MICROPROCESSORS INTERFACING AND
APPLICATIONS
VI Semester —IT |IARE-R16
A.Y: 2019-2020

Institute of Aeronautical Engineering



2 000

N
oy 4,
] S,

I1ARE

b

% ror VW

oot




UNIT-I
OVERVIEW OF 8086
MICROPROCESSOR

I



2 000

I1ARE

3
of® :
S 4
4
oy

\;{

/ \2
W pon VW




Introduction to 8085
microprocessor

I



Introduction to processor:

® A processor is the logic circuitry that responds to and
processes the basic instructions that drives a computer.

® The term processor has generally replaced the term central
processing unit . The processor in a personal computer or
embedded in small devices is often called a microprocessor.

® The processor (CPU, for Central Processing Unit) is the
computer's brain. It allows the processing of nhumeric data,
meaning information entered in binary form, and the
execution of instructions stored in memory.



Evolution of Microprocessor:

@ A microprocessor is used as the CPU in a
microcomputer. There are now many different
microprocessors available.

® Microprocessor is a program-controlled device, which
fetches the instructions from memory, decodes and
executes the instructions. Most Micro Processor are single-
chip devices.

® Microprocessor is a backbone of computer system. which is
called CPU

® Microprocessor speed depends on the processing speed
depends on DATA BUS WIDTH.

® A common way of categorizing microprocessors is by
the no. of bits that their ALU can Work with at a time



The address bus is unidirectional because the address
information is always given by the Micro Processor to
address a memory location of aninput

/ output devices.

The data bus is Bi-directional because the same bus is used
for transfer of data between Micro Processor and memory
or input / output devices in both the direction.

It has limitations on the size of data. Most
Microprocessor does not support floating-point
operations.

Microprocessor contain ROM chip because it
contain instructions to execute data.

Storage capacity is limited. It has a volatile memory. In
secondary storage device the storage capacity is larger. It is
a nonvolatile memory.



Primary devices are: RAM (Read / Write memory, High
Speed, Volatile Memory) / ROM (Read only memory, Low

Speed, Non Voliate Memory)
Secondary devices are: Floppy disc / Hard disk

Compiler:

Compiler is used to translate the high-level language
program into machine code at a time. It doesn’t require
special instruction to store in a memory, it stores
automatically. The Execution time is less compared to
Interpreter



RISC and CISC processors

I



RISC (Reduced Instruction Set Computer):

@ RISC stands for Reduced Instruction Set Computer. To execute
each instruction, if there is separate

@ electronic circuitry in the control unit, which produces all the
necessary signals, this approach of the design of the control
section of the processor is called RISC design. It is also called
hardwired approach.

Examples of RISC processors:
® IBM RS6000, MC88100
® DEC’s Alpha 21064, 21164 and 21264 processors

11



Features of RISC Processors:

®

®

The standard features of RISC processors are listed below:

RISC processors use a small and limited number of

instructions. . .
RISC machines mostly uses hardwired control unit.

RISC processors consume less power and are having high
performance.

Each instruction is very simple and
consistent.

RISC processors uses simple addressing
modes.

RISC instruction is of uniform fixed leneth 12



CISC (Complex Instruction Set Computer):

@ CISC stands for Complex Instruction Set Computer. If the
control unit contains a number of microelectronic circuitry
to generate a set of control signals and each micro circuitry

is activated by a micro code, this design approach is called
CISC design.

Examples of CISC processors are:
@ Intel 386, 486, Pentium, Pentium Pro, Pentium Il, Pentium I
® Motorola’s 68000, 68020, 68040, etc.

13



Features of CISC Processors:

@ CISC chips have a large amount of different and
complex instructions.

® CISC machines generally make use of complex addressing
modes.

@ Different machine programs can be executed on CISC
machine.

® CISC machines uses micro-program control unit.

@® CISC processors are having limited number of registers

14



Architecture of 8086
microprocessor

I



Architecture :

MEMORY
INTERFACE

[ ————— e —_ —_ —— —-—— T ———

bl
|
: BIU C-BUS ?L |
i |
I [ |
1 5 INSTRUCTION |
1 STREAM 1
| ' 4 BYTE 1
: 3 QUEUE |
|
| 8-BUS 2 !
! 1
| - '
1 cs e e e e t———————————— -
\ SS | :
I DS ' "
| P | 1
| | CONTROL |
L i } SYSTEM |
—— — — . . . s ] —— — — — R — —_— — - l
| 1
- B A-BUS :
i :
|
1
AH AL :
: BH BL 1
| cH CL ARITHMETIC |
| OH oL LOGIC UNIT :
I _SP
| E l |
I S -
Y] |
: = OPE RANDS i
1 |
-

—— — — — ——— — —— e ——— —— — ——




® 8086 Microprocessor is divided into two functional units,
i.e.,
EU(Execution Unit) and BIU (Bus Interface Unit).

EU (Execution Unit):

Execution unit gives instructions to BIU stating from where
to fetch the data and then decode and execute those
instructions.

Its function is to control operations on data using the
instruction decoder & ALU.

EU has no direct connection with system buses as shown
in the above figure, it performs operations over data
through BIU.

17



® BIU(Bus Interface Unit):

BlU takes care of all data and addresses transfers on the buses for

the EU like sending addresses, fetching instructions from the
memory, reading data from the ports and the memory as well as
writing data to the ports and the memory. EU has no direction
connection with System Buses so this is possible with the BIU. EU

and BIU are connected with the Internal BUS.

18



Instruction queue

BIU contains the instruction queue. BIU gets up to 6 bytes
of next instructions and stores them in the instruction
queue. When EU executes instructions and is ready for its
next instruction, then it simply reads the instruction from
this instruction queue resulting in increased execution

speed.

19



® Segment register:
* BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the

addresses of instructions and data in memory, which are
used by the processor to access memory locations.
It also contains 1 pointer register IP, which holds the

address of the next instruction to executed by the EU.

20



Special functions of general
purpose register

I



AX & DX registers:

@ In 8 bit multiplication, one of the operands must be in AL.
The other operand can be a byte in memory location or in
another 8 bit register. The resulting 16 bit product is stored
in AX, with AH storing the MS byte.

® In 16 bit multiplication, one of the operands must be in AX.
The other operand can be a word in memory location or in
another 16 bit register. The resulting 32 bit product is stored
in DX and AX, with DX storing the MS word and AX storing

the LS word.

22



BX register :

* In instructions where we need to specify in a general

purpose register the 16 bit effective address of a memory

location, the register BX is used (register indirect).




CX register:

O]

In Loop Instructions, CX register will be always used as the
implied counter. In 1/0 instructions, the 8086 receives into or
sends out data from AX or AL depending as a word or byte
operation.

In these instructions the port address, if greater than FFH

has to be given as the contents of DX register.

Ex : IN AL, DX
DX register will have 16 bit address of the I/P device

24



® Segment register:

® BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the
addresses of instructions and data in memory, which are used
by the processor to access memory locations.

® It also contains 1 pointer register IP, which holds the address

of the next instruction to executed by the EU.

25



8086 Flag Register and
Function of 8086 Flags

I



Flag Register
@

®

Flag Register contains a group of status bits called flags that
indicate the status of the CPU or the result of arithmetic
operations.

There are two types of flags:

The status flags which reflect the result of executing an
instruction. The programmer cannot set/reset these flags
directly.

The control flags enable or disable certain CPU operations.
The programmer can set/reset these bits to control the
CPU's operation.

27



® Nine individual bits of the status register are used as control

flags (3 of them) and status flags (6 of them).The remaining

7 are not used.

@ A flag can only take on the values 0 and 1. We say a flag is
set if it has the value 1.The status flags are used to record
specific characteristics of arithmetic and of logical

instructions.

28



8086 flag register

O-Flag LFle 5T 1€ Flags Register

7
7
.
7
.
2

SHNENEN NN
U A

Owerflow Interrupt Sigu Aunzalhary Carry




® Control Flags: There are three control flags

® The Direction Flag (D): Affects the direction of moving data
blocks by such instructions as MOVS, CMPS and SCAS. The
flag values are 0 = up and 1 = down and can be set/reset by
the STD (set D) and CLD (clear D) instructions.

® The Interrupt Flag (l): Dictates whether or not system
interrupts can occur. Interrupts are actions initiated by
hardware block such as input devices that will interrupt the
normal execution of programs. The flag values are 0 =
disable interrupts or 1 = enable interrupts and can be
manipulated by the CLI (clear I) and STI (set
1) instructions.

30



® The Trap Flag (T): Determines whether or not the CPU is
halted after the execution of each instruction. When this
flag is set (i.e. = 1), the programmer can single step through
his program to debug any errors. When this flag = 0 this
feature is off. This flag can be set by the INT 3 instruction.

@ Status Flags: There are six status flags

® The Carry Flag (C): This flag is set when the result of an
unsigned arithmetic operation is too large to fit in the
destination register. This happens when there is an end
carry in an addition operation or there an end borrows in a
subtraction operation. A value of 1
= carry and 0 = no carry.

31



® The Overflow Flag (0O): This flag is set when the result of a
signed arithmetic operation is too large to fit in the
destination register (i.e. when an overflow occurs). Overflow
can occur when adding two numbers with the same sign (i.e.
both positive or both negative). A value of 1
= overflow and 0 = no overflow.

® The Sign Flag (S): This flag is set when the result of an
arithmetic or logic operation is negative. This flag is a copy of
the MSB of the result (i.e. the sign bit). A value of 1 means
negative and 0 = positive.

32



® The Zero Flag (Z): This flag is set when the result of an
arithmetic or logic operation is equal to zero. A value of 1
means the result is zero and a value of 0 means the result is
not zero.

® The Auxiliary Carry Flag (A): This flag is set when an
operation causes a carry from bit 3 to bit 4 (or a borrow
from bit 4 to bit 3) of an operand. A value of 1 = carry and 0
= no carry.

® The Parity Flag (P): This flags reflects the number of 1s in the
result of an operation. If the number of 1s is even its value =
1 and if the number of 1s is odd then its value = 0.

33



Addressing Modes of 8086

I



O]

Addressing Modes

Addressing Modes of 8086:

Addressing mode indicates a way of locating data or
operands. Depending up on the data type used in the
instruction and the memory addressing modes, any
instruction may belong to one or more addressing modes or
same instruction may not belong to any of the addressing
modes.

The addressing mode describes the types of operands and
the way they are accessed for executing an instruction.
According to the flow of instruction execution, the
instructions may be categorized as

Sequential control flow instructions and
Control transfer instructions.

35



Addressing Modes

® Sequential control flow instructions are the instructions
which  after execution, transfer control to the next
instruction appearing immediately after it (in the sequence)
in the program. For example the arithmetic, logic, data
transfer and processor control instructions are Sequential
control flow instructions.

® The control transfer instructions on the other hand transfer
control to some predefined address or the address somehow
specified in the instruction, after their execution. For
example INT, CALL, RET & JUMP instructions fall under this
category.

36



Addressing Modes

® The addressing modes for Sequential and control flow
instructions are explained as follows.

® Immediate addressing mode:

@ In this type of addressing, immediate data is a part of
instruction,

and appears in the form of successive byte or bytes.
Example: MOV AX, 0005H.

@ In the above example, 0005H is the immediate data
.The immediate data may be 8- bit or 16-bit in size.

37



Addressing Modes

Direct addressing mode:

® In the direct addressing mode, a 16-bit memory address
(offset)
directly specified in the instruction as a part ofit.

Example: MOV AX, [5000H].

Register addressing mode:

@® In the register addressing mode, the data is stored in a
register and it is referred using the particular register. All
the registers, except IP, may be used in this mode.

Example: MOV BX, AX

38



Addressing Modes

Register indirect addressing mode:

® Sometimes, the address of the memory location which
contains data or operands is determined in an indirect way,

using the offset registers. The mode of addressing is known
as register indirect mode.

® In this addressing mode, the offset address of data is in

either BX or Sl or DI Register. The default segment is either
DS or ES.

Example: MOV AX, [BX].

39



Addressing Modes

® Indexed addressing mode:

® In this addressing mode, offset of the operand is stored one
of the index registers. DS & ES are the default segments for
index registers SI & DI respectively.
Example: MOV AX, [SI]

® Here, data is available at an offset address stored in Sl in DS.

® Register relative addressing mode:

® In this addressing mode, the data is available at an effective
address formed by adding an 8-bit or 16-bit displacement
with the content of any one of the register BX, BP, SI & Dl in
the default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

40



Addressing Modes

® Based indexed addressing mode:

® The effective address of data is formed in this addressing
mode, by adding content of a base register (any one of BX or
BP) to the content of an index register (any one of Sl or DI).
The default segment register may be ES or DS.

Example: MOV AX, [BX][SI]

@ Relative based indexed:

® The effective address is formed by adding an 8 or 16-bit
displacement with the sum of contents of any of the base
registers (BX or BP) and any one of the index registers, in a

default segment.
Example: MOV AX, 50H [BX] [SI]

41



Addressing Modes

® Addressing Modes for control transfer instructions;

® Intersegment
* Intersegment direct
* Intersegment indirect

® Intrasegment
* Intrasegment direct

* Intrasegment indirect




Addressing Modes

® Intersegment direct:

® In this mode, the address to which the control is to be
transferred is in a different segment. This addressing mode
provides a means of branching from one code segment to
another code segment. Here, the CS and IP of the
destination address are specified directly in the instruction.

Example: JMP 5000H: 2000H;

® Jump to effective address 2000H in segment 5000H.

43



Addressing Modes

® Intersegment indirect:

® In this mode, the address to which the control is to be
transferred lies in a different segment and it is passed to the
instruction indirectly, i.e. contents of a memory block
containing four bytes,
i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The
starting address of the memory block may be referred using
any of the addressing modes, except immediate mode.

 Example: JMP [2000H].

Jump to an address in the other segment specified at
effective address 2000H in DS.

44



Addressing Modes

® Intrasegment direct mode:

® In this mode, the address to which the control is to be
transferred lies in the same segment in which the control
transfers instruction lies and appears directly in the instruction
as an immediate displacement value. In this addressing mode,
the displacement is computed relative to the content of the
instruction pointer.

45



Addressing Modes

® The effective address to which the control will be transferred is
given by the sum of 8 or 16 bit displacement and current
content of IP. In case of jump instruction, if the signed
displacement (d) is of 8-bits (i.e. -128<d<+127), it as short jump
and if it is of 16 bits (i.e. - 32768<d<+32767), it is termed as
long jump.

Example: JMP SHORT LABEL.

46



®

Addressing Modes

Intrasegment indirect mode:

In this mode, the displacement to which the control is to
be transferred is in the same segment in which the
control transfer instruction lies, but it is passed to the
instruction directly. Here, the branch address is found as
the content of a register or a memory location.

This addressing mode may be used in unconditional
branch

instructions.

Example: JMP [BX]; Jump to effective address stored in BX.

47



Instruction set of 8086

I



INSTRUCTION SET OF 8086

@® The Instruction set of 8086 microprocessor is classified
into 7 Types, they are:-

- Data transfer instructions

* Arithmetic& logical instructions

* Program control transfer instructions
* Machine Control Instructions

- Shift / rotate instructions

* Flag manipulation instructions
 String instructions

49



Data Transfer instructions

@ Data transfer instruction, as the name suggests is for the
transfer of data from memory to internal register, from
internal register to memory, from one register to another
register, from input port to internal register, from internal
register to output port etc

MOV instruction

® It is a general purpose instruction to transfer byte or word
from register to register, memory to register, register to
memory or with immediate addressing.

50



® General Form:

MOV destination, source

Here the source and destination needs to be of the same
size,

that is both 8 bit or both 16 bit.

® MOV instruction does not affect any flags.

Example:-
® MOV BX, 00F2H;load the immediate number 00F2H in BX

register

® MOV CL, [2000H];Copy the 8 bit content of the
memory

location, ata  displacement of
2000H from data
segment base to the CL register

51



®MOV [589H], BX;
Copy the 16 bit content of BX register on to the memory
location,

which at a displacementof 589H from the data segment
base.

®MOV DS, CX;Move the content of CX to DS

PUSH instruction

® The PUSH instruction decrements the stack pointer by two
and

copies the word from source to the location where stack
pointer now points. Here the source must of word size
data. Source can be a general purpose register, segment
register or a memory location.

52



The PUSH instruction first pushes the most significant byte to
sp-1, then the least significant to the sp-2. Push instruction
does not affect any flags.

h=mory stack =egment

IO0SS =
—H CL 30033
20|30 > 30 30032 <—f
ucx 20 300351

FOasa

=F 00354 | |

S0000
=5 S0a00 ﬁ{>

53



Example:-

® PUSH CX ; Decrements SP by 2, copy content of CX to the
stack
(figure shows execution of this instruction)

® PUSH DS ; Decrement SP by 2 and copy DS to stack
® POP instruction

The POP instruction copies a word from the stack location
pointed by the stack pointer to the destination. The
destination can be a General purpose register, a segment
register or a memory location. Here after the content is
copied the stack pointer is automatically incremented by
two.

® The execution pattern is similar to that of the PUSH
instruction. Example: POP CX; Copy a word from the top of
the stack to CX and increment SP by 2.

54



©@ ® ® ® ©® @®

IN & OUT instructions

The IN instruction will copy data from a port to the
accumulator. If 8 bit is read the data will go to AL andif 16 bit
then to AX. Similarly OUT instruction is used to copy data from
accumulator to an output port.

Both IN and OUT instructions can be done using direct
and indirect addressing modes.

Example:

IN AL, OF8H; Copy a byte from the port OF8H to AL
MOV DX, 30F8H;Copy port address in DX

IN AL, DX; Move 8 bit data from 30F8H port
IN AX, DX; Move 16 bit data from 30F8H port

OUT 047H, AL; Copy contents of AL to 8 bit port 047H
MOV DX, 30F8H;Copy port address in DX

55



XCHG instruction
®

The XCHG instruction exchanges contents of the destination and
source. Here destination and source can be register and register
or register and memory location, but XCHG cannot interchange
the value of 2 memory locations.

General Format

®

®

XCHG Destination, Source

Example:

XCHG BX, CX; exchange word in CX with the word inBX
XCHG AL, CL; exchange byte in CL with the byte in AL

XCHG AX, SUM[BX];here physical address, which isDS+SUM+[BX].
The content at physical address and the content of AX are
interchanged.

56



Instruction set of 8086
(Arithmetic Instructions in 8086)

—



Arithmetic Instructions: ADD, ADC, INC, AAA, DAA

Mnemonic

ADD

Meaning

Addition

Format

ADD D,S

Operation

S)+Od) > (D)
carry 2> (CF)

affected

ALL

ADC Add with ADCD,S (S)+(D)+(CF) => (D) ALL
carry carry > (CF)

INC Incrementby INCD (D)+1 => (D) ALL butCY
one

AAA ASCII adjust AAA If the sum is >9, AH AF,CF

for addition is incremented by 1
DAA Decimal DAA Adjust AL for decimal ALL
adjust for Packed BCD

addition




Arithmetic Instructions-SUB, SBB, DEC, AAS, DAS, NEG '

Mnemonic Meaning Format Operation Flags
affected
SUB Subtract | SUBD,S (D)-(S) 2 (D) All
Borrow =2 (CF)
SBB Subtract | SBBD,S (D)-(S)-(CF) » (D) All
with
borrow
DEC Decrement | DEC D (D)-1 > (D) All but CF
by one
NEG Negate NEGD All
DAS Decimal DAS Convert the result in ALto All
adjust for packed decimal format
subtraction
AAS ASCII AAS (AL) difference CY,AC
adjust for (AH) dec by 1 if borrow
subtraction

59




Multiplication and Division

Mnemonic Meaning Format Operation Flags Affected
MUL Multiply MUL S (AL) - (S8) — (AX) OF, CF
(unsigned) (AX) - (§16) — (DX),(AX) SF, ZF, AF, PF undefined
DIv Division Div s (1) QUAX)Y/(S8)) — (AL) OF, SF, ZF, AF, PF, CF
(unsigned) R(AX)/(S8)) —» (AH) undefined
(2) QUDX, AX)/(S16)) — (AX)
R(DX,AX)/(S16)) — (DX)
IfQls FF,e In case (1) or
FFFF,q in case (2), then
type O interrupt occurs
MuL Integer multipty MUL S (AL) - (S8) — (AX) OF, CF
(signed) (AX) - (S18) — (DX),(AX) SF, ZF, AF, PF undefined
1DIv integer divide IDIV S (1) QUAX)/(S8)) — (AL) OF, SF, ZF, AF, PF, CF
(signed) R(AX)/(S8)) — (AH) undefined
(2) QUDX,AX)Y/(S16)) —» (AX)
R(DX,AX)/(S16)) — (DX)
If Q is positive and exceeds
7FFF,44 oOr if Q is nagative
and becomes less than
8001,6, then type O interupt
occurs
AAM Adjust AL for AAM Q((AL)Y/10) — (AH) SF, ZF, PF
multiplication R(ALY/10) — (AL) OF, AF,CF undefined
AAD Adjust AX for AAD (AH) - 10 + (AL) — (AL) SF, ZF, PF
division 00 — (AH) OF. AF, CF undefined
cBwW Convert byte to cBwW (MSB of AL) — (All bits of AH) None
word
CcwD Convert word to CcCwWD (MSB of AX) — (All bits of DX) None

double word

(a)

Source

Regs
Reg16
Mems
Moem16

(b)




Byte*Byte AL Eegister or memory AX

Word*Word AX Register or memory DX :AX
Drword*Dhwo rd EAX Register or memory EAN :EDX
Division Dividend Operand Quotient: Remainder

(DIV or IDIV) (Divisor)

Word/Byte AX Register or Memory AL :AH
Dword Word DX:AX Eegister or Memory AN DX
Onword/Dword EDX:EAX Register or Memory EAX :EDX




Instruction set of 8086
(Logical Instructions in 8086)

—



AND instruction

® This instruction logically ANDs each bit of the source
byte/word with the corresponding bit in the destination
and stores the result in destination. The source can be an
immediate number, register or memory location, register

can be a register or memory location.

® The CF and OF flags are both made zero, PF, ZF, SF are

affected by the operation and AF is undefined.

63



®

General Format:
AND Destination, Source

Example:
AND BL, AL :suppose BL=1000 0110 and AL=1100
1010 then after the operation BL would be BL=
1000 0010.

AND CX, AX ;CX <= CX AND AX
AND CL, 08 ;CL<=CL AND (0000 1000)

64



OR instruction
®

This instruction logically ORs each bit of the source
byte/word with the corresponding bit in the destination
and stores the result in destination. The source can be an
immediate number, register or memory location, register
can be a register or memory location.

The CF and OF flags are both made zero, PF, ZF, SF are
affected by
the operation and AF is undefined.

General Format:
OR Destination, Source

65



Example:

® ORBL, AL; suppose BL=1000 0110 and AL= 1100 1010 then after the operation
BL would be BL= 1100 1110.

® ORCX, AX;CX <= CX AND AX
® ORCL, 08;CL<= CL AND (0000 1000)
NOT instruction

® The NOT instruction complements (inverts) the contents of an operand register

or a memory location, bit by bit. The examples are as follows:
Example:
® NOT AX (BEFORE AX=(1011)2=(B) 16 AFTER EXECUTION AX= (0100)2= (4)16).

® NOT [5000H]

66



XOR instruction

® The XOR operation is again carried out in a similar way to the
AND and OR operation. The constraints on the operands are
also similar. The XOR operation gives a high output, when the
2 input bits are dissimilar. Otherwise, the output is zero. The
example instructions are as follows:

Example:
XOR AX,0098H
XOR AX,BX
XOR AX,[5000H]

67



® Shift / Rotate Instructions

@ Shift instructions move the binary data to the left or right
by shifting them within the register or memory location.
They also can perform multiplication of powers of 2+n

and division of powers of 2-n.

® There are two type of shifts logical shifting and
arithmetic shifting, later is used with sighed numbers

while formerwith unsigned.

68



®©@ ®

©@ ®©® ® ® ®

SHL/SAL instruction

Both the instruction shifts each bit to left, and places the MSB in
CF and LSB is made 0. The destination can be of byte size or of
word size, also it can be a register or a memory location. Number
of shifts is indicated by the count.

All flags are affected.

General Format:

SAL/SHL destination, count

Example:

MOV BL, B7H;

BL is made B7HSAL BL, 1;

shift the content of BL register one place to left.
Before execution,

CY B7,B6 B5 B4 B3 B2 Bl BO

69



®

SHR instruction

This instruction shifts each bit in the specified destination to the
right and 0 is stored in the MSB position. The LSB is shifted into
the carry flag. The destination can be of byte size or of word size,
also it can be a register or a memory location. Number of shifts is
indicated by the count.

All flags are affected

General Format: SHR destination, count

Example:

MOV BL, B7H;BL is made B7H

SHR BL, 1;shift the content of BL register one place to theright.
Before execution,

B7 B6 B5 B4 B3 B2 B1 BO C(CY

70



©@ © ©® ©

After execution,
B7 B6 B5 B4 B3 B2 B1 BO CY
ROL instruction

This instruction rotates all the bits in a specified byte or word to
the left some number of bit positions. MSB is placed as a new
LSB and a new CF. The destination can be of byte size or of
word size, also it can be a register or a memory location.
Number of shifts is indicated by the count.

All flags are affected

71



® General Format: ROL destination, count

Example:
® MOV BL, B7H;BL is made B7H
® CY B7B6B5B4B3B2B1B0

® ROLBL, 1;rotates the content of BL register one place to
the left.

Before execution,
® CY B7B6B5B4B3B2B1B0

72



ROR instruction

This instruction rotates all the bits in a specified byte or
word to the right some number of bit positions. LSB is
placed as a new MSB and a new CF. The destination can be
of byte size or of word size, also it can be a register or a
memory location. Number of shifts is indicated by the
count.

General Format: ROR destination,

count Example:

MOV BL, B7H; BL is made B7H

ROR BL, 1;shift the content of BL register one place
to the right.

Before execution,
B7 B6 B5 B4 B3 B2 B1 BO CY

73



RCR instruction

This instruction rotates all the bits in a specified byte or
word to the right some number of bit positions along with
the carry flag. LSB is placed in a new CF and previous carry is
placed in the new MSB. The destination can be of byte size
or of word size, also it can be a register or a memory
location. Number of shifts is indicated by the count.

All flags are affected

General Format: RCR destination, count

Example:

MOV BL, B7H;BL is made B7H

RCR BL, 1;shift the content of BL register one place to the
right.

74



INSTRUCTION SET OF 8086

I



String Instruction Basics

» Source DS:SI, Destination ES:DlI

— You must ensure DS and ES are correct

— You must ensure SI and DI are offsets into DS
and ES
respectively

» Direction Flag (0 = Up, 1 =Down)

— CLD - Increment addresses (left to right)
— STD - Decrement addresses (right to

76



String ControllInstructions

1) MOVS/ MOVSB/ MOVSW
Dest string name, src stringname

This instruction moves data byte or word from location

inDS
to location in ES.

2) REP / REPE / REPZ / REPNE / REPNZ
Repeat string instructions until specified conditions
exist.
This is prefix ainstruction.

77



String ControllInstructions

4) SCAS / SCASB / SCASW
Scan a string byte or string word.
Compares byte in AL or word in AX. String address is to be loaded in DI.

5) STOS / STOSB / STOSW
Store byte or word in a string.

Copies a byte or word in AL or AX to memory location pointed by
DI.

6) LODS / LODSB /LODSW
Load a byte or word in AL or AX

» Copies byte or word from memory location pointed by Sl into AL or
AX register.

78



5

. Program Execution Transferinstructions

instructions are similar to branching or looping instructions. These

instructions include unconditional jump or loop instructions.
Classification:

Unconditional transfer instructions

Conditional transfer instructions

Iteration control instructions

Interrupt instructions

79



Unconditional transferinstructions

» CALL: Call a procedure, save return address onstack
> RET: Return from procedure to the main program.

> JMP: Goto specified address to get next instruction

CALL instruction: The CALL instruction is used to transfer

execution of program to a subprogram or procedure.

80



CALL instruction

> Near call

1.Direct Near CALL: The destination address is specified in the
instruction itself.

2.Indirect Near CALL: The destination address is specified in any 16-

bit register, except IP.

> Far call

1.Direct Far CALL: The destination address is specified in the
instruction itself. It will be in different Code Segment.

2.Indirect Far CALL: The destination address is specified in two word

memory locations pointed by a register.

81



JMP instruction

The processor jumps to the specified location rather than
the

instruction after the JMP instruction.
> Intra segment jump
> Inter segment jump

RET

RET instruction will return execution from a procedure to
the

next instruction after the CALL instruction in the calling
program.

82



Conditional TransferInstructions

JA/INBE: Jump if above / jump if not below or equal
JAE/INB: Jump if above /jump if notbelow
JBE/JNA: Jump if below or equal/ Jump if not above
JC: jump if carry flag CF=1

JE/JZ: jump if equal/jump if zero flagZF=1

JG/INLE: Jump if greater/ jump if not less than orequal.

83



Conditional Transfer Instructions

JGE/JNL: jump if greater than or equal/ jump if not less
than

JL/JNGE: jump if less than/ jump if not greater than or
equal

JLE/JING: jump if less than or equal/ jump if not greater
than

JNC: jump if no carry (CF=0).

JNE/INZ: jump if not equal/ jump if not zero(ZF=0)

84



Conditional TransferInstructions

JNO: jump if no overflow(OF=0)

JNP/JPO: jump if not parity/ jump if parity
odd(PF=0)

JNS: jump if not sign(SF=0)
JO: jump if overflow flag(OF=1)
JP/JPE: jump if parity/jump if parityeven(PF=1)

JS: jump if sign(SF=1).

85



Iteration Control Instructions

> These instructions are used to execute a series of instructions for

certain number of times.

» LOOP: Loop through a sequence of instructions until CX=0.

> LOOPE/LOOPZ : Loop through a sequence of instructions while
ZF=1 and instructions CX =0.

> LOOPNE/LOOPNZ : Loop through a sequence of instructions while
ZF=0 and CX =0.

» JCXZ : jump to specified

86



Interrupt Instructions

Two types of interrupt instructions:
» Hardware Interrupts (External Interrupts)

» Software Interrupts (Internal Interrupts and
Instructions)

Hardware Interrupts:
* INTR is a maskable hardware interrupt.

 NMlis a non-maskable interrupt.

87



Software Interrupts

- INT :Interrupt program execution, call serviceprocedure

® INTO : Interrupt program execution if OF=1

- IRET: Return from interrupt service procedure to main
program.




High Level Language Interface Instructions

»ENTER : enter procedure.

» LEAVE: Leave procedure.

»BOUND: Check if effective address within specified array

bounds.




Processor Controllnstructions

l. Flag set/clearinstructions

STC: Set carry flag CFto 1

CLC: Clear carry flag CF to0

CMC: Complement the state of the carry flag CF

STD: Set direction flag DF to 1 (decrement stringpointers)

CLD: Clear direction flag DF to0

STI: Set interrupt enable flag to 1(enable INTRinput)

CLI: Clear interrupt enable Flag to 0 (disable INTRinput)

90



Il. External Hardware synchronizationinstructions

»HLT: Halt (do nothing) until interrupt or reset.

» WAIT: Wait (Do nothing) until signal on the test pin islow.

» ESC: Escape to external coprocessor such as 8087 or 8089.
»LOCK: An instruction prefix. Prevents another processor from

taking the bus while the adjacent instruction executes.

» NOP: No operation. This instruction simply takes up three clock

cycles and does no processing.

91



Assembler Directives

I



Assembler Directives

» ASSUME
> DB
> DD
> DQ
> DT
> DW

Defined Byte.
Defined Double Word
Defined Quad Word
Define Ten Bytes
Define Word



» ASSUME Directive- The ASSUME directiveis  used to tell the
assembler that the name of the logical segment should be used for
a specified segment. The 8086 works directly with only 4 physical
segments: a Code segment, a data segment, a stack segment, and
an extra segment.

Example:

ASUME CS:CODE ;This tells the assembler that the logical segment
named CODE contains the instruction statements for the program
and should be treated as a code segment.

ASSUME DS:DATA ;This tells the assembler that for any instruction
which refers to a data in the data segment, data will found in the
logical segment DATA.

94



DB - DB directive is used to declare a byte- type variable orto
store a byte in memory location.

Example:

. PRICE DB 49h, 98h, 29h ;Declare an array of 3 bytes,
named as PRICE and initialize.

. NAME DB ‘ABCDEF’ ;Declare an array of 6
bytes and initialize with ASCII code for letters
. TEMP DB 100 DUP(?) ;Set 100 bytes of storage

in memory and give it the name as TEMP, but leave the 100
bytes uninitialized. Program instructions will load values into
these locations.

95



> DW-The DW directive is used to define a variable of type word or
to reserve storage location of type word in memory.

> Example:

® MULTIPLIER DW 437Ah ; this declares a variable of type word and
named it as MULTIPLIER. This variable is initialized with the value

437Ah when it is loaded into memory to run.

® EXP1 DW 1234h, 3456h, 5678h ; this declares an array of
3 words and initialized with specified values.

@ STOR1 DW 100 DUP(0); Reserve an array of 100 words of
memory and initialize all words with 0000.Array is named as STOR1.

96



END-END directive is placed after the last statement of a
program to tell the assembler that this is the end of the
program module. The assembler will ignore any statement
after an END directive.

ENDP-ENDP directive is used along with the name of the
procedure to indicate the end of a procedure to the
assembler

Example:
SQUARE_NUM PROCE ; It start the procedure ;Some
steps to find the square root of a number

SQUARE_NUM ENDP ;Hear it is the End for the
procedure

97



» END End Program

~ ENDP - End Procedure

> ENDS - End Segment

~ EQU Equ.ate

~ EVEN - Align on Even Memory Address
» EXTRN -




> ENDS - This ENDS directive is used with name of the
segment to
indicate the end of that logic segment.

Example: CODE SEGMENT ;Hear it Start the logic
segment
containing code ;

> CODE ENDS ;End of segment named as CODE

> GLOBAL - Can be used in place of a PUBLIC directive or in place
of an
EXTRN directive.

99



GROUP-Used to tell the assembler to group the logical statements
named after the directive into one logical group segment,
allowing the contents of all the segments to be accessed from the
same group segment base.

INCLUDE - Used to tell the assembler to insert a block of source
code from the named file into the current source module.

LABEL- Used to give a name to the current value in the location
counter.

NAME- Used to give a specific name to each assembly module
when programs consisting of several modules are written.

E.g.: NAME PC_BOARD

100



OFFSET- Used to determine the offset or displacement of a
named data item or procedure from the start of the segment
which contains it.

E.g.: MOV BX, OFFSET PRICES

ORG- The location counter is set to 0000 when the assembler
starts reading a segment. The ORG directive allows setting a
desired value at any point in the program.

E.g.: ORG 2000H

PROC- Used to identify the start of a

procedure. E.g.: SMART_DIVIDE PROC

FAR

PTR- Used to assign a specific type to a variable or to a
label. E.g.:INC BYTE PTR[BX] tells the

101



PUBLIC- Used to tell the assembler that a specified name or
label will be accessed from other modules.

SEGMENT- Used to indicate the start of a logical segment.

E.g.: CODE SEGMENT indicates to the assembler the start of
a logical segment called CODE

SHORT- Used to tell the assembler that only a 1
byte displacement is needed to code a jump instruction.

E.g.: JIMP SHORT NEARBY_LABEL

TYPE - Used to tell the assembler to determine the type of a
specified variable.

E.g.: ADD BX, TYPE WORD_ARRAY is used where we want to
increment BX to point to the next word in an array of
words.

102



Simple Programs of 8086

I



2 000

Write an assembly language program for addition of two 8-

-
&

bit numbers using 8086 microprocessors %,;'AREKS

DATA SEGMENT
Al DB 50H
A2 DB 51H
RES DB ?
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS:DATA

START. MOV AX,DATA
MOV DS,AX

MOV AL,Al
MOV BL,A2
ADD AL,BL
MOV RES,AL
MOV AX,4CO0H
INT 21H

CODE ENDS

END START




2 000

Write an assembly language program to find the factorial of given

number using 8086 microprocessors. % IARE ¢

-
&

DATA SEGMENT
FIRST DW 03H
SEC DW 01H
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE,DS:DATA

START. MOV AX,DATA
MOV DS,AX

MOV AX,SEC
MOV CX,FIRST
L1: MULCX
DEC CX
JCXZ L2
JMP L1
L2: INT 3H
CODE ENDS
END START




Write an assembly language program to find the sum of squares 5%“@5
% IARE &

using 8086 microprocessors.

A
\z

s <
% \2
¥ For W

NUM DW 5H
RES DW ?

DATA ENDS
CODE SEGMENT

ASSUME CS: CODE, DS: DATA
START MOV AX,DATA

MOV DS,AX
MOV CX,NUM
MOV BX,00

L1: MOV AX,CX
MUL CX
ADD BX,AX
DEC CX

JNZ L1
MOV RES,BX

INT 3H

CODE ENDS
END START



Procedures and Macros

I



Procedures:

® While writing programs, it may be the case that a particular
sequence of instructions is used several times. To avoid
writing the sequence of instructions again and again in the
program, the same sequence can be written as a separate
subprogram called a procedure.

Defining Procedures:

® Assembler provides PROC and ENDP directives in order to
define procedures. The directive PROC indicates beginning
of a procedure. Its general form is:

Procedure_name PROC[NEAR|FAR]

108



Passing parameters to and from procedures:

The data values or addresses passed between
procedures and main program are called parameters.
There are four ways of passing parameters:

» Passing parameters in registers
» Passing parameters in dedicated memory locations
» Passing parameters with pointers passed in registers

> Passing parameters using the stack

109



MACROS:

> When the repeated group of instruction is too short or not
suitable to be implemented as a procedure, we use a MACRO.
A macro is a group of instructions to which a name is given.
Each time a macro is called in a program, the assembler will
replace the macro name with the group of instructions.

Defining MACROS:

~ Before using macros, we have to define them. MACRO
directive informs the assembler the beginning of a macro. The
general form is:

» Macro_name MACRO argumentl, argument2, ...

> Arguments are optional. ENDM informs the assembler the
end of
the macro. Its general form is : ENDM

110



Differences

Procedures Macros

Accessed by CALL and RET
mechanism during program execution

Accessed by name given to macro
when
defined during assembly

Machine code for instructions only put
In memory once

Machine code generated for
Instructions
each time called

Parameters are passed in registers,
memory locations or stack

Parameters passed as part of statement
which calls macro

Procedures uses stack

Macro does not utilize stack

A procedure can be defined anywhere
In program using the directives PROC
and ENDP

A macro can be defined anywhere in
program using the directives MACRO
and ENDM

Procedures takes huge memory for
CALL(3 bytes each time CALL is
used) instruction

Length of code is very huge if macro’s
are called for more number of times

111



UNIT-II
8086 AEESMBLY LANGUAGE
PROGRAMMING

I






Minimum mode operation In
8086

I



Minimum mode operation in 8086:

—

— «! Reset —
——=rov BRI | F
Reset Cik Ready ﬂm"b -
X MWIO - L —
- R0 DMUX IORD -
Vee o= IOWR
Ag—oi ¥ RAM
.............. ——— o CSe ROM
ALE sT8 Ao— A , =
ADg — ADqs. O Laicias O
:1"83- 20r3
/Ss - cs
DT/R DEN e e e = e
CSso CSe CSo CSe IORD | IOWR
5 4 b L4 A 4
;L_ cs ; cs cs : cs ||
l » > ,.
& 74245 : : ]
DIR _ vi WR OE i L




In 3 minimum mode 8086 system, the microprocessor 8086 is operated
in minimum mode by strapping its MN/MX pin to logic 1.

In this mode, all the control signals are given out by the microprocessor
chip itself. There is a single microprocessor in the minimum mode
system.

The remaining components in the system are latches, transceivers, clock
generator, memory and 1/O devices. Some type of chip selection logic
may be required for selecting memory or 1/0O devices, depending upon
the address map of the system.

Latches are generally buffered output D-type flip-flops like 74LS373 or
8282. They are used for separating the valid address from the
multiplexed address/data signals and are controlled by the ALE signal
generated by 8086.

116



Transceivers are the bidirectional buffers and sometimes

they are called as data amplifiers. They are required to
separate the valid data from the time multiplexed
address/data signals.

They are controlled by two signals namely, DEN and DT/R.

The DEN signal indicates the direction of data, i.e. from or to
the processor. The system contains memory for the monitor
and users program storage.

Usually, EPROM is used for monitor storage, while RAM for
users

program storage. A system may contain 1/O devices.

117



Maximum mode operation In
8086

I



In the maximum mode, the 8086 is operated by

strapping the MN/MX pin to ground.

- In this mode, the processor derives the status signal S2, S1,
SO0. Another chip called bus controller derives the control

signal using this status information.

* In the maximum mode, there may be more than

one microprocessor in the system configuration.

119



- The components in the system are same as in the minimum

mode system.

* The basic function of the bus controller chip 1C8288 is to
derive control signals like RD and WR (for memory and 1/0
devices), DEN, DT/R, ALE etc. using the information by the

processor on the status lines.

* The bus controller chip hasinput lines S2, S1, SO and
CLK. These inputs to 8288 are driven by CPU.

120



Maximum mode




® It derives the outputs ALE, DEN, DT/R, MRDC, MWTC,
AMWYC, IORC, IOWC and AIOWC. The AEN, I0B and CEN pins
are especially useful for multiprocessor systems.

@ AEN and IOB are generally grounded. CEN pin is usually
tied to

+5V. The significance of the MCE/PDEN output depends
upon the

status of the I0B pin.

@ If I0B is grounded, it acts as master cascade enable to
control cascade 8259A, else it acts as peripheral data enable
used in the multiple bus configurations.

122



INTA pin used to issue two interrupt acknowledge pulses to
the interrupt controller or to an interrupting device.

IORC, IOWC are 1I/O read command and 1/O write command
signals respectively.

These signals enable an 10 interface to read or write the data
from or to the address port.

The MRDC, MWTC are memory read command and memory
write command signals respectively and may be used as
memory read or write signals.

123



® The MRDC, MWTC are memory read command and memory
write command signals respectively and may be used as
memory read or write signals.

@ All these command signals instructs the memory to accept
or send data from or to the bus.

® For both of these write command signals, the advanced
signals namely AIOWC and AMWTC are available.

124



»Here the only difference between in timing diagram
between minimum mode and maximum mode is the status
signals used and the available control and advanced
command signals.

»RO0, S1, S2 are set at the beginning of bus cycle.8288 bus
controller will output a pulse as on the ALE and apply a
required signal to its DT / R pin during T1.

»In T2, 8288 will set DEN=1 thus enabling transceivers, and
for an input it will activate MRDC or IORC. These signals are
activated until T4. For an output, the AMWC or AIOWC is
activated from T2 to T4 and MWTC or IOWC is activated
from T3 to TA4.

125



Timing diagram for
minimum mode

I



Write Cycle Timing Diagram for

Clk

ae _ [ )
ADD/STATUS ) PHE- Al S -85 ) §

ADD /DATA X Aris - Ag X Valid data Dys Dy X

WR \ /

o \ /




® The working of the minimum mode configuration system can

be better described in terms of the timing diagrams rather

than qualitatively describing the operations.

® The opcode fetch and read cycles are similar. Hence the
timing diagram can be categorized in two parts, the first is
the timing diagram for read cycle and the second is the

timing diagram for write cycle.

128



2 000

Bus Request and Bus Grant Timings in Minimum Mode System *

of 8086

Clk |

e AN

HOLD

HLDA / \—

Bus Request and
Bus Grant Timings in Minimum Mode System




Timing diagram for
maximum mode

I



2 000

Memory Read Timing Diagram in Maximum
Mode of 8086

™ =
2 IARE §
% 3

7 <

"_ One bus cycle —_
T] I Tz l T3 I T‘ | Tl I
Clk
g —d ) /
S-S Active X Imactive X[ Active
Add/Status ) { BHE, Aww—Ais X Sy=Ss. )---=r=m==-omees
Add/Data  _______ .( Ay — Ay > ( Ds— D, ) ___________

MRDC \ [

DT /R —\ /




Memory Write Timing in Maximum mode of 8086

< One bus cycle — >
I T, | T, | T, | T, | T |
CIk —
= Active K mmacive X acave
ADD/STATUS X XBHE) S — S, JORECEEETEEEEEEt
ADDDATA  »—<Ai-Ao X Data out Dys— D, >
AMWC or AIOWC \ /
MWTC or IOWC
\ /
DT /K high

DEN




Memory interfacing to 8086
(Static RAM and EPROM)

I



® Interface two 4Kx8 EPROMS and two 4Kx8 RAM chips
with 8086. select suitable maps.

Table  Memory Mop for Problem

Address — Ajg Ay Apg Aig Ajs Ay AplAp Ay Ay Aw A A A Aus Mgy Ay Ay Aoy Ay
mlllll.lllllllllllllll

7 o e, EPROM 8K x 8 |
0 0000 000 O0CO0CO0TO00
G (O (O O ' D W TS (O (0% (%% (S

8K x 8§
0 000000 0.0,0000

ol 38




& P 0 4K ~ 8 A“ ~
Oy P—= 1 MRD—=<d OF MRD ——=<d OF
= ©; F—a-z
BHE—1 A a-s o by
“ Lo 74130R
(= 7 F"——‘ Da—Dss
Az —>
Aa Oy Pp—= 5 i
Q 8 e At‘Aﬂ
O, p— 7 P
rRAM Ao L7
4K « 8 Ay =
MRD ——=d RD Rb
MWR — — =4 WR AR

a1 _)r—©%
o1 )—©Cs.

Fig shows the interfacing diagram for the memory system

c3,
Ao mam
AQ' axK <8
RD
WR




Table  Memory Chip Selection for Problem

Decoder P ~ TR Slecton/
Address/ BHE - Ay Ay BHE Comment
Word transfer on Dy - Dy 0 0 0 Even and odd addresses in RAM
- Byte transfer on D, - D) 0 0 1 - OnlyevendddessinRAM
Byte transfer on Dy~ D, 0 l 0 Only odd address in RAM
- Word transfer on )y - Dy s SRt Even and odd addresses in ROM
Byte transfer on Dy - D, 10 Only even address in ROM
ByevasferonDg-Dy L 1 0 Onlyoddaddressin ROM.

136



Assembly language programs
using logical, branch& call
instructions

I



Assembly language programs

Programs using logical ,Branch and call instructions.
Data segment

Org 2000h Mov [di],ax
N1 dw5678h Int 03h

N2 dw 2345h Code ends
Data ends End

Code segment

Assume cs:code,ds:dats
Mov ax,data

Mov ds,ax

Mov DI,2040h

Mov ax,N1

AND ax,bx




Assembly language programs

2)Data segment
Org 2000h

N1 dw 5678h
N2 dw 2345h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
MOV bx,N2
OR ax,bx

Mov [di],ax

Int O3h

Code ends
End

OOONMOMONMOMOMONMOMONMOMONMONONMONMO,




Assembly language

3)Data segment
Org 2000h

N1 dw 5678h
N2 dw 2345h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
MOV bx,N2
Xor ax,bx

Mov [di],ax

Int O3h

Code ends
End

OMOONMOMONMOMOMONOMONMOMONMOMOMONO,




Assembly language programs L~

4)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
SHL ax,04
Mov [di],ax

Int 03h

Code ends
End

ONNORNORORORORORNORORIONONONIONO,




Assembly language programs L~

Programs using logical ,Branch and call instructions.
1)Data segment

Org 2000h . Mov [di],ax
N1 dw 5678h . Int 03h

Data ends . Codeends

Code segment . End
Assume cs:code,ds:dats

Mov ax,data

Mov ds,ax

Mov DI,2040h

Mov ax,N1

SHR ax,04

© © ©®© © ® ® ® ©®© © @




Assembly language programs

2)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
ROR ax,02
Mov [di],ax

Int 03h

Code ends
End

OOCONOMONMOMONMOMOMOMOMOMOMNO




Assembly language

3)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
RCR ax,03
Mov [di],ax

Int O3h

Code ends
End

OOCONOMONMOMONOMOMOMOMOMOMNO




Assembly language programs

4)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
RCL ax,04
Mov [di],ax
Int 03h

Code ends
End

OBNORNORORORORBORORORIONONONIONO,




Sorting




Assembly language program to sort the given numbers in
Ascending order

ASSUME CS: CODE

CODE SEGMENT

START: MOV AX,0000H
MOV CH, 0004H
DEC CH

UP1: MOV CL,CH
MOV SI, 2000H

UP:  MOVAL,[SI]
INC SI

CMP AL, [SI]




DOWN:

CODE ENDS
END START

JCDOWN

XCHG AL,
[SI] DECSI

MOV [SI], AL
INC SI
DECCL

JNZ UP
DECCH

JNZ UP1
INT 3




Assembly language program to sort the given numbers
In Descending order

ASSUME CS: CODE

CODE SEGMENT
START: MOV AX, 0000H
MOV CH, 0004H
DECCH
UP1: MOV CL, CH
MOV SI, 2000H
UP: MOV AL, [SI]

INC SI



DOWN:

CODE ENDS
END START

JNC DOWN
XCHG AL, [SI]
DEC S

MOV [SI], AL
INC S|

DEC CL

INZ UP

DEC CH
INZUP1
INT3




Evaluation of arithmetic expressions

I



An Assembly program for performing the following operation
Z= ((A-B)/10*C)

DATA SEGMENT
A DB 60

B DB 20

CDB5

Z DW?

ENDS

CODE SEGMENT

ASSUME DS: DATA CS: CODE
START: MOV AX, DATA

MOV DS, AX
MOV AH, 0 ; Clear content of AX
MOV AL, A ; Move A to register AL

152



SUB AL, B ; Subtract AL and B

MUL C ; Multiply C to AL

MOV BL, 10 ; Move 10 to register BL
DIV BL ; Divide AL content by BL
MOV Z, AX ; Move content of AX to Z
MOV AH, 4CH

INT 21H

ENDS
END START




Evaluation of string manipulation

I



Program For String Transfer

DATA SEGMENT ; start of data segment

STR1 DB 'HOW ARE YOU'

LEN EQU S$-STR1

STR2 DB 20 DUP (0)

DATA ENDS ; end of data segment

CODE SEGMENT ; start of code segment

ASSUME CS: CODE, DS: DATA, ES: DATA

START: MOV AX, DATA ; initialize data segment
MOV DS, AX

155



MOV ES, AX ;initialize extra segment for string operations
LEA SI, STR1 ; Sl points to starting address of string at ; STR1

LEA DI, STR2 ; DI points to starting address of where the string
has to be transferred

MOV CX, LEN ; load CX with length of the string

CLD ; clear the direction flag for auto increment Si;
and DI

REP MOVSB ; the source string is moved to destination
address till CX=0(after every move CXis;
decremented)

MOV AH, 4CH ; terminate the process

INT 21H

CODE ENDS ; end of code segment

END START

156



Program To Reverse A String
DATA SEGMENT ; start of data segment
STR1 DB 'HELLO'
LEN EQU $-STR1
STR2 DB 20 DUP (0)

DATA ENDS ; end of data segment

CODE SEGMENT ; start of code segment

ASSUME CS: CODE, DS: DATA, ES: DATA

START: MOV AX, DATA ; initialize data segment
MOV DS, AX

MOV ES, AX

157



UP:

CODE ENDS
END START

LEA SI, STR1
LEA DI, STR2+LEN-1

MOV CX, LEN
CLD

LODSB
STD
STOSB
LOOP UP

MOV AH, 4CH
INT 21H




UNIT-III

8255 PROGRAMMABLE
PERIPHERAL INTERFACE (PPI)

I






Introduction to 8255 (PIO)

I



8255-PROGRAMMABLE PERIPHERALINTERFACE

> It has 24 input/outputlines
» 24 lines divided into 3 ports

* Port A(8bit)
* Port B(8 bit)

* Port C upper(4 bit), Port C Lower (4 bit)

All the above 3 ports can act as input or output
ports




BLOCK DIAGRAM OF 8255

PR
POWER *wv
SUPPLIES > GND

BI-DIRECTIONAL
DATA BUS

=]

INTERNAL
DATA BUS

Vo
PA7-PAO

Vo
PC7-PCa

o
PC3-PCO



Data Bus buffer

> It is a 8-bit bidirectional Data bus.

» Used to interface between 8255 data bus with system bus.

» The internal data bus and Outer pins Dy-D; pins are

connected in internally.

» The direction of data buffer is decided by Read/Control
Logic.

86
196



Read/Write ControlLogic
This is getting the input signals from control Address Bus.
busand

»Control signal are RD and WR.
»Address signalsare A0, Al, and CS cS.

» 8255 operation is enabledor
disabled by

Group A and B get the Control Signal from CPU and send the
commandto the individual control blocks.

Group A send the control signal to port A and Port C (Upper)
PC7-PC4. Group B send the control signal to port B and Port C
(Lower) PC3-PCO. o



PORTA:
» This is a 8-bit buffered 1/0 latch.

» It can be programmed by mode 0, mode 1, mode2.

PORT B:
»This is a 8-bit buffer 1/0 latch.

» |t can be programmed by mode 0 and mode 1.

PORTC:
» This is a 8-bit Unlatched buffer Input and an Output latch.

> Itis spitted into two parts.

» It can be programmed by bit set/reset operatio



8255-PROGRAMMABLE PERIPHERAL INTERFACE

Pas " aopPad
=¥l i saQpPas
= W e S5 O PAG
PA0C] 4 ST OPAaT
RO O S 36 O vuR
CSOE 35 RESET
SHD O 7 =4 D0
a2 8 crcim iy
A0C]g s2OD2
PCF A0 1O DS
pCcEC]11 82998 soppa
=lat=t m kb 29 DS
SerimE ke 25 O DE
PO 14 27 OD7
Pl 1S 26 O v
PC2O16 25 I PBET
PCSCT 24 O PBEE
FEOC] 1S 23 PBES
FE1 19 22 PB4
PE2 O 20 21 O PBES

90

199



Pin Description of 8255

PA7-PAO:

PC7-PC4:

PC3-PCO:

PBO-PB7:

These are eight port A lines that acts as either latched
output or buffered input lines depending upon the
control word loaded into the control word register.

Upper nibble of port C lines. They may act as either
output latches or input buffers lines. This port also
can be used for generation of handshake lines in

mode 1 or mode 2. . .
These are the lower port C lines, other details are

the same as PC7-PC4 lines.

These are the eight port B lines

91

200



Pin Description of 8255

»RD: This is the input line driven by the microprocessor and
should be low to indicate read operation to8255.

> WR: This is an input line driven by the microprocessor. A low
on
this line indicates write operation.

»CS : This is a chip select line. If this line goes low, it enables the
8255 to respond to RD and WR signals, otherwise RD and WR
signal are neglected.

»A1-A0: These are the address input lines and are driven by the
microprocessor.

~RESET: The 8255 is placed into its reset state if this.input line is
a logical 1. All peripheral ports are set to the inputmode.

169



Various modes of 8255
operation and interfacing to
8086

I



Various modes of 8255:

These are two basic modes of operation of 8255. 1/0 mode
and Bit Set-Reset mode (BSR).

>In 1/O Mode, the 8255 ports work as programmable 1/0
ports, while in BSR mode only port C (PC0-PC7) can be used
to set or reset its individual port bits.

Under the 1/O mode of operation, further there are three
modes of operation of 8255, so as to support different types
of applications, mode 0, mode 1 and mode 2.

171



» Mode 0 (Basic /0 mode): This mode is also called as basic
input/output Mode. This mode provides simple input and
output capabilities using each of the three ports. Data can
be simply read from and written to the input and output
ports respectively, after appropriate initialization.

172



~Mode 1: (Strobed input/output mode) in this mode the
handshaking control the input and output action of the
specified port. Port C lines PCO-PC2, provide strobe or
handshake lines for port B.

~This group which includes port B and PCO-PC2 is called as
group B for Strobed data input/output. Port C lines PC3-PC5
provides strobe lines for port A.

»This group including port A and PC3-PC5 from group A. Thus
port C is utilized for generating handshake signals.

173



» Mode 2 (Strobed bidirectional 1/0): This mode of operation of
8255 is also called as strobed bidirectional 1/0. This mode of
operation provides 8255 with additional features for
communicating with a peripheral device on an 8-bit data bus.

» Handshaking signals are provided to maintain proper data
flow and synchronization between the data transmitter and

receiver.

> The interrupt generation and other functions are similar to

mode
1.

174



> BSR Mode:

In this mode any of the 8-bits of port C can be set or reset
depending on DO of the control word. The bit to be set or
reset is selected by bit select flags D3, D2 and D1 of the
CWR as given in table.




8255 interfacing with 8086:

8255 - 8086 Interfacing

8086
uP

M /1O

Sk

X L5 LN

8 Bit Input - Output

control bus

)

Data bus

Address bus

)
)

RD
WR

DO
D7

AO
Al

8255
PPI

EN
Decoder

Interfacing the 8255 PPI to the 8086 microprocessor




Interfacing Keyboard

I



Keyboard Interfacing:

>

In most keyboards, the key switches are connected in a
matrix of Rows and Columns.

Getting meaningful data from a keyboard requires three
Major tasks:

 Detect a key press
« Debounce the key press.
 Encode the key press (produce a standard code for
the
pressed
key).
Logic ‘O’ is read by the microprocessor when the key is
pressed.

178



Key Debounce:

Whenever a mechanical push-bottom is pressed or released
once, the mechanical components of the key do not change the
position smoothly; rather it generates a transient response.
These may be interpreted as the multiple pressures and
responded accordingly

179



+ 5V logic 1

I + 5V
I >
Vo
logic O logic O

Key released Key pressed Key released

Fig. 5.23 A Mechanical Key and Its Response

+ 5V
0, 1
] 5 D) : e
=

To I/P circuit
1,0 01

Fig. 5.24 Hardware Debouncing Circuit




RESET g c o g
LOWR = = = =
IORD PA, e D
A N
K DD 7 PA,l 8 9
N v
8255 pu | 4 5
2 B PB,
PB,
Al—= PB,
AO

Interfacing 4 * 4 Keyboard

10K &2

10KQ
10KQ

10K |



Flow chart of a keyboard-scanning procedure

KEY Calculate
( ~ j key code b( Return j
Scan Keys
# If key open rheck
Time Delay Keys
for de-bounce
‘L Momentar
Scan Keys Scan Keys elitch? ¥
Time Delay
Check ¥ for de-bounce
If key closed Keys f
™ Scan Keys

Wait for Release Wait for Keysiroke

182



Keyboard Interfacing Program:

Assume that base address of 8255 is 8000H. So, addresses
of ports will be as follows.

PORT A = 8000H (ROWS)
PORT B = 8002H (COLUMNS)
CONTROL PORT = 8006H

DATA SEGMENT
CNTLPRT EQU 8006H
PORTA EQU 8000H
PORT B EQU 8002H

DELAY EQU 6666
for 20ms.

; Delay constant

183



Keyboard Interfacing Program:

TABLE DB 30H, 31H, 32H, 33H, 34H, 35H, 36H, 37H,38H,
39H, 41H, 42H, 43H, 44H, 45H, 46H

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA
START: MOV AX, DATA

MOV DS, AX.
MOV AL, 82H

MOV DX, CNTLPRT
OUT OX, AL

184



RDCOL:

SELF:

RDAGN:

XOR AL, AL MOV
DX, PORTA OUT
DX, AL MOV DX,
PORTB
IN AL, DX

AND AL, OFH CMP
AL, OFH JNE
RDCOL MOV CX,
DELAY

LOOP SELF
IN AL,DX AND
AL, OFH CMP
AL,OFH JNE
RDCOL
IN AL,DX

AND AL, OFH

JE RDAGN
MOV DX, DELAY
LOOP SELF1




ENROW:

CCODE:
NXTCOL:

AND AL, OFH

JE RDAGN

MOV AL, OFEH
MOV BL, AL
MOV DX, PORTA
OUT DX, AL
MOV DX, PORTB
IN AL, DX

AND AL, OFH
CMP AL, OFH
JNE CCODE
ROLBL, 1

MOV AL, BL
JMP ENROW
MOV CL, 0
RORAL, 1

JNC CHKROW
INCCL



CHKROW:
NXTROW:

CALADR:

JMP NXTCOL
MOV DL, 0
RORBL, 1
JNC CALADR
ADD DL, 4
JMP NXTROW
ADD DL, CL
MOV AL, DL
LEA BX, TABLE
XLAT

INT 3

CODE ENDS
END START




Displays




Multiplexed Display:

“Hu1A7 |

of
|

| 8258 f‘Al.% p——
‘ PAL| - |

' PA2

b mad— t I

‘ PAS

[
‘ -
=
_\J
AMW— ‘
x
~l
| l
-
=
=
=
&
AAAA
AAAAD
5

e 1] |
mH O EOE ORI T
ormass | | 77 a1 L GRS R
PB2 LY 4 S (S < - == =3 he -y
r -anan—L N
P33 FL 8- okt e ol » m s m
oo —d 1000 MSD

(Most significant digir) Multiplexed display



Program for IMultiplexed Display: Assume
base address of 8255 to be FFF8H
Address of port A = FFF8H

Address of port B = FFFAH
Address of control port = FFFEH

Algorithm:

1. Turn ON QO (Q1 to Q7 OFF) by applying a logical low to base of Q0 as
transistor.

2. Send seven segment code for DO (LSD) i.e., digit 0'

3. After 1ms turn OFF QO turn on Q1, so Q] will be ON and Q0 and Q2 ~ Q7
Will be OFF.

4. Send seven segment code for D1 i.e., digit 1.

5. After 1ms turn off Q1 and turn on Q2. So Q2 will be ON and Q0 Q1 and
Q3-Q7 will be OFF.

6. Repeat the process for all 8 digits. It completes one cycle.
7. Start the cycle again.

190



Program for multiplexed Display:
DATA SEGMENT
PORT A EQU OFFF8H
PORT B EQU OFFFAH
CNTLPRT EQU OFFFEH
DELAY EQU 012CH
DIGITS DB 1, 2,3,4,6,7,8,9
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS: DATA
START: MOV AX, DATA
MOV DS, AX
MOV DX, CNTL PRT
MOV AL, 80H
OUT DX, AL
REPEAT: MOV BH, 8
LEA S, DIGITS

MOV BL, OFEH

SELF:

MOV AL, BL
MOV DX, PORT A
OUT DX, AL
MOV AL, [SI]
MOV DX, PORTB
OUT DX, AL
MOV CX, DELAY
LOOP SELF

INC SI

ROLBL, 1

DEC BH

INZ BACK

JMP REPEAT
CODE ENDS

END START

191



8279 Stepper motor and
actuators




Stepper motor is often used in computer systems. Normally DC and
AC motors move smoothly in a circular fashion.

Stepper motor is a DC motor, specially designed, which moves in
discrete or fixed step and thus complete one rotation of 360
degrees. To rotate the shaft of the motor a sequence of pulses are
applied to the windings in a predefined sequence.

The number of pulses required to complete one rotation depends
on the number of teeth on the rotor. Hence rotation Per pulse
sequence is 360°/NT where NT is the number of teeth on rotor.

If NT is equal to 200 then one step rotation will be of 1.8°. The

motors are generally available to move in steps of 0.9%2to 30° i.e.
The step size range is 0.99-36°.

193



Programs for Stepper Motor Rotation:

1. Program to rotate the stepper motor continuously in
clockwise direction for following specification

NT = Number of teeth on rotor = 200

Speed of motor = 12 rotations/minute.
CPU frequency = 10MHz




DATA SEGMENT
PORTC EQU 8004H
CNTLPRT EQU 8006H
DELAY EQU 14705

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA
START: MOV AX, DATA

MOV DS, AX

MOV AL, 80H

MOV DX, CNTLPORT
OUT DX, AL

195



MOV AL, 33H

MOV DX, PORTC
BACK: OUT DX, AL

RORAL, 1

MOV CX, DELAY

SELF: LOOP SELF
DELAY LOOP FOR 25Ms

JMP BACK
CODE ENDS
END START




Digital to analog converter
Interfacing

I



DACO0800 8-bit Digital to Analog Converter

®

®

®

The DAC 0800 is a monolithic 8-bit DAC manufactured by
National Semiconductor.

It has settling time around 100ms and can operate on a
range of power supply voltages i.e. from 4.5V to +18V.

Usually the supply V+is 5V or +12V.

The V-pin can be kept at a minimum of -12V.

Threshold

Control

' o—
Fpp—
(T —

1
2
3
4
5
B
7
8

L

16
15
14
13
12
1"
10

8

—— Compensation
— Vit (=)

—— Vier (+)

— W&

L BsLSB

198



Interfacing DAC0808 with 8086

-12Vo
0.1uF

15

DACO800

14

13




Intersil®s AD 7523 is a 16 pin DIP, multiplying digital to analog
converter, containing R-2R ladder(R=10KQ) for digital to analog
conversion along with single pole double through NMOS
switches to connect the digital inputs to the ladder.

OUT;— 1 16 |— Reg
OUT,— 2 15 = W in
GND—{ 3 14— V+
MSBEB,—{ 4 13 — NC
Bz— 5 0T 1 NC
By—| 6 11 |— BulSB
Bs—1 7 10 — B;
Bs— B 9 |— Bg

200



Pin Diagram of AD7523

> The supply range extends from +5V to +15V , while Vref may
be anywhere between -10V to +10V. The maximum analog
output voltage will be +10V, when all the digital inputs are at
logic high state. Usually a Zener is connected between OUT1
and OUT2 to save the DAC from negative transients.

> An operational amplifier is used as a current to voltage
converter at the output of AD 7523 to convert the current
output of AD7523 to a proportional output voltage

> It also offers additional drive capability to the DAC output. An
external feedback resistor acts to control the gain. One may
not connect any external feedback resistor, if no gain control is
required.

201



Interfacing of AD7523

+5V +10V




Analog to digital converter
Interfacing

I



Block Diagram of ADC 0808/0809

SOC CLOCK

' 1

Control and
Timing unit and
S.AAR.

== 00

‘; O/P

11Pg —
1Py ——
/Py —=
/Py ——> 8 Channel
=== Mglt}::(e)ger
1/Pg —>
IIPg ——>
1Py ——>
L
C B A

Address Lines

256 R
Register
ladder and
Switch tree

Latch

=" &8-bit
— [ OIP

i

O/P
Enable




Pin Diagram of ADC 0808/0809

IIPy —>
1Py —»
|IPg —
I/Pg —
|/P7 —>
SOC—
EOC—~

OE -]
CLK —»
Vee —

I

Vrel’—>
GND -
Oy -

W O N & O & L N -

ol enkh aalii ouk b
HWw N - O

ADC 0808
ADC 0809

- /P2
< |IP1
<— |/Po
< ADD A
<— ADD B
~<— ADD C
~— ALE
-« O;MSB
— Oy

« O;

< Oy

< Og LSB

- Viot-

/P, - /P,

ADD A, B.C

0,-0
s0C

EOC

OF

CLK

Ve, GND

VrcH' and vrcl N

Analog inputs

Address lines for selecting analog inputs
Digital 8-bit output with O, MSB and O, LSB
Start of conversion signal pin

End of conversion signal pin

Output latch enable pin, if Eigh enable outpul
Clock input for ADC

Supply pins 45V and GND

Reference voltage positive (+5 Volts maximum)
and Reference voltage negative (0V minimum)




Timing Diagram Of ADC 0808.
|

[
CLOCK J

START. ————/—_\

Cued
\ 7




Interfacing ADC0808 with

C-g Viert Vieft
i { s5V =
3 +5V | G
525 > Yee «—— Clock up
~ PA; - PAg { }07 <0
Ay —— A :
2 i pC, < EOC ADC 0808 Kk
R 50C Pz le—— |p
PCq > voltage
Reset ————- OE GND =
IORD ———> 8255 o— ALE K B B
+5 ' iy
IOWR —> PBy A A A =
PB,
PB,




Interrupt structure of 8086

I



Interrupt structure of 8086

03FFh " Type 255 (Available)
Ayailable -- --
224 Interrupt - - < ==
0080h Type 32 (Available)
007Fh Type 31 Reserved
Reserved  -- <
27 Interrupt . Sis
0014h \. Type S Reserved
00z0h Type 4 Overflow interrupt
0000C. Type 3 Break point interrupt
0008h Type 2 Non-Maskable
0004h Type 1 Single Step
CS:IP 0000h Type 0 Divide by Zero




Vector interrupt table,
Interrupt service routines

I



Vector interrupt

AFFH Typa 255 pomnter -]
aFrc H (Avaiiable)
i i 1
Avaidable Inermupt J N T
ot B Type 33 pointer : g

084 H (Avaitabie)

Typo 32 pointar

|
|

L ORO (Avaiiablia)
[ o7F H - Typs 31 pointar &
(Resarved)

Ressrvad intsmup! 4
pointers (27)

g0
n

Typa S poinmer

— =
014+ (Raserved)
..
r = Type 4 pointer s
c1oH Quarfiow
Type 3 pointar
coC H s ~Dyte INT Instruction
Type 2 poirtor :
Dadicated mtammupt — =
pomntars (53 1 oo8s H Non — maskabile
= Type 1 pointer =
Q04 H Single ~ step
———— - —
NEWCS —| CS bass address L Type O pointer _j
NEW IP -» IP oltset IR = Divde emror

SO0 H -—m—— 16 8z —»




Introduction to DOS and BIOS
Interrupts

I



BIOS INTERRUPT

BIOS INTERRUPT
@ INT 10H — Video Screen

* The option is chosen by putting a specific value in
register AH

* The video screen is text mode is divided into 80
columnsand 25 rows

* A row and column number are associated with each
location on the screen with the top left corner as 00,00
and the bottom right corner as 24,79. The center of the
screenis at 12,39 or (0C,27 in hex)

* Specific registers has to be set to specific values
before invoking INT 10H

213



BIOS INTERRUPT

® Function 06 — clear the screen

® AH=06 ; function number

® AL=00 ; page number

® BH =07 ; normal attribute

® CH=00 ; row value of start point

® CL=00 ; column value of start point

® DH=24 ;row value of ending point

® DL=79 ; column value of ending point
® Function 02 - setting the cursor to a specificlocation
® AH =06 ; function number

® DH=row ;cursor

® DL =column ; position

214



BIOS INTERRUPT

Function 03 — get the current cursor position

AH =03 ; function number

BH= 00 ; currently viewed page

The position is returned in DH = row and DL =column

Function OE — output a character to the screen
AH = OE ; function number
AL = Character to be displayed

BH =00 ; currently viewed page

© ®©® ® ® ® ® ® ® ® ®

BL=00 ; default foreground color

215



DOS INTERRUPT

Function 09 — outputting a string of data to the monitor
AH =09 ; function number

DX = offset address of the ASCII data to be displayed,
data segment is assumed

The ASCII string must end with the dollar sign $

Function 02 — outputting a single character to the
monitor

AH =02 ; function number
DL = ASCII code of the character to be displayed

Function O1 — inputting a single character, with an echo

AH =01 ; function number.After the interrupt AL =ASCI|
code of the input and is echoed to the monitor

216



®©®

©@® ®@®

OMOMOMONO,

DOS INTERRUPT

Function OA — inputting a string of data from the keyboard

AH = 0A ; function number
DX = offset address at which the string of data is stored (buffer
area), data

segment is assumed and the string must end with <RETURN>
After execution:

DS:DX = buffer in bytes (n characters + 2)

DS:DX+1 = number of entered characters excluding the return
key

DS:DX+2 = first character input

DS:DX+n = last character input

To set a buffer, use the following in the data segment:
Buffer DB 10, ? , 10 DUP(FF)

217



®

© ®©® ® ® ©® @®

©@ ® ® ©®

DOS INTERRUPT

Function 07 — inputting a single character from the keyboard
without an echo

AH = 07 ; function number

Waits for a single character to be entered and provides it in AL
INT16 — Keyboard Programming

Function 01 — check for a key press without waiting for the user
AH =01

Upon execution ZF = 0 if there is a key pressed

Function 00 — keyboard read

AH =00

Upon execution AL = ASCII character of the pressed key
Note this function must follow function 01

218



Need for DMA,DMA Data transfer
Method

I



Need For DMA

® Direct memory access (DMA) is a feature of modern computer
systems that allows certain hardware subsystems to read/write
data to/from memory without microprocessor intervention,
allowing the processor to do other work.

® Used in disk controllers, video/sound cards etc, or between
memory locations.

® Typically, the CPU initiates DMA transfer, does other operations
while the transfer is in progress, and receives an interrupt from
the DMA controller once the operation is complete.

® Can create cache coherency problems (the data in the cache may
be different from the data in the external memory after DMA)

220



DMA Data Transfer Method

From
decoder
Memory-.
PROCESSOR Select \\
RAM
BlU /B Ao A1 AND Dg D,
=T T A0 Ags
&
I
=]
[
Y —
Qort DEVICE
with TO
DMA one SEND
Controller g or 1/0 Bus OR
(DMAC) J set of ggg'\EAIVE
’ "
// i Addresses RAM
/ !
/
' DMAC
DMA Request Acknowledge ]
From
Decoder
Port

Select




The 1/0 device asserts the appropriate DRQ signal for the
channel.

The DMA controller will enable appropriate channel, and ask the
CPU to release the bus so that the DMA may use the bus. The
DMA requests the bus by asserting the HOLD signal which goes to
the CPU.

The CPU detects the HOLD signal, and will complete executing the
current instruction. Now all of the signals normally generated by
the CPU are placed in a tri-stated condition (neither high or low)
and then the CPU asserts the HLDA signal which tells the DMA
controller that it is now in charge of the bus.

The CPU may have to wait (hold cycles).

222



® DMA activates its -MEMR, -MEMW, -IOR, -IOW output signals,
and the address outputs from the DMA are set to the target
address, which will be used to direct the byte that is about to
transferred to a specific memory location.

® The DMA will then let the device that requested the DMA
transfer know that the transfer is commencing by asserting the -
DACK signal.

® The peripheral places the byte to be transferred on the bus Data
lines.

® Once the data has been transferred, The DMA will de-assert the -
DACK2 signal, so that the FDC knows it must stop placing data on
the bus.

223



® The DMA will now check to see if any of the other DMA channels
have any work to do. If none of the channels have their DRQ lines
asserted, the DMA controller has completed its work and will now
tri-state the -MEMR, -MEMW, -IOR, -IOW and address signals.

@ Finally, the DMA will de-assert the HOLD signal. The CPU sees this,
and de-asserts the HOLDA signal. Now the CPU resumes control of
the buses and address lines, and it resumes executing instructions
and accessing main memory and the peripherals.

224



8237-DMA Controller

I



Pin diagram

Interface with
maximum-mode Y5¢ "f’
cPU 1

<Ay
Ay
- —
DB,~DB, DMA handshake
signals
ADSTH
AEN
- s

trol sigals from ¢ +MEMR_ DREQr-DREQ)
bl il DMA requests for the 4 channels
and to memory { MEMW 8209A ( q )

I0R
control signals fromf +—=0 e
and 1o pe?ipherals { v, > backedack,
READY DMA acknowledge

RESET | HRQ

CLK HLDA

A0 - A3 are used for
1) accessing 8237 internal ports

2) carrying memory address in DMA
read and write operations

DBO - DB7 are used for s
1) transfer of data
2) 8237 programming



Block Diagram

EQOF #—=

RESET
CE—+

| DECREMENTOR

INC/DECREMENTOR I

1
COUNT REG (16) I I

I TEMP WORD

TEMP ADDRESS

REG (16)

—

o)
BUFFER

READY —— 16-BIT BUS J
(] — TIMING
AND 16-BIT BUS
AEN #—— coNTROL I I OUTPUT
ADSTE st READ BUFFER READ WRITE BUFFER BUEFER LA4-AT
WMEMR BASE BASE CURRENT | CURRENT
METW ADDRESS WORD ADDRESS WORD
(16) COUNT (18] COUNT
[OR 4t - (16} {16) w [
OW a— | | < COMMAND
© CONTROL
1 | — :
WRITE READ
BUFFER BUFFER Do - D1
DREQO- 4 PRICRITY COMMAND N
DREQ3 ENCODER 8 1o
(8) INTERNAL DATA BUS BUFFER
HLDA —— AND
ROTATING
HRQ *=—— pRIORITY =
DACKO - r LOGIC @
DACK: *7 2
RECE"':_J;EST I STATUS TEMPORARY @
MODE (8} 18} o
i4 % 6)

227



8237 Internal Registers

® CAR
®

O

®

The current address register holds a 16-bit memory address used
for the DMA transfer.

each channel has its own current address
register for this purpose.

When a byte of data is transferred during a DMA operation, CAR
is either incremented
or decremented. depending on how it is programmed

CWCR

The current word count register programs a channel for the
number of bytes to transferred during a DMA action.

228



CR(Command Register)

® The command register programs the operation of the 8237 DMA
controller.

® The register uses bit position 0 to select the memory-to-memory
DMA transfer mode.

* Memory-to-memory DMA transfers use DMA channel
e DMA channel 0 to hold the source address
e DMA channel 1 holds the destination address

229



7 6 5 4 3 2 1 0=<=—Bit Number

| I O W i (O

L[ 0 Memory-to memory disable
1 Memory-to-memory enable

|' 0 Channel 0 address hold disable
1 Channel O address hold enable
l.X Hbit0O=0

__[ 0 Controller enable
1 Controller disable
|' 0 Normal timing
1 Compressed timing

I.X Hbito =1
[ O Fixed priority
L 1 Rotating priority
|' 0 Late write selection

1 Extended write selection
I.X fbit3=1
[ 0 DREQ sense active high
L1 DREQ sense active low

[ 0 DACK sense active low
L 1 DACK sense active high




BA and BWC

® The base address (BA) and base word count (BWC) registers are
used when auto-initialization is selected for a channel.

® In auto-initialization mode, these registers are used to reload the
CAR and CWCR after the DMA action is completed.

MR_(Mode Register)

® The mode register programs the mode of operation for a channel.

® Each channel has its own mode register as selected by bit
positions 1 and 0.

* Remaining bits of the mode register select operation, auto-
initialization, increment/decrement, and mode for the channel

231



7 6 5 4 3 2 1

0 «——Bit Number

420 Ly wo §

-0 =0Q

Channel O select
Channel 1 select
Channel 2 select
Channel 3 select

Verify transfer
Write transfer
Read transfer
lllegal
ifbits6and 7 =11

Autoinitialization disable
Autoinitialization enable

Address increment select
Address decrement select

Demand mode select
Single mode select
Block mode select
Cascade mode select




RR(Request Register)

® The request register is used to request a DMA transfer via software.

@ very useful in memory-to-memory transfers, where an external

signal is not available to begin the DMA transfer




Request Register

765 4 3 2 1 0«<—BitNumber

|_|._I
Don't Care 00 Select channe

01 Select channe
10 Select channe
11 Select channe

o — O

3

0 Reset request bit

1 Set request bit

e



MR(Mask Register)

O]

The mask register set/reset sets or clears the channel mask.
if the mask is set, the channel is disabled.

O]

® The RESET signal sets all channel masks
to disable them

7 6 5 4 3 2 1 0<«<—Bit Number

Don't Care 00 Select channel 0 mask bit
01 Select channel 1 mask bit
10 Select channel 2 mask bit
| 11 Select channel 3 mask bit

" 0 Clear mask bit
| 1 Set mask bit




MSR

The mask register clears or sets all of

the masks with one command instead of individual channels, as
with the MRSR.

7 6 5 4 3 2 1 0<«<—Bit Number

Don't Care

I_.

| 1 Set channel 0 mask bit

0 Clear channel 0 mask bit

[ 0 Clear channel 1 mask bit
| 1 Set channel 1 mask bit

" 0 Clear channel 2 mask bit
| 1 Set channel 2 mask bit

" 0 Clear channel 3 mask bit
1 Set channel 3 mask bit



SR(Status Register)

® The status register shows status of each DMA channel. The TC bits
indicate if the channel has reached its terminal count (transferred
all its bytes).

® When the terminal count is reached, the DMA transfer is
terminated for most modes
of operation.

® The request bits indicate whether the DREQ input for a given
channel is active.

237



Status Register
7654321 0«—BitNumber

—
_ "

OOOO

OOOO

nanne
nanne
anne

anne

nanne
nanne
nanne

nanne

has reached TC
has reached TC
nas reached TC
nas reached TC

LN —- O

0 request
1 request
2 request
3 request




DMA Controller-8257

I



©@ ®©® ® ® © @®

O]

O]

Features of 8257

Here is a list of some of the prominent features of 8257 -

It has four channels which can be used over four 1/0 devices.
Each channel has 16-bit address and 14-bit counter.

Each channel can transfer data up to 64kb.

Each channel can be programmed independently.

Each channel can perform read transfer, write transfer and verify
transfer operations.

It generates MARK signal to the peripheral device that 128 bytes
have

been transferred.
It requires a single phase clock.
Its frequency ranges from 250Hz to 3MHz.

240



8257 Pin Description
® The following image shows the pin diagram of a 8257 DMA

controller

IOW
MEMR

MEMW

MARK
READY
HLDA
ADSTB
AEN
HRQ

CLK

RESET -
DACK2 °

DACK3
DRQ3
~ DRQ2

1 ~ 40
2 39
3 38
4 37
5 16
6 is
7 34
8 2 33
9 r~-§ 32
11 oD 30
12 :E 29
13 2 a2
14 27
15 26
16 25
17 >

24

-

- #

> F > >
n.

PORE > >

AQ' uﬁ

53
Al



Block Diagram of 8257

intamal Bus

CHO
16-BIT
ADDR
CNTR

CH1
16-BIT
ADDR
CNTR

CHZ
16-BIT
ADDR
CNTR

¢— DRQ O
—» DACK 0

<€«—DRQ 1
—»GACK 1

«—DROQ 2
—DACK 2

bus
buffer
TOR
oW
CLK
RESET g
Ao s
A logic
A
A,
csS
Ay -
AL —
AL —
A, 4—Control
READY —p| logic
HRQ -— m"ode""
HLDA — oy
MEMR ::1 reg
MEMW

CH3
18-81T
ADDR
CNTR

«—DRQ3
—»DACK 2




0 = Verify transfer
| = Write transfer
0= Read transfer

1= legal

14-bit count



© Mode SetReqister

B’ BG BS B4 B3 Bi | BI BO

ALTCS [EW|RP

EN3

EN2

ENI

ENO

1 =Rotating Priority
0 =Fixed Priority

——— | = Extended write selection‘
0 =Normal write selection

——> 1 =Stop DMA on terminal count

————> | =Enable auto reload
0 = Disable auto reload

| = Enable channel - 0
0 = Disable channel - 0

—> | =Enable channel - 1

> (= Disable channel - |

—> | =Enable channel - 2

» 0 = Disable channel - 2

> | = Enable channel - 3

» 0 = Disable chapne,l -3



© Status Regjster;

B7 B(v BS B4 B) B2'Bl BO

0

0

0

03

TC3

TC2

TCl

TCO

‘——3 | = Channel-0 has reached terminal count

— | =Channel-1 has reached terminal count

> = Chann‘el-Z has reached terminal count
— | =Channel-3 has reached terminal count

—> | =Channel-2 is reloaded from channel -3




- Address

Register .
A, | A | A | A,
Channel-0 DMA address register - | 0| 0 0 0
Channel-0 Count register 0 1'0 | 0O I
Channel-1 DMA address register 0 0 1 0
Channel-1 Count register 0 0 I 1
Channel-2 DMA address register 0 |1 o |0
Channel-2 Count register 0 l 0 |1
Channel-3 DMA address register 0 1 1 0
Channel-3 Count register 0 L 1
Mode set register (Write only) 1 0 0 0
Status register (Read only) 1 0 0 0

246



UNIT-IV

SERIAL DATA TRANSFER
SCHEMES

I






Data Transfer Schemes

Asynchronous and synchronous
data transfer schemes

I



Data Transfer Schemes

) i 1 0

| I & L Ul Time

— 1-bit
Source ; — R g Destination Source L LN Destination

— ML
4 - 4
3 0nal Reference
1

n-1 ®n-]

Signal reference 1 Signal refecence

n=8§ 16,31

Parallel Transmission Serial Transmission




Data Transfer Schemes

® Even in shorter distance communications, serial computer buses
are becoming more common because of a tipping point where
the disadvantages of parallel busses (clock skew, interconnect

density) outweigh their advantage of simplicity.

® The serial port on your PC is a full-duplex device meaning that it
can send and receive data at the same time. In order to be able to

do this, it uses separate lines for transmitting and receiving data.

251



Data Transfer Schemes

Advantages of serial communications:

®

Requires fewer interconnecting cables and hence

occupies less space.

"Cross talk" is less of an issue, because there are fewer
conductors compared to that of parallel communication
cables.

Many IC s and peripheral devices have serial interfaces.

Clock skew between different channels is not anissue.

Cheaper to implement.

252



Data Transfer Schemes

SERIAL DATA TRANSMISSION MODES

When data is transmitted between two pieces ofequipment,
three communication modes of operation can be used.

Simplex: In a simple connection, data is transmitted in one
direction only. For example, from a computer to printer that
cannot send status signhals back to the computer.

Half-duplex:In a half-duplex connection, two-way transfer
of
data is possible, but only in one direction at a time.

Full duplex: In a full-duplex configuration, both ends can
send and receive data simultaneously, which technique .is
common in our PCs.

253



Data Transfer Schemes

© SERIAL DATA TRANSFER SCHEMS

® There are two ways to synchronize the two ends

of the communication.

o Synchronous data transmission

o Asynchronous data transmission




Data Transfer Schemes

Synchronous Data Transmission

1) Bynchronous Transmdssion: -

Transmitter sends bits on falling edge of the clock
Receiver reads bits on rising edge of the clock

|
y v | I l I I I I I
Clock — —‘
I I I I I I I I |
| | | | [ | | |
Data | I I I
61
(&g H) Bit 7 | | | | | | Bit0O
: I I I I I I
Bits 0 1 | 1 0 1} 0 1} 1

l |
Note: - Maty synchronous protocols send MSE first




Data Transfer Schemes

® The synchronous signaling methods use two different signals. A
pulse on one signal line indicates when another bit of

information is ready on the other signal line.

® In synchronous transmission, the stream of data to be
transferred is encoded and sent on one line, and a periodic
pulse of voltage which is often called the "clock" is put on
another line, that tells the receiver about the beginning and

the ending of each bit

256



Data Transfer Schemes

® Advantages: The only advantage of synchronous data transfer is
the Lower overhead and thus, greater throughput, compared

to asynchronous one.

® Disadvantages:

¢ Slightly more complex

* Hardware is more expensive

257



Data Transfer Schemes

2) Asynchronous Transmission: -

Data
B1H)

|Start bit

Bits |

clock to read the following bits

BEit 0

Transmitter uses an internal clock when to determine when to send each bit

Receiver detects the falling edge of the start bit and then uses its internal

0 I
I

Note: - Asynchronous protocols send LB first

0

0

0




Data Transfer Schemes

® The asynchronous signaling methods use only one signal. The
receiver uses transitions on that signal to figure out the

transmitter bit rate (known as auto baud) and timing.

® A pulse from the local clock indicates when another bit is ready.
That means synchronous transmissions use an external clock,
while asynchronous transmissions are use special signals along

the transmission medium.

259



Data Transfer Schemes

Asynchronous communication is the commonly prevailing
communication method in the personal computer industry, due
to the reason that it is easier to implement and has the unique
advantage that bytes can be sent whenever they are ready, no
need to wait for blocks of data to accumulate.

260



Data Transfer Schemes

Advantages:

® Simple and doesn't require much synchronization on
both

communication sidesThe timing is not as critical as for

synchronous transmission; therefore hardware can be made

cheaper.

® Set-up is very fast, so well suited for applications where messages
are generated at irregular intervals, for example data entry from

the keyboard.

261



Data Transfer Schemes

Disadvantages:

® One of the main disadvantages of asynchronous technique is
the large relative overhead, where a high proportion of the
transmitted bits are uniquely for control purposes and thus

carry no useful information.

262



Introduction to 8251 (USART)

I



Pin diagram of 8251

D, []1 28
Dy []2 27
RxD [| 3 26
GND [] 4 25
D, (15 24
Ds (16 23
Dg (17 22
D, (18 8251A 21
T™XC (]9 20
wR [] 10 19
cs [ 11 18
co []12 17
RD [] 13 16
RXRDY [_| 14 15

Juuuduyiduouud

TXEMPTY
CTS
SYNDET/BD
TXRDY




Block diagram of8251

Data Bus Transmit
O7-00 1 mumter fe—| )| Buer [ TXD
(P - 5)
RESET
CLK _ " Transmit TRERDY
C/ Read/\Write [ L Control - E
BD Control =t ontre e
WH Logic =
TS =
i |
=
=
DSR = i
DTR Modem = Recieve - RHRX[D
CTS Control T g
RTS Y e
_ == RXRDY
Recieve BYC
Control = SYMNDET/BD




Sections of 8251A

» Data Bus buffer
» Read/Write Control Logic
» Modem Control

» Transmitter
» CS — Chip Select

» Receiver
Data Bus Buffer
DO-D7 : 8-bit data bus used to read or write status, command word or data

Read/Write Control logic
» C/D — Control/Data

» WR: When signal is low, the MPU either writes.
» RD : When signal goes low, the MPU either reads.
» RESET : A high on this signal reset 8252




Control Register

» 16-bit register for a control word consist of two independent
bytes namely mode word & command word.

> Mode word : Specifies the general characteristics of operation
such as baud, parity, number of bits etc.

» Command word : Enables the data transmission and reception.

> Register can be accessed as an output port when the Control/Data
pin is high.

Status register

» Checks the ready status of the peripheral.

» Status word register provides the information concerning register
status and transmission errors.

267



Dataregister

» Used as an input and output port when the C/D is low.

&

s J¢gp RO wR___ |

QD O = = 3 X
I =~ -
(=R =

1
o
o
o
o
o

Data Bus 3-5tate

Data Bus 3-5tate
Status — CPU
Control Word <= CPU
Data — CPU

Data = CPU




8251 USART Architecture

I



Modem Control

» DSR - Data Set Ready : Checks if the Data Set is ready when
_communicating with a modem.

»DTR - Data Terminal Ready : Indicates that the deviceis ready

to accept data when the 8251 is communicating with a modem.

» CTS - Clear to Send : If its low, the 8251A is enabled to transmit the
_serial data provided the enable bit in the command byte is set to‘1’.

» RTS - Request to Send Data : Low signal indicates the modem that the
receiver is ready to receive a data byte from the modem.

Transmitter section
» Accepts parallel data from MPU & converts them into serial data.
» Has two registers:

e Buffer register : To hold eight bits
e Output register : To convert eight bits into a stream of serial bits.

270



Qutput Register

——= XD

F -

—— =l Transmitter Buffer

OUTDX,AL Y
: TRDY
Transmit control _'_""! T*E
TxC
ReceiverSection

+«— Receive Buffer

IN DX, AL

Receive control

TS
——  Syndet/BDT

Input Register f¢e—F—

RxDy

RxRDY

RxiC




Mode word & command word for 8251

07 D& D5 D4 DI D2 Dt

00

s2

S

EP

PEN| L2

(8 )

8z | g

07 D6 D5 D4 ™M

D2 Dt DO

EM

RTS

SBRK

L=

Y

BITS

\

0 » DISABLE
EVEN PARITY
GENERATIONCHECK
1=EVEN 0+~0DO

NUMBER CF STOP BITS

o 1 o 1

0 o 1 1

v |14 ] 2
WNVALID | pirs lairs | errs

(ONLY EFFECTS Tx; Rx
NEVER REQUIRES MORE
THAN ONE STOPBIT)

-

-

Y

TRANSMIT ENABLE
1 ENABLE
0 DISABLE

OATA TERMINAL READY
HIGH WILL FORCE
DTR QUTPUT TO ZERO

RECEIVE ENABLE
1= ENABLE R x FDY
o= DISABLE R » ROY

SEND BREAK CHARACTER
1= FORCES T » DLOW

0 » NORMAL OPERATION

ERROR RESET
1= RESETALL ERROR
FLAGS (PE, OF, FE)




Status word register of 8251

F E flag Is set whon a vaid stop bl s niol
detecind o end of every charactee Il s
rase! by ER b of Command instructon.
FE doas nol inhibit operaton of 8251,

the E R bit of the Command instruction
QE does not inhibit oparation of the
8251; however, the praviously overun
charactir s kot

Do 05 b omo@.o
DSR | SYNDET| FE OE PE TXE | RXRDY | TXRDY
DATA SET READY -J L
pupase TRANSMITTER READY
m:mm&u Indicates USART s ready 10 accept
Dala Set Reacy 1 Gt charucter ¢r command
LRECEIVERRENW
Indlicates USART has recatved s
character on &s seral input and
SYNC DETECT
When set for intenal sync detect t5 rmady 10 transfar it o the CPU.
dcates ol chivaclr sync has been
achioved and 8251 Is ready for data TRANSMITTER EMPTY
Indicates that paraliel to sarial
OVER RUN ERROR .
The OF fag i set whe the CPU does converter in ransmitter s empty
not read & character betors the naxt
FRAMING ERROR (ASYNC OMY) ons becomes avalale, i sel by PARITY ERROR

PE Rag is 86t when & parity ey i
detected I rased by ER bl of
Command instructon PE tioes nol
inhibit operation of 8251,




TTL to RS 232C and RS232C to
TTL conversion

I



RS-232 defines serial, asynchronouscommunication

» Serial - bits are encoded and transmitted one at a time (as opposedto
parallel transmission)

e Asynchronous - characters can be sent at any time and bits
are not individually synchronized

DTE - DCE Connection

DTE

2
3

2

I

ettt
e ——

DCE

<D

RxD

ground

2
3
&

DTE - DTE Connaction

DTE

2

3

7

TxD ™D

RxD RxD|

ground




Electrical Characteristics

» Single-ended

* One wire per signal, voltage levelsare with respect to system
common (i.e. signalground)

» Mark: -3V to-15V
represent Logic 1, Idle State (OFF)
» Space: +3 to+15V
* represent Logic O, Active State (ON)
» Usually swing between —12V to+12V

» Recommended maximum cable length is 15m, at 20kbps




Mechanical Characteristics
» 25-pinconnector

> Use male connector on DTE and female connector on DCE.

(0] :
) Protective ground ( 1 l w
Secondary transmitted data ——-3 1 Transmitied data o -_\)
Transmit clock — 10 2 g ! .
Secondary received data —-0 3 o Y ! ® O OO '
"y % @ Request 1o send ! J \ ! \ )
Receiver clock —-0 4 N Y o O O O s —
17 g Clear 10 send \- //
u'ass'g'm”" :_,z ° Data set ready l
Sucordeny Techiut i _lse Signal ground L J
Dol e 1% ¢ Data carrier detect 4
Signal qﬁwm ::% § Reserved 6 7 8 9
““"mm EX Reserved Pin Signal Pin Signal
O 2 O Unassigned 1 Data Carrier Detect B Data Set Ready
AT ok = Secondary data carrier detect__ 2 Received Data 7 Request to Send
Uridsetyec g %;2 Secondary clear to send 3 Transmitted Data 8 Clear to Send
» 4 Data Terminal Ready g Ring Indicator
. 5 Signal Ground

25-Pin RS232 Connector

9-Pin RS232 Connector

277



Function of Signals
» TD: transmitted data

» RD: receiveddata
» DSR: data set ready

* indicate whether DCE is poweredon.
» DTR: data terminalready

* indicate whether DTR is powered on

e turning off DTR causes modem to hang up theline
» Rl: ringindicator

 ON when modem detects phonecall.
» DCD: data carrier detect

* ON when two modems have negotiated successfully
and the carrier signal is established on the phoneline.

278



> RTS: request to send
* ON when DTE wants to send data

- Used to turn on and off modem’s
carrier signal in multi-point (i.e. multi-drop) lines

* Normally constantly ON in point-to-point lines
» CTS: clear to send

* ON when DCE is ready to receive data.

» S@G: signal ground

279



@ Voltage levels, slew rate, and short-circuit behavior are typically
controlled by a line driver(MC 1488) that converts from the
USART's logic levels (TTL levels) to RS-232 compatible signal
levels, and a receiver (MC 1489) that converts RS-232 compatible
signal levels to the USART's logic levels (TTLlevels).

(R]] 2020 I V2 (Nl
/ . MG 140N MO 1A
| i | |
| o A L oal Ny Ve 10
o ) | r > > Y- i
| [ e a0l I |
| | l | |
' t ) o ! ) ) s ; I
. ) | g [0
R1 t + !.‘ ? ' T <i > | g | > L) B9
| I 330 pi | |
| 1 1 | |
| =y REN 1! 1o
DTR ~ |+ 0|, oo T > > > = e >“’-“R
o | =S 390 pf | !
| | l | |
' L "' - : 10 | " : o
ey X0 D ;cne > _ P> 8
= ‘ " I B
PIN 14 =+ 12V PIN 14 = +5 V
PINZ =G

[ 1
[ PIN1=- 12V 7 = GND
PIN 7 = GND
() (h) s

280



Sample program of serial data
transfer

I



Assembly Language Program to transmit 100 bytes of data string
starting at location 2000:5000H.

Asynchronous mode control word for transmitting 100 bytes of
data:

D7 D6 D5 D4 D3 D2 DI DO
I l I I I l I  0=FEH
2 Stop bits  Even Parity  8-bit CLK scaled

Enabled format




ASSUME CS: CODE
CODE SEGMENT

START: MOV AX, 2000H
MOV DS,AX ; DS points to byte string segment

MOV SI,5000H ; SI points to byte string

MOV CL,64H ; Length of string in CL (hex)
MOV AL,0FEH ; Mode control word to DO —D7
OUT OFEH,AL

MOV AX,11H ; Load command word

OUT OFE,AL ; to transmit enable and error
WAIT : IN AL,OFEH ; Read status



AND AL,01H ; Check transmitter enable

JZ WAIT ; bit, if zero wait for the transmitter to be
ready

MOV AL,[SI] ; If ready, first byte of string data
OUT OFCH, AL ; is transmitted

INC SI ; Point to next byte
DEC CL ; Decrement counter

JNZ WAIT ; If CL is not zero, go for next byte
MOV AH,4CH

INT 21H

CODE ENDS
END START



Assembly Language Program to receive 100 bytes of data string
and store it at 3000:4000.

ASSUME CS:CODE
CODE SEGMENT

START : MOV AX,3000H
MOV DS,AX ; Data segment set to 3000H

MOV SI,4000H ; Pointer to destination offset
MOV CL,64H ; Byte count in CL

MOV AL,7EH ; Only one stop bit for
OUT OFEH,AL ; receiver is set

MOV AL,14H ; Load command wo



NXTBT :

READY:

OUT OFEH,AL ; the receiver and disable transmitter

IN AL,OFEH ; Read status

AND AL,38H ; Check FE, OE and PE
JZ READY ; If zero, jump to READY

MOV AL,14H ; If not zero, clear them
OUT OFEH,AL

IN AL,OFEH ; Check RXRDY, if receiver is not ready
AND AL,02H
JZ READY ; wait

IN AL,OFCH ; If it is ready,



MOV [SI],AL ; receive the character

INC SI ; Increment pointer to next byte

DEC CL ; Decrement counter

JNZ NXTBT; Repeat, if CL is not zero
MOV AH, 4CH
INT 21H

CODE ENDS

END START




Sample program of serial data
transfer

I



Program To Test 8251 Receiving Part
DSEG SEGMENT
ORG 0000: 3000H
DSEG ENDS
CSEG SEGMENT
ORG 0000: 4000H
ASSUME CS : CSEG, DS : DSEG
START: MOV AX, 00H
MOV SS, AX
MOV SP, 2000H
MOV DS, AX
CLI
CLD
MOV BX, 0202H
PUSH CS
POP AX




MOV [BX], AX
MOV BX, 200H
LEA AX, CS: SRVC2
MOV [BX], AX
MOV DX, FFD8H ;ICW1
MOV AL, 13H

OUT DX, AL

MOV DX, FFDAH

MOV AL, 80H

OUT DX, AL

MOV AL, OFH

OUT DX, AL

MOV AL, OFEH

OUT DX, AL

MOV BX, EXT_RAM_LC
MOV DX, CTL_8253




MOV AL, 76H

OUT DX, AL

MOV DX, TMR1 8253

MOV AL, <CNT_BAUD 9600 MODE16
OUT DX, AL

MOV AL, >CNT_BAUD 9600 MODE16
OUT DX, AL

STI

MOV DX, CTL_ 8251

MOV AL, O0H

OUT DX, AL

NOP
NOP
NOP
NOP




OUT DX, AL

NOP

NOP

NOP

NOP

OUT DX, AL

MOV DX, CTL_8251

MOV AL, 40H

OUT DX, AL

NOP

NOP

NOP

NOP

MOV DX, CTL_8251

MOV AL, MODE_WORD16
OUT DX, AL




NOP
NOP
NOP
NOP
MOV DX, CTL_8251
MOV AL, 36H
OUT DX, AL
BACK1: NOP
JMP BACK1
SRVC2: MOV DX, DATA_8251
IN AL, DX
IN AL, DX
NOP
NOP
NOP
NOP




AHEAD2:

TERM:

CSEG ENDS
END

CMP AL, ODH
INZ AHEAD?2
MOV AH, 00
MOV S|, AX
CALL FAR DBDT
MOV BX, EXT_RAM_LC
JIMP TERM
MOV [BX], AL
INC BX

STI

IRET




Introduction to high speed
serial communications
standards, USB

I



USB Features:

» Simple Connectivity
» Simple cables

» One interface for many devices
» Automatic configuration

» No user Setting

» Hot pluggable

» Data transfer rates

» Coexistence with IEEE 1394

» Reliability

» Low cost

» Low power consumption
» Flexibility

» Operating system support




USB System:

The Figure shows the basic components of USB system. It consists of USB
host, USB device and USB cable. The USB host is a personal computer (PC)
and devices are scanner, printer etc. There will be only one host in the USB
system; however there can be 127 devices in the USB system.




Cables:

»USB cables are designed to ensure correct connections are always
made. By having different connectors on host and devices, it is possible
to connect, two hosts or two devices together.

»USB requires a shielded cable containing 4 wires. Two of these, D+
and D-, from a twisted pair responsible for carrying a differential data
signal, as well as some single-ended signal states. The signals on these
two wires are referenced to the (third) GND wire.

» The fourth wire is called VBUS, and carries a nominal 5V supply, which
may be used by a device for power.

298



CLASSIFICATION:

Modes of Data Transfer can be broadly divided into two
types:

1. PARALLEL TRANSFER
2.SERIAL TRANSFER

Modes of Data Transfer can also be divided into
1. SYNCHRONOUS TRANSMISSION
2. ASYNCHRONOUS TRANSMISSION

299



USB HOST:

The USB host communicates with the devices using a USB host
controller The host is responsible for detecting and enumerating
devices, managing bus access, performing error checking, providing and
managing power, and exchanging data with the devices.

USB DEVICE :

A USB device implements one or more USB functions where a function
provides one specific capability to the system. Examples of USB
functions are keyboards, webcam, speakers, or a mouse. The
requirements of the USB functions are described in the USB class
specification.

300



CONTROL TRANSFERS:
Control transfers are used to configure and retrieve informationabout
the device capabilities.

a. BULK TRANSFERS: Bulk transfers are intended for devices that
exchange large amounts of data where the transfer can take all of
the available bus bandwidth.

b. INTERRUPT TRANSFERS: Interrupt transfers are designed to support
devices with latency constrains.

c. ISOCHRONOUS TRANSFERS:: Isochronous transfers are used by
devices that require data delivery at a constant rate with a certain
degree of error-tolerance.

301



UNIT-V
ADVANCED MICROPROCESSORS

I






80286 Microprocessor
Architecture

I



Salient features of 80286
®

O

High  performance  microprocessor with memory
management and protection

80286 is the first member of the family of advanced
microprocessors with built-in/on-chip memory management
and protection abilities primarily designed for multi-
user/multitasking systems

Available in 8 MHz, 10 MHz & 12.5 MHz clock frequencies

80286 is upwardly compatible with 8086 in terms of
instruction set.

80286 have two operating modes namely real address mode
and virtual address mode.

305



Salient features of 80286:

O]

O]

In real address mode, the 80286 can address up to 1Mb of
physical memory address like 8086.

In virtual address mode, it can address up to 16 Mb of physical
memory address space and 1 GB of virtual memory address
space.

80286 has some extra instructions to support operating system
and memory management.

In protected virtual address mode, it is source code compatible
with 8086.

The performance of 80286 is five times faster than the
standard 8086.

306



Bus and memory sizes

> The 80286 CPU, with its 24-bit address bus is able toaddress
16MB of physical memory.

> 1GB of virtual memory for each task

Microprocessor Databus  Addressbus Memory size

width width
8086 16 20 1M
80186 16 20 1M

80286 16 24 16M




Operating Modes:
Intel 80286 has 2 operating modes:

Real Address Mode :
» 80286 is just a fast 8086 --- up to 6 times faster

» All memory management and protection mechanisms are
disabled

» 286 is object code compatible with 8086

Protected Virtual Address Mode
» 80286 works with all of its memory management and
protection capabilities with the advanced instructionset.

> itis source code compatible with 8086

308



80286 Microprocessor
Architecture(cont.)

I



80286 Architecture:

Address Latehes and Bigy-bg,
Dirivers -

1
1
I
1 —
: . B W
I - - |
1 Te- Tocessor —— i
: Segment fetch Extension | FEACK
! Limit Ciemps Interfare |@———  PEREQ
1 ]:'I.E k 1
! e ¢ | xEWY HOLD
1 —_— — JRS—
Bus Control : > 81, 20, CODV BT
Data Transceivers ' LOCEL, HLDA
_______________________________ ﬁ, Dys-Dig
1
—--. - R & Byte !
| Pre-fetch :
: Chaene Bus Uit !
1
: I (Bm___
' A — @ —— - - = p#— Eeset
1 1
1 . 1
! 3Der_'cn.ied Instruction ' — Clk
! Instraction Decoder !
' ! I Chiene e Vs
! I | Instruction |
| Brecution Unt By | | | | E e Umitquy_ 1 [ Ve
‘ ‘ = Cap
HMI ——
BLTSE
INTE
FREOR

310



Functional Parts:

1.Bus Interface unit

2.Instruction unit

3.Execution unit

4.Address unit




Bus Intertace Unit

>

>

Performs all memory and 1/0 read and write operations.
Take care of communication between CPU and a coprocessor.

Transmit the physical address over address bus A,—A,;

Prefetcher module in the bus unit performs this task of

prefetching.

Bus controller controls the prefetcher module.

Fetched instructions are arranged in a 6 — byte prefetch queue.

312



Instruction Unit

> Receive arranged instructions from 6 byte prefetch queue.
> Instruction decoder decodes up to 3 prefetched instruction and

are latched them onto a decoded instruction queue.

> Output of the decoding circuit drives a control circuit inthe

Execution unit.




Execution unit

> EU executes the instructions received from the decoded
instruction queue sequentially.
» Contains Register Bank.

» contains one additional special register called Machine status

word (MSW) register --- lower 4 bits are only used.

> ALU is the heart of execution unit.
> After execution ALU sends the result either over data bus or back

to the register bank.

314



Address Unit
>

Calculate the physical addresses of the instruction and data that

the CPU want to access

Address lines derived by this unit may be used to address

different peripherals.

Physical address computed by the address unit is handed over

to the BUS unit.




Registers (Real/Protected mode)




REGISTER ORGANIZATION OF 80286:

The 80286 CPU contains almost the same set of registers, as
in 8086, namely

> Eight 16-bit general purpose registers (AX, BX, CX, DX)
» Four 16-bit segment registers (CS, SS, DS, ES)

» Status and control registers (SP, BP, Sl, DI)

» Instruction Pointer (IP)

» Two 16-bit register - FLAGS, MSW

» Two 16-bit register - LDTR and TR

» Two 48-bit register - GDTR and IDTR

317



CS

DS
SS

ES

16-BIT Special
REGISTER Register
NAME 07 0 Functions
BYTE G PR A 1 MULTIPLY/DIVIDE
ADDRESSABLE py [ ph DL /O INSTRUCTON
E;EféslrlstsT ER x|~ eH CL j» LOOP/SHIFT/REPEAT COUNT
A BX'| BH ok , BASE REGISTERS
BP .
S| . INDEX REGISTERS
DI
SP } STACK POINTER
15 GENERAL O
15 0 REGISTERS 15 0
CODE SEGMENT SELECTION F STATUS WORD
DATA SEGMENT SELECTION P INSTRUCTION POINTER
STACK SEGMENT SELECTION »  STATUS AND CONTROL
EXTRA SEGMENT SELECTION RESBTERS
SEGMENT REGISTERS



Flag Register

STATUS FLAGS
CARRY FLAG
PARTY FLAG

AUXILIARY CARRY FLAG
ZERO FLAG

SIGN FLAG
OVERFLOW FLAG —

Dis D44 DiaD12 (D11 Do D9 Ds D7 {Ds Ds [Ds D3 (D2 Dy vPo
% 7 7,
//// NT |IOPL| OF | DF | IF | TF | SF | ZF //// AF //A PF V//// CF
l, b A 4 CONTROLFLAGS
NESTED TASK L TRAP FLAG
s — L INTERRUPT FLAG
PRIVILEGE LEVEL DIRECTION FLAG




® The initial protected mode, released with the 286, was not widely
used;

for example, it was used by Microsoft xenix (around
1984),coherent and minix. Several shortcomings such as the
inability to access the BIOS or DOS calls due to inability to switch
back to real mode without resetting the processor prevented
widespread usage.

Acceptance was additionally hampered by the fact that the 286
only allowed memory access in 16 bit segments via each of four
segment registers, meaning only 4*2 bytes, equivalent to 256
kilobytes, could be accessed at a time Because changing a
segment register in protected mode caused a 6-byte segment
descriptor to be loaded into the CPU from memory

320



® The segment register load instruction took many
tens of processor cycles, making it much slower
than on the 8086; therefore, the strategy of
computing segment addresses on-the-fly in order
to access data structures larger than
128 kilobytes (the combined size of the two data
segments) became impractical, even for those few
programmers who had mastered it on the
8086/8088

321



Privilege levels

I



There are four types of privilege levels
®

®
®
®
®

®

00 - kernel level (highest privilege level)
01 - OS services

10 - OS extensions

11 - Applications (lowest privilege level)

Each task assigned a privilege level, which indicates the priority
or privilege of that task.

It can only changed by transferring the control, using gate
descriptors, to a new segment.

A task executing at level 0, the most privileged level, canaccess
all the data segment defined in GDT and LDT of the task.

A task executing at level 3, the least privileged level, will have the
most limited access to data and other descriptors.

323



Task

Cated call
and returm
Task &
Unrestrcted
local access

Task B




Descriptor cache

I



Base Address

® 32 bit starting memory address of the segment Segment
Limit

® 20 bit length of the segment. (More specifically, the address
of the last accessible data, so the length is one more that the
value stored here.) How exactly this should be interpreted
depends on other bits of the segment descriptor.

G=Granularity
@ If clear, the limit is in units of bytes, with a maximum of 220

bytes. If set, the limit is in units of 4096-byte pages, for a
maximum of 232 bytes.

326



Base Address

* D=Default operand size

If clear, this is a 16-bit code segment; if set, this is a 32-bit segment

* L=Long-mode segment

If set, this is a 64-bit segment (and D must be zero), and code in this segment
uses the 64-bit instruction encoding

 AVL=Available

For software use, not used by hardware

 D=Default operand size

If clear, this is a 16-bit code segment; if set, this is a 32-bit segment
 L=Long-mode segment

If set, this is a 64-bit segment (and D must be zero), and code in this segment
uses the 64-bit instruction encoding

e AVL=Available

For software use, not used by hardware

327



P=Present

® If clear, a "segment not present” exception is generated on any
reference to this segment

DPL=Descriptor privilege level

® Privilege level required to access this descriptor
C=Conforming

® Code in this segment may be called from less-privileged levels
R=Readable

® If clear, the segment may be executed but not read from
A=Accessed

@ This bit is set to 1 by hardware when the segment is accessed,
and cleared by software

328



Memory access in GDT and LDT

I



Memory access in GDT and LDT

® The Global Descriptor Table or GDT is a data structure used
by Intel x86-

family processors starting with the 80286 in order to define the
characteristics of the various memory areas used during
program execution, including the base address, the size and

access privileges like execute- ability and write-ability.

330



Memory access in GDT and LDT

® There is also a Local Descriptor Table (LDT). While the LDT
contains memory segments which are private to a specific
program, the GDT contains global segments.

® The x86 processors have facilities for automatically switching
the current LDT on specific machine events, but no facilities for
automatically switching the GDT.

331



Memory access in GDT and LDT

Baseadgress (4-31) (GEB[ (A {Lme(16-19) (PIDPL|S] Type | Baseaddess(16-23

TTTTT T T T T T I T T TTTT T T TTTTITTTT]
e s (i 5 Seqnent it Bt 1

332



Memory access in GDT and LDT

el B one ﬂ oo




Memory access in GDT and LDT

Memory Accessing In GDT or LDT

- A segment cannot be accessed, if its descriptor does not exist in

either LDT or GDT.

- Set of descriptor (descriptor table) arranged in a proper sequence

describes the complete program.




Memory access in GDT and LDT

* The descriptor is a block of contiguous memory location

containing information of a segment, like

* Segment base address

Segment limit

Segment type

Privilege level — prevents unauthorized access

Segment availability in physicalmemory

Descriptor type

Segment use by another task

335



Memory access in GDT and LDT

® The Global Descriptor Table or GDT is a data structure used by

Intel x86-family processors starting with the 80286 in order to
define the characteristics of the various memory areas used
during program execution, including the base address, the size

and access privileges like execute- ability and write-ability.

336



Memory access in GDT and LDT

® Local Descriptor Table (LDT). While the LDT contains memory

segments which are private to a specific program, the GDT contains
global segments. The x86 processors have facilities for automatically
switching the current LDT on specific machine events, but no

facilities for automatically switching the GDT.

337



Memory access in GDT and LDT

Differentiate between GDT and LDT.

@ LDT is actually defined by a descriptor inside the GDT, while the GDT
is directly defined by a linear address.The lack of symmetry between
both tables is underlined by the fact that the current LDT can be
automatically switched on certain events, notably if TSS-based

multitasking is used, while this is not possible for the GDT.

® The LDT also cannot store certain privileged types of memory

segments.

338



Memory access in GDT and LDT

® The LDT is the sibling of the Global Descriptor Table (GDT)
and similarly defines up to 8191 memory segments
accessible to programs.

® LDT (and GDT) entries which point to identical memory
areas are called aliases.

® Instruction to load GDT is LGDT(Load Global Descriptor
Table) and instruction to load LDT is LLDT(Load Global

Descriptor Table). Both are privileged instructions.

339



Multitasking

I



Multitasking

Multitasking

®

multitasking is the concurrent execution of multiple tasks
(also known as processes) over a certain period of time.
New tasks can interrupt already started ones before they

finish, instead of waiting for them to end.

As a result, a computer executes segments of multiple tasks
in an interleaved manner, while the tasks share common
processing resources such as central processing unit (CPUs)

and main memory.

341



Multitasking

context switch

® Multitasking automatically interrupts the running program,
saving its state (partial results, memory contents and
computer register contents) and loading the saved state of

another program and transferring control to it.

@ This “context switch” may be initiated at fixed time intervals
(pre-emptive multitasking), or the running program may be
coded to signal to the supervisory software when it can be

interrupted (cooperative multitasking).

342



Multitasking

Features of Multitasking

© It allows more efficient use of the computer hardware; where a
program is waiting for some external event such as a user input
or an input/output transfer with a peripheral to complete, the

central processor can still be used with another program.

® In a time sharing system, multiple human operators use the
same processor as if it was dedicated to their use, while
behind the scenes the computer is serving many users by

multitasking their individual programs.

343



Multitasking

® In multiprogramming systems, a task runs until it must wait for an

external event or until the operating system's scheduler forcibly

swaps the running task out of the CPU.




Multitasking

Applications :

@ Real-time systems such as those designed to control

industrial robots, require timely processing;

® a single processor might be shared between calculations of

machine movement, communications, and user interface.

345



Multitasking

Advantages

® Often multitasking operating systems include measures to
change the priority of individual tasks, so that important jobs
receive more processor time than those considered less
significant.

@ Depending on the operating system, a task might be as large as
an entire application program, or might be made up of smaller

threads that carry out portions of the overall program.

346



Addressing modes for 80286

I



Addressing Modes

Multitasking

® multitasking is the concurrent execution of multiple tasks
(also known as processes) over a certain period of time.
New tasks can interrupt already started ones before they

finish, instead of waiting for them to end.

@ As a result, a computer executes segments of multiple tasks
in an interleaved manner, while the tasks share common
processing resources such as central processing unit (CPUs)

and main memory.

348



Addressing Modes

context switch

® Multitasking automatically interrupts the running program,
saving its state (partial results, memory contents and
computer register contents) and loading the saved state of

another program and transferring control to it.

® This “context switch" may be initiated at fixed time intervals
(pre-emptive multitasking), or the running program may be
coded to signal to the supervisory software when it can be

interrupted (cooperative multitasking).

349



Features of Multitasking

®

It allows more efficient use of the computer hardware; where a
program is waiting for some external event such as a user input
or an input/output transfer with a peripheral to complete, the

central processor can still be used with another program.

In a time sharing system, multiple human operators use the
same processor as if it was dedicated to their use, while
behind the scenes the computer is serving many users by

multitasking their individual programs.

350



® In multiprogramming systems, a task runs until it must wait
for an external event or until the  operating
system's scheduler forcibly swaps the running task out

of the CPU.




Addressing Modes

Applications :

® Real-time systems such as those designed to control

industrial robots, require timely processing;

® a single processor might be shared between calculations
of machine movement, communications, and user

interface.

352



Advantages

® Often multitasking operating systems include measures to
change the priority of individual tasks, so that important jobs
receive more processor time than those considered less
significant.

® Depending on the operating system, a task might be as large as
an entire application program, or might be made up of smaller

threads that carry out portions of the overall program.

353



Addressing Modes

Direct addressing mode:

® In the direct addressing mode, a 16-bit memory address
(offset)
directly specified in the instruction as a part of it.

Example: MOV AX, [5000H].

Register addressing mode:

® In the register addressing mode, the data is stored in a
register and it is referred using the particular register. All the
registers, except IP, may be used in this mode.

Example: MOV BX, AX

354



Addressing Modes

Register indirect addressing mode:

® Sometimes, the address of the memory location which
contains data or operands is determined in an indirect way,
using the offset registers. The mode of addressing is known

as register indirect mode.

@ In this addressing mode, the offset address of data is in
either BX or SI

or DI Register. The default segment is either DS or ES.
Example: MOV AX, [BX].

355



Addressing Modes

Indexed addressing mode:

@ In this addressing mode, offset of the operand is stored one
of the index registers. DS & ES are the default segments for
index registers SI & DI respectively.

Example: MOV AX, [SI]
® Here, data is available at an offset address stored in Sl in DS.

Register relative addressing mode:

® In this addressing mode, the data is available at an effective
address formed by adding an 8-bit or 16-bit displacement
with the content of any one of the register BX, BP, SI & Dl in
the default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

356



Addressing Modes

Based indexed addressing mode:

® The effective address of data is formed in this addressing
mode, by adding content of a base register (any one of BX or
BP) to the content of an index register (any one of Sl or DI).
The default segment register may be ES or DS.

Example: MOV AX, [BX][SI]

Relative based indexed:

® The effective address is formed by adding an 8 or 16-bit
displacement with the sum of contents of any of the base

registers (BX or BP) and any one of the index registers, in a
default segment.

Example: MOV AX, 50H [BX] [SI]

357



Addressing Modes

Addressing Modes for control transfer instructions:

® Intersegment
* Intersegment direct
* Intersegment indirect

® Intrasegment
* Intrasegment direct

* Intrasegment indirect




Addressing Modes

Intersegment direct:

® In this mode, the address to which the control is to be
transferred is in a different segment. This addressing mode
provides a means of branching from one code segment to
another code segment. Here, the CS and IP of the
destination address are specified directly in the instruction.

Example: JMP 5000H: 2000H;

® Jump to effective address 2000H in segment 5000H.

359



Addressing Modes

Intersegment indirect:

® In this mode, the address to which the control is to be
transferred lies in a different segment and it is passed to the
instruction indirectly, i.e. contents of a memory block
containing four bytes,
i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The
starting address of the memory block may be referred using
any of the addressing modes, except immediate mode.

Example: JMP [2000H].

Jump to an address in the other segment specified at
effective
address 2000H in DS.

360



Addressing Modes

Intrasegment direct mode:

® In this mode, the address to which the control is to be
transferred lies in the same segment in which the control
transfers instruction lies and appears directly in the instruction
as an immediate displacement value.

® In this addressing mode, the displacement is computed
relative to the content of the instruction pointer.

361



Addressing Modes

Intrasegment indirect mode:

®

In this mode, the displacement to which the control is to
be transferred is in the same segment in which the control
transfer instruction lies, but it is passed to the instruction
directly. Here, the branch address is found as the content of
a register or a memory location.

This addressing mode may be used in unconditional
branch instructions.

Example: JMP [BX]; Jump to effective address storedin
BX.

362



Flag Register of 80286

I



Flag Register of 80286

STATUS FLAGS
CARRY FLAG
PARTY FLAG

JXILIARY CARRY FLAG
ZERO FLAG

SIGN FLAG
OVERFLOW FLAG

Dis [ D DiaDle Ds |Ds D3 (D2 Di (Do
% % 7 %
NT |IOPL| OF DF | IF TF | SF | ZF / AF PF / CF
% % 7 7
L A & & CONTROLFLAGS
NESTED TASK ——— TRAP FLAG
O ~—1 INTERRUPT FLAG
PRIVILEGE LEVEL DIRECTION FLAG




Flag Register of 80286

IOPL — Input Output Privilege Level flags (bit D12 and D13

@ IOPL is used in protected mode operation to select the
privilege level for 1/0O devices. IF the current privilege level is
higher or more trusted than the IOPL, 1/0 executed without
hindrance.

@ If the IOPL is lover than the current privilege level, an
interrupt occurs, causing execution to suspend.Note that
IPOL 00 is the highest or more trusted; and IOPL 11 is the
lowest or least

365



Flag Register of 80286

® NT — Nested task flag (bit D14)

® When set, it indicates that one system task has invoked

another through a CALL instruction as opposed to a JMP.

® For multitasking this can be manipulated to our advantage




Flag Register of 80286

Machine Status Word Register
@ Consist of four flags

* PE,

° MP,

* EM and

* TS are for the most part used toindicate whether a

processor extension (co-processor) is present in the

system or not



Flag Register of 80286

® Word Machine Status...

Dy Dig D Dy Dsg

D

i

o
b

iy ||

RESERVED PROCESSOR EXTENSION EMULATOR il
MONITOR PROCESSOR EX/ENGION

PROTECTION ENABLE




Flag Register of 80286

® PE - Protection enable

Protection enable flag places the 80286 in protected mode,
if set. this can only be cleared by resetting the CPU.

® MP - Monitor processor extension

flag allows WAIT instruction to generate a processor
extension.

® Emulate processor extension flag,

if set, causes a processor extension absent exceptionand
permits the emulation of processor extension by CPU.

369



Architecture of 80386

I



Architecture of 80386

The Internal Architecture of 80386 is divided into 3sections.
e Central processing unit

e Memory management unit

e Bus interface unit

eCentral processing unit is further divided into Execution
unit and Instruction unit

eExecution unit has 8 General purpose and 8 Special purpose
registers which are either used for handling data or

calculating offset addresses.

371



Architecture of 80386

BUS CONTROL

DEDICATED ALU BUS

SO3E6 ARCHITECTURE

SEGMENTATION UNIT PAGING UNIT REQUEST
PRIORITIZER _’l' N:_C.:L'?';"
> SLepiry ADDER o ERROR, |
o . HUSY.
3 = o RESET,
DESCRIFTOR s z HLDA

g > AP TR PAGE CACHE 2 E
=2
= LIMIT AND CONTROL AND g =
= ATTRIBUTE ! N ATTRIBUTE

P PLA E ) LA BEOW - BEXW

= —— = = RS A

- o~ v & ADDRESS <
g § DRIVER
2 5= MAOH, DICH,
§ + é I\ PIPELINE! WIRE, LOCKH.
= - e BUS SIZE g ARSENA
gy | INEERINAR CONTROM / CONTROL. St READY#
. PROJECTION w
E TEST UNIT MUX /
TRANS -
RECIVERS D02y
- ~
P
- PERFECTCHER!
LiMIT
CHECKER
¥
BARREL INSTRUCTION
SHIFTER, :3 DECODE AND DECODER
ADDER STATUS SEQUENCING
LAGS
MULTIPLY/ PLAG CODE 16 BYTE
DIVIDE STREAM CODE
3-DECODED \‘/f:
m:tmob A INSTRUCTION ‘
REGISTER FILE v | QUEVE
.-\l.:(_l = INSTRUCTION
ALU  CONTROL CONTROL INSTRUCTION PREFETCHER
PREDECODE




* The Instruction unit decodes the opcode bytes received from the 16-
byte instruction code queue and arranges them in a 3- instruction
decoded instruction queue.

e After decoding them pass it to the control section for deriving the
necessary control signals. The barrel shifter increases the speed of all
shift and rotate operations.

e The multiply / divide logic implements the bit-shift-rotate algorithms
to complete the operations in minimum time.

eEven 32- bit multiplications can be executed within one microsecond by
the multiply / divide logic.

eThe Memory management unit consists of a Segmentation unit and
a Paging unit.

373



O
00
™
=
o0
(I
o
&
©
| &
)
2
T
=
o

~ A 3

40 804040 40 B0 40 00 404040 40 80

10 408080 40 4080 4040 4090 40 0 40
o

40 30 3040 40 40 80O 8O0 B0 4040 8O HO

i0 4040
40 4040
102080
0 <4040
02080
0 80ko
0 4040
<0 4040

40 4020 40 8020 30

METAL IID

folo}

80 60«0
6040 80
a0 0 0
20 90 €0
8040 §0
1020 80
o200
fo3odo

o kogo 0 30

80 4040 ¥0 #0 30 §030 f020 010 §0 8O

f momo&omomomomomo 1 30 B0g0 #0 §0

@ o

~ A =3

374



Pin diagram of 80386

|

il

= 80386 DX

375



Signal Descriptions of 80386

*CLK2 :The input pin provides the basic system clock timing for the
operation of 80386.

D0 — D31:These 32 lines act as bidirectional data bus during different
access cycles.

*A31 - A2: These are upper 30 bit of the 32- bit address bus.

*BEOQ toBE3 : The 32- bit data bus supported by 80386 and the memory
system of 80386 can be viewed as a 4- byte wide memory access
mechanism.

*ADS: The address status output pin indicates that the address bus and
bus cycle definition pins( W/R#, D/C#, M/IO#, BEO# to BE3# ) are
carrying the respective valid signals.

376



Signal Descriptions of 80386

*VCC: These are system power supply lines.

*VSS: These return lines for the power supply.

*BS16: The bus size — 16 input pin allows the interfacing of 16 bit devices
with the 32 bit wide 80386 data bus.

*HOLD: The bus hold input pin enables the other bus masters to gain
control of the system bus if it is asserted.

*HLDA: The bus hold acknowledge output indicates that a valid bus
hold

request has been received and the bus has been relinquished by the CPU.

377



Signal Descriptions of 80386

e ERROR: The error input pin indicates to the CPU that the
coprocessor has encountered an error while executing its
instruction.

* PEREQ: The processor extension request output signal indicates to

the CPU to fetch a data word for the coprocessor.

*INTR: This interrupt pin is a maskable interrupt, that can be

masked using the IF of the flag register.

e NMI: A valid request signal at the non-maskable interrupt request

input pin internally generates a non- maskable interrupt of type2.

378



Signal Descriptions of 80386

® READY: The ready signals indicates to the CPU that the previous
bus cycle has been terminated and the bus is ready for the next
cycle.

® BUSY: The busy input signal indicates to the CPU that the
coprocessor is busy with the allocated task.

® RESET: A high at this input pin suspends the current operation
and restart the execution from the starting location.

® N/ C: No connection pins are expected to be left open.

379



80386 Register Organization

I



80386 Register Organization

® The 80386 has eight 32 - bit general purpose registers which may
be used as either 8 bit or 16 bit registers.

® A 32 - bit register known as an extended register, is represented
by the register name with prefix E.

® The six segment registers available in 80386 are CS, SS, DS, ES, FS
and GS.

® The CS and SS are the code and the stack segment registers
respectively, while DS, ES, FS, GS are 4 data segment registers.

® A 16 bit instruction pointer IP is available along with 32 bit
counterpart EIP.

381



80386 Register Organization

GEMERAL DATA AND ADDRESS
K] | 15

BX

CX

BEE RS

SEGMENT SELECTOR

INSTREUCTION POINTER AND FLAG
K] | I 15

P

FLAG

EA
EB
EC
ED
ES

EB
ES

cSs

88

DS
ES
F5

G5 —

EI
EFLA

CODE
STACK SEGMENT

— DATA
SEGMENT

382



FLAGS

K] | 182 17 15 1413 12 11 10 9 8 T i 5 4 1 2 1 0
MWH

RESERVED

FOR JNTEL NT [IOPL| OF {r) IF%‘ SF ZF | 0

"
=
3
=

Ll

W

FLAG REGISTER OF 80386

® The Flag register of 80386 is a 32 bit register. Out of the 32 bits,

Intel has reserved bits D18 to D31, D5 and D3, while D1 is always
set at 1.

® Two extra new flags are added to the 80286 flag to derive the flag
register of 80386. They are VM and RF flags.

383



® VM - Virtual Mode Flag: If this flag is set, the 80386 enters the

virtual 8086 mode within the protection mode.

® RF- Resume Flag: This flag is used with the debug register

breakpoints.

® Segment Descriptor Registers: This registers are not available for
programmers, rather they are internally used to store the descriptor

information, like attributes, limit and base addresses of segments

384



® Control Registers: The 80386 has three 32 bit control registers
CRO, CR2 and CR3 to hold global machine status

® System Address Registers: Four special registers are defined to

refer to the descriptor tables supported by 80386.

® Debug and Test Registers: Intel has provide a set of 8 debug

registers for hardware debugging.

385



Memory access In protected mode




Protected Mode of 80386:

»All the capabilities of 80386 are available for utilization in its
protected mode of operation.

»The 80386 in protected mode support all the software written for
80286 and 8086 to be executed under the control of memory
management and protection abilities of 80386.

»The protected mode allows the use of additional instruction,

addressing
modes and capabilities of 80386.

387



4+ :-FITFOINTER

SELECTOR

OFFSET

471 31

11 f15

ACCE 5'5 RIGHT

LINTIT
F
BASE
SECGWMENT SCREIFTOR

MEMORY

FECMENT EASFE ADDRESS

SEGMENT
maT

ur
4 6B | cReMENT

Protected Mode Addressmg Without Pagmg Unit

388



Addressing in protected mode

»In this mode, the contents of segment registers are used as
selectors to address descriptors which contain the segment
limit, base address and access rights byte of the segment.

»The effective address (offset) is added with segment base
address to calculate linear address.

»This linear address is further used as physical address, if the
paging unit is disabled, otherwise the paging unit converts the
linear address into physical address.

389



Addressing in protected mode

> The paging unit is a memory management unit enabled only in
protected mode.

» The paging mechanism allows handling of large segments of memory
in terms of pages of 4Kbyte size.

» The paging unit operates under the control of segmentation unit.

» The paging unit if enabled converts linear addresses into physical
address, in protected mode.

390



Paging




Paging Unit:

»The paging unit of 80386 uses a two level table mechanism to
convert a linear address provided by segmentation unit into
physicaladdresses.

»The paging unit converts the complete map of a task into pages,
each of size 4K. The task is further handled in terms of its page,

rather than segments.

»The paging unit handles every task in terms of three components
namely page directory, page tables and page itself.

392



Paging Unit:

»The Paging unit organizes the physical memory in terms of
pages of 4kbytes size each.

»Paging unit works under the control of the
segmentation unit, i.e. each segment is further divided
into pages.

»The virtual memory is also organizes in terms of segments
and pages by the memory management unit.

»Paging unit converts linear addresses into physical
addresses.

393



Paging Unit

»The control and attribute PLA checks the privileges at the
page level.

»Each of the pages maintains the paging information of the
task.

»The limit and attribute PLA checks segment limits and
attributes at segment level to avoid invalid accesses to code
and data in the memory segments.

394



80486: Only the technical
features

I



Introduction:
®

One of the most obvious feature included in a 80486 is a
built in math coprocessor. This coprocessor is essentially the
same as the 80387 processor used with a 80386, but being
integrated on the chip allows it to execute math instructions
about three times as fast as a 80386/387 combination.

80486 is an 8Kbyte code and data cache.

To make room for the additional signals, the 80486 is
packaged in a 168 pin, pin grid array package instead of the
132 pin PGA used for the 80386.

396



® Operates on 25MHz, 33 MHz, 50 MHz, 60 MHz, 66 MHz or
100MHz.

® It consists of parity generator/checker unit in order to
implement

parity detection and generation for memory reads and writes.

® Supports burst memory reads and writes to implement fast
cache

fills.

® Three mode of operation: real, protected and virtual 8086
mode.

® The 80486 microprocessor is a highly integrated
device, containing well over 1.2 million transistors.

397



The address bus is unidirectional because the address
information is always given by the Micro Processor to
address a memory location of an input / output devices.

The data bus is Bi-directional because the same bus is used
for transfer of data between Micro Processor and memory
or input / output devices in both the direction.

It has limitations on the size of data. Most Microprocessor
does not
support floating-point operations.

Microprocessor contain ROM chip because it contain
instructions to
execute data.

398



Primary devices are: RAM (Read / Write memory, High
Speed, Volatile Memory) / ROM (Read only memory, Low
Speed, Non Voliate Memory)

Secondary devices are: Floppy disc / Hard disk

Compiler:

Compiler is used to translate the high-level language program
into machine code at a time. It doesn’t require special
instruction to store in a memory, it stores automatically. The
Execution time is less compared to Interpreter

399



