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COURSE OBJECTIVES: 

 
I. Determination of mechanical properties of different materials.  

II. Establish the constitutive relations in metals using destructive methods.  

III. Understand the behavior of members during twisting and transverse loading.  

IV. Familiarize with standard test procedures.  

V. Deriving slope and deflection for different types of beams.  
 

COURSE OUTCOMES: 

 

I. Describe the different types of crystal structures. 

II. Discuss the phase transformations and equilibrium diagram. 

III. Ability to apply the principles of elasticity and plasticity. 

IV. Able to draw shear force and bending moment diagrams for various loads. 

V. Determination of slope and deflection of various types of beams. 
 

COURSE LEARNING OUTCOMES: 

 
CLO CODE DESCRIPTION 

AMEB11.01 
Understand the concepts crystallography, crystal structures, unit cells, 
crystallographic planes, directions and miller indices. 

AMEB11.02 Discuss the crystal imperfections and Frank Reed source of dislocation. 

AMEB11.03 
Demonstrate the concept of Bauschinger‟s effect, twinning, strain hardening and 

seasons cracking. 

AMEB11.04 
Knowledge of yield point phenomenon, cold/hot working, recovery, re-
crystallization, grain growth and strengthening of metals. 

AMEB11.05 
Discuss the constitution of alloys and phase diagrams, constitution of alloys, solid 
solutions, substitutional and interstitial. 

AMEB11.06 
Demonstrate the phase diagrams, isomorphous, eutectic, peritectic, eutectoid and 
peritectoid reactions. 

AMEB11.07 Construction of iron –Iron carbide equilibrium diagram. 
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AMEB11.08 Classification of steel and cast-Iron microstructure, properties and application. 

AMEB11.09 Discuss Hooke‘s law, stresses and strains 

AMEB11.10 Derive relationship between elastic constants. 

AMEB11.11 Describe the concept of poisson‘s ratio, linear and lateral strains. 

AMEB11.12 Construct the Mohr‘s circle to solve principal stresses and strains. 

AMEB11.13 
Understand the beams and types transverse loading on beams, shear force and bend 
moment diagrams. 

AMEB11.14 
Discuss types of beam supports, simply supported and over-hanging beams, 
cantilevers. 

AMEB11.15 Understand theory of bending of beams, bending stress distribution and neutral axis. 

AMEB11.16 Understand the shear stress distribution, point and distributed loads. 

AMEB11.17 Understand moment of inertia about an axis and polar moment of inertia. 

AMEB11.18 
Derive the deflection of a beam using double integration 
Method. 

AMEB11.19 Computation of slopes and deflection in beams. 

AMEB11.20 Discuss Maxwell‟s reciprocal theorems. 

 

 

SYLLABUS: 

 

Module-I FUNDAMENTALS OF MATERIAL SCIENCE 

Basic Crystallography Crystal structure BCC, FCC and HCP structure, unit cell, crystallographic 

planes and directions, miller indices. Crystal imperfections, point, line, planar and volume defects, 

grain size, ASTM grain size number. Frank Reed source of dislocation Elastic & plastic modes of 

deformation, slip & twinning, strain hardening, seasons cracking, Bauschinger‟s effect, yield point 

phenomenon, cold/hot working, recovery, re-crystallization, and grain growth, strengthening of 

metals. 

Module-II ALLOYS AND PHASE DIAGRAMS 

Constitution of alloys and phase diagrams; constitution of alloys, solid solutions, substitutional and 

interstitial. phase diagrams, isomorphous, eutectic, peritectic, eutectoid and peritectoid reactions. iron 

– 

iron carbide equilibrium diagram. classification of steel and cast-iron microstructure, properties and 

application. 

Module-III SIMPLE STRESSES AND STRAINS, PRINCIPAL STRESSES 

Hooke‟s law, stress and strain- tension, compression and shear stresses elastic constants and their 

relations 

Volumetric, linear and shear strains principal stresses and principal planes, Mohr‟s circle. 

Module-IV SHEAR FORCE AND BENDING MOMENT DIAGRAMS, 

FLEXURAL STRESSES, SHEAR STRESSES 

Beams and types transverse loading on beams shear force and bend moment diagrams types of beam 

supports, simply supported and over-hanging beams, cantilevers. theory of bending of beams, 

bending stress distribution and neutral axis, shear stress distribution, point and distributed loads. 

Module-V SLOPE AND DEFLECTION 
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Moment of inertia about an axis and polar moment of inertia, deflection of a beam using double 

integration method, computation of slopes and deflection in beams, Maxwell‟s reciprocal theorems. 

Text Books: 

1. Sidney H Avner, ―Introduction to Physical Metallurgy‖, McGraw-Hill Education, 2nd Edition, 
2008. 

2. Donald R Askeland, Thomson, ―Essentials of Material Science and Engineering‖, Thomson Press, 
1st 

3. Edition, 2005. 
4. R. S. Kurmi, Gupta, ―Strength of Materials‖, S Chand & Co, New Delhi, 1st Edition, 2013. 
5. Egor P. Popov, ―Solid Mechanics‖ Pearson, 2nd Edition, 2002. 

Reference Books: 

1. Jindal, ―Strength of Materials‖, Pearson Education, 1st Edition, 2012. 
2. Vazirani, Ratwani, ―Analysis of Structures‖, Khanna Publishers, 19th Edition, 2014. 
3. S. Ramamrutam, ―Strength of Materials‖, Dhanpat Rai Publishing Company, 18

th
 Edition, 2014. 

4. R K. Rajput, ―Strength of Materials‖, S.Chand & Co New Delhi, 4th Edition, 2007. 
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MODULE-I 

FUNDAMENTALS OF MATERIAL SCIENCE 

 

1.0 What is Materials Science? 

Materials make modern life possible—from the polymers in the chair you‘re sitting on, the 

metal ball-point pen you‘re using, and the concrete that made the building you live or work in 

to the materials that make up streets and highways and the car you drive. All these items are 

products of materials science and technology (MST). Briefly defined, materials science is the 

study of ―stuff.‖ Materials science is the study of solid matter, inorganic and organic. Figures 

1.1, 1.2, 1.3, and 1.4 depict how these materials are classified. 
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Materials science and technology is a multidisciplinary approach to science that involves 

designing, choosing, and using three major classes of materials—metals, ceramics, and 

polymers (plastics). Wood also could be used. Another class of materials used in MST is 

composites, which are made of a combination of materials (such as in particle board or 

fiberglass). Materials science combines many areas of science. Figure 1.5 illustrates how 

materials science draws from chemistry, physics, and engineering to make better, more 

useful, and more economical and efficient ―stuff.‖ Because of the interdisciplinary nature of 

materials science, it can be used both as an introductory course to interest students in science 

and engineering and also as an additional course to expand the horizons of students already 

taking science and mathematics courses. 
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1.1 STRUCTURE OF METALS AND ALLOYS 

Since the electrons in a metallic lattice are in a ―gas,‖ we must use the core electrons and 

nuclei to determine the structure in metals. This will be true of most solids we will describe, 

regardless of the type of bonding, since the electrons occupy such a small volume compared 

to the nucleus. For ease of visualization, we consider the atomic cores to be hard spheres. 

Because the electrons are delocalized, there is little in the way of electronic hindrance to 

restrict the number of neighbors a metallic atom may have. As a result, the atoms tend to 

pack in a close-packed arrangement, or one in which the maximum number of nearest 

neighbors (atoms directly in contact) is satisfied. Refer to Figure 1.16. The most hard spheres 

one can place in the plane around a central sphere is six, regardless of the size of the spheres 

(remember that all of the spheres are the same size). You can then place three spheres in 

contact with the central sphere both above and below the plane containing the central sphere. 

This results in a total of 12 nearest-neighbor spheres in contact with the central sphere in the 

close-packed structure. Closer inspection of Figure 1.16a shows that there are two different 

ways to place the three nearest neighbors above the original plane of hard spheres. They can 

be directly aligned with the layer below in an ABA type of structure, or they can be rotated so 

that the top layer does not align core centers with the bottom layer, resulting in an ABC 

structure. This leads to two different types of close-packed structures. The ABAB... structure 

(Figure 1.16b) is called hexagonal close-packed (HCP) and the ABCABC... structure is called 

face-centered cubic (FCC). Remember that both 

 

 

Close-packing of spheres. (a) Top view, (b) side view of ABA structure, (c) side view of 

ABC structure 
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The extended unit cell of the hexagonal close-packed (HCP) structure. 

of these close-packed arrangements have a coordination number (number of nearest 

neighbors surrounding an atom) of 12: 6 in plane, 3 above, and 3 below.∗ Keep in mind that 

for close-packed structures, the atoms touch each other in all directions, and all nearest 

neighbors are equivalent. Let us first examine the HCP structure. Figure 1.17 is a section of 

the HCP lattice, from which you should be able to see both hexagons formed at the top and 

bottom of what is called the unit cell. You should also be able to identify the ABA layered 

structure in the HCP unit cell of Figure 1.17 through comparison with Figure 1.16. Let us 

count the number of atoms in the HCP unit cell. The three atoms in the center of the cell are 

completely enclosed. The atoms on the faces, however, are shared with adjacent cells in the 

lattice, which extends to infinity. The center atoms on each face are shared with one other 

HCP unit cell, either above (for the top face) or below (for the bottom face), so they 

contribute only half of an atom each to the HCP unit cell under consideration. This leaves the 

six corner atoms on each face (12 total) unaccounted for. These corner atoms are at the 

intersection of a total of six HCP unit cells (you should convince yourself of this!), so each 

corner atom contributes only one-sixth of an atom to our isolated HCP unit cell. 
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The face-centered cubic (FCC) structure showing (a) atoms touching and (b) atoms as small 

spheres.  

 

Counting the atoms in the FCC structure is performed in a similar manner, except that 

visualizing the FCC structure takes a little bit of imagination and is virtually impossible to 

show on a two-dimensional page. Take the ABC close-packed structure shown in Figure 

1.16c, and pick three atoms along a diagonal. These three atoms form the diagonal on the 

face of the FCC unit cell, which is shown in Figure 1.18. There is a trade-off in doing this: It 

is now difficult to see the close-packed layers in the FCC structure, but it is much easier to 

see the cubic structure (note that all the edges of the faces have the same length), and it is 

easier to count the total number of atoms in the FCC cell. In a manner similar to counting 

atoms in the HCP cell, we see that there are zero atoms completely enclosed by the FCC unit 

cell, six face atoms that are each shared with an adjacent unit cell, and eight corner atoms at 

the intersection of eight unit cells to give 6 × (1/2) = 3 face atoms 8 × (1/8) = 1 corner atom 4 

total atoms 

 

Crystal Structures Our description of atomic packing leads naturally into crystal structures. 

While some of the simpler structures are used by metals, these structures can be employed by 

heteronuclear structures, as well. We have already discussed FCC and HCP, but there are 12 

other types of crystal structures, for a total of 14 space lattices or Bravais lattices. These 14 

space lattices belong to more general classifications called crystal systems, of which there are 

seven. 
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Before describing each of the space lattices, we need to define a coordinate system. The 

easiest coordinate system to use depends upon which crystal system we are looking at. In 

other words, the coordinate axes are not necessarily orthogonal and are defined by the unit 

cell. This may seem a bit confusing, but it simplifies the description of cell parameters for 

those systems that do not have crystal faces at right angles to one another. Refer to Figure 

1.19. For each crystal system, we will define the space lattice in terms of three axes, x, y, and 

z, with interaxial angles α, β, γ . Note that the interaxial angle α is defined by the angle 

formed between axes z and y, and also note that angles β and γ are defined similarly. Only in 

special circumstances are α, β, γ equal to 90◦ . The distance along the y axis from the origin 

to the edge of the unit cell is called the lattice translation vector, b. Lattice translation vectors 

a and c are defined similarly along the axes x and z, respectively. The magnitudes (lengths) of 

the lattice translation vectors are called the lattice parameters, a, b, and c. We will now 

examine each of the seven crystal systems in detail. 

 

1.2 Crystal Systems.  

The cubic crystal system is composed of three space lattices, or unit cells, one of which we 

have already studied: simple cubic (SC), bodycentered cubic (BCC), and face-centered cubic 

(FCC). The conditions for a crystal to be considered part of the cubic system are that the 

lattice parameters be the same (so there is really only one lattice parameter, a) and that the 

interaxial angles all be 90◦ . The simple cubic structure, sometimes called the rock salt 

structure because it is the structure of rock salt (NaCl), is not a close-packed structure (see 

Figure 1.20). In fact, it contains about 48% void space; and as a result, it is not a very dense 

structure. The large space in the center of the SC structure is called an interstitial site, which 

is a vacant position between atoms that can be occupied by a small impurity atom or alloying 

element. In this case, the interstitial site is surrounded by eight atoms. All eight atoms in SC 

are equivalent and are located at the intersection of eight adjacent unit cells, so that there are 

8 × (1/8) = 1 total atoms in the SC unit cell.  

Body-centered cubic (BCC) is the unit cell of many metals and, like SC, is not a close-packed 

structure. The number of atoms in the BCC unit cell are calculated as follows: 
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Finally, face-centered cubic (FCC) has already been described (Figure 1.18). Even though 

FCC is a close-packed structure, there are interstitial sites, just as in SC. There are actually 

two different types of interstitial sites in FCC, depending on how many atoms surround the 

interstitial site. A group of four atoms forms a tetrahedral interstice, as shown in Figure 1.21. 

A group of six atoms arranged in an octahedron (an eight-sided geometric figure), creates an 

octahedral interstice (Figure 1.22). Figure 1.23 shows the locations of these interstitial sites 

within the FCC lattice. Note that there are eight total tetrahedral interstitial sites in FCC and 

there are four total octahedral interstitial sites in FCC (prove it!), which are counted in much 

the same way as we previously counted the total number of atoms in a unit cell. We will see 

later on that these interstitial sites play an important role in determining solubility of 

impurities and phase stability of alloys. Interstitial sites are the result of packing of the 

spheres. Recall from Figure 1.18 that the spheres touch along the face diagonal in FCC. 

Similarly, the spheres touch along the body diagonal in BCC and along an edge in SC. We 

should, then, be able to calculate the lattice parameter, a, or the length of a face edge, from a 

knowledge of the sphere radius. In SC, it should be evident that the side of a unit cell is 

simply 2r. Application of a little geometry should prove to you that in FCC, a = 4r/√ 2. The 

relationship between a and r for BCC is derived in Example Problem 1.4; other geometric 

relationships, including cell volume for cubic structures, are listed in Table 1.8. Finally, 

atomic radii for the elements can be found in Table 1.9. The radius of an atom is not an 

exactly defined quantity, and it can vary depending upon the bonding environment. 
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Location of interstitial sites in FCC. 

 

 

Summary of the 14 Bravais space lattices. 
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Orthorhombic crystals are similar to both tetragonal and cubic crystals because their 

coordinate axes are still orthogonal, but now all the lattice parameters are unequal. There are 

four types of orthorhombic space lattices: simple orthorhombic, face-centered orthorhombic, 

body-centered orthorhombic, and a type we have not yet encountered, base-centered 

orthorhombic. The first three types are similar to those we have seen for the cubic and 

tetragonal systems. The base-centered orthorhombic space lattice has a lattice point (atom) at 

each corner, as well as a lattice point only on the top and bottom faces (called basal faces). 

All four orthorhombic space lattices are shown in Figure 1.20. There is only one space lattice 

in the rhombohedral crystal system. This crystal is sometimes called hexagonal R or trigonal 

R, so don‘t confuse it with the other two similarly-named crystal systems. The rhombohedral 

crystal has uniform lattice parameters in all directions and has equivalent interaxial angles, 

but the angles are nonorthogonal and are less than 120◦ . The crystal descriptions become 

increasingly more complex as we move to the monoclinic system. Here all lattice parameters 

are different, and only two of the interaxial angles are orthogonal. The third angle is not 90◦ . 

There are two types of monoclinic space lattices: simple monoclinic and base-centered 

monoclinic. The triclinic crystal, of which there is only one type, has three different lattice 

parameters, and none of its interaxial angles are orthogonal, though they are all equal. 

Finally, we revisit the hexagonal system in order to provide some additional details. The 

lattice parameter and interaxial angle conditions shown in Figure 1.20 for the hexagonal cell 

refer to what is called the primitive cell for the hexagonal crystal, which can be seen in the 

front quadrant of the extended cell in Figure 1.17. The primitive hexagonal cell has lattice 

points only at its corners and has one atom in the center of the primitive cell, for a basis of 

two atoms. A basis is a unit assembly of atoms identical in composition, arrangement, and 

orientation that is placed in a regular manner on the lattice to form a space lattice. You should 

be able to recognize that there are three equivalent primitive cells in the extended HCP 

structure. The HCP extended cell, which is more often used to represent the hexagonal 

structure, contains a total of six atoms, as we calculated earlier. In the extended structure, the 

ratio of the height of 38 THE STRUCTURE OF MATERIALS Table 1.10 Axial Ratios for 

Some HCP Metals Metal c/a Be, Y 1.57 Hf, Os, Ru, Ti 1.58 Sc, Zr 1.59 Tc, Tl 1.60 La 1.61 

Co, Re 1.62 Mg 1.63 Zn 1.85 Cd 1.89 Ideal (sphere packing) 1.633 the cell to its base, c/a, is 

called the axial ratio. Table 1.10 lists typical values of the axial ratio for some common HCP 

crystals. A table of crystal structures for the elements can be found in Table 1.11 (excluding 

the Lanthanide and Actinide series). Some elements can have multiple crystal structures, 

depending on temperature and pressure. This phenomenon is called allotropy and is very 
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common in elemental metals (see Table 1.12). It is not unusual for closepacked crystals to 

transform from one stacking sequence to the other, simply through a shift in one of the layers 

of atoms. Other common allotropes include carbon (graphite at ambient conditions, diamond 

at high pressures and temperature), pure iron (BCC at room temperature, FCC at 912◦ C and 

back to BCC at 1394◦ C), and titanium (HCP to BCC at 882◦ C). 

 

1.3 Crystal Locations, Planes, and Directions.  

 

In order to calculate such important quantities as cell volumes and densities, we need to be 

able to specify locations and directions within the crystal. Cell coordinates specify a position 

in the lattice and are indicated by the variables u, v, w, separated by commas with no 

brackets: u distance along the lattice translation vector a v distance along the lattice 

translation vector b w distance along the lattice translation vector c 
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Definition of Miller indices for an arbitrary plane 
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Any planes that have common factors are parallel. For example, a (222) and a (111) plane are 

parallel, as are (442) and (221) planes. As with cell directions, a minus sign (in this case, 

indicating a negative intercept) is designated by an overbar. The (221) plane has intercepts at 

1/2, −1/2, and 1 along the x, y, and z axes, respectively. Some important planes in the cubic 

crystal system are shown in Figure 1.25. In a manner similar to that used to calculate the 

density of a unit cell, we can calculate the density of atoms on a plane, or planar density. The 

perpendicular intersection of a plane and sphere is a circle, so the radius of the atoms will be 

helpful in calculating the area they occupy on the plane. Refer back to Example Problem 1.4 

when we calculated the lattice parameter for a BCC metal. The section shown along the body 

diagonal is actually the (110) plane. The body-centered atom is entirely enclosed by this 

plane, and the corner atoms are located at the confluence of four adjacent planes, so each 

contributes 1/4 of an atom to the (110) plane. So, there are a total of two atoms on the (110) 

plane. If we know the lattice parameter or atomic radius, we can calculate the area of the 

plane, Ap, the area occupied by the atoms, Ac, and the corresponding 

 

Interplanar Spacings. To this point, we have concentrated on planes in an isolated cell. A 

crystal lattice, of course, is composed of many individual unit cells, with the planes extending 

in all directions. So, a real crystal lattice has many (111) planes, for example, all of which are 

parallel to one another. There is a uniform distance between like planes in a lattice, which we 

call the interplanar spacing and designate with d, the perpendicular distance between adjacent 

planes in a set. Note that even though the (111) and (222) planes are parallel to one another, 

they are not the same plane, since their planar densities may be much different depending on 

the lattice (for example, compare these two planes in simple cubic). What we are calculating 

here is the perpendicular distance between the same plane in adjacent cells.  
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1.4 Crystal structures 

 

Primitive lattice Cell 

An ideal crystal is constructed by the infinite repetition of identical structural units in space. 

In the simplest crystals the structural unit is a single atom, as in copper, silver, gold, iron, 

aluminium, and the alkali metals.The structure of all crystals can be described in terms of a 

lattice, with a group of atoms attached to every lattice point. The group of atoms is called the 

basis; when repeated in space it forms the crystal structure. The basis consists of a primitive 

cell, containing one single lattice point. Arranging one cell at each lattice point willfill up the 

entire crystal. 

 Simple Crystal StructuresThere are several types of crystal structures. The simplest one is 

the simple cubic lattice (sc). Two other cubic lattices are the body-centered (bcc) and the 

face-centered (fcc) cubic lattice. 

 

1.5 Diamond and zinkblend lattice structures 

The diamond lattice structure is very common in semiconductor materials, Si, Ge. GaAs and 

GaP has a zinkblende lattice structure which is similar to the diamond lattice structure. The 

difference between the face-centered lattice structure and the diamond lattice structure is four 

atoms (see pictures). In the GaAs these four atoms are Ga-atoms and the rest are As-atoms. 
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1.6 Point Defects  

 

Now that the most important aspects of perfect crystals have been described, it is time to 

recognize that things are not always perfect, even in the world of space lattices. This is not 

necessarily a bad thing. As we will see, many important materials phenomena that are based 

on defective structures can be exploited for very important uses. These defects, also known as 

imperfections, are grouped according to spatial extent Point defects have zero dimension; line 

defects, also known as dislocations, are onedimensional; and planar defects such as surface 

defects and grain boundary defects have two dimensions. These defects may occur 

individually or in combination. Let us first examine what happens to a crystal when we 

remove, add, or displace an atom in the lattice. We will then describe how a different atom, 

called an impurity (regardless of whether or not it is beneficial), can fit into an established 

lattice. As shown by Eq. (1.36), point defects have equilibrium concentrations that are 

determined by temperature, pressure, and composition. This is not true of all types of 

dimensional defects that we will study. 
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Line Defects and Dislocations We now move on to defects that have some spacial extent, 

even if only in one dimension. As we continue to increase the geometric complexity of these 

defects, you may find it more difficult to visualize them. As with crystal structures, three-

dimensional models may help you with visualization, and do not limit yourself to one 

representation of a specific defect—look for multiple views of the same thing. The first type 

of one-dimensional defect, or line defect, is called a dislocation. A dislocation is a linear 

disturbance of the atomic arrangement in a crystal caused by the displacement of one group 

of atoms from an adjacent group. There are three types of dislocations: edge dislocations, 

screw dislocations, and a combination of these two, termed mixed dislocations. An edge 

dislocation occurs when a single atomic plane does not extend completely through the lattice. 

The termination of this half-plane of atoms creates a defect line (dislocation line) in the 

lattice (line DC in Figure 1.31). The edge dislocation is designated by a perpendicular sign, 

either ⊥ if the plane is above the dislocation line or � if the plane is below the dislocation 

line. Edge dislocations can be quantified using a vector called the Burger‘s vector, b, which 

represents the relative atomic displacement in the lattice due to the dislocation (see Figure 

1.32). The Burger‘s vector is determined as follows: ž Define a positive direction along the 

dislocation line. This is usually done into the crystal. 
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 MODULE-II 

ALLOYS AND PHASE DIAGRAMS 

2.0 Introduction 

Many of the engineering materials possess mixtures of phases, e.g. steel, paints, and 

composites. The mixture of two or more phases may permit interaction between different 

phases, and results in properties usually are different from the properties of individual phases. 

Different components can be combined into a single material by means of solutions or 

mixtures. A solution (liquid or solid) is phase with more than one  component; a mixture is a 

material with more than one phase. Solute does not change the structural pattern of the 

solvent, and the composition of any solution can be varied. In mixtures, there are different 

phases, each with its own atomic arrangement. It is possible to have a mixture of two 

different solutions! 

 

A pure substance, under equilibrium conditions, may exist as either of a phase namely vapor, 

liquid or solid, depending upon the conditions of temperature and pressure. A phase can be 

defined as a homogeneous portion of a system that has uniform physical  and chemical 

characteristics i.e. it is a physically distinct from other phases, chemically homogeneous and 

mechanically separable portion of a system. In other words, a phase is a structurally 

homogeneous portion of matter. When two phases are present in a system,  it is not necessary 

that there be a difference in both physical and chemical properties; a disparity in one or the 

other set of properties is sufficient. 

 

There is only one vapor phase no matter how many constituents make it up. For pure 

substance there is only one liquid phase, however there may be more than one solid phase 

because of differences in crystal structure. A liquid solution is also a single phase, even   as a 

liquid mixture (e.g. oil and water) forms two phases as there is no mixing at the molecular 

level. In the solid state, different chemical compositions and/or crystal structures are possible 

so a solid may consist of several phases. For the same  composition, different crystal 

structures represent different phases. A solid solution has atoms mixed at atomic level thus it 

represents a single phase. A single-phase system is termed as homogeneous, and systems 

composed of two or more phases are termed as mixtures or heterogeneous. Most of the alloy 

systems and composites are heterogeneous. 
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It is important to understand the existence of phases under various practical conditions which 

may dictate the microstructure of an alloy, thus the mechanical properties and 

  

usefulness of it. Phase diagrams provide a convenient way of representing which state of 

aggregation (phase or phases) is stable for a particular set of conditions. In addition,  phase 

diagrams provide valuable information about melting, casting, crystallization, and other 

phenomena. 

2.1 Useful terminology:- 

Component – is either pure metal and/or compounds of which an alloy is composed. The 

components of a system may be elements, ions or compounds. They refer to the independent 

chemical species that comprise the system. 

System – it can either refer to a specific body of material under consideration or it may relate 

to the series of possible alloys consisting of the same components but without regard to alloy 

composition. 

Solid solution – it consists of atoms of at least two different types where solute atoms occupy 

either substitutional or interstitial positions in the solvent lattice and the crystal structure of 

the solvent is maintained. 

Solubility limit – for almost all alloy systems, at a specific temperature, a maximum of solute 

atoms can dissolve in solvent phase to form a solid solution. The limit is known as solubility 

limit. In general, solubility limit changes with temperature. If solute available is more than 

the solubility limit that may lead to formation of different phase, either a solid solution or 

compound.  Equilibrium Phase Diagrams, Particle strengthening by precipitation and 

precipitation reactions  

 

2.2 Equilibrium Phase Diagrams 

 

A diagram that depicts existence of different phases of a system under equilibrium is termed 

as phase diagram. It is also known as equilibrium or constitutional diagram. Equilibrium 

phase diagrams represent the relationships between temperature and the compositions and the 

quantities of phases at equilibrium. In general practice it is  sufficient to consider only solid 

and liquid phases, thus pressure is assumed to  be  constant (1 atm.) in most applications. 

These diagrams do not indicate the dynamics  when one phase transforms into another. 

However, it depicts information related to microstructure and phase structure of a particular 
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system in a convenient and concise manner. Important information, useful for the scientists 

and engineers who are involved with materials development, selection, and application in 

product design, obtainable from a phase diagram can be summarized as follows: 

 

- To show phases are present at different compositions and temperatures under slow 

cooling (equilibrium) conditions. 

- To indicate equilibrium solid solubility of one element/compound in another. 

- To indicate temperature at which an alloy starts to solidify and the range of 

solidification. 

- To indicate the temperature at which different phases start to melt. 

- Amount of each phase in a two-phase mixture can be obtained. 

 

A phase diagram is actually a collection of solubility limit curves. The phase fields in 

equilibrium diagrams depend on the particular systems being depicted. Set of solub 

Phase equilibrium – it refers to the set of conditions where more than one phase may exist. It 

can be reflected by constancy with time in the phase characteristics of a system.  In most 

metallurgical and materials systems, phase equilibrium involves just solid phases. However 

the state of equilibrium is never completely achieved because of very slow rate of approach 

of equilibrium in solid systems. This leads to non -equilibrium or meta-stable state, which 

may persist indefinitely and of course, has more practical significance than equilibrium 

phases. An equilibrium state of solid system can be reflected in terms of characteristics of the 

microstructure, phases present and their  compositions,  relative phase amounts and their 

spatial arrangement or distribution. 

Variables of a system – these include two external variables namely temperature and pressure 

along with internal variable such as composition (C) and number of phases (P). Number of 

independent variables among these gives the degrees of freedom (F) or variance. All these are 

related for a chosen system as follows: 

 

P + F = C + 2 

 

which is known as Gibbs Phase rule. The degrees of freedom cannot be less than zero so that 

we have an upper limit to the number of phases that can exist in equilibrium for a given 

system. For practical purpose, in metallurgical and materials field, pressure can be considered 
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as a constant, and thus the condensed phase rule is given as follows: 

  

P + F = C +1 

 

ility curves that represents locus of temperatures above which all compositions are liquid are 

called liquidus, while solidus represents set of solubility curves that denotes the locus of 

temperatures below which all compositions are solid. Every phase diagram for two or more 

components must show a liquidus and a solidus, and an intervening freezing range, except for 

pure system, as melting of a phase occurs over a range of temperature.  Whether the 

components are metals or nonmetals, there are certain locations on the phase diagram where 

the liquidus and solidus meet. For a pure component, a contact point lies  at the edge of the 

diagram. The liquidus and solidus also meet at the other invariant positions on the diagram. 

Each invariant point represents an invariant reaction that can occur only under a particular set 

of conditions between particular phases, so is the name for it! 

 

Phase diagrams are classified based on the number of components in the system. Single 

component systems have unary diagrams, two-component systems have binary diagrams, 

three-component systems are represented by ternary diagrams, and so on. When more than 

two components are present, phase diagrams become extremely complicated and difficult to 

represent. This chapter deals mostly with binary phase diagrams. 

  

Unary diagrams: In these systems there is no composition change (C=1), thus only variables 

are temperature and pressure. Thus in region of single phase two variables (temperature and 

pressure) can be varied independently. If two phases coexist then, according to Phase rule, 

either temperature or pressure can be varied independently, but not both. At triple points, 

three phases can coexist at a particular set of temperature and pressure. At these points, 

neither temperature nor the pressure can be changed without disrupting the equilibrium i.e. 

one of the phases may disappear. Figure-1 depicts phase diagram for water. 
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Binary diagrams: These diagrams constitutes two components, e.g.: two metals (Cu and 

Ni), or a metal and a compound (Fe and Fe3C), or two compounds (Al2O3 and Si2O3), etc. 

In most engineering applications, as mentioned before, condensed phase rule is applicable. It 

is assumed that the same is applicable for all binary diagrams, thus the presentation of binary 

diagrams becomes less complicated. Thus binary diagrams are usually drawn showing 

variations in temperature and composition only. It is also to be noted that all binary systems 

consist only one liquid phase i.e. a component is completely soluble in the other component 

when both are in liquid state. 

 

Hence, binary systems are classified according to their solid solubility. If both the 

components  are  completely  soluble  in  each  other,  the  system  is  called isomorphous 

system. E.g.: Cu-Ni, Ag-Au, Ge-Si, Al2O3-Cr2O3. Extent solid solubility for a system of two 

metallic components can be predicted based on Hume-Ruthery conditions, summarized in the 

following: 

 

- Crystal structure of each element of solid solution must be the same. 

- Size of atoms of each two elements must not differ by more than 15%. 

  

- Elements should not form compounds with each other i.e. there should be no 

appreciable difference in the electro-negativities of the two elements. 

- Elements should have the same valence. 
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All the Hume- Rothery rules are not always applicable for all pairs of elements which show 

complete solid solubility. 

In systems other than isomorphous systems i.e. in case of limited solid solubility, there exist 

solid state miscibility gaps; number of invariant reactions can take place; intermediate phases 

may exist over a range of composition (intermediate solid solutions) or only at relatively 

fixed composition (compound). These intermediate phases may undergo polymorphic 

transformations, and some may melt at a fixed temperature (congruent transformations, in 

which one phase changes to another of the same composition at definite temperature). A solid 

solution based on a pure component and extending to certain finite compositions into a binary 

phase diagram is called a terminal solid solution, and the line representing the solubility limit 

of a terminal solid solution 

w.r.t a two-phase solid region is called a solvus line (figure-4). 

 

Isomorphous system: Figure -2 depicts a typical phase diagram for an isomorphous system 

made of two metallic elements A and B. As cited earlier, any phase diagram can be 

considered as a map. A set of coordinates – a temperature and a composition – is associated 

with each point in the diagram. If the alloy composition and temperature specified, then the 

phase diagram allows determination of the phase or phases that will present under 

equilibrium conditions. There are only two phases in the phase diagram,  the liquid and the 

solid phases. These single-phases regions are separated by a two-phase region where both 

liquid and solid co-exist. The area in the figure-2 above the line  marked liquidus (A‘bB‘) 

corresponds to the region of stability of the liquid phase, and the area below the solidus line 

(A‘dB‘) represents the stable region for the solid phase. 

 

 

Figure-2: Phase diagram for typical isomorphous binary system. 
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For the interpretation of the phase diagram, let‘s consider the vertical line ae drawn 

corresponding to composition of 50%A +50%B and assume that the system is undergoing 

equilibrium cooling. The point a on the line ae signifies that for that particular temperature 

and composition, only liquid phase is stable. This is true up to the point b which lies on the 

liquidus line, representing the starting of solidification. Completion of solidification of the 

alloy is represented by the point, d. Point e corresponds to single- phase solid region up to 

the room temperature. Point c lies in the two-phase region made of both liquid and solid 

phases. Corresponding micro-structural changes are also shown  in figure-2. As shown in 

figure-2, above liquidus only a liquid phase exists, and below  the solidus single solid phase 

exists as completely solidified grains. Between these two lines, system consist both solid 

crystals spread in liquid phase. It is customary to use L to represent liquid phase(s) and 

Greek alphabets (α, β, γ) for representing solid phases. 

 

Between two extremes of the horizontal axis of the diagram, cooling curves for different 

alloys are shown in figure-3 as a function of time and temperature. Cooling curves shown 

in figure-3 represent A, U’, X, V’ and B correspondingly in figure-2. Change in slope of the 

cooling curve is caused by heat of fusion. In fact these changes in slope are nothing but 

points on either solidus or liquidus of a phase diagram. An experimental procedure where 

repeated cooling/heating of an alloy at different compositions, and corresponding changes 

in slope of cooling curves will be used to construct the phase diagram. 

  

Figure-3: Cooling curves for isomorphous binary system. 
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Another important aspect of interpreting phase diagrams along with phases present is 

finding the relative amount of phases present and their individual composition. 

Procedure to find equilibrium concentrations of phases: 

 

- A tie-line or isotherm (UV) is drawn across two-phase region to intersect the 

boundaries of the region. 

- Perpendiculars are dropped from these intersections to the composition axis, 

represented by U’ and V’ in figure-2, from which each of each phase is read. U’ 

represents composition of liquid phase and V’ represents composition of solid phase 

as intersection U meets liquidus line and V meets solidus line. 

 

Procedure to find equilibrium relative amounts of phases (lever rule): 

 

- A tie-line is constructed across the two phase region at the temperature of the  alloy 

to intersect the region boundaries. 

- The relative amount of a phase is computed by taking the length of tie line from 

overall composition to the phase boundary for the other phase, and dividing by the 

total tie-line length. From figure-2, relative amounts of liquid and solid phases is 

given respectively by 

cV Uc 

CL  = UV , CS  = UV , and it is to be noted that CL +CS  =1. 

Eutectic system: Many binary systems have components which have limited solid 

solubility, e.g.: Cu-Ag, Pb-Sn. The regions of limited solid solubility at each end of a phase 

diagram are called terminal solid solutions as they appear at ends of the diagram. 

Many of the binary systems with limited solubility are of eutectic type, which consists of 

specific alloy composition known as eutectic composition that solidifies at a lower 

temperature than all other compositions. This low temperature which corresponds to the 

lowest temperature at which the liquid can exist when cooled under equilibrium conditions 

is known as eutectic temperature. The corresponding point on the phase diagram is called 

eutectic point. When the liquid of eutectic composition is cooled, at or below eutectic 

temperature this liquid transforms simultaneously into two solid phases (two terminal solid 

solutions, represented by α and β). This transformation is known as eutectic reaction and is 
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written symbolically as: 

Liquid (L) ↔ solid solution-1 (α) + solid solution-2 (β) 

This eutectic reaction is called invariant reaction as it occurs under equilibrium  conditions 

at a specific temperature and specific composition which can not be varied. Thus, this 

reaction is represented by a thermal horizontal arrest in the cooling curve of an alloy of 

eutectic composition. A typical eutectic type phase diagram is shown in figure-4 along with 

a cooling curve. 

As shown in figure-4, there exist three single phase regions, namely liquid (L), α and β 

phases. There also exist three two phase regions: L+α, L+β and α+β. These three two phase 

regions are separated by horizontal line corresponding to the eutectic temperature. Below 

the eutectic temperature, the material is fully solid for all compositions. Compositions and 

relative amount of the phases can be determined using tie-lines and lever rule. 

Compositions that are on left-hand-side of the eutectic composition are known as hypo-

eutectic compositions while compositions on right-hand-side of the eutectic composition 

are called hyper-eutectic compositions. Development of micro -structure and respective 

cooling curves for eutectic alloys are shown in figure-5, 6, 7 and 8 for  different 

compositions. The phase that forms during cooling but before reaching eutectic 

temperature is called pro-eutectic phase. 

 

Figure-4: Typical phase diagram for a binary eutectic system. 

 

In many systems, solidification in the solid + liquid region may lead to formation of 



29 
 

layered (cored) grains, even at very slow cooling rates. This is as a result of very slow or 

no-diffusion in solid state compared with very high diffusion rates in liquids. The 

composition of the liquid phase evolves by diffusion, following the equilibrium values that 

can be derived from the tie-line method. However, new layers that solidify on top of the 

grains have the equilibrium composition at that temperature but once they are solid their 

composition does not change. 

 

 

 

Figure-5: Cooling curve and micro-structure development for eutectic alloy that 

passes mainly through terminal solid solution. 

 

 

 

Figure-6: Cooling curve and micro-structure development for eutectic alloy that 

passes through terminal solid solution without formation of eutectic solid. 
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Figure-7: Cooling curve and micro-structure development for eutectic alloy that passes 

through hypo-eutectic region. 

 

 

 

 

Figure-8: Cooling curve and micro-structure development for eutectic alloy that passes 

through eutectic-point. 
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2. 3 Invariant reactions:  

The eutectic reaction, in which a liquid transforms into two solid phases, is just one of the 

possible three-phase invariant reactions that can occur in binary systems those are not 

isomorphous. Schematically it can be shown as in figure-9. It represents that a liquid phase, 

L, transforms into two different solids phases (α and β) upon cooling during the eutectic 

reaction. 

 

Figure-9: Schematic of eutectic invariant reaction. 

 

In the solid state analog of a eutectic reaction, called a eutectoid reaction, one solid phase 

having eutectoid composition transforms into two different solid phases. Another set of 

invariant reactions that occur often in binary systems are - peritectic reaction where a solid 

phase reacts with a liquid phase to produce a new solid phase, and in peritectoid reaction, 

two solid phases react to form a new solid phase. Peritectic reaction is commonly present 

as part of more-complicated binary diagrams, particularly if the melting points of the two 

components are quite different. Peritectic and peritectoid reactions do not give rise to 

micro-constituents as the eutectic and eutectoid reactions do. Another invariant reaction 

that involves liquid phase is monotectic reaction in which a liquid phase transforms into a 

solid phase and a liquid phase of different composition. Over a certain range of 

compositions the two liquids are immiscible like oil and water  and so constitute individual 

phases, thus monotectic reaction can said to be associated with miscibility gaps in the 

liquid state. Example system for monotectic reaction:  Cu-Pb at 954 C and 36%Pb. Analog 

to monotectic reaction in  solid  state is  monotectoid reaction in which a solid phase 

transforms to produce two solid phases of different compositions. Another notable 

invariant reaction that is associated with liquid immiscibility is syntectic reaction in which 

two liquid phases react to form a solid phase. All the invariant reactions are summarized in 

the table-1 showing both symbolic reaction and schematic part of phase diagram. 
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Table-1: Summary of invariant reactions in binary systems. 

Reaction Symbolic equation Schematic presentation Example 

Eutectic L ↔ α + β 
 Fe-C, 4.27% C, 

1147 C 

Eutectoid α ↔ β + γ 
 Fe-C, 0.80% C, 

723 C 

Peritectic L + α ↔ β 
 Fe-C, 0.16%C, 

1495 C 

Peritectoid α + β ↔ γ 
  

Monotectic L1 ↔ L2 + α 
 Fe-C, 0.51%C, 

1495 C 
 

 

Intermediate phases: An intermediate phase may occur over a composition range 

(intermediate solid solution) or at a relatively fixed composition (compound) inside the phase 

diagram and are separated from other two phases in a binary diagram by two phase regions. 

Many phase diagrams contain intermediate phases whose occurrence cannot be readily 

predicted from the nature of the pure components. Intermediate solid solutions often have 

higher electrical resistivities and hardnesses than either of the two components. Intermediate 

compounds form relatively at a fixed composition  when  there  exists  a  stoichiometric  

relationship  between  the  components,    for 

example: Mg2Ni and MgNi2 in Mg- Ni system. These are called inter-metallic compounds, 

and differ from other chemical compounds in that the bonding is primarily metallic rather 

than ionic or covalent, as would be found with compounds in certain metal-nonmetal or 

ceramic systems. 

Some metal-nonmetal compounds, Fe3C, are metallic in nature, whereas in others, MgO and 

Mg2Si, bonding is mainly covalent. When using the lever rules, inter-metallic compounds are 

treated like any other phase, except they appear not as a wide region but as a vertical line. 

 

Number of phase transformations may takes place for each system. Phase transformations in 

which there are no compositional alternations are said to be congruent transformations, and 

during incongruent transformations at least one of the phases will experience a change in 
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composition. Examples for (1) congruent transformations: allotropic transformations, and 

melting of pure materials (2) incongruent transformations: all invariant reactions, and also 

melting of alloy that belongs to an isomorphous system. Intermediate phases are sometimes 

classified on the basis of whether they melt congruently or incongruently. MgNi2, for 

example, 

melts congruently whereas Mg2Ni melts incongruently since it undergoes peritectic 

decomposition 

  

2.4 The iron – carbon system, phase transformations 

 

A study of iron-carbon system is useful and important in many respects. This is because 

(1) steels constitute greatest amount of metallic materials used by man (2) solid state 

transformations that occur in steels are varied and interesting. These are similar to those 

occur in many other systems and helps explain the properties. 

 

Iron-carbon phase diagram shown in figure-16 is not a complete diagram. Part of the diagram 

after 6.67 wt% C is ignored as it has little commercial significance. The 6.67%C 

represents the composition where an inter-metallic compound, cementite (Fe3C), with 

solubility limits forms. In addition, phase diagram is not true equilibrium diagram  because 

cementite is not an equilibrium phase. However, in ordinary steels  decomposition of 

cementite into graphite never observed because nucleation of cementite is much easier than 

that of graphite. Thus cementite can be treated as an equilibrium  phase for practical 

purposes. 
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Iron – Iron carbide phase diagram. 

 

 

 

The Fe -Fe3C is characterized by five individual phases and four invariant reactions. Five 

phases that exist in the diagram are: α–ferrite (BCC) Fe-C solid solution, γ-austenite 

(FCC) Fe-C solid solution, δ-ferrite (BCC) Fe-C solid solution, Fe3C (iron carbide) or 

cementite - an inter-metallic compound and liquid Fe-C solution. Four invariant reactions that 

cause transformations in the system are namely eutectoid, eutectic, monotectic and peritectic. 

 

As depicted by left axes, pure iron upon heating exhibits two allotropic changes. One 

involves α–ferrite of BCC crystal structure transforming to FCC austenite, γ-iron, at 910C. 

  

Carbon present in solid iron as interstitial impurity, and forms solid solution with ferrites 
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/ austenite as depicted by three single fields represented by α, γ and δ. Carbon dissolves least 

in α–ferrite in which maximum amount of carbon soluble is 0.02%  at  723   C.   This limited 

solubility is attributed to shape and size of interstitial position in BCC α– ferrite. However, 

carbon present greatly influences the mechanical properties of α– ferrite. α– 

ferrite can be used as magnetic material below 768 C   . Solubility of carbon in 

γ-iron 

reaches its maximum, 2.11%, at a temperature of 1147 C   . Higher solubility of 

carbon in 

austenite is attributed to FCC structure and corresponding interstitial sites. Phase 

transformations involving austenite plays very significant role in heat treatment of different 

steels. Austenite itself is non-magnetic. Carbon solubility in δ-ferrite is maximum (0.1%) at 

1495    C. As this ferrite exists only at elevated temperatures, it is of 

no commercial importance. Cementite, Fe3C an inter-metallic compound forms when amount 

of carbon present exceeds its solubility limit at respective temperatures. Out of these four 

solid phases, cementite is hardest and brittle that is used in different forms to increase the 

strength of steels. α–ferrite, on the other hand, is softest and act as matrix of a composite 

material. By combining these two phases in a solution, a material‘s  properties can be varied 

over a large range. 

 

For technological convenience, based on %C dissolved in it, a Fe-C solution is classified as: 

commercial pure irons with less than 0.008%C; steels having %C between 0.008- 2.11; while 

cast irons have carbon in the range of 2.11%-6.67%. Thus commercial pure iron is composed 

of exclusively α–ferrite at room temperature. Most of the steels and cast irons contain both α–

ferrite and cementite. However, commercial cast irons are not simple alloys of iron and 

carbon as they contain large quantities of other elements such as silicon, thus better consider 

them as ternary alloys. The presence of Si promotes the formation of graphite instead of 

cementite. Thus cast irons may contain carbon in form of both graphite and cementite, while 

steels will have carbon only in combined from as cementite. 

 

As shown in figure-16, and mentioned earlier, Fe-C system constitutes four invariant 

reactions: 

Product phase of eutectic reaction is called ledeburite, while product from eutectoid reaction 

is called pearlite. During cooling to room temperature, ledeburite transforms into pearlite and 
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cementite. At room temperature, thus after equilibrium cooling, Fe- C diagram consists of 

either α–ferrite, pearlite and/or cementite. Pearlite is actually not a single phase, but a micro -

constituent having alternate thin layers of α–ferrite (~88%) and 

Fe3C, cementite (~12%). Steels with less than 0.8%C (mild steels up to 0.3%C, medium 

carbon steels with C between 0.3%-0.8% i.e. hypo-eutectoid Fe-C alloys) i.e. consists pro-

eutectoid α–ferrite in addition to pearlite, while steels with carbon higher than 0.8% (high-

carbon steels i.e. hyper-eutectoid Fe-C alloys) consists of pearlite and pro- eutectoid 

cementite. Phase transformations involving austenite i.e. processes those involve eutectoid 

reaction are of great importance in heat treatment of steels. 

 

In practice, steels are almost always cooled from the austenitic region to room temperature. 

During the cooling upon crossing the boundary of the single phase γ-iron, first pro-eutectoid 

phase (either α–ferrite or cementite) forms up to eutectoid temperature. With further cooling 

below the eutectoid temperature, remaining austenite decomposes to eutectoid product called 

pearlite, mixture of thin layers of α–ferrite and cementite. Though pearlite is not a phase, 

nevertheless, a constituent because it has a definite appearance under the microscope and can 

be clearly identified in a structure composed of several constituents. The decomposition of 

austenite to form pearlite occurs by nucleation and growth. Nucleation, usually, occurs 

heterogeneously and rarely homogeneously at grain boundaries. When it is not homogeneous, 

nucleation of pearlite occurs both at grain boundaries and in the grains of austenite. When 

austenite forms pearlite at a constant temperature, the spacing between adjacent lamellae of 

cementite is very nearly constant. For a given colony of pearlite, all cementite plates have a 

common orientation in space, and it is also true for the ferrite plates. Growth of pearlite 

colonies occurs not only by the nucleation of additional lamellae but also through an advance 

at the ends of the lamellae. Pearlite growth also involves the nucleation of new colonies at the 

interfaces between established colonies and the parent austenite. The thickness ratio of the 

ferrite and cementite layers in pearlite is approximately 8 to 1. However, the absolute layer 

thickness depends on the temperature at which the isothermal transformation is allowed to 

occur. 

 

The temperature at which austenite is transformed has a strong effect on the inter-  lamellar 

spacing of pearlite. The lower the reaction temperature, the smaller will be inter- lamellar 

spacing. For example, pearlite spacing is in order of 10-3 mm when it formed at 700 C,   
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while spacing is in order of 10-4 mm when formed at 600 C   . The spacing of  the pearlite 

lamellae has a practical significance because the hardness of the resulting structure depends 

upon it; the smaller the spacing, the harder the metal. The growth rate of pearlite is also a 

strong function of temperature. At temperatures just below the eutectoid,  the  growth  rate  

increases  rapidly  with  decreasing  temperature,  reaching a maximum at 600 C,   and then 

decreases again at lower temperatures. 

 

Additions of alloying elements to Fe-C system bring changes (alternations to positions of 

phase boundaries and shapes of fields) depends on that particular element and its 

concentration. Almost all alloying elements causes the eutectoid concentration to decrease, 

and most of the alloying elements (e.g.: Ti, Mo, Si, W, Cr) causes the eutectoid temperature 

to increase while some other (e.g.: Ni, Mn) reduces the eutectoid  temperature. Thus alloying 

additions alters the relative amount of pearlite and pro- eutectoid phase that form. 

 

Fe-C alloys with more than 2.11% C are called cast irons. Phase transformations in cast irons 

involve formation of pro-eutectic phase on crossing the liquidus. During the further cooling, 

liquid of eutectic composition decomposes in to mixture of austenite and cementite, known as 

ledeburite. On further cooling through eutectoid temperature, austenite decomposes to 

pearlite. The room temperature microstructure of cast irons thus consists of pearlite and 

cementite. Because of presence of cementite, which is hard, brittle and white in color, product 

is called white cast iron. However, depending on cooling rate and other alloying elements, 

carbon in cast iron may be present as graphite or cementite. Gray cast iron contains graphite 

in form of flakes. These flakes are sharp and act as stress risers. Brittleness arising because of 

flake shape can be avoided by producing graphite in spherical nodules, as in malleable cast 

iron and SG (spheroidal graphite) cast iron. Malleable cast iron is produced by heat treating 

white cast iron (Si < 1%) for prolonged periods at about 900 C 

and then cooling it very slowly. The cementite decomposes and temper carbon appears 

approximately as spherical particles. SG iron is produced by adding inoculants to molten 

iron. In these Si content must be about 2.5%, and no subsequent heat treatment is required. 

 

Transformation rate effects and TTT diagrams, Microstructure and Property Changes in Fe-C 

Alloys 

Solid state transformations, which are very important in steels, are known to be dependent on 
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time at a particular temperature, as shown in figure-14(b). Isothermal transformation diagram, 

also known as TTT diagram, measures the rate of transformation at a constant temperature 

i.e. it shows time relationships for the phases during isothermal transformation. Information 

regarding the time to start the transformation and the time required to complete the 

transformation can be obtained from set of TTT diagrams. One such set of diagram for 

reaction of austenite to pearlite in steel is shown in figure-17. The diagram is not complete in 

the sense that the transformations of austenite that occur at temperatures below about 550    C 

are not shown. 

 

 

 

 

 

 

 

 

2.5 Partial TTT diagram for a eutectoid Fe-C alloy. 

As mentioned in previous section, thickness of layers in pearlite depends on the 

temperature at which the transformation occurred. If the transformation took place at a 

temperature that is just below the eutectoid temperature, relatively thick layers of α– ferrite 

and cementite are produced in what is called coarse pearlite. This is because of high 

diffusion rates of carbon atoms. Thus with decreasing transformation temperature, 

sluggish movement of carbon results in thinner layers α–ferrite and cementite i.e. fine 

pearlite is produced. 

 

At  transformation  temperatures below 550 C,  austenite  results  in different product 

known as bainite. Bainite also consists of α–ferrite and cementite phases i.e. transformation 

is again diffusion controlled but morphologically it consists of very small particles of 

cementite within or between fine ferrite plates. Bainite forms needles or  plates, depending 

on the temperature of the transformation; the microstructural details of bainite are so fine 

that their resolution is only possible using electron microscope. It differs from pearlite in 

the sense that different mechanism is involved in formation ob bainite which does not have 

alternating layers of α–ferrite and cementite. In addition, because of equal growth rates in 
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all directions pearlite tends to form spherical colonies, whereas bainite grows as plates and 

has a characteristic acicular (needlelike) appearance. Upper bainite, formed at the upper 

end of the temperature range (550  C-350  C), is 

characterized by relatively coarse, irregular shaped cementite particles in α–ferrite plates. If 

the transformation  is taking place at lower temperatures (350 C-250 C), the α– 

ferrite plates assume a more regular needlelike shape, and the transformation product is 

called lower bainite. At the same time carbide particles become smaller in size and   appear 

as cross-striations making an angle of about 55 

to the axis of the α–ferrite plate. Upper bainite has large rod-like cementite regions, 

whereas lower bainite has much finer cementite particles as a result of sluggish diffusion of 

carbon atoms at lower  temperatures. Lower bainite is considerably harder than upper 

bainite. Another characteristic of bainite is that as it has crystallographic orientation that is 

similar to that found in simple ferrite nucleating from austenite, it is believed that bainite is 

nucleated by the formation of ferrite. This is in contrast to pearlite which is believed to be 

nucleated by formation of cementite. 

 

Basically, bainite is a transformation product that is not as close to equilibrium as  pearlite. 

The most puzzling feature of the bainite reaction is its dual nature. In a number  of 

respects, it reveals properties that are typical of a nucleation and growth type of 

transformation such as occurs in the formation pearlite and also a mixture of α–ferrite  and 

cementite though of quite different morphology (no alternate layers), but at the same time 

it differs from the Martensite as bainite formation is athermal and diffusion controlled 

though its microstructure is characterized by acicular (needlelike) appearance. 
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reaction product is bainite only. Thus bainite transformation is favored at a high degree 

of supercooling, transformations are competitive with each other. 

 

Complete TTT (isothermal transformation) diagram for eutectoid steel. 

As explained in earlier section, martensitic transformation can dominate the proceedings if 

steel is cooled rapid enough so that diffusion of carbon can be arrested. Transformation of 

austenite to Martensite is diffusion-less, time independent and the extent of transformation 

depends on the transformation temperature. Martensite is a meta-stable phase and 

decomposes into ferrite and pearlite but this is extremely slow (and not noticeable) at room 

temperature. Alloying additions retard the formation rate of pearlite and bainite, thus 

rendering the martensitic transformation more competitive. Start of   the 

transformation is designated by Ms, while the completion is designated by Mf in a 

transformation diagram. Martensite forms in steels possesses a body centered tetragonal 

crystal structure with carbon atoms occupying one of the three interstitial sites available. 

This is the reason for characteristic structure of steel Martensite instead of general BCC. 

Tetragonal distortion caused by carbon atoms increases with increasing carbon content and 

so is the hardness of Martensite. Austenite is slightly denser than Martensite, and therefore, 

during the phase transformation upon quenching, there is a net volume  increase. If 

relatively large pieces are rapidly quenched, they may crack as a result of internal stresses, 

especially when carbon content is more than about 0.5%. 
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Mechanically, Martensite is extremely hard, thus its applicability is limited by brittleness 

associated with it. Characteristics of steel Martensite render it unusable for structural 

applications in the as-quenched form. However, structure and thus the properties can be 

altered by tempering, heat treatment observed below eutectoid temperature to permit 

diffusion of carbon atoms for a reasonable period of time. During tempering, carbide 

particles attain spherical shape and are distributed in ferrite phase – structure called 

spheroidite. Spheroidite is the softest yet toughest structure that steel may have. At lower 

tempering temperature, a structure called tempered Martensite forms with similar 

microstructure as that of spheroidite except that cementite particles are much, much 

smaller. The tempering heat treatment is also applicable to pearlitic and bainitic structures. 

This mainly results in improved machinability. The mechanism of tempering appears   to   

be   first   the  precipitation   of  fine   particles   of  hexagonal   ε-carbide of 

composition about Fe2.4C from Martensite, decreasing its tetragonality. At higher 

temperatures or with increasing tempering times, precipitation of cementite begins and is 

accompanied by dissolution of the unstable ε-carbide. Eventually the Martensite loses its 

tetragonality and becomes BCC ferrite, the cementite coalesces into spheres. A schematic 

of possible transformations involving austenite decomposition are shown in figure-19. 

 

 

 

2.6 Possible transformation involving austenite decomposition. 

 

Tempering of some steels may result in a reduction of toughness what is known as  temper 

embrittlement . This may be avoided by (1) compositional control, and/or (2) tempering 

above 575 or below 375, followed by quenching to room temperature. The effect is greatest 
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in Martensite structures, less severe in bainitic structures and least  severe in pearlite 

structures. It appears to be associated with the segregation of solute atoms to the grain 

boundaries lowering the boundary strength. Impurities responsible for temper brittleness 

are: P, Sn, Sb and As. Si reduces the risk of embrittlement by carbide formation. Mo has a 

stabilizing effect on carbides and is also used to minimize the risk of temper brittleness in 

low alloy steels. 

 

TTT diagrams are less of practical importance since an alloy has to be cooled rapidly and 

then kept at a temperature to allow for respective transformation to take place. However, 

most industrial heat treatments involve continuous cooling of a specimen to room 

temperature. Hence, Continuous Cooling Transformation (CCT) diagrams are generally 

more appropriate for engineering applications as components are cooled (air cooled, 

furnace cooled, quenched etc.) from a processing temperature as this is more economic 

than transferring to a separate furnace for an isothermal treatment. CCT diagrams  measure 

the extent of transformation as a function of time for a continuously decreasing 

temperature. For continuous cooling, the time required for a reaction to begin and end is 

delayed, thus the isothermal curves are shifted to longer times and lower temperatures. 

 

Both TTT and CCT diagrams are, in a sense, phase diagrams with added parameter in form 

of time. Each is experimentally determined for an alloy of specified composition. These 

diagrams allow prediction of the microstructure after some time period for constant 

temperature and continuous cooling heat treatments, respectively. Normally, bainite will 

not form during continuous cooling because all the austenite will have transformed to 

pearlite by the time the bainite transformation has become possible. Thus, as shown in 

figure-20, region representing austenite-pearlite transformation terminates just below the 

nose. 
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Fe-Fe3C Phase Diagram 

Figure 1 shows the equilibrium diagram for combinations of carbon in a solid 

solution of iron. The diagram shows iron and carbons combined to form Fe-Fe3C at the 

6.67%C end of the diagram. The left side of the diagram is pure iron combined with 

carbon, resulting in steel alloys. Three significant regions can be made relative to the  steel  

portion  of  the  diagram.  They  are  the eutectoid E,  the hypoeutectoid A,  and    the 

hypereutectoid B. The right side of the pure iron line is carbon in combination with various 

forms of iron called alpha iron (ferrite), gamma iron (austenite), and delta iron. The black 

dots mark clickable sections of the diagram. 

 

Allotropic changes take place when there is a change in crystal lattice structure. 

From 2802º-2552ºF the delta iron has a body-centered cubic lattice structure. At 2552ºF, 

the lattice changes from a body-centered cubic to a face-centered cubic lattice type. At 

http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#eutectoid
http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#hypoeut
http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#hypereut
http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html
http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#austinite
http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#deltairon
http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#bodycent
http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#facecent
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1400ºF, the curve shows a plateau but this does not signify an allotropic change. It is called 

the Curie temperature, where the metal changes its magnetic properties. 

 

Two very important phase changes take place at 0.83%C and at 4.3% C. At 

0.83%C, the transformation is eutectoid, called pearlite. 

 

gamma (austenite) --> alpha + Fe3C (cementite) 

 

At 4.3% C and 2066ºF, the transformation is eutectic, called ledeburite. 

L(liquid) --> gamma (austenite) + Fe3C (cementite) 

Steels 

Steels are alloys of iron and carbon plus other alloying elements. In steels, carbon present in 

atomic form, and occupies interstitial sites of Fe microstructure. Alloying additions are 

necessary for many reasons including: improving properties, improving corrosion resistance, 

etc. Arguably steels are well known and most used materials than any other materials. 

Mechanical properties of steels are very sensitive to carbon content. Hence, it is practical to 

classify steels based on their carbon content. Thus steels are basically three kinds: low- 

carbon steels (% wt of C < 0.3), medium carbon steels (0.3 <% wt of C < 0.6) and high- 

carbon steels (% wt of C > 0.6). The other parameter available for classification of steels is 

amount of alloying additions, and based on this steels are two kinds: (plain) carbon steels 

and alloy-steels. 

Low carbon steels: These are arguably produced in the greatest quantities than other alloys. 

Carbon present in these alloys is limited, and is not enough to strengthen these materials by 

heat treatment; hence these alloys are strengthened by cold work. Their microstructure 

consists of ferrite and pearlite, and these alloys are thus relatively soft, ductile combined 

with high toughness. Hence these materials are easily machinable and weldable. Typical 

applications of these alloys include: structural shapes, tin cans, automobile body 

components, buildings, etc. 

A special group of ferrous alloys with noticeable amount of alloying additions are known as 

HSLA (high-strength low-alloy) steels. Common alloying elements are: Cu, V, Ni, W, Cr, 

Mo, etc. These alloys can be strengthened by heat treatment, and yet the same time they are 

ductile, formable. Typical applications of these HSLA steels include: support columns, 

http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#pearlite
http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#cementite
http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#iedeburite
http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/gloss.html#cementite
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bridges, pressure vessels. 

Medium carbon steels: These are stronger than low carbon steels. However these are of less 

ductile than low carbon steels. These alloys can be heat treated to improve their strength. 

Usual heat treatment cycle consists of austenitizing, quenching, and tempering  at suitable 

conditions to acquire required hardness. They are often used in tempered condition. As 

hardenability of these alloys is low, only thin sections can be heat treated using very high 

quench rates. Ni, Cr and Mo alloying additions improve their 

 hardenability. Typical applications include: railway tracks & wheels, gears, other machine 

parts which may require good combination of strength and toughness. 

High carbon steels: These are strongest and hardest of carbon steels, and of course their 

ductility is very limited. These are heat treatable, and mostly used in hardened and tempered 

conditions. They possess very high wear resistance, and capable of holding sharp edges. 

Thus these are used for tool application such as knives, razors, hacksaw blades, etc. With 

addition of alloying element like Cr, V, Mo, W which forms hard carbides by reacting with 

carbon present, wear resistance of high carbon steels can be improved considerably. 

Stainless steels: The name comes from their high resistance to corrosion i.e. they are rust-

less (stain-less). Steels are made highly corrosion resistant by addition of special alloying 

elements, especially a minimum of 12% Cr along with Ni and Mo. Stainless steels are 

mainly three kinds: ferritic & hardenable Cr steels, austenitic and precipitation hardenable 

(martensitic, semi- austenitic) steels. This classification is based on prominent constituent of 

the microstructure. Typical applications include cutlery, razor blades, surgical knives, etc. 

Ferritic stainless steels are principally Fe-Cr-C alloys with 12-14% Cr. They also contain 

small additions of Mo, V, Nb, and Ni. 

Austenitic stainless steels usually contain 18% Cr and 8% Ni in addition to other minor 

alloying elements. Ni stabilizes the austenitic phase assisted by C and N. Other alloying 

additions include Ti, Nb, Mo (prevent weld decay), Mn and Cu (helps in stabilizing 

austenite). 

By alloying additions, for martensitic steels Ms is made to be above the room temperature. 

These alloys are heat treatable. Major alloying elements are: Cr, Mn and Mo. 
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Ferritic and austenitic steels are hardened and strengthened by cold work because they are 

not heat treatable. On the other hand martensitic steels are heat treatable. Austenitic steels 

are most corrosion resistant, and they are produced in large quantities. Austenitic steels are 

non-magnetic as against ferritic and martensitic steels, which are magnetic. 

 2.7 HEAT TREATMENT 

Thermal processing of metals and alloys 

Apart from mechanical processing, metals are very often subjected to thermal processing for 

various reasons, like: to refine grain structure/size, to minimize residual stresses, to 

impart phase changes, to develop special phases over external surfaces, etc. Metals and 

alloys develop requisite properties by thermal processing either through grain refinement of 

phase changes. Thermal processing is also known as heat treatment. Heat treatment 

originated as an ancient art in man‘s attempts to improve the performance of materials in 

their practical applications. In present day metallurgical practice, heat treatment has become 

very important for obvious reasons. There has been tremendous progress over centuries in 

the systematic understanding of materials structure and structure-property relationships that 

eliminated the empiricism in thermal processing. Properly designed and implemented 

thermal processing can result in optimum modifications in the composition and distribution 

of phases, corresponding changes in physical, chemical and mechanical properties at 

substantial levels. However, most of the thermal processes are aimed to improving 

mechanical characteristics of materials. Thus it is possible to extend the service performance 

of materials considerably within constraints of available resources. 

All metals can be subjected to thermal processing. But the effect of it may differ from one 

metal to another. Metals are subjected to heat treatment for one or more of the following 

purposes: improvement in ductility; relieving internal stresses; grain size refinement; 

increase of strength; improvement in machinability, toughness; etc. 

Heat treatment of materials involves number of factors – temperature up to which material is 

heated, length of time that the material is held at the elevated temperature, rate of cooling, 

and the surrounding atmosphere under the thermal treatment. All these factors depend on 

material, pre-processing of the material‘s chemical composition, size and shape of the 

object, final properties desired, material‘s melting point/liquidus, etc. 
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Thermal processes may be broadly classified into two categories based on cooling rates from 

elevated temperatures – annealing and quenching & tempering. Annealing involved cooling 

the material from elevated temperatures slowly, while quenching means very fast cooling of 

the material using cooling medium like water/oil bath. Quenching is done to retain the 

phases of elevated temperatures at room temperature. 

Annealing processes 

The term annealing was used by craftsmen who discovered the beneficial effects of heating 

the material at elevated temperatures followed by slow cooling of it to room temperature. 

Annealing can be defined as a heat treatment process in which the material is taken to a high 

temperature, kept there for some time and then cooled. High temperatures allow diffusion 

processes to occur fast. The time at the high temperature (soaking time) must be long 

enough to allow the desired transformation to occur. Cooling is done slowly to avoid the 

distortion (warping) of the metal piece, or even cracking, caused by stresses induced by 

differential contraction due to thermal 

 inhomogeneities. Benefits of annealing are: 

• relieve stresses 

• increase softness, ductility and toughness 

• produce a specific microstructure 

Depending on the specific purpose, annealing is classified into various types: process 

annealing, stress relief, full annealing and normalizing. 

Process annealing is primarily applied to cold worked metals to negate the effects of cold 

work. During this heat treatment, material becomes soft and thus its ductility will be 

increased considerably. It is commonly sandwiched between two cold work operations. 

During this, recovery and recrystallization are allowed whereas grain growth was restricted. 

Stress relief operation removes the stresses that might have been generated during plastic 

deformation, non-uniform cooling, or phase transformation. Unless removed, these stresses 

may cause distortion of components. Temperature used is normally low such that effects 

resulting from cold working are not affected. 

Full annealing is normally used for products that are to be machined subsequently, such as 

transmission gear blanks. After heating and keeping at an elevated temperature, components 



48 
 

are cooled in furnace to effect very slow cooling rates. Typically, the product receives 

additional heat treatments after machining to restore hardness and strength. 

Normalizing is used to refine the grains and produce a more uniform and desirable size 

distribution. It involves heating the component to attain single phase (e.g.: austenite in 

steels), then cooling in open air atmosphere. 

Quenching and Tempering processes 

Quenching is heat treatment process where material is cooled at a rapid rate from elevated 

temperature to produce Martensite phase. This process is also known as hardening. Rapid  

cooling rates are accomplished by immersing the components in a quench bath that usually 

contains quench media in form of either water or oil, accompanied by stirring mechanism. 

Quenching process is almost always followed by tempering heat treatment. Tempering is the 

process of heating martensitic steel at a temperature below the eutectoid transformation 

temperature to make it softer and more ductile. During the tempering process, Martensite 

transforms to a structure containing iron carbide particles in a matrix of ferrite. 

Martempering is a modified quenching procedure used to minimize distortion and cracking 

that may  develop  during  uneven  cooling  of  the  heat-treated  material.  It  involves  

cooling     the 

austenized steel to temperature just above Ms temperature, holding it there until temperature 

is uniform, followed by cooling at a moderate rate to room temperature before austenite-to-

bainite transformation begins. The final structure of martempered steel is tempered 

Martensite. 

 Austempering is different from martempering in the sense that it involves austenite- to-

bainite transformation. Thus, the structure of austempered steel is bainite. Advantages of 

austempering are – improved ductility; decreased distortion and disadvantages are – need for 

special molten bath; process can be applied to limited number of steels. 

Case Hardening 

In case hardening, the surface of the steel is made hard and wear resistant, but the core 

remains soft and tough. Such a combination of properties is desired in applications such as 

gears. 
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Induction hardening 

Here, an alternating current of high frequency passes through an induction coil enclosing the  

steel part to be heat treated. The induced emf heats the steel. The depth up to which the heat 

penetrates and raises the temperature above the elevated temperature is inversely 

proportional to the square root of the ac frequency. In induction hardening, the heating time 

is usually a few seconds. Immediately after heating, water jets are activated to quench the 

surface. Martensite is produced at the surface, making it hard and wear resistant. The 

microstructure of the core remains unaltered. Induction hardening is suitable for mass 

production of articles of uniform cross-section. 

Flame hardening 

For large work pieces and complicated cross-sections induction heating is not easy to apply. 

In such cases, flame hardening is done by means of an oxyacetylene torch. Heating should 

be done rapidly by the torch and the surface quenched, before appreciable heat transfer to 

the core occurs 

Laser hardening 

In this case, a laser beam can be used for surface hardening. As laser beams are of high 

intensity, a lens is used to reduce the intensity by producing a defocused spot of size ranging 

from 0.5 to  25 mm. Proper control of energy input is necessary to avoid melting. Laser 

hardening has the advantage of precise control over the area to be hardened, an ability to 

harden reentrant surfaces, very high speed of hardening and no separate quenching step. The 

disadvantage is that the hardening is shallower than in induction and flame hardening 

Carburizing 

Carburizing is the most widely used method of surface hardening. Here, the surface layers of 

low carbon steel are enriched with carbon up to 0.8-1.0%. The source of carbon may be a 

solid medium, a liquid or a gas. In all cases, the carbon enters the steel at the surface and 

diffuses  intothe steel as a function of time at an elevated temperature. Carburizing is done at 

920-950C. 

This fully austenitic state is essential. If carburizing is done in the ferritic region, the carbon, 

with very limited solubility in ferrite, tends to form massive cementite particles near the  

surface, 
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making the subsequent heat treatment difficult. For this reason, carburizing is always done 

in the austenitic state, even though longer times are required due to the diffusion rate of 

carbon in austenite being less that in ferrite at such temperatures. 

Cyaniding 

Cyaniding is done in a liquid bath of NaCN, with the concentration varying between 30 and 

97%. The temperature used for cyaniding is lower than that for carburizing and is in the 

range of 800-870   C. The time of cyaniding is 1-3 hr to produce a case depth of 0.25 mm or 

less. 

Nitriding 

Nitriding is carried out in the ferritic region. No phase change occurs after nitriding. The 

part to be nitrided should posses the required core properties prior to nitriding. During 

nitriding, pure ammonia decomposes to yield nitrogen which enters the steel. The solubility 

of nitrogen in 

ferrite is small. Most of the nitrogen, that enters the steel, forms hard nitrides (e.g., Fe3 N). 

The temperature of nitriding is 500-590        C. The time for a case depth of 0.02 mm is 

about 2 hr. In addition to providing outstanding wear resistance, the nitride layer increases 

the resistance of carbon steel to corrosion in moist atmospheres 

 Cast irons 

Though ferrous alloys with more than 2.14 wt.% C are designated as cast irons, 

commercially cast irons contain about 3.0-4.5% C along with some alloying additions. 

Alloys with this carbon content melt at lower temperatures than steels i.e. they are 

responsive to casting. Hence casting is the most used fabrication technique for these alloys. 

Hard and brittle constituent presented in these alloys, cementite is a meta-stable phase, and 

can readily decompose to form α-ferrite and graphite. In this way disadvantages of brittle 

phase can easily be overcome. Tendency of cast irons to form graphite is usually controlled 

by their composition and cooling rate. Based on the form of carbon present, cast irons are 

categorized as gray, white, nodular and malleable cast irons. 

Gray cast iron: These alloys consists carbon in form graphite flakes, which are surrounded 

by either ferrite or pearlite. Because of presence of graphite, fractured surface of these alloys 

look grayish, and so is the name for them. Alloying addition of Si (1- 3wt.%) is responsible 
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for decomposition of cementite, and also high fluidity. Thus castings of intricate shapes can 

be easily made. Due to graphite flakes, gray cast irons are weak and brittle. However they 

possess good damping properties, and thus typical applications include: base structures, bed 

for heavy machines, etc. they also show high resistance to wear. 

White cast iron: When Si content is low (< 1%) in combination with faster cooling rates, 

there is no time left for cementite to get decomposed, thus most of the brittle cementite 

retains. Because of presence of cementite, fractured surface appear white, hence the name. 

They are very brittle and extremely difficult to machine. Hence their use is limited to wear 

resistant applications such as rollers in rolling mills. Usually white cast iron is heat treated to 

produce malleable iron. 

Nodular (or ductile) cast iron: Alloying additions are of prime importance in producing these 

materials. Small additions of Mg / Ce to the gray cast iron melt before casting can result in 

graphite to form nodules or sphere-like particles. Matrix surrounding these particles can be 

either ferrite or pearlite depending on the heat treatment. These are stronger and ductile than 

gray cast irons. Typical applications include: pump bodies, crank shafts, automotive 

components, etc. 

Malleable cast iron: These formed after heat treating white cast iron. Heat treatments 

involve heating the material up to 800-900 C,  and keep it for long hours, before  cooling it 

to room temperature. High temperature incubation causes cementite to decompose and form 

ferrite and graphite. Thus these materials are stronger with appreciable amount of ductility. 

Typical applications include: railroad, connecting rods, marine and other heavy- duty 

services. 

 

 

 

 

 

 

 

 

 

 



52 
 

MODULE- III 

SIMPLE STRESSES AND STRAINS, PRINCIPAL STRESSES 

 

3.1 Stress 

Stress is the internal resistance offered by the body to the external load applied to it per unit 

cross sectional area. Stresses are normal to the plane to which they act and are tensile or 

compressive in nature. 

 

 

 

 

 

 

As we know that in mechanics of deformable solids, externally applied forces acts on a 

body and body suffers a deformation. From equilibrium point of view, this action should be 

opposed or reacted by internal forces which are set up within the particles of material due to 

cohesion. These internal forces give rise to a concept of stress. Consider a rectangular rod 

subjected to axial pull P. Let us imagine that the same rectangular bar is assumed to be cut 

into two halves at section XX. The each portion of this rectangular bar is in equilibrium 

under the action of load P and the internal forces acting at the section XX has been shown. 

Now stress is defined as the force intensity or force per unit area.  Where A is the area of 

the X –X section 

Here we are using an assumption that the total force or total load carried by the rectangular 

bar is uniformly distributed over its cross – section. But the stress distributions may be for 

from uniform, with local regions of high stress known as stress concentrations. If the force 

carried by a component is not uniformly distributed over its cross – sectional area, A, we 
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must consider a small area, ‗δA‘ which carries a small load ‗δP‘, of the total force ‗P', Then 

definition of stress is 

 

As a particular stress generally holds true only at a point, therefore it is defined 

mathematically as 

 

Units : 

 

The basic units of stress in S.I units i.e. (International system) are N / m
2
 (or Pa) MPa = 10

6
 

Pa 

Sometimes N / mm
2
 units are also used, because this is an equivalent to MPa. While US 

customary unit is pound per square inch psi. 

 

3.2 TYPES OF STRESSES : Only two basic stresses exists : (1) normal stress and (2) 

shear stress. Other stresses either are similar to these basic stresses or are a combination of 

this e.g. bending stress is a combination tensile, compressive and shear stresses. Torsional 

stress, as encountered in twisting of a shaft is a shearing stress. Let us define the normal 

stresses and shear stresses in the following sections. 

 

Normal stresses : We have defined stress as force per unit area. If the stresses are normal 

to the areas concerned, then these are termed as normal stresses. The normal stresses are 

generally denoted by a Greek letter (σ) 

 

 

This is also known as uniaxial state of stress, because the stresses acts only in one direction 

however, such a state rarely exists, therefore we have biaxial and triaxial state of stresses 
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where either the two mutually perpendicular normal stresses acts or three mutually 

perpendicular normal stresses acts as shown in the figures below : 

 

 

Tensile or compressive Stresses: 

 

The normal stresses can be either tensile or compressive whether the stresses acts out of the 

area or into the area 
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Bearing Stress: When one object presses against another, it is referred to a bearing stress ( 

They are in fact the compressive stresses ). 

 

 

 

 

 

Sign convections for Normal stress 

Direct stresses or normal stresses 

- tensile +ve 

- compressive –ve 

 

Shear Stresses: 

 

Let us consider now the situation, where the cross – sectional area of a block of material is 

subject to a distribution of forces which are parallel, rather than normal, to the area 

concerned. Such forces are associated with a shearing of the material, and are referred to as 

shear forces. The resulting stress is known as shear stress. 
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The resulting force intensities are known as shear stresses, the mean shear 

stress being equal to 

Where P is the total force and A the area over which it acts. As we know that the particular 

stress generally holds good only at a point therefore we can define shear stress at a point as 

 

 

 

3.3 Complementary shear stresses: 

 

The existence of shear stresses on any two sides of the element induces complementary 

shear stresses on the other two sides of the element to maintain equilibrium. 

 

 

Sign convections for shear stresses: 

 

- tending to turn the element C.W +ve. 

 

- tending to turn the element C.C.W – ve. 

 

Deformation of a Body due to Self Weight 

 

Consider a bar AB hanging freely under its own weight as shown in the figure. 
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Let 

 

L= length of the bar 

 

A= cross-sectional area of the bar 

 

E= Young‘s modulus of 

the bar material w= 

specific weight of the bar 

material 

Then deformation due to the self-weight of the bar is 

 

 

Members in Uni – axial state of stress 

Introduction: [For members subjected to uniaxial state of stress] 

For a prismatic bar loaded in tension by an axial force P, the 

elongation of the bar can be determined as 

Suppose the bar is loaded at one or more intermediate positions, then equation 

(1) can be readily adapted to handle this situation, i.e. we can determine the axial force in 

2E 
 L  

WL
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each part of the bar i.e. parts AB, BC, CD, and calculate the elongation or shortening of 

each part separately, finally, these changes in lengths can be added algebraically to obtain 

the total charge in length of the entire bar. 

 

When either the axial force or the cross – sectional area varies continuosly along the 

axis of the bar, then equation (1) is no longer suitable. Instead, the elongation can be found 

by considering a deferential element of a bar and then the equation (1) becomes 

i.e. the axial force Pxand area of the cross – section Ax must be expressed as functions 

of x. If the expressions for Pxand Ax are not too complicated, the integral can be evaluated 

analytically, otherwise Numerical methods or techniques can be used to evaluate these 

integrals. 

3.4 Principle of Superposition 

 

The principle of superposition states that when there are numbers of loads are acting 

together on an elastic material, the resultant strain will be the sum of individual strains 

caused by each load acting separately. 

 

Numerical Problems on stress, shear stress in axially loaded members. 

 

Example 1: Now let us for example take a case when the bar tapers 

uniformly from d at x = 0 to D at x = l 
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In order to compute the value of diameter of a bar at a chosen location let us 

determine the value of dimension k, from similar triangles 

 

 

therefore, the diameter 'y' at the 

X-section is or = d + 2k 

Hence the cross –section area at section X- X will be 

 

hence the total extension of the bar will be given by expression 
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An interesting problem is to determine the shape of a bar which would have a 

uniform stress in it under the action of its own weight and a load P. 

Example 2: stresses in Non – Uniform bars 

Consider a bar of varying cross section subjected to a tensile force P as shown below. 

Let 

a = cross sectional area of the bar at a chosen 

section XX then 

Stress < = p / a 

If E = Young's modulus of bar then the strain at the section XX 

can be calculated 

< = < / E 
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Then the extension of the short element < x. =<< .original length = < / E. < 
x
 

 

let us consider such a bar as shown in the figure below: 

 

 

 

 

The weight of the bar being supported under section XX is 
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Example 1: Calculate the overall change in length of the tapered rod as shown in figure 

below. It carries a tensile load of 10kN at the free end and at the step change in section a 

compressive load of 2 MN/m evenly distributed around a circle of 30 mm diameter take the 

value of E = 208 GN / m
2
. 

This problem may be solved using the procedure as discussed earlier 

in this section 

 

Example 2: A round bar, of length L, tapers uniformly from radius r1 at  ne 

end to radius r2at the other. Show that the extension produced by a tensile 

axial load P 

 

is 

If r2 = 2r1 , compare this extension with that of a uniform cylindrical bar having a 

radius equal to the mean radius of the tapered bar. 

Solution: 
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 consider the 

above figure let r1 be the radius at the smaller end. Then at a X crosssection XX located at a 

distance x from the smaller end, the value of radius is equal to 
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Comparing of extensions 

For the case when r2 = 2.r1, the value of computed extension as above 

 

becomes equal to 

The mean radius of taper bar 

= 1 / 2( r1 + r2 ) 

= 1 / 2( r1 +2 r2 ) 

= 3 / 2 .r1 

Therefore, the extension of uniform bar 

= Orginal length . strain 
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3.5 Strain: 

When a single force or a system force acts on a body, it undergoes some deformation. This 

deformation per unit length is known as strain. Mathematically strain may be defined as 

deformation per unit length. 

So, 

Strain=Elongation/Original length 

 

Elasticity; 

 

The property of material by virtue of which it returns to its original shape and size upon 

removal of load is known as elasticity. 

Hooks Law 

It states that within elastic limit stress is proportional to strain.  

 

Where E = Young‘s Modulus 

 

Hooks law holds good equally for tension and compression. 

 

Poisson’s Ratio; 

 

The ratio lateral strain to longitudinal strain produced by a single stress is nown as 

Poisson‘s ratio. Symbol used for poisson‘s ratio is nu or 1/ m . 

Modulus of Elasticity (or Young’s Modulus) 

 

Young‘s modulus is defined as the ratio of stress to strain within elastic limit. 

 

Deformation of a body due to load acting on it 

 

We know that young‘s modulus E= 
Stress 

, 

Strain 
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So, deformation 

Shear Strain 

 

The distortion produced by shear stress on an element or rectangular block is shown in 

the figure. The shear strain or ‗slide‘ is expressed by angle ϕ and it can be defined as 

the change in the right angle. It is measured in radians and is dimensionless in nature. 

 

 

Modulus of Rigidity 

 

For elastic materials it is found that shear stress is proportional to the shear strain 

within elastic limit. The ratio is called modulus rigidity. It is denoted by the symbol 

‗G‘ or ‗C‘. 

 

Bulk modulus (K): It is defined as the ratio of uniform stress intensity to the 

volumetric strain. It is denoted by the symbol K. 

 

Relation between elastic constants: 

 

Elastic constants: These are the relations which determine the deformations produced 

by a given stress system acting on a particular material. These factors are constant 

within elastic limit, and known as modulus of elasticity E, modulus of rigidity G, Bulk 

modulus K and Poisson‘s ratio μ. 
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E  3K (1 2) 

E  2G(1 ) 

9KG 

G  3K 
E 

Relationship between modulus of elasticity (E) and bulk modulus (K): 

 

 

 

 

Relationship between modulus of elasticity (E) and modulus of rigidity (G): 

 

 

 

 

Relation among three elastic constants: 
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. 

3.6 Stress – Strain Relationship 

 

Stress – strain diagram for mild steel 

 

Standard specimen are used for the tension test. 

 

There are two types of standard specimen's which are generally used for this purpose, 

which have been shown below: 

 

Specimen I: 

 

This specimen utilizes a circular X-section. 

 

 

 

Specimen II: 

This specimen utilizes a rectangular X-section. 
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lg = gauge length i.e. length of the specimen on which we want to determine the 

mechanical properties.The uniaxial tension test is carried out on tensile testing 

machine and the following steps are performed to conduct this test. 

(i) The ends of the specimen are secured in the grips of the testing machine. 

 

(ii) There is a unit for applying a load to the specimen with a hydraulic or mechanical 

drive. 

 

(iii) There must be some recording device by which you should be able to measure the 

final output in the form of Load or stress. So the testing machines are often equipped 

with the pendulum type lever, pressure gauge and hydraulic capsule and the stress Vs 

strain diagram is plotted which has the following shape. 

 

A typical tensile test curve for the mild steel has been shown below 

 

SALIENT POINTS OF THE GRAPH: 

(A) So it is evident form the graph that the strain is proportional to strain or elongation 

is proportional to the load giving a st.line relationship. This law of proportionality is 

valid upto a point A. 

or we can say that point A is some ultimate point when the linear nature of the graph 

ceases or there is a deviation from the linear nature. This point is known as the limit of 

proportionality or the proportionality limit. 
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(B) For a short period beyond the point A, the material may still be elastic in the sense 

that the deformations are completely recovered when the load is removed. The limiting 

point B is termed as Elastic Limit . 

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not 

totally recoverable. There will be thus permanent deformation or permanent set 

when load is removed. These two points are termed as upper and lower yield points 

respectively. The stress at the yield point is called the yield strength. 

A study a stress – strain diagrams shows that the yield point is so near the proportional 

limit that for most purpose the two may be taken as one. However, it is much easier to 

locate the former. For material which do not posses a well define yield points, In order 

to find the yield point or yield strength, an offset method is applied. 

In this method a line is drawn parallel to the straight line portion of initial stress 

diagram by off setting this by an amount equal to 0.2% of the strain as shown as below 

and this happens especially for the low carbon steel. 

(E) A further increase in the load will cause marked deformation in the whole volume 

of the metal. The maximum load which the specimen can with stand without failure is 

called the load at the ultimate strength. 

The highest point ‗E' of the diagram corresponds to the ultimate strength of a material. 

su = Stress which the specimen can with stand without failure & is known as Ultimate 

Strength or Tensile Strength. 

su is equal to load at E divided by the original cross-sectional area of the bar. 

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum 

until fracture occurs at F. Beyond point E, the cross-sectional area of the specimen 

begins to reduce rapidly over a relatively small length of bar and the bar is said to form 

a neck. This necking takes place whilst the load reduces, and fracture of the bar finally 
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occurs at point F. 

 

Nominal stress – Strain OR Conventional Stress – Strain diagrams: 

Stresses are usually computed on the basis of the original area of the specimen; such 

stresses are often referred to as conventional or nominal stresses. 

True stress – Strain Diagram: 

Since when a material is subjected to a uniaxial load, some contraction or expansion 

always takes place. Thus, dividing the applied force by the corresponding actual  area 

of the specimen at the same instant gives the so called true stress. 

Percentage Elongation: 'd ': 

The ductility of a material in tension can be characterized by its elongation and by the 

reduction in area at the cross section where fracture occurs. 

It is the ratio of the extension in length of the specimen after fracture to its initial 

gauge length, expressed in percentage. 

lI = gauge length of specimen after fracture(or the distance between the gage marks at 

fracture) 

lg= gauge length before fracture(i.e. initial gauge length) 

For 50 mm gage length, steel may here a % elongation d of the order of 10% to  40%. 

Ductile and Brittle Materials: 

 

Based on this behaviour, the materials may be classified as ductile or brittle materials 

Ductile Materials: 

 

It we just examine the earlier tension curve one can notice that the extension of the 

materials over the plastic range is considerably in excess of that associated with elastic 

loading. The Capacity of materials to allow these large deformations or large 

extensions without failure is termed as ductility. The materials with high ductility are 

termed as ductile materials. 
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Brittle Materials: 

A brittle material is one which exhibits a relatively small extensions or deformations to 

fracture, so that the partially plastic region of the tensile test graph is much reduced. 

This type of graph is shown by the cast iron or steels with high carbon contents or 

concrete. 

 

 

Mechanical Properties of material: 

 

Elasticity: Property of material by virtue of which it can regain its shape after removal 

of external load 

Plasticity: Property of material by virtue of which, it will be in a state of permanent 

deformation even after removal of external load. 

Ductility: Property of material by virtue of which, the material can be drawn into  

wires. 

Hardness: Property of material by virtue of which the material will offer resistance to 

penetration or indentation. 

Ball indentation Tests: 

iThis method consists in pressing a hardened steel ball under a constant load P 

into a specially prepared flat surface on the test specimen as indicated in the figures 

below : 
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After removing the load an indentation remains on the surface of the test 

specimen. If area of the spherical surface in the indentation is denoted as F sq. mm. 

Brinell Hardness number is defined as : 

BHN = P / F 

F is expressed in terms of D and d D = ball diameter 

d = diametric of indentation and Brinell Hardness number is given by 

Then is there is also Vicker's Hardness Number in which the ball is of conical 

shape. 

 

IMPACT STRENGTH 

Static tension tests of the unnotched specimen's do not always reveal the susceptibility of 

metal to brittle fracture. This important factor is determined in impact tests. In impact 

tests we use the notched specimen's 

this specimen is placed on its supports on anvil so that blow of the striker is opposite to 

the notch the impact strength is defined as the energy A, required to rupture the 

specimen, 

Impact Strength = A / f 

Where f = It is the cross – section area of the specimen in cm
2
 at fracture & obviously at 

notch. 

The impact strength is a complex characteristic which takes into account both toughness 

and strength of a material. The main purpose of notched – bar tests is to study the 

simultaneous effect of stress concentration and high velocity load application 

Impact test are of the severest type and facilitate brittle friction. Impact strength values 
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can not be as yet be used for design calculations but these tests as rule provided for in 

specifications for carbon & alloy steels.Futher, it may be noted that in impact tests 

fracture may be either brittle or ductile. In the case of brittle fracture, fracture occurs by 

separation and is not accompanied by noticeable plastic deformation as occurs in the case 

of ductile fracture. 

Impact loads: 

 

Considering a weight falling from a height h, on to a collar attached at the end as 

shown in the figure. 

Let P= equivalent static or gradually applied load which will produce the same 

extension x as that of the impact load W 

Neglecting loss of energy due to impact, we can have: 

 

Loss of potential energy= gain of strain energy of the bar 

Important Case: for a particular case i.e. for h=0, for a suddenly applied load P=2W, 

i.e. the stress produced by a suddenly applied load is twice that of the static stress. 

 

Thermal stresses, Bars subjected to tension and Compression 

 

Compound bar: In certain application it is necessary to use a combination of 

elements or bars made from different materials, each material performing a different 

function. In over head electric cables or Transmission Lines for example it is often 

convenient to carry the current in a set of copper wires surrounding steel wires. The 

later being designed to support the weight of the cable over large spans. Such a 

combination of materials is generally termed compound bars. 

 

Consider therefore, a compound bar consisting of n members, each having a 

different length and cross sectional area and each being of a different material. Let all 

member have a common extension ‗x' i.e. the load is positioned to produce the same 

extension in each member. 
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Where Fn is the force in the nth member and An and Ln are its cross - sectional 

area and length. 

 

Let W be the total load, the total load carried will be the sum of all loads for all 

the members. 
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Therefore, each member carries a portion of the total load W proportional of EA 

/ L value. 

 

 

 

 

The above expression may be writen as 

 

 

if the length of each individual member in same then, we may write 

 

Thus, the stress in member '1' may be determined as < 1 = F1 / A1 

 

Determination of common extension of compound bars: In order to determine the 

common extension of a compound bar it is convenient to consider it as a single bar of an 

imaginary material with an equivalent or combined modulus Ec. 

 

Assumption: Here it is necessary to assume that both the extension and original lengths 

of the individual members of the compound bar are the same, the strains in all members 

will than be equal. 

 

Total load on compound bar = F1 + F2+ F3 +………+ Fn where F1 , F 2 ,….,etc  
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Dividing throughout by the common strain<< . 

 

 

 

Compound bars subjected to Temp. Change : Ordinary materials expand when heated 

and contract when cooled, hence , an increase in temperature produce a positive thermal 

strain. Thermal strains usually are reversible in a sense that the member returns to its 

original shape when the temperature return to its original value. However, there here are 

some materials which do not behave in this manner. These metals differs from ordinary 

materials in a sence that the strains are related non linearly to temperature and some 

times are irreversible .when a material is subjected to a change in temp. is a length will 

change by an amount. 

 

 

 

 = coefficient of linear expansion for the material L = original Length 

t = temp. change 

 

Thus an increase in temperature produces an increase in length and a decrease in 

temperature results in a decrease in length except in very special cases of materials 

with zero or negative coefficients of expansion which need not to be considered here. 
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If however, the free expansion of the material is prevented by some external force, then a 

stress is set up in the material. They stress is equal in magnitude to that 

which would be produced in the bar by initially allowing the bar to its free length and 

then applying sufficient force to return the bar to its original length. 

 

Consider now a compound bar constructed from two different materials rigidly joined 

together, for simplicity. 

 

Let us consider that the materials in this case are steel and brass. 

 

 

 

If we have both applied stresses and a temp. change, thermal strains may be added to 

those given by generalized hook's law equation –e.g. 

 

 

While the normal strains a body are affected by changes in temperatures, shear strains 

are not. Because if the temp. of any block or element changes, then its size changes not 

its shape therefore shear strains do not change. 
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MODULE-IV 

SHEAR FORCE AND BENDING MOMENT DIAGRAMS, 

FLEXURAL STRESSES, SHEAR STRESSES 

 

4.1 Concept of Shear Force and Bending moment in beams: 

When the beam is loaded in some arbitrarily manner, the internal forces and moments are 

developed and the terms shear force and bending moments come into pictures which are 

helpful to analyze the beams further. Let us define these terms 

 

 

Fig 1 

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2,  P3 

and  is  simply  supported  at  two  points  creating  the  reactions  R1 and    R2 respectively. 

Now let us assume that the beam is to divided into or imagined to be cut into two portions at a 

section AA. Now let us assume that the resultant of loads and reactions to the left of AA is ‗F' 

vertically upwards, and since the entire beam is to remain in equilibrium, thus the resultant of 

forces to the right of AA must also be F, acting downwards. This forces ‗F' is as a shear force. 

The shearing force at any x- section of a beam represents the tendency for the portion of the 

beam to one side of the section to slide or shear laterally relative to the other portion. 

Therefore, now we are in a position to define the shear force ‗F' to as follows: 
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At any x-section of a beam, the shear force ‗F' is the algebraic sum of all the lateral 

components of the forces acting on either side of the x-section. 

Sign Convention for Shear Force: 

The usual sign conventions to be followed for the shear forces have been illustrated in figures 

2 and 3. 

 

Fig 2: Positive Shear Force 

 

 

Fig 3: Negative Shear Force 
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Bending Moment: 

 

 

 

Fig 4 

Let us again consider the beam which is simply supported at the two prints, carrying loads P1, 

P2 and P3 and having the reactions R1 and R2 at the supports Fig 4. Now, let us imagine that 

the beam is cut into two potions at the x-section AA. In a similar manner, as done for the case 

of shear force, if we say that the resultant moment about the section AA of all the loads and 

reactions to the left of the x-section at AA is M in C.W direction, then moment of forces to 

the right of x-section AA must be ‗M' in 

C.C.W. Then ‗M' is called as the Bending moment and is abbreviated as B.M. Now one can 

define the bending moment to be simply as the algebraic sum of the moments about an x-

section of all the forces acting on either side of the section 

Sign Conventions for the Bending Moment: 

For the bending moment, following sign conventions may be adopted as indicated in Fig 5 

and Fig 6. 
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Fig 5: Positive Bending Moment 

 

Fig 6: Negative Bending Moment 

Some times, the terms ‗Sagging' and Hogging are generally used for the positive and 

negative bending moments respectively. 

Bending Moment and Shear Force Diagrams: 

The diagrams which illustrate the variations in B.M and S.F values along the length of 

the beam for any fixed loading conditions would be helpful to analyze the beam 
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further. 

Thus, a shear force diagram is a graphical plot, which depicts how the internal shear 

force ‗F' varies along the length of beam. If x dentotes the length of the beam, then F is 

function x i.e. F(x). 

Similarly a bending moment diagram is a graphical plot which depicts how the internal 

bending moment ‗M' varies along the length of the beam. Again M is a function x i.e. 

M(x). 

Basic Relationship Between The Rate of Loading, Shear Force and Bending 

Moment: 

The construction of the shear force diagram and bending moment diagrams is greatly 

simplified if the relationship among load, shear force and bending moment is 

established. 

Let us consider a simply supported beam AB carrying a uniformly distributed load 

w/length. Let us imagine to cut a short slice of length dx cut out from this loaded beam 

at distance ‗x' from the origin ‗0'. 

 

 

 

Let us detach this portion of the beam and draw its free body diagram. 
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The forces acting on the free body diagram of the detached portion of this loaded beam 

are the following 

• The shearing force F and F+ δF at the section x and x + δx respectively. 

• The bending moment at the sections x and x + δx be M and M + dM respectively. 

• Force due to external loading, if ‗w' is the mean rate of loading per unit length then 

the total loading on this slice of length δx is w. δx, which is approximately acting 

through the centre ‗c'. If the loading is assumed to be uniformly distributed then it 

would pass exactly through the centre ‗c'. 

This small element must be in equilibrium under the action of these forces and 

couples. 

Now let us take the moments at the point ‗c'. Such that 

 

Conclusions: From the above relations,the following important conclusions may be 

drawn 

• From Equation (1), the area of the shear force diagram between any two points, 

from the basic calculus is the bending moment diagram 
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• The slope of bending moment diagram is the shear force, thus 

 

Thus, if F=0; the slope of the bending moment diagram is zero and the bending 

moment is therefore constant.' 

 

• The maximum or minimum Bending moment occurs where 

The slope of the shear force diagram is equal to the magnitude of the intensity of the 

distributed loading at any position along the beam. The –ve sign is as a consequence of 

our particular choice of sign conventions 

 

   Procedure for drawing shear force and bending moment diagram: Preamble: 

The advantage of plotting a variation of shear force F and bending moment M in a 

beam as a function of ‗x' measured from one end of the beam is that it becomes easier 

to determine the maximum absolute value of shear force and bending moment. 

Further, the determination of value of M as a function of ‗x' becomes of paramount 

importance so as to determine the value of deflection of beam subjected to a given 

loading. 

Construction of shear force and bending moment diagrams: 

A shear force diagram can be constructed from the loading diagram of the beam. In 

order to draw this, first the reactions must be determined always. Then the vertical 

components of forces and reactions are successively summed from the left end of the 

beam to preserve the mathematical sign conventions adopted. The shear at a section is 

simply equal to the sum of all the vertical forces to the left of the section. 

When the successive summation process is used, the shear force diagram should end 

up with the previously calculated shear (reaction at right end of the beam. No shear 

force acts through the beam just beyond the last vertical force or reaction. If the shear 

force diagram closes in this fashion, then it gives an important check on mathematical 

calculations. 

The bending moment diagram is obtained by proceeding continuously along the length 

of beam from the left hand end and summing up the areas of shear force diagrams 

giving due regard to sign. The process of obtaining the moment diagram from the 
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shear force diagram by summation is exactly the same as that for drawing shear force 

diagram from load diagram. 

It may also be observed that a constant shear force produces a uniform change in the 

bending moment, resulting in straight line in the moment diagram. If no shear force 

exists along a certain portion of a beam, then it indicates that there is no change in 

moment takes place. It may also further observe that dm/dx= F therefore, from the 

fundamental theorem of calculus the maximum or minimum moment occurs where the 

shear is zero. In order to check the validity of the bending moment diagram, the 

terminal conditions for the moment must be satisfied. If the end is free or pinned, the 

computed sum must be equal to zero. If the end is built in, the moment computed by 

the summation must be equal to the one calculated initially for the reaction. These 

conditions must always be satisfied. 

Illustrative problems: 

In the following sections some illustrative problems have been discussed so as to 

illustrate the procedure for drawing the shear force and bending moment diagrams 

1. A cantilever of length carries a concentrated load ‘W' at its free end. 

Draw shear force and bending moment. 

Solution: 

At a section a distance x from free end consider the forces to the left, then F = -W (for 

all values of x) -ve sign means the shear force to the left of the x-section are in 

downward direction and therefore negative 

Taking moments about the section gives (obviously to the left of the section) 

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the 

anticlockwise direction and is therefore taken as –ve according to the sign convention) 

so that the maximum bending moment occurs at the fixed end i.e. M = -W l 

From equilibrium consideration, the fixing moment applied at the fixed end is Wl and 

the reaction is W. the shear force and bending moment are shown as, 
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2. Simply supported beam subjected to a central load (i.e. load acting at the mid- way) 

 

 

By symmetry the reactions at the two supports would be W/2 and W/2. now consider 

any section X-X from the left end then, the beam is under the action of following 

forces. 

.So the shear force at any X-section would be = W/2 [Which is constant upto x < l/2] 

If we consider another section Y-Y which is beyond l/2 then 

 

for all values greater = l/2 Hence S.F diagram can be plotted as, 
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.For B.M diagram: 

If we just take the moments to the left of the cross-section, 

 

Which when plotted will give a straight relation i.e. 
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It may be observed that at the point of application of load there is an abrupt change in 

the shear force, at this point the B.M is maximum. 

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram. 

 

Here the cantilever beam is subjected to a uniformly distributed load whose intensity is 

given w / length. 

Consider any cross-section XX which is at a distance of x from the free end. If we just 

take the resultant of all the forces on the left of the X-section, then 

S.Fxx = -Wx for all values of ‗x' --------------(1) 

S.Fxx = 0 

S.Fxx at x=1 = -Wl 

So if we just plot the equation No. (1), then it will give a straight line relation. Bending 

Moment at X-X is obtained by treating the load to the left of X-X as a concentrated 

load of the same value acting through the centre of gravity. 

Therefore, the bending moment at any cross-section X-X is 

 

The above equation is a quadratic in x, when B.M is plotted against x this will 

produces a parabolic variation. 

The extreme values of this would be at x = 0 and x = l 

 

Hence S.F and B.M diagram can be plotted as follows: 
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4. Simply supported beam subjected to a uniformly distributed load [U.D.L]. 

 

 

 

The total load carried by the span would be 

= intensity of loading x length 

= w x l 

By symmetry the reactions at the end supports are each wl/2 

If x is the distance of the section considered from the left hand end of the beam. 

S.F at any X-section X-X is 

 

Giving a straight relation, having a slope equal to the rate of loading or intensity of the 
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loading. 

 

 

The bending moment at the section x is found by treating the distributed load as acting 

at its centre of gravity, which at a distance of x/2 from the section 

 

 

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear 

force and bending moment can be drawn in the following way will appear as follows: 
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4.2 Loading restrictions: 

As we are aware of the fact internal reactions developed on any cross-section of a 

beam may consists of a resultant normal force, a resultant shear force and a resultant 

couple. In order to ensure that the bending effects alone are investigated, we shall put a 

constraint on the loading such that the resultant normal and the resultant shear forces 

are zero on any cross-section perpendicular to the longitudinal axis of the member, 

That means F = 0 

 

since or M = constant. 

Thus, the zero shear force means that the bending moment is constant or the bending is 

same at every cross-section of the beam. Such a situation may be visualized or 

envisaged when the beam or some portion of the beam, as been loaded only by pure 

couples at its ends. It must be recalled that the couples are assumed to be loaded in the 

plane of symmetry. 
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When a member is loaded in such a fashion it is said to be in pure bending. The 

examples of pure bending have been indicated in EX 1and EX 2 as shown below : 

 

 

When a beam is subjected to pure bending are loaded by the couples at the ends, 

certain cross-section gets deformed and we shall have to make out the conclusion that, 

1. Plane sections originally perpendicular to longitudinal axis of the beam remain 

plane and perpendicular to the longitudinal axis even after bending , i.e. the cross- 

section A'E', B'F' ( refer Fig 1(a) ) do not get warped or curved. 

2. In the deformed section, the planes of this cross-section have a common 

intersection i.e. any time originally parallel to the longitudinal axis of the beam 

becomes an arc of circle. 
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We know that when a beam is under bending the fibres at the top will be lengthened 

while at the bottom will be shortened provided the bending moment M acts at the ends. 

In between these there are some fibres which remain unchanged in length that is they 

are not strained, that is they do not carry any stress. The plane containing such fibres is 

called neutral surface. 

The line of intersection between the neutral surface and the transverse exploratory 

section is called the neutral axisNeutral axis (N A) . 

 

 

4.3 Bending Stresses in Beams or Derivation of Elastic Flexural formula : 

In order to compute the value of bending stresses developed in a loaded beam, let us 

consider the two cross-sections of a beamHE and GF , originally parallel as shown in 

fig 1(a).when the beam is to bend it is assumed that these sections remain parallel 

i.e.H'E' and G'F' , the final position of the sections, are still straight lines,  they then 

subtend some angle < . 

Consider now fiber AB in the material, at adistance y from the N.A, when the beam 

bends this will stretch to A'B' 

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the 

neutral axis zero. Therefore, there won't be any strain on the neutral axis 
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Consider any arbitrary a cross-section of beam, as shown above now the strain on a 

fibre at a distance ‗y' from the N.A, is given by the expression 

 

 

Now the term is the property of the material and is called as a second moment 

of area of the cross-section and is denoted by a symbol I. 

Therefore 
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This equation is known as the Bending Theory Equation.The above proof has 

involved the assumption of pure bending without any shear force being present. 

Therefore this termed as the pure bending equation. This equation gives distribution of 

stresses which are normal to cross-section i.e. in x-direction. 

Section Modulus: 

From simple bending theory equation, the maximum stress obtained in any cross- 

section is given as 

For any given allowable stress the maximum moment which can be accepted by a 

particular shape of cross-section is therefore 

 

For ready comparison of the strength of various beam cross-section this relationship is 

some times written in the form 

 

Is termed as section modulus 

The higher value of Z for a particular cross-section, the higher the bending moment 

which it can withstand for a given maximum stress. 

Theorems to determine second moment of area: There are two theorems which are 

helpful to determine the value of second moment of area, which is required to be used 

while solving the simple bending theory equation. 

Second Moment of Area : 

Taking an analogy from the mass moment of inertia, the second moment of area is 

defined as the summation of areas times the distance squared from a fixed axis. (This 

property arised while we were driving bending theory equation). This is also known as 

the moment of inertia. An alternative name given to this is second moment of area, 

because the first moment being the sum of areas times their distance from a 

given axis and the second moment being the square of the distance or

 

. 



98 
 

 

 

Consider any cross-section having small element of area d A then by the definition 

Ix(Mass  Moment  of  Inertia  about x-axis) = and Iy(Mass Moment of 

Inertia about y-axis) =  

Now the moment of inertia about an axis through ‗O' and perpendicular to the plane of 

figure is called the polar moment of inertia. (The polar moment of inertia is also the 

area moment of inertia). 

i.e, 

J = polar moment of inertia 

 

The relation (1) is known as the perpendicular axis theorem and may be stated as 

follows: 

The sum of the Moment of Inertia about any two axes in the plane is equal to the 

moment of inertia about an axis perpendicular to the plane, the three axes being 

concurrent, i.e, the three axes exist together. 

CIRCULAR SECTION : 

For a circular x-section, the polar moment of inertia may be computed in the following 

manner 
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Consider any circular strip of thickness < r located at a radius 'r'. Than the area of the 

circular strip would be dA = 2< r. < r 
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Thus 

Parallel Axis Theorem: 

The moment of inertia about any axis is equal to the moment of inertia about a parallel 

axis through the centroid plus the area times the square of the distance between the 

axes. 

If ‗ZZ' is any axis in the plane of cross-section and ‗XX' is a parallel axis through the 

centroid G, of the cross-section, then 

 

Rectangular Section: 

For a rectangular x-section of the beam, the second moment of area may be computed 

as below : 
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Consider the rectangular beam cross-section as shown above and an element of area 

dA , thickness dy , breadth B located at a distance y from the neutral axis, which by 

symmetry passes through the centre of section. The second moment of area I as 

defined earlier would be 

Thus, for the rectangular section the second moment of area about the neutral axis i.e., 

an axis through the centre is given by 
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MODULE – V 

SLOPE AND DEFLECTION 

5.1 Introduction: 

In all practical engineering applications, when we use the different components, 

normally we have to operate them within the certain limits i.e. the constraints are placed 

on the performance and behavior of the  omponents. For instance we say that the 

particular component is supposed to operate within this value of stress and the deflection 

of the component should not exceed beyond a particular value. 

 

In some problems the maximum stress however, may not be a strict or severe condition 

but there may be the 

deflection which is the more rigid condition under operation. It is obvious therefore to 

study the methods by which we can predict the deflection of members under lateral loads 

or transverse loads, since it is this form of loading which will generally produce the 

greatest deflection of beams. 

 

Assumption: The following assumptions are undertaken in order to derive a differential 

equation of elastic curve for the loaded beam 

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only 

for beams that are not 

stressed beyond the elastic limit. 

2. The curvature is always small. 

3. Any deflection resulting from the shear deformation of the material or shear stresses is 

neglected. 

It can be shown that the deflections due to shear deformations are usually small and 

hence can be ignored. 
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Consider a beam AB which is initially straight and horizontal when unloaded. If under 

the action of loads the beam deflect to a position A'B' under load or infact we say that the 

axis of the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of the 

beam as the elastic line or deflection curve. 

 

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending 

moment M varies along the length of the beam and we represent the variation of bending 

moment in B.M diagram. Futher, it is assumed that the simple bending theory equation 

holds good. 

 

 

If we look at the elastic line or the deflection curve, this is obvious that the curvature at 

every point is different; hence the slope is different at different points. 

 

To express the deflected shape of the beam in rectangular co-ordinates let us take two 

axes x and y, x-axis coincide with the original straight axis of the beam and the y – axis 

shows the deflection. 

 

Futher,let us consider an element ds of the deflected beam. At the ends of this element let 

us construct the normal which intersect at point O denoting the angle between these two 
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normal, but for the deflected shape of the beam the slope i at any point C is defined, 

 

This is the differential equation of the elastic line for a beam subjected to bending in the 

plane of symmetry. Its 

solution y = f(x) defines the shape of the elastic line or the deflection curve as it is 

frequently called. 

 

Relationship between shear force, bending moment and deflection: The relationship 

among shear force,bending moment and deflection of the beam may be obtained as 

Differentiating the equation as derived 

 

Therefore, the above expression represents the shear force whereas rate of intensity of 
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loading can also be found out by differentiating the expression for shear force 

 

Methods for finding the deflection: The deflection of the loaded beam can be obtained 

various methods.The one of the method for finding the deflection of the beam is the 

direct integration method, i.e. the method using the differential equation which we have 

derived. 

 

Direct integration method: The governing differential equation is defined as 

 

Where A and B are constants of integration to be evaluated from the known conditions of 

slope and deflections for the particular value of x. 

 

Illustrative examples : let us consider few illustrative examples to have a familiarty with 
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the direct integration method Case 1: Cantilever Beam with Concentrated Load at the 

end:- A cantilever beam is subjected to a concentrated load W at the free end, it is 

required to determine the deflection of the beam 

 

In order to solve this problem, consider any X-section X-X located at a distance x from 

the left end or the reference, and write down the expressions for the shear force abd the 

bending moment 
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The constants A and B are required to be found out by utilizing the boundary conditions 

as defined below 

i.e at x= L ; y= 0 -------------------- (1) 

at x = L ; dy/dx = 0 -------------------- (2) 

Utilizing the second condition, the value of constant A is obtained as 

 

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam 

is subjected to U.d.l with rate of intensity varying w / length.The same procedure can 

also be adopted in this case 
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Boundary conditions relevant to the problem are as follows: 

1. At x = L; y = 0 

2. At x= L; dy/dx = 0 

The second boundary conditions yields 
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Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply 

supported beam is subjected to a uniformly distributed load whose rate of intensity varies 

as w / length. 

 

In order to write down the expression for bending moment consider any cross-section at 

distance of x metre from left end support. 
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Boundary conditions which are relevant in this case are that the deflection at each 

support must be zero. 

i.e. at x = 0; y = 0 : at x = l; y = 0 

let us apply these two boundary conditions on equation (1) because the boundary 

conditions are on y, This yields B = 0. 
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In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ 

i.e. at the position where the load is being applied ].So if we substitute the value of x = 

L/2 

 

Conclusions 

(i) The value of the slope at the position where the deflection is maximum would be zero. 

(ii) Thevalue of maximum deflection would be at the centre i.e. at x = L/2. 

The final equation which is governs the deflection of the loaded beam in this case is 

 

By successive differentiation one can find the relations for slope, bending moment, shear 

force and rate of loading. 
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Case 4: The direct integration method may become more involved if the expression for 

entire beam is not valid for the entire beam.Let us consider a deflection of a simply 

supported beam which is subjected to a concentrated load W acting at a distance 'a' from 

the left end. 
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These two equations can be integrated in the usual way to find ‗y' but this will result in 

four constants of integration two for each equation. To evaluate the four constants of 

integration, four independent boundary conditions will be needed since the deflection of 

each support must be zero, hence the boundary conditions (a) and (b) can be realized. 

Further, since the deflection curve is smooth, the deflection equations for the same slope 

and deflection at the point of application of load i.e. at x = a. Therefore four conditions 

required to evaluate these constants may be defined as follows: 
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(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a 

(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l 

(c) at x = a; dy/dx, the slope is same for both portion 

(d) at x = a; y, the deflection is same for both portion 

By symmetry, the reaction R1 is obtained as 
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Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the 

condition (d) is that, 

At x = a; y; the deflection is the same for both portion 
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ALTERNATE METHOD: There is also an alternative way to attempt this problem in a 

more simpler way. Let us considering the origin at the point of application of the load, 
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Boundary conditions relevant for this case are as follows 

(i) at x = 0; dy/dx= 0 

hence, A = 0 

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we 

have taken the origin at the centre) 
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Hence the integration method may be bit cumbersome in some of the case. Another 

limitation of the method would be that if the beam is of non uniform cross section, 

 

i.e. it is having different cross-section then this method also fails. 

So there are other methods by which we find the deflection like 

1. Macaulay's method in which we can write the different equation for bending moment 

for different sections. 

2. Area moment methods 

3. Energy principle methods 

 

Introduction: slope 

In the last lesson, slope-deflection equations were derived without considering the 

rotation of the beam axis. In this lesson, slope-deflection equations arederived 

considering the rotation of beam axis. In statically indeterminate structures, the beam 

axis rotates due to support yielding and this would in turn induce reactions and stresses 

in the structure. Hence, in this case the beam end moments are related to rotations, 

applied loads and beam axes rotation. After deriving the slope-deflection equation in 
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section 15.2, few problems are solved to illustrate the procedure. 

Consider a beam AB as shown in Fig.15.1.The support B is at a higher elevation 

compared to A by an amount Δ . Hence, the member axis has rotated by an amount ψ 

from the original direction as shown in the figure. Let L be the span of the beam and 

flexural rigidity of the beam EI , is assumed to be constant for the beam. The chord has 

rotated in the counterclockwise direction with respect to its original direction. The 

counterclockwise moment and rotations are assumed to be positive. As stated earlier, the 

slopes and rotations are derived by 

superposing the end moments developed due to 

(1) Externally applied moments on beams. 

(2) Displacements θ A ,θ B and Δ (settlement) 

 

The given beam with initial support settlement may be thought of as superposition of two 

simple cases as shown in fig, the kinematically determinate beam is shown with the 

applied load.  For this case, the fixed end moments are calculated by force method. Let φ 

A and φ B be the end rotations of the elastic curve with respect to rotated beam axis AB‘ 

(see Fig.15.1c) that are caused by end moments and 



120 

 

 

Now superposing the fixed end moments due to external load and end moments due to 

displacements, the end moments in the actual structure is obtained .Thus  

 

 

 

Example 15.1 

Calculate the support moments in the continuous beam having constant flexural rigidity 

ABC EI throughout ,due to vertical settlement of the support B by 5mm. Assume E =200 

GPa and I = .Also plot quantitative elastic curve. 

 

In the continuous beam ABC, two rotations θ B and θ C need to be evaluated. Hence, 

beam is kinematically indeterminate to second degree. As there is no external load on the 
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beam, the fixed end moments in the restrained beam are zero. 

 

For each span, two slope-deflection equations need to be written. In span AB, B is below 

A . Hence, the chord AB rotates in clockwise direction. Thus, ψ AB is taken as negative 

 

In span BC , the support C is above support B , Hence the chord joining ′CB rotates in 

anticlockwise direction.  
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We have two unknowns θ B and θ C and there are two equations in θ B andθ C. Solving 

equations, 

 

Substituting the values of θ B ,θ C and EI in slope-deflection equations, 
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Reactions are obtained from equations of static equilibrium 
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Elastic curve 

 

Summary 

slope-deflection equations are derived for the case of beam with yielding supports. 

Moments developed at the ends are related to rotations and support settlements. The 

equilibrium equations are written at each support. The continuous beam is solved using 

slope-deflection equations. The deflected shape of the beam is sketched. The bending 

moment and shear force diagrams are drawn for the examples solved in this lesson.  

 


