INSTITUTE OF AERONAUTICAL ENGINERRING
(AUTONOMOUS)
Dundigal, Hyderabad- 500 043

Presentation on
MICROCONTROLLERS AND PROGRAMMABLE DIGITAL

SIGNAL PROCESSORS
(ECE)
¥ ey M.TECH(ES) I- Semester Tt b .
y 1 (AUTONOMOUS-R18) ‘g,_"w

a
Prepared by,
Mr. K.Chaitanya
(Assistant Professor)

SYSTEMS ARM CORTEX-M3 PROCESSOR

ARM CORTEX-M3 PROCESSOR

e RISC general purpose 32-bit microprocessor, released 2006

e Cortex-M3 differs from previous generations of ARM processors by
defining a number of key peripherals as part of the core:

»interrupt controller
»system timer
» debug and trace hardware (including external interfaces)

e This enables for real-time operating systems and hardware
development tools such as debugger interfaces be common across
the family of processors

e Various Cortex-M3 based microcontroller families differ
significantly in terms of hardware peripherals and memory

ARM CORTEX-M3 PROCESSOR Cont..

Greater performance efficiency: more work to be done without
increasing the frequency or power requirements

— Implements the new Thumb-2 instruction set architecture
e 70% more efficient per MHz than an ARM7TDMI-S
processor executing Thumb instructions
e 35% more efficient than the ARM7TDMI-S processor
executing ARM instructions for Dhrystone benchmark

ARM CORTEX-M3 PROCESSOR Cont ..

e Low power consumption: longer battery life, especially
critical in portable products including wireless networking
applications

e Improved code density: code fits in even the smallest
memory footprints

e Core pipeline has 3 stages
— Instruction Fetch
— Instruction Decode

— Instruction Execute

Simplified Cortex-M3 Architecture

CM3 Core

Inst Data| [=-meeeeeet

o
=
N > [Code
-
P » DCode
/M P System
>
Cortex-M3
B e e o 1
Contex-M3 !
Processor Core Syystem
5 » Register | &
e SE 5 Bank é
N %5 || 82 £
Interrupts [38 = ;< Debug |) Trace
l/ =2 23 SN system
s< = ALU R
:
E —\
Memory Interface \]
Memory
Instruction Bus === Protection = Data Bus
Unit
Debug
| Debug e
Bus Interconnect Interface >
- \ e - e |
- L - L - Y
Code Memory System Private ;
Memory and Peripherals Peripherals Optional

Cortex-M3 Processor Architecture

e Harvard architecture: it uses separate interfaces to
fetch instructions (Inst) and (Data)
e Processor is not memory starved: it permits accessing
data and instruction memories simultaneously
— Only differentiates between instruction fetches and data
accesses
e |Interface between CM3 and manufacturer specific
hardware is through three memory buses:
— |Code, DCode, and System (for peripherals), which are
defined to access different regions of memory

Cortex-M3 Processor Architecture cont..

e Cortex-M3 is a load/store architecture with three basic types of
instructions

e register-to-register operations for processing data

e memory operations which move data between memory and
registers

e control flow operations enabling programming language control
flow such as if and while statements and procedure calls

Cortex M3 pipelining

* The Cortex-M3 Uses the 3-stage pipeline for instruction
executions
— Fetch = Decode = Execute

— Pipeline design allows effective throughput to increase to one
instruction per clock cycle

— Allows the next instruction to be fetched while still decoding or
executing the previous instructions

1st

2nd

3rd

Instruction Prefetch & Execution

Byte
Instruction e Unaligned 32-bit Thumb-2
memory instruction In memory
N A —
N+d | B Az Executing
N+8 1 Bz Decoding
N + xC D Ca Fetching
Handles mix of 16+32b ‘J
instructions which can
be misaligned in word Branch speculation
address
Pipelina stage

lm::;bn Ec Decode —}\ Exacute

Processor modes

* The ARM has seven basic operating modes:

— Each mode has access to:
* Its own stack space and a different subset of registers

— Some operations can only be carried out in a privileged mode

Mode Description

= | Supervisor Entered on reset and when a Software Interrupt
2 (sve) instruction (SWI) is executed
S FIo Entered when a high priority (fast) interrupt Is
3 raised
5 —_ IRQ Entered when a low priority (normal) interrupt is
'§. raised Privileged
e modes
w Abort Used to handle memory access violations

— | Undef Used to handle undefined instructions

Gaer Mode under which most Applications / OS tasks p ged
un : ode

Operating modes

User mode:

— Normal program execution mode -

— System resources unavailable

— Mode changed
by exception only

Exception modes:

Entered
upon exception

Full access

Operations

(privilege out of reset)

Handler
- An excepiicn is beng processad

Privileged execution
Full control

to system resources

— Mode changed freely

Stacks
(Main out of reset)

Main Stack Used by
0S and Exceptions

Thread
= N0 @xcepoon 15 beng processad
= Normal code is executing

{Thread out of reset)

Privileged/Unprivileged

Main/Process

Cortex-M3 Pipeline

* The Cortex-M3 Uses the 3-stage pipeline for instruction
executions
— Fetch = Decode = Execute
— Pipeline design allows effective throughput to increase to one
instruction per clock cycle

— Allows the next instruction to be fetched while still decoding or
executing the previous instructions

1st

2nd

3rd

Instruction Prefetch & Execution

Byte
a 2 1 0

Instruction
memory

|
N A
N+4 By Az Executing
N+B | O "% Decoding
N + &xC 0\ Cz__4— Fetching
andles mix of 16+32b)
nstructions which can
e misaligned in word

ddress

Unaligned 32-bit Thumb-2
instruction in memory

Branch speculation

Pipelina stage

' on —’\ Decode Execute
Instruction fetch
gmtc2ap) [—y| (=B :D ey

Processor Modes

* The ARM has seven basic operating modes:

— Each mode has access to:
* Its own stack space and a different subset of registers

— Some operations can only be carried out in a privileged mode

Mode Description

== | Supervisor Entered on reset and when a Software Interrupt
, (SVC) instruction (SWI) is executed
3 FlQ Entered when a high priority (fast) interrupt Is
3 raised
& — RG Entered when a low priority (normal) interrupt is
E. raised Privileged
s modes
w Abort Used to handle memory access violations

e | Undef Used to handle undefined instructions

User Mode under which most Applications / OS tasks p ged
un ode

Operating Modes

User mode: Exception modes:

— Normal program execution mode — Entered

— System resources unavailable upon exception

— Mode changed — Full access
by exception only to system resources
— Mode changed freely
Operations Stacks
(privilege out of reset) (Main out of reset)

i Handler privileged executlon | Maln Stack Usec by
[- 4 excepticn is beng processad Full control 0S and Exceptions

3%

33

< E Thread Privileged/Unprivileged Maln/Process
£ = N0 @xcepuon 5 beng processad
Lol - Normal code is Uty

Processor Register Set

PSP

MSP |

Program Memory Model

e RAM for an executing program is divided into three regions
—Data in RAM are allocated during the link process and
initialized by
startup code at reset

— The (optional) heap is managed at runtime by library
code implementing functions such as the malloc and free
which are part of the standard C library

— The stack is managed at runtime by compiler generated
code which generates per-procedure-call stack frames
containing local variables and saved registers

RAM End (high) — :
Main Stack

!
I

«— Heap End

«— Heap Start

Data

RAM Start (low) —

Cortex-M3 Memory Address Space

e ARM Cortex-M3 processor has
a single 4 GB address space

e The SRAM and Peripheral
areas are accessed through
the System bus

e The “Code” region is accessed
through the Icode (instructions) and
Dcode (constant data) buses

e

Peripheral
0.5GB

SRAM
0.5GB

Code
0.5GB

OxFFFFFFFF

0x60000000
Ox5FFFFFFF

0x40000000
Ox3FFFFFFF

0x20000000
Ox1FFFFFFF

0x00000000

Memory map

OxXEODFFFFF OxFFFFFFFF
ﬁm.. Ro“ m N \\
oxeons2o00| External PPB_ | Fomsiar Spoctits
Brervee EIM Private Peripheral Bus - External | 500400004
o TPIL ’/ Private Peripheral Bus - Internal gmmrr
/ OxOFFFEEFF
OxXEDOIFFFF /
PERTER Reserved / /
iebasiten Nvic / External Device 1GB
sxcosnsoee RevETVEd /
| e / 0xA0000000{
0x1 0001000 DWT / OXOFFFFFFF
0x£ 0000000 ™ /
External RAM 1GB
Ox43FFFFFF \
Ty \
0x42000000 ' \ 0x60000000
Ox MFFFFFF \ OXSFFFFFFF
0x40100000 : \ ‘ 05GB
“Bit band i \ Peripheral
SR, 0x10000000
OXIFFFFFFF
it % SRAM 0.5GB
Bit band alias N

Instruction Set Architecture (ISA)

e [nstruction set
— Addressing modes
—Word size
— Data formats
— Operating modes

— Condition codes

Traditional ARM instructions

e Fixed length of 32 bits
e Commonly take two or three operands
e Process data held in registers
e Shift & ALU operation in single clock cycle
e Access memory with load and store instructions only
— Load/Store multiple register
e Can be extended to execute conditionally by adding the

appropriate suffix
e Affect the CPSR status flags by adding the ‘S’ suffix to the
instruction

32bit Instruction Encoding

Example: ADD instruction format
* ARM 32-bit encoding for ADD with immediate field

31 28 27 26 25 24 2120 19 16 15 12 N1 8 7 o 2 D
_cono [Malll Mi S{Rn FRdT R = IN
! 1 L 1
Condition Minor Destination 8-bit immediate
flags ; opcode register number
Major Set 4-bit
0pc°de status rotate ﬂeld
Immediate flag First
flag operand
Typical settings: regisier

Major opcode =00 (this indicates data operation instructions)
Minor opcode = 0100 (specifically, 100 => ADD instruction)
Immediate flag=1 (immediate field in operand 2)

Set status flag = 1 (set carry flag after operation)

ARM and 16-bit Instruction Encoding

ARM 32-bit encoding: ADDS rl1, rl, #2

3 28 2726 25 24 2120 19 15 15 12 ‘ll 8 7

| - 00000010 |
_ oooo 0010

1[/I1Z21N0

* Equivalent 16- blt Thumb mstructlon ADD rl, #2
— No condition flag

— No rotate field for the immediate number
— Use 3-bit encoding for the register

— Shorter opcode with implicit flag settings (e.g. the set status flag is
always set)

Conditional Execution

* Each data processing instruction
prefixed by condition code

* Result — smooth flow of instructions through pipeline

16 condition codes:

EQ | equal M | negative HI | unsigned higher | GT | Sidned greater
o unsigned lower signed less
NE | not equal PL | positive or zero | LS oF &ama LE than or equal
unsigned signed greater
CS higher or same VS |overflow GE than or equal AL | always
CC | unsigned lower | VC | no overflow LT | signed less than [NV | special purpose

Conditional Execution Cont..

* Every ARM (32 bit) instruction is conditionally executed.

* The top four bits are ANDed with the CPSR condition codes, If
they do not matched the instruction is executed as NOP

* The AL condition is used to execute the instruction irrespective
of the value of the condition code flags.

* By default, data processing instructions do not affect the
condition code flags but the flags can be optionally set by using
“S”. Ex: SUBSrl,rl,#l

* Conditional Execution improves code density and performance
by reducing the number of forward branch instructions.

Normal Conditional

CMP 13#0 CMP 13 #0
BEQ skip ADDNE 0,r1,12
ADD 10,r1.12

skip

Conditional Execution and Flags

* ARM instructions can be made to execute conditionally by post-
fixing them with the appropriate condition code

— This can increase code density and increase performance by reducing the
number of forward branches

CMP r0, rl r0 - r1, compare r0 with r1 and set flags
ADDGT r2, r2, #1 if > r2=r2+1 flags remain unchanged

ADDLE 1r3, r3, #1 if <= r3=r3+1 flags remain unchanged

* By default, data processing instructions do not affect the condition
flags but this can be achieved by post fixing the instruction (and any
condition code) with an “S”

loop
ADD r2, r2, r3
SUBS rl, rl, #0x0 decrement r1 and set flags

BNE loop if Z flag clear then branch

Conditional execution examples

C source code

ARM instructions

unconditional conditional

if (x0 == 0) CMP xr0, #0 CMP xr0, #0
{ BNE else ADDEQ rl, rl,

rl =r1l + 1; ADD rl, rl, #1 #1
} B end ADDNE r2, r2,
else else #1
{ ADD r2, r2, #1

T2 = r2 +'1; end
}

-

= 5 instructions
= 5 words
= 5or6 cycles

= 3instructions
= 3 words
= 3 cycles

ARM Instruction Set

Data Processing Instructions

e Arithmetic and logical operations

e 3-address format:
—Two 32-bit operands (op1l is register, op2 is
register orimmediate)
— 32-bit result placed in a register
e Barrel shifter for op2 allows full 32-bit shift
within instruction cycle

Data Processing Instructions

e Arithmetic operations:
— ADD, ADDC, SUB, SUBC, RSB, RSC

e Bit-wise logical operations:
—AND, EOR, ORR, BIC

e Register movement operations:
- MOV, MVN

e Comparison operations:
—TST, TEQ, CMP, CMN

Data Processing Instructions cont...

Conditional codes
+
Data processing instructions
+

Barrel shifter

Powerful tools for efficient coded programs

Data Processing Instructions

Multiply Instructions:

e Integer multiplication (32-

bit result)

e Long integer multiplication eg:

(64-bit result) if (z==1) R1=R2+(R3*4) T E"}n;@
e Built in IVIuItlpIy compiles to

Accumulate Unit (MAC) EQADDS RLR2R3, LsLd2 \" '°“‘°“':i7
* Multiply and accumulate (SINGLE INSTRUCTION !) Rld

instructions add product to
running total

Addressing Modes

e Offset Addressing
— Offset is added or subtracted from base register
— Result used as effective address for memory access
— [<Rn>, <offset>]
e Pre-indexed Addressing
— Offset is applied to base register
— Result used as effective address for memory access
— Result written back into base register
— [<Rn>, <offset>]!
e Post-indexed Addressing
— The address from the base register is used as the EA
— The offset is applied to the base and then written back — [<Rn>],offset>

<offset> options

e An immediate constant
—#10

e An index register
—<Rm>

e A shifted index register
— <Rm>, LSL #<shift>

Block Transfer Instructions

* Load/Store Multiple instructions
(LDM/STM)

* Whole register bank or a subset

with single instruction

LDM
copied to memory or restored RO L// -
R1 By

R14 | st

Swap Instruction

* Exchanges a word
between registers

* Two cycles
but

single atomic action

* Support for RT
semaphores

Unified Assembly Language

e UAL supports generation of either Thumb-2 or ARM
instructions from the same source code

— same syntax for both the Thumb code and ARM code

— enable portability of code for different ARM processor
families
e Interpretation of code type is based on the directive

listed in the assembly file

e Example:
— For GNU Assembler, the directive for UAL is
.syntax unified
— For ARM assembler, the directive for UAL is
*THUMB

Example 1

ata:

.byte 0x12, 20, 0x20, -1
func:

mov r0, #0

mov r4, #0

* movw rl, #:lowerl6:data
e movt rl,#:upperl6:data
* top: ldrb r2, [r1],1

add r4, r4, r2

add rO, rO, #1

cmp rO, #4

bne top

Basic Processor Based System

Address bus, data bus,
and bus control signals

Basic Processor Based System CONTD...

Cortex-M3

CM3-based Microcontroller Units

processor vs.

pnonoonnNoanononNanonnnn

aopnoapaaonOaonoaononoOnoann

Cortex-M3 Chip

Cortex-M3 Debug
Core | System——
. 5
[Internal Bus |
- g
Peripherals Memory
Clock and
Reset v

Developed by
chip

manufacturers

Juuuuuuuuuuuuuh\ruuu
|

OuUuouUooOuUouUuoouUooouug

Cortex-M3

INSTITUTE OF AERONAUTICAL ENGINERRING
(AUTONOMOUS)

Dundigal, Hyderabad- 500 043

UNIT-II

EXCEPTIONS AND INTERRUPTS

I

Interrupts and Exceptions

* Aninterruptis usually defined as an event that alters the sequence of instructions
executed by a processor.

* Such events correspond to electrical signals generated by hardware circuits both
inside and outside the CPU chip.

* Interrupts are often divided into synchronous and asynchronous interrupts
Synchronous interrupts are produced by the CPU control unit while executing
instructions and are called synchronous because the control unit issues them only
after terminating the execution of an instruction.

* Asynchronous interrupts are generated by other hardware devices at arbitrary
times with respect to the CPU clock signals.

Interrupts

* Intel microprocessor manuals designate synchronous and asynchronous
interrupts as exceptions and interrupts, respectively.

 We'll adopt this classification, although we'll occasionally use the term
"interrupt signal” to designate both types together (synchronous as well
as asynchronous).

Interrupts Cont..

Interrupt (a.k.a. exception or trap):

An event that causes the CPU to stop executing current program Begin
executing a special piece of code Called an interrupt handler or interrupt
service routine (ISR)

*Typically, the ISR does some work
*Then resumes the interrupted program

Interrupts Cont..

» Interrupts are really glorified procedure calls, except that they:

e Can occur between any two instructions

e Are “transparent” to the running program (usually)

e Are not explicitly requested by the program (typically)

e (Call a procedure at an address determined by the type of interrupt, not
the program

Interrupt Priority

What do we do if several interrupts arrive simultaneously?
NVIC allows priorities for (almost) every interrupt 3 fixed highest

priorities, up to 256 programmable priorities 128 preemption levels Not
all priorities have to be implemented by a vendor

Smart Fusion has 32 priority levels, i.e. 0x00, 0x08, ..., OxF8

Bit/ |Bité |Bit5 |Bit4 |Bit3 [Bit2 |Bit1 |BitO

Implemented Not implemented, read as zero

Interrupt Priority

« Higher priority interrupts can pre-empt lower priorities

* Priority can be sub-divided into priority groups
* Splits priority register into two halves, preempt priority &
sub priority
* Preempt priority: indicates if an interrupt can preempt
another
e Sub priority: used to determine which is served first if two
interrupts of same group arrive concurrently

Interrupt Priority Cont..

* Interrupt priority level registers
v" Range: OXxEOOOE400 to OxEOOOE4EF

Address Name Type Reset Value Description
O0xEO00E400 PRI_O R/W 0 (8-bir) Priority-level external interrupt #0
0xEOOOE401 PRI_1 R/W 0 (8-birt) Priority-level external interrupt #1

OxEOOOE41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31

Interrupt Vectors

» Interrupt vector is a pointer to an interrupt in
memory

» Interrupt number is used to index the table

» Interrupt vector table holds pointers to all interrupts

» Table location may be fixed or placed in a known

register

Interrupt Latency

* How quickly does the system respond to an interrupt?

Contributing Factors:

1.Maximum length of time when interrupts are disabled

2.Time required to execute higher priority interrupts

3.Time between interrupt event and running interrupt code

4.Time required to complete ISR code execution

Reducing Interrupt Latency

» Make interrupt code short

* Reduces ISR execution time and time for higher
priority interrupts

» Reduce time during which interrupts are disabled

* Minimize size of critical regions

Interrupt Flags

-When an interrupt occurs, a flag bit is set in a register

TIFRO — Timer/Counter Interrupt Flag Register
- Contains the flags for Output Compare and Overflow

Bit 7 & 5 4 3 2 1 0
15 (omas) | - - - - - OCFOB | OCFOA Tove | TIFRo
Read/Write R A A R R RAW AW AW

Initial Value 0 o o 0 0 0 o 0

TOVO - Indicates that timer O overflow occurred
OCFOA — Indicates that TCNTO == OCROA
OCFOB — Indicates that TCNTO == OCRO0OB

JAll flags are cleared when the interrupt is executed
«You should not need to access this register directly

Timer Counter Control Registers

» TCCROA and TCCROB control different aspects of timer function

Compare/Match Output Modes (COMOA1:0)

» OCOA is an output pin of the Atmega 2560
» Output comparison matching can drive the output pin

» Typically used to generate regular waveforms (like PWM)

» Can be used to synchronize system components

> We will not use this feature

Timer Counter Control Registers

Waveform Generation Modes (WGM2:0)

» Specify properties of PWM signals generated
» Frequency, width, etc.

» We will not use this feature
Force Output Compare (FOCOA, FOCOB)

» Forces the output compare to evaluate true, even if it didn't
occur

» Asif TCNTO == OCROA or TCNTO == OCRO0B
» Used to alter waveform on OCOA or OCOB pins

> We will not use this feature

Tail chaining

A\

When new exception occurs

A\

But CPU handling another exception of
same/higher priority

New exception will enter pending state
But will be executed before register unstacking
Saving unnecessary unstacking/stacking operations

YV V VYV V

Can reenter hander in as little as 6 cycles

Example of Complexity: The Reset Interrupt

BG and PSM VCC33G00D MS5

BROWNOUT3_3VINT

FPGAGOOD
FPGA Is Programed Delay

~100 ps delay before PSM is turned on to allow for BG to power up
~20 ps delay for NVM to power up

Reset IN xcxx

BGPSMENABLE— ~ PSM_EN, O — VCCI5GO0D | e BROWNOUTI_5VINT, |~ Cortex-M3
ABPOWERON—JD_' Power-Down

vee [vecTs VCC15UP

& Detect BGGOOD PPB
PORESET_N SYS REG
VCC33A [Vec 33 VCC33UP
X— Detect

1) No power
2) System is held in RESET as long as VCC15 < 0.8V

a) In reset: registers forced to default
b) RC-Osc begins to oscillate

c) MSS_CCC drives RC-Osc/4 into FCLK
d) PORESET N is held low

3) Once VCC15GO0OD, PORESET N goes high
a) MSS reads from eNVM address 0x0-and Ox4

Nested Vectored Interrupt Controller (NVIC)

Hardware unit that coordinates among interrupts from multiple sources
Define priority level of each interrupt source (NVIC PRIx R registers)
Separate enable flag for each interrupt source (NVIC_ENO Rand NVIC EN1 R)

Interrupt does not set | bit
Higher priority interrupts can interrupt lower priority ones

NVIC Interrupt Enable Registers

Two enable registers —

NVIC_ENO Rand NVIC_EN1 R

Each 32-bit register has a single enable bit for a particular device
NVIC ENO R control the IRQ numbers O to 31 (interrupt numbers 16 — 47)
NVIC EN1 R control the IRQ numbers 32 to 47 (interrupt numbers 48 — 63)

Interrupt Service Routine (ISR)

Things you must do in every interrupt service routine

Acknowledge
e clear flag that requested the interrupt
e SysTick is exception

e automatic acknowledge

* Maintain contents of R4-R11 (AAPCS) Communicate via shared global variables

SYSTICK Timer

 System Timer zCortex-M3 includes an integrated system timer,
SysTick is Provides a simple, 24-bit clear-on-write, decrementing,
wrap-on-zero counter is an RTOS tick timer which fires at a
programmable rate (for example, 100 Hz)

* Invokes a SysTick handler routine is ahigh-speed alarm timer
using the system clock is a variable rate alarm or signal timer is a
simple counter used to measure time to completion and time
used.

SYSTICK Timer Contd..

* Functional Description is The timer consists of three registers:
SysTick Control and Status Register: a control and status counter to
configure its clock, enable the counter, enable the SysTick interrupt,
and determine counter status is SysTick Reload Value Register.

* The reload value for the counter, used to provide the counter's wrap
value is SysTick Current Value Register: the current value of the
counter is Note: the SysTick Calibration Value Register, is not
implemented in the Stellaris devices.

SYSTICK Timer

e Writing to the SysTick Current Value register clears the register
and the COUNTFLAG status bit On a read from the SysTick
Current Value register, the current value is the value of the

register at the time the register is accessed If the core is in
debug state (halted).

* the counter does not decrementC When the counter reaches
zero, the COUNTFLAG status bit is set (clears on reads)
CFunctional Description is When enabled, the timer counts
down on each clock from the reload value to zero Reloads

(wraps) to the value in the SysTick Reload Value register on
the next clock edge, then decrements on subsequent clocks
Clearing the SysTick Reload Value register disables the
counter on the next wrap.

SysTick Control and Status Register

* SysTick Reload Value Register isThe start value N can be between
1 and OxXOOFF.FFFF, firing every N+1 clock.

* For example, if a tick interrupt is required every 100 clock pulses,
99 must be written into the RELOAD field SysTick Current Value
Register is The SysTick Current Value Register contains the
current value of the counter.

SysTick Control and Status Register Cont..

General-Purpose Timers zProgrammable timers can be used to
count or time external events that drive the Timer input pins zThe
Stellaris General-Purpose Timer Module (GPTM) contains four
GPTM blocks zEach GPTM block provides two 16-bit
timers/counters zcan be configured to operate independently as
timers or event counters zor configured to operate as one 32-bit
timer or one 32- bit Real-Time Clock (RTC).

EXCEPTIONS

e The 80x86 microprocessors issue roughly 20 different
exceptions (The exact number depends on the processor
model.) The values from 20 to 31 are reserved by Intel for
future development.

e Each exception is handled by a specific exception handler,
which usually sends a Unix signal to the process that caused
the exception.

e The kernel must provide a dedicated exception handler for
each exception type.

e For some exceptions, the CPU control unit also generates a
hardware error code and pushes it on the Kernel Mode
stack before starting the exception handler.

EXCEPTIONS Contd..

The following list gives the vector, the name, the type,
and a brief description of the exceptions found in 80x86
processors.

0 - "Divide error"” (fault): Raised when a program issues an
integer division by 0.

1- "Debug" (trap or fault): Raised when the TF flag of eflags is
set (quite useful to implement single-step execution of a
debugged program) or when the address of an instruction or
operand falls within the range of an active debug register .

EXCEPTIONS LIST

11 - "Segment not present" (fault): A reference was made to
a segment not present in memory (one in which the
Segment-Present flag of the Segment Descriptor was
cleared).

12 - "Stack segment fault" (fault): The instruction attempted
to exceed the stack segment limit, or the segment
identified by ss is not present in memory.

13 - "General protection” (fault): One of the protection
rules in the protected mode of the 80x86 has been
violated.

EXCEPTIONS LIST Contd..

14 - "Page Fault" (fault): The addressed page is not present
in memory, the corresponding Page Table entry is null, or
a violation of the paging protection mechanism has
occurred.

15 - Reserved by Intel
16 - "Floating-point error" (fault): The floating-point unit

integrated into the CPU chip has signalled an error
condition, such as numeric overflow or division by 0.

EXCEPTIONS LIST Contd..

17 - "Alignment check" (fault): The address of an operand is not
correctly aligned (for instance, the address of a long integer is
not a multiple of 4).

18 - "Machine check" (abort): A machine-check mechanism has
detected a CPU or bus error.

19 - "SIMD floating point exception" (fault): The SSE or SSE2 unit
integrated in the CPU chip has signalled an error condition
on a floating-point operation

Table _Signals sent by the Exception handlers

#
0
1
2
3
4
5
6
7
8
9

Exception

Divide error

Debug
NMI
Breakpoint
Qverflow

Bounds check

Invalid opcode

Device not available

Double fault

Coprocessor segment overrun
Invalid TSS

Segment not present

Stack segment fault

General protection

Page Fault

Intel-reserved
Floating-point error
Alignment check
Machine check
SIMD floating point

Exception handler
divide_error()

debug()
nmi()
int3()
overflow()
bounds()

invalid_op()
device_not_available()
doublefault_fn()
coprocessor_segment_overrun()
invalid_TSS()
segment_not_present()
stack_segment()
general_protection()

page_fault()

None

coprocessor_error()
alignment_check()
machine_check()
simd_coprocessor_error()

Signal
SIGFPE
SIGTRAP
None
SIGTRAP
SIGSEGY
SIGSEGY
SIGILL
None
None
SIGFPE
SIGSEGY
SIGBUS
SIGBUS
SIGSEGY
SIGSEGY
None
SIGFPE
SIGBUS
None
SIGFPE

EXCEPTION HANDLERS

* Exception handlers have a standard structure consisting of three steps:
- Save the contents of most registers in the Kernel Mode stack
(this part is coded in assembly language).
- Handle the exception by means of a high-level C function.
- Exit from the handler by means of the ret_from_exception() function.
* To take advantage of exceptions, the IDT must be properly initialized with an
exception handler function for each recognized exception.
* |tis the job of the trap_init() function to insert the final values, the functions
that handle the exceptions, into all IDT entries that refer to nonmaskable
interrupts and exceptions.

1/0 Interrupt handling

HARDWARE SOFTWARE
Device 1 Device 2 ol o)

IDT{3245)

v

(internypt [n] '
' do_IRQ(n) .
l Interrupt service ' .l Interrupt service '
routine 1 routine 2

Ll iiiiill

PIC

INT

1/0 Interrupt handling

HARDWARE SOFTWARE
Device 1 Device 2 ol o)

IDT{3245)

v

(internypt [n] '
' do_IRQ(n) .
l Interrupt service ' .l Interrupt service '
routine 1 routine 2

Ll iiiiill

PIC

INT

UNIT -l

LPC 17XX MICROCONTROLLER

INTERNAL MEMORY

* Memory management:
- Independent transmit and receive buffers memory mapped to
shared SRAM.
- DMA managers with scatter/gather DMA and arrays of frame
descriptors.

- Memory traffic optimized by buffering and pre-fetching.

General purpose serial 1/0

- Device pins that are not connected to a specific peripheral function
are controlled by the GPIO registers.

- Pins may be dynamically configured as inputs or outputs.

- Separate registers allow setting or clearing any number of outputs
simultaneously.

- The value of the output register may be read back as well as the
current state of the port pins.

LPC17xx use accelerated GPIO functions:

a. GPIO registers are accessed through the AHB multilayer bus so
that the fastest possible I/0 timing can be achieved.

b. Mask registers allow treating sets of port bits as a group,
leaving other bits unchanged.

c. All GPIO registers are byte and half-word addressable.

d. Entire port value can be written in one instruction.

e. Support for Cortex-M3 bit banding.

f. Support for use with the GPDMA controller.

Features:

* Arm Cortex-M3 processor, running at frequencies of up to 100
MHz (LPC1768/67/66/65/64/63) or of up to 120 MHz (LPC1769). A
Memory Protection Unit (MPU) supporting eight regions is
included.

* Arm Cortex-M3 built-in Nested Vectored Interrupt Controller
(NVIC).

* Upto 512 kB on-chip flash programming memory. Enhanced flash
memory accelerator enables high-speed 120 MHz operation with
zero wait states.

* In-System Programming (ISP) and In-Application Programming
(IAP) via on-chip bootloader software.

* On-chip SRAM includes:

»32/16 kB of SRAM on the CPU with local code/data bus for
high-performance CPU access.

Features Cont..

. Bit level set and clear registers allow a single instruction
to set or clear any number of bits in one port.

. Direction control of individual bits.

. All'1/O default to inputs after reset.

. Pull-up/pull-down resistor configuration and open-

drain configuration can be programmed through
the pin connect block for each GPIO pin.

TIMERS

Steps to Configure Timer:

a. Power On the Timer module by setting the appropriate bits in
PCONP register.

b. Configure MCR to reset the TC and generate the interrupt

whenever it matches MRXx.

Set the pre-scalar value for 1lus.

Update the MRx register with required delay in micro secs.

Configure TCR to enable the Counter for incrementing the TC.

Enable the required timer interrupt.

Configure the GPIO pins as output for blinking the LEDs.

Toggle the LEDs in ISR whenever the interrupt is generated.

>0 h o QO

LPC 176XX TIMER REGISTERS

The below table shows the registers associated with LPC1768 Timer module.

Register Description

IR

TCR
TC

PR
PC

MCR

MRO-
MR3

Interrupt Register: The IR can be read to identify which of 6(4-match, 2-Capture) possible interrupt sources
are pending. Writing Logic-1 will clear the corresponding interrupt.

Timer Control Register: The TCR is used to control the Timer Counter functions(enable/disable/reset).

Timer Counter: The 32-bit TC is incremented every PR+1 cycles of PCLE. The TC is controlled through the
TCE.

Prescalar Register: This is used to specify the Prescalar value for incrementing the TC.

Prescale Counter: The 32-bit PC is a counter which is incremented to the value stored in PR. When the
value in PR is reached, the TC is incremented.

Match Control Register: The MCR is used to control the reseting of TC and generating of interrupt
whenever a Match occurs.

Match Registers: The Match register values are continuously compared to the Timer Counter value. When
the two values are equal, actions can be triggered automatically. The action possibilities are to generate an
interrupt, reset the Timer Counter, or stop the timer. Actions are controlled by the settings in the MCR
register.

Applications

» eMetering Lighting

A\

Industrial networking
Alarm systems

White goods

v VWV VvV

Motor control

Architecture of LP176XX

T § L
EWZ ¥ i
==l | ol [2 =)
LPC1768 E e [] o
8 [15 [-

A2 vave g APS wawe grop |
o =
TR T
— ST S — - —

=

—
T
[L)
e | e
e b S

Architecture of LP176XX Contd..

*On-chip flash program memory
The LPC17xx contain up to 512 kB of on-chip flash memory. A
new two-port flash accelerator maximizes performance for use
with the two fast AHB-Lite buses.

* On-chip SRAM
The LPC17xx contain a total of 64 kB on-chip static RAM memory.
This includes the main 32 kB SRAM, accessible by the CPU and
DMA controller on a higher-speed bus, and two additional 16 kB
each SRAM blocks situated on a separate slave port on the AHB
multilayer matrix.

* This architecture allows CPU and DMA accesses to be spread over
three separate RAMs that can be accessed simultaneously.

Memory Protection Unit(MPU):

 The LPC17xx have a Memory Protection Unit (MPU) which can
be used to improve the reliability of an embedded system by
protecting critical data within the user application.

* The MPU allows separating processing tasks by disallowing
access to each other's data, disabling access to memory regions,
allowing memory regions to be defined as read-only and
detecting unexpected memory accesses that could potentially
break the system.

* The MPU separates the memory into distinct regions and
implements protection by preventing disallowed accesses. The
MPU supports up to 8 regions each of which can be divided into
8 sub regions.

* The LPC17xx each contain four UARTs. In addition to standard
transmit and receive data lines, UART1 also provides a full
modem control handshake interface and support for RS-485/9-bit

mode allowing both software address detection and automatic
address detection using 9-bit mode.

* The UARTs include a fractional baud rate generator. Standard

baud rates such as 115200 Bd can be achieved with any crystal
frequency above 2 MHz.

Features of UART:

= Maximum UART data bit rate of 6.25 Mbit/s.

= 16 B Receive and Transmit FIFOs.

= Register locations conform to 16C550 industry standard.

= Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.

= Built-in fractional baud rate generator covering wide range of
baud rates without a need for external crystals of particular
values.

= Auto baud capabilities and FIFO control mechanism that enables
software flow control implementation.

Features of UART Contd..

= UART1 equipped with standard modem interface signals. This
module also provides full support for hardware flow control
(auto-CTS/RTS).

= Support for RS-485/9-bit/EIA-485 mode (UART1).

= UART3 includes an IrDA mode to support infrared
communication.

= All UARTs have DMA support

USB interface

-The USB controller is available as device/Host/OTG controller on
parts LPC1769/68/66/65 and as device-only controller on part
LPC1764

‘The Universal Serial Bus (USB) is a 4-wire bus that supports
communication between a host and one or more (up to 127)
peripherals.

‘The host controller allocates the USB bandwidth to attached devices
through a token-based protocol.

‘The bus supports hot plugging and dynamic configuration of the
devices. All transactions are initiated by the host controller.

USB device controller

* The device controller enables 12 Mbit/s data exchange with a USB
Host controller. It consists of a register interface, serial interface
engine, endpoint buffer memory, and a DMA controller.

* The serial interface engine decodes the USB data stream and
writes data to the appropriate endpoint buffer.

* The status of a completed USB transfer or error condition is
indicated via status registers.

* An interrupt is also generated if enabled. When enabled, the DMA
controller transfers data between the endpoint buffer and the on-
chip SRAM.

Features of USB Interface

* Fully compliant with USB 2.0 specification (full speed).

e Supports 32 physical (16 logical) endpoints with a 4 kB
endpoint buffer RAM.

* Supports Control, Bulk, Interrupt and Isochronous
endpoints.

* Scalable realization of endpoints at run time.

Features of USB Interface contd...

*Endpoint Maximum packet size selection (up to USB maximum
specification) by software at run time.

*Supports SoftConnect and Good Link features.

*While USB is in the Suspend mode, the part can enter one of the
reduced power modes and wake up on USB activity.

*Supports DMA transfers with all on-chip SRAM blocks on all non-
control endpoints.

*Allows dynamic switching between CPU-controlled slave and DMA
modes.

*Double buffer implementation for Bulk and Isochronous endpoints.

USB host controller

The host controller enables full- and low-speed data
exchange with USB devices attached to the bus. It consists
of a register interface, a serial interface engine, and a DMA
controller. The register interface complies with the OHCI
specification.

Features

*OHCI compliant.

*One downstream port.
*Supports port power switching.

12 Bit ADC
The LPC17xx contain a single 12-bit successive approximation
ADC with eight channels and DMA support.

Features:

12-bit successive approximation ADC.
Input multiplexing among 8 pins.
Power-down mode.

Measurement range VREFN to VREFP.

12-bit conversion rate: 200 kHz.

The ramp voltage is retained till the next pulse.

ADC cont...

Individual channels can be selected for conversion.
Burst conversion mode for single or multiple inputs.
Optional conversiond on transition of input pin or Timer
Match signal.

Individual result registers for each ADC channel to

reduce interrupt overhead.

DMA support.

ADC Cont..

10-bit DAC

The DAC allows generating a variable analog cutput. The maximum outputvalue of the
DAC s VREFF.

Remark: The DAC is available on parts LFC1769/68/67/66/65/G3.

Features

v 10-bitDAC
* Resistor string architecture
» Buffered output

* Power-down mode

v Selectable ocutput drive

* Dedicated conversiontimer
» DMAsupport

The PWM is based on the standard Timer block and inherits all
of its features, although only the PWM function is pinned out on
the LPC17xx.

The Timer is designed to count cycles of the system derived
clock and optionally switch pins, generate interrupts or perform
other actions when specified timer values occur, based on seven
match registers.

The PWM function is in addition to these features, and is based
on match register events.

PWM Cont...

* The ability to separately control rising and falling edge
locations allows the PWM to be used for more applications.

* For instance, multi-phase motor control typically requires
three non-overlapping PWM outputs with individual control
of all three pulse widths and positions.

* Two match registers can be used to provide a single edge
controlled PWM output.

PWM Cont..

* One match register (PWMMRO) controls the PWM cycle rate, by
resetting the count upon match.

* The other match register controls the PWM edge position.

* Additional single edge controlled PWM outputs require only one
match register each, since the repetition rate is the same for all
PWM outputs.

* Multiple single edge controlled PWM outputs will all have a
rising edge at the beginning of each PWM cycle, when an
PWMMRO match occurs.

PWM Cont..

* Three match registers can be used to provide a PWM output with
both edges controlled. Again, the PWMMRO match register controls
the PWM cycle rate.

* The other match registers control the two PWM edge positions.
* Additional double edge controlled PWM outputs require only two

match registers each, since the repetition rate is the same for all
PWM outputs.

PWM Cont..

Features
» One PWM blockwith Counter or Timer operation (mav use the peripheral clock orone
of the capture inputs as the clock source).

» Sevenmatchregisters allowupto 6 single edge controlled or 3 double edge
cantralled FWK outputs, or a mix of both types. The match registers also allow:

- Continuous operation with optional interrupt generation on match.

- Stoptimer on match with opticnal interruptgeneration.
- Resettimeron match with ocptional interruptgeneration.

COMPARE PAM PWM PPM

PAM
Amplitude is varied

Bandwidth depends on
the width of the pulse

Instantaneous
transmitter power
varies with the
amplitude of the pulses

System complexity is
high

Moise interference is
high

It is similar to
amplitude modulation

PWM
Width is varied

Bandwidth depends on the
rise time of the pulse

Instantaneous transmitter
power varies with the
amplitude and width of the
pulses

System complexity is low

MNoise interference is low

It is similar to frequency
modulation

PPM
Position is varied

Bandwidth depends on
the rise time of the pulse

Instantaneous transmitter
power remains constant
with the width of the
pulses

System complexity is low

MNoise interference is low

It is similar to phase
modulation

Motor control PWM

*The motor control PWM is a specialized PWM supporting 3-phase
motors and other combinations.

*Feedback inputs are provided to automatically sense rotor position
and use that information to ramp speed up or down.

* An abort input is also provided that causes the PWM to
immediately release all motor drive outputs.

*At the same time, the motor control PWM is highly configurable for
other generalized timing, counting, capture, and compare
applications.

RTC (Real Time Clock)

* The RTC is a set of counters for measuring time when system
power is on, and optionally when it is off.

* The RTC on the LPC17xx is designed to have extremely low
power consumption, i.e. less than 1 mA.

* The RTC will typically run from the main chip power supply,
conserving battery power while the rest of the device is
powered up.

* When operating from a battery, the RTC will continue working
down to 2.1 V. Battery power can be provided from a standard
3 V Lithium button cell.

An ultra-low power 32 kHz oscillator will provide a 1 Hz clock
to the time counting portion of the RTC, moving most of the
power consumption out of the time counting function.

The RTC includes a calibration mechanism to allow fine-tuning
the count rate in a way that will provide less than 1 second per
day error when operated at a constant voltage and
temperature.

The RTC contains a small set of backup registers (20 bytes) for
holding data while the main part of the LPC17xx is powered
off.

The RTC includes an alarm function that can wake up the
LPC17xx from all reduced power modes with a time resolution
of 1s.

RTC Cont..

Features

» Measuresthe passage oftimeto maintain a calendar and clock.

» Ultra low power designto support battery powered systems.

* Frovides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and
Day of Year.

* Dedicated powersupply pincan be connectedto a battery or to the main 3.3V

* Feriodicinterrupts can be generated from increments of any field of the fime registers.
» Backupregisters (20 byvtes) powered by WVBAT.
» RBTC powersupply is isclated fromthe rest of the chip.

WDT(Watchdog Timer)

* For those embedded systems that can't be constantly watched by a
human, watchdog timers may be the solution Most embedded
systems need to be self- reliant

* It's not usually possible to wait for someone to reboot them if
the software hangs.

« Some embedded designs, such as space probes, are simply

not accessible to human operators
 |f their software ever hangs, such systems are permanently

disabled
* |n other cases, the speed with which a human operator might reset
the system would be too slow to meet the uptime requirements of

the product

WDT Cont..

A watchdog timer is a piece of hardware that can be used to
automatically detect software anomalies and reset the processor
if any occur

* Generally speaking, a watchdog timer is based on a counter
that counts down from some initial value to zero

* The embedded software selects the counter's initial value
and periodically restarts it

* |If the counter ever reaches zero before the software restarts
it, the software is presumed to be malfunctioning and the
processor's reset signal is asserted

 The processor (and the embedded software it's running) will
be restarted as if a human operator had cycled the power

WDT Cont..

The purpose of the watchdog is to reset the microcontroller
within a reasonable amount of time if it enters an erroneous state.
When enabled, the watchdog will generate a system reset if the

user program fails to ‘feed’ (or reload) the watchdog within a
predetermined amount of time.

* Watchdog timer is a chip external to the processor.

* Could also be included within the same chip as the CPU-
many microcontrollers.

WDT setup

Figure 1: A typical watchdog setup

[I Watchdog Timer]—FIM
A

Restart - g

Clock

WDT cont..

RESET

- 12K Cyele

L)

—

WDT
TIME-OUT

-

RESET
TIME-OUT

INTERMAL
RESET

WDT cont..

» After watchdog timer counts up to maximum, it generates a short
pulse duration 1 clock cycle. This pulse triggers internal reset
timer counting up to tout

* AVR watchdog timer is distinct clock generator which runs at 1
MHz

« Watchdog timer has a prescaler module. So reset interval
can be selected by adjusting the prescaler.

» Generally there are three things to do while controlling
watchdog timer: enable, disable, and set prescaler.

WDT cont...

WWatchdog Times
Cowettred Fescpister
MDTCR]
N I g —
= | & Internal
Watchdog Tum-0Off Enable ‘"""I""I
OSC /16K e
QS0 J 32K
DSC J B4K 2 o
G g
MU wWoT
OS50 J B56K
CLK
Reset OSC J 512K E o
OSC 024K a
\\ DSC J 2048
resat

WDTCR Register

Bit 4 — WDTOE: Watchdog Turn-off Enable

Bit 3 — WDE: Watchdog Enable

Bits 2..0 — WDP2, WDP1, WDPO: Watchdog Timer
Prescaler 2,1, and 0

Bit 2 1 0

1 : : " 3
- | - | - [WOTOE | WOE | WDPZ | WDP1 | WDPD § WODTCF
Read Wit z z R

Initial Value i 0 f f 0 I 0 I

WDTCR Register Cont..

Number of WOT | Typical Time-out | Typical Time-out
woP2 | WOP1 | WDPO | Oscillator Cycles | at Vg, = 3.0V at Voo = 5.0V

o [o [o | texpexssy | 17.1ms 16.3ms

0 0 1 32K (32,768) 34.3ms 32.5ms

0 | 1 | o | ew@5538 | 6s5ms 85 ms

0 | 1 1| 128K (131072) 014 s 013

1 | o | o | 2%%K(e2144 | 027s 026

1 | o | 1 | 512k(524288 | 055s 052
TR 0 | 1,024K (1,048,576) 11s 10s

1 | 1 | 1 |2048k2007.152) | 228 218

SAMPLING

x (t)
Continuous-time /\)\
signal

X (1)

Sampled signal

“*The sampling period is the time difference between two

consecutive samples, It is the inverse of the sampling frequency
Shmpling Frequency — Ti i

Where,

= T, is the sampling time

2 f, is the sampling frequency or the sampling rate

SAMPLING Cont...

Nyquist Rate: fs =2W
Where,
= fs is the sampling rate
g W is the highest frequency
This rate of sampling is called as Nyquist rate.

Sampling Theorem:

statement: A continuous time signal can be represented in its samples and can be
recovered back when sampling frequency f. is greater than or equal to the twice
the highest frequency component of message signal. i.e.

F22fm.

Aliasing effect: Aliasing is the phenomenon in which higher frequencycomponents
are combined with lower frequency components in spectrum of its sampled
version. f.<2f,

SAMPLING Cont...

fﬂ e 2fm

-0z ﬂ o

1+ Y(w)

fs = 2fm
perfect sampling

W

-Ws 0 Ws o0

fﬁ < 2fm
/y W\ under sampling

SAMPLING Cont...

TYPES OF SAMPLING:
There are 3 sampling techniques,They are:

1.ldeal sampling or impulse sampling or instantaneous sampling:

* The instantaneous sampling has a train of impulses.

*The pulse width of the samples has almost zerovalue.

*|t is the product of message signal m(t) with a unit impulse train 6(t)
gives sampled signal.

i.e., ms(t)l=m(t)o(t)
N\ y(t)

"L e

e oo +1Hl+ ’

UNIT -IV

PROGRAMMABLE DSP (P-DSP) PROCESSORS

DSP Applications

DSP applications are often real time but with a wide
variety of sample rates
* High rates
— Radar
— Video
* Medium rates
— Audio
— Speech
* Low rates
— Weather
— Finance

With different demands on

* numeric representation
— float or fixed
— and nmber of bits

* Throughput/speed

* Power/energy dissipation

* Cost

DSP features

Fast Multiply/Accumulate (MAC)

*FIR X", pl— /D D
- FFT B
. ete. ho hi h2 hscj{j

: O
» Multiple Access Memories
» Specialized addressing modes

» Specialized execution control (loops)

» Specialized interfaces, e.qg. AD/DA

Standard DSP Alternatives

PCs or Workstations
* Non-real time
* low requirements

General purpose microprocessors

* slower for DSP applications
* might be one u proc. there anyway

Custom
* performance
* low cost at volume
* High development cost

Standard Processors vs. Special Purpose

Processor Cores

Domain Specific Hiah Calculation C .
« Hi alculation Capaci
+ Programmable Frnc;,:zsnrs . LD?.'J Power pactty
» Low Design cost ' - User defined Interface
- Standard Interface « Variable Wordlength

+ Good supply oftools

» Low Price at Volume

Architectural Partitioning

L Local busses

Pro [cessor Processor ASICL—
c ore Core } and

N il Distributed
- \ 4@* memory

Viain Main to decrease
MEM MEM ASIC data transfers
— \ \ MIPS intensive

Conflicting req. : \algnrithms in

* Throughput _ Flexibility by dedicated HW

« Flexibility sing programmable to increase

. prer Consumption processor core throughput and

» Time to market save power

41 m i~

Fixed point DSP

Motorola DSP56000x

24 R4

Cperand[— 7
Registers| YU

-Usually DSP has single cycle
multiplier, may be pipelined

—+ Double wordlength out

&
.-_" 5I‘|ifter,._-"
]

e

+ guard bits

e N » scaling
m/ 54 6
Yy
Accunillators nimer /
Limiter,

\-Altenative is mult
with reduced
wordlength output,

e.g. 24

How to classify processors

» Categorized by memory organization

* Von-Neumann architecture

e Harvard architecture

Harvard architecture

» Separate memory into 2 types

* Program memory
* Data memory

» Used in MCS-51, MIPS etc.

Harvard Architecture Cont..

DATA INSTRUCTION
MEMORY MEMORY
CONTROL
DAT{E ﬁ} & ADDR ﬁ iLIHETHUGﬂGH
IN - I
ALU (| conTROL
0|_|'|'< CONTROL
N

i

STATUS CLOCK

Von-Neumann architecture

» Combine program and data in 1 chunk of memory

Example : 80x86 architecture

Alowa|\

S6¢.96V621

0000005260

0000005200

LONRIITVDY
Word

0000000T00
5
0 2
S5
1000000000 g3
0000000000

i
c
@)
(&
Q
p
-
o)
(&
Q
G
i e
O
p
©
c
c
(q°)
=
=
Q
<
c
@
>

Von-Neumann architecture cont..

MEMORY <:j

INSTRUCTION

DAThi } @
N ::> ALU < CONTROL

auT < COMNTROL
i

STATUS CLOCK

CONTROL
& ADDR

architecture:

a. Won Wenmanm Architecture {single memrory)

Mlemory

data and
instruciicns

CPU

k. Harvard Architecture { deal memory)

Program
Mlemory

mstrctions only

<:PM address bus

CPU

DIFFERENCE B/W Von-Neumann AND Harvard

DV address b1.|5>

Data
hdemory

data onlxr

c. Super Harvard Architeciure { dual memory, insivuciion cache, I70 controller)

DIV address hru5>

IPr[ugt af; <PM address bus CP1J
instructions and Tustrustion
FIGUEE

Microprocessor architecture. The Won Menmann architecinre

uses a single memory to hold both data and imstructions. In
comparison, the Harvard architecinre nses separate memories

Data
hdemory

data only

i

IO
Controller

for data and instractions, providing higher speed. The Super
Harvard Architecture improves upon the Harvard desigm by
adding an instruction cache and a dedicated IO comtroller.

it

data

CISC FEATURES

Complex instruction set computer

Large number of instructions (~200-300 instructions)
Specialized complex instructions

Many different addressing modes

Variable length instruction format

Memory to memory instruction
For Example : 68000, 80x86

o0 T

RISC FEATURES

»Reduced instruction set computer

» Relatively few number of instructions (~50)
»Basic instructions

» Relatively few different addressing modes

» Fixed length instruction format

»Only load/store instructions can access memory
»Large number of registers

»Hardwired rather than micro-program control
» For Example : MIPS, Alpha, ARM etc.

CISC Vs RISC

CISC -- High Code Density
*Fewer instructions needed to specify the algorithm

RISC -- Simpler to Design & Faster to Silicon
*Higher Performance -- smaller die size
eLower power consumption
*Easier to develop compilers to take advantage of all features

Example of CPU Architectures

**Intel: 80x86
**Motorola: 680x0
**Sun : Sparc

+*»*Silicon Graphics : MIPS
s*HP : PA-RISC

**|BM: Power PC
s*Compaq: Alpha

Architecture of P-DSP

Program
Memory

INSTrWCTiONS and
sacandary data

DA data bus

/" PhI Data Ik Trara
DA address bos Address Address
\'I GEnmeramss Generator
Program Sequencer
Inscmcrion
Cache
#,1
PAA data bus
N s

FIGUERE

1L

Repisters

Muliplier

Shifier

G

NS

Data
Memory

deater only

L

IO Confroller
(DMA)

g 8

High speed L

(serial, parallel,
ATHD DAC, etc)

Tj-'pi-:al D5P architecture. Dhigital Signal Processors are designed to implement tasks in parallel. This
lified d.la%rm.uis of the Amalog Devices SHARC DSP. Compare this architecture with the tasks

ed to 1

E:I{a:uted ima smgle clock cycle.

ement an FIE filter, as listed im Table 28-1. All of the steps within the loop can be

MAC UNIT

Multiplier and Multiplier Accumulator

Input Data
Xn xn-1 ooy B - *n-Ms3 An-Ms2 Xr-Ms1
Register
ho f1 — hm-3 hm-2 hm-1

Fig.Implementation of Convolver with single multiplier/Adder

MAC UNIT Cont..

Single-Cycle MAC unit

n
Addar [E(a';x')
‘”-*'-* - Can compute a sum of n-
Registe products in n cycles

MAC in Van Neumann Architecture

Modified Bus Structure & Memory Access Schemes in P-DSPs

Results {\ BataBiia

Operands

Status Opcode

Instruction Data / Instruction

b 4
Address

Fig: Van Neumann Architecture

MAC UNIT Cont...

Results / Operands

Status Opcode Address

Instructions

Address

Fig: Harvard Architecture

MAC UNIT Cont...

Results/operands

Status Opcode Address

Instruction

Address

Fig: Modified harvard architecture

SHIFTERS

Shifters are used to either scale down or scale up operands or the

results. The following scenarios give the necessity of a shifter

a. While performing the addition of N numbers each of n bits long,
the sum can grow up to n+log2 N bits long. If the accumulator is
of n bits long, then an overflow error will occur.

b. This can be overcome by using a shifter to scale down the
operand by an amount of log2N.

c. Similarly while calculating the product of two n bit numbers, the
product can grow up to 2n bits long.

d. Generally the lower n bits get neglected and the sign bit is
shifted to save the sign of the product.

SHIFTERS CONT..

e. Finally in case of addition of two floating-point numbers, one of

the operands has to be shifted appropriately to make the
exponents of two numbers equal.

From the above cases it is clear that, a shifter is required in the
architecture of a DSP

BARREL SHITERS

a. In conventional microprocessors, normal shift registers are
used for shift operation. As it requires one clock cycle for each
shift, it is not desirable for DSP applications, which generally
involves more shifts.

b. In other words, for DSP applications as speed is the crucial
issue, several shifts are to be accomplished in a single
execution cycle. This can be accomplished using a barrel
shifter, which connects the input lines representing a word to
a group of output lines with the required shifts determined by
its control inputs.

c. For aninput of length n, log2 n control lines are required. And
an Additional control line is required to indicate the direction
of the shift

BARREL SHITERS Cont..

The block diagram of a typical barrel shifter is as shown in figure

5"\ wh -
¢ - SHLFTE R 7/ > Onlpnl

g

@)
-

-

L/R % No. @ LI pordaon®
o\ e ALOGT

cxr'\b\bl 5 [. P \,Q_u

BARREL SHITERS Cont..

Input bits

.

Mo - — -
'w——f_-__]—
. —_—
=] [
A 5
! iy W 1} 1}
f'(i ';| :z
AJ' T f 1 = - -
<»—£.‘)J -»——L_J—] T{:L__J
T PAONET AR £4 <. <.
¢ =32 >3 ¥ d.1>3 >3
Output bits —» 11 4 Y £ £
' O
ILNPUT SHIFT (ST T) |louTPvi (%: 08, &, R,;)
Az Ay A, Ay O (So) Az Ay A Ao
Az AL A& Ay r CSy) Az Az A A
A3 A). “l ﬂo - J (S 2) '\ 1 ’_‘l’ A 2 A}_
Az Ao ¥4 Ao 2 CS5z2) A Az Az Ag

Fig Implementation of a 4 bit Shift Right Barrel Shifter

MAC UNIT

Tl Processors, high speed

TMS320C6000™ DSP Roadmap

C6203

4 4 W o
C6202 '
| Cozos [in Silicon

[] In Development
il Roadmap

C6701 ce71 C6712
; 7 Time

o

Tl Processors, low power

C5000 Roadmap to the Future

C54x™
Multi-core /
C5409

........

0.32 mW/MIPS Y 800 MIPS

Ilzthe Power
5x Higher
Performance
3rd @ |
Generation C55x™
600 MIPS
1/6 the

Sub-1 volt]

0.05 mW/MIPS
Power

CORE
Data Read (3-16 bit)

Data Write (2-15 bit)

Processor Architectures

SIMD - Single Instruction Multiple Data

Program

S—=

Processor Architectures Cont..

MIMD — Multiple Instruction Multiple Data

Program | |Program Program | | Program

Processor Architectures Cont..

VLIW - Very Long Instruction Words

VLIW Instruction

Split Processors

General registers

g A

B

— x1 « x2+ x3 . x4

yl + y2: y3:y4

Split 643bit ALU

Y | i

Split 64-bit ALU

1]

Functional units

can be split into
submodules, e.g.

for images (8bits)
T1320C80,

1 RISC

4 x 32bit DSP which
can be split into 8bit
modules

19

Low Power MMAC Multiplier Multiple Accumulator

Multiply Add

)

(_ DEMULTIPLEXOR _)

Aec. [""" "~~~ Acc.

[Multiplexor)

MMAC archttecture: the number af
SuEpuF EHERAFORS Al cal coentst
is equal to the number of Accwnulators

VLIW ARCHITECTURE

VLIW: general concept

A VLIW architecture
with 7 FUs

F‘“EE;"“ ntFU| |[IntFu| |ntFu| |LD/ST| LLD/ST| |FPFU| |EPFU

Floating Point
¥ ¥ Reqister File

Int Register File

Basic structure of VLIW Architecture

PROGRAM
MEMORY

Instructions
Only

ALU 1

-

&
¥

ALU 2

4

/

ALU 3

SECTIONED
DATA
MEMORY

A\

VLIW characteristics

* Multiple operations per instruction
* One instruction per cycle issued (at most)
+ Compileris in control

* OnlyRISC like operation support
— Shortcycle times
— Easier to compile for

+ Flexible: Can implement any FU mixture
» Extensible/ Scalable

However:
» tightinter FU connectivity required

* not binary compatible !!
— (new long instruction format)

* low code density

VLIW example: TMS320C62

TMS320C62 VelociTI Processor

8 operations (of 32-bit) per instruction (256 bit)
* Two clusters
— 8 Fus: 4 Fus/ cluster : (2 Multipliers. 6 ALUs)

— 2 X 16 registers
— One bus available to write in register file of other cluster

* Flexible addressing modes (like circular addressing)
* Flexible instruction packing

* All mstruction conditional

* Originally: 5 ns, 200 MHz, 0.25 um, 5-laver CMOS
128 KB on-chip RAM

VLIW evaluation

CPU FU-1
‘ —*| FU-2

—| FU-3
‘ —| FU-4
FU-5

Controlproblem O(N2) O(N)-O(N?)

With N function units

%
Instruction
fetch unit

Instruction
decode unit

Register file
Data memory

Instruction memory

VLIW evaluation

Strong points of VLIW:
— Scalable (add more FUs)

— Flexible (an FU can be almost anything; e.g. multimedia
support)

Weak points:
e With N FUs:
— Bypassing complexity: O(N?)
— Register file complexity: O(N)
— Register file size: O(N?)
e Register file design restricts FU flexibility

TMS320C6000 DSP Family Overview

* With a performance of up to 6000 million instructions per
second (MIPS) and an efficient C compiler, the
TMS320C6000 DSPs give system architects unlimited
possibilities to differentiate their products.

* High performance, ease of use, and affordable pricing make
the C6000 generation the ideal solution for multichannel,
multifunction applications, such as:

* Pooled modems

* Wireless local loop base stations

* Remote access servers (RAS)

* Digital subscriber loop (DSL) systems

* Cable modems

* Multichannel telephony systems

* All three DSP generations use the VelociTl architecture, a high-
performance, advanced very long instruction word (VLIW)
architecture, making these DSPs excellent choices for
multichannel and multifunction applications.

* The TMS320C67x+ DSP is an enhancement of the C67x DSP with
added functionality and an expanded instruction set.

* Any reference to the C67x DSP or C67x CPU also applies, unless
otherwise noted, to the C67x+ DSP and C67x+ CPU, respectively

Standard DSP Alternatives

The C6000 generation is also an ideal solution for exciting new

applications; for example:

* Personalized home security with face and hand/fingerprint
recognition Advanced cruise control with global positioning
systems (GPS) navigation and accident avoidance

 Remote medical diagnostics
* Beam-forming base stations
e Virtual reality 3-D graphics

* Speech recognition

Audio

Radar
Atmospheric modelling

Finite element analysis

Imaging (examples: fingerprint recognition, ultrasound, and MRI)

TMS320C6000 DSP Features and Options

Features of the C6000 devices include:

» Advanced VLIW CPU with eight functional units, including
two multipliers and six arithmetic units

s Executes up to eight instructions per cycle for up to ten times
the performance of typical DSPs

s Allows designers to develop highly effective RISC-like code for
fast development time Instruction packing

» Gives code size equivalence for eight instructions executed
serially or in parallel Reduces code size, program fetches, and

power consumption

Conditional execution of all instructions

» Reduces costly branching

» Increases parallelism for higher sustained performance

» Efficient code execution on independent functional units

» Industry’s most efficient C compiler on DSP benchmark suite

» Industry’s first assembly optimizer for fast development and
improved parallelization

» 8/16/32-bit data support, providing efficient memory support for
a variety of applications

TMS320C6x Series

= The TMS320C6000 digital signal processor platform 1is
part of the TMS320 DSP family.

» Fixed Point Devices
= TMS320C62x DSP generation
= TMS320C64x DSP generation

= Floating point devices
= TMS320C67x DSP generation.

= All three use the VelociTI architecture, a high-performance,
advanced VLIW (very long instruction word) architecture

= Excellent choices for multichannel and multifunction
applications.

s VelociTI’s advanced features include

= Instruction packing: reduced code size
= Gives code size equivalence for eight instructions
« Reduces code size, program fetches, and power consumption

= Conditional execution of all instructions
= Reduces costly branching

» Increases parallelism for higher sustained performance

= Fully pipelined branches: zero-overhead branching.

TMS320C67x DSP Architecture

Program cache/program memory
32-bit address
256-bit data
x
CE000 CPU
Power Program fetch
down Instruction dispatch (See Note) Control
¥ Instruction decode registers
Data path A Data path B
— DMA, EMIF Cantrol
Register file A Register file B logic
T [11111 Ts
Ermulation
11] 81| m1| b1 D2| m2| s2[L2 “—I:::
Interrupts

]

il ™ Additional

peripherals:

Timers, —P

serial ports,
eto.

Data cachefdata memaory
32-bit address
8-, 16-, 32-bit data

Central Processing Unit (CPU)

The C67x CPU, in Figure 1-1, is common to all the C62x/C64x/C67x
devices.

The CPU contains:

v'Program fetch unit

v'Instruction dispatch unit

v'Instruction decode unit

v'Two data paths, each with four functional units
v'32 32-bit registers

v'Control registers

v'Control logic

v'Test, emulation, and interrupt logic

Internal Memory

* The C67x DSP has a 32-bit, byte-addressable address space.
Internal (on-chip) memory is organized in separate data and
program spaces.

* When off-chip memory is used, these spaces are unified on most
devices to a single memory space via the external memory
interface (EMIF).

* The C67x DSP has two 32-bit internal ports to access internal data
memory.

* The C67x DSP has a single internal port to access internal program
memory, with an instruction-fetch width of 256 bits

Memory and Peripheral Options

A variety of memory and peripheral options are available for
the C6000 platform:

 Large on-chip RAM, up to 7M bits

* Program cache

 2-level caches

 32-bit external memory interface supports SDRAM, SBSRAM,
SRAM, and other asynchronous memories for a broad range

of external memory requirements and maximum system
performance.

General-Purpose Register Files

* There are two general-purpose register files (A and B) in the
C6000 data paths. For the C67x DSP, each of these files contains
16 32-bit registers (AO—A15 for file A and BO—B15 for file B), as
shown in Table 2-1.

* For the C67x+ DSP, the register file size is doubled to 32 32-bit
registers (AO—A31 for file A and BO—B21 for file B), as shown in
Table 2-1.

* The general-purpose registers can be used for data, data address
pointers, or condition registers.

Data paths

Table 2-1. 40-Bit/64-Bit Register Pairs

Register Files
A B Devices
A1:AD B1:BO C67x DSP
AZAZ B3:B2
AS:A4 B5:B4
AT:AB B7-BS
AS:AB Bo:Ba
A11:A10 B11:B10
A13:A12 B13:B12
A15:A14 E15:EB14
A1T-A16 B17:B16 C67x+ DSP only
A19:A18 B19:B18
A21:A20 B21:B20
AZ3:A22 B23:B22
AZ5AZ4 B25:B24
AZT AZE B27:B26
AZ9AZE BE29:B28
A31:A30 B31:B30

Data paths cont..

LD132 MSB

ST1%

Data path A

LD1 32 LSB

DA

DA2

LD2 32L5B

Register
file A
(AD-A1E)

Data path B

M2 sed

dst

|

srct

82 T
long dst

long src HB

LD232 MSB

R 48

X

Register
file B
(BO-B15)

RISC Vs FISC

CISC -- High Code Density
*Fewer instructions needed to specify the algorithm
RISC -- Simpler to Design & Faster to Silicon
*Higher Performance -- smaller die size
eLower power consumption
*Easier to develop compilers to take advantage of all features

Register File Cross Paths

Each functional unit reads directly from and writes directly
to the register file within its own data path. That is, the .L1,
.S1, .D1, and .M1 units write to register file A and the .L2,
.S2,.D2, and .M2 units write to register file B.

The register files are connected to the opposite-side
register file’s functional units via the 1X and 2X cross paths.
These cross paths allow functional units from one data path
to access a 32-bit operand from the opposite side register
file.

The 1X cross path allows the functional units of data path A
to read their source from register file B, and the 2X cross
path allows the functional units of data path B to read their
source from register file A.

Register File Cross Paths

* On the C67x DSP, six of the eight functional units have access
to the register file on the opposite side, via a cross path.

e The .M1, .M2, .S1, and .S2 units’ src2 units are selectable
between the cross path and the same side register file.

* Inthe case of the .L1 and .L2, both src1 and src2 inputs are
also selectable between the cross path and the same-side
register file.

{Tmsszoceooo
FAMILY

|

TMS320C6000 FAMILY ARCHITECTURE

’/PCGZOD series
® 32-bit
® 32 registers

® Fixed-point
\Fx: 6201, 6211

hJ

(66400 series A
® 32-bit
® 64 registers
® Fixed-point
Ex: 6412, 6416
N /

F

/06700 series

® 32-bit
® 32 registers

® Floating-point

\Fﬁ 6701, 6713

_/

Figure 13 shows the mapping between instruction set and the functional units.

Instruction Set Mapping

L Uit M Uit -5 Unit D umit
ABRS hAFP™Y A SET AL
ACD rAP™ L ADE SHL ADD AR
A0 MPY LS A2 SHR ADDAaH
AMND MPY S AMND SHRU LOB
CMPECQ hFPYH B disp SSHL LODBU
CMPGT P HLU B IRPFP sSuUB LCxH
CMPGTU MPYHUS B NP SUBU LOxHL
CMPLT MPYHSIL B reg SuUBZ2 L O
CMPLTU hP™ HIL CLR OR A
LMBD pAPYHLL EXT ZERO STE
A MPYHLULS ExXTu STH
MNE MPYHSLU AW STWwW
MNORM Y FLH NG sSuUB
MNOT hAFPY LHL MW SuBAB
OR MPYLUHS W ECH SuUBAH
SaADD MPYLSHLU hMWIKLH SuUBAMY
SaT SMPY MNEG ZERCH
SsuB SMPYHL MNOT

SuUB SMPYLH OR

sSuBU SMPYH

sSUBC

HOR

ZERCH

Figure 13 Instruction Set Mapping

Functional Units

The eight functional units in the C6000 data paths can be
divided into two groups of four; each functional unit in one
data path is almost identical to the corresponding unit in the
other data path.

Functional Fixed-point Operations Floating-paoint

Uit Dperations

L unit { L1 and | 32a0-bit arithmelic and comparne Adilhemelic operationg

L=y aperations DF —SP, INT—DP,
32-mit logical operations INT —SP conferson
Leftrnost 1 or O counting for 32 bits operations
Mormalization count for 32 and 40 bils
Byte shifts

Data packingiunpseking
S-bit constant generation
Duial 16-Eit arithirmstic
Quad &-bit arithmetic
Dual 16-E¥it midrdrman
Cuad &-bit min/max

.5 unit [51 S2-iL arithmehc operations Compans:

and S2) FFAD-bit shifts and 32-bit bi-fiekd
apserations Reciprecal and
IZ-bit logical operations FECi procal SaLis ne- pood
Branches COperations
Constant gensration
Regiisbar ranshars iaTrom oonbnal Absolube value
regesier oparalions
file ((S2 anly)
Byte ahifts SP—D0OF convernsion
Data packingiumpacking operations

Dual 16-bit compans

Quad &-bil compare

Dual 16-bit ahift

Dual 16-bit saturated arithmetic
Quad &-bil saturated arithmetic

FUNCTIONAL UNIT Cont...

.M unit (.M1
and .M2)

16 x 16 multiply operations

16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations
Dual 16 x 16 multiply with
add/subtract operations

Quad 8 x 8 multiply with add
Bit expansion

Bit interleaving/de-interleaving
Variable shift operations
Rotation

Galois Field Multiply

32 x 32-bit fixed-point
multiply operations

Floating-point multiply
operations

.D unit (.D1 and
.D2)

32-bit add, subtract, linear and circular
address calculation

Loads and stores with 5-bit offset
Loads and stores with 15-bit offset
Load and store double words with
5-bit constant

Load and store non-aligned words
and double words

5-bit constant generation

32-bit logical operations

Load doubleword with
5-bit constant offset

Memory Load Store Paths

= Two 32-bit paths for loading data from memory to
the register file
« LDI1 (LDI LSB and LD1 MSB) for register file A
« LD2 (LD2 LSB and LD2 MSB) for register file B

= LDDW instruction simultaneously load two 32—bit
values into register file A and two 32-bit values
into register file B

Memory Store Paths

= Two 32-bit paths for storing data to
memory from the register file

= ST1 for register file A
= ST2 for register file B

Data Address Paths

m DA1 & DA2 are connected to the .D units
in both data paths.

= The DAI and DA2 resources and their
associated data paths are specified as T1
and T2 respectively.

I

Types of Addressing Modes

The addressing modes on the C62x, C64x, and C67x are
* Linear mode

* Circular mode using BKO

e Circular mode using BK1

Register Addressing Mode: The operand is the contents of a
processor register; the name of the register is given in the
instruction.

Ex: ADD .L1 A1, A2, A3; A1+A2=A3
SUB .L2 B1,B2,B6;B1-B2=B6

Note that the functional unit is a must in writing assembly
instructions.

Immediate Addressing Mode: The operand is a numeric constant
which is directly specified in the instruction.
Ex: ADD .L1 A1, 20, A3; A1 +20=A3

SUB.L2 B1, 15,B6;B1-15=B6

Indirect Addressing Mode: The effective address of the operand
is the contents of a register that appears in the instruction. An
asterisk (*) is used as an indirection operator. Also increment (++)
and decrement (- -) operators are supported.

Ex: LDW .D2 *B0, B1 STW .D1 A1,*A2++

Addressing Mode Register

For each of the eight registers (A4—A7, B4—B7) that can
perform linear or circular addressing, the AMR specifies the
addressing mode. A 2-bit field for each register selects the
address modification mode: linear (the default) or circular

mode.
Addressing Mode Register (AMR)

e Biock size fields -

k3 28 25 21 20 16
Reserved BK1 BKD

o R 40 e R, W, +0 e R, W, +0 —*
- Mode seiect fields "
15 14 13 12 11 10 9 8 7 8 S 43 2 1 0
|87mode| BGmodeIBSnmdel B-%model A7M|A6m|&6m |A4mode|
e R, W, +0 4

Legend R Readable by the MVC instruction
W Writeable by the MVC instruction
+0 \Value is zero after reset

Mode Select Field Encoding

The reserved portion of AMR is always 0. The AMR is initialized
to O at reset. The block size fields, BKO and BK1, contain 5-bit
values used in calculating block sizes for circular addressing.

e (N+1)
Block size (in bytes) = 2
Mode Description
0o Linear mode (default at reset)
01 Circular Addressing using BKO field
10 Circular Addressing using BK1 field
11 Reserved

Tl Processors, low power

C5000 Roadmap to the Future

C54x™
Multi-core /
C5409

........

0.32 mW/MIPS Y 800 MIPS

Ilzthe Power
5x Higher
Performance
3rd @ |
Generation C55x™
600 MIPS
1/6 the

Sub-1 volt]

0.05 mW/MIPS
Power

CORE
Data Read (3-16 bit)

Data Write (2-15 bit)

Processor Architectures

SIMD - Single Instruction Multiple Data

Program

S—=

Processor Architectures Cont..

MIMD — Multiple Instruction Multiple Data

Program | |Program Program | | Program

Processor Architectures Cont..

VLIW - Very Long Instruction Words

VLIW Instruction

Split Processors

General registers

g A

B

— x1 « x2+ x3 . x4

yl + y2: y3:y4

Split 643bit ALU

Y | i

Split 64-bit ALU

1]

Functional units

can be split into
submodules, e.g.

for images (8bits)
TI1320C80,

1 RISC

4 x 32bit DSP which
can be split into 8bit
modules

19

2 00O

Low Power MMAC Multiplier Multiple Accumulator %

3 Q
% \2
o,
¥ For W

Multiply Add

)

(_ DEMULTIPLEXOR _)

Aec. [""" "~~~ Acc.

(Multiplexor)

MMAC archttecture: the number af
Outpur LRERANORS Al can coentst
is el to the number of Accwnulators

