
1 | P a g e

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomus)

DUNDIGAL, HYDERABAD – 500 043

 Electronics and Communication Engineering

Course Title JAVA PROGRAMMING

Course Code ACS552

Programme B.Tech

Semester VI ECE

Course Type Elective

Regulation IARE - R16

Chief Coordinator Mr. G Chandra Sekhar, Assistant Professor

Course Faculty Mr. G Chandra Sekhar, Assistant Professor

Lecture Numbers 1-60

Topic Covered All

I. COURSE OBJECTIVES:

The course should enable the students to:
I Understand fundamentals of object-oriented terminology and programming concepts in java.
II Acquire basics of how to translate solution problem into object oriented form.
III Develop programs in java for solving simple applications.
IV Design and implement simple program that use exceptions and multithreads.

II. COURSE OUTCOMES (COs):

The course should enable the students to:

I Learn the concept of object oriented programming that helps to organize complex programs

II Understand the appropriate roles of subtyping and inheritance, and use them effectively.

III
Demonstrate an ability to design high speed, fault tolerant applications using multi-threading and
exception handling concepts.

IV Design and develop the java applications by using concepts of interfaces and packages.

V
Experiment with the usage of files and database connectivity, to familiarize the advanced java
programming skills and develop java based web applications.

2 | P a g e

III. SYLLABUS:

UNIT-I OOPS CONCEPTS AND JAVA PROGRAMMING

OOP concepts: Classes and objects, data abstraction, encapsulation, inheritance, benefits of inheritance,

polymorphism, constructors, methods, data types, variables, constants, scope and life time of variables,

operators, operator hierarchy, expressions, type conversion and casting, enumerated types, control flow

statements, arrays, parameter passing.

UNIT-II INHERITANCE

Inheritance: Inheritance hierarchies, super and subclasses, member access rules, Polymorphism:
Dynamic binding, method overriding, abstract classes and methods

UNIT-III EXCEPTION HANDLING AND MULTITHREADING

Exception Handling: Benefits of exception handling, the classification of exceptions, usage of try, catch,

throw, throws and finally.

Multithreading: Differences between multiple processes and multiple threads, thread states, creating threads,

interrupting threads.

UNIT-IV INTERFACES AND PACKAGES

Interface: Interfaces vs Abstract classes, defining an interface, implement interfaces, Packages:

Defining, creating and accessing a package, importing packages.

UNIT-V FILES AND CONNECTING TO DATABASE

Files: streams – byte streams, character stream, text input/output, binary input/output, file management;

Connecting to Database: Connecting to a database, querying a database and processing the results, updating

data with JDBC.

Text Books:

1. Herbert Schildt and Dale Skrien, ―Java Fundamentals – A comprehensive Introduction‖, McGraw Hill,

1st Edition, 2013.

2. Herbert Schildt, ―Java the Complete Reference‖, McGraw Hill, Osborne, 7th Edition, 2011.
3. T.Budd, ―Understanding Object- Oriented Programming with Java‖, Pearson Education, Updated Edition

(New Java 2 Coverage), 1999.

Reference Books:

1. P.J.Dietel and H.M.Dietel , ―Java How to program‖, Prentice Hall, 6th Edition, 2005.

2. P.Radha Krishna , ―Object Oriented Programming through Java‖, CRC Press, 1st Edition, 2007.

3. S.Malhotra and S. Choudhary, ― Programming in Java‖, Oxford University Press, 2nd Edition, 2014.

3 | P a g e

UNIT- I

INTRODUCTION

UNIT – I: OOP concepts: Classes and objects, data abstraction, encapsulation, inheritance,

benefits of inheritance, polymorphism, constructors, methods, data types, variables,

constants, scope and life time of variables, operators, operator hierarchy, expressions, type

conversion and casting, enumerated types, control flow statements, arrays, parameter

passing.

Everywhere you look in the real world you see objects—people, animals, plants, cars, planes,

buildings, computers and so on. Humans think in terms of objects. Telephones, houses, traffic

lights, microwave ovens and water coolers are just a few more objects. Computer programs, such

as the Java programs you’ll read in this book and the ones you’ll write, are composed of lots of

interacting software objects.

 We sometimes divide objects into two categories: animate and inanimate. Animate objects

are ―alive‖ in some sense—they move around and do things. Inanimate objects, on the other

hand, do not move on their own .Objects of both types, however, have some things in common.

They all have attributes (e.g., size, shape, color and weight), and they all exhibit behaviors (e.g.,

a ball rolls, bounces, inflates and deflates; a baby cries, sleep crawls, walks and blinks; a car

accelerates, brakes and turns; a towel absorbs water). We will study the kinds of attributes and

behaviors that software objects have. Humans learn about existing objects by studying their

attributes and observing their behaviors. Different objects can have similar attributes and can

exhibit similar behaviors. Comparisons can be made, for example, between babies and adults and

between humans and chimpanzees. Object-oriented design provides a natural and intuitive way

to view the software design process—namely, modeling objects by their attributes and

behaviors just as we describe real-world objects. OOD also models communication between

objects. Just as people send messages to one another (e.g., a sergeant commands a soldier to

stand at attention), objects also communicate via messages. A bank account object may receive a

message to decrease its balance by a certain amount because the customer has withdrawn that

amount of money.

Object-Oriented:

Although influenced by its predecessors, Java was not designed to be source-code compatible

with any other language. This allowed the Java team the freedom to design with a blank slate.

One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing liberally

from many seminal object-software environments of the last few decades, Java manages to strike

a balance between the purist’s ―everything is an object‖ paradigm and the pragmatist’s ―stay out

of my way‖ model. The object model in Java is simple and easy to extend, while simple types,

such as integers, are kept as high-performance nonobjects.

 OOD encapsulates (i.e., wraps) attributes and operations (behaviors) into objects, an

object’s attributes and operations are intimately tied together. Objects have the property of

information hiding. This means that objects may know how to communicate with one another

across well-defined interfaces, but normally they are not allowed to know how other objects are

implemented, implementation details are hidden within the objects themselves. We can

4 | P a g e

drive a car effectively, for instance, without knowing the details of how engines, transmissions,

brakes and exhaust systems work internally—as long as we know how to use the accelerator

pedal, the brake pedal, the wheel and so on. Information hiding, as we will see, is crucial to good

software engineering.

 Languages like Java are object oriented. Programming in such a language is called

object-oriented programming (OOP), and it allows computer programmers to implement an

object-oriented design as a working system. Languages like C, on the other hand, are procedural,

so programming tends to be action oriented. In C, the unit of programming is the function.

Groups of actions that perform some common task are formed into functions, and functions are

grouped to form programs. In Java, the unit of programming is the class from which objects are

eventually instantiated (created). Java classes contain methods (which implement operations and

are similar to functions in C) as well as fields (which implement attributes).

Java programmers concentrate on creating classes. Each class contains fields, and the set of

methods that manipulate the fields and provide services to clients (i.e., other classes that use the

class). The programmer uses existing classes as the building blocks for constructing new classes.

Classes are to objects as blueprints are to houses. Just as we can build many houses from one

blueprint, we can instantiate (create) many objects from one class.

Classes can have relationships with other classes. For example, in an object-oriented design of a

bank, the ―bank teller‖ class needs to relate to the ―customer‖ class, the ―cash drawer‖ class, the

―safe‖ class, and so on. These relationships are called associations.

Packaging software as classes makes it possible for future software systems to reuse the classes.

Groups of related classes are often packaged as reusable components. Just as realtors often say

that the three most important factors affecting the price of real estate are ―location, location and

location,‖ people in the software community often say that the three most important factors

affecting the future of software development are ―reuse, reuse and reuse.‖ Reuse of existing

classes when building new classes and programs saves time and effort. Reuse also helps

programmers build more reliable and effective systems, because existing classes and

components often have gone through extensive testing, debugging and performance tuning.

 Indeed, with object technology, you can build much of the software you will need by combining

classes, just as automobile manufacturers combine interchangeable parts. Each new class you

create will have the potential to become a valuable software asset that you and other

programmers can use to speed and enhance the quality of future software development efforts.

NEED FOR OOP PARADIGM:

Object-Oriented Programming:

Object-oriented programming is at the core of Java. In fact, all Java programs are object-

oriented—this isn’t an option the way that it is in C++, for example. OOP is so integral to Java.

Therefore, this chapter begins with a discussion of the theoretical aspects of OOP.

5 | P a g e

Two Paradigms of Programming:

As you know, all computer programs consist of two elements: code and data. Furthermore,a

program can be conceptually organized around its code or around its data. That is, some

programs are written around ―what is happening‖ and others are written around ―who is being

affected.‖ These are the two paradigms that govern how a program is constructed.

The first way is called the process-oriented model. This approach characterizes a program as a

series of linear steps (that is, code). The process-oriented model can be thought of as code acting

on data. Procedural languages such as C employ this model to considerable success. Problems

with this approach appear as programs grow larger and more complex. To manage increasing

complexity, the second approach, called object-oriented programming, was conceived.

 Object-oriented programming organizes a program around its data (that is, objects) and a set of

well-defined interfaces to that data. An object-oriented program can be characterized as data

controlling access to code. As you will see, by switching the controlling entity to data, you can

achieve several organizational benefits.

Procedure oriented Programming:

In this approach, the problem is always considered as a sequence of tasks to be done. A number

of functions are written to accomplish these tasks. Here primary focus on ―Functions‖ and little

attention on data.

There are many high level languages like COBOL, FORTRAN, PASCAL, C used for

conventional programming commonly known as POP.

POP basically consists of writing a list of instructions for the computer to follow, and organizing

these instructions into groups known as functions.

Normally a flowchart is used to organize these actions and represent the flow of control logically

sequential flow from one to another. In a multi-function program, many important data items are

placed as global so that they may be accessed by all the functions. Each function may have its

own local data. Global data are more vulnerable to an in advent change by a function. In a large

program it is very difficult to identify what data is used by which function. In case we need to

6 | P a g e

revise an external data structure, we should also revise all the functions that access the data. This

provides an opportunity for bugs to creep in.

Drawback: It does not model real world problems very well, because functions are action

oriented and do not really corresponding to the elements of the problem.

Characteristics of POP:

 Emphasis is on doing actions.

 Large programs are divided into smaller programs known as functions.

 Most of the functions shared global data.

 Data move openly around the program from function to function.

 Functions transform data from one form to another.

 Employs top-down approach in program design.

OOP:

OOP allows us to decompose a problem into a number of entities called objects and then builds

data and methods around these entities.

DEF: OOP is an approach that provides a way of modularizing programs by creating portioned

memory area for both data and methods that can used as templates for creating copies of such

modules on demand.

That is, an object a considered to be a partitioned area of computer memory that stores data and

set of operations that can access that data. Since the memory partitions are independent, the

objects can be used in a variety of different programs without modifications.

7 | P a g e

OOP Chars:

 Emphasis on data.

 Programs are divided into what are known as methods.

 Data structures are designed such that they characterize the objects.

 Methods that operate on the data of an object are tied together.

 Data is hidden.

 Objects can communicate with each other through methods.

 Reusability.

 Follows bottom-up approach in program design.

Organization of OOP:

Evolution of Computing and Programming: Computer use is increasing in almost every field

of endeavor. Computing costs have been decreasing dramatically due to rapid developments in

both hardware and software technologies. Computers that might have filled large rooms and cost

millions of dollars decades ago can now be inscribed on silicon chips smaller than a fingernail,

costing perhaps a few dollars each. Fortunately, silicon is one of the most abundant materials on

earth it is an ingredient in common sand. Silicon chip technology has made computing so

economical that about a billion general-purpose computers are in use worldwide, helping people

method

method

method

8 | P a g e

in business, industry and government, and in their personal lives. The number could easily

double in the next few years. Over the years, many programmers learned the programming

methodology called structured programming.

You will learn structured programming and an exciting newer methodology, object-oriented

programming. Why do we teach both? Object orientation is the key programming methodology

used by programmers today. You will create and work with many software objects in this text.

But you will discover that their internal structure is often built using structured-programming

techniques. Also, the logic of manipulating objects is occasionally expressed with structured

programming.

Language of Choice for Networked Applications: Java has become the language of choice for

implementing Internet-based applications and software for devices that communicate over a

network. Stereos and other devices in homes are now being networked together by Java

technology. At the May 2006 JavaOne conference, Sun announced that there were one billion

java-enabled mobile phones and hand held devices! Java has evolved rapidly into the large-scale

applications arena. It’s the preferred language for meeting many organizations’ enterprise-

wide programming needs. Java has evolved so rapidly that this seventh edition of Java How to

Program was published just 10 years after the first edition was published. Java has grown so

large that it has two other editions. The Java Enterprise Edition (Java EE) is geared toward

developing large-scale, distributed networking applications and web-based applications. The

Java Micro Edition (Java ME) is geared toward developing applications for small, memory

constrained devices, such as cell phones, pagers and PDAs.

Data Abstraction

An essential element of object-oriented programming is abstraction. Humans manage

complexity through abstraction. For example, people do not think of a car as a set ofte ns of

thousands of individual parts. They think of it as a well-defined object with its own unique

behavior. This abstraction allows people to use a car to drive to the grocery store without being

overwhelmed by the complexity of the parts that form the car. They can ignore the details of how

the engine, transmission, and braking systems work. Instead they are free to utilize the object as

a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications.

This allows you to layer the semantics of complex systems, breaking them into more manageable

pieces. From the outside, the car is a single object. Once inside, you see that the car consists of

several subsystems: steering, brakes, sound system, seat belts, heating, cellular phone, and so on.

In turn, each of these subsystems is made up of more specialized units. For instance, the sound

system consists of a radio, a CD player, and/or a tape player. The point is that you manage the

complexity of the car (or any other

complex system) through the use of hierarchical abstractions.

9 | P a g e

Encapsulation

An object encapsulates the methods and data that are contained inside it .the rest of the system

interacts with an object only through a well defined set of services that it provides.

Inheritance

 I have more information about Flora – not necessarily because she is a florist but because

she is a shopkeeper.

 One way to think about how I have organized my knowledge of Flora is in terms of a

hierarchy of categories:

Fig: A Class Hierarchy for Different kinds of Material objects

CLASSES AND OBJECTS

Concepts of classes and objects:

Class Fundamentals

Classes have been used since the beginning of this book. However, until now, only the

most rudimentary form of a class has been used. The classes created in the preceding chapters

primarily exist simply to encapsulate the main() method, which has been used to demonstrate the

basics of the Java syntax.

10 | P a g e

Thus, a class is a template for an object, and an object is an instance of a class. Because

an object is an instance of a class, you will often see the two words object and instance used

interchangeably.

The General Form of a Class

When you define a class, you declare its exact form and nature. You do this by specifying

the data that it contains and the code that operates on that data.

A class is declared by use of the class keyword. The classes that have been used up to

this point are actually very limited examples of its complete form. Classes can (and usually do)

get much more complex. The general form of a class definition is shown here:

class classname {

type instance-variable1;

type instance-variable2;

// ...

type instance-variableN;

type methodname1(parameter-list) {

// body of method

}

type methodname2(parameter-list) {

// body of method

}

// ...

type methodnameN(parameter-list) {

// body of method

}

}

The data, or variables, defined within a class are called instance variables. The code is

contained within methods. Collectively, the methods and variables defined within a class are

called members of the class. In most classes, the instance variables are acted upon and accessed

by the methods defined for that class. Thus, it is the methods that determine how a class’ data

can be used.

Declaring Objects

As just explained, when you create a class, you are creating a new data type. You can use

this type to declare objects of that type. However, obtaining objects of a class is a two-step

process. First, you must declare a variable of the class type. This variable does not define an

object. Instead, it is simply a variable that can refer to an object. Second, you must acquire an

actual, physical copy of the object and assign it to that variable. You can do this using the new

operator. The new operator dynamically allocates (that is, allocates at run time) memory for an

object and returns a reference to it. This reference is, more or less, the address in memory of the

object allocated by new.

11 | P a g e

Ex: Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to

show each step more clearly:

Box mybox; // declare reference to object

mybox = new Box(); // allocate a Box object

A Closer Look at new

As just explained, the new operator dynamically allocates memory for an object. It has this

general form:

class-var = new classname();

Here, class-var is a variable of the class type being created. The classname is the name of the

class that is being instantiated. The class name followed by parentheses specifies the constructor

for the class. A constructor defines what occurs when an object of a class is created. Constructors

are an important part of all classes and have many significant attributes. Most real-world classes

explicitly define their own constructors within their class definition. However, if no explicit

constructor is specified, then Java will automatically supply a default constructor. This is the

case with Box.

12 | P a g e

POLYMORPHISM

Polymorphism is the ability of an object to take on many forms. The most common use of polymorphism

in OOP occurs when a parent class reference is used to refer to a child class object.

Any Java object that can pass more than one IS-A test is considered to be polymorphic. In Java, all Java

objects are polymorphic since any object will pass the IS-A test for their own type and for the class

Object.

It is important to know that the only possible way to access an object is through a reference variable. A

reference variable can be of only one type. Once declared, the type of a reference variable cannot be

changed.

The reference variable can be reassigned to other objects provided that it is not declared final. The type

of the reference variable would determine the methods that it can invoke on the object.

A reference variable can refer to any object of its declared type or any subtype of its declared type. A

reference variable can be declared as a class or interface type.

Now, the Deer class is considered to be polymorphic since this has multiple inheritance. Following are

true for the above examples −

 A Deer IS-A Animal

 A Deer IS-A Vegetarian

 A Deer IS-A Deer

 A Deer IS-A Object

When we apply the reference variable facts to a Deer object reference, the following declarations are

legal −

CONSTRUCTORS:

A constructor initializes an object when it is created. It has the same name as its class and is

syntactically similar to a method. However, constructors have no explicit return type.

Typically, you will use a constructor to give initial values to the instance variables defined by

the class, or to perform any other start-up procedures required to create a fully formed object.

All classes have constructors, whether you define one or not, because Java automatically

provides a default constructor that initializes all member variables to zero. However, once you

define your own constructor, the default constructor is no longer used.

Syntax

Following is the syntax of a constructor −

class ClassName {

 ClassName() {

13 | P a g e

 }

}

Java allows two types of constructors namely −

 No argument Constructors

 Parameterized Constructors

No argument Constructors

As the name specifies the no argument constructors of Java does not accept any parameters instead,

using these constructors the instance variables of a method will be initialized with fixed values for all

objects.

Example

Public class MyClass {

 Int num;

 MyClass() {

 num = 100;

 }

}

Parameterized Constructors

Most often, you will need a constructor that accepts one or more parameters. Parameters are added to a

constructor in the same way that they are added to a method, just declare them inside the parentheses

after the constructor's name.

Example

Here is a simple example that uses a constructor −

// A simple constructor.

class MyClass {

 int x;

 // Following is the constructor

 MyClass(int i) {

 x = i;

 }

}

14 | P a g e

HISTORY OF JAVA

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and

Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first

Working version. This language was initially called ―Oak‖ but was renamed ―Java‖in 1995.

Between the initial implementation of Oak in the fall of 1992 and the public Announcement of

Java in the spring of 1995, many more people contributed to the designand evolution of the

language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lind Holm were key

contributors to the maturing of the original prototype.

The trouble With C and C++ (and most other languages) is that they are designed to be

compiled For a specific target. Although it is possible to compile a C++ program for just about

Any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The Problem is

that compilers are expensive and time-consuming to create. An easier—and more cost-

efficient—solution was needed. In an attempt to find such a solution,Gosling and others began

work on a portable, platform-independent language thatcould be used to produce code that would

run on a variety of CPUs under differing Environments. This effort ultimately led to the creation

of Java.

As mentioned earlier, Java derives much of its character from C and C++. This is by

intent. The Java designers knew that using the familiar syntax of C and echoing the object-

oriented features of C++ would make their language appealing to the legions of experienced

C/C++ programmers. In addition to the surface similarities, Java shares some of the other

attributes that helped make C and C++ successful. First, Java was designed, tested, and refined

by real, working programmers.

The Java Buzzwords:

No discussion of the genesis of Java is complete without a look at the Java buzzwords.

Although the fundamental forces that necessitated the invention of Java are portability and

security, other factors also played an important role in molding the final form of the language.

The key considerations were summed up by the Java team in the Following list of buzzwords:

 Simple

 Secure

 Portable

 Object-oriented

 Robust

 Multithreaded

 Architecture-neutral

 Interpreted

 High performance

 Distributed

 Dynamic

15 | P a g e

Simple:

Java was designed to be easy for the professional programmer to learn and use

effectively. Assuming that you have some programming experience, you will not find Java hard

to master. If you already understand the basic concepts of object-oriented programming, learning

Java will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java

will require very little effort. Because Java inherits the C/C++ syntax and many of the object-

oriented features of C++, most programmers have little trouble learning Java..

Object-Oriented:

Although influenced by its predecessors, Java was not designed to be source-code

compatible with any other language. Borrowing liberally from many seminal object-software

environments of the last few decades, Java manages to strike a balance between the purist’s

―everything is an object‖ paradigm and the pragmatist’s ―stay out of my way‖ model.

Robust

The multi platformed environment of the Web places extraordinary demands on a

program, because the program must execute reliably in a variety of systems. Thus, the ability to

create robust programs was given a high priority in the design of Java.

To better understand how Java is robust, consider two of the main reasons for

program failure: memory management mistakes and mishandled exceptional conditions (that is,

run-time errors). Memory management can be a difficult, tedious ask in traditional programming

environments. For example, in C/C++, the pro grammer must manually allocate and free all

dynamic memory. This sometimes leads to problems, because programmers will either forget to

free memory that has been previously allocated or, worse, try to free some memory that another

part of their code is still using. Java virtually eliminates these problems by managing memory

allocation and deallocation for you.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked

programs. To accomplish this, Java supports multithreaded programming, which allows you to

write programs that do many things simultaneously. The Java run-time system comes with an

elegant yet sophisticated solution for multiprocess .synchronization that enables you to construct

smoothly running interactive systems.

Architecture-Neutral:

A central issue for the Java designers was that of code longevity and portability. One of

the main problems facing programmers is that no guarantee exists that if you write a program

today, it will run tomorrow—even on the same machine. Operating system up grades, processor

upgrades, and changes in core system resources can all combine to make a program malfunction.

The Java designers made several hard decisions in the Java language and the Java Virtual

Machine in an attempt to alter this situation. Their goal was ―write once; run anywhere, any time,

forever.‖ To a great extent, this goal was accomplished.

Interpreted and High Performance

16 | P a g e

As described earlier, Java enables the creation of cross-platform programs by compiling

into an intermediate representation called Java bytecode. This code can be interpreted on any

system that provides a Java Virtual Machine. Most previous attempts at cross platform solutions

have done so at the expense of performance. Other interpreted systems, such as BASIC, Tcl, and

PERL, suffer from almost insurmountable performance deficits. Java, however, was designed to

perform well on very low-power CPUs.

Distributed:

Java is designed for the distributed environment of the Internet, because it handles

TCP/IP protocols. In fact, accessing a resource using a URL is not much different from accessing

a file. The original version of Java (Oak) included features for intra address-space messaging.

This allowed objects on two different computers to execute procedures remotely. Java revived

these interfaces in a package called Remote MethodInvocation (RMI). This feature brings an

unparalleled level of abstraction to client/server programming.

Dynamic

Java programs carry with them substantial amounts of run-time type information that is

used to verify and resolve accesses to objects at run time. This makes it possible to dynamically

link code in a safe and expedient manner. This is crucial to the robustness of the applet

environment, in which small fragments of bytecode may be dynamically updated on a running

system.

DATA TYPES

Java defines eight simple (or elemental) types of data: byte, short, int, long, char, float, double,

and boolean. These can be put in four groups:

 Integers: This group includes byte, short, int, and long, which are for whole valued

signed numbers.

 Floating-point numbers: This group includes float and double, which represent

 numbers with fractional precision.

 Characters: This group includes char, which represents symbols in a character

 set, like letters and numbers.

 Boolean: This group includes boolean, which is a special type for representing

 true/false values.

Integers

Java defines four integer types: byte, short, int, and long. All of these are signed,

positive and negative values. Java does not support unsigned, positive-only integers. Many other

Computer languages, including C/C++, support both signed and unsigned integers.

17 | P a g e

Name Width Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range from –128to

127. Variables of type byte are especially useful when you’re working with a streamof data from

a network or file. They are also useful when you’re working with rawbinary data that may not be

directly compatible with Java’s other built-in types.

Syntax: byte b, c;

short

short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the

least-used Java type, since it is defined as having its high byte first (called big-endian format).

This type is mostly applicable to 16-bit computers, which are becoming increasingly scarce.

Here are some examples of short variable declarations:

short s;

short t;

int

The most commonly used integer type is int. It is a signed 32-bit type that has a range

from –2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are

commonly employed to control loops and to index arrays. Any time you have an integer

expression involving bytes, shorts, ints, and literal numbers, the entire expression Is promoted

to int before the calculation is done.

long

long is a signed 64-bit type and is useful for those occasions where an int type is notlarge

enough to hold the desired value. The range of a long is quite large. This makesit useful when

big, whole numbers are needed. For example, here is a program thatcomputes the number of

miles that light will travel in a specified number of days.

Floating-Point Types

Floating-point numbers, also known as real numbers, are used when evaluating expressions that

require fractional precision. For example, calculations such as square root, or transcendentals

such as sine and cosine, result in a value whose precision requires a floating-point type.

Their width and ranges are shown here:

18 | P a g e

Name Width Bits Approximate Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e−045 to 3.4e+038

float

The type float specifies a single-precision value that uses 32 bits of storage. Single

precision is faster on some processors and takes half as much space as double precision, but will

become imprecise when the values are either very large or very small. Variables of type float are

useful when you need a fractional component, but don’t require a large degree of precision. For

example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a value.

Double precision is actually faster than single precision on some modern processors that have

been optimized for high-speed mathematical calculations.

Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle.

class Area {

public static void main(String args[]) {

double pi, r, a;

r = 10.8; // radius of circle

pi = 3.1416; // pi, approximately

a = pi * r * r; // compute area

System.out.println("Area of circle is " + a);

}

}

Characters

In Java, the data type used to store characters is char. However, C/C++ programmers

beware: char in Java is not the same as char in C or C++. In C/C++, char is an integertype that

is 8 bits wide. This is not the case in Java. Instead, Java uses Unicode to representcharacters..

There are no negative chars. The standard set of characters known asASCII still ranges from 0 to

127 as always, and the extended 8-bit character set, ISO-Latin-1,ranges from 0 to 255.

Booleans

Java has a simple type, called boolean, for logical values. It can have only one of

twopossible values, true or false. This is the type returned by all relational operators, suc has a <

b. boolean is also the type required by the conditional expressions that govern the control

statements such as if and for.

Here is a program that demonstrates the boolean type:

THE JAVA LANGUAGEThere are three interesting things to notice about this program. First, as

you can see,when a boolean value is output by println(), ―true‖ or ―false‖ is displayed.

19 | P a g e

Second,the value of a boolean variable is sufficient, by itself, to control the if statement. Thereis

no need to write an if statement like this:

if(b == true) ...

Third, the outcome of a relational operator, such as <, is a boolean value. This is why

the expression 10 > 9 displays the value ―true.‖ Further, the extra set of parentheses

around 10 > 9 is necessary because the + operator has a higher precedence than the >.

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the

combination of an identifier, a type, and an optional initializer. In addition, all variables have a

scope, which defines their visibility, and a lifetime. These elementsare examined next.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of

a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...] ;

The type is one of Java’s atomic types, or the name of a class or interface. (Class and

interface types are discussed later in Part I of this book.) The identifier is the name of the

variable. ANGUAGE

Here are several examples of variable declarations of various types. Note that some

include an initialization.

int a, b, c; // declares three ints, a, b, and c.

int d = 3, e, f = 5; // declares three more ints, initializing

 // d and f.

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main() method.

However, Java allows variables to be declared within any block. As explained in Chapter 2, a

block is begun with an opening curly brace and ended by a closing curlybrace. A block defines a

scope. Thus, each time you start a new block, you are creating a new scope. As you probably

know from your previous programming experience, a scope determines what objects are visible

to other parts of your program. It also determines the lifetime of those objects.

Most other computer languages define two general categories of scopes: global and local.

However, these traditional scopes do not fit well with Java’s strict, object oriented model. The

scope defined by a method begins with its opening curly brace.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.

20 | P a g e

Arrays

An array is a group of like-typed variables that are referred to by a common name. Arrays

of any type can be created and may have one or more dimensions. A specific elementin an array

is accessed by its index. Arrays offer a convenient means of grouping related information.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first

must create an array variable of the desired type. The general form of a one dimensional array

declaration is

type var-name[];

Here, type declares the base type of the array. The base type determines the data type

of each element that comprises the array.

// Demonstrate a one-dimensional array.

class Array {

THE JAVA LANGUAGE

public static void main(String args[]) {

int month_days[];

month_days = new int[12];

month_days[0] = 31;

month_days[1] = 28;

month_days[2] = 31;

month_days[3] = 30;

month_days[4] = 31;

month_days[5] = 30;

month_days[6] = 31;

month_days[7] = 31;

month_days[8] = 30;

month_days[9] = 31;

month_days[10] = 30;

month_days[11] = 31;

System.out.println("April has " + month_days[3] + " days.");

}

}

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you mightexpect,

look and act like regular multidimensional arrays. However, as you will see there are a couple of

subtle differences. To declare a multidimensional array variable,specify each additional index

using another set of square brackets. For example, the following declares a two-dimensional

array variable called twoD.

int twoD[][] = new int[4][5];

21 | P a g e

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as an

array of arrays of int.

// Demonstrate a two-dimensional array.

class TwoDArray {

public static void main(String args[]) {

int twoD[][]= new int[4][5];

int i, j, k = 0;

for(i=0; i<4; i++)

for(j=0; j<5; j++) {

twoD[i][j] = k;

k++;

}

for(i=0; i<4; i++) {

for(j=0; j<5; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}

}

}

This program generates the following output:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

As stated earlier, since multidimensional arrays are actually arrays of arrays, the length of each

array is under your control. For example, the following program creates a two dimensional array

in which the sizes of the second dimension are unequal.

OPERATORS

Arithmetic operators are used in mathematical expressions in the same way that they

are used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition

– Subtraction (also unary minus)

 * Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

–= Subtraction assignment

*= Multiplication assignment

/= Division assignment

22 | P a g e

%= Modulus assignment

– – Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot

use them on boolean types, but you can use them on char types, since the char type in Java is,

essentially, a subset of int.

The Bitwise Operators

Java defines several bitwise operators which can be applied to the integer types, long,

int, short, char, and byte. These operators act upon the individual bits of their operands.

They are summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Relational Operators

The relational operators determine the relationship that one operand has to the other.

Specifically, they determine equality and ordering. The relational operators are

shown here:

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are

most frequently used in the expressions that control the if statement and the various

loop statements.

23 | P a g e

The Assignment Operator

 You have been using the assignment operator since Chapter 2. Now it is time to take

a formal look at it. The assignment operator is the single equal sign, =. The assignment operator

works in Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be

familiar with: it allows you to create a chain of assignments. For example, consider

this fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works

because the = is an operator that yields the value of the right-hand expression. Thus, the value of

z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a ―chain of

assignment‖ is an easy way to set a group of variables to a common value.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types ofif-

then-else statements. This operator is the ?, and it works in Java much like it doesin C, C++, and

C#. It can seem somewhat confusing at first, but the ? can be used very effectively once

mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is

true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?

operation is that of the expression evaluated. Both expression2 and expression3 are required to

return the same type, which can’t be void.

CONTROL STATEMENTS

if

The if statement was introduced in Chapter 2. It is examined in detail here. The if

statement is Java’s conditional branch statement. It can be used to route program execution

through two different paths. Here is the general form of the if statement:

if (condition) statement1;

else statement2;

Here, each statement may be a single statement or a compound statement enclosed in

curly braces (that is, a block). The condition is any expression that returns a boolean value. The

else clause is optional.

int a, b;

// ...

if(a < b) a = 0;

else b = 0;

24 | P a g e

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the

if-else-if ladder. It looks like this:

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

...

else

statement;

switch

The switch statement is Java’s multiway branch statement. It provides an easy way to

dispatch execution to different parts of your code based on the value of an expression. As such, it

often provides a better alternative than a large series of if-else-if statements.

Here is the general form of a switch statement:

switch (expression) {

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

...

case valueN:

// statement sequence

break;

default:

// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified

in the case statements must be of a type compatible with the expression. Each case

value must be a unique literal (that is, it must be a constant, not a variable). Duplicate

case values are not allowed

Iteration Statements

Java’s iteration statements are for, while, and do-while. These statements create what we

commonly call loops. As you probably know, a loop repeatedly executes the same set of

instructions until a termination condition is met. As you will see, Java has a loop to fit any

programming need.

25 | P a g e

While

The while loop is Java’s most fundamental looping statement. It repeats a statement or

block while its controlling expression is true. Here is its general form:

While (condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long as

the conditional expression is true. When condition becomes false, control passes to the next line

of code immediately following the loop. The curly braces are unnecessary if only a single

statement is being repeated.

do-while

As you just saw, if the conditional expression controlling a while loop is initially false,

then the body of the loop will not be executed at all. However, sometimes it is desirable to

execute the body of a while loop at least once, even if the conditional expression is false to begin

with.

Systex:

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then

evaluates the conditional expression. If this expression is true, the loop will repeat.

Otherwise, the loop terminates.

// Demonstrate the do-while loop.

class DoWhile {

public static void main(String args[]) {

int n = 10;

do {

System.out.println("tick " + n);

n--;

} while(n > 0);

}

}

For

You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a

powerful and versatile construct. Here is the general form of the for statement:

for(initialization; condition; iteration) {

// body

}

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion of the loop

is executed. Generally, this is an expression that sets the value of the loopcontrol variable, which

acts as a counter that controls the loop.. Next, condition is evaluated. This must be a Boolean

expression. It usually tests the loop control variable against a target value. If this expression is

true, then the body of the loop is executed. If it is false, the loop terminates. Next, the iteration

26 | P a g e

portion of the loop is executed. This is usually an expression that increments or decrements the

loop control variable. GUAGE

// Demonstrate the for loop.

class ForTick {

public static void main(String args[]) {

int n;

for(n=10; n>0; n--)

System.out.println("tick " + n);

}

}

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a

statement sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be

used as a ―civilized‖ form of goto. The last two uses are explained here.

Return

The last control statement is return. The return statement is used to explicitly return

from a method. That is, it causes program control to transfer back to the caller of the method. As

such, it is categorized as a jump statement. Although a full discussion of return must wait until

methods are discussed in Chapter 7, a brief look at return is presented here.

As you can see, the final println() statement is not executed. As soon as return is

executed, control passes back to the caller.

Type Conversion and Casting

Type Conversion and Casting

If you have previous programming experience, then you already know that it is fairly common to

assign a value of one type to a variable of another type. If the two types are compatible, then

Java will perform the conversion automatically. For example, it is always possible to assign an

int value to a long variable. However, not all types are compatible, and thus, not all type

conversions are implicitly allowed.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type

conversion will take place if the following two conditions are met:

■ The two types are compatible.

■ The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the

int type is always large enough to hold all valid byte values, so no explicit cast statement is

required.

27 | P a g e

It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For

example, the following fragment casts an int to a byte. If the integer’s value is larger

than the range of a byte, it will be reduced modulo (the remainder of an integer

division by the) byte’s range.

int a;

byte b;

// ...

b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an integer

type: truncation. As you know, integers do not have fractional components.Thus, when a

floating-point value is assigned to an integer type, the fractional component is lost. For example,

if the value 1.23 is assigned to an integer, the resulting value will simply be 1. The 0.23 will have

been truncated. Of course, if the size of the whole number component is too large to fit into the

target integer type, then that value will be reduced modulo the target type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.

class Conversion {

public static void main(String args[]) {

byte b;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;

System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");

i = (int) d;

System.out.println("d and i " + d + " " + i);

System.out.println("\nConversion of double to byte.");

b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}

This program generates the following output:

THE JAVA LANGUAGE

Conversion of int to byte.

i and b 257 1

Conversion of double to int.

d and i 323.142 323

28 | P a g e

Conversion of double to byte.

d and b 323.142 67

SIMPLE JAVA PROGRAM

/*

This is a simple Java program.

Call this file "Example.java".

*/

class Example {

// Your program begins with a call to main().

public static void main(String args[]) {

System.out.println("This is a simple Java program.");

}

}

Access Control

As you know, encapsulation links data with the code that manipulates it. However,

encapsulation provides another important attribute: access control.

How a member can be accessed is determined by the access specifier that modifies its

declaration. Java supplies a rich set of access specifiers. Some aspects of access control are

related mostly to inheritance or packages. (A package is, essentially, a grouping of classes.)

These parts of Java’s access control mechanism will be discussed later. Here, let’s begin by

examining access control as it applies to a single class. Once you understand the fundamentals of

access control, the rest will be easy. Java’s access specifiers are public, private, and protected.

Java also defines a

default access level. protected applies only when inheritance is involved. The other

access specifiers are described next.

Let’s begin by defining public and private. When a member of a class is modified by the

public specifier, then that member can be accessed by any other code. When a member of a class

is specified as private, then that member can only be accessed byother members of its class.

Now you can understand why main() has always been preceded by the public specifier. It is

called by code that is outside the program—that is, by the Java run-time system. When no access

specifier is used, then by default the member of a class is public within its own package, but

cannot be accessed outside of its package.

this Keyword

Sometimes a method will need to refer to the object that invoked it. To allow this, Java

defines the this keyword. this can be used inside any method to refer to the current object. That

is, this is always a reference to the object on which the method was invoked. You can use this

29 | P a g e

anywhere a reference to an object of the current class’ type is permitted. To better understand

what this refers to, consider the following version of Box():

// A redundant use of this.

Box(double w, double h, double d) {

this.width = w;

this.height = h;

this.depth = d;

}

This version of Box() operates exactly like the earlier version. The use of this is redundant,

but perfectly correct. Inside Box(), this will always refer to the invoking object. While

it is redundant in this case, this is useful in other contexts, one of which is explained in

the next section.

Instance Variable Hiding

As you know, it is illegal in Java to declare two local variables with the same name inside

the same or enclosing scopes. Interestingly, you can have local variables,

including formal parameters to methods, which overlap with the names of the class’

instance variables. However, when a local variable has the same name as an instance

variable, the local variable hides the instance variable.

// Use this to resolve name-space collisions.

Box(double width, double height, double depth) {

this.width = width;

this.height = height;

this.depth = depth;

}

A word of caution: The use of this in such a context can sometimes be confusing,

and some programmers are careful not to use local variables and formal parameter

names that hide instance variables.

Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be

wondering how such objects are destroyed and their memory released for later reallocation. In

some languages, such as C++, dynamically allocated objects must be manually released by use

of a delete operator. Java takes a different approach; it handles deallocation for you

automatically. The technique that accomplishes this is Called garbage collection. It works like

this: when no references to an object exist, that object is assumed to be no longer needed, and the

memory occupied by the object can be reclaimed. Furthermore, different Java run-time

implementations will take varying approaches to garbage collection, but for the most part, you

should not have to think about it while writing your programs.

30 | P a g e

Overloading methods and constructors

Overloading Methods

In Java it is possible to define two or more methods within the same class that share the

same name, as long as their parameter declarations are different. When this is the case, the

methods are said to be overloaded, and the process is referred to as method overloading. Method

overloading is one of the ways that Java implements polymorphism.

// Demonstrate method overloading.

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a) {

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter

double test(double a) {

System.out.println("double a: " + a);

return a*a;

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

This program generates the following output:

No parameters

a: 10

a and b: 10 20

double a: 123.25

31 | P a g e

Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times.

Overloading Constructor

In addition to overloading normal methods, you can also overload constructor

methods. In fact, for most real-world classes that you create, overloaded constructors

will be the norm, not the exception. To understand why, let’s return to the Box class

developed in the preceding chapter. Following is the latest version of Box:

THE JAVA LANGUAGE

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

Argument/Parameter passing

In general, there are two ways that a computer language can pass an argument to a

subroutine. The first way is call-by-value. This method copies the value of an argument into the

formal parameter of the subroutine. Therefore, changes made to the parameter of the subroutine

have no effect on the argument. The second way an argument can be passed is call-by-reference.

In this method, a reference to an argument (not the value of the argument) is passed to the

parameter. Inside the subroutine, this reference is used to access the actual argument specified in

the call. This means that changes made to the parameter will affect the argument used to call the

subroutine. As you will see, Java uses both approaches, depending upon what is passed.

For example, consider the following program:

// Simple types are passed by value.

class Test {

void meth(int i, int j) {

i *= 2;

j /= 2;

}

}

32 | P a g e

class CallByValue {

public static void main(String args[]) {

Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " +

a + " " + b);

ob.meth(a, b);

System.out.println("a and b after call: " +

a + " " + b);

}

}

The output from this program is shown here:

a and b before call: 15 20

a and b after call: 15 20

Recursion

Java supports recursion. Recursion is the process of defining something in terms of itself.

As it relates to Java programming, recursion is the attribute that allows a method to call itself. A

method that calls itself is said to be recursive.The classic example of recursion is the

computation of the factorial of a number. The factorial of a number N is the product of all the

whole numbers between 1 and N.

// A simple example of recursion(factorial).

class Factorial {

// this is a recursive function

int fact(int n) {

int result;

if(n==1) return 1;

result = fact(n-1) * n;

return result;

}

}

class Recursion {

public static void main(String args[]) {

Factorial f = new Factorial();

System.out.println("Factorial of 3 is " + f.fact(3));

System.out.println("Factorial of 4 is " + f.fact(4));

System.out.println("Factorial of 5 is " + f.fact(5));

}

}

33 | P a g e

The output from this program is shown here:

Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

34 | P a g e

UNIT-II

INHERITANCE

Inheritance: Inheritance hierarchies, super and subclasses, member access rules
Polymorphism: Dynamic binding, method overriding, abstract classes and methods.

Hierarchical abstractions & Concept of Inheritance:

o In OOP another important feature is Reusability which is very use full in two major

issues of development :

 Saving Time

 Saving Memory

o In C++/Java the mechanism implements this reusability is Inheritance.

General form of a class declaration is:

Class subclass-name extends super class-name

{

 // body of super class

 }

// A simple example of inheritance.

// Create a superclass.

class A {

int i, j;

void showij() {

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

void showk() {

System.out.println("k: " + k);

}

void sum() {

System.out.println("i+j+k: " + (i+j+k));

}

}

class SimpleInheritance {

public static void main(String args[]) {

A superOb = new A();

B subOb = new B();

// The superclass may be used by itself.

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

35 | P a g e

superOb.showij();

System.out.println();

/* The subclass has access to all public members of

its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

subOb.showk();

System.out.println();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

Output:

Contents of superOb:

i and j: 10 20

Contents of subOb:

i and j: 7 8

k: 9

Sum of i, j and k in subOb:

i+j+k: 24

Forms of Inheretence:

 Single Inheretence

 Hierarichal Inherintence

 Multiple Inherintence

 Multilevel Inherintence

 Hybrid Inherintence

Single Inherintence:

Derivation a subclass from only one super class is called Single Inherintence.

Hierarchical Inherintence:

Derivation of several classes from a single super class is called Hierarchical Inherintence:

Multilevel Inheritance:

Derivation of a classes from another derived classes called Multilevel Inheritance.

36 | P a g e

Multiple Inheritance:

Derivation of one class from two or more super classes is called Multiple Inheritance

But java does not support Multiple Inheritance directly. It can be implemented by using interface

concept.

Hybrid Inheritance:

 Derivation of a class involving more than one from on Inheritance is called Hydrid Inheritance

Defining a Subclass:

A subclass is defined as

Systax: class subclass-name extends superclass-name

{

 Variable declaration;

 Method declaration;

}

The keyword extends signifies that the properties of the super class name are extended to the

subclass name. The subclass will now contain its own variables and methods as well as those of

the super class. But it is not vice-versa.

Member access rules

o Even though a subclass includes all of the members of its super class, it cannot access

those members who are declared as Private in super class.

o We can assign a reference of super class to the object of sub class. In that situation we

can access only super class members but not sub class members. This concept is called as

―Super class Reference, Sub class Object‖.

/* In a class hierarchy, private members remain private to their class.

This program contains an error and will not

compile.

*/

// Create a superclass.

class A {

int i; // public by default

private int j; // private to A

void setij(int x, int y) {

i = x;

j = y;

}

}

37 | P a g e

// A's j is not accessible here.

class B extends A {

int total;

void sum() {

total = i + j; // ERROR, j is not accessible here

}

}

class Access {

public static void main(String args[]) {

B subOb = new B();

subOb.setij(10, 12);

subOb.sum();

System.out.println("Total is " + subOb.total);

}

}

Super class variables can refer sub-class object

o To a reference variable of a super class can be assigned a reference to any subclass

derived from that super class.

o When a reference to a subclass object is assigned to a super class reference variable,

we will have to access only to those parts of the object defined by the super class

o It is bcz the super class has no knowledge about what a sub class adds to it.

Program

class RefDemo

{

public static void main(String args[])

{

BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);

Box plainbox = new Box();

double vol;

vol = weightbox.volume();

System.out.println("Volume of weightbox is " + vol);

System.out.println("Weight of weightbox is " +

weightbox.weight);

System.out.println();

// assign BoxWeight reference to Box reference

plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box

System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox

does not define a weight member. */

// System.out.println("Weight of plainbox is " + plainbox.weight);

38 | P a g e

}

}

Using super keyword

o When ever a sub class needs to refer to its immediate super class, it can do so by use of

the key word super.

o Super has two general forms:

o Calling super class constructor

o Used to access a member of the super class that has been hidden by a member of a

sub class

Using super to call super class constructor

o A sub class can call a constructor defined by its super class by use of the following form

of super:

o super (parameter-list);

o Parameter list specifies parameters needed by the constructor in the super class.

Note: Super () must always by the first statement executed inside a sub-class

constuctor.

// A complete implementation of BoxWeight.

class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

39 | P a g e

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box {

double weight; // weight of box

// construct clone of an object

BoxWeight(BoxWeight ob) { // pass object to constructor

super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

// constructor used when cube is created

BoxWeight(double len, double m) {

super(len);

weight = m;

}

}

class DemoSuper {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight(); // default

BoxWeight mycube = new BoxWeight(3, 2);

BoxWeight myclone = new BoxWeight(mybox1);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

40 | P a g e

System.out.println("Weight of mybox2 is " + mybox2.weight);

System.out.println();

vol = mybox3.volume();

System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is " + mybox3.weight);

System.out.println();

vol = myclone.volume();

System.out.println("Volume of myclone is " + vol);

System.out.println("Weight of myclone is " + myclone.weight);

System.out.println();

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

System.out.println("Weight of mycube is " + mycube.weight);

System.out.println();

}

}

Output:

Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

Volume of mybox3 is -1.0

Weight of mybox3 is -1.0

Volume of myclone is 3000.0

Weight of myclone is 34.3

Volume of mycube is 27.0

Weight of mycube is 2.0

Calling members of super class using super

o The second form of super acts somewhat like this keyword, except that it always refers to

the super class of the sub class in which it is used.

o The syntax is:

o Super.member ;

o Member can either be method or an instance variable

Program

// Using super to overcome name hiding.

class A {

int i;

}

// Create a subclass by extending class A.

class B extends A {

int i; // this i hides the i in A

B(int a, int b) {

super.i = a; // i in A

41 | P a g e

i = b; // i in B

}

void show() {

System.out.println("i in superclass: " + super.i);

System.out.println("i in subclass: " + i);

}

}

class UseSuper {

public static void main(String args[]) {

B subOb = new B(1, 2);

subOb.show();

}

}

Output:

i in superclass: 1

i in subclass: 2

When the constructor called:

Always the super class constructor will be executed first and sub class constructor will be

executed last.

// Demonstrate when constructors are called.

// Create a super class.

class A {

A() {

System.out.println("Inside A's constructor.");

}

}

// Create a subclass by extending class A.

class B extends A {

B() {

System.out.println("Inside B's constructor.");

}

}

// Create another subclass by extending B.

class C extends B {

C() {

System.out.println("Inside C's constructor.");

}

}

class CallingCons {

public static void main(String args[]) {

C c = new C();

}

}

42 | P a g e

Output:

Inside A’s constructor

Inside B’s constructor

Inside C’s constructor

Using Final keyword:

 We can use final key word in three ways:

o Used to create equivalent of a named constant

 Final datatype identifier = ………..;

o Used to prevent inheritance

 Final class …………..

o Used to avoid overloading

 Final return type ………….

Using final to Prevent Overriding:

While method overriding is one of Java’s most powerful features, there will be times when you

will want to prevent it from occurring. To disallow a method from being overridden, specify

final as a modifier at the start of its declaration. Methods declared as final cannot be overridden.

The following fragment illustrates final:

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR! Can't override.

System.out.println("Illegal!");

}

}

Using final to Prevent Inheritance:

Sometimes you will want to prevent a class from being inherited. To do this, precede the class

declaration with final. Declaring a class as final implicitly declares all of its methods as final,

too. As you might expect, it is illegal to declare a class as both abstract and final since an

abstract class is incomplete by itself and relies upon its subclasses to provide complete

implementations.

43 | P a g e

Here is an example of a final class:

final class A {

// ...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A

// ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

 Polymorphism Method overriding:

 In a class hierarchy, when a method in a sub class has the same name and type signature

as a method in its super class, then the method in the sub class is said to be override the

method in the sub class.

 When an overridden method is called from within a sub class, it will always refers to the

version of that method defined by the sub class.

 The version of the method defined in the super class is hidden.

 In this situation, first it checks the method is existed in super class are not. If it is existed

then it executes the version of sub class otherwise it gives no such method found

exception.

Note: Methods with different signatures overloading but not overriding.

// Method overriding.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// display k – this overrides show() in A

void show() {

System.out.println("k: " + k);

}

44 | P a g e

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}

}

Output:

k: 3

Dynamic method dispatch

o It is a mechanism by which a call to an overridden method is resolved at run time rather

then compile time.

o It is important because this is how java implements runtime polymorphism.

o Before going to that we must know about super class reference sub class object.

// Dynamic Method Dispatch

class A {

void callme() {

System.out.println("Inside A's callme method");

}

}

class B extends A {

// override callme()

void callme() {

System.out.println("Inside B's callme method");

}

}

class C extends A {

// override callme()

void callme() {

System.out.println("Inside C's callme method");

}

}

class Dispatch {

public static void main(String args[]) {

A a = new A(); // object of type A

B b = new B(); // object of type B

C c = new C(); // object of type C

A r; // obtain a reference of type A

r = a; // r refers to an A object

r.callme(); // calls A's version of callme

r = b; // r refers to a B object

45 | P a g e

r.callme(); // calls B's version of callme

r = c; // r refers to a C object

r.callme(); // calls C's version of callme

}

}

Output:

Inside A’s callme method

Inside B’s callme method

Inside C’s callme method

Abstract class:

o An abstract method is a method that is declared with only its signatures with out

implementations.

o An abstract class is class that has at least one abstract method.

The syntax is:

Abstract class class-name

{

Variables

Abstract methods;

Concrete methods;

}

o We can’t declare any abstract constructor.

o Abstract class should not include any abstract static method.

o Abstract class can’t be directly instantiated with the new operator.

o Any sub class of abstract class must be either implements all the abstract methods in the

super class or declared it self as abstract.

o Abstract modifier referred as ―subclass responsibilities‖ . because of no implementation of

methods. Thus, a sub class must overridden them.

// A Simple demonstration of abstract.

abstract class A {

abstract void callme();

// concrete methods are still allowed in abstract classes

void callmetoo() {

System.out.println("This is a concrete method.");

}

}

class B extends A {

void callme() {

System.out.println("B's implementation of callme.");

}

46 | P a g e

}

class AbstractDemo {

public static void main(String args[]) {

B b = new B();

b.callme();

b.callmetoo();

}

}

// Using abstract methods and classes.

abstract class Figure {

double dim1;

double dim2;

Figure(double a, double b) {

dim1 = a;

dim2 = b;

}

// area is now an abstract method

abstract double area();

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

Triangle(double a, double b) {

super(a, b);

}

// override area for right triangle

double area() {

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2;

}

}

class AbstractAreas

{

public static void main(String args[])

{

47 | P a g e

// Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref; // this is OK, no object is created

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

}

}

48 | P a g e

UNIT-III

Exception Handling: Benefits of exception handling, the classification of exceptions, usage

of try, catch, throw, throws and finally.

Multithreading: Differences between multiple processes and multiple threads, thread

states, creating threads, interrupting threads.

Introduction

o An exception is an event that occurs during the execution of a program that disrupts the

normal flow of instruction.

 Or

o An abnormal condition that disrupts Normal program flow.

o There are many cases where abnormal conditions happen during program execution, such

as

o Trying to access an out - of – bounds array elements.

o The file you try to open may not exist.

o The file we want to load may be missing or in the wrong format.

o The other end of your network connection may be non – existence.

o If these cases are not prevented or at least handled properly, either the program will be

aborted abruptly, or the incorrect results or status will be produced.

o When an error occurs with in the java method, the method creates an exception object

and hands it off to the runtime system.

o The exception object contains information about the exception including its type and the

state of the program when the error occurred. The runtime system is then responsible for

finding some code to handle the error.

o In java creating an exception object and handling it to the runtime system is called

throwing an exception.

o Exception is an object that is describes an exceptional (i.e. error) condition that has

occurred in a piece of code at run time.

o When a exceptional condition arises, an object representing that exception is created and

thrown in the method that caused the error. That method may choose to handle the

exception itself, or pass it on. Either way, at some point, the exception is caught and

processed.

o Exceptions can be generated by the Java run-time system, or they can be manually

generated by your code.

o System generated exceptions are automatically thrown by the Java runtime system

General form of Exception Handling block

try {

// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {

// exception handler for ExceptionType1

}

49 | P a g e

catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2

}

// ...

finally {

// block of code to be executed before try block ends

}

 By using exception to managing errors, Java programs have have the following

advantage over traditional error management techniques:

– Separating Error handling code from regular code.

– Propagating error up the call stack.

– Grouping error types and error differentiation.

For Example:

class Exc0 {

public static void main(String args[]) {

int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by zero, it constructs a

new exception object and then throws this exception. This causes the execution of Exc0 to stop,

because once an exception has been thrown, it must be caught by an exception handler and dealt

Try Block

Statement that makes an

exception

Catch Block

Statement that handles the

exception

Finally Block

It is always executed

Exception object

creator

No

Exception

arise or

No

appropriate

Catch

block

Throws exception object

Exceptional Handler

Optional part

50 | P a g e

with immediately. In this example, we haven’t supplied any exception handlers of our own, so

the exception is caught by the default handler provided by the Java run-time system. Any

exception that is not caught by your program will ultimately be processed by the default handler.

The default handler displays a string describing the exception, prints a stack trace from the point

at which the exception occurred, and terminates the program. Here is the output generated when

this example is executed.

java.lang.ArithmeticException: / by zero

at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;

and the line number, 4

Try and Catch Blocks

 If we don’t want to prevent the program to terminate by the exception we have to trap the

trap the exception using the try block. So we can place the statements that may causes an

exception in the try block.

Try

{

}

 If an exception occurs with in the try block, the appropriate exception handler that is

associated with the try block handles the exception immediately following the try block,

include a catch clause specifies the exception type we wish to catch. A try block must

have at least one catch block or finally that allows it immediately.

Catch block

 The catch block is used to process the exception raised. A try block can be one or more

catch blocks can handle a try block.

 Catch handles are placed immediately after the try block.

Catch(exceptiontype e)

{

 //Error handle routine is placed here for handling exception

}

Program 1

Class trycatch

{

Public static void main(String args[])

{

Int[] no={1,2,3};

Try

{

System.out.println(no[3]);

}

Catch(ArrayIndexOutOfBoundsException e)

51 | P a g e

{

System.out.println(―Out of bonds‖);

}

System.out.println(―Quit‖);

}

}

Output

Out of the Range

Quit

Program 2

Class ArithExce

{

Public static void main(String args[])

{

Int a=10;

Int b=0;

Try

{

 a=a/b;

System.out.println(―Won’t Print‖);

}

Catch(ArithmeticException e)

{

System.out.println(―Division by Zero error‖);

System.out.println(―Change the b value‖);

}

System.out.println(―Quit‖);

}

}

Output

Division By zero error

Please change the B value

Quit

Note:

 A try ad its catch statement form a unit.

 We cannot use try block alone.

 The compiler does not allow any statement between try block and its associated catch

block

Displaying description of an Exception

52 | P a g e

 Throwable overrides the toString() method (defined by Object) so that it returns a string

containing a description of the exception.

 We can display this description in a println statement by simply passing the exception as

an argument.

catch (ArithmeticException e) {

System.out.println("Exception: " + e);

a = 0; // set a to zero and continue

}

 When this version is substituted in the program, and the program is run, each divide-by-

zero error displays the following message:

– Exception: java.lang.ArithmeticException: / by zero

Multiple Catch Blocks

In some cases, more than one exception could be raised by a single piece of code. To handle this

type of situation, you can specify two or more catch clauses, each catching a different type of

exception. When an exception is thrown, each catch statement is inspected in order, and the first

one whose type matches that of the exception is executed. After one catch statement executes,

the others are bypassed, and execution continues after the try/catch block. The following

example traps two different exception types:

// Demonstrate multiple catch statements.

class MultiCatch {

public static void main(String args[]) {

try {

int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

This program will cause a division-by-zero exception if it is started with no commandline

parameters, since a will equal zero. It will survive the division if you provide a command-line

argument, setting a to something larger than zero. But it will cause an

ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the program

attempts to assign a value to c[42].

Here is the output generated by running it both ways:

53 | P a g e

C:\>java MultiCatch

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

C:\>java MultiCatch TestArg

a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException

After try/catch blocks.

Throw Keyword

 So far, we have only been catching exceptions that are thrown by the Java Run – Time

systems. How ever, it is possible for our program to throw an exception explicitly, using

the throw statement.

 Throw throwableInstance

 Here, ThrowableInstance must be an object of type Throwable or a subclass of

Throwable. Simple types, such as int or char, as well as non-Throwable classes, such

as String and Object, cannot be used as exceptions

 There are two ways you can obtain a Throwable object:

– using a parameter into a catch clause

– creating one with the new operator.

 The flow of execution stops immediately after the throw statement; any subsequent

statements are not executed. The nearest enclosing try block is inspected to see if it has a

catch statement that matches the type of the exception. If it does find a match, control is

transferred to that statement. If not, then the next enclosing try statement is inspected,

and so on. If no matching catch is found, then the default exception handler halts the

program and prints the stack trace

// Demonstrate throw.

class ThrowDemo {

static void demoproc() {

try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {

System.out.println("Caught inside demoproc.");

throw e; // rethrow the exception

}

}

public static void main(String args[]) {

try {

demoproc();

} catch(NullPointerException e) {

System.out.println("Recaught: " + e);

}

}}

54 | P a g e

 This program gets two chances to deal with the same error. First, main() sets up an

exception context and then calls demoproc(). The demoproc() method then sets up

another exception-handling context and immediately throws a new instance of

NullPointerException, which is caught on the next line. The exception is then rethrown.

Here is the resulting output:

 Caught inside demoproc.

 Recaught: java.lang.NullPointerException: demo

 The program also illustrates how to create one of Java’s standard exception objects. Pay

close attention to this line:

 throw new NullPointerException("demo");

 Here, new is used to construct an instance of NullPointerException. All of Java’s built-

in run-time exceptions have at least two constructors: one with no parameter and one that

takes a string parameter. When the second form is used, the argument specifies a string

that describes the exception. This string is displayed when the object

 is used as an argument to print() or println(). It can also be obtained by a call to

getMessage(), which is defined by Throwable.

Throws Keyword

 If a method is capable of causing an exception that it does not handle, it must specify this

behavior so that callers of the method can guard themselves against that exception. You

do this by including a throws clause in the method’s declaration. A throws clause lists

the types of exceptions that a method might throw. This is necessary for all exceptions,

except those of type Error or RuntimeException, or any of their subclasses. All other

exceptions that a method can throw must be declared in the throws clause. If they are

not, a compile-time error will result. This is the general form of a method declaration that

includes a throws clause:

type method-name(parameter-list) throws exception-list

{

// body of method

}

 Here, exception-list is a comma-separated list of the exceptions that a method can throw

Program:

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {

System.out.println("Inside throwOne.");

55 | P a g e

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

try {

throwOne();

} catch (IllegalAccessException e) {

System.out.println("Caught " + e);

}

}

}

 Here is the output generated by running this example program:

 inside throwOne

 caught java.lang.IllegalAccessException

S.No. throw throws

1)
Java throw keyword is used to explicitly

throw an exception.

Java throws keyword is used to declare an

exception.

2)
Checked exception cannot be propagated

using throw only.

Checked exception can be propagated with

throws.

3) Throw is followed by an instance. Throws is followed by class.

4) Throw is used within the method. Throws is used with the method signature.

5) You cannot throw multiple exceptions.

You can declare multiple exceptions e.g.

public void method()throws

IOException,SQLException.

Finally block

 When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear

 path that alters the normal flow through the method. Depending upon how the method is

coded, it is even possible for an exception to cause the method to return prematurely.

This could be a problem in some methods. For example, if a method

 opens a file upon entry and closes it upon exit, then you will not want the code that closes

the file to be bypassed by the exception-handling mechanism. The finally keyword is

designed to address this contingency.

 finally creates a block of code that will be executed after a try/catch block has

completed and before the code following the try/catch block. The finally block will

execute whether or not an exception is thrown. If an exception is thrown, the finally

block will execute even if no catch statement matches the exception. Any time a method

is about to return to the caller from inside a try/catch block, via an uncaught exception or

an explicit return statement, the finally clause is also executed just before the method

returns. This can be useful for closing file handles and freeing up any other resources that

might have been allocated at the beginning of a method with the intent of disposing of

them before returning. The finally clause is optional. However, each try statement

requires at least one catch or a finally clause.

// Demonstrate finally.

class FinallyDemo {

56 | P a g e

// Through an exception out of the method.

static void procA() {

try {

System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {

System.out.println("procA's finally");

}

}

// Return from within a try block.

static void procB() {

try {

System.out.println("inside procB");

return;

} finally {

System.out.println("procB's finally");

}

}

// Execute a try block normally.

static void procC() {

try {

System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}

}

public static void main(String args[]) {

try {

procA();

} catch (Exception e) {

System.out.println("Exception caught");

}

procB();

procC();

}

}

 In this example, procA() prematurely breaks out of the try by throwing an exception.

The finally clause is executed on the way out. procB()’s try statement is exited via a

return statement. The finally clause is executed before procB() returns. In procC(), the

try statement executes normally, without error. However, the finally block is still

executed. If a finally block is associated with a try, the finally block will be executed

upon conclusion of the try.

 Here is the output generated by the preceding program:

inside procA

procA’s finally

57 | P a g e

Exception caught

inside procB

procB’s finally

inside procC

procC’s finally

Difference between final, finally and finalize:

There are many differences between final, finally and finalize. A list of differences between

final, finally and finalize are given below:

No. final finally finalize

1)

Final is used to apply restrictions on

class, method and variable. Final class

can't be inherited, final method can't be

overridden and final variable value can't

be changed.

Finally is used to place

important code, it will be

executed whether

exception is handled or

not.

Finalize is used to

perform clean up

processing just before

object is garbage

collected.

2) Final is a keyword. Finally is a block. Finalize is a method.

Java final example

1. class FinalExample{

2. public static void main(String[] args){

3. final int x=100;

4. x=200;//Compile Time Error

5. }}

Java finally example

6. class FinallyExample{

7. public static void main(String[] args){

8. try{

9. int x=300;

10. }catch(Exception e){System.out.println(e);}

11. finally{System.out.println("finally block is executed");}

12. }}

Java finalize example

1. class FinalizeExample{

2. public void finalize(){System.out.println("finalize called");}

3. public static void main(String[] args){

58 | P a g e

4. FinalizeExample f1=new FinalizeExample();

5. FinalizeExample f2=new FinalizeExample();

6. f1=null;

7. f2=null;

8. System.gc();

9. }}

Hierarchy of Java Exception classes

Java Built – In Exceptions

Inside the standard package java.lang, Java defines several exception classes. A few have been

used by the preceding examples. The most general of these exceptions are subclasses of the

standard type RuntimeException. Since java.lang is implicitly imported into all Java programs,

59 | P a g e

most exceptions derived from RuntimeException are automatically available. Furthermore, they

need not be included in any method’s throws list. In the language of Java, these are called

unchecked exceptions because the compiler does not check to see if a method handles or throws

these exceptions. The unchecked exceptions defined in java.lang are listed in Table 10-1. Table

10-2 lists those exceptions defined by java.lang that must be included in a method’s throws list

if that method can generate one of these exceptions and does not handle it itself. These are called

checked exceptions. Java defines several other types of exceptions that relate to its various class

libraries

List of Unchecked exceptions

List of Checked exceptions

60 | P a g e

User defined exceptions

 We can create our own exception by extending exception class.

 The throw and throws keywords are used while implementing user defined exceptions

Class ownExcepion extends Exception

{

ownException(String msg)

{

Super(msg);

}

}

Class test

{

Public static void main(String args[])

Int mark=101;

Try

{

if(mark>100)

{

Throw new ownException(―Marks>100‖);

}

}

Catch(ownException e)

{

System.out.println (―Exception caughtr‖);

System.out.println.(―e.getMessage());

}

Finally

{

System.out.println(―End of prg‖);

61 | P a g e

}

}

}

Output:

Exception caught

Marks is > 100

End of program

Multi Threaded Programming

Introduction:

o Java provides a built – in support for multithreaded programming.

o A multithreaded program contains two o more parts that can run concurrently.

o Each part of such a program called thread.

o Each thread defines a separate path of execution.

o Thus multi thread is a specialized form of multi tasking.

o Multi tasking is supported by OS

o There are two distinct types of multi tasking

o Process based multi tasking

o Process is a program that is executing.

o In process based multi tasking, a program is the smallest unit of code that can be

dispatched by the scheduler

o Process based multi tasking is a feature that allows computer to run two or more

programs concurrently

o For example :

o This tasking enables us to run the Java compiler and text editor at the same time

o Thread based multi tasking

o Thread is a smallest unit of dispatchable code

o The single program can perform two or more tasks simultaneously.

o For example:

o A text editor can format text at the same time that is printing as long as these two

actions are performed by two separate threads.

o Multitasking threads require less overhead than multitasking processes.

Thread Model

o One thread can pause without stopping other parts of your program.

o For example, the idle time created when a thread reads data from a network or

waits for user input can be utilized elsewhere.

o Multithreading allows animation loops to sleep for a second between each frame

without causing the whole system to pause.

62 | P a g e

o When a thread blocks in a Java program, only the single thread that is blocked pauses. All

other threads continue to run.

o Thread States

o Threads exist in several states.

 A thread can be running. It can be ready to run as soon as it gets CPU

time.

 A running thread can be suspended, which temporarily suspends its

activity.

 A suspended thread can then be resumed, allowing it to pick up where it

left off.

 A thread can be blocked when waiting for a resource.

 At any time, a thread can be terminated, which halts its execution

immediately.

 Once terminated, a thread cannot be resumed

o Every thread after creation and before destruction can have any one of four states:

o Newly created

o Runnable state

o Blocked

o Dead

 THREAD LIFE CYCLE

New State

o A thread enters the newly created by using a new operator.

o It is new state or born state immediately after creation. i.e. when a constructor is called

the Thread is created but is not yet to run() method will not begin until it start() method

is called.

New

(Born) Blocked

Not

runnable

Runnable

Dead

New Statement

Start()

IO Blocking

Suspend()

Wait()

Sleep()

Resume()

Notify()

Sleep time out

I/O finished
Stop()

Run()

ends

Stop()

Run()

ends Stop()

 Run()

ends

63 | P a g e

o After the start() method is called, the thread will go to the next state, Runnable state.

o Note : in the above cycle stop(), resume() and suspand are deprecated methods. Java 2

strongly discourage their usage in the program

o Runnable state

 Once we invoke the start() method, the thread is runnable.

 It is divided into two states:

 The running state

 When the thread is running state, it assigned by CPU cycles and is

actually running.

 The Queued state.

 When the thread is in Queued state, it is waiting in the Queue and

competing for its turn to spend CPU cycles

 It is controlled by Virtual Machine Controller.

 When we use yield() method it makes sure other threads of the same

priority have chance to run.

 This method cause voluntary move itself to the queued state from the

running state.

Blocked state

 The blocked state is entered when one of the following events occurs:

• The thread itself or another thread calls the suspend() method (it is deprecated)

• The thread calls an object’s wait() method

• The thread itself calls the sleep() method.

• The thread is waiting for some I/O operations to complete.

• The thread will join() another thread.

Dead state

 A thread is dead for any one of the following reasons:

• It dies a natural death because the un method exists normally.

• It dies abruptly because an uncaught exception terminates the run method.

• In particular stop() is used to kill the thread. This is depricated.

• To find whether thread is alive i.e. currently running or blocked

 Use isAlive() method

• If it returns true the thread is alive

Thread priorities

 Java assigns to each thread a priority that determines how that thread should be treated

with respect to the others. Thread priorities are integers that specify the relative priority

of one thread to another. As an absolute value, a priority is meaningless; a higher-priority

thread doesn’t run any faster than a lower-priority thread if it is the only thread running.

Instead, a thread’s priority is used to decide when to switch from one running thread to

64 | P a g e

the next. This is called a context switch. The rules that determine when a context switch

takes place are simple:

• A thread can voluntarily relinquish control. This is done by explicitly yielding,

sleeping, or blocking on pending I/O. In this scenario, all other threads are

examined, and the highest-priority thread that is ready to run is given the CPU.

• A thread can be preempted by a higher-priority thread. In this case, a lower-

priority thread that does not yield the processor is simply preempted—no matter

what it is doing—by a higher-priority thread. Basically, as soon as a higher-

priority thread wants to run, it does. This is called preemptive multitasking.

 In cases where two threads with the same priority are competing for CPU cycles, the

situation is a bit complicated. For operating systems such as Windows 98, threads of

equal priority are time-sliced automatically in round-robin fashion. For other types of

operating systems, threads of equal priority must voluntarily yield control to their peers.

If they don’t, the other threads will not run.

Synchronization
 Because multithreading introduces an asynchronous behavior to your programs, there

must be a way for you to enforce synchronicity when you need it. For example, if you

want two threads to communicate and share a complicated data structure, such as a linked

list, you need some way to ensure that they don’t conflict with each other. That is, you

must prevent one thread from writing data while another thread is in the middle of

reading it. For this purpose, Java implements an elegant twist on an age-old model of

interprocess synchronization: the monitor. The monitor is a control mechanism first

defined by C.A.R. Hoare. You can think of a monitor as a very small box that can hold

only one thread. Once a thread enters a monitor, all other threads must wait until that

thread exits the monitor. In this way, a monitor can be used to protect a shared asset from

being manipulated by more than one thread at a time.

.

Messaging
 After you divide your program into separate threads, you need to define how they will

communicate with each other. When programming with most other languages, you must

depend on the operating system to establish communication between threads. This, of

course, adds overhead. By contrast, Java provides a clean, low-cost way for two or more

threads to talk to each other, via calls to predefined methods that all objects have. Java’s

messaging system allows a thread to enter a synchronized method on an object, and then

wait there until some other thread explicitly notifies it to come out.

Thread class and Runnable interface

The Thread Class and the Runnable InterfaceJava’s multithreading system is built upon the

Thread class, its methods, and its companion interface, Runnable. Thread encapsulates a

thread of execution. Since you can’t directly refer to the ethereal state of a running thread, you

will deal with it through its proxy, the Thread instance that spawned it. To create a new thread,

your program will either extend Thread or implement the Runnable interface.

65 | P a g e

 The Thread class defines several methods that help manage threads.

Main method

 When a Java program starts up, one thread begins running immediately. This is usually

called the main thread of your program, because it is the one that is executed when your

program begins. The main thread is important for two reasons:

o It is the thread from which other ―child‖ threads will be spawned .

o Often it must be the last thread to finish execution because it performs various

shutdown actions.

 Although the main thread is created automatically when your program is started, it can be

controlled through a Thread object. To do so, you must obtain a reference to it by calling

the method currentThread(), which is a public static member of Thread. Its general

form is

o static Thread currentThread()

 This method returns a reference to the thread in which it is called. Once you have a

reference to the main thread, you can control it just like any other thread.

// Controlling the main Thread.

class CurrentThreadDemo {

public static void main(String args[]) {

Thread t = Thread.currentThread();

System.out.println("Current thread: " + t);

// change the name of the thread

t.setName("My Thread");

System.out.println("After name change: " + t);

try {

for(int n = 5; n > 0; n--) {

System.out.println(n);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted");

}

}

}

66 | P a g e

Current thread: Thread[main,5,main]

After name change: Thread[My Thread,5,main]

5

4

3

2

1

How to create a thread

 In the most general sense, you create a thread by instantiating an object of type Thread.

 Java defines two ways in which this can be accomplished:

 You can implement the Runnable interface.

 You can extend the Thread class, itself.

Implementing thread class

 The easiest way to create a thread is to create a class that implements the Runnable

interface. Runnable abstracts a unit of executable code. You can construct a thread on

any object that implements Runnable. To implement Runnable, a class need only

implement a single method called run(), which is declared like this:

o public void run()

 Inside run(), you will define the code that constitutes the new thread. It is important to

understand that run() can call other methods, use other classes, and declare variables,

just like the main thread can. The only difference is that run() establishes the entry point

for another, concurrent thread of execution within your program. This thread will end

when run() returns.

 After you create a class that implements Runnable, you will instantiate an object of type

Thread from within that class. Thread defines several constructors. The one that we will

use is shown here:

o Thread(Runnable threadOb, String threadName)

 In this constructor, threadOb is an instance of a class that implements the

Runnableinterface. This defines where execution of the thread will begin. The name of

the new thread is specified by threadName.

 After the new thread is created, it will not start running until you call its start()

 method, which is declared within Thread. In essence, start() executes a call to run().

 The start() method is shown here:

o void start()

Extending thread class

The second way to create a thread is to create a new class that extends Thread, and then to

create an instance of that class. The extending class must override the run() method, which is

the entry point for the new thread. It must also call start() to begin execution of the new thread.

Here is the preceding program rewritten to extend Thread

// Create a second thread by extending Thread

67 | P a g e

class NewThread extends Thread {

NewThread() {

// Create a new, second thread

super("Demo Thread");

System.out.println("Child thread: " + this);

start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ExtendThread {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

Synchronization

When two or more threads need access to a shared resource, they need some way to ensure that

the resource will be used by only one thread at a time. The process by which this is achieved is

called synchronization. As you will see, Java provides unique, language-level support for it. Key

to synchronization is the concept of the monitor (also called a semaphore).

A monitor is an object that is used as a mutually exclusive lock, or mutex. Only one thread can

own a monitor at a given time. When a thread acquires a lock, it is said to have entered the

monitor. All other threads attempting to enter the locked monitor will be suspended until the first

thread exits the monitor. These other threads are said to be waiting for the monitor. A thread that

owns a monitor can reenter the same monitor if it so desires.

68 | P a g e

You can synchronize your code in either of two ways. Both involve the use of the synchronized

keyword, and both are examined here.

Using Synchronized Methods

Synchronization is easy in Java, because all objects have their own implicit monitor

associated with them. To enter an object’s monitor, just call a method that has been modified

with the synchronized keyword. While a thread is inside a synchronized method, all other

threads that try to call it (or any other synchronized method) on the same instance have to wait.

To exit the monitor and relinquish control of the object to the next waiting thread, the owner of

the monitor simply returns from the synchronized method.

While creating synchronized methods within classes that you create is an easy and

effective means of achieving synchronization, it will not work in all cases. To understand why,

consider the following. Imagine that you want to synchronize access to objects of a class that

was not designed for multithreaded access. That is, the class does not use synchronized

methods. Further, this class was not created by you, but by a third party, and you do not have

access to the source code. Thus, you can’t add synchronized to the appropriate methods within

the class. How can access to an object of this class be synchronized? Fortunately, the solution to

this problem is quite easy: You simply put calls to the methods defined by this class inside a

synchronized block.

This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures that a

call to a method that is a member of object occurs only after the current thread has successfully

entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block within the

run() method:

// This program uses a synchronized block.

class Callme {

void call(String msg) {

System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

69 | P a g e

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

// synchronize calls to call()

public void run() {

synchronized(target) { // synchronized block

target.call(msg);

}

}

}

class Synch1 {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

}

}

Here, the call() method is not modified by synchronized. Instead, the synchronized statement

is used inside Caller’s run() method. This causes the same correct output as the preceding

example, because each thread waits for the prior one to finish before proceeding.

Daemon Threads

A ―daemon‖ thread is one that is supposed to provide a general service in the background as long

as the program is running, but is not part of the essence of the program. Thus when all of the

non-daemon threads complete, the program is terminated. you an find out if a thread is a daemon

by calling isDaemon(), and you can turn the ―daemonhood‖ of a thread on and off with

setDaemon().if a thread is a daemon, then any threads it creates will automatically be daemons.

70 | P a g e

INTER-THREAD COMMUNICATION IN JAVA

Inter-thread communication or Co-operation is all about allowing synchronized threads to

communicate with each other.

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused running in

its critical section and another thread is allowed to enter (or lock) in the same critical section to

be executed.It is implemented by following methods of Object class:

 wait()

 notify()

 notifyAll()

1) wait() method

Causes current thread to release the lock and wait until either another thread invokes the notify()

method or the notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from the synchronized

method only otherwise it will throw exception.

Method Description

public final void wait()throws InterruptedException waits until object is notified.

public final void wait(long timeout)throws

InterruptedException

waits for the specified amount of

time.

2) notify() method

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on

this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the

discretion of the implementation. Syntax:

public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor. Syntax:

public final void notifyAll()

71 | P a g e

Understanding the process of inter-thread communication

The point to point explanation of the above diagram is as follows:

1. Threads enter to acquire lock.

2. Lock is acquired by on thread.

3. Now thread goes to waiting state if you call wait() method on the object. Otherwise it

releases the lock and exits.

4. If you call notify() or notifyAll() method, thread moves to the notified state (runnable

state).

5. Now thread is available to acquire lock.

6. After completion of the task, thread releases the lock and exits the monitor state of the

object.

Why wait(), notify() and notifyAll() methods are defined in Object class not

Thread class?

It is because they are related to lock and object has a lock.

Difference between wait and sleep?

Let's see the important differences between wait and sleep methods.

wait() sleep()

wait() method releases the lock sleep() method doesn't release the lock.

is the method of Object class is the method of Thread class

is the non-static method is the static method

is the non-static method is the static method

should be notified by notify() or notifyAll()

methods

after the specified amount of time, sleep is

completed.

72 | P a g e

Example of inter thread communication in java

Let's see the simple example of inter thread communication.

1. class Customer{

2. int amount=10000;

3.

4. synchronized void withdraw(int amount){

5. System.out.println("going to withdraw...");

6.

7. if(this.amount<amount){

8. System.out.println("Less balance; waiting for deposit...");

9. try{wait();}catch(Exception e){}

10. }

11. this.amount-=amount;

12. System.out.println("withdraw completed...");

13. }

14.
15. synchronized void deposit(int amount){

16. System.out.println("going to deposit...");

17. this.amount+=amount;

18. System.out.println("deposit completed... ");

19. notify();

20. }

21. }

22.
23. class Test{

24. public static void main(String args[]){

25. final Customer c=new Customer();

26. new Thread(){

27. public void run(){c.withdraw(15000);}

28. }.start();

29. new Thread(){

30. public void run(){c.deposit(10000);}

31. }.start();

32.
33. }}

Output: going to withdraw...

 Less balance; waiting for deposit...

 going to deposit...

 deposit completed...

 withdraw completed

73 | P a g e

INTERRUPTING A THREAD:

If any thread is in sleeping or waiting state (i.e. sleep() or wait() is invoked), calling the interrupt()

method on the thread, breaks out the sleeping or waiting state throwing InterruptedException. If the

thread is not in the sleeping or waiting state, calling the interrupt() method performs normal behaviour

and doesn't interrupt the thread but sets the interrupt flag to true. Let's first see the methods provided by

the Thread class for thread interruption.

The 3 Methods Provided By The Thread Class For Interrupting A Thread

1. public void interrupt()

2. public static boolean interrupted()

3. public boolean isInterrupted()

Example of interrupting a thread that stops working

In this example, after interrupting the thread, we are propagating it, so it will stop working. If we don't

want to stop the thread, we can handle it where sleep() or wait() method is invoked. Let's first see the

example where we are propagating the exception.

class TestInterruptingThread1 extends Thread{

public void run(){

try{

Thread.sleep(1000);

System.out.println("task");

}catch(InterruptedException e){

throw new RuntimeException("Thread interrupted..."+e);

}

}

public static void main(String args[]){

TestInterruptingThread1 t1=new TestInterruptingThread1();

t1.start();

try{

t1.interrupt();

}catch(Exception e){System.out.println("Exception handled "+e);}

}
}

Output:Exception in thread-0

 java.lang.RuntimeException: Thread interrupted...

 java.lang.InterruptedException: sleep interrupted

 at A.run

74 | P a g e

Example of interrupting a thread that doesn't stop working

In this example, after interrupting the thread, we handle the exception, so it will break out the sleeping but

will not stop working.

class TestInterruptingThread2 extends Thread{

public void run(){

try{

Thread.sleep(1000);

System.out.println("task");

}catch(InterruptedException e){

System.out.println("Exception handled "+e);

}

System.out.println("thread is running...");

}

public static void main(String args[]){

TestInterruptingThread2 t1=new TestInterruptingThread2();

t1.start();

t1.interrupt();

}

}

Output:Exception handled

 java.lang.InterruptedException: sleep interrupted

 thread is running...

Example of interrupting thread that behaves normally:

If thread is not in sleeping or waiting state, calling the interrupt() method sets the interrupted flag to true

that can be used to stop the thread by the java programmer later.

class TestInterruptingThread3 extends Thread{

public void run(){

for(int i=1;i<=5;i++)

System.out.println(i);

}

public static void main(String args[]){

TestInterruptingThread3 t1=new TestInterruptingThread3();

t1.start();

t1.interrupt();

}

}

Output:1

75 | P a g e

 2

 3

 4

 5

What About Isinterrupted And Interrupted Method:

The isInterrupted() method returns the interrupted flag either true or false. The static interrupted() method

returns the interrupted flag afterthat it sets the flag to false if it is true.

public class TestInterruptingThread4 extends Thread{

public void run(){

for(int i=1;i<=2;i++){

if(Thread.interrupted()){

System.out.println("code for interrupted thread");

}

else{

System.out.println("code for normal thread");

}

}//end of for loop

}

public static void main(String args[]){

TestInterruptingThread4 t1=new TestInterruptingThread4();

TestInterruptingThread4 t2=new TestInterruptingThread4();

t1.start();

t1.interrupt();

t2.start();

}

}

Output:Code for interrupted thread

 code for normal thread

 code for normal thread

 code for normal thread

76 | P a g e

UNIT-IV

Interface: Interfaces vs Abstract classes, defining an interface, implement interfaces

Packages: Defining, creating and accessing a package, importing packages.

Difference between classes and interfaces:

A class is a template for an abject.

 (or)

A class is a way of binding variables and methods in a single unit. With the class it is possible to

create object for that object. With the one class we can extend an another class.

A interface is collection of undefined method. Means all the methods are not contain any body.

We have to provide the body for that interface. with the interface it is not possible to create

object. For the declared interface we have to implement that interface.

 Defining Interfaces:

 Interface is a collection of method declarations and constants that one or more classes of

objects will use.

 We can implement multiple inheritance using interface.

 Because interface consists only signatures followed by semi colon and parameter list they

are implicitly abstract.

 Variables can be declared and initialized inside interface they are implicitly final and

static.

 An interface method can’t be final or static or private or native or protected.

 An interface can be extended from another interface.

 Declaration of interface:

 Access interface name

 {

 Return type member-name1(parametelist);

 Return type member-name2(parametelist);

 .

 .

 .

 Type finalvariablename=initialization;

 }

o There will be no default implementation for methods specified in an interface.

o Each class that include interface must implements all methods.

o All the methods and variables are implicitly public if interface itself is declared as public.

77 | P a g e

Implementing Interfaces:

Once an interface has been defined, one or more classes can implement that interface. To

implement an interface, include the implements clause in a class definition, and then create the

methods defined by the interface. The general form of a class that

includes the implements clause looks like this:

access class classname [extends superclass]

[implements interface [,interface...]] {

// class-body

}

Here, access is either public or not used. If a class implements more than one interface,

the interfaces are separated with a comma. If a class implements two interfaces that declare the

same method, then the same method will be used by clients of either

interface. The methods that implement an interface must be declared public. Also, the

type signature of the implementing method must match exactly the type signature

specified in the interface definition.

Applying Interfaces:

To understand the power of interfaces, let’s look at a more practical example. In earlier

chapters you developed a class called Stack that implemented a simple fixed-size stack.

However, there are many ways to implement a stack. For example, the stack can be of a fixed

size or it can be ―growable.‖ The stack can also be held in an array, a linked list, a binary tree,

and so on. No matter how the stack is implemented, the interface to the stack remains the same.

That is, the methods push() and pop() define the interface to the stack independently of the

details of the implementation. Because the interface to a stack is separate from its

implementation, it is easy to define a stack interface, leaving it to each implementation to define

the specifics. Let’s look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called

IntStack.java. This interface will be used by both stack implementations.

// Define an integer stack interface.

interface IntStack {

void push(int item); // store an item

int pop(); // retrieve an item

}

Variables in Interfaces:

When you include that interface in a class (that is, when you ―implement‖ the interface),

all of those variable names will be in scope as constants. This is similar to using a header file in

C/C++ to create a large number of #defined constants or const declarations. If an interface

contains no methods, then any class that includes such an interface doesn’t actually implement

78 | P a g e

anything. It is as if that class were importing the constant variables into the class name space as

final variables.

import java.util.Random;

interface SharedConstants {

int NO = 0;

int YES = 1;

int MAYBE = 2;

int LATER = 3;

int SOON = 4;

int NEVER = 5;

}

class Question implements SharedConstants {

Random rand = new Random();

int ask() {

int prob = (int) (100 * rand.nextDouble());

if (prob < 30)

return NO; // 30%

else if (prob < 60)

return YES; // 30%

else if (prob < 75)

return LATER; // 15%

else if (prob < 98)

return SOON; // 13%

else

return NEVER; // 2%

}

}

class AskMe implements SharedConstants {

static void answer(int result) {

switch(result) {

case NO:

System.out.println("No");

break;

case YES:

System.out.println(―yes‖);

break;

case MAYBE:

System.out.println("Maybe");

break;

case LATER:

System.out.println("Later");

break;

case SOON:

System.out.println("Soon");

break;

79 | P a g e

case NEVER:

System.out.println("Never");

break;

}

}

public static void main(String args[]) {

Question q = new Question();

answer(q.ask());

answer(q.ask());

answer(q.ask());

answer(q.ask());

}

}

Interfaces Can Be Extended:

One interface can inherit another by use of the keyword extends. The syntax is the same

as for inheriting classes. When a class implements an interface that inherits

another interface, it must provide implementations for all methods defined within

the interface inheritance chain. Following is an example:

// One interface can extend another.

interface A {

void meth1();

void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().

interface B extends A {

void meth3();

}

// This class must implement all of A and B

class MyClass implements B {

public void meth1() {

System.out.println("Implement meth1().");

}

public void meth2() {

System.out.println("Implement meth2().");

}

public void meth3() {

System.out.println("Implement meth3().");

}

}

class IFExtend {

public static void main(String arg[]) {

MyClass ob = new MyClass();

THE JAVA LANGUAGE

80 | P a g e

ob.meth1();

ob.meth2();

ob.meth3();

}

}

As an experiment you might want to try removing the implementation for meth1()

in MyClass. This will cause a compile-time error. As stated earlier, any class that

implements an interface must implement all methods defined by that interface,

including any that are inherited from other interfaces.

.Defining Package:

 Generally, any java source file contains any (or all) of the following internal parts:

 A single package statement (optional)

 Any number of import statements (optional)

 A single public class declaration (required)

 Any number of classes private to the package (optional)

 Packages and Interfaces are two of the basic components of a java program.

 Packages are collection of related classes.

 Packages are containers for classes that are used to keep the class name

compartmentalized.

 Packages are stored in an hierarchical manner and are explicitly imported into new

class defination.

 Java packages are classified into two types:

 Java API package or pre-defined packages or built – in – packages .

 User – defined packages

 Java 2 API contains 60 java.* packages.

 For Example:

 java.lang

 Java.io

 Java.awt

 Java.util

 Java.net

 Javax.swing

 To create a package

 Just give package <<packagename>> as a first statement in java program.

 Any classes declared within that file will belong to the specified package.

 If we omit package statement, the classes are stored in the default package.

Syntax: Package packagename

 Syntax: Package packagename.subpackage

81 | P a g e

Access protection:

 Classes and packages both means of encapsulating and containing the name space and

scope of variables and methods.

 Packages acts as a containers for classes and other sub – ordinate packages.

 Classes act as containers for data and code.

 Java address four categories of visibility for class members:

o Sub – classes in the same package.

o Non – sub class in the same package.

o Sub – classes in the different package.

o Classes that are neither in the same package nor subclasses.

 The 3 access specifiers private, public and protected provide a variety of ways to

produce the many levels of access required by these categories.

Access

specifier

Access

Location

Private No modifier Protected Public

Same class Yes Yes Yes Yes

Same package

sub class

No Yes Yes Yes

Same package

non – sub class

No Yes Yes Yes

Different

package sub

class

No No Yes Yes

Different

package non

sub class

No No No Yes

From the above table,

o Any thing declared public can be accessed from any where

o Any thing accessed private cannot be accessed from outside of its class

o In the default, it is visible to sub-class as well as to other classes in the same package

o Any thing declared as protected, this is allow an element to be seen outside your current

package, but also allow to sub class in other packages access.

UNDERSTANDING CLASSPATH:

As just explained, packages are mirrored by directories. This raises an important

question: How does the Java run-time system know where to look for packages that you create?

The answer has two parts. First, by default, the Java run-time system uses the current working

directory as its starting point. Thus, if your package is in the current directory, or a subdirectory

82 | P a g e

of the current directory, it will be found. Second, you can specify a directory path or paths by

setting the CLASSPATH environmental variable. For example, consider the following package

specification.

package MyPack;

In order for a program to find MyPack, one of two things must be true. Either the

program is executed from a directory immediately above MyPack, or CLASSPATH must be set

to include the path to MyPack. The first alternative is the easiest (and doesn’t require a change

to CLASSPATH), but the second alternative lets your program find MyPack no matter what

directory the program is in. Ultimately, the choice is yours.

Importing Packages:

There are no core Java classes in the unnamed default package; all of the standard classes

are stored in some named package. Since classes within packages must be fully qualified with

their package name or names, it could become tedious to type in the long dot-separated package

path name for every class you want to use. For this reason, Java includes the import statement to

bring certain classes, or entire packages, into visibility. Once imported, a class can be referred to

directly, using only its name. The import statement is a convenience to the programmer and is

not technically needed to write a complete Java program. If you are going to refer to a few dozen

classes in your application, however, the import statement will save a lot of typing.

In a Java source file, import statements occur immediately following the package statement (if

it exists) and before any class definitions. This is the general form of the

import statement:

import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate

package inside the outer package separated by a dot (.). There is no practical limit on the depth of

a package hierarchy, except that imposed by the file system. Finally,

you specify either an explicit classname or a star (*), which indicates that the Java

compiler should import the entire package. This code fragment shows both forms in use:

import java.util.Date;

import java.io.*;

The java.io package contains nearly every class you might ever need to perform input and output

(I/O) in Java. All these streams represent an input source and an output destination. The stream

in the java.io package supports many data such as primitives, Object, localized characters, etc.

83 | P a g e

UNIT-V

Files: streams – byte streams, character stream, text input/output, binary input/output, file

management

Connecting to Database: Connecting to a database, querying a database and processing the

results, updating data with JDBC.

A stream can be defined as a sequence of data. The InputStream is used to read data from a

source and the OutputStream is used for writing data to a destination.

Java provides strong but flexible support for I/O related to Files and networks but this tutorial

covers very basic functionality related to streams and I/O. We would see most commonly used

example one by one:

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there are many

classes related to byte streams but the most frequently used classes are , FileInputStream and

FileOutputStream. Following is an example which makes use of these two classes to copy an

input file into an output file:

import java.io.*;

public class CopyFile {

 public static void main(String args[]) throws IOException

 {

 FileInputStream in = null;

 FileOutputStream out = null;

 try {

 in = new FileInputStream("input.txt");

 out = new FileOutputStream("output.txt");

 int c;

 while ((c = in.read()) != -1) {

 out.write(c);

 }

 }finally {

 if (in != null) {

 in.close();

 }

 if (out != null) {

 out.close();

 }

 }

 }

}

84 | P a g e

Now let's have a file input.txt with the following content:

This is test for copy file.

As a next step, compile above program and execute it, which will result in creating output.txt file

with the same content as we have in input.txt. So let's put above code in CopyFile.java file and

do the following:

$javac CopyFile.java

$java CopyFile

Character Streams

Java Byte streams are used to perform input and output of 8-bit bytes, where as Java Character

streams are used to perform input and output for 16-bit unicode. Though there are many classes

related to character streams but the most frequently used classes are , FileReader and

FileWriter.. Though internally FileReader uses FileInputStream and FileWriter uses

FileOutputStream but here major difference is that FileReader reads two bytes at a time and

FileWriter writes two bytes at a time.

We can re-write above example which makes use of these two classes to copy an input file

(having unicode characters) into an output file:

import java.io.*;

public class CopyFile {

 public static void main(String args[]) throws IOException

 {

 FileReader in = null;

 FileWriter out = null;

 try {

 in = new FileReader("input.txt");

 out = new FileWriter("output.txt");

 int c;

 while ((c = in.read()) != -1) {

 out.write(c);

 }

 }finally {

 if (in != null) {

 in.close();

 }

 if (out != null) {

 out.close();

 }

85 | P a g e

 }

 }

}

Now let's have a file input.txt with the following content:

This is test for copy file.

As a next step, compile above program and execute it, which will result in creating output.txt file

with the same content as we have in input.txt. So let's put above code in CopyFile.java file and

do the following:

$javac CopyFile.java

$java CopyFile

Standard Streams

All the programming languages provide support for standard I/O where user's program can take

input from a keyboard and then produce output on the computer screen. If you are aware if C or

C++ programming languages, then you must be aware of three standard devices STDIN,

STDOUT and STDERR. Similar way Java provides following three standard streams

 Standard Input: This is used to feed the data to user's program and usually a keyboard is

used as standard input stream and represented as System.in.

 Standard Output: This is used to output the data produced by the user's program and

usually a computer screen is used to standard output stream and represented as

System.out.

 Standard Error: This is used to output the error data produced by the user's program

and usually a computer screen is used to standard error stream and represented as

System.err.

Following is a simple program which creates InputStreamReader to read standard input stream

until the user types a "q":

import java.io.*;

public class ReadConsole {

 public static void main(String args[]) throws IOException

 {

 InputStreamReader cin = null;

 try {

 cin = new InputStreamReader(System.in);

 System.out.println("Enter characters, 'q' to quit.");

 char c;

 do {

86 | P a g e

 c = (char) cin.read();

 System.out.print(c);

 } while(c != 'q');

 }finally {

 if (cin != null) {

 cin.close();

 }

 }

 }

}

Let's keep above code in ReadConsole.java file and try to compile and execute it as below. This

program continues reading and outputting same character until we press 'q':

$javac ReadConsole.java

$java ReadConsole

Enter characters, 'q' to quit.

1

1

e

e

q

q

Reading and Writing Files:

As described earlier, A stream can be defined as a sequence of data. The InputStream is used to

read data from a source and the OutputStream is used for writing data to a destination.

Here is a hierarchy of classes to deal with Input and Output streams.

87 | P a g e

The two important streams are FileInputStream and FileOutputStream, which would be

discussed in this tutorial:

FileInputStream:

This stream is used for reading data from the files. Objects can be created using the keyword new

and there are several types of constructors available.

Following constructor takes a file name as a string to create an input stream object to read the

file.:

InputStream f = new FileInputStream("C:/java/hello");

Following constructor takes a file object to create an input stream object to read the file. First we

create a file object using File() method as follows:

File f = new File("C:/java/hello");

InputStream f = new FileInputStream(f);

Once you have InputStream object in hand, then there is a list of helper methods which can be

used to read to stream or to do other operations on the stream.

There are other important input streams available, for more detail you can refer to the following

links:

 ByteArrayInputStream

 DataInputStream

FileOutputStream:

FileOutputStream is used to create a file and write data into it. The stream would create a file, if

it doesn't already exist, before opening it for output.

Here are two constructors which can be used to create a FileOutputStream object.

Following constructor takes a file name as a string to create an input stream object to write the

file:

OutputStream f = new FileOutputStream("C:/java/hello")

Following constructor takes a file object to create an output stream object to write the file. First,

we create a file object using File() method as follows:

File f = new File("C:/java/hello");

OutputStream f = new FileOutputStream(f);

http://www.tutorialspoint.com/java/java_bytearrayinputstream.htm
http://www.tutorialspoint.com/java/java_datainputstream.htm

88 | P a g e

Once you have OutputStream object in hand, then there is a list of helper methods, which can be

used to write to stream or to do other operations on the stream.

There are other important output streams available, for more detail you can refer to the following

links:

 ByteArrayOutputStream

 DataOutputStream

Example:

Following is the example to demonstrate InputStream and OutputStream:

import java.io.*;

public class fileStreamTest{

 public static void main(String args[]){

 try{

 byte bWrite [] = {11,21,3,40,5};

 OutputStream os = new FileOutputStream("test.txt");

 for(int x=0; x < bWrite.length ; x++){

 os.write(bWrite[x]); // writes the bytes

 }

 os.close();

 InputStream is = new FileInputStream("test.txt");

 int size = is.available();

 for(int i=0; i< size; i++){

 System.out.print((char)is.read() + " ");

 }

 is.close();

 }catch(IOException e){

 System.out.print("Exception");

 }

 }

}

The above code would create file test.txt and would write given numbers in binary format. Same

would be output on the stdout screen.

http://www.tutorialspoint.com/java/java_bytearrayoutputstream.htm
http://www.tutorialspoint.com/java/java_dataoutputstream.htm

89 | P a g e

File Navigation and I/O:

There are several other classes that we would be going through to get to know the basics of File

Navigation and I/O.

 File Class

 FileReader Class

 FileWriter Class

Directories in Java:

A directory is a File which can contains a list of other files and directories. You use File object to

create directories, to list down files available in a directory. For complete detail check a list of all

the methods which you can call on File object and what are related to directories.

Creating Directories:

There are two useful File utility methods, which can be used to create directories:

 The mkdir() method creates a directory, returning true on success and false on failure.

Failure indicates that the path specified in the File object already exists, or that the

directory cannot be created because the entire path does not exist yet.

 The mkdirs() method creates both a directory and all the parents of the directory.

Following example creates "/tmp/user/java/bin" directory:

import java.io.File;

public class CreateDir {

 public static void main(String args[]) {

 String dirname = "/tmp/user/java/bin";

 File d = new File(dirname);

 // Create directory now.

 d.mkdirs();

 }

}

Compile and execute above code to create "/tmp/user/java/bin".

Note: Java automatically takes care of path separators on UNIX and Windows as per

conventions. If you use a forward slash (/) on a Windows version of Java, the path will still

resolve correctly.

http://www.tutorialspoint.com/java/java_file_class.htm
http://www.tutorialspoint.com/java/java_filereader_class.htm
http://www.tutorialspoint.com/java/java_filewriter_class.htm

90 | P a g e

Listing Directories:

You can use list() method provided by File object to list down all the files and directories

available in a directory as follows:

import java.io.File;

public class ReadDir {

 public static void main(String[] args) {

 File file = null;

 String[] paths;

 try{

 // create new file object

 file = new File("/tmp");

 // array of files and directory

 paths = file.list();

 // for each name in the path array

 for(String path:paths)

 {

 // prints filename and directory name

 System.out.println(path);

 }

 }catch(Exception e){

 // if any error occurs

 e.printStackTrace();

 }

 }

}

This would produce following result based on the directories and files available in your /tmp

directory:

test1.txt

test2.txt

ReadDir.java

ReadDir.class

91 | P a g e

JDBC – JAVA DATABASE CONNECTIVITY

JDBC stands for Java Database Connectivity, which is a standard Java API for database-

independent connectivity between the Java programming language and a wide range of

databases.

The JDBC library includes APIs for each of the tasks commonly associated with database usage:

 Making a connection to a database

 Creating SQL or MySQL statements

 Executing that SQL or MySQL queries in the database

 Viewing & Modifying the resulting records

Fundamentally, JDBC is a specification that provides a complete set of interfaces that allows for

portable access to an underlying database. Java can be used to write different types of

executables, such as:

 Java Applications

 Java Applets

 Java Servlets

 Java ServerPages (JSPs)

 Enterprise JavaBeans (EJBs)

All of these different executables are able to use a JDBC driver to access a database and take

advantage of the stored data.

JDBC provides the same capabilities as ODBC, allowing Java programs to contain database-

independent code.

JDBC Architecture:

The JDBC API supports both two-tier and three-tier processing models for database access but in

general JDBC Architecture consists of two layers:

 JDBC API: This provides the application-to-JDBC Manager connection.

 JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

The JDBC API uses a driver manager and database-specific drivers to provide transparent

connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to access each data source. The

driver manager is capable of supporting multiple concurrent drivers connected to multiple

heterogeneous databases.

Following is the architectural diagram, which shows the location of the driver manager with

respect to the JDBC drivers and the Java application:

92 | P a g e

Why Should We Use JDBC

Before JDBC, ODBC API was the database API to connect and execute the query with the database. But,

ODBC API uses ODBC driver which is written in C language (i.e. platform dependent and unsecured).

That is why Java has defined its own API (JDBC API) that uses JDBC drivers (written in Java language).

We can use JDBC API to handle database using Java program and can perform the following activities:

1. Connect to the database

2. Execute queries and update statements to the database

3. Retrieve the result received from the database.

Common JDBC Components:

The JDBC API provides the following interfaces and classes:

 DriverManager: This class manages a list of database drivers. Matches connection

requests from the java application with the proper database driver using communication

subprotocol. The first driver that recognizes a certain subprotocol under JDBC will be

used to establish a database Connection.

 Driver: This interface handles the communications with the database server. You will

interact directly with Driver objects very rarely. Instead, you use DriverManager objects,

which manages objects of this type. It also abstracts the details associated with working

with Driver objects

93 | P a g e

 Connection : This interface with all methods for contacting a database. The connection

object represents communication context, i.e., all communication with database is

through connection object only.

 Statement : You use objects created from this interface to submit the SQL statements to

the database. Some derived interfaces accept parameters in addition to executing stored

procedures.

 ResultSet: These objects hold data retrieved from a database after you execute an SQL

query using Statement objects. It acts as an iterator to allow you to move through its data.

 SQLException: This class handles any errors that occur in a database application.

Creating JDBC Application:

There are following six steps involved in building a JDBC application:

 Import the packages . Requires that you include the packages containing the JDBC

classes needed for database programming. Most often, using import java.sql.* will

suffice.

 Register the JDBC driver . Requires that you initialize a driver so you can open a

communications channel with the database.

 Open a connection . Requires using the DriverManager.getConnection() method to

create a Connection object, which represents a physical connection with the database.

 Execute a query . Requires using an object of type Statement for building and

submitting an SQL statement to the database.

 Extract data from result set . Requires that you use the appropriate ResultSet.getXXX()

method to retrieve the data from the result set.

 Clean up the environment . Requires explicitly closing all database resources versus

relying on the JVM's garbage collection.

Creating JDBC Application:

There are six steps involved in building a JDBC application which I'm going to brief in this

tutorial:

Import the packages:

This requires that you include the packages containing the JDBC classes needed for database

programming. Most often, using import java.sql.* will suffice as follows:

//STEP 1. Import required packages

import java.sql.*;

Register the JDBC driver:

This requires that you initialize a driver so you can open a communications channel with the

database. Following is the code snippet to achieve this:

94 | P a g e

//STEP 2: Register JDBC driver

Class.forName("com.mysql.jdbc.Driver");

Open a connection:

This requires using the DriverManager.getConnection() method to create a Connection

object, which represents a physical connection with the database as follows:

//STEP 3: Open a connection

// Database credentials

static final String USER = "username";

static final String PASS = "password";

System.out.println("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

Execute a query:

This requires using an object of type Statement or PreparedStatement for building and

submitting an SQL statement to the database as follows:

//STEP 4: Execute a query

System.out.println("Creating statement...");

stmt = conn.createStatement();

String sql;

sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

If there is an SQL UPDATE,INSERT or DELETE statement required, then following code

snippet would be required:

//STEP 4: Execute a query

System.out.println("Creating statement...");

stmt = conn.createStatement();

String sql;

sql = "DELETE FROM Employees";

ResultSet rs = stmt.executeUpdate(sql);

Extract data from result set:

This step is required in case you are fetching data from the database. You can use the

appropriate ResultSet.getXXX() method to retrieve the data from the result set as follows:

//STEP 5: Extract data from result set

while(rs.next()){

 //Retrieve by column name

 int id = rs.getInt("id");

95 | P a g e

 int age = rs.getInt("age");

 String first = rs.getString("first");

 String last = rs.getString("last");

 //Display values

 System.out.print("ID: " + id);

 System.out.print(", Age: " + age);

 System.out.print(", First: " + first);

 System.out.println(", Last: " + last);

}

Clean up the environment:

You should explicitly close all database resources versus relying on the JVM's garbage

collection as follows:

//STEP 6: Clean-up environment

rs.close();

stmt.close();

conn.close();

 First JDBC Program:

Based on the above steps, we can have following consolidated sample code which we can use

as a template while writing our JDBC code:

This sample code has been written based on the environment and database setup done in

Environment chapter.

//STEP 1. Import required packages

import java.sql.*;

public class FirstExample {

 // JDBC driver name and database URL

 static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";

 static final String DB_URL = "jdbc:mysql://localhost/EMP";

 // Database credentials

 static final String USER = "username";

 static final String PASS = "password";

 public static void main(String[] args) {

 Connection conn = null;

 Statement stmt = null;

 try{

 //STEP 2: Register JDBC driver

 Class.forName("com.mysql.jdbc.Driver");

96 | P a g e

 //STEP 3: Open a connection

 System.out.println("Connecting to database...");

 conn = DriverManager.getConnection(DB_URL,USER,PASS);

 //STEP 4: Execute a query

 System.out.println("Creating statement...");

 stmt = conn.createStatement();

 String sql;

 sql = "SELECT id, first, last, age FROM Employees";

 ResultSet rs = stmt.executeQuery(sql);

 //STEP 5: Extract data from result set

 while(rs.next()){

 //Retrieve by column name

 int id = rs.getInt("id");

 int age = rs.getInt("age");

 String first = rs.getString("first");

 String last = rs.getString("last");

 //Display values

 System.out.print("ID: " + id);

 System.out.print(", Age: " + age);

 System.out.print(", First: " + first);

 System.out.println(", Last: " + last);

 }

 //STEP 6: Clean-up environment

 rs.close();

 stmt.close();

 conn.close();

 }catch(SQLException se){

 //Handle errors for JDBC

 se.printStackTrace();

 }catch(Exception e){

 //Handle errors for Class.forName

 e.printStackTrace();

 }finally{

 //finally block used to close resources

 try{

 if(stmt!=null)

 stmt.close();

 }catch(SQLException se2){

 }// nothing we can do

 try{

 if(conn!=null)

 conn.close();

97 | P a g e

 }catch(SQLException se){

 se.printStackTrace();

 }//end finally try

 }//end try

 System.out.println("Goodbye!");

}//end main

}//end FirstExample

Now let us compile above example as follows:

C:\>javac FirstExample.java

C:\>

When you run FirstExample, it produces following result:

C:\>java FirstExample

Connecting to database...

Creating statement...

ID: 100, Age: 18, First: Zara, Last: Ali

ID: 101, Age: 25, First: Mahnaz, Last: Fatma

ID: 102, Age: 30, First: Zaid, Last: Khan

ID: 103, Age: 28, First: Sumit, Last: Mittal

C:\>

SQLException Methods:

A SQLException can occur both in the driver and the database. When such an exception

occurs, an object of type SQLException will be passed to the catch clause.

The passed SQLException object has the following methods available for retrieving

additional information about the exception:

By utilizing the information available from the Exception object, you can catch an exception

and continue your program appropriately. Here is the general form of a try block:

try {

 // Your risky code goes between these curly braces!!!

}

catch(Exception ex) {

 // Your exception handling code goes between these

 // curly braces, similar to the exception clause

 // in a PL/SQL block.

}

finally {

 // Your must-always-be-executed code goes between these

 // curly braces. Like closing database connection.

98 | P a g e

}

JDBC - Data Types:

The following table summarizes the default JDBC data type that the Java data type is

converted to when you call the setXXX() method of the PreparedStatement or

CallableStatement object or the ResultSet.updateXXX() method.

 JDBC 3.0 has enhanced support for BLOB, CLOB, ARRAY, and REF data types. The

ResultSet object now has updateBLOB(), updateCLOB(), updateArray(), and updateRef()

methods that enable you to directly manipulate the respective data on the server.

 The setXXX() and updateXXX() methods enable you to convert specific Java types to

specific JDBC data types. The methods, setObject() and updateObject(), enable you to

map almost any Java type to a JDBC data type.

 ResultSet object provides corresponding getXXX() method for each data type to retrieve

column value. Each method can be used with column name or by its ordinal position.

Sample Code:

This sample example can serve as a template when you need to create your own JDBC

application in the future.

This sample code has been written based on the environment and database setup done in

previous chapter.

Copy and past following example in FirstExample.java, compile and run as follows:

//STEP 1. Import required packages

import java.sql.*;

public class FirstExample {

 // JDBC driver name and database URL

 static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";

 static final String DB_URL = "jdbc:mysql://localhost/EMP";

 // Database credentials

 static final String USER = "username";

 static final String PASS = "password";

 public static void main(String[] args) {

 Connection conn = null;

 Statement stmt = null;

 try{

 //STEP 2: Register JDBC driver

 Class.forName("com.mysql.jdbc.Driver");

99 | P a g e

 //STEP 3: Open a connection

 System.out.println("Connecting to database...");

 conn = DriverManager.getConnection(DB_URL,USER,PASS);

 //STEP 4: Execute a query

 System.out.println("Creating statement...");

 stmt = conn.createStatement();

 String sql;

 sql = "SELECT id, first, last, age FROM Employees";

 ResultSet rs = stmt.executeQuery(sql);

 //STEP 5: Extract data from result set

 while(rs.next()){

 //Retrieve by column name

 int id = rs.getInt("id");

 int age = rs.getInt("age");

 String first = rs.getString("first");

 String last = rs.getString("last");

 //Display values

 System.out.print("ID: " + id);

 System.out.print(", Age: " + age);

 System.out.print(", First: " + first);

 System.out.println(", Last: " + last);

 }

 //STEP 6: Clean-up environment

 rs.close();

 stmt.close();

 conn.close();

 }catch(SQLException se){

 //Handle errors for JDBC

 se.printStackTrace();

 }catch(Exception e){

 //Handle errors for Class.forName

 e.printStackTrace();

 }finally{

 //finally block used to close resources

 try{

 if(stmt!=null)

 stmt.close();

 }catch(SQLException se2){

 }// nothing we can do

 try{

 if(conn!=null)

 conn.close();

 }catch(SQLException se){

100 | P a g e

 se.printStackTrace();

 }//end finally try

 }//end try

 System.out.println("Goodbye!");

}//end main

}//end FirstExample

Now let us compile above example as follows:

C:\>javac FirstExample.java

C:\>

When you run FirstExample, it produces following result:

C:\>java FirstExample

Connecting to database...

Creating statement...

ID: 100, Age: 18, First: Zara, Last: Ali

ID: 101, Age: 25, First: Mahnaz, Last: Fatma

ID: 102, Age: 30, First: Zaid, Last: Khan

ID: 103, Age: 28, First: Sumit, Last: Mittal

C:\>

JDBC Drivers Types:

JDBC driver implementations vary because of the wide variety of operating systems and

hardware platforms in which Java operates. Sun has divided the implementation types into four

categories, Types 1, 2, 3, and 4, which is explained below:

Type 1: JDBC-ODBC Bridge Driver:

In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each client

machine. Using ODBC requires configuring on your system a Data Source Name (DSN) that

represents the target database.

When Java first came out, this was a useful driver because most databases only supported ODBC

access but now this type of driver is recommended only for experimental use or when no other

alternative is available.

101 | P a g e

The JDBC-ODBC bridge that comes with JDK 1.2 is a good example of this kind of driver.

Type 2: JDBC-Native API:

In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls which are unique

to the database. These drivers typically provided by the database vendors and used in the same

manner as the JDBC-ODBC Bridge, the vendor-specific driver must be installed on each client

machine.

If we change the Database we have to change the native API as it is specific to a database and

they are mostly obsolete now but you may realize some speed increase with a Type 2 driver,

because it eliminates ODBC's overhead.

102 | P a g e

The Oracle Call Interface (OCI) driver is an example of a Type 2 driver.

Type 3: JDBC-Net pure Java:

In a Type 3 driver, a three-tier approach is used to accessing databases. The JDBC clients use

standard network sockets to communicate with an middleware application server. The socket

information is then translated by the middleware application server into the call format required

by the DBMS, and forwarded to the database server.

This kind of driver is extremely flexible, since it requires no code installed on the client and a

single driver can actually provide access to multiple databases.

You can think of the application server as a JDBC "proxy," meaning that it makes calls for the

client application. As a result, you need some knowledge of the application server's configuration

in order to effectively use this driver type.

Your application server might use a Type 1, 2, or 4 driver to communicate with the database,

understanding the nuances will prove helpful.

Type 4: 100% pure Java:

In a Type 4 driver, a pure Java-based driver that communicates directly with vendor's database

through socket connection. This is the highest performance driver available for the database and

is usually provided by the vendor itself.

This kind of driver is extremely flexible, you don't need to install special software on the client

or server. Further, these drivers can be downloaded dynamically.

103 | P a g e

MySQL's Connector/J driver is a Type 4 driver. Because of the proprietary nature of their

network protocols, database vendors usually supply type 4 drivers.

Which Driver should be used?

If you are accessing one type of database, such as Oracle, Sybase, or IBM, the preferred driver

type is 4.

If your Java application is accessing multiple types of databases at the same time, type 3 is the

preferred driver.

Type 2 drivers are useful in situations where a type 3 or type 4 driver is not available yet for your

database.

The type 1 driver is not considered a deployment-level driver and is typically used for

development and testing purposes only.

104 | P a g e

Querying a database and processing the results

Once a connection is obtained we can interact with the database. The JDBC Statement,

CallableStatement, and PreparedStatement interfaces define the methods and properties that

enable to send SQL or PL/SQL commands and receive data from your database.

They also define methods that help bridge data type differences between Java and SQL data

types used in a database.

The following table provides a summary of each interface's purpose to decide on the
interface to use.

Interfaces Recommended Use

Statement Use this for general-purpose access to database. It Useful when we are

using static SQL statements at runtime. The Statement interface cannot

accept parameters.

PreparedStatement Use this when you want to use the SQL statements many times. The

PreparedStatement interface accepts input parameters at runtime.

CallableStatement Use this when you want to access the database stored procedures. The

CallableStatement interface can also accept runtime input parameters.

The Statement Objects

Creating Statement Object

Before use a Statement object to execute a SQL statement, need to create one using the

Connection object's createStatement() method, as in the following example –

Statement stmt = null;

try {

 stmt = conn.createStatement();

 . . .

}

catch (SQLException e) {

 . . .

}

finally {

 . . .

}

105 | P a g e

Once you've created a Statement object, then use it to execute an SQL statement with one of its

three execute methods.

 boolean execute (String SQL): Returns a boolean value of true if a ResultSet object can

be retrieved; otherwise, it returns false. Use this method to execute SQL DDL

statements or when you need to use truly dynamic SQL.

 int executeUpdate (String SQL): Returns the number of rows affected by the execution

of the SQL statement. Use this method to execute SQL statements for which you expect

to get a number of rows affected - for example, an INSERT, UPDATE, or DELETE

statement.

 ResultSet executeQuery (String SQL): Returns a ResultSet object. Use this method

when you expect to get a result set, as you would with a SELECT statement.

Closing Statement Object

Just as you close a Connection object to save database resources, for the same reason you

should also close the Statement object.

A simple call to the close() method will do the job. If you close the Connection object first, it

will close the Statement object as well. However, you should always explicitly close the

Statement object to ensure proper cleanup.

Statement stmt = null;

try {

 stmt = conn.createStatement();

 . . .

}

catch (SQLException e) {

 . . .

}

finally {

 stmt.close();

}

The PreparedStatement Objects

The PreparedStatement interface extends the Statement interface, which gives added

functionality with a couple of advantages over a generic Statement object.

This statement gives the flexibility of supplying arguments dynamically.

106 | P a g e

Creating PreparedStatement Object

PreparedStatement pstmt = null;

try {

 String SQL = "Update Employees SET age = ? WHERE id = ?";

 pstmt = conn.prepareStatement(SQL);

 . . .

}

catch (SQLException e) {

 . . .

}

finally {

 . . .

}

All parameters in JDBC are represented by the ? symbol, which is known as the parameter

marker. You must supply values for every parameter before executing the SQL statement.

All of the Statement object's methods for interacting with the database (a) execute(), (b)

executeQuery(), and (c) executeUpdate() also work with the PreparedStatement object.

Closing PreparedStatement Object

To close a Statement object, for the same reason should also close the PreparedStatement object.

A simple call to the close() method will do the job. To close the Connection object first, it will

close the PreparedStatement object as well. However, It should always explicitly close the

PreparedStatement object to ensure proper cleanup.

PreparedStatement pstmt = null;

try {

 String SQL = "Update Employees SET age = ? WHERE id = ?";

 pstmt = conn.prepareStatement(SQL);

 . . .

}

catch (SQLException e) {

 . . .

}

finally {

 pstmt.close();

}

Updating data with jdbc.

107 | P a g e

The CallableStatement Objects

Just as a Connection object creates the Statement and PreparedStatement objects, it also creates

the CallableStatement object, which would be used to execute a call to a database stored

procedure.

Closing CallableStatement Object

Just like other Statement object, also close the CallableStatement object.

A simple call to the close() method will do the job. If you close the Connection object first, it

will close the CallableStatement object as well

However, always explicitly close the CallableStatement object to ensure proper cleanup.

CallableStatement cstmt = null;

try {

 String SQL = "{call getEmpName (?, ?)}";

 cstmt = conn.prepareCall (SQL);

 . . .

}

catch (SQLException e) {

 . . .

}

finally {

 cstmt.close();

}

Processing Results

The SQL statements that read data from a database query, return the data in a result set. The

SELECT statement is the standard way to select rows from a database and view them in a result

set. The java.sql.ResultSet interface represents the result set of a database query

A ResultSet object maintains a cursor that points to the current row in the result set. The term

"result set" refers to the row and column data contained in a ResultSet object.

The methods of the ResultSet interface can be broken down into three categories

 Navigational methods: Used to move the cursor around.

 Get methods: Used to view the data in the columns of the current row being pointed by
the cursor.

 Update methods: Used to update the data in the columns of the current row. The updates
can then be updated in the underlying database as well. The cursor is movable based on

108 | P a g e

the properties of the ResultSet. These properties are designated when the corresponding

Statement that generates the ResultSet is created.

JDBC provides the following connection methods to create statements with desired

ResultSet

1. createStatement(int RSType, int RSConcurrency);

2. prepareStatement(String SQL, int RSType, int RSConcurrency);

3. prepareCall(String sql, int RSType, int RSConcurrency);

The first argument indicates the type of a ResultSet object and the second argument is

one of two ResultSet constants for specifying whether a result set is read-only or

updatable.

Type of ResultSet

The possible RSType are given below. If you do not specify any ResultSet type, It will

automatically get one that is TYPE_FORWARD_ONLY.

Type Description

ResultSet.TYPE_FORWARD_ONLY The cursor can only move forward in the result

set.

ResultSet.TYPE_SCROLL_INSENSITIVE The cursor can scroll forward and backward, and

the result set is not sensitive to changes made by

others to the database that occur after the result set

was created.

ResultSet.TYPE_SCROLL_SENSITIVE. The cursor can scroll forward and backward, and

the result set is sensitive to changes made by

others to the database that occur after the result set

was created.

Viewing a Result Set

The ResultSet interface contains various methods for getting the data of the current row.

There is a get method for each of the possible data types, and each get method has two versions:

 One that takes in a column name.

 One that takes in a column index.

109 | P a g e

For example, if the column you are interested in viewing contains an int, need to use one of the

getInt() methods of ResultSet:

S.N. Methods & Description

1 public int getInt(String columnName) throws SQLException

Returns the int in the current row in the column named columnName.

2 public int getInt(int columnIndex) throws SQLException

Returns the int in the current row in the specified column index. The column index starts

at 1, meaning the first column of a row is 1, the second column of a row is 2, and so on.

Updating data with JDBC

Updates records in a table by using JDBC, need to execute the UPDATE query by using the

executeUpdate() method

This is generally usedfor altering the databases. Generally DROP, INSERT, UPDATE, DELETE

statements will be used in this. The output will be in the form of int. this int value denotes the

number of rows affected by the query

Syntax: int executeUpdate(String sql) throws SQLException

Ex: int i= stmt.executeUpdate(query);

EXAMPLE PROGRAM ON JAVA DATABSE CONNECTIVITY

Write a java program that connects to a database using JDBC and does add, delete, modify and

retrieve operations.

import javax.sql.*;

import java.util.*;

public class CRUD

{

public static void main(String[] args)

{

Connection cn; Statement st; ResultSet rs; try

{

Class.forName("com.mysql.jdbc.Driver");

cn = DriverManager.getConnection("jdbc:mysql://localhost:3306/IARE", "root", "98765432");

st = cn.createStatement();

110 | P a g e

System.out.println("Welcome To Institute of Aeronautical Engineering College");

System.out.println("------MENU ");

System.out.println("1.Insert");

System.out.println("2.EDIT");

System.out.println("3.Delete");

System.out.println("4.Display");

System.out.println("5.Exit");

System.out.println(" ");

String opt = "";

String htno = "", sname = "", mobile = "", sql = "";

Scanner sc = new Scanner(System.in);

while (opt != "5")

{

System.out.println("Enter Your Option");

opt = sc.next();

switch (opt)

{

case "1":

{

 System.out.println("Enter Htno");

htno = sc.next(); System.out.println("Enter Name");

sname = sc.next(); System.out.println("Enter Mobile");

mobile = sc.next();

sql = "insert into stu values(" + "'" + htno + "'" + "," + "'" + sname + "'" + "," + "'" + mobile + "'"

+ ")";

if (st.executeUpdate(sql) > 0)

{

System.out.println("Record Inserted");

}

break;

System.out.println("Enter Htno");

htno = sc.next();

System.out.println("Enter Name");

sname = sc.next();

System.out.println("Enter Mobile");

mobile = sc.next();

sql = "insert into stu values(" + "'" + htno + "'" + "," + "'" + sname + "'" + "," + "'" + mobile + "'"

+ ")";

if (st.executeUpdate(sql) > 0)

{

System.out.println("Record Inserted");

}

case "2":

{

111 | P a g e

System.out.println("Enter Htno to Update");

htno = sc.next();

System.out.println("Enter Name");

sname = sc.next();

System.out.println("Enter Mobile");

mobile = sc.next();

sql = "update stu set sname=" + "'" + sname + "'" + "," + "mobile=" + "'" + mobile + "'" + "

where htno='" + htno + "'";

if

(st.executeUpdate(sql) > 0)

{

System.out.println("Record Updated");

}

else

{

System.out.println("Operation Failed");

}

}

break;

case "3":

{

System.out.println("Enter Htno to delete");

htno = sc.next();

sql = "delete from stu where Htno=" + "'" + htno + "'";

if

(st.executeUpdate(sql) > 0)

{

System.out.println("Record deleted");

}

else

{

System.out.println("Operation Failed");

}

}

break;

case "4": {

sql = "select * from stu";

rs = st.executeQuery(sql);

System.out.println("Htno\tSname\tMobile");

while (rs.next()) {

System.out.println(rs.getString("Htno") + "\t" + rs.getString("SName") + "\t" +

rs.getString("mobile"));

}

rs.close();

}

112 | P a g e

break; case "5":

{

opt = "5"; System.out.println("Thank You"); st.close();

cn.close();

}

break;

default: {

System.out.println("Choose Option between 1 and 5 only"); }

}

}

}

catch (Exception ex)

{

System.out.println(ex.getMessage());

}

}

}

OUTPUT:

113 | P a g e

