bit

displacement with the sum of contents of any of the base
registers (BX or BP) and any one of the index registers, in a
default segment.
Example: MOV AX, 50H [BX] [SI]

357



Addressing Modes

Addressing Modes for control transfer instructions:

 Intersegment

 Intersegment direct

 Intersegment indirect

 Intrasegment

 Intrasegment direct

 Intrasegment indirect

358

Addressing Modes

Intersegment direct:

 In this mode, the address to which the control is to be
transferred is in a different segment. This addressing mode
provides a means of branching from one code segment to
another code segment. Here, the CS and IP of the
destination address are specified directly in the instruction.

Example: JMP 5000H: 2000H;

 Jump to effective address 2000H in segment 5000H.

359

Addressing Modes

Intersegment indirect:

 In this mode, the address to which the control is to be
transferred lies in a different segment and it is passed to the
instruction indirectly, i.e. contents of a memory block
containing four bytes,
i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The
starting address of the memory block may be referred using
any of the addressing modes, except immediate mode.

Example: JMP [2000H].

Jump to an address in the other segment specified at
effective
address 2000H in DS.

360

Addressing Modes

Intrasegment direct mode:

 In this mode, the address to which the control is to be
transferred lies in the same segment in which the control
transfers instruction lies and appears directly in the instruction
as an immediate displacement value.

 In this addressing mode, the displacement is computed
relative to the content of the instruction pointer.

361

Addressing Modes

Intrasegment indirect mode:

 In this mode, the displacement to which the control is to
be transferred is in the same segment in which the control
transfer instruction lies, but it is passed to the instruction
directly. Here, the branch address is found as the content of
a register or a memory location.

 This addressing mode may be used in unconditional
branch instructions.

 Example: JMP [BX]; Jump to effective address stored in
BX.

362

Addressing Modes

Flag Register of 80286

363

Flag Register of 80286

364

IOPL – Input Output Privilege Level flags (bit D12 andD13

 IOPL is used in protected mode operation to select the
privilege level for I/O devices. IF the current privilege level is
higher or more trusted than the IOPL, I/O executed without
hindrance.

 If the IOPL is lover than the current privilege level, an
interrupt occurs, causing execution to suspend.Note that
IPOL 00 is the highest or more trusted; and IOPL 11 is the
lowest or least

365

Flag Register of 80286

 NT – Nested task flag (bit D14)

 When set, it indicates that one system task has invoked

another through a CALL instruction as opposed to a JMP.

 For multitasking this can be manipulated to our advantage

366

Flag Register of 80286

Machine Status Word Register

 Consist of four flags

 PE,

 MP,

 EM and

 TS are for the most part used toindicate whether a

processor extension (co-processor) is present in the

system or not
367

Flag Register of 80286

 Word Machine Status...

Flag Register of 80286

368

 PE - Protection enable

Protection enable flag places the 80286 in protected mode,

if set. this can only be cleared by resetting the CPU.

 MP – Monitor processor extension

flag allows WAIT instruction to generate a processor
extension.

 Emulate processor extension flag,

if set , causes a processor extension absent exception and

permits the emulation of processor extension by CPU.

369

Flag Register of 80286

Architecture of 80386

370

Architecture of 80386

371

The Internal Architecture of 80386 is divided into 3sections.

• Central processing unit

• Memory management unit

• Bus interface unit

•Central processing unit is further divided into Execution

unit and Instruction unit

•Execution unit has 8 General purpose and 8 Special purpose

registers which are either used for handling data or

calculating offset addresses.

372

Architecture of 80386

•The Instruction unit decodes the opcode bytes received from the 16-
byte instruction code queue and arranges them in a 3- instruction
decoded instruction queue.

•After decoding them pass it to the control section for deriving the
necessary control signals. The barrel shifter increases the speed of all
shift and rotate operations.

• The multiply / divide logic implements the bit-shift-rotate algorithms
to complete the operations in minimum time.

•Even 32- bit multiplications can be executed within one microsecond by
the multiply / divide logic.

•The Memory management unit consists of a Segmentation unit and
a Paging unit.

373

Pin diagram of 80386

374

Pin diagram of 80386

375

Signal Descriptions of 80386

376

•CLK2 :The input pin provides the basic system clock timing for the
operation of 80386.

•D0 – D31:These 32 lines act as bidirectional data bus during different
access cycles.

•A31 – A2: These are upper 30 bit of the 32- bit address bus.

•BE0 toBE3 : The 32- bit data bus supported by 80386 and the memory
system of 80386 can be viewed as a 4- byte wide memory access
mechanism.

•ADS: The address status output pin indicates that the address bus and
bus cycle definition pins(W/R#, D/C#, M/IO#, BE0# to BE3#) are
carrying the respective valid signals.

Signal Descriptions of 80386

377

•VCC: These are system power supply lines.

•VSS: These return lines for the power supply.

•BS16: The bus size – 16 input pin allows the interfacing of 16 bit devices

with the 32 bit wide 80386 data bus.

•HOLD: The bus hold input pin enables the other bus masters to gain

control of the system bus if it is asserted.

•HLDA: The bus hold acknowledge output indicates that a valid bus
hold

request has been received and the bus has been relinquished by the CPU.

Signal Descriptions of 80386

378

• ERROR: The error input pin indicates to the CPU that the
coprocessor has encountered an error while executing its
instruction.

• PEREQ: The processor extension request output signal indicates to

the CPU to fetch a data word for the coprocessor.

•INTR: This interrupt pin is a maskable interrupt, that can be

masked using the IF of the flag register.

• NMI: A valid request signal at the non-maskable interrupt request

input pin internally generates a non- maskable interrupt of type2.

Signal Descriptions of 80386

379

 READY: The ready signals indicates to the CPU that the previous
bus cycle has been terminated and the bus is ready for the next
cycle.

 BUSY: The busy input signal indicates to the CPU that the
coprocessor is busy with the allocated task.

 RESET: A high at this input pin suspends the current operation

and restart the execution from the starting location.

 N / C : No connection pins are expected to be left open.

80386 Register Organization

380

80386 Register Organization

381

 The 80386 has eight 32 - bit general purpose registers which may
be used as either 8 bit or 16 bit registers.

 A 32 - bit register known as an extended register, is represented
by the register name with prefix E.

 The six segment registers available in 80386 are CS, SS, DS, ES, FS
and GS.

 The CS and SS are the code and the stack segment registers
respectively, while DS, ES, FS, GS are 4 data segment registers.

 A 16 bit instruction pointer IP is available along with 32 bit
counterpart EIP.

80386 Register Organization

382

 The Flag register of 80386 is a 32 bit register. Out of the 32 bits,

Intel has reserved bits D18 to D31, D5 and D3, while D1 is always

set at 1.

 Two extra new flags are added to the 80286 flag to derive the flag

register of 80386. They are VM and RF flags.

383

 VM - Virtual Mode Flag: If this flag is set, the 80386 enters the

virtual 8086 mode within the protection mode.

 RF- Resume Flag: This flag is used with the debug register

breakpoints.

 Segment Descriptor Registers: This registers are not available for

programmers, rather they are internally used to store the descriptor

information, like attributes, limit and base addresses of segments

384

 Control Registers: The 80386 has three 32 bit control registers

CR0, CR2 and CR3 to hold global machine status

 System Address Registers: Four special registers are defined to

refer to the descriptor tables supported by 80386.

 Debug and Test Registers: Intel has provide a set of 8 debug

registers for hardware debugging.

385

Memory access in protected mode

386

Protected Mode of 80386:

387

All the capabilities of 80386 are available for utilization in its
protected mode of operation.

The 80386 in protected mode support all the software written for
80286 and 8086 to be executed under the control of memory
management and protection abilities of 80386.

The protected mode allows the use of additional instruction,
addressing

modes and capabilities of 80386.

388

Addressing in protected mode

389

In this mode, the contents of segment registers are used as
selectors to address descriptors which contain the segment
limit, base address and access rights byte of the segment.

The effective address (offset) is added with segment base
address to calculate linear address.

This linear address is further used as physical address, if the
paging unit is disabled, otherwise the paging unit converts the
linear address into physical address.

Addressing in protected mode

390

 The paging unit is a memory management unit enabled only in
protected mode.

 The paging mechanism allows handling of large segments of memory
in terms of pages of 4Kbyte size.

 The paging unit operates under the control of segmentation unit.

 The paging unit if enabled converts linear addresses into physical
address, in protected mode.

Paging

391

Paging Unit:

392

The paging unit of 80386 uses a two level table mechanism to
convert a linear address provided by segmentation unit into
physicaladdresses.

The paging unit converts the complete map of a task into pages,
each of size 4K. The task is further handled in terms of its page,
rather than segments.

The paging unit handles every task in terms of three components
namely page directory, page tables and page itself.

Paging Unit:

393

The Paging unit organizes the physical memory in terms of
pages of 4kbytes size each.

Paging unit works under the control of the
segmentation unit, i.e. each segment is further divided
into pages.

The virtual memory is also organizes in terms of segments
and pages by the memory management unit.

Paging unit converts linear addresses into physical
addresses.

Paging Unit

394

The control and attribute PLA checks the privileges at the
page level.

Each of the pages maintains the paging information of the
task.

The limit and attribute PLA checks segment limits and
attributes at segment level to avoid invalid accesses to code
and data in the memory segments.

80486: Only the technical

features

415

Introduction:

396

 One of the most obvious feature included in a 80486 is a
built in math coprocessor. This coprocessor is essentially the
same as the 80387 processor used with a 80386, but being
integrated on the chip allows it to execute math instructions
about three times as fast as a 80386/387 combination.

 80486 is an 8Kbyte code and data cache.

 To make room for the additional signals, the 80486 is
packaged in a 168 pin, pin grid array package instead of the
132 pin PGA used for the 80386.

 Operates on 25MHz, 33 MHz, 50 MHz, 60 MHz, 66 MHz or
100MHz.

 It consists of parity generator/checker unit in order to
implement

parity detection and generation for memory reads and writes.

 Supports burst memory reads and writes to implement fast
cache
fills.

 Three mode of operation: real, protected and virtual 8086
mode.

 The 80486 microprocessor is a highly integrated
device, containing well over 1.2 million transistors.

397

 The address bus is unidirectional because the address
information is always given by the Micro Processor to
address a memory location of an input / output devices.

 The data bus is Bi-directional because the same bus is used
for transfer of data between Micro Processor and memory
or input / output devices in both the direction.

 It has limitations on the size of data. Most Microprocessor
does not
support floating-point operations.

 Microprocessor contain ROM chip because it contain
instructions to
execute data.

398

Primary devices are: RAM (Read / Write memory, High
Speed, Volatile Memory) / ROM (Read only memory, Low
Speed, Non Voliate Memory)

Secondary devices are: Floppy disc / Hard disk

Compiler:

Compiler is used to translate the high-level language program
into machine code at a time. It doesn’t require special
instruction to store in a memory, it stores automatically. The
Execution time is less compared to Interpreter

399

