
LINUX PROGRAMMING
Course code:ACS010

III. B. Tech II semester
Regulation: IARE R-16

BY
Mrs. K Radhika

Assistant Professors
Mrs. G Sulakshana, Mrs. N.M Deepika, Mr. P Anjaiah

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500 043

CO’s Course outcomes

CO 1 Understand the basic commands of Linux operating system

and Demonstrate Sed and awk scripting

CO 2 Demonstrate shell scripts and understand creation of file

systems and directories and operate them

CO 3 Synthesis creation of background and fore ground processes

management through system calls and Generalize signal

functions to handle interrupts by using system calls.

CO 4 Demonstrate Inter process communication using shared
memory segments, pipes ,message queues

CO 5 Demonstrate various client server applications using TCP or

UDP protocols.

2

LINUX UTILITIES

UNIT-I

CLOs Course Learning Outcome

CLO 1 Learn the importance of Linux architecture along with

features.

CLO 2 Identify and use Linux utilities to create and manage simple

file processing operations

CLO 3 Apply the security features on file access permissions by

restricting the ownership using advance Linux commands.

CLO 4 Implement the SED Scripts, operation, addresses, and

commands.

CLO 5 Implement the GREP and AWK commands for pattern

matching and mathematical functions.

4

LINUX Features

• A computer operating system. It is designed to be used by
many people at the same time (multi-user). Runs on a variety
of processors.

• It provides a number of facilities:

• management of hardware resources

• directory and file system

• loading / execution / suspension of programs

LINUX File System

• File: is a container for storing information. A file is of 3 types.

• Ordinary file: It contains data as a streamof characters. It is of 2
types.

• Text file: contains printable characters.

• Binary file: contains both printable & non printable characters.

• Directory file: contains no data but it maintains some details of
the files & subdirectories that it contains.

• Every directory entry contains 2 components:

1.file name.

2.Aunique identification number for the file or directory.

LINUX File System

• /Bin: contains executable files for most of the unix commands.
• /Dev: contain files that control various input &output devices.
• /Lib: contains all the library functions in binary form.
• /Usr: contains several directories each associated with a

particular user.
• /Tmp: contain the temporary files created by unix or by any

user.

• /Etc: contains configuration files of the system.

Modes of operation

• Vi has 3 mode of operation.

• Command mode: In this mode all the keys pressed by the user
areinterpreted as commands. It may perform some actions like
move cursor,save, delete text, quit vi, etc.

• Input/Insert mode: used for inserting text.

– start by typing i; finish with ESC

• Ex mode or last line mode:

• Used for giving commands at command line.

• The bottom line of vi is called the command line.

Basic Cursor Movements

• H:move cursor one place to left

• down one

• up one

• right one

• W:move forward one

• b:word back one word

Basic Cursor Movements

• Inserting Text

• Move to insertion point Switch to input mode:i

• Start typing; BACKSPACE or DELETE

• for deletion

• ESCfinish; back in command mode

Basic Cursor Movements

Deletion
Must be in command mode.
• X Delete character that cursor is on.
• Dd Delete current line.
• D Delete from cursor position to end of line
• U Undo last command

Layered Architecture:

Linux System Architecture is consists of following layers
1.Hardware layer - Hardware consists of all peripheral devices
(RAM/ HDD/ CPU etc).
2.Kernel - Core component of Operating System, interacts directly
with hardware, provides low level services to upper layer
components.
3.Shell - An interface to kernel, hiding complexity of kernel's
functions from users. Takes commands from user and executes
kernel's functions.
4.Utilities - Utility programs giving user most of the functionalities
of an operating systems.

Layered Architecture

File handling utilities

• Cp (Copying Files)

• – To create an exact copy of a file you can use the ―cp‖
command. The format of this command is:

• cp [-option] source destination

Eg:

• Cp file1 file2

• Here file1 is copied to file2.

Eg:

• Cp file1 file2 dir

• File1 file2 are copied to dir.

Security by file permissions

• Unix follows a 3-tiered file protection system.
• Each group represents a category. There are 3 categories-

owner ,group ,others
• Each category contains read ,write,execute permissions .
• rwx->presence of all permissions. r-x->absence of write

permission
• r-- -> absence of write ,execute permission
• Chmod: changing file permission
• chmod sets a file‘s permissions (read, write and execute) for all

three categories
• of users (owner, group and others).

Process utilities

Ps (process status):
Display some process attributes.
$ps
PID TTY TIME CMD
1078 pts/2 0:00 bash

• Ps presents a snapshot of the process table.
• Ps with –f option displays a fuller listing that includes the PPID.
• Ps with –u option followed by user-id displays the processes
owned by the user-id.

Ps with –e option displays the system processes.
Who: know the users
Displays the users currently logged in the system.

Disk utilities

Du: disk usage Du estimate the file space usage on the disk.
It produces a list containing the usage of each subdirectory of its
argument and finally produces a summary.
$du /home/usr1

Df: displays the amount of free space available on the disk. The output
displays for each file system separately.

$df
Mount:
Used to mount the file systems.
Takes 2 arguments-device name,mount point.

ftp: file transfer protocol
ftp is used to transfer files. It can be used with host name.

$ftp Saturn Connected to Saturn 220 Saturn ftp server
Name (Saturn: summit): Henry
Password: ******
To quit ftp use close and then bye or quit. ftp>close
221 good bye ftp>bye

Transferring files: Files can be of 2 types.
Uploading(put & mput):
To upload ur web pages & graphic files to website.
The put command sends a single file to the remote machine.
ftp>binary
200type set to I ftp>put penguin. Gif

Networking commands

Text processing utilities

cat: cat is used to create the files.
$cat> filename Type some text here Press ctrl+d
$Cat can also be used to display the contents Of a file.
$cat filename
Cat can also concatenate the contents of 2 files and store them in
third file.
Cat>file1 file2>new file

To append the contents of two files into another file use
Cat>file1 file2>>new file

tail: tail command displays the end of the file.
It displays the last ten lines by default.
$tail file
To display last 3 lines use
$tail –n 3 file

head:
head command as the name implies, displays the top of the file.
When used without an option, it displays the first 10 lines of the file.
$head file
We can use –n option to specify a line count and display, say first 3
lines of the file.

$head –n 3 file or $head -3 file

Sort:Sort can be used for sorting the contents of a file.
$sort shortlist
Sorting starts with the first character of each line and proceeds to
the next character only when the characters in two lines are
identical.
Sort options:
With –t option sorts a file based on the fields.

Text processing utilities

$sort –t ―|‖+2 shortlist
The sort order can be reversed with –r option.
Sorting on secondary key:

U can sort on more than one field i.e.u can provide a secondary key to
sort.
If the primary key is the third field and the secondary key the second
field, we can use

$sort –t \| +2 -3 +1 shortlist
Numeric sort (-n):

To sort on number field use sort with –n option.
$sort –t: +2 -3 –n
group1 Removing duplicate lines (-u):The –u option u purge duplicate
lines from a file.

Text processing utilities

nl:nl is used for numbering lines of a file.
Nl numbers only logical lines –those containing something other apart
from
the new line character.
$nl file
nl uses a tab as a default delimiter, but we can change it with –s
option.
$nl –s: file
nl won‘t number a line if it contains nothing.

Grep: globally search for a regular expression and print.
Grep scans a file for the occurrence of a pattern and depending on the
options used, displays Lines containing the selected pattern.
Lines not containing the selected pattern (- v).
Line numbers where pattern occurs (-n)
No. of lines containing the pattern (-c)

Text processing utilities

File names where pattern occurs (-l) Syntax:
grep option pattern filename(s)
Egrep: extended grep
Egrepextendedsetincludes2 special characters + and ?.
--matches one or more occurrences of the pervious character.
?-- matches zero or more occurrences of the pervious character.

fgrep: fast grep
If search criteria requires only sequence expressions, fgrep is the
best utility.
Fgrep supports only string patterns, no regular expressions.
To extract all the lines that contain an apostrophe use fgrep as
follows:
$fgrep ―‘‖file

Text processing utilities

Cut: slitting the file vertically U can slice a file vertically with cut
command.
Cutting columns(-c):
Cut with –c option cuts the columns.
To extract first 4 columns of the group file :
$cut –c 1-4 group1
The specification –c 1-4 cuts columns 1 to 4. Cutting fields:
To cut 1st and 3rd fields
use $cut –d: -f1,3 group1

Paste: pasting files
What u cut with the cut can be pasted back with paste command-
but vertically rather than horizontally. u can view two files side by
side by pasting them.
To join two files calc.lst and result.lst use
$paste –d= calc.lst result.lst

Text processing utilities

Join:
is a command in Unix-like operating systems that merges the lines of
two sorted text files based on the presence of a common field.
The join command takes as input two text files and a number of
options. If no command-line argument is given, this command looks
for a pair of lines from the two files having the same first field (a
sequence of characters that are different from space), and outputs a
line composed of the first field followed by the rest of the two lines.
$join file1 file2

tee:
Unix tee command breaks up its input into two components; one
component is saved in a file, and other is connected to the standard
output.Tee doesn’t perform any filtering action on its input; it gives
exactly what it takes.tee can be placed any where in a pipeline.

Text processing utilities

Flags
-a Adds the output to the end of File instead of writing over it. -i
Ignores interrupts.

Comm:
Suppose if u have 2 list of people, u are asked to find out the
names available in one and not the other or even those common
to both. Comm is the command that u need to for this work.
It requires two sorted file and lists the differing entries in different
columns.
$comm file1 file2
Comm display a three-column output.

diff: converting one file to another
Diff takes different approach to displaying the differences.
When used with the same files it produces a detailed output.

Text processing utilities

The Command: awk

awk Scripts

1.awk scripts are divided into three major parts:

Categories of Patterns

awk Actions

Awk: Aho, Weinberger and Kernighan
Awk is not just a command, but a programming language too.
Syntax:
awk options ‗selection criteria {action}‘ file(s)
Simple filtering
awk ‗/Simpsons/ { print }‘ homer|Simpsons
Splitting a line into fieldsawk –F ‖|‖‗/Simpsons/ {print $1}‘ homer

tr: translating characters
tr command manipulates individual characters in a character

stream.
tr options expr1 expr2< standard input
It takes input only from the standard input, it does not take input a

file name as its argument.

awk Actions

awk Actions

What is sed?

•A non-interactive stream editor

•Interprets sed instructions and performs actions

SED

Sed Operation
How Does sed Work?

SED

sed reads line of input line of input is copied into a temporary
buffer called pattern space editing commands are applied
subsequent commands are applied to line in the pattern space,
not the original input line once finished, line is sent to output
(unless –n option was used) line is removed from pattern space
sed reads next line of input, until end of file

SED

sed instruction format(Sed Addresses):

• Address determines which lines in the input file are to be processed
by the command(s)

• If no address is specified, then the command is applied to each
input line

• address types:
• Single-Line address
• Set-of-Lines address
• Range address
• Nested address Single-Line Address
• Specifies only one line in the input file
• special: dollar sign ($) denotes last line of input file

sed commands

Line Number
line number command (=) writes the current line number before each matched/output
line modify commands:

sed commands

Regular Expressions: use with sed

sed i/o commands

UNIT-II

WORKING WITH BOURNE SHELL

41

CLOs Course Learning Outcome

CLO 6 Understand the shell responsibilities of different types of

shells

CLO 7 Develop shell scripts to perform more complex tasks in

shell programming environment.

CLO 8 Illustrate file processing operations such as standard I/O and

formatted I/O.

CLO 9 Illustrate directory operations such as standard I/O and

formatted I/O.

• The Bourne shell, or sh, was the default Unix shell of Unix
Version 7. It was developed by Stephen Bourne, of AT&T
Bell Laboratories.

• A Unix shell, also called "the command line", provides the
traditional user interface for the Unix operating system and
for Unix-like systems. Users direct the operation of the
computer by entering command input as text for a shell to
execute.

There are many different shells in use. They are

Bourne shell (sh)

C shell (csh)

Korn shell (ksh)

Shell

Shell responsibilities

• Program Execution

• Variable and Filename Substitution

• I/O Redirection

• Pipeline Hookup

• Environment Control

• Interpreted Programming Language

Program Execution:

• The shell is responsible for the execution of all programs
that your request from your terminal.

• Each time you type in a line to the shell, the shell analyzes the
line and then determines what to do.

• The line that is typed to the shell is known more formally as
the command line. The shell scans this command line and
determines the name of the program to be executed and
what arguments to pass to the program.

Shell responsibilities

Variable and Filename Substitution:
Like any other programming language, the shell lets you assign
values to variables. Whenever you specify one of these variables
on the command line, preceded by a dollar sign, the shell
substitutes the value assigned to the variable at that point.

I/O Redirection:
It is the shell's responsibility to take care of input and output
redirection on the command line. It scans the command line for
the occurrence of the special redirection characters <, >, or >>.

Shell responsibilities

Pipes

• Standard I/p & standard o/p constitute two separate streams
that can be individually manipulated by the shell. The shell
connects these streams so that one command takes I /p from
other using pipes.

• Who produces the list of users , to save this o/p in a file use

• $who > user.lst

• To count the no. of lines in this user.lst use $wc –l <user.lst

Redirection

• Many of the commands that we used sent their output to the
terminal and also taking the input from the keyboard. These
commands are designed that way to accept not only fixed
sources and destinations. They are actually designed to use a
character stream without knowing its source and destination.

• A stream is a sequence of bytes that many commands see as
input and output. Unix treats these streams as files and a
group of unix commands reads from and writes to these files.

• There are 3 streams or standard files. The shell sets up these 3
standard files and attaches them to user terminal at the time
of logging in.

• Standard i/p ----default source is the keyboard.

• Standard o/p ----default source is the terminal.

• Standard error ----default source is the terminal.

standard files

• Instead of input coming from the keyboard and output and
error going to the terminal, they can be redirected to come
from or go to any file or some other device.

• Standard o/p: It has 3 sources. The terminal, default source

• A file using redirection with >, >>

• Another program using a pipeline.

• Using the symbols >,>> u can redirect the o/p of a command
to a file.

• $who> newfile

standard files

• If the output file does not exist the shell creates it before
executing the command. If it exists the shell overwrites it.

• $who>> newfile

• Standard i/p:

• The keyboard,default source A file using redirection with <

• Another program using a pipeline.

• $wc < calc.lst or

• $wc calc.lst or $wc

standard files

• Standard Error:

• When u enter an incorrect command or trying to open a non
existing file, certain diagnostic messages show up on the screen.
This is the standard error stream.

• Trying to cat nonexistent file produces the error stream.

• $cat bar

• Cat: cannot open bar :no such file or directory

standard files

• The standard error stream can also be redirected to a file.

• $cat bar 2> errorfile

• Here 2 is the filedescriptor for standard error file.

• Each of the standard files has a number called a file descriptor,
which is used for identification.

• 0—standard i/p 1---standard o/p

• 2---standard error

Standard Files

Here Documents

• There are occasions when the data of ur program reads is
fixed & fairly limited.

• The shell uses << symbols to read data from the same file
containing the script. This referred to as a here document,
signifying that the data is here rather than in a separate file.

• Any command using standard i/p can also take i/p from a here
document.

• This feature is useful when used with commands that don’t
accept a file name as argument.

Shell Meta characters

The shell consists of large no. of meta characters. These
characters plays vital role in Unix programming.

Types of metacharacters:

1.File substitution

2.I/O redirection

3.Process execution

4.Quoting metacharacters

5.Positional parameters

6.Special characters

• These metacharacters are used to match the filenames in a
directory.

• Metacharacter significance

• * matches any no. of characters

• ? matches a single character

• [ijk] matches a single character either i,j,k

• [!ijk] matches a single character that is not

• an I,j,k

Filename Substitution:

• These special characters specify from where to take i/p & where
to send o/p.

• >- to send the o/p to a specific file to take i/p from specific
location but not from keyboard.

• >>- to save the o/p in a particular file at the end of that file
without overwriting it.

• <<- to take i/p from standard i/p file.

I/O redirection

• It is used when u want to execute more then one command at $
prompt.

• Eg:$date; cat f1>f2

• () –used to group the commands.

• Eg:(date; cat f1) >f2

• -used to execute the commands in background mode.

• Eg:$ls &

this is used when u want to execute the second command only
if the first command executed successfully.

• Eg:$grep Unix f1 && echo Unix found $cc f1 && a.out

• - used to execute the second command if first command fails.

• Eg:$grep unix f1 || echo no unix

Process execution:

• \ (backslash)- negates the special property of the single
character following it.

Eg:

• $echo \? * \?

• ?*?

• ‗‗(pair of single quotes)-negates the special properties of all
enclosed characters.

Eg:$echo ‗send $100 to whom?‘

Quoting

• ――(pairof double quotes)-negates the special properties of
all enclosed characters except $,`,\ .

• Eg:

• $echo ―todaydate is $date‖ or

• $echo ―todaydate is `date` ―

Positional parameters:

• $0- gives the name of the command which is being
executed.

• $*-gives the list of arguments.

• $#-gives no. of arguments.

Quoting

• Special parameters:

• $$- gives PID of the current shell.

• $?-gives the exit status of the last executed command.

• $!-gives the PID of last background process.

• $- -gives the current setting of shell.

Special parameters

Shell variables

• U can define & use variables both in the command line and
shell scripts. These variables are called shell variables.

• No type declaration is necessary before u can

• use a shell variable.

• Variables provide the ability to store and manipulate the
information with in the shell program. The variables are
completely under the control of user.

• Variables in Unix are of two types.

– 1.Unix defined or system variables

– 2.User defined variables

Generalized form: variable=value.

Eg: $x=10

$echo $x 10

To remove a variable use unset.

$unset x

All shell variables are initialized to null strings by default. To
explicitly set null values use

x= or x=‗‘ or x=―‖

To assign multiword strings to a variable use $msg=‗u have a
mail‘

User-defined variables:

• $HOME -Home directory

• $PATH -List of directories to search for commands

• $PS1 - Command prompt

• $PS2 -Secondary prompt

• $SHELL - Current login shell

• $0 - Name of the shell script

• $# - No . of parameters passed

• $$ - Process ID of the shell script

Environment Variables

Shell commands

read:

• The read statement is a tool for taking input from the user
i.e. making scripts interactive. It is used with one or more
variables. Input supplied through the standard input is read
into these variables.

• $read name

• What ever u entered is stored in the variable name.

• Printf:Printf is used to print formatted o/p. printf "format"
arg1 arg2 ...

Eg:$ printf "This is a number: %d\n" 10 This is a number: 10

• $

• Printf supports conversion specification characters like %d, %s
,%x ,%o….

control structures

• If conditional:

• The if statement takes two-way decisions depending on the
fulfillment of a certain condition. In shell the statement uses
following form.

• If command is successful then execute commands else execute
command if.

• Eval:eval scans the command line twice before executing it.
General form for eval is

• eval command-line

• Eg:$ cat last

• eval echo \$$#

• $las tone two three four four

File Types:

The types of files are:

1.Regular file

2.Directory file

3.Block special file

4.Character special file

5.FIFO

6.Socket

7.Symbolic link

• Macro Type of file

• S_ISREG() regular file

• S_ISDIR() directory file

• S_ISCHR() character special file

• S_ISBLK() block special file

• S_ISFIFO() pipe or FIFO

• S_ISLNK() symbolic link

• S_ISSOCK() socket

File Types

System calls for file I/O operations

• To use the services in the OS Unix offers some special
functions known as system calls. The system call is a task
which performs very basic functions that requires
communication with CPU, memory and other devices.

• UNIX system calls are used to manage the file system, control
processes, and to provide inter process communication.

• Types of system calls in UNIX:

1.Open 2.create 3. read

4.write 5.Close 6.lseek

7.stat 8.fstat 9.ioctl

10.umask 11.dup 12.dup2

Directories

chmod and fchmod Functions:

These two functions allow us to change the file access
permissions for an existing file.

#include <sys / stat.h>

int chmod(const char*pathname, mode t mode);

int fchmod(int filedes, mode tmode);

Both return: 0 if OK, -1 on error.

Scanning Directories

• The directory functions are declared in a header file, dirent.h.
They use a structure, DIR, as a basis for directory
manipulation.

• Here are these functions:

• Opendir

• closedir

• Readdir

• telldir

• seekdir

• The opendir function opens a directory and establishes a
directory stream.

• The readdir function returns a pointer to a structure detailing
the next directory entry in the directory stream

• The telldir function returns a value that records the current
position in a directory stream.

• The seekdir function sets the directory entry pointer in the
directory stream given by dirp.

• The closedir function closes a directory stream and frees up
the resources associated with it.

Scanning Directories

UNIT-III

PROCESS AND SIGNALS

73

CLOs Course Learning Outcome

CLO 10 Understand process structure, scheduling and

management through system calls.

CLO 11 Generalize signal functions to handle interrupts by using

system calls.

Process Identifier

• Every process has a unique process ID, a non-negative integer.

• There are two special processes.

• Process ID is usually the schedule process and is often known
as the ‘swapper‘.

• The program files for this process loss /etc/init in older
version of UNIX and is /sbin/init is newer version.

• init‘usually reads the system dependent initialization files and
brings the system to a certain state.

Process,Process structure

• Every process has a unique process ID, a non-negative integer.
Unique, process IDs are reused.

• As processes terminate, their IDs become candidates for reuse.

• Process ID 0 is usually the scheduler process and is often known as
the swapper.

• Process ID 1 is usually the init process and is invoked by the kernel
at the end of the bootstrap procedure. The init process never dies.

• process ID 2 is the page daemon.

• In addition to the process ID, there are other identifiers for
every process. The following functions return these
identifiers.

• #include <unistd.h> pid_t getpid (void);

• Returns: process ID of calling process. pid_t getppid (void);

• Returns: parent process ID of calling process. uid_t getuid
(void);

• Returns: real user ID of calling process.

Process,Process structure

Process Table

viewing processes

• It is responsible for scheduling running of user and other
processes.

• It is responsible for allocating memory.

• It is responsible for managing the swapping between memory
and disk.

• It is responsible for moving data to and from the peripherals.

• it receives service requests from the processes and honors
them.

System processes

• finding host/domain name and IP address - hostname

• test network connection – ping

• getting network configuration – ifconfig

• Network connections, routing tables, interface statistics –
netstat

• query DNS lookup name – nslookup

• communicate with other hostname – telnet

• outing steps that packets take to get to network host –
traceroute

• checking status of destination host - telnet

Starting new processes

• Treat current process

• Select process

• Switch process

Waiting for a process

• All of these system calls are used to wait for state changes in a
child of the calling process, and obtain information about the
child whose state has changed.

• A state change is considered to be: the child terminated; the
child was stopped by a signal; or the child was resumed by a
signal.

wait3 and wait4 functions

• #include<sys/types.h>

• #include<sys/wait.h>

• pid_t wait3(int *statloc, int options, struct rusage *rusage);

• pid_t wait4(pid_t pid, int *statloc, int options, struct rusage
*rusage) Both return: process ID if OK, 0, or -1 on error

• The resource information includes information such as the
amount of user CPU time , the amount of system CPU time,
number of page faults, number of signals received.

Process termination

• Now that we know what goes on when a process gets created,
what is happening when we don't need it anymore?

• A process can exit using the _exit system call, this will free up
the resources that process was using for reallocation

• There is another way to terminate a process and that involves
using signals, which we will discuss soon.

Orphan Processes

• When a parent process dies before a child process, the

kernel knows that it's not going to get a wait call, so instead
it makes these processes "orphans" and puts them under
the care of init (remember mother of all processes).

• Init will eventually perform the wait system call for these
orphans so they can die.

Zombie Processes

• When a child process terminates, an association with its
parent survives until the parent in turn either terminates
normally or calls wait.

• This terminated child process is known as a zombie process.

System call interface for process management

Services Provided by System Calls

• Process creation and management

• Main memory management

• File Access, Directory and File system management

• Device handling(I/O)

• Protection

• Networking, etc.

There are 5 different categories of system calls

• Process control

– end, abort, create, terminate, allocate and free memory.

File management

– create, open, close, delete, read file etc.

• Device management

• Information maintenance

• Communication

System call interface for process management

fork()

fork Function

• An existing process can create a new one by calling the fork
function.

• #include <unistd.h> pid_t fork(void);

• Returns: 0 in child, process ID of child in parent, -1 on error.

• The new process created by fork is called the child process.
This function is called once but returns twice. The only
difference in the returns is that the return value in the child is
0, whereas the return value in the parent is the process ID of
the new child.

Signals

• A signal is an electrical or electromagnetic current that is used
for carrying data from one device or network to another.

• It is the key component behind virtually all:

Communication

Computing

Networking

Electronic devices

A signal can be either analog or digital.

Signal functions

The signal() Function

• The simplest way to register signal handler function with the
kernel is by using the signal() function.

• Here is the syntax of signal() function :

#include <signal's>

typedef void (*sighandler_t)(int);

The signal() Function

Signal dispositions

• Each signal has a current disposition, which determines how
the process behaves when it is delivered the signal.

• The entries in the "Action" column of the tables below specify
the default disposition for each signal.

kill and raise Functions

• The kill function sends a signal to a process or a group of
processes. The raise function allows a process to send a signal
to it.

#include<sys/types.h>

#include<signal.h>

int kill(pid_t pid, int signo);

int raise(int signo);

Both return: 0 if OK, -1 on error

kill and raise Functions

UNIT-IV

DATA MANAGEMENT

97

CLOs Course Learning Outcome

CLO 12 Illustrate memory management of file handling through
file/region lock

CLO 13 Design and implement inter process communication (IPC)

in client server environment by using pipe.

CLO 14 Design and implement inter process communication (IPC)

in client server environment by using named Pipes

CLO 15 Illustrate client server authenticated communication in IPC

through messages queues, semaphores

CLO 16 Illustrate client server authenticated communication in IPC

through shared memory.

Managing memory

• Malloc: The malloc() function allocates size bytes and returns
a pointer to the allocated memory. The memory is not
initialized. If size is 0, then malloc() returns either NULL, or a
unique pointer value.

• free: The free() function frees the memory space pointed to
by ptr, which must have been returned by a previous call
to malloc(), calloc() or realloc(). Otherwise, or if free(ptr) has
already been called before, undefined behavior occurs.
If ptr is NULL, no operation is performed.

• realloc:The realloc() function changes the size of the memory
block pointed to by ptr to size bytes. The contents will be
unchanged in the range from the start of the region up to the
minimum of the old and new sizes. If the new size is larger
than the old size, the added memory will not be initialized.

• calloc: The calloc() function allocates memory for an array
of nmemb elements of size bytes each and returns a pointer
to the allocated memory. The memory is set to zero.
If nmemb or size is 0, then calloc() returns either NULL, or a
unique pointer value that can later be successfully passed
to free().

Managing memory

File locking

• File locking is a mechanism which allows only one process to
access a file at any specific time. By using file locking
mechanism, many processes can read/write a single file in a
safer way.

Creating lock files

• When a file can be accessed by more than one process, a
synchronization problem occurs.

• What happens if two processes try to write in the same file
location? Or again, what happens if a process reads from a file
location while another process is writing into it?

• In traditional Unix systems, concurrent accesses to the same
file location produce unpredictable results.

• However, Unix systems provide a mechanism that allows the
processes to lock a file region so that concurrent accesses may
be easily avoided.

• Traditional BSD variants implement advisory locking through
the flock()system call. This call does not allow a process to
lock a file region, only the whole file.

• Traditional System V variants provide the lockf() library
function, which is simply an interface to fcntl().

File locking

use of read and write with locking

• File Locking is a simple mechanism for coordinating file
accesses. There are two types of locking
mechanisms, Mandatory and Advisory.

• Advisory locks are just conventions

• If one process P1 locks a file, kernel doesn’t stop any other
process(say P2) from modifying that file. But if the other
process P2 obeys the same convention as the process P1, it
can check before modifying that the file is locked by some
other process and thus it wouldn’t be correct to modify it.

• advisory locks require proper coordination between the
processes.

Deadlocks

• A deadlock is a situation in which two computer programs
sharing the same resource are effectively preventing each
other from accessing the resource, resulting in both programs
ceasing to function.

• The earliest computer operating systems ran only one
program at a time. All of the resources of the system were
available to this one program.

• Later, operating systems ran multiple programs at once,
interleaving them.

Deadlocks

• This led to the problem of the deadlock. Here is the simplest
example.

• Program 1 requests resource A and receives it.

• Program 2 requests resource B and receives it.

• Program 1 requests resource B and is queued up, pending the
release of B.

• Program 2 requests resource A and is queued up, pending the
release of A.

Inter process communication

• Inter process communication (IPC) includes thread
synchronization and data exchange between thread

• If threads belong to the same process, they execute in the
same address space, i.e. they can access global (static) data or
heap directly, without the help of the operating system's
beyond the process boundaries.

• However, if threads belong to different processes, they cannot
access each other’s address spaces without the help of the
operating system.

• There are two fundamentally different approaches in IPC:

• processes are residing on the same computer

• processes are residing on different computers

• The first case is easier to implement because processes can
share memory either in the user space or in the system space.
This is equally true for uniprocessors and multiprocessors.

Inter process communication

• The interpretation of the pid argument for waitpid depends on its value:

• pid == -1 Waits for any child process.

• pid > 0 Waits for the child whose process ID equals pid. pid

• == 0 Waits for any child whose process group ID equals that of the calling
process.

• pid < 1 Waits for any child whose process group ID equals the absolute
value of pid.

Inter process communication

PIPES

• A pipe is a serial communication device (i.e., the data is read in the
order in which it was written), which allows a unidirectional
communication.

• The data written to end is read back from the other end.

• The pipe is mainly used to communicate between two threads in a
single process or between parent and child process.

• Pipes can only connect the related process. In shell, the symbol can
be used to create a pipe.

Creating pipes

• The pipe() function provides a means of passing data between two
programs and also allows to read and write the data.

• #include<unistd.h>

• int pipe(int file_descriptor[2]);

• pipe()function is passed with an array of file descriptors. It will fill
the array with new file descriptors and returns zero. On error,
returns -1 and sets the err no to indicate the reason of failure.

• The file descriptors are connected in a way that is data written to
file_ descriptor [1] can be read back from the file_descriptor [0].

Pipe processing

• The process of passing data between two programs can be
done with the help of popen() and pclose() functions.

#include<stdio.h>

FILE *popen(const char *command , const char *open-
mode);

int pclose(FILE *stream_to_close);

PIPE CALLS

popen():

• The popen function allows a program to invoke another
program as a new process and either write the data to it or to
read from it

pclose():

• By using pclose(), we can close the filestream associated with
popen() after the process started by it has been finished.

Parent and child processes

• We can invoke the standard programs, ones that don‘t expect
a file descriptor as a parameter.

#include<unistd.h>

int dup(int file_descriptor);

int dup2(int file_descriptor_1, int file_descriptor_2);

Named pipes (FIFOs)

• Similar to pipes, but allows for communication between
unrelated processes. This is done by naming the
communication channel and making it permanent.

• Like pipe, FIFO is the unidirectional data stream.

Creation of FIFO:

• We can create a FIFO from the command line and within a
program.

• To create from command line we can use either mknod or
mkfifo commands.

• $ mknod filename p

• $ mkfifo filename

Semaphore

• While we are using threads in our programs in multi-user
systems, multiprocessing system, or a combination of two, we
may often discover critical sections in the code.

• This is the section where we have to ensure that a single
process has exclusive access to the resource.

• The common form of semaphore is the binary semaphore,
which will control a single resource, and its value is initialized

to 0.

Shared Memory

• Shared memory is a highly efficient way of data sharing
between the running programs.

• It allows two unrelated processes to access the same logical
memory

• It is the fastest form of IPC because all processes share the
same piece of memory. It also avoids copying data
unnecessarily.

Message queue

• This is an easy way of passing message between two process. It
provides a way of sending a block of data from one process to
another. The main advantage of using this is, each block of data is
considered to have a type, and a receiving process receives the
blocks of data having different type values independently.

Creation and accessing of a message queue:

#include<sys/msg.h>

int msgget(key_t key,int msgflg);

• The first parameter is the key value, which specifies the particular
message queue. The special constant IPC_PRIVATE will create a
private queue. But on some Linux systems the message queue may
not actually be private.

• The second parameter is the flag value, which takes nine permission
flags.

Unix kernel support for shared memory

There is a shared memory table in the kernel address space that
keeps track of all shared memory regions created in the
system

Each entry of the tables store the following data:

• Name

• Creator user ID and group ID.

• Assigned owner user ID and group ID.

• Read-write access permission of the region.

• The time when the last process attached to the region.

• The time when the last process detached from the region.

• The time when the last process changed control data of the
region.

• The size, in no. of bytes of the region.

UNIX APIs for shared memory

shmget:

• Open and create a shared memory.

• Function prototype:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

int shmget (key_t key, int size, int flag);

• Function returns a positive descriptor if it succeeds or -1 if it
fails.

Shmat:

• Attach a shared memory to a process virtual address space.

• Function prototype:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

void * shmat (int shmid, void *addr, int flag);

• Function returns the mapped virtual address of he shared
memory if it succeeds or -1 ifit fails.

Shmat

Unit- V

Sockets

121

CLOs Course Learning Outcome

CLO 17 Demonstrate socket connections, socket attributes, socket

addresses

CLO 18 Demonstrate various client server applications on network

using TCP.

CLO 19 Demonstrate various client server applications on network

using UDP protocols.

CLO 20 Design custom based network applications using the

sockets interface in heterogeneous platforms

What is a socket?

An interface between application and network. It is a communication
mechanism that allows client / server to be developed either locally,
on a single machine or across networks.

Two Types :

– TCP

– UDP

Identified by Two values

– An IP Address

– A Port Number

Sockets

• How to use sockets

– Setup socket

• Where is the remote machine (IP address, hostname)

• What service gets the data (port)

– Send and Receive

• Designed just like any other I/O in unix

• send -- write

• recv -- read

– Close the socket

The Socket Interface

• Berkeley Sockets API

– Originally developed as part of BSD Unix (under gov’t
grant)

• BSD = Berkeley Software Distribution

• API=Application Program Interface

– Now the most popular API for C/C++ programmers writing
applications over TCP/IP

• Also emulated in other languages: Perl, Tcl/Tk, etc.

• Also emulated on other operating systems: Windows,
etc.

Socket Creation in C: socket

int socket(int family, int type, int protocol);

– s: socket descriptor, an integer (like a file-handle)

– family: integer, communication domain, it specifies the network
medium that the socket communication will use.

e.g., AF_INET (IPv4 protocol) – typically used

– type: communication type

SOCK_STREAM: reliable, 2-way, connection-based

SOCK_DGRAM: unreliable, connectionless,

Step 1 – Setup Socket

• Both client and server need to setup the socket
– int socket(int domain, int type, int protocol);

• domain
– AF_INET -- IPv4 (AF_INET6 for IPv6)

• type
– SOCK_STREAM -- TCP
– SOCK_DGRAM -- UDP

• protocol
– 0

• For example,
– int sockfd = socket(AF_INET, SOCK_STREAM, 0);

Step 2 (Server) - Binding

• Only server need to bind

– int bind(int sockfd, const struct sockaddr *my_addr,
socklen_t addrlen);

• sockfd

– file descriptor socket() returned

• my_addr

– struct sockaddr_in for IPv4

– cast (struct sockaddr_in*) to (struct sockaddr*)

What is that Cast?

• bind() takes in protocol-independent (struct sockaddr*)

– C’s polymorphism

– There are structs for IPv6, etc.

struct sockaddr
{

unsigned short sa_family; // address family
char sa_data[14]; // protocol address

};

Step 2 (Server) - Binding contd.

• addrlen

– size of the sockaddr_in
struct sockaddr_in saddr;
int sockfd;
unsigned short port = 80;

if((sockfd=socket(AF_INET, SOCK_STREAM, 0) < 0) { // from back a couple
slides
printf(“Error creating socket\n”);
...
}

memset(&saddr, '\0', sizeof(saddr)); // zero structure out
saddr.sin_family = AF_INET; // match the socket() call
saddr.sin_addr.s_addr = htonl(INADDR_ANY); // bind to any local
address
saddr.sin_port = htons(port); // specify port to listen on

if((bind(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)) < 0) { // bind!
printf(“Error binding\n”);
...

What is htonl(), htons()?

• Byte ordering

– Network order is big-endian

– Host order can be big- or little-endian

• x86 is little-endian

• SPARC is big-endian

• Conversion

– htons(), htonl(): host to network short/long

– ntohs(), ntohl(): network order to host short/long

Step 3 (Server) - Listen

• Now we can listen

– int listen(int sockfd, int backlog);

• sockfd

– again, file descriptor socket() returned

• backlog

– number of pending connections to queue

• For example,

– listen(sockfd, 5);

Step 4 (Server) - Accept

• Server must explicitly accept incoming connections
– int accept(int sockfd, struct sockaddr *addr, socklen_t

*addrlen)
• sockfd

– again... file descriptor socket() returned
• addr

– pointer to store client address, (struct sockaddr_in *) cast
to (struct sockaddr *)

• addrlen
– pointer to store the returned size of addr, should be

sizeof(*addr)
• For example

– int isock=accept(sockfd, (struct sockaddr_in *) &caddr,
&clen);

Close the Socket

• Don’t forget to close the socket descriptor, like a file

– int close(int sockfd);

• Now server can loop around and accept a new connection
when the old one finishes

Socket attributes

• The socket() function takes the following arguments:

• Domain

• Type

• Protocol

Protocol family constants

Family Description

AF_INET IPv4 protocol

AF_INET6 IPv6 protocol

AF_LOCAL UNIX DOMAIN PROTOCOL

AF_ROUTE Routing socket

AF_KEY Key socket

Protocol of socket

protocol description

IPPROTO_TCP TCP transport protocol

IPPROTO_UDP UDP transport protocol

IPPROTO_SCTP SCTP transport

protocol

305

Socket address structure

Socket Structure

Byte-Order Transformation

Address Transformation

Generic Socket Address structure

• A Socket address structure must be passed by reference

• socket function that takes one of these pointers as an
argument must deal with socket address structures from any
of the supported protocol families.

• How to declare the type of pointer

• Soln : void *

• Define Generic socket address structure

<sys/socket.h>

Generic Socket Address structure

Struct sockaddr

{

uint8_tsa_len; sa_family_t

sa_family;

char sa_data[14];/* protocol specific address*/

};
From an application programmer's point

IPv6 Socket Structure

Struct in6_addr{

uint8_t s6_addr[16]; /*128bit IPv6 address*/

/*network byte ordered*/

/* required for compile-time tests */

};

#define SIN6_LEN

struct sockaddr_in6 {

uint8_t

sa_family_t

in_port_t

sin6_len;

sin6_family;

sin6_port;

uint32_t

struct

sin6_flowinfo;

in6_addr sin6_addr;

/* length of structure(24) */

/* AF_INET6*/

/* Transport layer port# */

/*network byte ordered*/

/* priority & flow label */

/*network byte ordered*/

/* IPv6 address */

/*network byte ordered*/

}; /* included in <netinet/in.h> */

.

connect()

• sockfd is socket descriptor from socket()

• servaddr is a pointer to a structure with:

– port number and IP address

– must be specified (unlike bind())

• addrlen is length of structure

• client doesn’t need bind()

– OS will pick ephemeral port

• returns socket descriptor if ok, -1 on error

int connect(int sockfd, const struct sockaddr *servaddr, socklen_t
addrlen);

Sending and Receiving

int recv(int sockfd, void *buff, size_t mbytes, int flags);

int send(int sockfd, void *buff, size_t mbytes, int flags);

• Same as read() and write() but for flags

– MSG_DONTWAIT (this send non-blocking)

– MSG_OOB (out of band data, 1 byte sent ahead)

– MSG_PEEK (look, but don’t remove)

– MSG_WAITALL (don’t give me less than max)

– MSG_DONTROUTE (bypass routing table)

Procedures That Implement The Socket API

Creating and Deleting Sockets

• fd=socket(protofamily, type, protocol)
Creates a new socket. Returns a file descriptor (fd). Must specify:

• the protocol family (e.g. TCP/IP)
• the type of service (e.g. STREAM or DGRAM)
• the protocol (e.g. TCP or UDP)

• close(fd)
Deletes socket.
For connected STREAM sockets, sends EOF to close connection.

Procedures That Implement The Socket API

Putting Servers “on the Air”
• bind(fd)

Used by server to establish port to listen on.
When server has >1 IP addrs, can specify “ANY”, or a specific one

• listen (fd, queuesize)
Used by connection-oriented servers only, to put server “on the
air”
Queuesize parameter: how many pending connections can be
waiting

• afd = accept (lfd, caddress, caddresslen)
Used by connection-oriented servers to accept one new
connection

How Clients Communicate with Servers

• connect (fd, saddress, saddreslen)
Used by connection-oriented clients to connect to server

• There must already be a socket bound to a connection-
oriented service on the fd

• There must already be a listening socket on the server
• You pass in the address (IP address, and port number) of

the server.
Used by connectionless clients to specify a “default send to
address”

• Subsequent “writes” or “sends” don’t have to specify a
destination address

How Clients Communicate with Servers

• send (fd, data, length, flags)
sendto (fd, data, length, flags, destaddress, addresslen)
sendmsg (fd, msgstruct, flags)
write (fd, data, length)
Used to send data.

• send requires a connection (or for UDP, default send
address) be already established

• sendto used when we need to specify the dest address
(for UDP only)

• sendmsg is an alternative version of sendto that uses a
struct to pass parameters

• write is the “normal” write function; can be used with
both files and sockets

• recv (...) recvfrom (...) recvmsg (...) read (...)

System Calls

int sendto (int socket, char *message, int nbytes, int flags, struct
sockaddr *dest, int dest_len);

Description

The sendto() function sends a message through connectionless-
mode socket.The message will be sent to the address specified by
dest.

The system call takes the following arguments:

Socket Specifies the socket descriptor.

Message Points to a buffer containing the message to be sent.

nbytes Specifies the size of the message in bytes.

System Calls

int recvfrom (int socket, char *message, int nbytes int flags, struct
sockaddr *from, int *from_len);

Description

The recvfrom() function call receives a message from a
connectionless-mode socket.

The recvfrom system call fills in the protocol specific address of
who sent the data into from . The length of this address is also
returned to the caller in from_len.

Connection Oriented Protocol

Server
socket()
bind()
listen()
accept() Client
blocks until connection from client socket()

connection establishment

connect()
read() data(request)

write()
process request

write() data (reply) read()

Connectionless Protocol

Server
socket()
bind()
recvfrom()

Client
blocks until connection from client socket()

bind()
data (request)

sendto()
process request

write() data (reply)

recvfrom()

Comparison of ipc mechanisms

1. Pipes: It is related data only send from one pipe output is giving
to another pipe input to share resources pipe are used

2. Message Queues: message queues are unrelated process are
also communicate with message queues.

3. Sockets: it is used to communicate clients and server 193 with
socket system calls connection oriented and connection less also

4. Message Queues: Any number of processes can read/write
from/to the queue.

5. Shared Memory: Accessing Shared memory is faster than any
other IPC mechanism.

6. Semaphore: Semaphores are used for process synchronization.

