
INSTITUTE OF AERONAUTICAL ENGINERRING
(AUTONOMOUS)

Dundigal, Hyderabad- 500 043

1

Presentation on
MICROCONTROLLERS AND PROGRAMMABLE DIGITAL

SIGNAL PROCESSORS
(ECE)​​

M.TECH(ES) I- Semester
(AUTONOMOUS-R18)

Prepared by,
Mr. K.Chaitanya

(Assistant Professor)

UNIT-I

3

SHAPING

SYSTEMS ARM CORTEX-M3 PROCESSOR

ARM CORTEX-M3 PROCESSOR

4

• RISC general purpose 32-bit microprocessor, released 2006

• Cortex-M3 differs from previous generations of ARM processors by
defining a number of key peripherals as part of the core:

interrupt controller
system timer
 debug and trace hardware (including external interfaces)

• This enables for real-time operating systems and hardware
development tools such as debugger interfaces be common across
the family of processors

• Various Cortex-M3 based microcontroller families differ
significantly in terms of hardware peripherals and memory

ARM CORTEX-M3 PROCESSOR Cont..

5

Greater performance efficiency: more work to be done without
increasing the frequency or power requirements

– Implements the new Thumb-2 instruction set architecture
• 70% more efficient per MHz than an ARM7TDMI-S

processor executing Thumb instructions
• 35% more efficient than the ARM7TDMI-S processor

executing ARM instructions for Dhrystone benchmark

ARM CORTEX-M3 PROCESSOR Cont ..

6

• Low power consumption: longer battery life, especially
critical in portable products including wireless networking
applications

• Improved code density: code fits in even the smallest
memory footprints

• Core pipeline has 3 stages
– Instruction Fetch
– Instruction Decode
– Instruction Execute

Simplified Cortex-M3 Architecture

7

Cortex-M3 Processor Architecture

8

• Harvard architecture: it uses separate interfaces to
fetch instructions (Inst) and (Data)

• Processor is not memory starved: it permits accessing
data and instruction memories simultaneously

•– Only differentiates between instruction fetches and data
accesses

• Interface between CM3 and manufacturer specific
hardware is through three memory buses:
– ICode, DCode, and System (for peripherals), which are

defined to access different regions of memory

Cortex-M3 Processor Architecture cont..

9

• Cortex-M3 is a load/store architecture with three basic types of
instructions

• register-to-register operations for processing data

• memory operations which move data between memory and
registers

• control flow operations enabling programming language control
flow such as if and while statements and procedure calls

Cortex M3 pipelining

10

Instruction Prefetch & Execution

11

Processor modes

12

Operating modes

13

Cortex-M3 Pipeline

14

Instruction Prefetch & Execution

15

Processor Modes

16

Operating Modes

17

Processor Register Set

18

19

Program Memory Model

• RAM for an executing program is divided into three regions
– Data in RAM are allocated during the link process and
initialized by

startup code at reset
– The (optional) heap is managed at runtime by library

code implementing functions such as the malloc and free
which are part of the standard C library

– The stack is managed at runtime by compiler generated
code which generates per-procedure-call stack frames
containing local variables and saved registers

20

Cortex-M3 Memory Address Space

• ARM Cortex-M3 processor has
a single 4 GB address space

• The SRAM and Peripheral
areas are accessed through
the System bus

• The “Code” region is accessed
through the Icode (instructions) and
Dcode (constant data) buses

21

Memory map

22

Instruction Set Architecture (ISA)

• Instruction set

– Addressing modes

– Word size

– Data formats

– Operating modes

– Condition codes

23

Traditional ARM instructions

• Fixed length of 32 bits

• Commonly take two or three operands

• Process data held in registers

• Shift & ALU operation in single clock cycle
• Access memory with load and store instructions only

– Load/Store multiple register

• Can be extended to execute conditionally by adding the
appropriate suffix

• Affect the CPSR status flags by adding the ‘S’ suffix to the
instruction

24

32bit Instruction Encoding

25

ARM and 16-bit Instruction Encoding

Conditional Execution

26

Conditional Execution Cont..

27

Conditional Execution and Flags

28

Conditional execution examples

.

29

ARM Instruction Set

30

Data Processing Instructions

• Arithmetic and logical operations

• 3-address format:

– Two 32-bit operands (op1 is register, op2 is
register or immediate)

– 32-bit result placed in a register

• Barrel shifter for op2 allows full 32-bit shift
within instruction cycle

31

Data Processing Instructions

• Arithmetic operations:

– ADD, ADDC, SUB, SUBC, RSB, RSC

• Bit-wise logical operations:

– AND, EOR, ORR, BIC

• Register movement operations:

– MOV, MVN

• Comparison operations:

– TST, TEQ, CMP, CMN

32

Data Processing Instructions cont…

33

Data Processing Instructions

34

Multiply Instructions:

• Integer multiplication (32-
bit result)

• Long integer multiplication
(64-bit result)

• Built in Multiply
Accumulate Unit (MAC)

• Multiply and accumulate
instructions add product to
running total

Addressing Modes

• Offset Addressing
– Offset is added or subtracted from base register
– Result used as effective address for memory access

– [<Rn>, <offset>]
• Pre-indexed Addressing

– Offset is applied to base register
– Result used as effective address for memory access
– Result written back into base register
– [<Rn>, <offset>]!

• Post-indexed Addressing
– The address from the base register is used as the EA
– The offset is applied to the base and then written back – [<Rn>],offset>

35

<offset> options

• An immediate constant

– #10

• An index register

– <Rm>

• A shifted index register

– <Rm>, LSL #<shift>

36

Block Transfer Instructions

37

Swap Instruction

38

Unified Assembly Language

• UAL supports generation of either Thumb-2 or ARM
instructions from the same source code
– same syntax for both the Thumb code and ARM code
– enable portability of code for different ARM processor

families
• Interpretation of code type is based on the directive

listed in the assembly file

• Example:
– For GNU Assembler, the directive for UAL is
.syntax unified
– For ARM assembler, the directive for UAL is

•THUMB

39

ata:
.byte 0x12, 20, 0x20, -1

func:
mov r0, #0
mov r4, #0

• movw r1, #:lower16:data
• movt r1, #:upper16:data
• top: ldrb r2, [r1],1

add r4, r4, r2
add r0, r0, #1
cmp r0, #4
bne top

40

Example 1

Basic Processor Based System

41

Basic Processor Based System CONTD…

42

Cortex-M3 processor vs.
CM3-based Microcontroller Units

43

INSTITUTE OF AERONAUTICAL ENGINERRING
(AUTONOMOUS)

Dundigal, Hyderabad- 500 043

UNIT-II

44

EXCEPTIONS AND INTERRUPTS

• An interrupt is usually defined as an event that alters the sequence of instructions
executed by a processor.

• Such events correspond to electrical signals generated by hardware circuits both
inside and outside the CPU chip.

• Interrupts are often divided into synchronous and asynchronous interrupts
Synchronous interrupts are produced by the CPU control unit while executing
instructions and are called synchronous because the control unit issues them only
after terminating the execution of an instruction.

• Asynchronous interrupts are generated by other hardware devices at arbitrary
times with respect to the CPU clock signals.

45

Interrupts and Exceptions

• Intel microprocessor manuals designate synchronous and asynchronous
interrupts as exceptions and interrupts, respectively.

• We'll adopt this classification, although we'll occasionally use the term
"interrupt signal" to designate both types together (synchronous as well
as asynchronous).

46

Interrupts

Interrupt (a.k.a. exception or trap):

An event that causes the CPU to stop executing current program Begin
executing a special piece of code Called an interrupt handler or interrupt
service routine (ISR)

•Typically, the ISR does some work
•Then resumes the interrupted program

47

Interrupts Cont..

 Interrupts are really glorified procedure calls, except that they:

• Can occur between any two instructions
• Are “transparent” to the running program (usually)
• Are not explicitly requested by the program (typically)
• Call a procedure at an address determined by the type of interrupt, not

the program

48

Interrupts Cont..

What do we do if several interrupts arrive simultaneously?

NVIC allows priorities for (almost) every interrupt 3 fixed highest
priorities, up to 256 programmable priorities 128 preemption levels Not
all priorities have to be implemented by a vendor

Smart Fusion has 32 priority levels, i.e. 0x00, 0x08, … , 0xF8

49

Interrupt Priority

Interrupt Priority

50

• Higher priority interrupts can pre-empt lower priorities
• Priority can be sub-divided into priority groups

• Splits priority register into two halves, preempt priority &
sub priority
• Preempt priority: indicates if an interrupt can preempt
another
• Sub priority: used to determine which is served first if two
interrupts of same group arrive concurrently

Interrupt Priority Cont..

51

• Interrupt priority level registers
 Range: 0xE000E400 to 0xE000E4EF

 Interrupt vector is a pointer to an interrupt in

memory

 Interrupt number is used to index the table

 Interrupt vector table holds pointers to all interrupts

 Table location may be fixed or placed in a known

register

Interrupt Vectors

52

Interrupt Latency

53

• How quickly does the system respond to an interrupt?

Contributing Factors:

1.Maximum length of time when interrupts are disabled

2.Time required to execute higher priority interrupts

3.Time between interrupt event and running interrupt code

4.Time required to complete ISR code execution

Reducing Interrupt Latency

54

 Make interrupt code short

• Reduces ISR execution time and time for higher
priority interrupts

 Reduce time during which interrupts are disabled

• Minimize size of critical regions

Interrupt Flags

55

When an interrupt occurs, a flag bit is set in a register

TIFR0 – Timer/Counter Interrupt Flag Register

- Contains the flags for Output Compare and Overflow

TOV0 – Indicates that timer 0 overflow occurred

OCF0A – Indicates that TCNT0 == OCR0A

OCF0B – Indicates that TCNT0 == OCR0B

All flags are cleared when the interrupt is executed

You should not need to access this register directly

Timer Counter Control Registers

56

 TCCR0A and TCCR0B control different aspects of timer function

Compare/Match Output Modes (COM0A1:0)

 OC0A is an output pin of the Atmega 2560

 Output comparison matching can drive the output pin

 Typically used to generate regular waveforms (like PWM)

 Can be used to synchronize system components

 We will not use this feature

57

Waveform Generation Modes (WGM2:0)

 Specify properties of PWM signals generated

 Frequency, width, etc.

 We will not use this feature

Timer Counter Control Registers

Force Output Compare (FOC0A, FOC0B)

 Forces the output compare to evaluate true, even if it didn't

occur

 As if TCNT0 == OCR0A or TCNT0 == OCR0B

 Used to alter waveform on OCOA or OCOB pins

 We will not use this feature

Tail chaining

58

 When new exception occurs

 But CPU handling another exception of
same/higher priority

 New exception will enter pending state

 But will be executed before register unstacking

 Saving unnecessary unstacking/stacking operations

 Can reenter hander in as little as 6 cycles

Example of Complexity: The Reset Interrupt

59

1) No power

2) System is held in RESET as long as VCC15 < 0.8V

a) In reset: registers forced to default

b) RC-Osc begins to oscillate

c) MSS_CCC drives RC-Osc/4 into FCLK

d) PORESET_N is held low

3) Once VCC15GOOD, PORESET_N goes high

a) MSS reads from eNVM address 0x0 and 0x4

Nested Vectored Interrupt Controller (NVIC)

Hardware unit that coordinates among interrupts from multiple sources
Define priority level of each interrupt source (NVIC_PRIx_R registers)
Separate enable flag for each interrupt source (NVIC_EN0_R and NVIC_EN1_R)

Interrupt does not set I bit
Higher priority interrupts can interrupt lower priority ones

60

NVIC Interrupt Enable Registers

Two enable registers –

NVIC_EN0_R and NVIC_EN1_R

Each 32-bit register has a single enable bit for a particular device
NVIC_EN0_R control the IRQ numbers 0 to 31 (interrupt numbers 16 – 47)
NVIC_EN1_R control the IRQ numbers 32 to 47 (interrupt numbers 48 – 63)

61

Interrupt Service Routine (ISR)

Things you must do in every interrupt service routine

• Acknowledge

• clear flag that requested the interrupt

• SysTick is exception

• automatic acknowledge

• Maintain contents of R4-R11 (AAPCS) Communicate via shared global variables

62

SYSTICK Timer

• System Timer zCortex-M3 includes an integrated system timer,
SysTick is Provides a simple, 24-bit clear-on-write, decrementing,
wrap-on-zero counter is an RTOS tick timer which fires at a
programmable rate (for example, 100 Hz)

• Invokes a SysTick handler routine is ahigh-speed alarm timer
using the system clock is a variable rate alarm or signal timer is a
simple counter used to measure time to completion and time
used.

63

SYSTICK Timer Contd..

• Functional Description is The timer consists of three registers:
SysTick Control and Status Register: a control and status counter to
configure its clock, enable the counter, enable the SysTick interrupt,
and determine counter status is SysTick Reload Value Register.

• The reload value for the counter, used to provide the counter's wrap
value is SysTick Current Value Register: the current value of the
counter is Note: the SysTick Calibration Value Register, is not
implemented in the Stellaris devices.

64

• Writing to the SysTick Current Value register clears the register
and the COUNTFLAG status bit On a read from the SysTick
Current Value register, the current value is the value of the
register at the time the register is accessed If the core is in
debug state (halted).

• the counter does not decrement When the counter reaches
zero, the COUNTFLAG status bit is set (clears on reads)
Functional Description is When enabled, the timer counts
down on each clock from the reload value to zero Reloads
(wraps) to the value in the SysTick Reload Value register on
the next clock edge, then decrements on subsequent clocks
Clearing the SysTick Reload Value register disables the
counter on the next wrap.

65

SYSTICK Timer

SysTick Control and Status Register

66

• SysTick Reload Value Register isThe start value N can be between
1 and 0x00FF.FFFF, firing every N+1 clock.

• For example, if a tick interrupt is required every 100 clock pulses,
99 must be written into the RELOAD field SysTick Current Value
Register is The SysTick Current Value Register contains the
current value of the counter.

SysTick Control and Status Register Cont..

67

• General-Purpose Timers zProgrammable timers can be used to
count or time external events that drive the Timer input pins zThe
Stellaris General-Purpose Timer Module (GPTM) contains four
GPTM blocks zEach GPTM block provides two 16-bit
timers/counters zcan be configured to operate independently as
timers or event counters zor configured to operate as one 32-bit
timer or one 32- bit Real-Time Clock (RTC).

EXCEPTIONS

68

•The 80x86 microprocessors issue roughly 20 different
exceptions (The exact number depends on the processor
model.) The values from 20 to 31 are reserved by Intel for
future development.

• Each exception is handled by a specific exception handler,
which usually sends a Unix signal to the process that caused
the exception.

• The kernel must provide a dedicated exception handler for
each exception type.

•For some exceptions, the CPU control unit also generates a
hardware error code and pushes it on the Kernel Mode
stack before starting the exception handler.

EXCEPTIONS Contd..

69

The following list gives the vector, the name, the type,
and a brief description of the exceptions found in 80x86
processors.

0 - "Divide error" (fault): Raised when a program issues an
integer division by 0.

1- "Debug" (trap or fault): Raised when the TF flag of eflags is
set (quite useful to implement single-step execution of a
debugged program) or when the address of an instruction or
operand falls within the range of an active debug register .

EXCEPTIONS LIST

11 - "Segment not present" (fault): A reference was made to
a segment not present in memory (one in which the
Segment-Present flag of the Segment Descriptor was
cleared).

12 - "Stack segment fault" (fault): The instruction attempted
to exceed the stack segment limit, or the segment
identified by ss is not present in memory.

13 - "General protection" (fault): One of the protection
rules in the protected mode of the 80x86 has been
violated.

70

EXCEPTIONS LIST Contd..

71

14 - "Page Fault" (fault): The addressed page is not present
in memory, the corresponding Page Table entry is null, or
a violation of the paging protection mechanism has
occurred.

15 - Reserved by Intel

16 - "Floating-point error" (fault): The floating-point unit
integrated into the CPU chip has signalled an error
condition, such as numeric overflow or division by 0.

EXCEPTIONS LIST Contd..

72

17 - "Alignment check" (fault): The address of an operand is not
correctly aligned (for instance, the address of a long integer is
not a multiple of 4).

18 - "Machine check" (abort): A machine-check mechanism has
detected a CPU or bus error.

19 - "SIMD floating point exception" (fault): The SSE or SSE2 unit
integrated in the CPU chip has signalled an error condition
on a floating-point operation

Table _ Signals sent by the Exception handlers

73

EXCEPTION HANDLERS

• Exception handlers have a standard structure consisting of three steps:
- Save the contents of most registers in the Kernel Mode stack

(this part is coded in assembly language).
- Handle the exception by means of a high-level C function.
- Exit from the handler by means of the ret_from_exception() function.

• To take advantage of exceptions, the IDT must be properly initialized with an
exception handler function for each recognized exception.

• It is the job of the trap_init() function to insert the final values, the functions
that handle the exceptions, into all IDT entries that refer to nonmaskable
interrupts and exceptions.

74

I/O Interrupt handling

75

I/O Interrupt handling

76

UNIT -III

7

7

LPC 17XX MICROCONTROLLER

INTERNAL MEMORY

• Memory management:

- Independent transmit and receive buffers memory mapped to

shared SRAM.

- DMA managers with scatter/gather DMA and arrays of frame

descriptors.

- Memory traffic optimized by buffering and pre-fetching.

7

8

General purpose serial I/O

• Device pins that are not connected to a specific peripheral function
are controlled by the GPIO registers.

• Pins may be dynamically configured as inputs or outputs.

• Separate registers allow setting or clearing any number of outputs
simultaneously.

• The value of the output register may be read back as well as the
current state of the port pins.

7

9

LPC17xx use accelerated GPIO functions:

8

0

a. GPIO registers are accessed through the AHB multilayer bus so

that the fastest possible I/O timing can be achieved.

b. Mask registers allow treating sets of port bits as a group,

leaving other bits unchanged.

c. All GPIO registers are byte and half-word addressable.

d. Entire port value can be written in one instruction.

e. Support for Cortex-M3 bit banding.

f. Support for use with the GPDMA controller.

Features:

• Arm Cortex-M3 processor, running at frequencies of up to 100
MHz (LPC1768/67/66/65/64/63) or of up to 120 MHz (LPC1769). A
Memory Protection Unit (MPU) supporting eight regions is
included.

• Arm Cortex-M3 built-in Nested Vectored Interrupt Controller
(NVIC).

• Up to 512 kB on-chip flash programming memory. Enhanced flash
memory accelerator enables high-speed 120 MHz operation with
zero wait states.

• In-System Programming (ISP) and In-Application Programming
(IAP) via on-chip bootloader software.

• On-chip SRAM includes:
32/16 kB of SRAM on the CPU with local code/data bus for
high-performance CPU access.

8

1

Features Cont..

• Bit level set and clear registers allow a single instruction
to set or clear any number of bits in one port.

• Direction control of individual bits.

• All I/O default to inputs after reset.

• Pull-up/pull-down resistor configuration and open-
drain configuration can be programmed through
the pin connect block for each GPIO pin.

8

2

TIMERS

Steps to Configure Timer:
a. Power On the Timer module by setting the appropriate bits in

PCONP register.
b. Configure MCR to reset the TC and generate the interrupt

whenever it matches MRx.
c. Set the pre-scalar value for 1us.
d. Update the MRx register with required delay in micro secs.
e. Configure TCR to enable the Counter for incrementing the TC.
f. Enable the required timer interrupt.
g. Configure the GPIO pins as output for blinking the LEDs.
h. Toggle the LEDs in ISR whenever the interrupt is generated.

8

3

LPC 176XX TIMER REGISTERS

8

4

Applications

 eMetering Lighting

 Industrial networking

 Alarm systems

 White goods

 Motor control

8

5

Architecture of LP176XX

8

6

Architecture of LP176XX Contd..

•On-chip flash program memory
The LPC17xx contain up to 512 kB of on-chip flash memory. A
new two-port flash accelerator maximizes performance for use
with the two fast AHB-Lite buses.

• On-chip SRAM
The LPC17xx contain a total of 64 kB on-chip static RAM memory.
This includes the main 32 kB SRAM, accessible by the CPU and
DMA controller on a higher-speed bus, and two additional 16 kB
each SRAM blocks situated on a separate slave port on the AHB
multilayer matrix.

• This architecture allows CPU and DMA accesses to be spread over
three separate RAMs that can be accessed simultaneously.

1

Memory Protection Unit(MPU):

• The LPC17xx have a Memory Protection Unit (MPU) which can
be used to improve the reliability of an embedded system by
protecting critical data within the user application.

• The MPU allows separating processing tasks by disallowing
access to each other's data, disabling access to memory regions,
allowing memory regions to be defined as read-only and
detecting unexpected memory accesses that could potentially
break the system.

• The MPU separates the memory into distinct regions and
implements protection by preventing disallowed accesses. The
MPU supports up to 8 regions each of which can be divided into
8 sub regions.

5

UARTs:

1

• The LPC17xx each contain four UARTs. In addition to standard
transmit and receive data lines, UART1 also provides a full
modem control handshake interface and support for RS-485/9-bit
mode allowing both software address detection and automatic
address detection using 9-bit mode.

• The UARTs include a fractional baud rate generator. Standard
baud rates such as 115200 Bd can be achieved with any crystal
frequency above 2 MHz.

Features of UART:

1

 Maximum UART data bit rate of 6.25 Mbit/s.
 16 B Receive and Transmit FIFOs.
 Register locations conform to 16C550 industry standard.
 Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
 Built-in fractional baud rate generator covering wide range of

baud rates without a need for external crystals of particular
values.

 Auto baud capabilities and FIFO control mechanism that enables
software flow control implementation.

Features of UART Contd..

 UART1 equipped with standard modem interface signals. This
module also provides full support for hardware flow control
(auto-CTS/RTS).

 Support for RS-485/9-bit/EIA-485 mode (UART1).
 UART3 includes an IrDA mode to support infrared

communication.
 All UARTs have DMA support

1

USB interface

•The USB controller is available as device/Host/OTG controller on
parts LPC1769/68/66/65 and as device-only controller on part
LPC1764
•The Universal Serial Bus (USB) is a 4-wire bus that supports
communication between a host and one or more (up to 127)
peripherals.
•The host controller allocates the USB bandwidth to attached devices
through a token-based protocol.
•The bus supports hot plugging and dynamic configuration of the
devices. All transactions are initiated by the host controller.

1

USB device controller

• The device controller enables 12 Mbit/s data exchange with a USB
Host controller. It consists of a register interface, serial interface
engine, endpoint buffer memory, and a DMA controller.

• The serial interface engine decodes the USB data stream and
writes data to the appropriate endpoint buffer.

• The status of a completed USB transfer or error condition is
indicated via status registers.

• An interrupt is also generated if enabled. When enabled, the DMA
controller transfers data between the endpoint buffer and the on-
chip SRAM.

93

Features of USB Interface

• Fully compliant with USB 2.0 specification (full speed).

• Supports 32 physical (16 logical) endpoints with a 4 kB
endpoint buffer RAM.

• Supports Control, Bulk, Interrupt and Isochronous
endpoints.

• Scalable realization of endpoints at run time.

94

Features of USB Interface contd...

•Endpoint Maximum packet size selection (up to USB maximum
specification) by software at run time.
•Supports SoftConnect and Good Link features.
•While USB is in the Suspend mode, the part can enter one of the
reduced power modes and wake up on USB activity.
•Supports DMA transfers with all on-chip SRAM blocks on all non-
control endpoints.
•Allows dynamic switching between CPU-controlled slave and DMA
modes.
•Double buffer implementation for Bulk and Isochronous endpoints.

95

USB host controller

96

The host controller enables full- and low-speed data
exchange with USB devices attached to the bus. It consists
of a register interface, a serial interface engine, and a DMA
controller. The register interface complies with the OHCI
specification.

Features
•OHCI compliant.
•One downstream port.
•Supports port power switching.

ADC:

12 Bit ADC
The LPC17xx contain a single 12-bit successive approximation

ADC with eight channels and DMA support.

97

Features:

• 12-bit successive approximation ADC.

• Input multiplexing among 8 pins.

• Power-down mode.

• Measurement range VREFN to VREFP.

• 12-bit conversion rate: 200 kHz.

• The ramp voltage is retained till the next pulse.

ADC cont...

98

• Individual channels can be selected for conversion.

• Burst conversion mode for single or multiple inputs.

• Optional conversiond on transition of input pin or Timer

Match signal.

• Individual result registers for each ADC channel to

reduce interrupt overhead.

• DMA support.

ADC Cont..

99

PWM

10

0

• The PWM is based on the standard Timer block and inherits all
of its features, although only the PWM function is pinned out on
the LPC17xx.

• The Timer is designed to count cycles of the system derived
clock and optionally switch pins, generate interrupts or perform
other actions when specified timer values occur, based on seven
match registers.

• The PWM function is in addition to these features, and is based
on match register events.

PWM Cont...

10

1

• The ability to separately control rising and falling edge
locations allows the PWM to be used for more applications.

• For instance, multi-phase motor control typically requires
three non-overlapping PWM outputs with individual control
of all three pulse widths and positions.

• Two match registers can be used to provide a single edge
controlled PWM output.

PWM Cont..

10

2

• One match register (PWMMR0) controls the PWM cycle rate, by
resetting the count upon match.

• The other match register controls the PWM edge position.
• Additional single edge controlled PWM outputs require only one

match register each, since the repetition rate is the same for all
PWM outputs.

• Multiple single edge controlled PWM outputs will all have a
rising edge at the beginning of each PWM cycle, when an
PWMMR0 match occurs.

PWM Cont..

10

3

• Three match registers can be used to provide a PWM output with
both edges controlled. Again, the PWMMR0 match register controls
the PWM cycle rate.

• The other match registers control the two PWM edge positions.

• Additional double edge controlled PWM outputs require only two
match registers each, since the repetition rate is the same for all
PWM outputs.

PWM Cont..

10

4

COMPARE PAM PWM PPM

10

5

Motor control PWM

10

6

•The motor control PWM is a specialized PWM supporting 3-phase
motors and other combinations.
•Feedback inputs are provided to automatically sense rotor position
and use that information to ramp speed up or down.
• An abort input is also provided that causes the PWM to
immediately release all motor drive outputs.
•At the same time, the motor control PWM is highly configurable for
other generalized timing, counting, capture, and compare
applications.

RTC (Real Time Clock)

10

7

• The RTC is a set of counters for measuring time when system
power is on, and optionally when it is off.

• The RTC on the LPC17xx is designed to have extremely low
power consumption, i.e. less than 1 mA.

• The RTC will typically run from the main chip power supply,
conserving battery power while the rest of the device is
powered up.

• When operating from a battery, the RTC will continue working
down to 2.1 V. Battery power can be provided from a standard
3 V Lithium button cell.

RTC

10

8

• An ultra-low power 32 kHz oscillator will provide a 1 Hz clock
to the time counting portion of the RTC, moving most of the
power consumption out of the time counting function.

• The RTC includes a calibration mechanism to allow fine-tuning
the count rate in a way that will provide less than 1 second per
day error when operated at a constant voltage and
temperature.

• The RTC contains a small set of backup registers (20 bytes) for
holding data while the main part of the LPC17xx is powered
off.

• The RTC includes an alarm function that can wake up the
LPC17xx from all reduced power modes with a time resolution
of 1 s.

RTC Cont..

10

9

WDT(Watchdog Timer)

11

0

• For those embedded systems that can't be constantly watched by a
human, watchdog timers may be the solution Most embedded
systems need to be self- reliant

• It's not usually possible to wait for someone to reboot them if

the software hangs.

• Some embedded designs, such as space probes, are simply

not accessible to human operators
• If their software ever hangs, such systems are permanently

disabled
• In other cases, the speed with which a human operator might reset

the system would be too slow to meet the uptime requirements of
the product

WDT Cont..

11

1

• A watchdog timer is a piece of hardware that can be used to
automatically detect software anomalies and reset the processor
if any occur

• Generally speaking, a watchdog timer is based on a counter
that counts down from some initial value to zero

• The embedded software selects the counter's initial value
and periodically restarts it

• If the counter ever reaches zero before the software restarts
it, the software is presumed to be malfunctioning and the
processor's reset signal is asserted

• The processor (and the embedded software it's running) will
be restarted as if a human operator had cycled the power

WDT Cont..

11

2

The purpose of the watchdog is to reset the microcontroller
within a reasonable amount of time if it enters an erroneous state.
When enabled, the watchdog will generate a system reset if the
user program fails to ‘feed’ (or reload) the watchdog within a
predetermined amount of time.

• Watchdog timer is a chip external to the processor.
• Could also be included within the same chip as the CPU-

many microcontrollers.

WDT setup

11

3

WDT cont..

11

4

WDT cont..

11

5

• After watchdog timer counts up to maximum, it generates a short
pulse duration 1 clock cycle. This pulse triggers internal reset
timer counting up to tout

• AVR watchdog timer is distinct clock generator which runs at 1
MHz

• Watchdog timer has a prescaler module. So reset interval

can be selected by adjusting the prescaler.

• Generally there are three things to do while controlling

watchdog timer: enable, disable, and set prescaler.

WDT cont…

11

6

WDTCR Register

11

7

Bit 4 – WDTOE: Watchdog Turn-off Enable

Bit 3 – WDE: Watchdog Enable
Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer
Prescaler 2, 1, and 0

WDTCR Register Cont..

3

SAMPLING

The sampling period is the time difference between two
consecutive samples, It is the inverse of the samplingfrequency

Where,

3

SAMPLING Cont…

3

Nyquist Rate:

This rate of sampling is called as Nyquist rate.

Sampling Theorem:

statement: A continuous time signal can be represented in its samples and can be

recovered back when sampling frequency fs is greater than or equal to the twice

the highest frequency component of message signal. i.e.

fs≥2fm.

Aliasing effect: Aliasing is the phenomenon in which higher frequencycomponents

are combined with lower frequency components in spectrum of its sampled

version. fs < 2fm

y

 By using anti-aliasingfilters.

SAMPLING Cont…

12

1

SAMPLING Cont…

TYPES OF SAMPLING:

There are 3 sampling techniques,They are:

1.Ideal sampling or impulse sampling or instantaneous sampling:
• The instantaneous sampling has a train of impulses.
•The pulse width of the samples has almost zerovalue.
•It is the product of message signal m(t) with a unit impulse train δ(t)
gives sampled signal.
i.e., ms(t)=m(t)δ(t)

12

2

PROGRAMMABLE DSP (P-DSP) PROCESSORS

12

3

UNIT -IV

1

2

DSP Applications

DSP applications are often real time but with a wide
variety of sample rates

• High rates
– Radar
– Video

• Medium rates
– Audio
– Speech

• Low rates
– Weather
– Finance

1

2

With different demands on

• numeric representation

– float or fixed

– and nmber of bits

• Throughput/speed

• Power/energy dissipation

• Cost

1

2

DSP features

Standard DSP Alternatives

PCs or Workstations
• Non-real time
• low requirements

General purpose microprocessors

• slower for DSP applications

• might be one µ proc. there anyway

Custom

• performance
• low cost at volume

• High development cost

1

2

Standard Processors vs. Special Purpose

1

2

Architectural Partitioning

1

2

Fixed point DSP

1

3

Motorola DSP56000x

How to classify processors

Categorized by memory organization

• Von-Neumann architecture

• Harvard architecture

1

3

Harvard architecture

5

 Separate memory into 2 types

• Program memory
• Data memory

 Used in MCS-51, MIPS etc.

Harvard Architecture Cont..

1

3

Von-Neumann architecture

1

3

 Combine program and data in 1 chunk of memory

Example : 80x86 architecture

Von-Neumann architecture cont..

1

3

Microsoft

Word
Adobe Photoshop

เอกสารของ
Word

รปูทีก่ าลงัถูกตดัต่อ
โดย Photoshop

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

2
5

0
0

0
0

0
0

0
9

2
5

0
0

0
0

0
0

4
2

9
4

9
6

7
2

9
5

Windows XP

CPU

M
e
m

o
ry

Von-Neumann architecture cont..

1

3

DIFFERENCE B/W Von-Neumann AND Harvard
architecture:

13

7

CISC FEATURES

a. Complex instruction set computer
b. Large number of instructions (~200-300 instructions)
c. Specialized complex instructions
d. Many different addressing modes
e. Variable length instruction format
f. Memory to memory instruction
g. For Example : 68000, 80x86

13

8

RISC FEATURES

Reduced instruction set computer
Relatively few number of instructions (~50)
Basic instructions
Relatively few different addressing modes
Fixed length instruction format
Only load/store instructions can access memory
Large number of registers
Hardwired rather than micro-program control
For Example : MIPS, Alpha, ARM etc.

13

9

CISC Vs RISC

CISC -- High Code Density
•Fewer instructions needed to specify the algorithm

RISC -- Simpler to Design & Faster to Silicon
•Higher Performance -- smaller die size
•Lower power consumption
•Easier to develop compilers to take advantage of all features

14

0

Example of CPU Architectures

14

1

Intel: 80x86
Motorola: 680x0
Sun : Sparc
Silicon Graphics : MIPS
HP : PA-RISC
IBM: Power PC
Compaq: Alpha

Architecture of P-DSP

14

2

MAC UNIT

14

3

MAC UNIT Cont..

14

4

MAC in Van Neumann Architecture

14

5

MAC UNIT Cont...

14

6

MAC UNIT Cont...

14

7

14

8

Shifters are used to either scale down or scale up operands or the
results. The following scenarios give the necessity of a shifter
a. While performing the addition of N numbers each of n bits long,

the sum can grow up to n+log2 N bits long. If the accumulator is
of n bits long, then an overflow error will occur.

b. This can be overcome by using a shifter to scale down the
operand by an amount of log2N.

c. Similarly while calculating the product of two n bit numbers, the
product can grow up to 2n bits long.

d. Generally the lower n bits get neglected and the sign bit is
shifted to save the sign of the product.

SHIFTERS

SHIFTERS CONT..

e. Finally in case of addition of two floating-point numbers, one of
the operands has to be shifted appropriately to make the
exponents of two numbers equal.

From the above cases it is clear that, a shifter is required in the
architecture of a DSP

14

9

BARREL SHITERS

15

0

a. In conventional microprocessors, normal shift registers are
used for shift operation. As it requires one clock cycle for each
shift, it is not desirable for DSP applications, which generally
involves more shifts.

b. In other words, for DSP applications as speed is the crucial
issue, several shifts are to be accomplished in a single
execution cycle. This can be accomplished using a barrel
shifter, which connects the input lines representing a word to
a group of output lines with the required shifts determined by
its control inputs.

c. For an input of length n, log2 n control lines are required. And
an Additional control line is required to indicate the direction
of the shift

BARREL SHITERS Cont..

The block diagram of a typical barrel shifter is as shown in figure

15

1

BARREL SHITERS Cont..

15

2

MAC UNIT

15

3

TI Processors, high speed

15

4

TI Processors, low power

15

5

TI, C64

15

6

TI, C55

15

7

SIMD – Single Instruction Multiple Data

15

8

Processor Architectures

Processor Architectures Cont..

15

9

MIMD – Multiple Instruction Multiple Data

Processor Architectures Cont..

1

6

VLIW – Very Long Instruction Words

Split Processors

1

6

Functional units
can be split into
submodules, e.g.
for images (8bits)
TI320C80,

1 RISC
4 x 32bit DSP which
can be split into 8bit
modules

19

Low Power MMAC Multiplier Multiple Accumulator

3
 By using anti-aliasing filters.

VLIW ARCHITECTURE

16

3

UNIT -V

16

4

VLIW: general concept

16

5

Basic structure of VLIW Architecture

16

6

VLIW characteristics

16

7

VLIW example: TMS320C62

16

8

VLIW evaluation

1

6

VLIW evaluation

Strong points of VLIW:

– Scalable (add more FUs)

– Flexible (an FU can be almost anything; e.g. multimedia
support)

Weak points:

• With N FUs:

– Bypassing complexity: O(N2)

– Register file complexity: O(N)

– Register file size: O(N2)

• Register file design restricts FU flexibility

1

7

TMS320C6000 DSP Family Overview

• With a performance of up to 6000 million instructions per
second (MIPS) and an efficient C compiler, the
TMS320C6000 DSPs give system architects unlimited
possibilities to differentiate their products.

• High performance, ease of use, and affordable pricing make
the C6000 generation the ideal solution for multichannel,
multifunction applications, such as:

• Pooled modems
• Wireless local loop base stations
• Remote access servers (RAS)
• Digital subscriber loop (DSL) systems
• Cable modems
• Multichannel telephony systems

1

7

Cont..

• All three DSP generations use the VelociTI architecture, a high-
performance, advanced very long instruction word (VLIW)
architecture, making these DSPs excellent choices for
multichannel and multifunction applications.

• The TMS320C67x+ DSP is an enhancement of the C67x DSP with
added functionality and an expanded instruction set.

• Any reference to the C67x DSP or C67x CPU also applies, unless
otherwise noted, to the C67x+ DSP and C67x+ CPU, respectively

Standard DSP Alternatives

1

7

The C6000 generation is also an ideal solution for exciting new
applications; for example:
• Personalized home security with face and hand/fingerprint
recognition Advanced cruise control with global positioning
systems (GPS) navigation and accident avoidance

• Remote medical diagnostics
• Beam-forming base stations
• Virtual reality 3-D graphics
• Speech recognition

Cont..

1

7

• Audio

• Radar

• Atmospheric modelling

• Finite element analysis

• Imaging (examples: fingerprint recognition, ultrasound, and MRI)

TMS320C6000 DSP Features and Options

1

7

Features of the C6000 devices include:
 Advanced VLIW CPU with eight functional units, including

two multipliers and six arithmetic units
 Executes up to eight instructions per cycle for up to ten times

the performance of typical DSPs
 Allows designers to develop highly effective RISC-like code for

fast development time Instruction packing
 Gives code size equivalence for eight instructions executed

serially or in parallel Reduces code size, program fetches, and
power consumption

Cont..

1

7

Conditional execution of all instructions
Reduces costly branching
 Increases parallelism for higher sustained performance
Efficient code execution on independent functional units
 Industry’s most efficient C compiler on DSP benchmark suite
 Industry’s first assembly optimizer for fast development and

improved parallelization
8/16/32-bit data support, providing efficient memory support for

a variety of applications

TMS320C6x Series

1

7

Cont..

5

TMS320C67x DSP Architecture

1

7

Central Processing Unit (CPU)

1

7

The C67x CPU, in Figure 1−1, is common to all the C62x/C64x/C67x
devices.
The CPU contains:
Program fetch unit
Instruction dispatch unit
Instruction decode unit
Two data paths, each with four functional units
32 32-bit registers
Control registers
Control logic
Test, emulation, and interrupt logic

Internal Memory

1

8

• The C67x DSP has a 32-bit, byte-addressable address space.
Internal (on-chip) memory is organized in separate data and
program spaces.

• When off-chip memory is used, these spaces are unified on most
devices to a single memory space via the external memory
interface (EMIF).

• The C67x DSP has two 32-bit internal ports to access internal data
memory.

• The C67x DSP has a single internal port to access internal program
memory, with an instruction-fetch width of 256 bits

Memory and Peripheral Options

1

8

A variety of memory and peripheral options are available for
the C6000 platform:
• Large on-chip RAM, up to 7M bits
• Program cache
• 2-level caches
• 32-bit external memory interface supports SDRAM, SBSRAM,

SRAM, and other asynchronous memories for a broad range
of external memory requirements and maximum system
performance.

General-Purpose Register Files

18

2

• There are two general-purpose register files (A and B) in the
C6000 data paths. For the C67x DSP, each of these files contains
16 32-bit registers (A0–A15 for file A and B0–B15 for file B), as
shown in Table 2−1.

• For the C67x+ DSP, the register file size is doubled to 32 32-bit
registers (A0–A31 for file A and B0–B21 for file B), as shown in
Table 2−1.

• The general-purpose registers can be used for data, data address
pointers, or condition registers.

Data paths

18

3

Data paths cont..

18

4

RISC Vs FISC

CISC -- High Code Density
•Fewer instructions needed to specify the algorithm

RISC -- Simpler to Design & Faster to Silicon
•Higher Performance -- smaller die size
•Lower power consumption
•Easier to develop compilers to take advantage of all features

18

5

Register File Cross Paths

18

6

• Each functional unit reads directly from and writes directly
to the register file within its own data path. That is, the .L1,
.S1, .D1, and .M1 units write to register file A and the .L2,
.S2, .D2, and .M2 units write to register file B.

• The register files are connected to the opposite-side
register file’s functional units via the 1X and 2X cross paths.

• These cross paths allow functional units from one data path
to access a 32-bit operand from the opposite side register
file.

• The 1X cross path allows the functional units of data path A
to read their source from register file B, and the 2X cross
path allows the functional units of data path B to read their
source from register file A.

Register File Cross Paths

18

7

• On the C67x DSP, six of the eight functional units have access
to the register file on the opposite side, via a cross path.

• The .M1, .M2, .S1, and .S2 units’ src2 units are selectable
between the cross path and the same side register file.

• In the case of the .L1 and .L2, both src1 and src2 inputs are
also selectable between the cross path and the same-side
register file.

TMS320C6000 FAMILY ARCHITECTURE

18

8

Instruction Set Mapping

18

9

Functional Units

19

0

The eight functional units in the C6000 data paths can be
divided into two groups of four; each functional unit in one
data path is almost identical to the corresponding unit in the
other data path.

FUNCTIONAL UNIT Cont...

19

1

Memory Load Store Paths

19

2

19

3

Memory Store Paths

Data Address Paths

19

4

Types of Addressing Modes

19

5

The addressing modes on the C62x, C64x, and C67x are
• Linear mode

• Circular mode using BK0

• Circular mode using BK1

Cont..

19

6

Register Addressing Mode: The operand is the contents of a
processor register; the name of the register is given in the
instruction.

Ex: ADD .L1 A1, A2, A3 ; A1 + A2 = A3
SUB .L2 B1, B2, B6 ; B1 – B2 = B6

Note that the functional unit is a must in writing assembly
instructions.

Cont..

19

7

Immediate Addressing Mode: The operand is a numeric constant
which is directly specified in the instruction.
Ex: ADD .L1 A1, 20, A3 ; A1 + 20 = A3

SUB .L2 B1, 15, B6 ; B1 – 15 = B6

Indirect Addressing Mode: The effective address of the operand
is the contents of a register that appears in the instruction. An
asterisk (*) is used as an indirection operator. Also increment (++)
and decrement (- -) operators are supported.
Ex: LDW .D2 *B0, B1 STW .D1 A1,*A2++

Addressing Mode Register

19

8

For each of the eight registers (A4–A7, B4–B7) that can
perform linear or circular addressing, the AMR specifies the
addressing mode. A 2-bit field for each register selects the
address modification mode: linear (the default) or circular
mode.

Mode Select Field Encoding

19

9

The reserved portion of AMR is always 0. The AMR is initialized
to 0 at reset. The block size fields, BK0 and BK1, contain 5-bit
values used in calculating block sizes for circular addressing.

TI Processors, low power

20

0

TI, C64

20

1

TI, C55

20

2

SIMD – Single Instruction Multiple Data

20

3

Processor Architectures

Processor Architectures Cont..

20

4

MIMD – Multiple Instruction Multiple Data

Processor Architectures Cont..

2

0

VLIW – Very Long Instruction Words

Split Processors

2

0

Functional units
can be split into
submodules, e.g.
for images (8bits)
TI320C80,

1 RISC
4 x 32bit DSP which
can be split into 8bit
modules

19

Low Power MMAC Multiplier Multiple Accumulator

3
 By using anti-aliasing filters.

