
1

B.TECH VI SEM
IARE – R16

ELECTRONICS AND COMMUNICATION ENGINEERING

JAVA PROGRAMMING

Prepared by,
Mr. G Chandra Sekhar
Assistant Professor

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad – 500 043

2

UNIT - I

OOP concepts: Classes and objects, data abstraction,
encapsulation, inheritance, benefits of inheritance, polymorphism,
constructors, methods, data types, variables, constants, scope and
life time of variables, operators, operator hierarchy, expressions,
type conversion and casting, enumerated types, control flow
statements, arrays, parameter passing.

Need for OOP Paradigm

3

 OOP is an approach to program organization and development, which
attempts to eliminate some of the drawbacks of conventional programming
methods by incorporating the best of structured programming features with
several new concepts.

 OOP allows us to decompose a problem into number of entities called
objects and then build data and methods (functions) around these entities.

 The data of an object can be accessed only by the methods associated with
the object.

4

Object-oriented programming (OOP) is a programming paradigm that uses
“Objects “and their interactions to design applications.

It simplifies the software development and maintenance by providing some
concepts:

 Object

 Class

 Data Abstraction & Encapsulation

 Inheritance

 Polymorphism

 Dynamic Binding

 Message Passing

OBJECT

5

 Objects are the basic run time entities in an object-oriented system. They
may represent a person, a place, a bank account, a table of data or any item
that the program has to handle.

CLASS

6

 The entire set of data and code of an object can be made of a user defined data
type with the help of a class.

 In fact, Objects are variables of the type class. Once a class has been defined,
we can create any number of objects belonging to that class.

 Classes are data types based on which objects are created. Objects with similar
properties and methods are grouped together to form a Class. Thus a Class
represents a set of individual objects.

 Characteristics of an object are represented in a class as Properties. The actions
that can be performed by objects become functions of the class and is referred
to as Methods.

 A class is thus a collection of objects of similar type . for example: mango,
apple, and orange are members of the class fruit . ex: fruit mango; will create
an object mango belonging to the class fruit.

Example for class

7

class Human

{

private: EyeColor IColor;

NAME personname;

public:

void SetName(NAME anyName);

void SetIColor(EyeColor eyecolor);

}

Data abstraction

8

 Abstraction refers to the act of representing essential features without

including the background details or explanations. since the classes use the

concept of data abstraction ,they are known as abstraction data type(ADT).

 For example, a class Car would be made up of an Engine, Gearbox, Steering

objects, and many more components. To build the Car class, one does not need

to know how the different components work internally, but only know how to

interface with them, i.e., send messages to them, receive messages from them,

and perhaps make the different objects composing the class interact with each

other.

An example of Data abstraction

9

 Humans manage complexity through abstraction. When you drive your car you

do not have to be concerned with the exact internal working of your car(unless

you are a mechanic).

 What you are concerned with is interacting with your car via its interfaces like

steering wheel, brake pedal, accelerator pedal etc. Various manufacturers of

car has different implementation of car working but its basic interface has not

changed (i.e. you still use steering wheel, brake pedal, accelerator pedal etc to

interact with your car). Hence the knowledge you have of your car is abstract.

Some of the Object-Oriented Paradigm are:

10

 Emphasis is on data rather than procedure.

 Programs are divided into objects.

 Data Structures are designed such that they Characterize the objects.

 Methods that operate on the data of an object are tied together in the data

structure.

 Data is hidden and can not be accessed by external functions.

 Objects may communicate with each other through methods.

Encapsulation

11

Encapsulation in Java is a mechanism of wrapping the data (variables) and code
acting on the data (methods) together as a single unit. In encapsulation, the
variables of a class will be hidden from other classes, and can be accessed only
through the methods of their current class. Therefore, it is also known as data
hiding.

To achieve encapsulation in Java −

• Declare the variables of a class as private.

• Provide public setter and getter methods to modify and view the variables
values.

Benefits of Encapsulation

• The fields of a class can be made read-only or write-only.

• A class can have total control over what is stored in its fields.

Inheritance

12

Inheritance in Java is a mechanism in which one object acquires all the properties
and behaviors of a parent object. It is an important part of OOPs (Object Oriented
programming system).
The idea behind inheritance in Java is that you can create new classes that are built
upon existing classes. When you inherit from an existing class, you can reuse
methods and fields of the parent class. Moreover, you can add new methods and
fields in your current class also.
Inheritance represents the IS-A relationship which is also known as a parent-child
relations

Why use inheritance in java
For Method Overriding (so runtime polymorphism can be achieved).
For Co

Inheritance

13

Inheritance in Java is a mechanism in which one object acquires all the properties
and behaviors of a parent object. It is an important part of OOPs (Object Oriented
programming system).
The idea behind inheritance in Java is that you can create new classes that are built
upon existing classes. When you inherit from an existing class, you can reuse
methods and fields of the parent class. Moreover, you can add new methods and
fields in your current class also.
Inheritance represents the IS-A relationship which is also known as a parent-child
relations

Why use inheritance in java
For Method Overriding (so runtime polymorphism can be achieved).
For Co

Inheritance

14

Terms used in Inheritance

• Class: A class is a group of objects which have common properties. It is a
template or blueprint from which objects are created.

• Sub Class/Child Class: Subclass is a class which inherits the other class. It is also
called a derived class, extended class, or child class.

• Super Class/Parent Class: Superclass is the class from where a subclass inherits
the features. It is also called a base class or a parent class.

• Reusability: As the name specifies, reusability is a mechanism which facilitates
you to reuse the fields and methods of the existing class when you create a new
class. You can use the same fields and methods already defined in the previous
class.de Reusability.hip.

Benefit of using inheritance:

• A code can be used again and again

• Inheritance in Java enhances the properties of the class, which means that

property of the parent class will automatically be inherited by the base class

• It can define more specialized classes by adding new details.

Polymorphism

15

Polymorphism in Java is a concept by which we can perform a single action in
different ways. Polymorphism is derived from 2 Greek words: poly and morphs.
The word "poly" means many and "morphs" means forms. So polymorphism
means many forms.
There are two types of polymorphism in Java: compile-time polymorphism and
runtime polymorphism. We can perform polymorphism in java by method
overloading and method overriding.
If you overload a static method in Java, it is the example of compile time
polymorphism. Here, we will focus on runtime polymorphism in java.
Runtime Polymorphism in Java.

Runtime polymorphism or Dynamic Method Dispatch is a process in which a call
to an overridden method is resolved at runtime rather than compile-time.
In this process, an overridden method is called through the reference variable of a
superclass. The determination of the method to be called is based on the object
being referred to by the reference variable.
Let's first understand the upcasting before Runtime Polymorphism.

16

Constructor

17

• A constructor initializes the instance variables of an object.

• It is called immediately after the object is created but before the new operator
completes.

1) it is syntactically similar to a method:

2) it has the same name as the name of its class

3) it is written without return type; the default return type of a class

• constructor is the same class When the class has no constructor, the default
constructor automatically initializes all its instance variables with zero.

class Box {

double width;

double height;

double depth;

Box() {

System.out.println("Constructing Box");

width = 10; height = 10; depth = 10;

}

double volume() {

return width * height * depth;

}}

Parameterized Constructor

18

class Box {
double width;
double height;
double depth;
Box(double w, double h, double d) {
width = w; height = h; depth = d;
}
double volume()
{ return width * height * depth;
}
}

Parameterized Constructor – A constructor is called Parameterized
Constructor when it accepts a specific number of parameters. To initialize data
members of a class with distinct values. ... With a parameterized constructor for
a class, one must provide initial values as arguments, otherwise, the compiler
reports an error.

Methods

19

 General form of a method definition:
type name(parameter-list) {

… return value;
…

}
 Components:

1) type - type of values returned by the method. If a method does not return
any value, its return type must be void.
2) name is the name of the method
3) parameter-list is a sequence of type-identifier lists separated by commas
4) return value indicates what value is returned by the method.

Classes declare methods to hide their internal data structures, as well as for their
own internal use: Within a class, we can refer directly to its member variables:

class Box {
double width, height, depth;
void volume() {
System.out.print("Volume is ");
System.out.println(width * height * depth);
}}

Parameterized Methods

20

Parameters increase generality and applicability of a method:

1) method without parameters

int square() { return 10*10; }

2) method with parameters

int square(int i) { return i*i; }

• Parameter: a variable receiving value at the time the method is invoked.

• Argument: a value passed to the method when it is invoked.

Access Control: Data Hiding and Encapsulation

• Java provides control over the visibility of variables and methods.

• Encapsulation, safely sealing data within the capsule of the class Prevents
programmers from relying on details of class implementation, so you can
update without worry

• Helps in protecting against accidental or wrong usage.

• Keeps code elegant and clean (easier to maintain)

Access Modifiers: Public, Private, Protected

21

• Public: keyword applied to a class, makes it available/visible everywhere.
Applied to a method or variable, completely visible.

• Default(No visibility modifier is specified): it behaves like public in its package
and private in other packages.

• Default Public keyword applied to a class, makes it available/visible everywhere.
Applied to a method or variable, completely visible.

• Private fields or methods for a class only visible within that class. Private
members are not visible within subclasses, and are not inherited.

• Protected members of a class are visible within the class, subclasses and also
within all classes that are in the same package as that class.

Classes

22

Class is blue print or an idea of an Object
From One class any number of Instances can be created
It is an encapsulation of attributes and methods

class <ClassName>

{

attributes/variables;

Constructors();

methods();

}

FIGURE

CIRCLE

RECTANGLE
SQUARE

Ob1

Ob2

Ob3

class

Instance

23

 Instance is an Object of a class which is an entity with its own attribute values
and methods.

Creating an Instance

ClassName refVariable;

refVariable = new Constructor();

or

ClassName refVariable = new Constructor();

Java Class Hierarchy

24

In Java, class “Object” is the base class to all other classes

 If we do not explicitly say extends in a new class definition, it
implicitly extends Object

 The tree of classes that extend from Object and all of its subclasses
are is called the class hierarchy

 All classes eventually lead back up to Object

 This will enable consistent access of objects of different classes.

Method Binding

25

• Objects are used to call methods.

• MethodBinding is an object that can be used to call an arbitrary public

method, on an instance that is acquired by evaluating the leading portion

of a method binding expression via a value binding.

• It is legal for a class to have two or more methods with the same name.

• Java has to be able to uniquely associate the invocation of a method with

its definition relying on the number and types of arguments.

• Therefore the same-named methods must be distinguished:

1) by the number of arguments, or

2) by the types of arguments

• Overloading and inheritance are two ways to implement polymorphism.

History of Java

26

Computer language innovation and development occurs for two
fundamental reasons:

1) to adapt to changing environments and uses

2) to implement improvements in the art of programming

 The development of Java was driven by both in equal measures.

 Many Java features are inherited from the earlier languages:

B  C  C++  Java

Before Java: C

 Designed by Dennis Ritchie in 1970s.
 Before C: BASIC, COBOL, FORTRAN, PASCAL
 C- structured, efficient, high-level language that could replace assembly

code when creating systems programs.
 Designed, implemented and tested by programmers.

Before Java: C++

27

 Designed by Bjarne Stroustrup in 1979.

 Response to the increased complexity of programs and respective
improvements in the programming paradigms and methods:

1) assembler languages

2) high-level languages

3) structured programming

4) object-oriented programming (OOP)

 OOP – methodology that helps organize complex programs through the
use of inheritance, encapsulation and polymorphism.

 C++ extends C by adding object-oriented features.

Java: History

28

• In 1990, Sun Microsystems started a project called Green.

• Objective: to develop software for consumer electronics.

• Project was assigned to James Gosling, a veteran of classic network
software design. Others included Patrick Naughton, ChrisWarth, Ed
Frank, and Mike Sheridan.

• The team started writing programs in C++ for embedding into

– toasters

– washing machines

– VCR’s

• Aim was to make these appliances more “intelligent”.

Java: History (contd.)

29

 C++ is powerful, but also dangerous. The power and popularity of C derived
from the extensive use of pointers. However, any incorrect use of pointers
can cause memory leaks, leading the program to crash.

 In a complex program, such memory leaks are often hard to detect.
 Robustness is essential. Users have come to expect that Windows may crash

or that a program running under Windows may crash. (“This program has
performed an illegal operation and will be shut down”)

 However, users do not expect toasters to crash, or washing machines to
crash.

 A design for consumer electronics has to be robust.
 Replacing pointers by references, and automating memory management

was the proposed solution.

Java: History (contd.)

30

• Hence, the team built a new programming language called Oak, which
avoided potentially dangerous constructs in C++, such as pointers, pointer
arithmetic, operator overloading etc.

• Introduced automatic memory management, freeing the programmer to
concentrate on other things.

• Architecture neutrality (Platform independence)
• Many different CPU’s are used as controllers. Hardware chips are evolving

rapidly. As better chips become available, older chips become obsolete and
their production is stopped. Manufacturers of toasters and washing
machines would like to use the chips available off the shelf, and would not
like to reinvest in compiler development every two-three years.

• So, the software and programming language had to be architecture neutral.

Java: History (contd.)

31

• It was soon realized that these design goals of consumer electronics
perfectly suited an ideal programming language for the Internet and
WWW, which should be:

 object-oriented (& support GUI)
– robust
– architecture neutral

• Internet programming presented a BIG business opportunity. Much bigger
than programming for consumer electronics.

• Java was “re-targeted” for the Internet
• The team was expanded to include Bill Joy (developer of Unix), Arthur van

Hoff, Jonathan Payne, Frank Yellin, Tim Lindholm etc.
• In 1994, an early web browser called WebRunner was written in Oak.

WebRunner was later renamed HotJava.
• In 1995, Oak was renamed Java.
• A common story is that the name Java relates to the place from where the

development team got its coffee. The name Java survived the trade mark
search.

Java: History

32

 Designed by James Gosling, Patrick Naughton, Chris Warth, Ed Frank and
Mike Sheridan at Sun Microsystems in 1991.

 The original motivation is not Internet: platform-independent software
embedded in consumer electronics devices.

 With Internet, the urgent need appeared to break the fortified positions of
Intel, Macintosh and Unix programmer communities.

 Java as an “Internet version of C++”? No.
 Java was not designed to replace C++, but to solve a different set of

problems.

The Java Buzzwords

33

• The key considerations were summed up by the Java team in the following
list of buzzwords:

 Simple
 Secure
 Portable
 Object-oriented
 Robust
Multithreaded
 Architecture-neutral
 Interpreted
 High performance
 Distributed
 Dynamic

The Java Buzzwords

34

• Simple – Java is designed to be easy for the professional programmer to
learn and use.

• Object-oriented: a clean, usable, pragmatic approach to objects, not
restricted by the need for compatibility with other languages.

• Robust: restricts the programmer to find the mistakes early, performs
compile-time (strong typing) and run-time (exception-handling) checks,
manages memory automatically.

• Multithreaded: supports multi-threaded programming for writing
program that perform concurrent computations.

• Architecture-neutral: Java Virtual Machine provides a platform
independent environment for the execution of Java byte code

• Interpreted and high-performance: Java programs are compiled into an
intermediate representation – byte code:

a) can be later interpreted by any JVM

b) can be also translated into the native machine code for efficiency.

The Java Buzzwords

35

• Distributed: Java handles TCP/IP protocols, accessing a resource through
its URL much like accessing a local file.

• Dynamic: substantial amounts of run-time type information to verify and
resolve access to objects at run-time.

• Secure: programs are confined to the Java execution environment and
cannot access other parts of the computer.

• Portability: Many types of computers and operating systems are in use
throughout the world—and many are connected to the Internet.

• For programs to be dynamically downloaded to all the various types of
platforms connected to the Internet, some means of generating portable
executable code is needed. The same mechanism that helps ensure
security also helps create portability.

• Indeed, Java's solution to these two problems is both elegant and
efficient.

Comments

36

• The java comments are statements that are not executed by the compiler and
interpreter. The comments can be used to provide information or explanation
about the variable, method, class or any statement. It can also be used to hide
program code for specific time.

Types of Java Comments

• There are 3 types of comments in java.

• Single Line Comment

• Multi Line Comment

• Documentation Comment

Comments

37

1) Java Single Line Comment

The single line comment is used to comment only one line.

• Syntax:

• //This is single line comment

Example:

public class CommentExample1 {

public static void main(String[] args) {

int i=10;//Here, i is a variable

System.out.println(i);

}

}

Output:

10

Comments

38

2) Java Multi Line Comment

The multi line comment is used to comment multiple lines of code.

Syntax:

/*

This

is

multi line

comment

*/

Example:

public class CommentExample2 {

public static void main(String[] args) {

/* Let's declare and

print variable in java. */

int i=10;

System.out.println(i);

} } Output: 10

Comments

39

3) Java Documentation Comment

The documentation comment is used to create documentation API. To
create documentation API, you need to use javadoc tool.

Syntax:

/**

This

is

documentation

comment

*/

Data Types

40

• Java defines eight simple types:

1)byte – 8-bit integer type

2)short – 16-bit integer type

3)int – 32-bit integer type

4)long – 64-bit integer type

5)float – 32-bit floating-point type

6)double – 64-bit floating-point type

7)char – symbols in a character set

8)boolean – logical values true and false

Data Types

41

• byte: 8-bit integer type.

Range: -128 to 127.

Example: byte b = -15;

Usage: particularly when working with data streams.

• short: 16-bit integer type.

Range: -32768 to 32767.

Example: short c = 1000;

Usage: probably the least used simple type.

• int: 32-bit integer type.

Range: -2147483648 to 2147483647.

Example: int b = -50000;

Usage:

1) Most common integer type.

2) Typically used to control loops and to index arrays.

3) Expressions involving the byte, short and int values are promoted to int
before calculation.

Data Types

42

 long: 64-bit integer type.
Range: -9223372036854775808 to 9223372036854775807.
Example: long l = 10000000000000000;
Usage: 1) useful when int type is not large enough to hold the desired value

 float: 32-bit floating-point number.
Range: 1.4e-045 to 3.4e+038.
Example: float f = 1.5;
Usage:
1) fractional part is needed 2) large degree of precision is not required

• double: 64-bit floating-point number.

Range: 4.9e-324 to 1.8e+308.

Example: double pi = 3.1416;

Usage:

1) accuracy over many iterative calculations

2) manipulation of large-valued numbers

Data Types

43

char: 16-bit data type used to store characters.

Range: 0 to 65536.

Example: char c = ‘a’;

Usage:

1) Represents both ASCII and Unicode character sets; Unicode defines a

character set with characters found in (almost) all human languages.

2) Not the same as in C/C++ where char is 8-bit and represents ASCII only.

boolean: Two-valued type of logical values.
Range: values true and false.
Example: boolean b = (1<2);
Usage:
1) returned by relational operators, such as 1<2
2) required by branching expressions such as if or for

Variables

44

• declaration – how to assign a type to a variable

• initialization – how to give an initial value to a variable

• scope – how the variable is visible to other parts of the program

• lifetime – how the variable is created, used and destroyed

• type conversion – how Java handles automatic type conversion

• type casting – how the type of a variable can be narrowed down

• Java uses variables to store data.

• To allocate memory space for a variable JVM requires:

1) to specify the data type of the variable

2) to associate an identifier with the variable

3) optionally, the variable may be assigned an initial value

• All done as part of variable declaration.

Variable Declaration

45

• datatype identifier [=value];

• datatype must be

– A simple datatype

– User defined datatype (class type)

• Identifier is a recognizable name confirm to identifier rules

• Value is an optional initial value.

We can declare several variables at the same time:

type identifier *=value+*, identifier *=value+ …+;

Examples:

int a, b, c;

int d = 3, e, f = 5;

byte g = 22;

double pi = 3.14159;

char ch = 'x';

Variable Scope

46

• Scope determines the visibility of program elements with respect to other
program elements.

• In Java, scope is defined separately for classes and methods:
1) variables defined by a class have a global scope
2) variables defined by a method have a local scope
A scope is defined by a block:
{
…
}
A variable declared inside the scope is not visible outside:
{
int n;
}
n = 1;// this is illegal

Variable Lifetime

47

• Variables are created when their scope is entered by control flow and
destroyed when their scope is left:

• A variable declared in a method will not hold its value between different
invocations of this method.

• A variable declared in a block looses its value when the block is left.

• Initialized in a block, a variable will be re-initialized with every re-entry.
Variables lifetime is confined to its scope!

Operators Types

48

• Java operators are used to build value expressions.

• Java provides a rich set of operators:

1) assignment

2) arithmetic

3) relational

4) logical

5) bitwise

Arithmetic assignments

49

• Arithmetic assignments

+= v += expr; v = v + expr ;

-= v -=expr; v = v - expr ;

*= v *= expr; v = v * expr ;

/= v /= expr; v = v / expr ;

%= v %= expr; v = v % expr ;

Basic Arithmetic Operators

50

+ op1 + op2 ADD

- op1 - op2 SUBSTRACT

* op1 * op2 MULTIPLY

/ op1 / op2 DIVISION

% op1 % op2 REMAINDER

Relational operator

51

== Equals to Apply to any type

!= Not equals to Apply to any type

> Greater than Apply to numerical type

< Less than Apply to numerical type

>= Greater than or equal Apply to numerical type

<= Less than or equal Apply to numerical type

Logical operators

52

& op1 & op2 Logical AND

| op1 | op2 Logical OR

&& op1 && op2 Short-circuit AND

|| op1 || op2 Short-circuit OR

! ! op Logical NOT

^ op1 ^ op2 Logical XOR

Bitwise operators

53

~ ~op Inverts all bits

& op1 & op2 Produces 1 bit if both operands are 1

| op1 |op2 Produces 1 bit if either operand is 1

^ op1 ^ op2 Produces 1 bit if exactly one operand is 1

>> op1 >> op2 Shifts all bits in op1 right by the value of op2

<< op1 << op2 Shifts all bits in op1 left by the value of op2

Operator Hierarchy

54

Operators Precedence

postfix increment and decrement ++ --

prefix increment and decrement, and unary ++ -- + - ~ !

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>=>>>=

Ternary Operator

55

• Java includes a special ternary (three-way) operator that can replace
certain types of if-then-else statements.

• This operator is the ?, and it works in Java much like it does in C, C++,
and C#. It can seem somewhat confusing at first, but the ? can be
used very effectively once mastered.

The ? has this general form:
• expression1 ? expression2 : expression3
• Here, expression1 can be any expression that evaluates to a boolean

value. If expression1 is true, then expression2 is evaluated;
otherwise, expression3 is evaluated.

• The result of the ? operation is that of the expression evaluated.
Both expression2 and expression3 are required to return the same
type, which can’t be void.

Expressions

56

• An expression is a construct made up of variables, operators, and method
invocations, which are constructed according to the syntax of the language,
that evaluates to a single value.

• Examples of expressions are in bold below:
int number = 0; anArray[0] = 100;
System.out.println ("Element 1 at index 0: " + anArray[0]);
int result = 1 + 2; // result is now 3 if(value1 == value2)
System.out.println("value1 == value2");

 The data type of the value returned by an expression depends on the elements
used in the expression.

 The expression number = 0 returns an int because the assignment operator
returns a value of the same data type as its left-hand operand; in this case,
number is an int.

 As you can see from the other expressions, an expression can return other
types of values as well, such as boolean or String. The Java programming
language allows you to construct compound expressions from various smaller
expressions as long as the data type required by one part of the expression
matches the data type of the other.

 Here's an example of a compound expression: 1 * 2 * 3

Type Conversion

57

• Size Direction of Data Type

– Widening Type Conversion (Casting down)

• Smaller Data Type Larger Data Type

– Narrowing Type Conversion (Casting up)

• Larger Data Type Smaller Data Type

• Conversion done in two ways

– Implicit type conversion

• Carried out by compiler automatically

– Explicit type conversion

• Carried out by programmer using casting

Type Conversion

58

• Widening Type Convertion

– Implicit conversion by compiler automatically

byte -> short, int, long, float, double

short -> int, long, float, double

char -> int, long, float, double

int -> long, float, double

long -> float, double

float -> double

Type Conversion

59

• Narrowing Type Conversion

– Programmer should describe the conversion explicitly

byte -> char

short -> byte, char

char -> byte, short

int -> byte, short, char

long -> byte, short, char, int

float -> byte, short, char, int, long

double -> byte, short, char, int, long, float

Type Casting

60

• byte and short are always promoted to int

• if one operand is long, the whole expression is promoted to long

• if one operand is float, the entire expression is promoted to float

• if any operand is double, the result is double

• General form: (targetType) value
• Examples:
• 1) integer value will be reduced module bytes range:

int i;
byte b = (byte) i;

• 2) floating-point value will be truncated to integer value:
float f;
int i = (int) f;

Type Casting

61

• byte and short are always promoted to int

• if one operand is long, the whole expression is promoted to long

• if one operand is float, the entire expression is promoted to float

• if any operand is double, the result is double

• General form: (targetType) value
• Examples:
• 1) integer value will be reduced module bytes range:

int i;
byte b = (byte) i;

• 2) floating-point value will be truncated to integer value:
float f;
int i = (int) f;

Enumerated types

62

The Enum in Java is a data type which contains a fixed set of constants.

It can be used for days of the week (SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, and SATURDAY) , directions (NORTH, SOUTH, EAST, and
WEST), season (SPRING, SUMMER, WINTER, and AUTUMN or FALL), colors (RED,
YELLOW, BLUE, GREEN, WHITE, and BLACK) etc.

According to the Java naming conventions, we should have all constants in
capital letters. So, we have enum constants in capital letters.

Points to remember for Java Enum

•Enum improves type safety
•Enum can be easily used in switch
•Enum can be traversed
•Enum can have fields, constructors and methods
•Enum may implement many interfaces but cannot extend any class because it

internally extends Enum class

Enumerated types

63

Simple Example of Java Enum

1.class EnumExample1{
2.//defining the enum inside the class
3.public enum Season { WINTER, SPRING, SUMMER, FALL }
4.//main method
5.public static void main(String[] args) {
6.//traversing the enum
7.for (Season s : Season.values())
8.System.out.println(s);
9.}}

Output:
WINTER
SPRING
SUMMER
FALL

Control Statements

64

• Java control statements cause the flow of execution to advance and branch
based on the changes to the state of the program.

• Control statements are divided into three groups:

1. selection statements allow the program to choose different parts of the
execution based on the outcome of an expression

2. iteration statements enable program execution to repeat one or more
statements

3. jump statements enable your program to execute in a non-linear fashion

Selection Statements
Java selection statements allow to control the flow of program’s execution based
upon conditions known only during run-time.
Java provides four selection statements:

1) if
2) if-else
3) if-else-if
4) switch

Control Statements

65

Iteration Statements

• Java iteration statements enable repeated execution of part of a program until
a certain termination condition becomes true.

• Java provides three iteration statements:

1) while

2) do-while

3) for

Jump Statements
Java jump statements enable transfer of control to other parts of program.
Java provides three jump statements:

1) break
2) continue
3) return

In addition, Java supports exception handling that can also alter the control flow
of a program.

Simple Java Program

66

A class to display a simple message:

class MyProgram

{

public static void main(String[] args)

{

System.out.println(“First Java program.");

}

}

Arrays

67

• An array is a group of liked-typed variables referred to by a common

name, with individual variables accessed by their index.

• Arrays are:

1) declared

2) created

3) initialized

4) used

• Also, arrays can have one or several dimensions.

Array Declaration
Array declaration involves:
1) declaring an array identifier
2) declaring the number of dimensions
3) declaring the data type of the array elements
Two styles of array declaration:

type array-variable[];
or

type [] array-variable;

Array Creation

68

• After declaration, no array actually exists.
• In order to create an array, we use the new operator:

type array-variable[];
array-variable = new type[size];

• This creates a new array to hold size elements of type type, which reference
will be kept in the variable array-variable.

Array Indexing
• Later we can refer to the elements of this array through their indexes:
• array-variable[index]
• The array index always starts with zero!
• The Java run-time system makes sure that all array indexes are in the correct

range, otherwise raises a run-time error.

Array Initialization

69

• Arrays can be initialized when they are declared:

• int monthDays[] = {31,28,31,30,31,30,31,31,30,31,30,31};

Note:

1) there is no need to use the new operator

2) the array is created large enough to hold all specified elements

Multidimensional Arrays

Multidimensional arrays are arrays of arrays:

1) declaration: int array[][];

2) creation: int array = new int[2][3];

3) initialization: int array[][] = { {1, 2, 3}, {4, 5, 6} };

70

Advantages of Arrays:

• Code Optimization: It makes the code optimized, we can retrieve or sort the
data efficiently.

• Random access: We can get any data located at an index position.

Disadvantages

• Size Limit: We can store only the fixed size of elements in the array. It doesn't
grow its size at runtime. To solve this problem, collection framework is used
in Java which grows automatically.

SINGLE DIMENSIONAL ARRAY

71

1.//Java Program to illustrate how to declare, instantiate, initialize
2.//and traverse the Java array.
3.class Testarray{
4.public static void main(String args[]){
5.int a[]=new int[5];//declaration and instantiation
6.a[0]=10;//initialization
7.a[1]=20;
8.a[2]=70;
9.a[3]=40;
10.a[4]=50;
11.//traversing array
12.for(int i=0;i<a.length;i++)//length is the property of array
13.System.out.println(a[i]);
14.}}

MULTI DIMENSIONAL ARRAY

72

1.//Java Program to illustrate the use of multidimensional array
2.class Testarray3{
3.public static void main(String args[]){
4.//declaring and initializing 2D array
5.int arr[][]={{1,2,3},{2,4,5},{4,4,5}};
6.//printing 2D array
7.for(int i=0;i<3;i++){
8. for(int j=0;j<3;j++){
9. System.out.print(arr[i][j]+" ");
10. }
11. System.out.println();
12.}
13.}}

PARAMETER PASSING

73

• There are different ways in which parameter data can be passed into and out
of methods and functions.

• Let us assume that a function B() is called from another function A(). In this
case A is called the “caller function” and B is called the “called function or
callee function”.

• Also, the arguments which A sends to B are called actual arguments and the
parameters of B are called formal arguments.

Important methods of Parameter Passing
1. Pass By Value: Changes made to formal parameter do not get transmitted

back to the caller. Any modifications to the formal parameter variable
inside the called function or method affect only the separate storage
location and will not be reflected in the actual parameter in the calling
environment. This method is also called as call by value. Java infact it is
strictly call by value.

https://www.geeksforgeeks.org/methods-in-java/
https://www.geeksforgeeks.org/methods-in-java/
https://www.geeksforgeeks.org/methods-in-java/
https://www.geeksforgeeks.org/methods-in-java/
https://www.geeksforgeeks.org/methods-in-java/

PARAMETER PASSING

74

Example of call by value in java
1.class Operation{
2. int data=50;
3.
4. void change(int data){
5. data=data+100;//changes will be in the local variable only
6. }
7.
8. public static void main(String args[]){
9. Operation op=new Operation();
10.
11. System.out.println("before change "+op.data);
12. op.change(500);
13. System.out.println("after change "+op.data);
14.
15. }
16.} Output: before change 50

after change 50

PARAMETER PASSING

75

2. Pass By Value
• In case of call by reference original value is changed if we made changes in

the called method.
• If we pass object in place of any primitive value, original value will be

changed. In this example we are passing object as a value.

Let's take a simple example:
class Operation2{
int data=50;
void change(Operation2 op){

op.data=op.data+100;//changes will be in the instance variable
}
public static void main(String args[]){
Operation2 op=new Operation2();
System.out.println("before change "+op.data);

op.change(op);//passing object
System.out.println("after change "+op.data);
}

} Output: before change 50 after change 150

76

UNIT – II

Inheritance: Inheritance hierarchies, super and
subclasses, member access rules, Polymorphism:
Dynamic binding, method overriding, abstract
classes and methods.

Inheritance

77

• Methods allows a software developer to reuse a sequence of statements
• Inheritance allows a software developer to reuse classes by deriving a new

class from an existing one
• The existing class is called the parent class, or superclass, or base class
• The derived class is called the child class or subclass.
• As the name implies, the child inherits characteristics of the parent
• That is, the child class inherits the methods and data defined for the parent

class.

• Inheritance relationships are often shown graphically in a class diagram,
with the arrow pointing to the parent class

Animal
weight : int

+ getWeight() : int

Bird

+ fly() : void

Inheritance should
create an is-a

relationship, meaning
the child is a more

specific version of the
parent

Deriving Subclasses

78

• In Java, we use the reserved word extends to establish an inheritance
relationship

class Animal
{
// class contents
int weight;

public void int getWeight() ,…-
}

class Bird extends Animal
{

// class contents
public void fly() ,…-;

}

INHERITANCE

79

Why use inheritance in java
• For Method Overriding (so runtime polymorphism can be achieved).
• For Code Reusability.

Terms used in Inheritance
• Class: A class is a group of objects which have common properties. It is a

template or blueprint from which objects are created.
• Sub Class/Child Class: Subclass is a class which inherits the other class. It is

also called a derived class, extended class, or child class.
• Super Class/Parent Class: Superclass is the class from where a subclass

inherits the features. It is also called a base class or a parent class.
• Reusability: As the name specifies, reusability is a mechanism which

facilitates you to reuse the fields and methods of the existing class when you
create a new class. You can use the same fields and methods already defined
in the previous class.

Class Hierarchy

80

• A child class of one parent can be the parent of another child, forming class
hierarchies.

The syntax of Java Inheritance
class Subclass-name extends Superclass-name
{

//methods and fields
}
• The extends keyword indicates that you are making a new class that derives from

an existing class. The meaning of "extends" is to increase the functionality.
• In the terminology of Java, a class which is inherited is called a parent or

superclass, and the new class is called child or subclass.

As displayed in the figure, Programmer is the subclass

and Employee is the superclass. The relationship between the

two classes is Programmer IS-A Employee. It means that

Programmer is a type of Employee.

Inheritance

81

Example program of Inheritance:

1.class Employee{
2. float salary=40000;
3.}
4.class Programmer extends Employee{
5. int bonus=10000;
6. public static void main(String args[]){
7. Programmer p=new Programmer();
8. System.out.println("Programmer salary is:"+p.salary);
9. System.out.println("Bonus of Programmer is:"+p.bonus);
10.}
11.}

Output:
Programmer salary is:40000.0
Bonus of programmer is:10000

Types of Inheritance

82

• On the basis of class, there can be three types of inheritance in java: single,
multilevel and hierarchical.

• In java programming, multiple and hybrid inheritance is supported through
interface only.

When one class inherits multiple classes, it is
known as multiple inheritance. For Example:

Types of Inheritance

83

Single Inheritance Examples:
1.class Animal{
2.void eat(){System.out.println("eating...");}
3.}
4.class Dog extends Animal{
5.void bark(){System.out.println("barking...");}
6.}
7.class TestInheritance{
8.public static void main(String args[]){
9.Dog d=new Dog();
10.d.bark();
11.d.eat();
12.}}

Output:
barking...
eating...

Types of Inheritance

84

Why multiple inheritance is not supported in java?
• To reduce the complexity and simplify the language, multiple inheritance is not

supported in java.
• Consider a scenario where A, B, and C are three classes. The C class inherits A

and B classes. If A and B classes have the same method and you call it from child
class object, there will be ambiguity to call the method of A or B class.

• Since compile-time errors are better than runtime errors, Java renders compile-
time error if you inherit 2 classes. So whether you have same method or
different, there will be compile time error.

class A{
void msg(){System.out.println("Hello");}
}
class B{
void msg(){System.out.println("Welcome");}
}
class C extends A,B
{//suppose if it were

public static void main(String args[]){
C obj=new C();
obj.msg();//Now which msg() method would be invoked?

} }

Member Access Rules

85

• Visibility modifiers determine which class members are accessible and which
do not

• Members (variables and methods) declared with public visibility are
accessible, and those with private visibility are not

• Problem: How to make class/instance variables visible only to its subclasses?

• Solution: Java provides a third visibility modifier that helps in inheritance
situations: protected

Visibility Modifiers for class/interface:
Private: The access level of a private modifier is only within the class. It cannot be

accessed from outside the class.
Default: The access level of a default modifier is only within the package. It cannot be

accessed from outside the package. If you do not specify any access level, it
will be the default.

Protected: The access level of a protected modifier is within the package and outside the
package through child class. If you do not make the child class, it cannot be
accessed from outside the package.

Public: The access level of a public modifier is everywhere. It can be accessed from
within the class, outside the class, within the package and outside the

package.

Member Access Rules

86

• Understand the access modifiers in Java by a simple table.

Polymorphism

87

• Polymorphism is one of three pillars of object-orientation.
• Polymorphism: many different (poly) forms of objects that share a common

interface respond differently when a method of that interface is invoked:
1) a super-class defines the common interface
2) sub-classes have to follow this interface (inheritance), but are also

permitted to provide their own implementations (overriding)
• A sub-class provides a specialized behaviors relying on the common elements

defined by its super-class.

Connecting a method call to the method body is known as binding.
There are two types of binding
1.Static Binding (also known as Early Binding).
2.Dynamic Binding (also known as Late Binding).

Polymorphism

88

1. Static binding
• When type of the object is determined at compiled time(by the compiler), it is

known as static binding.
• If there is any private, final or static method in a class, there is static binding.
• The binding which can be resolved at compile time by compiler is known as static

or early binding. The binding of static, private and final methods is compile-
time. Why? The reason is that the these method cannot be overridden and the
type of the class is determined at the compile time. Lets see an example to
understand this:

Example of static binding
1.class Dog{
2. private void eat()
3.{
4.System.out.println("dog is eating...");
5.}
6. public static void main(String args[]){
7. Dog d1=new Dog();
8. d1.eat();
9. }
10.}

https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/
https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/
https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/

Polymorphism

89

2. Dynamic binding
When type of the object is determined at run-time, it is known as dynamic
binding.

Example of dynamic binding
1. class Animal{
2. void eat(){System.out.println("animal is eating...");}
3. }
4. class Dog extends Animal{
5. void eat(){System.out.println("dog is eating...");}
6. public static void main(String args[]){
7. Animal a=new Dog();
8. a.eat();
9. }
10. } Output: dog is eating...

In the above example object type cannot be determined by the compiler,
because the instance of Dog is also an instance of Animal. So compiler doesn't
know its type, only its base type.

Polymorphism

90

Understanding Type: Let's understand the type of instance.
1) variables have a type : Each variable has a type, it may be primitive and non-
primitive.
1.int data=30; Here data variable is a type of int.
2) References have a type
1.class Dog{
2. public static void main(String args[]){
3. Dog d1;//Here d1 is a type of Dog
4. } }
3) Objects have a type
An object is an instance of particular java class,but it is also an instance of its
superclass.
1.class Animal{}
2. class Dog extends Animal{
3. public static void main(String args[]){
4. Dog d1=new Dog();
5. } }
Here d1 is an instance of Dog class, but it is also an instance of Animal.

Method Overloading

91

• If a class has multiple methods having same name but different in parameters,
it is known as Method Overloading.

• If we have to perform only one operation, having same name of the methods
increases the readability of the program.

• Suppose you have to perform addition of the given numbers but there can be
any number of arguments, if you write the method such as a(int,int) for two
parameters, and b(int,int,int) for three parameters then it may be difficult for
you as well as other programmers to understand the behavior of the method
because its name differs.

Advantage of method overloading
Method overloading increases the readability of the program.

Different ways to overload the method
There are two ways to overload the method in java
1.By changing number of arguments
2.By changing the data type

Method Overloading

92

1) Method Overloading: changing no. of arguments
In this example, created two methods, first add() method performs addition of
two numbers and second add method performs addition of three numbers.
In this example, we are creating static methods so that we don't need to
create instance for calling methods.
1.class Adder{
2.static int add(int a,int b){return a+b;}
3.static int add(int a,int b,int c){return a+b+c;}
4.}
5.class TestOverloading1{
6.public static void main(String[] args){
7.System.out.println(Adder.add(11,11));
8.System.out.println(Adder.add(11,11,11));
9.}}

Output:
22 33

Method Overloading

93

2) Method Overloading: changing data type of arguments
In this example, created two methods that differs in data type. The first add
method receives two integer arguments and second add method receives two
double arguments.

1.class Adder{
2.static int add(int a, int b){return a+b;}
3.static double add(double a, double b){return a+b;}
4.}
5.class TestOverloading2{
6.public static void main(String[] args){
7.System.out.println(Adder.add(11,11));
8.System.out.println(Adder.add(12.3,12.6));
9.}}

Output:
22 24.9

Method Overriding

94

• If subclass (child class) has the same method as declared in the parent class, it is
known as method overriding in Java.

• In other words, If a subclass provides the specific implementation of the method
that has been declared by one of its parent class, it is known as method
overriding.

Usage of Java Method Overriding
• Method overriding is used to provide the specific implementation of a method

which is already provided by its superclass.
• Method overriding is used for runtime polymorphism.

Rules for Java Method Overriding
1.The method must have the same name as in the parent class
2.The method must have the same parameter as in the parent class.
3.There must be an IS-A relationship (inheritance).

Method Overriding

95

A real example of Java Method Overriding
• Consider a scenario where Bank is a class that provides functionality to get the

rate of interest. However, the rate of interest varies according to banks.
• For example, SBI, ICICI and AXIS banks could provide 8%, 7%, and 9% rate of

interest.

Method Overriding

96

//Java Program to demonstrate the real scenario of Java Method Overriding
class Bank{
int getRateOfInterest(){return 0;}
}
class SBI extends Bank{
int getRateOfInterest(){return 8;}
}
class ICICI extends Bank{
int getRateOfInterest(){return 7;}
}
class AXIS extends Bank{
int getRateOfInterest(){return 9;}
}
class Test2{
public static void main(String args[]){
SBI s=new SBI();
ICICI i=new ICICI();
AXIS a=new AXIS();
System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());
System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());
System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest());
} }

Differences between Overloading and
Overriding

97

Method Overloading Method Overriding

Method overloading is used to increase
the readability of the program.

Method overriding is used to provide the
specific implementation of the method that
is already provided by its super class.

Method overloading is performed within
class.

Method overriding occurs in two classes that
have IS-A (inheritance) relationship.

In case of method overloading, parameter
must be different.

In case of method overriding, parameter
must be same.

Method overloading is the example
of compile time polymorphism.

Method overriding is the example of run
time polymorphism.

In java, method overloading can't be
performed by changing return type of the
method only. Return type can be same or
different in method overloading. But you
must have to change the parameter.

Return type must be same or covariant in
method overriding.

Abstract classes and methods

98

Abstract class in Java
• A class which is declared with the abstract keyword is known as an abstract class

in Java.
• It can have abstract and non-abstract methods (method with the body).

Abstraction in Java
• Abstraction is a process of hiding the implementation details and showing only

functionality to the user.
• Another way, it shows only essential things to the user and hides the internal

details, for example, sending SMS where you type the text and send the
message. You don't know the internal processing about the message delivery.

• Abstraction lets you focus on what the object does instead of how it does it.

Ways to achieve Abstraction
There are two ways to achieve abstraction in java
1.Abstract class (0 to 100%)
2.Interface (100%)

Abstract classes and methods

99

Abstract class in Java
A class which is declared as abstract is known as an abstract class. It can have
abstract and non-abstract methods. It needs to be extended and its method
implemented. It cannot be instantiated.

Points to Remember
• An abstract class must be declared with an abstract keyword.
• It can have abstract and non-abstract methods.
• It cannot be instantiated.
• It can have constructors and static methods also.
• It can have final methods which will force the subclass not to change the body

of the method.

Abstract classes and methods

100

Example of abstract class: abstract class A{}
Abstract Method in Java
A method which is declared as abstract and does not have implementation is
known as an abstract method.
Example of abstract method
abstract void printStatus();//no method body and abstract
Example of Abstract class that has an abstract method
In this example, Bike is an abstract class that contains only one abstract method
run. Its implementation is provided by the Honda class.
abstract class Bike{
abstract void run();

}
class Honda4 extends Bike{
void run(){System.out.println("running safely");}
public static void main(String args[]){
Bike obj = new Honda4();
obj.run();
} }
Output: running safely

Abstract classes and methods

101

Example, Shape is the abstract class, and its implementation is provided by the Rectangle and
Circle classes. Mostly, don't know about the implementation class (which is hidden to the end
user), and an object of the implementation class is provided by the factory method.
A factory method is a method that returns the instance of the class.
In this example, if you create the instance of Rectangle class, draw() method of Rectangle class
will be invoked.
File: TestAbstraction1.java
abstract class Shape{
abstract void draw();
} //In real scenario, implementation is provided by others i.e. unknown by end user
class Rectangle extends Shape{
void draw(){System.out.println("drawing rectangle");}
}
class Circle1 extends Shape{
void draw(){System.out.println("drawing circle");}
} //In real scenario, method is called by programmer or user
class TestAbstraction1{
public static void main(String args[]){
Shape s=new Circle1();//In a real scenario, object is provided through method, e.g., getShape() m
ethod
s.draw();
} } Output: drawing circle

102

UNIT – III
Exception Handling: Benefits of exception handling,
the classification of exceptions, usage of try, catch,
throw, throws and finally.
Multithreading: Differences between multiple
processes and multiple threads, thread states,
creating threads, interrupting threads.

103

What is Exception
• Exception is an abnormal condition that arises when executing a program.
• In the languages that do not support exception handling, errors must be

checked and handled manually, usually through the use of error codes.
• In contrast, Java:

1) provides syntactic mechanisms to signal, detect and handle errors
2) ensures a clean separation between the code executed in the absence of

errors and the code to handle various kinds of errors
3) brings run-time error management into object-oriented programming

What is Exception Handling
• An exception is an object that describes an exceptional condition (error) that

has occurred when executing a program.
• Exception handling involves the following:

1) when an error occurs, an object (exception) representing this error is
created and thrown in the method that caused it

2) that method may choose to handle the exception itself or pass it on
3) either way, at some point, the exception is caught and processed

Exception Handling

104

Exception Sources

• Exceptions can be:

1) generated by the Java run-time system Fundamental errors that violate the
rules of the Java language or the constraints of the Java execution
environment.

2) manually generated by programmer’s code Such exceptions are typically
used to report some error conditions to the caller of a method.

Benefits of exception handling

• Separating Error-Handling code from “regular” business logic code

• Propagating errors up the call stack

• Grouping and differentiating error types

Exception Handling

105

Exception Handling

Exception Hierarchy

 All exceptions are sub-classes of the build-in class Throwable.

 Throwable contains two immediate sub-classes:

1) Exception – exceptional conditions that programs should catch

The class includes:

a) Runtime Exception – defined automatically for user programs to include: division by zero,
invalid array indexing, etc.

b) use-defined exception classes

2) Error – exceptions used by Java to indicate errors with the runtime environment; user programs
are not supposed to catch them

General form:

try , … -

catch(Exception1 ex1) , … -

catch(Exception2 ex2) , … -

…finally , … -

where:

1) try , … - is the block of code to monitor for exceptions

2) catch(Exception ex) , … - is exception handler for the

exception Exception

3) finally , … - is the block of code to execute before the try

block ends

106

Exception Handling

Exception Hierarchy

 All exceptions are sub-classes of the build-in class Throwable.

 Throwable contains two immediate sub-classes:

1) Exception – exceptional conditions that programs should catch

The class includes:

a) Runtime Exception – defined automatically for user programs to include: division by zero,
invalid array indexing, etc.

b) use-defined exception classes

2) Error – exceptions used by Java to indicate errors with the runtime environment; user programs
are not supposed to catch them

General form:

try , … -

catch(Exception1 ex1) , … -

catch(Exception2 ex2) , … -

…finally , … -

where:

1) try , … - is the block of code to monitor for exceptions

2) catch(Exception ex) , … - is exception handler for the

exception Exception

3) finally , … - is the block of code to execute before the try

block ends

107

Exception Handling

Keyword Description

try The "try" keyword is used to specify a block where we should place
exception code. The try block must be followed by either catch or
finally. It means, we can't use try block alone.

catch The "catch" block is used to handle the exception. It must be preceded
by try block which means we can't use catch block alone. It can be
followed by finally block later.

finally The "finally" block is used to execute the important code of the
program. It is executed whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It doesn't throw
an exception. It specifies that there may occur an exception in the
method. It is always used with method signature.

There are 5 keywords which are used in handling exceptions in Java.

108

Java Exception Handling Example

Let's see an example of Java Exception Handling where we using a try-
catch statement to handle the exception.

1.public class JavaExceptionExample{
2. public static void main(String args[]){
3. try{
4. //code that may raise exception
5. int data=100/0;
6. }catch(ArithmeticException e){System.out.println(e);}
7. //rest code of the program
8. System.out.println("rest of the code...");
9. }
10.}

Output:
Exception in thread main java.lang.ArithmeticException:/ by zero rest of
the code...

Exception Handling

109

Exception Handling

// Java program to demonstrate ArithmeticException
class ArithmeticException_Demo
{

public static void main(String args[])
{

try {
int a = 30, b = 0;
int c = a/b; // cannot divide by zero
System.out.println ("Result = " + c);

}
catch(ArithmeticException e) {

System.out.println ("Can't divide a number by 0");
}

}
} Output:
Can't divide a number by 0

110

Exception Handling

The Exception class has two main subclasses: IOException class and
RuntimeException Class.

111

Exception Handling

Usage of try block
• Java try block is used to enclose the code that might throw an exception. It

must be used within the method.
• If an exception occurs at the particular statement of try block, the rest of the

block code will not execute. So, it is recommended not to keeping the code in
try block that will not throw an exception.

• Java try block must be followed by either catch or finally block.

Syntax of Java try-catch
1. try{
2. //code that may throw an exception
3. }catch(Exception_class_Name ref){}

Syntax of try-finally block
1. try{
2. //code that may throw an exception
3. }finally{}

112

Exception Handling

The following is an array declared with 2 elements. Then the code tries to
access the 3rd element of the array which throws an exception.
import java.io.*;
public class ExcepTest
{
public static void main(String args[])
{
try
{ int a[] = new int[2];
System.out.println("Access element three :" + a[3]);
}
catch (ArrayIndexOutOfBoundsException e)
{ System.out.println("Exception thrown :" + e);
}
System.out.println("Out of the block"); } } Output
OutPut: Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3
Out of the block

113

Exception Handling

Usage of catch block
• Java catch block is used to handle the Exception by declaring the type of

exception within the parameter. The declared exception must be the parent class
exception (i.e., Exception) or the generated exception type. However, the good
approach is to declare the generated type of exception.

• The catch block must be used after the try block only. You can use multiple catch
block with a single try block.

public class TryCatchExample3 {
public static void main(String[] args) {
try
{
int data=50/0; //may throw exception

// if exception occurs, the remaining statement will not exceute
System.out.println("rest of the code");
}
catch(ArithmeticException e)
{

System.out.println(e);
} } }

114

Exception Handling

Multiple catch block

A try block can be followed by multiple catch blocks. The syntax for multiple

catch blocks looks like the following −

Syntax
try
{ // Protected code }
catch (ExceptionType1 e1)

{ // Catch block }
catch (ExceptionType2 e2)

{ // Catch block }
catch (ExceptionType3 e3)
{ // Catch block }

115

Exception Handling

Here is code segment showing how to use multiple try/catch statements.

try
{
file = new FileInputStream(fileName);
x = (byte) file.read();
} catch (IOException i)
{
i.printStackTrace();
return -1;
}
catch (FileNotFoundException f) // Not valid!
{
f.printStackTrace();
return -1;
}

116

Exception Handling

Java Exception Handling Example
Example of Java Exception Handling where by using a try-catch statement to
handle the exception.
1.public class JavaExceptionExample{
2. public static void main(String args[]){
3. try{
4. //code that may raise exception
5. int data=100/0;
6. }catch(ArithmeticException e){System.out.println(e);}
7. //rest code of the program
8. System.out.println("rest of the code...");
9. }
10.}
Output:
Exception in thread main java.lang.ArithmeticException:/ by zero rest of the
code...

117

Exception Handling

Throw Keyword

• So far, we were only catching the exceptions thrown by the Java system.

• In fact, a user program may throw an exception explicitly:

throw ThrowableInstance;

• ThrowableInstance must be an object of type Throwable or its subclass.

Once an exception is thrown by:

throw ThrowableInstance;

Two ways to obtain a Throwable instance:

1) creating one with the new operator

All Java built-in exceptions have at least two Constructors:

One without parameters and another with one String
parameter:

throw new NullPointerException("demo");

2) using a parameter of the catch clause

try , … - catch(Throwable e) , … e … -

118

Exception Handling

Throw Keyword example
In this example, creat the validate method that takes integer value as a
parameter. If the age is less than 18, we are throwing the ArithmeticException
otherwise print a message welcome to vote.
1.public class TestThrow1{
2. static void validate(int age){
3. if(age<18)
4. throw new ArithmeticException("not valid");
5. else
6. System.out.println("welcome to vote");
7. }
8. public static void main(String args[]){
9. validate(13);
10. System.out.println("rest of the code...");
11. }
12.}
Output:
Exception in thread main java.lang.ArithmeticException:not valid

119

Exception Handling

Throws Keyword example
• The Java throws keyword is used to declare an exception. It gives an information to

the programmer that there may occur an exception so it is better for the programmer
to provide the exception handling code so that normal flow can be maintained.

• Exception Handling is mainly used to handle the checked exceptions. If there occurs
any unchecked exception such as NullPointerException, it is programmers fault that
he is not performing check up before the code being used.

Syntax of java throws
1.return_type method_name() throws exception_class_name{
2.//method code
3.}

 The throwOne method throws an exception
that it does not catch, nor declares it within
the throws clause.

class ThrowsDemo {
static void throwOne() {
System.out.println("Inside

throwOne.");
throw new

IllegalAccessException("demo");
}
public static void main(String args[])

{
throwOne();
}
}

 Therefore this program does not compile.

• Corrected program: throwOne lists
exception, main catches it:

class ThrowsDemo {
static void throwOne() throws

IllegalAccessException {
System.out.println("Inside

throwOne.");
throw new

IllegalAccessException("demo");
}
public static void main(String args[])

{
try {
throwOne();
} catch (IllegalAccessException e) {
System.out.println("Caught " + e);
} } }

120

Exception Handling

finally Keyword

 The try/catch statement requires at least one catch or finally clause, although both are
optional:

try , … -

catch(Exception1 ex1) , … - …

finally , … -

 Executed after try/catch whether of not the exception is thrown.

 Any time a method is to return to a caller from inside the try/catch block via:

1) uncaught exception or

2) explicit return

the finally clause is executed just before the method returns.

• FileNotFoundException: Signals that an attempt to open the file denoted by a specified
pathname has failed.

• InterruptedIOException: Signals that an I/O operation has been interrupted

• InvalidClassException: Thrown when the Serialization runtime detects one of the
following problems with a Class.

• InvalidObjectException: Indicates that one or more deserialized objects failed validation
tests.

• IOException: Signals that an I/O exception of some sort has occurred.

http://java.sun.com/javase/6/docs/api/java/io/FileNotFoundException.html
http://java.sun.com/javase/6/docs/api/java/io/InterruptedIOException.html
http://java.sun.com/javase/6/docs/api/java/io/InvalidClassException.html
http://java.sun.com/javase/6/docs/api/java/io/InvalidObjectException.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html

121

• Multithreading in java is a process of executing multiple threads simultaneously.
• A thread is a lightweight sub-process, the smallest unit of processing.

Multiprocessing and multithreading, both are used to achieve multitasking.
• However, multithreading than multiprocessing because threads use a shared

memory area. They don't allocate separate memory area so saves memory, and
context-switching between the threads takes less time than process.

Advantages of Java Multithreading
1. It doesn't block the user because threads are independent and you can perform

multiple operations at the same time.
2. You can perform many operations together, so it saves time.
3. Threads are independent, so it doesn't affect other threads if an exception

occurs in a single thread.

Multithreading

122

Multitasking
Multitasking is a process of executing multiple tasks simultaneously. We use
multitasking to utilize the CPU. Multitasking can be achieved in two ways:
• Process-based Multitasking (Multiprocessing)
• Thread-based Multitasking (Multithreading)

1) Process-based Multitasking (Multiprocessing)
• Each process has an address in memory. In other words, each process

allocates a separate memory area.
• A process is heavyweight.
• Cost of communication between the process is high.
• Switching from one process to another requires some time for saving and

loading registers, memory maps, updating lists, etc.

2) Thread-based Multitasking (Multithreading)
• Threads share the same address space.
• A thread is lightweight.
• Cost of communication between the thread is low.

Multithreading

123

What is Thread
• A thread is a lightweight subprocess, the smallest unit of processing. It is a

separate path of execution.
• Threads are independent. If there occurs exception in one thread, it doesn't

affect other threads. It uses a shared memory area.

As shown in the figure, a thread is
executed inside the process. There is
context-switching between the threads.
There can be multiple processes inside the OS,
and one process can have multiple threads.

Multithreading

124

Thread States
A thread can be in one of the five states. According to sun, there is only 4 states
in thread life cycle in java new, runnable, non-runnable and terminated. There is no
running state.

Thread exist in several states:

1) ready to run

2) running

3) a running thread can be suspended

4) a suspended thread can be resumed

5) a thread can be blocked when waiting for a resource

6) a thread can be terminated

•Once terminated, a thread cannot be resumed.

Multithreading

125

Thread States
A thread can be in one of the five states. According to sun, there is only 4 states
in thread life cycle in java new, runnable, non-runnable and terminated. There is no
running state.
1) New
The thread is in new state if you create an instance of Thread class but before the
invocation of start() method.
2) Runnable
The thread is in runnable state after invocation of start() method, but the thread
scheduler has not selected it to be the running thread.
3) Running
The thread is in running state if the thread scheduler has selected it.
4) Non-Runnable (Blocked)
This is the state when the thread is still alive, but is currently not eligible to run.
5) Terminated
A thread is in terminated or dead state when its run() method exits.

Multithreading

126

How to create thread
There are two ways to create a thread:
1.By extending Thread class
2.By implementing Runnable interface.

Thread class:
Thread class provide constructors and methods to create and perform operations on a
thread.Thread class extends Object class and implements Runnable interface.
Commonly used Constructors of Thread class:
1. Thread() 2. Thread(String name) 3. Thread(Runnable r) 4. Thread(Runnable r,String name)

Runnable interface:
1. The Runnable interface should be implemented by any class whose instances are intended

to be executed by a thread. Runnable interface have only one method named run().public
void run(): is used to perform action for a thread.

Starting a thread:
• start() method of Thread class is used to start a newly created thread. It performs following

tasks:A new thread starts(with new callstack).
• The thread moves from New state to the Runnable state.

• When the thread gets a chance to execute, its target run() method will run.

Multithreading

127

1) Java Thread Example by extending Thread class
class Multi extends Thread{
public void run(){
System.out.println("thread is running...");
}
public static void main(String args[]){
Multi t1=new Multi();
t1.start();
}
}
Output:thread is running...

Multithreading

128

1) Java Thread Example by extending Thread class
class Multi extends Thread{
public void run(){
System.out.println("thread is running...");
}
public static void main(String args[]){
Multi t1=new Multi();
t1.start();
}
}
Output:thread is running...

Multithreading

129

1) Java Thread Example by extending Thread class

class Multi extends Thread{
public void run(){
System.out.println("thread is running...");
}
public static void main(String args[]){
Multi t1=new Multi();
t1.start();
}
}
Output:thread is running...

Multithreading

130

2) Java Thread Example by implementing Runnable interface
1.class Multi3 implements Runnable{
2.public void run(){
3.System.out.println("thread is running...");
4.}
5.
6.public static void main(String args[]){
7.Multi3 m1=new Multi3();
8.Thread t1 =new Thread(m1);
9.t1.start();
10. }
11.}
Output: thread is running...

If you are not extending the Thread class,your class object would not be treated as
a thread object.So you need to explicitely create Thread class object.We are passing
the object of your class that implements Runnable so that your class run() method
may execute.

Multithreading

131

2) Java Thread Example by implementing Runnable interface
1.class Multi3 implements Runnable{
2.public void run(){
3.System.out.println("thread is running...");
4.}
5.
6.public static void main(String args[]){
7.Multi3 m1=new Multi3();
8.Thread t1 =new Thread(m1);
9.t1.start();
10. }
11.}
Output: thread is running...

If you are not extending the Thread class,your class object would not be treated as
a thread object.So you need to explicitely create Thread class object.We are passing
the object of your class that implements Runnable so that your class run() method
may execute.

Multithreading

132

Priority of a Thread (Thread Priority):
Each thread have a priority. Priorities are represented by a number between 1 and
10. In most cases, thread schedular schedules the threads according to their
priority (known as preemptive scheduling). But it is not guaranteed because it
depends on JVM specification that which scheduling it chooses.3 constants defined

in Thread class:

1.public static int MIN_PRIORITY
2.public static int NORM_PRIORITY
3.public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1
and the value of MAX_PRIORITY is 10.

Multithreading

133

Example of priority of a Thread:

class TestMultiPriority1 extends Thread{
public void run(){
System.out.println("running thread name is:"+Thread.currentThread().getName())

;
System.out.println("running thread priority is:"+Thread.currentThread().getPriorit

y());
}

public static void main(String args[]){
TestMultiPriority1 m1=new TestMultiPriority1();
TestMultiPriority1 m2=new TestMultiPriority1();
m1.setPriority(Thread.MIN_PRIORITY);
m2.setPriority(Thread.MAX_PRIORITY);
m1.start();
m2.start();
} }

Output:running thread name is:Thread-0 running thread priority is:10 running
thread name is:Thread-1 running thread priority is:1

Multithreading

134

Interrupting Thread
• If any thread is in sleeping or waiting state (i.e. sleep() or wait() is invoked),

calling the interrupt() method on the thread, breaks out the sleeping or waiting
state throwing InterruptedException.

• If the thread is not in the sleeping or waiting state, calling the interrupt() method
performs normal behaviour and doesn't interrupt the thread but sets the
interrupt flag to true.

• Methods provided by the Thread class for thread interruption.

The 3 methods provided by the Thread class for interrupting a thread
•public void interrupt()
•public static boolean interrupted()
•public boolean isInterrupted()

Multithreading

135

Example of interrupting a thread that stops working
In this example, after interrupting the thread, we are propagating it, so it will stop working. If
we don't want to stop the thread, we can handle it where sleep() or wait() method is
invoked. Let's first see the example where we are propagating the exception.
class TestInterruptingThread1 extends Thread{
public void run(){
try{
Thread.sleep(1000);
System.out.println("task");
}catch(InterruptedException e){
throw new RuntimeException("Thread interrupted..."+e);
} } public static void main(String args[]){
TestInterruptingThread1 t1=new TestInterruptingThread1();
t1.start();
try{
t1.interrupt();
}catch(Exception e){System.out.println("Exception handled "+e);}}}

Output:Exception in thread-0 java.lang.RuntimeException: Thread interrupted...

java.lang.InterruptedException: sleep interrupted at A.run(A.java:7)

Multithreading

136

Example of interrupting a thread that doesn't stop working
In this example, after interrupting the thread, handled the exception, so it will
break out the sleeping but will not stop working.
class TestInterruptingThread2 extends Thread{
public void run(){
try{
Thread.sleep(1000);
System.out.println("task");
}catch(InterruptedException e){
System.out.println("Exception handled "+e);
} System.out.println("thread is running..."); }
public static void main(String args[]){
TestInterruptingThread2 t1=new TestInterruptingThread2();
t1.start();
t1.interrupt(); }}

Output: Exception handled java.lang.InterruptedException:
sleep interrupted thread is running...

Multithreading

137

Example of interrupting thread that behaves normally
If thread is not in sleeping or waiting state, calling the interrupt() method sets the
interrupted flag to true that can be used to stop the thread by the java programmer
later.

1.class TestInterruptingThread3 extends Thread{
2.public void run(){
3.for(int i=1;i<=5;i++)
4.System.out.println(i);
5.}
6.public static void main(String args[]){
7.TestInterruptingThread3 t1=new TestInterruptingThread3();
8.t1.start();
9.t1.interrupt();
10.}
11.}

Output:1 2 3 4 5

Multithreading

138

UNIT – IV
INTERFACES AND PACKAGES

Interface: Interfaces vs Abstract classes, defining an
interface, implement interfaces, Packages: Defining,
creating and accessing a package, importing
packages.

139

Differences between classes and interfaces

• Interfaces are syntactically similar to classes, but they lack instance variables,
and their methods are declared without any body.

• One class can implement any number of interfaces.

• Interfaces are designed to support dynamic method resolution at run time.

• Interface is little bit like a class... but interface is lack in instance
variables....that's u can't create object for it.....

• Interfaces are developed to support multiple inheritance...

• The methods present in interfaces r pure abstract..

• The access specifiers public,private,protected are possible with classes, but
the interface uses only one spcifier public.....

• interfaces contains only the method declarations.... no definitions.......

• A interface defines, which method a class has to implement. This is way - if
you want to call a method defined by an interface - you don't need to know
the exact class type of an object, you only need to know that it implements a
specific interface.

• Another important point about interfaces is that a class can implement
multiple interfaces.

140

Differences between interfaces vs Abstract
classes

Abstract class Interface

1) Abstract class can have abstract and non-
abstract methods.

Interface can have only abstract methods. Since Java
8, it can have default and static methods also.

2) Abstract class doesn't support multiple inheritance. Interface supports multiple inheritance.

3) Abstract class can have final, non-final, static and non-
static variables.

Interface has only static and final variables.

4) Abstract class can provide the implementation of
interface.

Interface can't provide the implementation of
abstract class.

5) The abstract keyword is used to declare abstract class. The interface keyword is used to declare interface.

6) An abstract class can extend another Java class and
implement multiple Java interfaces.

An interface can extend another Java interface only.

7) An abstract class can be extended using keyword
"extends".

An interface can be implemented using keyword
"implements".

8) A Java abstract class can have class members like
private, protected, etc.

Members of a Java interface are public by default.

9)Example:
public abstract class Shape{
public abstract void draw();
}

Example:
public interface Drawable{
void draw();
}

141

Defining a interface

• Using interface, we specify what a class must do, but not how it does this.
• An interface is syntactically similar to a class, but it lacks instance variables and its

methods are declared without any body.
• An interface is defined with an interface keyword.
 An interface declaration consists of modifiers, the keyword interface, the

interface name, a comma-separated list of parent interfaces (if any), and the
interface body.
For example:
public interface GroupedInterface extends Interface1, Interface2, Interface3 {
// constant declarations double E = 2.718282;
// base of natural logarithms //
//method signatures
void doSomething (int i, double x);
int doSomethingElse(String s);
}

 The public access specifier indicates that the interface can be used by any class in
any package. If you do not specify that the interface is public, your interface will
be accessible only to classes defined in the same package as the interface.

 An interface can extend other interfaces, just as a class can extend or subclass
another class. However, whereas a class can extend only one other class, an
interface can extend any number of interfaces. The interface declaration includes
a comma-separated list of all the interfaces that it extends

142

Implementing interface

General format:

interface interface name {

type method-name1(parameter-list);

type method-name2(parameter-list);

…

type var-name1 = value1;

type var-nameM = valueM;

…

}

• Interface methods have no bodies – they end with the semicolon after the
parameter list.

• They are essentially abstract methods.

• An interface may include variables, but they must be final, static and
initialized with a constant value.

• In a public interface, all members are implicitly public.

143

Implementing interface

• A class implements an interface if it provides a complete set of methods defined
by this interface.

1) any number of classes may implement an interface

2) one class may implement any number of interfaces

• Each class is free to determine the details of its implementation.

• Implementation relation is written with the implements keyword.

General format of a class that includes the implements clause:

• Syntax:

access class name extends super-class implements interface1, interface2, …,
interfaceN {

…

}

• Access is public or default.

144

Implementation Comments

• If a class implements several interfaces, they are separated with a comma.

• If a class implements two interfaces that declare the same method, the same
method will be used by the clients of either interface.

• The methods that implement an interface must be declared public.

• The type signature of the implementing method must match exactly the type
signature specified in the interface definition.

The relationship between classes and interfaces
As shown in the figure given below, a class extends another class, an interface
extends another interface, but a class implements an interface.

145

Implementation Comments

Java Interface Example
In this example, the Printable interface has only one method, and its implementation
is provided in the A6 class.
1.interface printable{
2.void print();
3.}
4.class A6 implements printable{
5.public void print(){System.out.println("Hello");}
6.
7.public static void main(String args[]){
8.A6 obj = new A6();
9.obj.print();
10. }
11.}
Output:
Hello

146

Implementation Comments

In this example, the Drawable interface has only one method. Its implementation is provided by
Rectangle and Circle classes. In a real scenario, an interface is defined by someone else, but its
implementation is provided by different implementation providers. Moreover, it is used by someone else.
The implementation part is hidden by the user who uses the interface.
File: TestInterface1.java
//Interface declaration: by first user
interface Drawable{
void draw();
}
//Implementation: by second user
class Rectangle implements Drawable{
public void draw(){System.out.println("drawing rectangle");}
}
class Circle implements Drawable{
public void draw(){System.out.println("drawing circle");}
}
//Using interface: by third user
class TestInterface1{
public static void main(String args[]){
Drawable d=new Circle();//In real scenario, object is provided by method e.g. getDrawable()
d.draw();
}} Output: drawing circle

147

Extending interfaces

• One interface may inherit another interface.
• The inheritance syntax is the same for classes and interfaces.

interface MyInterface1 {
void myMethod1(…) ;
}
interface MyInterface2 extends MyInterface1 {
void myMethod2(…) ;
}

• When a class implements an interface that inherits another interface, it must provide
implementations for all methods defined within the interface inheritance chain.

• Consider interfaces A and B.

interface A {

void meth1();

void meth2();

}

B extends A:

interface B extends A {

void meth3();}

148

Extending interfaces

• MyClass must implement all of A and B methods:
class MyClass implements B {
public void meth1() {
System.out.println("Implement meth1().");
}
public void meth2() {
System.out.println("Implement meth2().");
}
public void meth3() {
System.out.println("Implement meth3().");
} }

• Create a new MyClass object, then invoke all interface methods on it:

class IFExtend {

public static void main(String arg[]) {

MyClass ob = new MyClass();

ob.meth1();

ob.meth2();

ob.meth3();

}}

149

Packages

• A java package is a group of similar types of classes, interfaces and sub-packages.
• Package in java can be categorized in two form, built-in package and user-defined

package.
• There are many built-in packages such as java, lang, awt, javax, swing, net, io, util,

sql etc.

Advantage of Java Package
1) Java package is used to categorize the classes and interfaces so that they can be

easily maintained.
2) Java package provides access protection.
3) Java package removes naming collision.

150

Packages

Simple example of java package
The package keyword is used to create a package in java.

1.//save as Simple.java
2.package mypack;
3.public class Simple{
4. public static void main(String args[]){
5. System.out.println("Welcome to package");
6. }
7.}

How to compile java package
If you are not using any IDE, you need to follow the syntax given below:
javac -d directory javafilename
For example
javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can
use any directory name like /home (in case of Linux), d:/abc (in case of windows) etc.
If you want to keep the package within the same directory, you can use . (dot).

151

Packages

How to run java package program
Need to use fully qualified name e.g. mypack.Simple etc to run the class.
To Compile: javac -d . Simple.java
To Run: java mypack.SimpleOutput:Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents
destination. The . represents the current folder.

Creating a Package

• A package statement inserted as the first line of the source file:
package myPackage;
class MyClass1 { … }
class MyClass2 { … }

• means that all classes in this file belong to the myPackage package.
• The package statement creates a name space where such classes are stored.
• When the package statement is omitted, class names are put into the default

package which has no name.

152

Packages and Directories

• Java uses file system directories to store packages.

• Consider the Java source file:

package myPackage;

class MyClass1 { … }

class MyClass2 { … }

• The byte code files MyClass1.class and MyClass2.class must be stored in a
directory myPackage.

• Case is significant! Directory names must match package names exactly.

Package Hierarchy

• To create a package hierarchy, separate each package name with a dot:

package myPackage1.myPackage2.myPackage3;

• A package hierarchy must be stored accordingly in the file system:

1) Unix myPackage1/myPackage2/myPackage3

2) Windows myPackage1\myPackage2\myPackage3

3) Macintosh myPackage1:myPackage2:myPackage3

• You cannot rename a package without renaming its directory!

153

Accessing a Package

There are three ways to access the package from outside the package.
1.import package.*; 2. import package.classname; 3. fully qualified name.

1) Using packagename.*
• If you use package.* then all the classes and interfaces of this package will

be accessible but not subpackages.
• The import keyword is used to make the classes and interface of another

package accessible to the current package.
Example of package that import the packagename.*
1.//save by A.java
2.package pack;
3.public class A{
4. public void msg(){System.out.println("Hello");} }
5.//save by B.java
6.package mypack;
7.import pack.*;
8. class B{
9. public static void main(String args[]){
10. A obj = new A();
11. obj.msg();

12. } } Output: Hello

154

Accessing a Package

2) Using packagename.classname
• If you import package.classname then only declared class of this package will

be accessible.
Example of package by import package.classname
//save by A.java
package pack;
public class A{
public void msg(){System.out.println("Hello");}

}
//save by B.java
package mypack;
import pack.A;
class B{
public static void main(String args[]){
A obj = new A();
obj.msg();
}

}
Output: Hello

155

Accessing a Package

3) Using fully qualified name
• If you use fully qualified name then only declared class of this package will be

accessible. Now there is no need to import. But you need to use fully qualified name
every time when you are accessing the class or interface.

• It is generally used when two packages have same class name e.g. java.util and java.sql
packages contain Date class.

Example of package by import fully qualified name
//save by A.java
package pack;
public class A{

public void msg(){System.out.println("Hello");}
}
//save by B.java
package mypack;
class B{

public static void main(String args[]){
pack.A obj = new pack.A();//using fully qualified name
obj.msg();

}
}

Output: Hello

156

Importing a Package

• Since classes within packages must be fully-qualified with their package
names, it would be tedious to always type long dot-separated names.

• The import statement allows to use classes or whole packages directly.

Importing of a concrete class:

import myPackage1.myPackage2.myClass;

Importing of all classes within a package:

import myPackage1.myPackage2.*;

157

UNIT – V

FILES AND CONNECTING TO DATABASE

Files: streams – byte streams, character stream, text input/output, binary
input/output, file management;
Connecting to Database: Connecting to a database, querying a database and
processing the results, updating data with JDBC.

158

Streams – byte streams

• Java I/O (Input and Output) is used to process the input and produce the output.
• Java uses the concept of a stream to make I/O operation fast. The java.io package

contains all the classes required for input and output operations.
• We can perform file handling in Java by Java I/O API.

Stream
A stream is a sequence of data. In Java, a stream is composed of bytes. It's called a
stream because it is like a stream of water that continues to flow.
In Java, 3 streams are created for us automatically. All these streams are attached
with the console.

1) System.out: standard output stream
2) System.in: standard input stream
3) System.err: standard error stream

159

Streams – byte streams

Byte Streams
• Java byte streams are used to perform input and output of 8-bit bytes.
• There are many classes related to byte streams but the most frequently used

classes are, FileInputStream and FileOutputStream.

OutputStream vs InputStream
The explanation of OutputStream and InputStream classes are given below:

File Output Stream
Java application uses an output stream to write data to a destination; it may be a
file, an array, peripheral device or socket.

File Input Stream
Java application uses an input stream to read data from a source; it may be a file,
an array, peripheral device or socket.

160

Streams – byte streams

• Let's understand the working of Java OutputStream and InputStream by the
figure given below.

161

Streams – byte streams

File Output Stream class
• This class is used to create a file and write data to it. It creates a new file if and

only if the file does not exist. New file can be created using the keyword ‘new’.
OutputStream f = new FileOutputStream(“d/java/sia”);

• An output stream accepts output bytes and sends them to some sink.

Method Description

1) void write(int b) This method writes the byte specified by b

2) void write(byte[] buffer) This method write an array containing
bytes the output.

3) void write(byte[] buffer, int
offset, int numBytes)

This method writes the number of bytes

specified by numBytes from buffer to output

stream. It begins writing from buffer[offset]

3)void flush() This method flushes the output that has to
be sent and contained in the buffer.

4) void close() is used to close the current output stream.

162

Streams – byte streams

OutputStream Hierarchy

163

Streams – byte streams

Input Stream Class
• Input Stream class is an abstract class. It is the superclass of all classes representing an

input stream of bytes. Useful methods

Method Description

1) public abstract int read()throws
IOException

reads the next byte of data from the input
stream. It returns -1 at the end of the file.

2) public int available()throws
IOException

returns an estimate of the number of bytes that
can be read from the current input stream.

3) public void close()throws
IOException

is used to close the current input stream.

InputStream Hierarchy

164

Streams – Character streams

• Byte streams are used to perform input and output of 8-bit bytes, whereas
Java Character streams are used to perform input and output for 16-bit unicode.

• There are many classes related to character streams but the most frequently
used classes are, FileReader and FileWriter.

• Internally FileReader uses FileInputStream and FileWriter uses
FileOutputStream but here the major difference is that FileReader reads two
bytes at a time and FileWriter writes two bytes at a time.

FileReader Class
The FileReader class is used to create a reader which reads the input from file. This
class includes the following constructors.
• FileReader(string filepath)

•Here, path defines the input file which is directly assigned to filereader
object.

• FileReader(fileObj)
• Here file obj is the file object created for file class. The file class can create an
object and read the path of the file.

165

Streams – Character streams

Method Description

void close() This method will close the input source. An attempt made for
reading generates IOException

void mark() This method marks the specified number of characters by
placing a mark to enable them for reading

int read() This method reads a single character from the keyword. It
returns the integer representation of it. A -1 is returned if it
encounters end of stream

int read(char buffer[]) This method reds the specified number of characters into the
buffer. It returns the number of character that are read and
also returns integer value-1 if it encounters end of characters

boolean ready() This method returns true, if the next input value is not in
waiting state. If it is in waiting state, it returns false.

• Methods in Reader class.

166

Streams – Character streams

FileWriter Class
The FileWriter class is used to write the content into the file. This class includes the
following constructors.

• FileWriter (string filepath)
• FileWriter (string file path, boolean append)
• FileWriter (file fileobj)
• FileWriter (file fileobj, boolean append)

Here file path is the full path of the file and file obj is the object created for file
class. When the appended boolean variable is true, then the output is appended at
end of the file.

167

Streams – Character streams

Method Description

void close() This method will close the file while writing. An attempt made
for writing generates IOException.

void flush() This method flushes the output that has to be sent and
contained in the buffer.

void write(int ch) This method writes a single character on output stream. Here
parameter is declared as int and there is no need to cast it to
char.

void write(char buffer[]) This method writes an array containing bytes to the output
sream

void write(string str) This method writes a string on to the calling output stream.

void write(string str, int
offset, int numchars))

This method writes a subrange of characters specified by
numchars from buffer to output stream. It begins writing from
offset.

• Methods in Writer class.

168

Text Input / Output

The text input and output operations can be performed using two classes. They are
as follows.
1. Reader class (2) Writer class

(1) Reader class:
• Reader class can be used to read text as input from keyboard. While taking

input, System.in method can be used which belongs to byte streams.
• This method can be defined in BufferedReader class. However, it is

necessary to convert byte streams into text input by using
InputStreamReader class.

• The constructor which can be used to convert byte stream into text input is
as follows.

Syntax: InputStreamReader objbr= new InputStreamReader(System.in);
BufferedReader br= new BufferedReader(objbr);

(or)
BufferedReader objbr = new BufferedReader(new

InputStreamReader(System.in));

169

Text Input / Output

(2) Writer class
• Writer class can be used to write the output in the form ot text. While

displaying output, System.out method can be used which belongs to byte
streams.

• This method can be defined in BufferedWriter class. However, it is necessary
to convert byte streams into text output by using OutputStreamWriter class.

• The constructor which can be used to convert byte stream into text output
is as shown below.

Syntax: OutputStreamWriter objbw= new OutputStreamWriter(System.out);
BufferedWriter bw= new BufferedWriter(objbw);

(or)
BufferedWriter objbw = new BufferedWriter (new

OutputStreamWriter(System.out));

170

Binary input/output

The binary input and output operations are performed on binary values of priimi
tive data types using two classes. They are,
1. DataInputStream class
2. DataOutputStream class

(1) DataInputStream class
• This class provides an opportunity to read input data in binary format, that

can be implemented through DataInputinterface. It can be use the object of
DataInputStream class, which can read the input values from different data
types. The constructor of this class can be declared as follows,

Syntax: DataInputStream (InputStream obj Istream)

171

Binary input/output

Method Description

boolean readBoolean() It reads a boolean value as input and converts to binary value

byte readByte() It reads a byte value and converts it into binary format

char readChar() This method reads a character value and converts it into
binary value

double readDouble This method reads a double value and converts it into binary
value

float readFloat() This method reads a floating point value

int readInt() This method reads an integer value

long readLong() This method can read long data type value

short readShort() This method reads short type value and converts it into binary
value

• Methods in this class is as follows

172

Binary input/output

(2) DataOutputStream class
• This class can be used to write the values on output streams only in binary

format. That can be implemented through DataOutputInterface. The
methods than can provides the output are defined from this interface.

Syntax: DataOutputStream (OutputStream objstream)

Note: The DataInputStream and DataOutPutStream classes can throw
IOException if an exception occurs. These classes can perform input and
output operations only on binary values of data types.

173

Binary input/output

Method Description

void writeBoolean() This method writes boolean value on the output stream

void writeByte (int val) It displays low-ordered byte value which can be specified in
the variable val

void writeChar (int val) This method writes a character value of double data type on
the output stream

void writeDouble(double
val)

This method can display the value of double data type on
the output stream

void writeFloat (float val) This method writes floating point value as output

void writeInt (int val) This method writes integer value as output

void writeLong (long val) This method writes long data value as output

void writeShort (int val) This method can write the value which can be declared as
short on to the output.

• Methods in this class is as follows

174

File Management

1. File class can be manage files by encapsulating the functionality of file system
present in the computer.

2. This class can return the information such as last modified, removing and
remaining of file. Stream classes can be managed with the contents of file on
disk.

The various constructors that can be used by file class are as follows,

(a) File obffile = new File (“example.txt”);
(b) File obffile = new File (string path, string name);
(c) File obffile = new File (file dir, string name);
(d) File obffile = new File (file.separator+ “temp”);

175

File Management

• There are different methods of file class that can be use dto manage a file.

Method Description

boolean canRead() This method explains that whether the file can be readable or
not.

boolean canWrite() This method determines that the current file can be writable or
not.

boolean canExecute() This method can be used to determine whether the current file
can be executed or not.

File get CannocialFile() This method can return a file object which can hold the
canonical path name of the file.

File getParentFile() This method returns a file object which contains the name of
the parent of this file directory.

File[] listfiles() This method returns the file object for respective files and of
file class. These objects can be displayed directories in array.

176

File Management

• There are different methods of file class that can be use dto manage a file.

Method Description

boolean isFile() This method determines whether the specified file is represents
a file or not. If it is a file, it return true otherwise returns false.

boolean isDirectory() This method returns true if the specified file represent a
directory otherwise, it returns false.

boolean exist() This method checks whether the specific file is existed or not. If
existed, it return true otherwise returns false.

boolean mkdir() This method will create a new directory by giving the argument
in file objec as name of the directory. If the directory is created,
this method returns true, otherwise returns false.

177

Java Database Connectivity (JDBC)

JDBC stands for Java Database Connectivity. JDBC is a Java API to connect and
execute the query with the database. It is a part of JavaSE (Java Standard Edition).
JDBC API uses JDBC drivers to connect with the database.

There are four types of JDBC drivers:
• JDBC-ODBC Bridge Driver,
• Native Driver,
• Network Protocol Driver, and
• Thin Driver

•We can use JDBC API to access tabular data stored in any relational database.
•With the help of JDBC API, we can save, update, delete and fetch data from the
database.
•It is like Open Database Connectivity (ODBC) provided by Microsoft.

178

Java Database Connectivity (JDBC)

The java.sql package contains classes and interfaces for JDBC API.

Popular interfaces
1. Driver interface
2. Connection interface
3. Statement interface
4. PreparedStatement interface
5. CallableStatement interface
6. ResultSet interface
7. ResultSetMetaData interface
8. DatabaseMetaData interface
9. RowSet interface

What is API
API (Application programming interface) is a
document that contains a description of all
the features of a product or software. It
represents classes and interfaces that
software programs can follow to
communicate with each other. An API can be
created for applications, libraries, operating
systems, etc.

179

Java Database Connectivity (JDBC)

Why Should We Use JDBC
• Before JDBC, ODBC API was the database API to connect and execute the query

with the database.
• But, ODBC API uses ODBC driver which is written in C language (i.e. platform

dependent and unsecured).
• That is why Java has defined its own API (JDBC API) that uses JDBC drivers

(written in Java language).

We can use JDBC API to handle database using Java program and can perform the
following activities:
1.Connect to the database
2.Execute queries and update statements to the database
3.Retrieve the result received from the database.

180

Java Database Connectivity (JDBC)

Required Steps:

• There are following steps required to create a new Database using JDBC
application:

• Import the packages . Requires that you include the packages containing the
JDBC classes needed for database programming. Most often, using import
java.sql.* will suffice.

• Register the JDBC driver . Requires that you initialize a driver so you can open a
communications channel with the database.

• Open a connection . Requires using the DriverManager.getConnection()
method to create a Connection object, which represents a physical connection
with database server.

• To create a new database, you need not to give any database name while
preparing database URL as mentioned in the below example.

• Execute a query . Requires using an object of type Statement for building and
submitting an SQL statement to the database.

• Clean up the environment . Requires explicitly closing all database resources
versus relying on the JVM's garbage collection.

181

Java Database Connectivity (JDBC)

JDBC Driver is a software component that enables java application to interact with
the database.

There are 4 types of JDBC drivers:
1. JDBC-ODBC bridge driver
2. Native-API driver (partially java driver)
3. Network Protocol driver (fully java driver)
4. Thin driver (fully java driver)

1) JDBC-ODBC bridge driver
The JDBC-ODBC bridge driver uses ODBC driver to connect to the database. The
JDBC-ODBC bridge driver converts JDBC method calls into the ODBC function calls.
This is now discouraged because of thin driver.

•Oracle does not support the JDBC-ODBC Bridge from Java 8. Oracle recommends
that you use JDBC drivers provided by the vendor of your database instead of the
JDBC-ODBC Bridge.

182

Java Database Connectivity (JDBC)

Advantages:
• easy to use.
• can be easily connected to any database.
Disadvantages:
• Performance degraded because JDBC method call is converted into the ODBC

function calls.
• The ODBC driver needs to be installed on the client machine.

183

Java Database Connectivity (JDBC)

Advantages:
• performance upgraded than JDBC-ODBC bridge driver.

Disadvantages:
•The Native driver needs to be installed on the each client machine.
•The Vendor client library needs to be installed on client machine.

2. Native-API driver
The Native API driver uses the client-side libraries of the database. The driver
converts JDBC method calls into native calls of the database API. It is not written
entirely in java.

184

Java Database Connectivity (JDBC)

Advantages:
• No client side library is required because of application server that can

perform many tasks like auditing, load balancing, logging etc.
Disadvantages:
• Network support is required on client machine.
• Requires database-specific coding to be done in the middle tier.
• Maintenance of Network Protocol driver becomes costly because it requires

database-specific coding to be done in the middle tier.

3.Network Protocol driver
The Network Protocol driver uses middleware (application server) that converts
JDBC calls directly or indirectly into the vendor-specific database protocol. It is fully
written in java.

185

Java Database Connectivity (JDBC)

Advantages:
• Better performance than all other drivers.
• No software is required at client side or server side.
Disadvantages:
• Drivers depend on the Database.

4.Thin driver
The thin driver converts JDBC calls directly into the vendor-specific database
protocol. That is why it is known as thin driver. It is fully written in Java language.

186

Java Database Connectivity (JDBC)

Which Driver should be used?

• If you are accessing one type of database, such as Oracle, Sybase, or IBM, the
preferred driver Type is 4.

• If your Java application is accessing multiple types of databases at the same
time, Type 3 is the preferred driver.

• Type 2 drivers are useful in situations where a type 3 or Type 4 driver is not
available yet for your database.

• The Type 1 driver is not considered a deployment-level driver and is typically
used for development and testing purposes only.

187

Java Database Connectivity (JDBC)

There are 5 steps to connect any java application with the database using JDBC.

These steps are as follows:

1. Register the Driver class

2. Create connection

3. Create statement

4. Execute queries

5. Close connection

188

Java Database Connectivity (JDBC)

1) Register the driver class

• The forName() method of Class is used to register the driver class. This method
is used to dynamically load the driver class.

Syntax of forName() method

• public static void forName(String className)throws

ClassNotFoundException

Example to register the OracleDriver class

• Here, Java program is loading oracle driver to establish database connection.

• Class.forName("oracle.jdbc.driver.OracleDriver");

189

Java Database Connectivity (JDBC)

2) Create the connection object

• The getConnection() method of DriverManager class is used to establish
connection with the database.

Syntax of getConnection() method

1) public static Connection getConnection(String url)throws SQLException

2) public static Connection getConnection(String url,String name,String password)
throws SQLException

Example to establish connection with the Oracle database

• Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1
521:xe","system","password");

190

Java Database Connectivity (JDBC)

3) Create the Statement object

• The createStatement() method of Connection interface is used to create
statement. The object of

• statement is responsible to execute queries with the database.

Syntax of createStatement() method

• public Statement createStatement()throws SQLException

Example to create the statement object

• Statement stmt=con.createStatement();

191

Java Database Connectivity (JDBC)

4) Execute the query

• The executeQuery() method of Statement interface is used to execute
queries to the database.

• This method returns the object of ResultSet that can be used to get all the
records of a table.

Syntax of executeQuery() method

• public ResultSet executeQuery(String sql)throws SQLException

Example to execute query

• ResultSet rs=stmt.executeQuery("select * from emp");

• while(rs.next()){

• System.out.println(rs.getInt(1)+" "+rs.getString(2));

• }

192

Java Database Connectivity (JDBC)

5) Close the connection object

• By closing connection object statement and ResultSet will be closed
automatically.

• The close() method of Connection interface is used to close the connection.

Syntax of close() method

• public void close()throws SQLException

Example to close connection

• con.close();

In general, to process any SQL statement with JDBC, you follow these steps:

• Establishing a connection.

• Create a statement.

• Execute the query.

• Process the result set object

• Close the connection.

