LECTURE NOTES
ON

NETWORK ANALYSIS

B. Tech I1l Semester (IARE-R18)

Ms. S Swathi
Asistant professor

ELECTRICAL AND ELECTRONICS ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 50043




SYLLABUS

MODULE-I NETWORK THEOREMS (DC AND AC)

Network Theorems: Tellegen’s, superposition, reciprocity, Thevenin’s, Norton’s, maximum power
transfer, Milliman’s and compensation theorems for DC and AC excitations, numerical problems.

MODULE-II SOLUTION OF FIRST AND SECOND ORDER NETWORKS
Transient response: Initial conditions, transient response of RL, RC and RLC series and parallel
circuits with DC and AC excitations, differential equation and Laplace transform approach.

MODULE-IIl LOCUS DIAGRAMS AND NETWORKS FUNCTIONS
Locus diagrams: Locus diagrams of RL, RC, RLC circuits.

Network Functions: The concept of complex frequency, physical interpretation, transform impedance,
series and parallel combination of elements, terminal ports, network functions for one port and two
port networks, poles and zeros of network functions, significance of poles and zeros, properties of
driving point functions and transfer functions, necessary conditions for driving point functions and
transfer functions, time domain response from pole-zero plot.

MODULE-IV  TWO PORTNETWORK PARAMETERS

Two port network parameters: Z, Y, ABCD, hybrid and inverse hybrid parameters, conditions for
symmetry and reciprocity, inter relationships of different parameters, interconnection (series, parallel
and cascade) of two port networks, image parameters.

MODULE-V FILTERS

Filters: Classification of filters, filter networks, classification of pass band and stop band,
characteristic impedance in the pass and stop bands, constant-k low pass filter, high pass filter, m-
derived T-section, band pass filter and band elimination filter.

Text Books:

1. A Chakrabarthy, “Electric Circuits”, Dhanpat Rai & Sons, 6™ Edition, 2010.

2. A Sudhakar, Shyammohan S Palli, “Circuits and Networks”, Tata McGraw-Hill, 4t Edition, 2010

3. M E Van Valkenberg, “Network Analysis”, PHI, 3" Edition, 2014.

4. Rudrapratap, “Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers”,
Oxford University Press, 1% Edition, 1999.

Reference Books:

1. John Bird, “Electrical Circuit Theory and technology”, Newnes, 2™ Edition, 2003

2. C L Wadhwa, “Electrical Circuit Analysis including Passive Network Synthesis”, New Age
International, 2" Edition, 2009.

3. David A Bell, “Electric Circuits”, Oxford University Press, 7" Edition, 20009.




UNIT -1

NETWORK THEOREMS (DC AND AC)




1. INTRODUCTION:

In electric network analysis, the fundamental rules are Ohm’s Law and Kirchhoff’s Laws. While these humble
laws may be applied to analyze just about any circuit configuration (even if we have to resort to complex algebra
to handle multiple unknowns), there are some “shortcut” methods of analysis to make the math easier for the
average human.

As with any theorem of geometry or algebra, these network theorems are derived from fundamental rules. In this
chapter, I’'m not going to delve into the formal proofs of any of these theorems. If you doubt their validity, you
can always empirically test them by setting up example circuits and calculating values using the “old”
(simultaneous equation) methods versus the “new” theorems, to see if the answers coincide.

Network theorems are also can be termed as network reduction techniques. Each and every theorem got its
importance of solving network. Let us see some important theorems with DC and AC excitation with detailed
procedures.

1.1 TELLEGEN’S THEOREM:

Dc Excitation:
Tellegen’s theorem states algebraic sum of all delivered power must be equal to sum of all received powers.

According to Tellegen’s theorem, the summation of instantaneous powers for the n number of branches in an
electrical network is zero. Are you confused? Let's explain. Suppose h number of branches in an electrical network
have il, i2, i3.... in respective instantaneous currents through them. These currents satisfy Kirchhoff's Current Law.
Again, suppose these branches have instantaneous voltages across them are v1, v2, v3, ........... vn respectively. If
these voltages across these elements satisfy Kirchhoff VVoltage Law then,
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Vi is the instantaneous voltage across the k™ branch and iy is the instantaneous current flowing through this branch.
Tellegen’s theorem is applicable mainly in general class of lumped networks that consist of linear, non-linear,
active, passive, time variant and time variant elements.

This theorem can easily be explained by the following example.
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https://www.allaboutcircuits.com/video-lectures/electrical-quantities-b/
https://www.allaboutcircuits.com/textbook/direct-current/chpt-6/kirchhoffs-voltage-law-kvl/
https://www.electrical4u.com/voltage-or-electric-potential-difference/

In the network shown, arbitrary reference directions have been selected for all of the branch currents, and the
corresponding branch voltages have been indicated, with positive reference direction at the tail of the current arrow.
For this network, we will assume a set of branch voltages satisfy the Kirchhoff voltage law and a set of branch
current satisfy Kirchhoff current law at each node.

We will then show that these arbitrary assumed voltages and currents satisfy the equation.

n
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And it is the condition of Tellegen’s theorem. In the network shown in the figure, let vy, v, and v3 be 7, 2 and 3
volts respectively. Applying Kirchhoff Voltage Law around loop ABCDEA. We see that v, = 2 volt is required.
Around loop CDFC, vs is required to be 3 volt and around loop DFED, vs is required to be 2. We next apply
Kirchhoff's Current Law successively to nodes B, C and D. At node B let i; =5 A, then it is required that i, =- 5 A.
At node C let i; = 3 A and then is is required to be - 8. At node D assume i, to be 4 then ig is required to be - 9.
Carrying out the operation of equation,

We get,
Tx54+2x(—5)+3x34+2x44+3x(-8)+2x(-9)=0

Hence Tellegen’s theorem is verified.

1.2 SUPER-POSITION THEOREM:

DC: “ In an any linear , bi-lateral network consisting number of sources , response in any element(resistor) is
given as sum of the individual Reponses due to individual sources, while other sources are non-operative”

AC: “ In an any linear , bi-lateral network consisting number of sources , response in any element(impedance) is
given as sum of the individual Reponses due to individual sources, while other sources are non-operative”

Procedure of Superposition Theorem:
Follow these steps in order to find the response in a particular branch using superposition theorem.

Step 1 — Find the response in a particular branch by considering one independent source and eliminating the
remaining independent sources present in the network.

Step 2 — Repeat Step 1 for all independent sources present in the network.

Step 3 — Add all the responses in order to get the overall response in a particular branch when all independent
sources are present in the network.
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Eg:
LetV =6v, | =3A, R1 =8 ohms and R2 = 4 ohms

Let us find current through 4 ohms using V source, while I is zero. Then equivalent circuit is
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Let i, is the current through 4 ohms, il =V / (R1+R2)
Let us find current through 4 ohms using | source, while V is zero. Then equivalent circuit is
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Let i, is the current through 4 ohms, i, = . R1/ (R1+Ry)

Hence total current through 4 ohms is = I;+1,( as both currents are in same direction or otherwise 11-12)
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Eg:
Let V =6v, | =3A, Z1 = 8 ohms and Z, = 4 ohms

Let us find current through 4 ohms using V source , while | is zero. Then equivalent circuit is

Let i, is the current through 4 ohms, iy =V / (Z1+22)
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Let us find current through 4 ohms using | source, while V is zero. Then equivalent circuit is

T+
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Let i2 is the current through 4 ohms, i2 = 1. Z1/ (Z1+Z2)

Hence total current through 4 ohms is = I;+1, ( as both currents are in same direction or otherwise 1;-1,).

1.3 RECIPROCITY THEOREM:

DC & AC: “ In any linear bi-lateral network ratio of voltage in one mesh to current in other mesh is same even if
their positions are inter-changed”.

1 B2
1k 2700hm
10VD.C| 1200hm » o5 £ RL=3300hm

Eqg:
Find the total resistance of the circuit, Rt = R1+ [R2(R3+RI)] / R2+R3+RL.

Hence source current, | = V1 /Rt.
Current through RL is 11 = 1. R2 / (R2+R3+RL)
Take the ratioof , V1/ I1 ---1

Draw the circuit by inter changing position of V1 and I1
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Find the total resistance of the circuit, Rt = (R3+RL) + [R2(RI)] / R2+R1.

Hence source current, | = V1 /Rt.
Current through RL is 11 = 1. R2 / (R2+R1)

Take the ratio of , V1/ 11 ---2

If ratio 1 = ratio 2, then circuit is said to be satisfy reciprocity.

Eg: With AC source
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Find the total impedance of the circuit, Zt = Z1+ [Z22(Z3+ZL)] / Z2+ Z 3+ Z L.

Hence source current, | =V1/Zt.

Currentthrough ZL is 11 =1. Z 2/ (Z2+ Z3+ ZL)

Take the ratio of , V1/ 11 ---1

Draw the circuit by inter changing position of V1 and 11
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Find the total impedanceof the circuit, Zt = (Z3+ ZL) + [Z2(ZL)] / Z2+ Z1.
Hence source current, | =V1/Zt.

Current through ZL is 11 = 1. Z2 / (Z2+ Z1)

Take the ratio of , V1/ 11 ---2

If ratio 1 = ratio 2, then circuit is said to be satisfy reciprocity.

*** Here only magnitudes are compared

1.4 THEVENIN’S THEOREM:

DC: “ An complex network consisting of number voltage and current sources and be replaced by simple series
circuit consisting of equivalent voltage source in series with equivalent resistance, where equivalent voltage is
called as open circuit voltage and equivalent resistance is called as Thevenin’s resistance calculated across open
circuit terminals while all energy sources are non-operative”

AC: “ An complex network consisting of number voltage and current sources and be replaced by simple series
circuit consisting of equivalent voltage source in series with equivalent impedance, where equivalent voltage is
called as open circuit voltage and equivalent impedance is called as Thevenin’s impedance calculated across open
circuit terminals while all energy sources are non-operative”
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Eg:
Here we need to find current through RL using Thevenin’s theorem.

Open circuit the AB terminals to find the Thevenin’s voltage.




Thevenin’s voltage , Vth=E1. R3 / (R1+R3) ----1 from figure .1

Thevenin’s resistance, Rth = (R1.R3)/ (R1+R3) + R2 ----2 from figure 2.

Now draw the thevenin’s equivalent circuit as shown in figure 3 with calculated values.
Eg: With AC excitation

Here we need to find current through ZL using thevenin’s theorem.

Open circuit the AB terminals to find the Thevenin’s voltage.

Thevenin’s voltage , Vth=E1. R3 / (R1+R3) ----1 from figure .1

Thevenin’s impedance, Zth = (Z1. Z3)/ (Z1+ Z3) + Z2 ----2 from figure 2.

Now draw the thevenin’s equivalent circuit as shown in figure 3 with calculated values.

1.5 NORTON’S THEOREM:

DC: “ An complex network consisting of number voltage and current sources and be replaced by simple parallel
circuit consisting of equivalent current source in parallel with equivalent resistance, where equivalent current source
is called as short circuit current and equivalent resistance is called as Norton’s resistance calculated across open
circuit terminals while all energy sources are non-operative”

AC: “An complex network consisting of number voltage and current sources and be replaced by simple parallel
circuit consisting of equivalent current source in parallel with equivalent impedance, where equivalent current
source is called as short circuit current and equivalent impedance is called as Norton’s impedance calculated across
open circuit terminals while all energy sources are non-operative”
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Here we need to find current through RL using Norton’s theorem.
Short circuit the AB terminals to find the Norton’s current.

Total resistance of circuit is, Rt = (R2.R3) / (R2+R3) + R1
Source current, | = E / Rt

Norton’s current , IN =1. R3 / (R2+R3) ----1 from figure .1

Norton’s resistance, RN = (R1.R3)/ (R1+R3) + R2 ----2 from figure 2.
10




Now draw the Norton’s equivalent circuit as shown in figure 3 with calculated values.
Eg: With AC excitation

Here we need to find current through ZL using Norton’s theorem.

Short circuit the AB terminals to find the Norton’s current.

Total impedance of circuit is, Zt = (Z2. Z3) / (Z2+Z3) + Z1

Source current, | = E / Zt

Norton’s current, IN = 1. Z3/ (Z2+Z3) ----1 from figure .1

Norton’s impedance, ZN = (Z1. Z3)/ (Z1+Z3) + Z2 ----2 from figure 2.

Now draw the Norton’s equivalent circuit as shown in figure 3 with calculated values.

*** These two theorems are useful in determining the load value for which maximum power transfer can be
happened.

1.6 MAXIMUM POWER TRANSFER THEOREM:
DC: “In linear bi-lateral network maximum power can be transferred from source to load if load resistance is equal
to source or thevenin’s or internal resistances”.

AC: “In linear bi-lateral network maximum power can be transferred from source to load if load impedance is
equal to complex conjugate of source or thevenin’s or internal impedances”

Eg: For the below circuit explain maximum power transfer theorem.
Ha .

Let I be the source current, 1 =V /(R1+R2)
Power absorbed by load resistor is, PL = I .R2
=[V/(R1+R2)]* R2.
To say that load resistor absorbed maximum power , dPL / dR2 = 0.
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When we solve above condition we get, R2 = R1.
Hence maximum power absorbed by load resistor is, PLmax = V? / 4R2.
Eg: AC excitation
Let | be the source current, 1 =V /(Z1+ Z 2)
Power absorbed by load impedance is, PL = I . Z2
=[V/(Z1+ 22)]?. Z2.
To say that load resistor absorbed maximum power , dPL /d Z2 = 0.
When we solve above condition we get, Z2 = Z1".
Hence maximum power absorbed by load resistor is, PLmax = V? / 4 Z2.(magnitude)

1.7 MILLIMAN’S THEOREM:

DC: “ An complex network consisting of number of parallel branches , where each parallel branch consists of
voltage source with series resistance, can be replaced with equivalent circuit consisting of one voltage source in
series with equivalent resistance”
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Fig 1 Fig 2

Equivalent resistance is , R’ = 1/ ( G1+G2+---------=--------- Gn)

AC: “ An complex network consisting of number of parallel branches , where each parallel branch consists of
voltage source with series impedance, can be replaced with equivalent circuit consisting of one voltage source in
series with equivalent impedance”

Where equivalent voltage source value is , V' = (VIY1+V2Y2+------ +VnYn)

N A0 2 S — Yn
Equivalent resistance is , 2’ = 1/ ( Y1+Y2+-------mm-mmmmmmmm- Yn)
*** |t is also useful in designing load value for which it absorbs maximum power.
1.8. COMPENSATION THEOREM:

DC &AC: “compensation theorem states that any element in the network can be replaced with

12




b

Voltage source whose value is product of current through that element and its value’
It is useful in finding change in current when sudden change in resistance value.

I3 ki
|
=

For the above circuit source current is given as, | =V / (R1+R2)

Element R2 can be replaced with voltage source of ,V’ =1.R2

Let us assume there is change in R2 by AR, now source current is '=V / (R1+R2+ AR)
Hence actual change in current from original circuit to present circuitis=1-1T".

This can be find using compensation theorem as, making voltage source non-operative and replacing AR with
voltage source of I’. AR.

Then change in current is given as = I’. AR/ (R1+R2)

Eg: AC excitation

For the above circuit source current is given as, | =V / (Z1+Z2)

Element R2 can be replaced with voltage source of ,V’ = 1.Z2

Let us assume there is change in R2 by AR, now source current is I'= 'V / (Z1+Z2+ AZ)
Hence actual change in current from original circuit to present circuitis=1-1T".

This can be find using compensation theorem as, making voltage source non-operative and replacing AR with
voltage source of I’. AZ.

Then change in current is given as = I’. Z/ (Z1+Z2)

EXAMPLES:
Steps to Analyze Electric Circuit through Thevenin’s Theorem

Open the load resistor.

Calculate / measure the open circuit voltage. This is the Thevenin Voltage (V1u).

Open current sources and short voltage sources.

Calculate /measure the Open Circuit Resistance. This is the Thevenin Resistance (Ryy).

Now, redraw the circuit with measured open circuit Voltage (Vtu)in Step (2) as voltage source and
measured open circuit resistance (Rry) in step (4) as a series resistance and connect the load resistor which we
had removed in Step (1). This is the equivalent Thevenin circuit of that linear electric network or complex
circuit which had to be simplified and analyzed by Thevenin’s Theorem. You have done.

6. Now find the Total current flowing through load resistor by using the Ohm’s Law: I+ = V1u/ (Rtu+ RL).

agblrwdE
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Solved Example by Thevenin’s Theorem:

Example:
Find V4, Rryand the load current flowing through and load voltage across the load resistor in fig (1) by using
Thevenin’s Theorem.

A\

\ — vV N \—eA
12kQ ﬂ S8kQ
- RL
= ? fiice % 5kQ.
1

e B
Thevenin's Theorem. Easy Step by Step
Procedure with Example (Pictorial Views)

£

I
IS
0
<

Solution:

Step 1:

Open the 5kQ load resistor (Fig 2).

A%

12kQ

Step 2:

Calculate / measure the open circuit voltage. This is the Thevenin Voltage (V1y). Fig (3).

We have already removed the load resistor from figure 1, so the circuit became an open circuit as shown in fig 2.
Now we have to calculate the Thevenin’s Voltage. Since 3mA current flows in both 12k€ and 4k( resistors as this
is a series circuit because current will not flow in the 8kQ resistor as it is open.

So 12V (3mA x 4kQ) will appear across the 4kQ resistor. We also know that current is not flowing through the
8kQ resistor as it is open circuit, but the 8kQ resistor is in parallel with 4k resistor. So the same voltage i.e. 12V
will appear across the 8k resistor as well as 4kQ resistor. Therefore 12V will appear across the AB terminals.
So,

VTH =12V

3n
| —/\ N AN —eA
12kQ J 8kQ T
3mA Vv >

48V ' - 4kQ 12V

® B
SMmA x 4kQ =12V

14




Step 3:Open current sources and short voltage sources as shown below. Fig (4)

calculate / measure the open circuit resistance. This is the Thevenin Resistance (Rtn)

We have removed the 48V DC source to zero as equivalent i.e. 48V DC source has been replaced with a short in step 3 (as
shown in figure 3). We can see that 8kQ resistor is in series with a parallel connection of 4kQ resistor and 12k Q resistor. i.e.:
8kQ + (4k Q || 12kQ) ..... (|| = in parallel with)

Rry = 8KQ + [(4KQ x 12kQ) / (4kQ + 12kQ)]
RTH = 8kQ + 3kQ

RTH =11kQ

—\/\/\/\—7- —V —eA
12kQ r 8kQ
> -———
= 4kQ - B
>
|
I B
= 8kQ + (4k Q || 12kQ) — = 8kQ + 3kQ
Rt = 11kQ

Step 5.

Connect the Rryin series with Voltage Source Vry and re-connect the load resistor. This is shown in fig (6) i.e.
Thevenin circuit with load resistor. This the Thevenin’s equivalent circuit.

ANAAN A
11k
—— RL
12V S5k
B

now apply the last step i.e Ohm’s law . Calculate the total load current & load voltage as shown in fig 6.
IL=Vm/ (Rm+RyY)
=12V /[ (11kQ + 5kQ) — = 12/16kQ
I.=0.75mA
And
V|_ = ||_X R|_
V. =0.75mA x 5kQ
V =3.75V

15
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UNIT — 11

SOLUTION OF FIRST AND SECOND ORDER

NETWORKS
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TRANSIENT RESPONSE FOR DC CIRCUITS

INTRODUCTION:

For higher order differential equation, the number of arbitrary constants equals the order of the equation. If

these unknowns are to be evaluated for particular solution, other conditions in network must be known. A set of
simultaneous equations must be formed containing general solution and some other equations to match number of

unknown with equations.

We assume that at reference time t=0, network condition is changed by switching action. Assume that switch
operates in zero time. The network conditions at this instant are called initial conditions in network.

2. 1 Resistor :

=

——
Y

3

A7

=R »@

Equation 1 is linear and also time dependent. This indicates that current through resistor changes if applied voltage

changes instantaneously. Thus in resistor, change in current is instantaneous as there is no storage of energy in it.

2.2. Inductor:
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If dc current flows through inductor, dil/dt becomes zero as dc current is constant with respect to time. Hence
voltage across inductor, VL becomes zero. Thus, as for as dc quantities are considered, in steady stake, inductor acts
as short circuit.

il = % [V, ar

In above eqn. The limits of integration is from -°°to IQ -

Assuming that switching takes place at t=0. we can split limits into two intervals as - ©to ( -

= V,dr

LF3

e B

2.3
L

i, = % O]l " dt + % ’J'VLdr
—a o

: ; 1p
1L=1L( }zILLd’
o

3 ~ 1 -

i, @ 3 ~ [V, dr

at t = 0' we can write i;(07) =
i (07) =i (0)

2.3. capacitor:

e
dt

If dc voltage is applied to capacitor, dVC / dt becomes zero as dc voltage is constant with respect to time.

i =

Hence the current through capacitor iC becomes zero, Thus as far as dc quantities are considered capacitor acts as
open circuit.

18




Vv, = % ficar
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1
V« = F i(-df

C

=4

Splitting limits of integration

; 1 %, ks
Iv(.=—(: icdt+— |idt

~ -0 =N ) B

At t(0"), equation is given by

- P LR e o B
J p Q = J c Q /+ EO_I('dI
v € =v.¢

Thus voltage across capacitor can not change instantaneously.

2.41nitial Condition for (DC steady state solution)

* Initial condition: response of a circuit before a switch is first activated.
— Since power equals energy per unit time, finite power requires continuous
change in energy.
* Primary variables: capacitor voltages and inductor currents-> energy
storage elements

w (1) =~ Li2(e) Wele)== v ()

2

++ Capacitor voltages and inductor currents cannot change instantaneously but should be continuous. -> continuity
of capacitor voltages and inductor currents

7
0.0

The value of an inductor current or a capacitor voltage just prior to the closing (or opening) of a switch is equal
to the value just after the switch has been closed (or opened).

1'C(r:0_]:1'c(r:0+]

:‘L( :O_J:fL( :0+]

2.5 TRANSIENT RESPONSE OF RL CIRCUITS WITH DC EXCITATIO:

19




Consider the tollowing series RL arcut diagram.

In the abowve circuit, the switch was kept open up to t = 0 and it was closed
at t = 0. So, the DC woltage source having VWV wvolts is not connected to the

series RL circuit up to this instant. Therefore, there is no initial current flows

through inductor.

The circuit diagram, when the switch is in closed position is shown in the

following figure.

=1

& AT

MNow, the current 57 flows in the entire circuit, since the DC wvoltage source

having ¥ volts is connected to the series RL circuit.

MNow, apply KVL around the loop.
di
V = HRi+ L—
dt

i "’y v -
o tlE)i= ¢ Equation 1

The above equation is a first order differential equation and it is in the form of

% + Py=0 Equation 2

By comparing Equation 1 and Equation 2, we will get the following relations.

r =t
y=1
R
P:f
Vv
Q=

The solution of Equation 2 will be
yel iz — erdezdx + k Equation 3
Wwhere, k is the constant.

Substitute, the wvalues of x, v, P & Q in Equation 3.
iel (DU = [(¥) (e 1) de + k

i i
= delt)t = X feliltdt + k
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el P = Yty g

L Eid
L
- v o -
=i= 5+ ke 'Ll ¢ Equation 4
We know that there is no initial current in the circuit. Hence, substitute, £ = 0

and £ = 0 in Equation 4 in order to find the value of the constant k.

v
0=+ Jee— £ 1(0)

0=2 1 k(1)

R
v
o — — —
R
Substitute, the value of k in Equation 4.
Vv v R
i—= — + [——=)e T
R ( R]
i — v _ EE—[%Jt
R R

Therefore, the current flowing through the circuit is

"
i — —%E_[T“’—F% Equation 5

So, the response of the series RL circuit, when it is excited by a DC woltage
source, has the following two terms.

- it
= The first term —%E_LT]E corresponds with the transient response.

2 The second term % corresponds with the steady state response.

These two responses are shown in the following figure.

+ Y

Transient Steady state

Response Response

We can re-write the Equation 5 as follows —
it
. v — (=
i= (1l —e ALY
—=i= X (1—e ) Equation 6
R

Where, T is the time constant and its value is equal to %

Both Equation 5 and Equation 6 are same. But, we can easily understand the above waveform of current flowing
through the circuit from Equation 6 by substituting a few values of t like 0, t, 21, 51, etc.

21




In the above waveform of current flowing through the circuit, the transient response will present up to five time

constants from zero, whereas the steady state response will present from five time constants onwards.

Actual timme (1) in sec Growth of current in inductor
(Eq-10.15)
=0 i(0O)=0
| 7
r=z-[—_—£) i(r)=— 0.632 <—=
r R
=2 V.
o - i(2T)— O.8B65 >x—=
R
I iI(37)— 0.950 <=
R
=
. . i(AT)— O.982 2=
R
=S V
* " iI(57)— 0.993 =<—=
Fid

/
i
\

r-

o = %)

| |“
|

| \ |
~< \'

==
i

I
UL

r

t = 0-, , switch k is kept at position ‘a’ for very long time. Thus, the network is in steady state. Initial current

through inductor is given as,
~ V ~
i 0_ =] =—=j 0*
L e R L 5 ) ) ) I

Because current through inductor can not change instantaneously
Assume  that at t = 0 switch k is moved to position 'b'.

Applying KVL,
di .
L—+iR=0
dt - )
di :
S L—=—iR
dt
Rearranging the terms in above equation by separating variables
di R
e e dt
i L
Integrating both sides with respect to corresponding variables
= R
S I =——
— L _ 3
Where k’ is constant of integration.
To find- k’:

Form equation 1, at t=0, i=I0
Substituting the values in equation 3
Where k’ is constant of integration.
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To find- k’:Form equation 1, at t=0, i=I0
Substituting the values in eq

in]=-Fr+mnl,

hﬂ}Mh}—%t

; R
BT
Iy
LY
Sd=dsoed

fig. shows variation of current i with respect to time

I
.

From the graph, H is clear that current is exponentially decaying. At point P on graph. The current value is

(0.363) times its maximum value. The characteristics of decay are determined by values R and L which are two
parameters of network.

The voltage across inductor is given by

Y

G Wy | e oy T 10[—5) e
dt dt
2,
V, =—I,-Re I

B ¥
L =—V-e Volts

Voltage, v and current i are reduced to 36.8 % of their initial value
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2.6. TRANSIENT RESPONSE OF RC CIRCUIT WITH DC EXCITATION:

Let us consider a simple series R—C circuit shown in fig. 10.17(a) is connected through a
switch °S’ to a constant voltage source V.

: v S. switch

t=0 R
‘ + 4+ » \( ) »
, i — (o) = v,
VL e— /'-\ <
) Initially capacitor
is charged

Fig. 10.17(a): Charging of a RC circuit

The switch °.5 7 iz closed at time “r =0 7 (see fig. 10.7(a)). It iz assumed that the capacitor
iz initially charged with a voltage v (00 =+, and the current flowing through the circut at
any instant of time * f° after closing the switch iz #(r) .

" 5, switch
t=0 R

L]
-
4
&
b 3

)|
\

Fig. 1.1 7(b): Discharging of a RC circwit

The EVL equation around the loop can be written as

V., =R +v_(6) = V, =R c% v (D

The selution of the above first-order differential equation (10.41) due to forcimg fimehion
I iz given by
v (f}=wv_, () (natural response’transient response) + v, (2} (steady—state response)

=4 e¥+4d
The constantz 4, ard 4 are computed using the initial and boundary conditions. The
value of o iz obtained from the characteristic equation given by (zee in detail in
Appendix)

RCa+1=0= a=—_L_

RO
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1
- o
v, (0)=vy=Ad,e & + 4= A/ =vyj—A=v,—V;

The values of A4, , 4, and Eq. (10.43) together will give us the final expression for
capacitor voltage as

_Lf —ir —it
VC(I}Z(vU—VS}e e V, = vc(f)ZI"S[l—e RC ] +v,e %€

Thus,
Yo t<0

1 1
-—t -t
vc(r)ZVS[l—e RCJ+voe RC t=>0

Special Case: Assume inihal wvoltage across the capaciter at time “:=0" 1z zero 1e.,
v.(0)=v,=0. The voltape expression for capacitor at any instant of time can be wiitten
from Eq.(10.44) with v (0)=v,=0.

Woltage across the capacitance v_(f)=F] [l - er_?-f:]

- l £
Voltage across the resistance v ({)=F, —v. ()=, ¢ *°

. S
Charging current through the capacitor i(f)= %" = %‘ S

Charge accumulated on either plate of capacitor at any mstant of tome 15 given by

¢ _ L :""\. Il"' _ 4 ;
gi=Cv_()=CTl,|1—-e * [=0|1-¢ ‘*‘]
& . l\.

1
. . Ve et
Charging current through the capacitor i(¢)= % = }Se RC

Charge accumulated on either plate of capacitor at any instant of time is given by

_1y 1,
g(=Cv, (1)=C Vs{l—e " J:Q[l_g 7 J

where Q is the final charge accumulated in the capacitor at steady state ( i.e., f—>=).
Once the wvoltage across the capacitor v, (f) is known, the other quantities (like,
vy (1), i(2), and g(t)) can easily be computed using the above expressions. Fig. 10.19(a)
shows growth of capacitor voltage v, (f)for different choices of circuit parameters
(assumed that the capacitor is initially not charged). A sketch for g (¢) and i(¢) is shown
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¥ (1) ~svoltage ucross the capacitor {in volt)

e
L]
° —
= —
- —
o —
e S SB O S e T - L e —d
1
417 - --- P DY TR e = = e e - e
1
3 L] —
1
2 ' —
1
] ' : - —
1
° 1 + 1 1 1 1 1
o 1 X 2 3 . = - - s
.
€ v, —> ——> ¢ (in scconds)
- .

Fig. 10.1%(a): Growth of capacitor voltage (assamed initial capacitor yoltage is zero)

v = Invalt

-l

2 3 4 = - r ~

—— 1 (in seconds)
Fig. 10.18: Voltage acruss the capacitor due to
(i) the forcing function V| acting alone
i) discharge of capacitor initial voltage v
il Combine offect of (i) and i)
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o 1 2 3 4 s (3 7 s
F o é: — t (in seconds)

Fig. 10.19(b): System response due to the forcing function V (assumed capacitor
initial voltage v_ ~ @)

Discharging of a capacitor or Fall of a capacitor voltage in dc
circuits

Fis. (b)) shows that the swiatch 5 7 15 closed at posiion *1° for sufficiently
longz time and the circurt has reachad 1n steady-state condmtion. Af “r={0" the switch’™ 5 " 1=
opensd and kapt in position “ 2 © and rermains there. Oor job 12 to find the expres=sions for
{1 voltaze across the capacitor {‘*’..:_] ()} volfage across the resistance |:1.-'£_'|I::|'.1'.|'_} current
(i{z]} throogh the capacitor (dischargims current)] (1) dizcharge of charge {g{r))}throush
the circuit.

Solnbon: For ¢ <=0, the =anatch 5 " 1n posifion 1. The capacitor act= hike an open circoat
to do, baut the volaze across the capacitor i=s samme as the sunpply voltazes ;. Since, the
capaciftor voltaze cannot chans=e mstanmfanecusly, this mmplies that

v, (0) =, (0~ )=F,

TAhen the s=witch i= closed m positicon “ 27 the curremt #{z) will flow throush the circont
until capacitor 1= complstely dizscharsed thromgh the resisteance B . In other words, the
di=charsmg cycle will start at r= 0. MNow apphrms KWL arcund the loop, we =t

R c% +w FI=0 CLO.49)
The schytion of imput free differential eguoation (L 45} 1= miven by
v, (=4, &= 1O SO0
where the walue of & 1= obtained o the charactern=zhce eguoationm and 1t 13 egual o
o= — L . The constant .4, 1= obtained wsmg the mital condition of the circoot in

Eq (13 503, MNote, at “r=0 ([ when the switch i1z just clo=zed in po=ihon 2 7") the vrolizass
across the capacitor v @=F, . Uoing this condition in Eq {10 _50), wwe saf

v () =8, = 4, e ®E T = 4, =¥

=

Movar the followine expressions ars written as
L

5

B

Woltare across the capacitance ¥v_(f1=F_, = - C1a. 510
1
Woltape across the resistance v, (1= —v_{Zry= — I, = meo C1O_52Z0
—_t .
Chargineg cumarent throush the capacitor idri= % = — %ﬂ' e C1a_ 530

An inspection of the above exponenfial terms of eguations o {10510 6o {10.537) revraals
that the tme constant of O cirowrt 1s =iven by
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An mspection of the above exponential terms of equations from (10.531) to {10.533) reveals
that the tome constant of RC circutt 15 ziven by

r=R({ (zec.)
Thiz means that at timer= 7, the capacitor’s voltage v, drops to 36.8% of itz initial value
(zee fiz. 10.20da)). For all practical purposas, the de transient 1z considared to end after a
time span of 37. At such fime steady state condition 1= said to be reached. Plotz of above
equations as a funchion of time are depicted 1 fig. 10.20{z) and fiz. 10 20b) respectively.

10 T Ll T L] L] L] L]
B RN s e esrversvelrveesebs Ao ealeata FrsewsesoBevseveeshocssssegeeesess —
& F=SoN S S ssan s Rat Ty P ==
. . wvedr) © o
F L. - O i SRS, WOUR. < SRUSND O S o
= N\ s :
A P —— - - : :
& P R S ee TR Fecereaas e e -
= - < -
= s 2 R - .
= o e wscaa Saneni N e T e~ &
egzé_ s
T oyl e S R b oo iles remmnt o b o S e =
: vidt) :
Py TESSRERRES. (. (R SRR B e Y eseaaea e —
D I S~ S T ST, NN S S al
Bh=focsetrecsescseFecsennes Peeeeeaas Teeeeseeadeteaene it i -l
10 1 1 1 1 1 1 1
o 1 2 3 4 s 6 7 s

> t (in ds)

(a): Discharge of capacitor voltage with time in R-C circuit

- p
£ -
£s :
£s :
= B =
== :
DS P s+ e s ae ny ey - S R R S A A W e A R A el - e e g
- . i) . . -
]| T > .- G S ... R - - SR S ]
Wil o flonefeensannadtonsnnns Eenermers St LR Sremanans Srazees -
02 1 1 1 1 I 1 1
o 1 2 3 - s 6 7 s
— 1 (in seconds)
Fig. (b): System response due to capacitor discharge

2.7 TRANSIENT RESPONSE OF RLC CIRCUITS WITH DC EXCITATION:
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In the preceding lesson, our discussion focused extensively on dc circuits having resistances with either inductor ()
or capacitor () (i.e., single storage element) but not both. Dynamic response of such first order system has been
studied and discussed in detail. The presence of resistance, inductance, and capacitance in the dc circuit introduces
at least a second order differential equation or by two simultaneous coupled linear first order differential equations.
We shall see in next section that the complexity of analysis of second order circuits increases significantly when
compared with that encountered with first order circuits. Initial conditions for the circuit variables and their

derivatives play an important role and this is very crucial to analyze a second order dynamic system.

Response of a series R-L-C circuit
Consider a series RL circuit as shown in fig.11.1, and it is excited with a dc voltage source C—sV.

Applying around the closed path for,

dit
20 Rityev. () =7,
dat :

R L
O AW — R —

+ - -4
" p— ™ C vit)

. -

The current through the capacitor can be written as Substituting the current “’expression in eq.(11.1) and

rearranging the terms,

_ dv (1)
dt
e re®WD ., =¥
dt” dt )

The above equation is a 2nd-order linear differential equation and the parameters associated with the differential
equation are constant with time. The complete solution of the above differential equation has two components; the

transient response and the steady state response. Mathematically, one can write the complete solution as
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v, () =v,, () +v,,(t) = (4 €™ +4, %" )+ 4

¢

LCdT‘,m +RCd\'c(r) sl =0 Ddh"‘,m %R d\'c(r)+ 1 v.(f)=0
dt* dt- L dt LC
a d-"‘,”) +b wAQ) +c v (t) = 0 (where a=1. b=£ and (‘=L)
dr? dt L LC

Since the system is linear, the nature of steady state response is same as that of forcing function (input voltage) and
it is given by a constant value. Now, the first part of the total response is completely dies out with time while and it
is defined as a transient or natural response of the system. The natural or transient response (see Appendix in
Lesson-10) of second order differential equation can be obtained from the homogeneous equation (i.e., from force

free system) that is expressed by

a3+£01+i=0 =aa’+ba+c=0 (where a=1. b=§ and C=L)
L I ) 5 y i By

and solving the roots of this equation (11.5) on that associated with transient part of the complete solution (eq.11.3)
and they are given below.

(R RY 1) ([ & 1 [y |
=l ——+,[| = —— = —=—+=4/| = | —ac |
| 22" W\22) z2| | 2a a2, v

R ( R ‘]2 1 b 1 ,/b):
a, =| — - — =| — — | =1 —ac
n 2L 2L ILc 2a a\\2
where. b= £ and c = - .
E EC

The roots of the characteristic equation are classified in three groups depending upon the values of the
parameters ,,Rand of the circuit Case-A (over damped response): That the roots are distinct with negative real parts.

Under this situation, the natural or transient part of the complete solution is written as
ast (7 2% 4
v, (f)=4e" +4,e"

and each term of the above expression decays exponentially and ultimately reduces to zero as and it is termed as
over damped response of input free system. A system that is over damped responds slowly to any change in
excitation. It may be noted that the exponential term t—ool 1tAeatakes longer time to decay its value to zero than
the term21tAea. One can introduce a factor & that provides an information about the speed of system response and

it is defined by damping ratio
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Actual damping b %

critical damping -\/ / —

(&)= >1

- 2
Case-B ( ctically damped responze). When | %J Ic =0, this implies that the roots
b

of eg.(11.5) are same with nesative real parts. Under this situation, the form of the
natural or transient part of the complete sclution 1s written  as

1-“|:rj]={..-:lzt +.A4, ]a‘" (where a=—%j (11.%)

where the natural or transient response 1z a sum of two temms: a negative exponential and
a negative exponential multiplied by a lmear term. The expression (11.9) that anizes from
the natural sclution of second order differential equation having the rocts of charactenstic
edquation zre zame value can be verified followmg the procedurs given below:.

The roots of thiz characteristic equation (11.5) are zame cz:=cz::=cz:2=% when
R I
[ﬂ] - J =— andthec:uu‘es;mndmghumngemnus equation (1147
{:anbere“nttenas
dv () -, R dv. l:a':l
& U & Lc:f"‘m 0
J;j(tj 2o ﬂ&m+cz vif)=10

a [ dv_(£) ) _
QPE( 7 +cxrl,’,f}}+.:t{ +|'.'.-"..1'=I:f:lJ—'D

or %+ﬂjf=ﬂ where = v, |:a':| +av ()
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The sclotion of the above first order differential equation is well knowmn and it is given

b}.
F=4 e
Using the value of F in the expression f=ﬂ +e v (f) we can get,
% tav(D=d e = o= d"ﬂ;‘} b v ()=d, = —|e Y )=,

Integrating the above equation in both zides vields,
Ve () ={ Az + Ay |

In fact, the term .4, @™ (with :z=—1—i}dma}'sexpnﬂa:lia]l}'“=ﬂhiheﬁmeaudtends to

zero as f—e»oo . Om the other hand, the wvalue of the term rill'gml:“.ifh. o= —%) m

equation (11.9) first increazes from itz zero value to a walue .-ﬂ.j%eﬂ at a ime

T=—l=—[—£}=£ and then decayvs with time, finally reaches to zero. One can

easily wverify above statements by adopting the comcept of maximization problem of a

single valued fimction. The second order svstem results the speediest response possible

without any overshoot while the roots of characteristic equation (11.5) of svstem having

the same negative real partz. The response of such a second order system is defined as a

critically dampead system’s TEspomse. In this case damping ratic
-

(Ey= Aectuwal damping B _ }5']'_', =1 (11100
= critical dawmping 23.9-{; J}i;’ﬁ -
R 1
Casze-C (underdamped response]: "‘i’;‘hﬁnL 37 | < 0 | this maplhes that the roots of
eq(l1l_5) are complex conjugates are eaq_:tressed a5

R | rRY i 1
o= ——+ j.[f——] =— = 8+ : = — — | = =8 The
3 [ 57 T ze l.jz,l i | .L,|| [ | TS

- - Ls Fl

form of the natural or transient part of the complete solution 1s written as
Ven (r) = Al ™' + A;l_ g™ = Al EI"S +irl + Ag eilﬁ—.f?‘_.

= [(4,+ 4, )cos(r1)+1(4,— 4, Jsin(77) | (11.11)
=g [Blmsiz:fr]+32 sinl[;yt}] where B =4+ 4, ;Biz-j["il_fi:}

For real system. the response v_ (f) must also be real. This 1s possible only 1f 4 and 4,
conjugates. The equation (11.11) further can be simplified in the following form:

e’ Ksin(yt+6) (11.12)

- - = -

form of the natural or transient part of the complete solution is written as
v (£)=d, e + 4, ™ = 4,7 1+ 4, g5

=t I:(A1+_-:{2 }lcos(}‘f}+j{ﬁl—ﬁl)siu(}fr}:| (11.11)
=gt I:}_glc,os{,?’f]+_32 Si.nli}".t}] where Blz,&1+A1 ;32 zj{‘il _Ai}
For real system. the response v_ (r) must also be real. This 1s possible only if 4 and 4,
conjugates. The eguation {(11.11) further can be simplified in the following form:

e” Ksin(pt+86) (11.12)
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form of the natural or transient part of the complete solution 1s written as
Ven (f} = Al Eml! + 4"11 Eﬂlr = Al E'I"S +ir + .'12 Eilﬁ-.f?_.

: |:(.d1+.»i:}cus(}‘r}+j(ﬁl—ﬁl)sin(}*3)]
=¢” [ B cos(7t)+B,sin(y¢) | where B=4 + 4, ; B,=j(4,-4,)
For real system, the response v_ (f) must also be real. This 15 possible only if 4 and 4,
conjugates. The equation (11.11) further can be simplified in the following form:

(11.11)

¢ Ksin(yt+6) (11.12)

el ] art af the IO,

Trmly speasicns the valoe of & oved & can be

where JF — raal pant af the o= .

= = -

_E—-.,|I.E,‘+.S'-‘ wad Fetan | -

=
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ﬂnﬂ!m_ & ‘?F'E -1

-_ 11.13
crivical dmwping  Ias | 5 s

8=

of a second crder =y=tern wihen excited wiidh a do voltass souarnos =

Finalls, the
(1} 1meder—darngesd (i) over—darmpred D1k

f =t
pl'ea:Eﬂ:l:ed m =T 11 2 for differend cosses, 1o
critical e darmpeed S STerT TeTpHori=s

Figz. L2 System response for series B-LC clrcwmio:
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2.8. RESPONSE OF SERIES RL CIRCUIT (AC EXCITATION):

Consider the following series RL circuit diagram.

— 5

t=

v(t) = Vpsin(wt + @) @ v

In the above circuit, the switch was kept open up tot = 0 and it was closed att = 0. So, the AC voltage source
having a peak voltage of V,, volts is not connected to the series RL circuit up to this instant. Therefore, there is no

initial current flows through the inductor.
The circuit diagram, when the switch is in closed position, is shown in the following figure.

R
-
. L
v(t) = Vgpsin(wt + @) /\

Now, the current i(t) flows in the entire circuit, since the AC voltage source having a peak voltage of V,, volts is

connected to the series RL circuit.
We know that the current i(t) flowing through the above circuit will have two terms, one that represents the

transient part and other term represents the steady state.
Mathematically, it can be represented as

i(t) = 7y (t) +igs(t)

R

=quation 1
Where,

iT""{t) is the transient response of the current flowing through the circuit.

. 1#-?(*‘) is the steady state response of the current flowing through the circuit.
In the previous chapter, we got the transient response of the current flowing through the series RL circuit. It is in the

(5]
form of Ke

Substitute ‘7r(t) = Ke ) in Equation 1.
i(t) = Ke (5) +i(t)
Equation 2

Calculation of Steady State Current
If a sinusoidal signal is applied as an input to a Linear electric circuit, then it produces a steady state output, which

is also a sinusoidal signal. Both the input and output sinusoidal signals will be having the same frequency, but
different amplitudes and phase angles.
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We can calculate the steady state response of an electric circuit, when it is excited by a sinusoidal voltage source
using Laplace Transform approach.

The s-domain circuit diagram, when the switch is in closed position, is shown in the following figure.
R

+T — A

sL
i I(s)

In the above circuit, all the quantities and parameters are represented in s-domain. These are the Laplace
transforms of time-domain quantities and parameters.

The Transter function of the abowve circuit 1s

I(s)
H =
() = ooy
1
H e
= (=) Z(s)
= H(s) = 1
- R+ sL
Substitute 8 = jJw in the above equation.
. 1
HGw) = g jor
Magnitude of H{Gw) is
. 1
| H (Feo)| =

v IR?2 4 w2 2
Phase angle of H{jw) is

L H(jw) = —tan"! [%]
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We will get the steady state current i..(¢) by doing the following two steps

= Multiply the peak voltage of input sinusoidal wvoltage and the
magnitude of H(jw).

= Add the phase angles of input sinusoidal voltage and H (jw).

The steady state current i..(t) will be

Vi i
iss(t) = ————sin(wt —tan ' (—-
O = e e et e e )
Substitute the value of f.:(¢) in Equation 2.
. . P Ve - —1 ¢ wl -
3
We know that there is no initial current in the circuit. Hence, substitute ¢t = O
B i(t) = 0 in Equation 3 in order to find the value of constant, K.
o V, L
0=Ke |7 4 "™  gin(w(0) + ¢ — tan ' [2))
B + w212 R
| wi
= 0=K 4+ —2 ___sin(ypy —tan '[—)]
VRZ + w22 R
Vi . wl
= K — — m gin(y —tan ' [—=-])
VRZ + o2 L2 R

Substitute the value of K in Equation 3.

. Vim . . _rt .
i(t) = — Ny sin(p — tan ! [”—!‘;]]E (=) Equation 4
Vin - —1  wi
—= g7 |t — tan =
T sin(wt + ¢ (22))

Equation 4 represents the current flowing through the series RL circuit, when
it is excited by a sinusoidal voltage source. It is having two terms. The first
and second terms represent the transient response and steady state response
of the current respectively.

We can neglect the first term of Equation 4 because its value will be very
much less than one. So, the resultant current flowing through the circuit will
be

V, wl

= sin(wt + @ —tan ' [—))

VRZ +uw?L? R

It contains only the steady state term. Hence, we can find only the steady
state response of AC circuits and neglect transient response of it.

i(t) =

2.9.Transient Response of a series R-L-C circuit

Consider a series RL circuit as shown in fig.11.1, and it is excited with a dc voltage source C—sV.

Applying around the closed path for
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di(t)

E +RIi(D)+v (D) =V,
R L
O AW - - - 5
A
t=0 __.
+ - 5
" g T~ C vty
) i)

o B

Fig. 11.1: A Simple R-L-C circuit excited with a dc voltage source

The current through the capacitor can be written as

. dv (1)
ity=C ———
(1) o
Substituting the current *i(f) "expression in eq.(11.1) and rearranging the terms,
9O pede® |y (11.2)
dt” dt :

The above equation is a 2™-order linear differential equation and the parameters
associated with the differential equation are constant with time. The complete solution of
the above differential equation has two components; the transient response v, (f) and the

steady state responsev, ((t). Mathematically, one can write the complete solution as
v(0)=v, (0 +v, (1) = (4 €™ +4,e™" )+ 4 (11.3)

Since the system is linear, the nature of steady state response is same as that of foreing
function (input voltage) and it 1s given by a constant value 4. Now, the first part v_ (1) of

the total response is completely dies out with time while K >0 and it is defined as a
transient or natural response of the system. The natural or transient response (see
Appendix in Lesson-10) of second order differential equation can be obtained from the
homogeneous equation (i.e., from force free system) that is expressed by

e d‘v{q{r} YA, v () =0 :-d-vﬁj(r) R +L‘P}(ﬂ —0
i . dt® L dr LC
o VD Ly O | where a=1, b=R and c=—L1) (114)
dt” dt L Lc

The characteristic equation of the above homogeneous differential equation (using the

T 12
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g VW Ly ) Ly = 0 (where a=1, =R and c=——) (11.4)
dr® dt 2 IC

The characteristic equation of the above homogeneous differential equation (using the

operator c;r:i , &’ =£ and v, (r)=0) is given by
dt dr’
» R 1 2 Fis 1
a +—a+—=0 —=aa +ba+c=0 (where a=1,b=— and c=——) (11.5)
L LC L LC

and solving the roots of this equation (11.5) one can find the constants @, and «, of the

exponential terms that associated with transient part of the complete solution (eq.11.3)
and they are given below.

ol 2B el )
el a2

The roots of the characteristic equation (11.5) are classified in three groups depending
upon the values of the parameters R, L, and C of the circuit.

(11.6)

Case-A (overdamped response);: When (%} —% =0, this implies that the roots are

distinct with negative real parts. Under this situation, the natural or transient part of the
complete solution is written as

v (t)=4e"" +4,& (11.7)
and each term of the above expression decays exponentially and ultimately reduces to
zero as f—oo and it 1s termed as overdamped response of input free system. A system
that 1s overdamped responds slowly to any change in excitation. It may be noted that the

exponential term A, e takes longer time to decay its value to zero than the term 4, ™"

One can introduce a factor £ that provides an information about the speed of system
response and it is defined by damping ratio

Actual damping b ‘;y

.—:rrr{caf damping 2\-"; /J"_
LC

Case-B ( cntically damped response); When [%] —% =0, this implies that the roots

(11.8)

of eq.(11.5) are same with negative real parts. Under this situation, the form of the
natural or transient part of the complete solution is written as

ar __ R
v ()=(41+4, )e (where a=— ) (11.9)

where the natural or transient response 1s a sum of two terms: a negative exponential and
a negative exponential multiplied by a linear term. The expression (11.9) that arises from
the natural solution of second order differential equation having the roots of characteristic
equation are same value can be verified following the procedure given below,
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. . : R
The roots of this characteristic equation (11.5) are same &=, =a, = EYa when

C LC
can be rewritten as

R Y 1 R Y 1 ) )
— | —— =0 = | — | =—— and the corresponding homogeneous equation (11.4
(3] -1 (£) ponding homogeneous equation (11.4)

Lo R0, 1 )
dt” 2L dr Lc
or d_v"._,“}+ 3 dv_ (1)
dt” dt

oF i[dx;{r} +av{{r]]+a[dv‘{ﬂ +av¢_{r}]={}

+ ﬂ’zvr{.l‘] =10

clt dr dr

dv (1)

df’ :
or —+a =0 where f=——"— 4+av.(t)
dt d d dt (

The solution of the above first order differential equation 1s well known and it 1s given
by

11(‘:[4[ EH’Il
. . . dv_(1)
Using the value of f in the expression f =T +av_(t) we can get,
dv (1) Cr cdv () L, d (
——=tav(t)=4, e e ———=+e" av.it)=4, = —(e"v.(1))=4
o (1)=4, r (1)=4, r:ﬂ( L(0))=4,

Integrating the above equation in both sides yields,
V., {i‘}z(zi', t+4, ) e

In fact, the term A4, ' (with a = —%} decays exponentially with the time and tends to

@l

zero as f—»2o0. On the other hand, the value of the term A te™ (with o= —%} n

: : ) i 2L _ ,
equation (11.9) first increases from its zero value to a maximum value A, ?e " atatime

1 2L 2L
r:——:—(—?]:? and then decays with time, finally reaches to zero. One can
a

easily venify above statements by adopting the concept of maximization problem of a
single valued function. The second order system results the speediest response possible
without any overshoot while the roots of characteristic equation (11.5) of system having
the same negative real parts. The response of such a second order system is defined as a
critically  damped  system’s response. In  this case damping ratio

. R
(&)= Actual damping b _ Ar —1 (11.10)

"~ critical damping 2Jac - %_
LC

Case-C (underdamped response): When[%} —% < 0, this implies that the roots of
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eq.(11.5) are complex conjugates and they are  expressed as

2 2
[_ (&) ].ﬁ [_ (&) ]ﬁ e
form of the natural or transient part of the complete solution 1s written as
v ()=A e +d, e = A" 44,77
=e [[.4] +4, )eos(yt)+ j( 4, —Ag)sin{yr}] (11.11)
=g [B, cos(yt)+B, sin{yr}] where B,=4,+ 4, ; B, =.j{A, —Az]
For real system, the response v_ () must also be real. This is possible only i’ 4, and A,

conjugates. The equation (11.11) further can be simplified in the following form:

e’ Ksin(yt+8) (11.12)

where f=real part of the root , y=complex part of the root,

K=,fB,1+BZ: and @=tan™ [:‘ ] Truly speaking the value of K and € can be
calculated using the initial conditions of the circuit. The system response exhibits
oscillation around the steady state value when the roots of characteristic equation are
complex and results an under-damped system’s response. This oscillation will die down
with time if the roots are with negative real parts. In this case the damping ratio

Actual damping b Iy

crmcal damping 2\/1; //—

(11.13)

Finally, the response of a second order system when excited with a dc voltage source is
presented in fig.L.11.2 for different cases, i.e., (i) under-damped (i1) over-damped (111)
critically damped system response.
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Voltage across the capacitor

0 1 1 1 1 1 1 1 1 1
0 2 - 6 8 10 12 14 16 18
[ - sec

Fig. 11.2: System response for series R-L-C circuit:
(a) underdamped
(b) critically damped
(¢) overdamped system

NUMERICAL PROBLEMS:

20
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1. Assign the loop currents in clockwise directions and redrawn the circuit as shown in . The
voltage across the terminals > and ¢’ can be obtained by solving the following loop equations.

—
i 692
¢ vit)
e i) -
i ' L(O L=2H
T Yo b

Solution

Loop-1:
10 =64 (1)—6(5H(1)—i, (1))=0 = 10= 12§ () — 65, (1)= i () = liﬁl[llD+l’j;f'2 ())

Loop-2:
—64, (1) - idff)—ﬁir (D)~ ()= 0 = —6i,()+1214, (1) + z‘f";f” 0

Using the value of 7 (7) in equation (10.37) . we get

To solve the above first order differential equation we must know inductor’s initial and
final conditions and their values are already known (see. = 7,(07)=7,(07)=34 and

5 . . . . .
L(t=x)= %;6 =0.555 amp.). The solution of differential equation (10.38) provides an

expression of current 7,(r) and this. in turn, will give us the expression of /(7). The

voltage across the terminals “«* and * b’ is given by

. . di,(t) | _ “24)
Vg =10 =67, (1) =61,(1) +2 P 3.339-7.335xe 2 |V
where, i,(t) and i;(t)can be obtained
' -3 \ 1 ' 9,
iL(1)=| 2.445xe 2 +o.555J and 7 (1) = 5(10+64 (D) = | 1.11+1.2225¢ °

2.The switch ¢ S’ shown is kept open for a long time and then it is closed at time ‘t=0".

Find
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Find (i) +_ (0 ) (ii) . (07) (iii) 7. (07 ) (iv) i (0O7) (v)

\(;( (v1) find the time constants of the crcuit before and after the switch is closed
W |
(i)1,()
S(switch)
i
—W——s
+ 1002 (o0
Ay ?.- /N Codf 60

Solution: As we know the voltage across the capacitor v, (f)cannot change
instantaneously due to the principle of conservation of charge. Therefore. the voltage
across the capacitor just before the switch 1s closed v, (07)= voltage across the capacitor
just after the switch is closed v, (07) = 40 7 (note the terminal ‘@ 1s positively charged.
It may be noted that the capacitor current before the switch S " 1s closed 15 7 (07)=04.
On the other hand, at =0, the current through 10Q resistor is zero but the current

through capacitor can be computed as

. v (0) 40 :
r((0+):&:?:6.6614 (note, voltage across the capacitor cannot change

instantaneously at instant of switching). The rate of change of capacitor voltage at time
*t=0" is expressed as

CM =i (0) = v (0 ) _&(0) :6":6 =1.665 volt / sec.

dr | g dt C

Time constant of the circuit before the switch was closed = 7= RC=10x4=40sec. Time

. o oo . 10x6
constant of the circuit after the switch 1s closed is 7= R, C= 01t
_|_

x 4=15sec. (replace

the part of the circuit than contains only independent sources and resistive elements by an
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equivalent Thevenin’s voltage source. In this case. we need only to find the Thevenin
resistance Ry, ).

Note: When the switch is kept in closed position. initially the capacitor will be in
discharge state and subsequently its voltage will decrease with the increase in time.
Finally, at steady state the capacitor 1s charged with a voltage

40
v (t=m)=
e ) 10+

%6 =15 V (theoretically. time required to reach the capacitor voltage at

steady value is 57=5x15=75 sec.).

The circuit shown in Fig.below has been established for a long time

The switch is closed at time r=0. Find the current 1)

7,(0%). i,(0*), #,(0%), and Do
B dr

(ii) at steady state the voltage across the capacitors.
=07
7(~0), 2 (<) and i3(~).

a —> (D b

5002

= 502

S{switch)

Solution: (1) At r=0" no current flowing through the circuit, so the voltage at points “5°
and ‘d " are both equal to 50vo/t. When the switch ° S~ closes the capacitor voltage
remains constant and does not change its voltage instantaneously. The current
i, (07) through @—»5 branch must then equal to zero. since voltage at terminal ‘5 is

equal to v,(07)= 50 volr., current through b—c is also zero. One can immediately find

q
out the current through c¢—e equal to i,(07)= %:1 A. Appling KCL at point ‘¢’

i, (07)=14 which is the only current flow at r=0" around the loop ‘d —c—e—d . Note
the capacitor across “d —e’ branch acts as a voltage source. the change of capacitor

(h'de| =_ 1 — 7, (07) =2 kvolr/sec.
r |r=0_ 500x10

(i1) at steady state the voltage across each capacitor is given

voltage

_ 20 _
=150¢ 50 =16.666 volt.
At steady state current delivered by the source to the different branches are given by

; 50 oo A. - a9 ] )
@1(’\,) :1?5[]:0_3331—1: az(’\,):(]_333:1 and 33(’\,)2011

44




Transient Analysis of Electric Circuits Using Laplace Transform

In electrical engineering, a transient response or natural response is the electrical response of a system
to a change from equilibrium.

The condition prevailing in an electric circuit between two steady-state conditions is known as the
transient state; it lasts for a very short time. The currents and voltages during the transient state are
called transients.

In general, transient phenomena occur whenever

i. a circuit is suddenly connected or disconnected to/from the supply,

ii. there is a sudden change in the applied voltage from one finite value to another,

lii. a circuit is short-circuited.
We consider the transient analysis for the following circuits subject to step input, impulse input and
sinusoidal input:

1. RL Series Circuit,

2. RC Series Circuit,

3. RLC Series Circuit, and

4. RLC Parallel Circuit.

Steps for Circuit Analysis Using Laplace Transform Method
1. All circuit elements are transformed from time-domain to Laplace domain with initial
conditions.
2. Excitation function is transformed into Laplace domain.

3. The circuit is solved using different circuit analysis technigues, such as, mesh analysis, node
analysis, etc.

4. Time domain solution is obtained by taking inverse Laplace transform of the solution.

Convolution Theorem

If f1(t) and f5(t) are two functions of time which are zero for t < 0, and if their Laplace transforms are
F1(s) and F(s), respectively, then the convolution theorem states that the Laplace transform of the

convolution of f1(t) and f,(f) is given by the product F(s) Fa(s).
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Application of Convolution Theorem

The convolution theorem is used to find the response of a linear system to any arbitrary excitation if the
impulse response of the system is known.

We know that the transfer function is defined as the ratio of response transform to excitation transfarm
with zero initial conditions. Thus,

Laplace transform of Response|

Transfer Function = —
Laplace transform of Excitation |

allinitial conditions reduced to zero

Y(s)
Wis)

or H(s) =
IC=0

Thus, Y(s)= H(s)W (s)

Laplace Transform Table

There is always a table that is available to the engineer that contains information on the Laplace transforms. An
example of Laplace transform table has been made below. We will come to know about the Laplace transform of
various common functions from the following table .

£L[5(t)] =1
£ [ult)] = é
L[t = le
G
£ =%
£ =
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s +a
£ [e™] = - o
£ [te™™] = ,:_.,._1(1()2
1

£ [n:nr] —

72l
. —ot
£ [te ] = - —
[ :| s + (’t_]”
£ |coswt] = 57—
[ [ ] 2 o2
. [
£ [sinwt] = — 2
s
e
£ [t:—nf Hilli-i-»'t] = - v 2 =
5 + f't_] - W
r 5 — (X
£ [e7 coswi] =

p 2 2
s 4+ o)™ 4+ we

S o

£ [sinh at] = 2 _ 2
il

£ [cosh at] = PR
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2.10. TRANSIENT ANALYSIS OF A SERIES RL CIRCUITS USING LAPLACE TRANSFORM:

Using the Laplace transform as part of your circuit analysis provides you with a prediction of circuit response.
Analyze the poles of the Laplace transform to get a general idea of output behavior. Real poles, for instance,

indicate exponential output behavior.

Follow these basic steps to analyze a circuit using Laplace techniques:
1. Develop the differential equation in the time-domain using Kirchhoff’s laws and element equations.
Apply the Laplace transformation of the differential equation to put the equation in the s-domain.

2
3. Algebraically solve for the solution, or response transform.
4

Apply the inverse Laplace transformation to produce the solution to the original differential equation described
in the time-domain.

To get comfortable with this process, you simply need to practice applying it to different types of circuits such as an

RC (resistor-capacitor) circuit, an RL (resistor-inductor) circuit, and an RLC (resistor-inductor-capacitor) circuit.

Here is an RL circuit that has a switch that’s been in Position A for a long time. The switch moves to Position B at

timet=0.
R i(t)
A —_—
o o—ANV
+ Vglt) - +

For this circuit, you have the following KVL equation:

VR(t) +vi(t) =0
Next, formulate the element equation (or i-v characteristic) for each device. Using Ohm’s law to describe the

voltage across the resistor, you have the following relationship:

Vr() =i (DR

The inductor’s element equation is

"
v () +2 20

Substituting the element equations, vg(t) and v, (t), into the KVVL equation gives you the desired first-order

differential equation:

di (0)

Z +i, ()R =0

On to Step 2: Apply the Laplace transform to the differential equation:
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5
Z{L 325(‘) +, (z)R] 2

di :
L’[Lj—t@}+£[zz(z)}2]=0

The preceding equation uses the linearity property which says you can take the Laplace transform of each term. For

the first term on the left side of the equation, you use the differentiation property:

5
;{Lz—z@},s[sfz(s)—zo]

This equation uses 1.(s) = £i.(t)], and I, is the initial current flowing through the inductor.

The Laplace transform of the differential equation becomes

IL(S)R + L[sl(s) — Io] = 0

Solve for I,(s):

For a given initial condition, this equation provides the solution i (t) to the original first-order differential equation.

You simply perform an inverse Laplace transform of I, (s) — or look for the appropriate transform pair in this table

to get back to the time-domain.

Signal Description Time-Domain Waveform, f{t) s-Domain Waveform, Fis)
Step u(t) 1
s
Exponential [e u(t) i 8
s+a
Impulse o(t)
Ramp, r(t) tu(t) W 4
s?
Sine [sinft Ju(t) B
sZ+ﬁZ
Cosine [cospt |u(t) s—,f—ljf
Damped Pairs
Damped ramp te “u(t) 1
(s+a)
Damped sine [esinpt Ju(t) B
(s+a) +p°
Damped cosine e " cos Bt lu(t S+a
[ Bt Jute) (s+a) + B
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The preceding equation has an exponential form for the Laplace transform pair. You wind up with the following
solution:
10

I (s)= ot 2 i ()= z'oé-’-(;)

The result shows as time t approaches infinity, the initial inductor current eventually dies out to zero after a long

period of time — about 5 time constants (L/R)

2.11. TRANSIENT RESPONSE OF SERIES RC CIRCUIT USING LAPLACE TRANSFORMS:
Using the Laplace transform as part of your circuit analysis provides you with a prediction of circuit response.
Analyze the poles of the Laplace transform to get a general idea of output behavior. Real poles, for instance,

indicate exponential output behavior.
Follow these basic steps to analyze a circuit using Laplace techniques:

1. Develop the differential equation in the time-domain using Kirchhoff’s laws and element equations.
2. Apply the Laplace transformation of the differential equation to put the equation in the s-domain.
3. Algebraically solve for the solution, or response transform.

4. Apply the inverse Laplace transformation to produce the solution to the original differential equation described

in the time-domain.
To get comfortable with this process, you simply need to practice applying it to different types of circuits such as an

RC (resistor-capacitor) circuit, an RL (resistor-inductor) circuit, and an RLC (resistor-inductor-capacitor) circuit.

Consider the simple first-order RC series circuit shown here. To set up the differential equation for this series
circuit, you can use Kirchhoff’s voltage law (KVL), which says the sum of the voltage rises and drops around a

loop is zero. This circuit has the following KVL equation around the loop:

-Vs(t) + V() + ve(t) =0

R it)

—_—

+ Vn(t) % +

Vs(t)=V,u(t) vdltl——

Next, formulate the element equation (or i-v characteristic) for each device. The element equation for the source is

Vs(t) = Vau(t)

Use Ohm’s law to describe the voltage across the resistor:
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ve(®) = iR

The capacitor’s element equation is given as

dv.(£)

i) =C—= =

Substituting this expression for i(t) into vg(t) gives you the following expression:

vo(T) =i(t)R = RC d"dgf)

Substituting vg(t), vc(t), and vs(t) into the KVL equation leads to

V(&) +vet) +v, () =0

—V gi(t) +RCM+v€(3) =0
dt
Now rearrange the equation to get the desired first-order differential equation:

RC

&, f‘) +v, () = V(o)

Now you’re ready to apply the Laplace transformation of the differential equation in the s-domain. The result is

[ ()
¥ RCTW,@ = L[V u(t)]

iz Rcddf)};[ ()] = L[V u(e)]

On the left, the linearity property was used to take the Laplace transform of each term. For the first term on the left

side of the equation, you use the differentiation property, which gives you

;[Rcd‘;(“’)} RC[sV,(s)-V; ]

This equation uses V¢(s) = £]vc(t)], and V, is the initial voltage across the capacitor.

Using the following table, the Laplace transform of a step function provides you with this:

L[V u(e)]= %
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Signal Description Time-Domain Waveform, f{t) s-Domain Waveform, Fis)

Step u(t) 1

s
Exponential [e"" ]u(t) i

s+a
Impulse o(t)
Ramp, rt) tu(t) Jk

s?
Sine [sinft Ju(t) B

2+ﬁ2

Cosine [cospt |u(t) —,_‘:ﬁ,—
Damped Pairs
Damped ramp te “u(t) e

(s+a)
Damped sine [esinft Ju(t) B

(s+a) +p°
Damped cosine e "cosft |u(t S -

[ Bt Jute) (s+a) +p?

Based on the preceding expressions for the Laplace transforms, the differential equation becomes the following:

RC[sV,(s)~V, |47, () = 4
S

Next, rearrange the equation:

! _V(!
[”%]V‘(S)“Rc[s]%

Solve for the output V(s) to get the following transform solution:

Vv 1 A
P;(.t_',‘)z_"1 + 0
RC|s(s+4)| s+

By performing an inverse Laplace transform of V(s) for a given initial condition, this equation leads to the

solution v¢(t) of the original first-order differential equation.

On to Step 3 of the process. To get the time-domain solution vc(t), you need to do a partial fraction expansion for

the first term on the right side of the preceding equation:
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2.13. TRANSIENT ANALYSIS OF A SERIES RLC CIRCUIT USING LAPLACE TRANSFORMS:
Using the Laplace transform as part of your circuit analysis provides you with a prediction of circuit response.
Analyze the poles of the Laplace transform to get a general idea of output behavior. Real poles, for instance,

indicate exponential output behavior.
Follow these basic steps to analyze a circuit using Laplace techniques:

Develop the differential equation in the time-domain using Kirchhoff’s laws and element equations.
Apply the Laplace transformation of the differential equation to put the equation in the s-domain.

Algebraically solve for the solution, or response transform.

> w o poE

Apply the inverse Laplace transformation to produce the solution to the original differential equation described

in the time-domain.

To get comfortable with this process, you simply need to practice applying it to different types of circuits such as an

RC (resistor-capacitor) circuit, an RL (resistor-inductor) circuit, and an RLC (resistor-inductor-capacitor) circuit.

Here you can see an RLC circuit in which the switch has been open for a long time. The switch is closed at time t =
0.

+ Vglt) - +vlt)-

AM—NN—
R A 7& R L
Va vlt) == C

i _

R-80Q C- 411-10'5 F = 2.439 uF

L=1H Z=5V

In this circuit, you have the following KVL equation:

Vr() +vi() +v(t) =0
Next, formulate the element equation (or i-v characteristic) for each device. Ohm’s law describes the voltage across
the resistor (noting that i(t) = i, (t) because the circuit is connected in series, where I(s) = I.(s) are the Laplace

transforms):
Ve(t) = iR

The inductor’s element equation is given by

vﬁtj:i’.%

And the capacitor’s element equation is
53




v, () = %J:i(r)+v€(0)

Here, vc(0) = Vq is the initial condition, and it’s equal to 5 volts.

Substituting the element equations, vg(t), vc(t), and v, (t), into the KVL equation gives you the following equation

(with a fancy name: the integro-differential equation):

di, () 1t
iz ;; +x£(z)R+EJ'Uz(T)+v€(O)=O

The next step is to apply the Laplace transform to the preceding equation to find an I(s) that satisfies the integro-

differential equation for a given set of initial conditions:
z:'[ ds;,(‘% OR+— Ix(‘.'.‘)d‘.'.‘+ ] 0
di (z)} [ }
£ LN+ LliR|+ £ DdT+V, [=0
[ £ ()R] C] (@)

The preceding equation uses the linearity property allowing you to take the Laplace transform of each term. For the
first term on the left side of the equation, you use the differentiation property to get the following transform:

/;[ 0
dt

]: L[si(s) - 1]

This equation uses 1, (s) = L[i(t)], and Iy is the initial current flowing through the inductor. Because the switch is

open for a long time, the initial condition |, is equal to zero.
For the second term of the KVL equation dealing with resistor R, the Laplace transform is simply

LII(OR] = I(s)R
For the third term in the KVL expression dealing with capacitor C, you have

1 16,
;{Cj z(f)dT+V} —+

g

The Laplace transform of the integro-differential equation becomes
L[si(s)-1,]+1(s )R+f(;) oL
hy

Rearrange the equation and solve for I(s):

Y

f(s) =0 &
sg+§s+31@
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To get the time-domain solution i(t), use the following table, and notice that the preceding equation has the form of

a damping sinusoid.

Signal Description Time-Domain Waveform, f{t) s-Domain Waveform, F(s)
Step u(t) 1
s
Exponential [e-w Ju(t) U
S+a
Impulse o(t) 1
Ramp, r(t) tu(t) ¥ i
s?
Sine [sinpt |u(t) B
s'+p°
Cosine
[cospt|u(t) TP
Damped Pairs
Damped ramp te “u(t) 1
(s+a)
Damped sine [e"" sinﬁt]u(t) B
(s+a) +p
Damped cosine e cos Bt lult __Sta
[ Bt Ju(t) (s+a) +p°

Now, you plug in I, = 0 and some numbers from this figure:

+ Vglt) - +vlt) -
AN ' G i T

R A)é R | F— li(t)

Velt) —— C
TB

R=800Q C- 411-10-5 F = 2.439 uF

L= TH V=5V

Now you’ve got this equation:

5
s +800s+401.10°

Is)=-

5 500
500| (s +400)" +(500)’

You wind up with the following solution:

i(t) = [-0.01e™** sin500t]u(t)
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For this RLC circuit, you have a damping sinusoid. The oscillations will die out after a long period of time. For this

example, the time constant is 1/400 and will die out after 5/400 = 1/80 seconds.

Numerical Problems on RLC Circuits:

The relaxed series RLC circuit of Fig. 6-23a is excited at ¢ = 0 by the sinusoidal
source shown. Solve for the current i(f) for ¢ > 0.

50 mH C0S5s

\ ov*fﬂﬁ — T l
NG 75 SN <

! 1 1 o 2 _-_,,§L‘L + ) / 1[5) 1 3—‘.)0—-6
i) pF s + 25 x 108N : I ’
AMA Ay

100 & 100
(o) (b)

100 sin 5000 (L

Seolution Although the mathematics will eventually reveal the type

calculate R/2L and 1/ LC.

R 100 .
_ i 6-125:
T = 3x005 ( )

I 1
= — = 10* (6-125b)
VLC  J0.05 x 0.2 x 10™°

N

Since R/2L < 1/{/LC, the circuit is underdamped and oscillatory. We have

% = 10? nepers’ (6-126)
wy = 10* rad/s (6-127)
Wy = Jwi — 2% = 9.95 x 10 rad/s (6-128)

As a result of the relatively small amount of damping, the damped resonant
frequency differs from the undamped resonant frequency by only 0.5%,. As a
matter of interest, the damped repetition frequency is f; = w,/2n = 1548 Hz.
Notice that the natural damped frequency is about twice the frequency of the
excitation. Again, we point out that these preliminary calculations are not
absolutely necessary as the results will “fall out™ of the math that follows.

The transformed circuit is shown in Fig. 6-23b. Using the impedance con-
cept, we have

“ 535 10°
Z(s) = 0.05s + 100 +

_ 0.05s* + 100s + 5 x 10°

(6-129)
Y
5% + 2000s + 10%
20s
The current is
E(s) 107s
I(s) = = -13
(=) Z(s) (52 + 25 x 10%)(s® + 2000s + 10%) (=120
The poles due to the quadratic with three terms are
{i‘ = —103% + j9.95 x 103 (6-131)

which agrees with our preliminary calculations.
We obtain the final desired result by finding the inverse transform of I(s).
Since one quadratic has imaginary roots and the other has complex roots, we
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may invert the function by applying the special formula of Section 5-7 indivi-
dually to the two quadratic factors. The reader is invited to show that the
result is

i(r) = 0.133¢ '99%gin (9.95 x 10%t — 99.517)

‘ ) (6-132)
- 0.132 sin (50001 + 82.41°)

The response is seen to consist of a damped sinusoidal term whose frequency
is the natural damped resonant frequency of the circuit, and an undamped
sinusoid whose frequency 1s that of the excitation. The former term is transient
in nature, whereas the latter term is the steady-state response. After the transient
disappears, the steady-state or forced response 1s

it) = 0.132 sin (5000t + 82.41°) (6-133)

SOLVED PROBLEMS

The switch S closes at T=0. The 40

complete response for 1(t) for t=0 _fg _IVV\(_

15
(a) 2.5+ 6e 075t +
(b) 2.5 -2.5¢" 075 10 volts _——

(€) 2.5+ 2.5¢ 133t T
(d) 0 ]
(e) 2.5-2.5¢ 133t

jH

MM

We use KVL to write the differential equation for the circuit using the correct expression for the
impedance of the inductor.

10 +4i+ 3% =0
Re-writing this in conventional form with the sources on the right hand side of the equation

3% +4i=10

The dc (or homogeneous) solution is obtained by setting the derivatives equal to zero or, in this
case

4i= 10,

giving 1=2.5 amps.
The transient solution is always an exponential in form. Substituting i(t}=Aek! into the

differential equation and setting the source (the right hand side of the equation) equal to zero we
obtain

differential equation and setting the source (the right hand side of the equation) equal to zero we

obtain
3%+4i=0

3kAekt + 4Aekt =0
3k+4 =0

k—4/3

The total solution is then i(t) = igransient ~ lhomogeneous = Ae~ 133t + 2.5
The coefficient A is solved for by using the boundary condition that i(0)=i(0-)=0.
This requires that i(07) = A + 2.5 = 0, or that A=-2_5.

Then i(t) = 2.5 - 2.5e- 1.33t and the correct answer is (e).
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The form of the transient part of V(t)
for t=0 is

(3) (ArtAg)e 0t
(b) Ajcos(0.5t Y+ Azsin(0.5t) i
() Aie tcos(0.5t )+ Are tsin(0.5t) 2A C) g 40
(d) Aqe 171t A,e- 025t

(e) 0

+

.,d
—
=

WA

[
o]

(D=4
—)HMM—

At t=0 the switch moves from 1 to 2.
Solution:
For t=0 the equation of the circuit is

dt

where V(0™), the initial voltage on the capacitor, is zero.
Differentiating the above equation to remove the integral

di |54 % j i(0)do. + Ve(0) = Scos(t)
0

d?i 1 + 2$ —1(t) = -5sin(t)
The left hand side of this equation describes the transient response. For the transient

%+2$+%i{t}=0
If we let i(t)=Aem! we get

m2Aemt 2mAemt + 217 Aemt=0

which reduces to the characteristic equation

m?+2m+0.5=0
This equatlon can be solved using the quadratic formula

-2 +/(2)- 4(1)0.5) _

-1.71 and -0.29

The only answer with these exponents is (d).

itis 1 g

(a) e 06t | 3{

b) e 167t

i VW

(d) -e- 06t it

() 2-e LOM G(-)'_u(t) v 20 § § 8Q § 8Q
Solution:

There are many ways to solve this problem but, perhaps, the easiest way is to Thevenize the left
hand side of the circuit (the voltage source and the two 2Q resistors) and replace the right hand side
of the circuit (the two 8€) resistors in parallel) by its equivalent resistance.
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Thevenizing the left hand side of the circuit

\ — 2 10=5vy
VN Vr=5%-10=5volts
20 and

+ 2%2
10V 20 Rr= =10
C) § T 242

NOTE: This is a good technique to use to get
rid of current sources in problems.

The 8 Q resistors in parallel can be replaced by a 4 Q resistor. Redrawing the original circuit and
replaceing the left hand side by its Thevenin equivalent and replacing the two 82 resistors by a
single 4€) resistance, we get the following circuit

> =

Since VWO ) =V o(0-)=0
- +3 — 5 wvolts

O =751
The time constant for the circuit can be directly computed as

T=RC =(5 Q}(% F) = 1.67 seconds
The solutions should be of the form

- 2 YN =
L

K
§R1 R,

Os T :

¢
pic

- d -
's L
You are given that ee(f=E+E]am{300tHEqain( 1 000t), L=10 pullihenries, C=200
microfarads, B =10 chms F;=5 0 chms and B3=5.0 chms in the above cireuit.

= 1 amp

For guestions 11-14 assume that switch K 1= closed at t=0 and answer the quesfions for the
instant immediately after the switch iz closaed, 1.6, for fime =07,

11. If E=30V, E1=40V and E;=20V, the current 1 iz most nearly

(A 0.0 amperes
(B) 1.5 amperes
{C) 2B amperes

(D) 3.0 amperes
{E} 6.0 ampares

This problem 1s most easily selved by recalling the mitial conditioms for eapacitors which
require that %(0-) = Vi{+). The mhal voltaze on the capacitor 15 0 wolts so the voltage
acrozs the capacitor immediately after the switch 15 closed mogst alzo be § volis. The apphad
voltage eg{t=0+) = 30 smee sinl((+) =0. At t={+ eg appears enitraly across B ; and the
resuliing currant {which 15 equal to 1= since B and C ars 1mn seres) mmst be grven by
s8I vplts _

ic ", 100 3.0 Amperas

The correct answer 1s (IF).
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In an RL circuit of Fig. 2.6, the switch closes at r+ = 0. Find the
complete current response, if R = 10 Q. L = 0.01 H ., and

v, =120+/2 sin(10007 +15°) V.

1) The time constant of the circwt 12
r= L By g
R 10
and the natural response 13
iﬂ=.de_lm.

2) The steady-state current 13 calculated by phasor analysis. The
impedance of the cireuit is Z{ja) = R+ jal = 10 +{10 = 1042245 00,
the voltage source phasor 1z E’m=lﬂﬂﬁeﬂj . Thus, the current
phasor will be

=

Z 1042445
and the current versus time 13

i, =10sin(1000-30") 4
3)The initial condition is zero, ie., i(0.)=i(0_)=0.

4) Non-dependent mitial condifions are needed.
5) The infegraion comstant can now be found
A =i{ﬂ}—i;{ﬂ}=ﬂ—lﬂsi.u{—3ﬂ'=j =3 and the complete response 13

i(f) =10sin(1000t-30 )+ 5 4
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UNIT- I
LOCUS DIAGRAMS AND NETWORKS FUNCTIONS
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LOCUS DIAGRAMS

3.1.INTRODUCTION:

Locus diagrams are the graphical representations of the way in which the response of electrical circuits vary, when
one or more parameters are continuously changing. They help us to study the way in which
a. Current / power factor vary, when voltage is kept constant,
b. Voltage / power factor vary, when current is kept constant, when one of the parameters of the circuit
(whether series or parallel) is varied.
The Locus diagrams yield such important information as Imax, Imin » Vimax »Vmin & the power factor’s at which they
occur. In some parallel circuits, they will also indicate whether or not, a condition for response is possible.

3.2. RL Series Circuit:

Consider an R — X, series circuit as shown below, across which a constant voltage is applied. By varying R
or X, a wide range of currents and potential differences can be obtained.

'R " can be varied by the rheostatic adjustment and X, can be varied by using a variable inductor or by
applying a variable frequency source.
When the variations are uniform and lie between 0 and infinity, the resulting locus diagrams are circles

Case 1:when "R’ is varied
R X,

—wil 00

&)
Z/

¥

When R =0, the current is maximum and is given by .y = Xl and lags V by 90°
1

. Power factor is zero
When R = infinity, the current is minimum and is given by I, = 0, @ = 0 and power factor = 1

 The general expression for current is

%4 VX VX Vv .
=22 = ZA_ Lgng

( Tzx X, Z X
R24X,2 L L L

The equation | = XL sin @ is the equation of a circle in the polar form, where Xl is the diameter of the circle.
L L

The Locus diagram of current i.e the way in which the current varies in the circuit, as 'R’ is varied from zero to
infinity is shown in below which is a semi -circle.

W

R =
I =0
1=V sin®d
X
R=
=%/ X
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» Locus of current in a series RL circuit is a semi circuit with radius = —— & whose center is given by
L

0.5;)
Case 2: When X, is varied
R ' K’?ﬁ“
I A
=)
Y

When X =0, current is maximum and is given by %and is in phase with V. The power factor is unity.
When X, = to infinity, the current is zero, the power factor is zero and @ = 90°

NN X
For any other value of "R", the current lags the voltage by an angle @ = FL
. . %4 VR VR %4
~ The general expression for currentis | = =——=—-=-=—-cos 0
r24x,2 RRRZ R

The equation of a circle in the polar form where % is the diameter of the circle

X = XL=0
1=0 I=V/R

»Y

1=V sin®
R

. . S e I 7 e
= The Locus of current in a series RL circuit is a semi circuit whose radius is R and whose center is (ﬁ ,0)

3.3. RC Series Circuit:
Case 1:when "R’ is varied

¥

When R = 0 current is maximum and is given by .y = Xl which leads the voltage by 90° .Power factor is zero.
When R = o, the current is zero. The power factor is unitcy &P=0

For any other value of R the current leads the voltage by an angle @ = tan™!
 The general expression for current is

= | &<

Vo _VX.

vV X, VvV .
= = — = =—sin0®
/R2+XL2 ZX. X, Z

XC
Xlsin @ is the equation of a circle in the polar form, where Xl is the diameter of the circle.

c
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R=0D 4
1=V/xX.

w

R
I=0

R

=~ Locus is a semi — circle where radius is T
c

Case 2: Where X. is varied

& center is(O, 2‘;

X
*Em Vi

o< =

When X. = 0, current is maximum & is given by | =
=0
When X, = oo , the current is zero. Power factor is 0 & @ = 90°, for any other value of X , the current leads the

voltage by an angle @ = tan™! %

, Which is in phase with V. Power factor is unity and

The general equation for the current is

V_VR_VyR _V
I_Z_ ZR_RXZ R cos@
The equation I = % cos@ is the equation of the circle in polar form, where % is the diameter of the circle.

~

The locus is a circle of radius(% , 0) .
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3.4. RLC series circuit:

R X, Kz
‘\'.N- (w II
1
I E
—
/
L)

The figure represents an R — X, — X, series circuit across which, a constant voltage source is applied “I" is the
current flowing through the circuit. The characteristics of this circuit can be studied by varying any one of the
parameters, R, X, X. & f.
Casel: when R is varied and the other three parameters are constant, the locus diagram of current are similar to
those of

a) R — X series circuit, if X =X,

b) R — X, Series circuit if X =X,
The only difference would be, the resulting reactance is either X_ — X. or X, — X,
Case2: When X_is varied
When X, = 0 the circuit behaves as an R-X, series circuit & the current is given by

1% 1 X
| = & @ =tan 1?
/RZ+XL2

When X, = X, , the circuit behaves as a pure resistance, circuit the current is maximum or is given by |l =

@ = 0 The power factor is unity

Where X, > Xc, The circuit behaves as an R — X,_series circuit & the current is given by

v 1 XX, )
= W & QP = tan 1LT (lagging)

TR
Ro

When X, =c2, 1 =0
For any value of X, Lying between X & ==, the locus of current is a semi circle of radius = %.
The complete locus diagram of current as X varies from zero to infinity is as shown below.

Case3 : When X¢ is varied

When X¢ = 0 the circuit behaves as an R-X_series circuit & the circuit is given by
l= —~ __ &¢=tan 1% (lagging)
VRZ+(X,—X()? R

When X = X, the circuit behaves as a pure resistance circuit. The current is maximum and is given by I = % &

@ = 0. The power factor is unity
When Xc>X|, the circuit behaves as an R — X series circuit and the current is given by

- 14 — -1
1= JRZ+(X—X1)2 &9 = tan

. . .. . %4
For any value of X lying between X, & ==, the locus of current is a semi circle of radius R
The complete locus diagram of current as X¢ varies from o to == is as shown below.

X=Xy

— (leading)
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Case 4: When ‘f’ is varied

When =0, X, = oo, hence I=0.

For values of ‘f*, for which X >X,, the circuit behaves as an R-X. series circuit and the locus is a semi
circle in upper half of X-Y plane with V/2R as radius.

For values of ‘f*, which X =X, the current is maximum and is equal to l,.,= V/R, ®=0, P.F=1.

For values of ‘f*, for which X, <X, the circuit behaves as an R-X, series circuit and the locus is a semi
circle in lower half of X-Y plane with V/2R as radius.

For f= oo, X, = o0, X, =0 and hence 1=0.
Therefore the complete locus diagram of current as f varies from 0 to o is as shown in figure bellow

3.5. Locus Diagrams of parallel circuits:

When a constant voltage, constant frequency source is applied across a parallel circuit and any one
parameters in one of the parallel branches is verified, current varies only in that branch and the total current locus is
get by adding the variable current locus with the constant current flowing in the other branch.

Case 1: R & X, in parallel R Varying:

y
AT
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Consider a parallel circuit as shown below, across which a constant voltage, constant frequency source is applied.

—_D= D D D= — >
1 I+ Ig 1 I+ Ig

As X, Is constant I_ is constant
As R is variable Iy is Variable
When R = =3, Iy = 0 and | = I which lags V by 90°

For any other values of R = Ry, the current I remains constant, but Ig, = RL and is in phase with V.
1
O IRl IRE IREI

T

I

R=t R=R, R=R; R=R;

For other values of R=R,, Rs_ etc., Iro,Ir3 €tc., and Iy ,1, etc., can be found and plotted.

Case 2: R-X¢ in parallel with R & ‘R’ varying.
I R

1/ ,*VM

Consider a parallel circuit consisting of Rc-X¢ branch in parallel with ‘R’ as shown.
= - 4+ -

Ic Ir
As R¢ & X¢ are constants, Ic remains constant & is given by
Ic = —r & @c = tan~! %C (leading)
(Re?)+(xc?)

As R is variable Iy is also variable.
When R==213=0, hence | = I¢

For any other values of R = Ry, Ic remains constant, but Iz, = RL & is in phase with V
1

The total current is given by Type equation here.
->= 5 4+ -
I Ic Ip

Similarly for other values of R, R, etc., Ig,, Ip, etc., &I, Izetc., can be plotted
The locus of the total current is as shown below.
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Problem:A 230 volts, 50 H source is connected to a series circuit consisting of a resistance of 30 ohms and an

inductance which varies between 0.03 henries and 0.15 henries. Draw the Locus Diagram of current.

Diameter of circle = % = % =7.67 amps
Kmin = 2X 3.14 X 50 X 0.03 = 9.42 ohms
_ 230
hmax = J(30)2+(9.42)

Xmax = 2X3.14x50x0.15 = 47.1ohms
230

hmin = JB0)Z+(47.1)2

=452 am
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3.6 Network Functions:

A network function is the Laplace transform of an impulse response. Its format is a ratio of two
polynomials of the complex frequencies. Consider the general two-port network shown in Figure
2.2a. The terminal voltages and currents of the two-port can be related by two classes of network
functions, namely, the driving point functions and the transfer functions.

Tys o Iin
+ O—— o0 + [r——
Viae
Vin Vo TN
— O— ———oO — ‘ ————-o

(a) A two port network.

———® I

(c) Measuring voltage gain.

The driving point functions relate the voltage at a port to the current at the same port. Thus, these
functions are a property of a single port. For the input port the driving point impedance
function Z|N(s) is defined as:

This function can be measured by observing the current N when the input port is driven by a
voltage source VIN (Figure 2.2b). The driving point admittance function Y|N(s) is the reciprocal of
the impedance function, and is given by:

I;5(s)
Vin(s)

Yin(s) =

The output port driving point functions are denned in a similar way. The transfer functions of the
two-port relate the voltage (or current) at one port to the voltage (or current) at the other port. The
possible forms of transfer functions are:

1 The voltage transfer function, which is a ratio of one voltage to another voltage.

2 The current transfer function, which isa ratio of one current to another current.

3. The transfer impedance function, which is the ratio of a voltage to a current.

4. The transfer admittance function, which is the ratio of a current to a voltage.

The voltage transfer functions are defined with the output port an open circuit, as:

(b) Measuring input impedance.
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Vo(s)
Vin(s)

voltage gain =

Vin(s)
Vo(s)

voltage loss (attenuation) =

To evaluate the voltage gain, for example, the output voltage Vg is measured with the input port
driven by a voltage source VN (Figure 2.2¢). The other three types of transfer functions can be

defined in a similar manner. Of the four types of transfer functions, the voltage transfer function is
the one most often specified in the design of filters.

The functions defined above, when realized using resistors, inductors, capacitors, and
active devices, can be shown to be the ratios of polynomials in s with real coefficients. This is so
because the network functions are obtained by solving simple algebraic node equations, which
involve at most the terms R, sL, sC and their reciprocals. The active device, if one exists, the
solution still involves only the addition and multiplication of simple terms, which can only lead to
a ratio of polynomials in s. In addition, all the coefficients of the numerator and denominator
polynomials will be real. Thus, the general form of a network function is:

FI(s) — a,s”" + a,_ 15" * +~a,,_>s""? + --- 4+ ao
T bmsm + bm_lsm—l -+__ bm_zsm_z + S + bo
where a, ¥+ O b,, = O

and all the coefficients aj and bj are real. If the numerator and denominator polynomials are
factored, an alternate form of H(s) is obtained:

als — Zy)S§ —23)---(8 — 2,)
H(s) =
8 = s =p)G =pa) - =)

n this expression z1, z2, ..., zn are called the zeros of H(s), because H(s) =0 when s = zj. The roots of
the denominator pl, p2, ..., pm are called the poles of H(s). It can be seen that H(s) = o at the poles, s
= pj.The poles and zeros can be plotted on the complex s plane (s = o + jo), which has the real p art ¢
for the abscissa, and the imaginary part jo for the ordinate  below

Jw
© Zero
X Pole

Poles and zeros plotted in the complex s plane.
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3.7. Properties of all Network Functions:

We have already seen that network functions are ratios of polynomials in s with real
coefficients. A consequence of this property is that complex poles (and zeros) must occur in
conjugate pairs. To demonstrate this fact consider a complex root at (s = -a — jb) which leads to
the factor (s + a + jb) in the network function. The jb term will make  some of the coefficients
complex in the polynomial, unless the conjugate of the complex root at (s = -a + jb) is also present
in the polynomial. The product of a complex factor and its conjugate is

(s + a + jb)(s + a — jb) = s* + 2as + a* + b?

Further important properties of network functions are obtained by restricting the networks to be
stable, by which we mean that a bounded input excitation to the network must yield a bounded
response. Put differently, the output of a stable network cannot be made to increase indefinitely by
the application of a bounded input excitation. Passive networks are stable by their very nature,
since they do not contain energy sources that might inject additional energy into the network. Active
networks, however, do contain energy sources that could join forces with the input excitation to
make the output increase indefinitely. Such unstable networks, however, have no use in the world
of practical filters and are therefore precluded from all our future discussions.

A convenient way of determining the stability of the general network function H(s)

is by considering its response to an impulse function, which is obtained by taking the inverse
Laplace transform of the partial fraction expansion of the function.
= If the network function has a simple pole on the real axis, the impulse response de to it
(for t >= 0) will have the form:

K
h(t) = £ ! —1— = K,er"
S — D1
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For p1 positive, the impulse response is seen to increase exponentially with time, corresponding to an
unstable circuit. Thus, H(s) cannot have poles on the positive real axis.

e Suppose H(s) has a pair of complex conjugate poles at s = a +/- jb. The contribution to the
impulse response due to this pair of poles is

_ K K _, 2K s — a)
_ 1 1 1 _ 1 1
w5} == (s—a—jb+s—a+jb) g'(s—a)2+b2

= 2K ,e" cos bt
Now if a is positive, corresponding to poles in the right half s plane, the response is seen to be
an exponentially increasing sinusoid (Figure 2.4b). Therefore, H(s) cannot have poles in the right
half s plane. An additional restriction on the poles of H(s) is that any poles on the imaginary axis
must be simple.

Similarly, it can be shown that higher order poles on the jo axis will also cause the
network to be unstable. From the above discussion we see that H(s) has the following
factored form:

N(s)

H(s) = I—[ (s + a;) H (s2 4+ cxs + dyi)
i k

Where N(s) is the numerator polynomial and the constants associated with the denominator aj, ck,
and dk are real and nonnegative. The (s + aj) terms represent poles on the negative real axis and
the second order terms represent complex conjugate poles in the left half s plane. It is easy to see
that the product of these factors can only lead to a polynomial, all of whose coefficients are real

and positive; moreover, none of the coefficients may be zero unless all the even or all the odd
terms are missing.

Hhie)
7
7~
-~
//
~
><
///
. o
N\ &

R e VA

< in the right half = plane.
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Fe> -

N
-
+ Double pole
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~
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~
~
~
~
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~
= R =

Double poles on TMmaginary axis.
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In summary, the network functions of all passive networks and all stable active Must be

rational functions in s with real coefficients.

e May not have poles in the right half s

plane.

e  May not have multiple poles on the jo

axis.

Example: Check to see whether the following are stable network functions:
s s — 1
(a)sz—3s+4 (b)sz+4
The first function cannot be realized by a stable network because one of the coefficients in the
denominator polynomial is negative. It can easily be verified that the poles are in the right half s plane.
The second function is stable. The poles are on the jo axis (at s = +/- 2j) and are simple. Note that the
function has a zero in the right half s plane; however, this does not violate any of the requirements
on network functions.

3.8.Properties of Driving Point (Positive Real) Functions:

These conditions are required to satisfy to be positive realness

e Y(s) must be a rational function in s with real coefficients, i.e., the coefficients of the
numerator and denominator polynomials is real and positive.

e The poles and zeros of Y(s) have either negative or zero real parts, i.e., Y(s) not have poles
or zeros in the right half s plane.

e Poles of Y(s) on the imaginary axis must be simple and their residues must be real and
positive, i.e., Y(s) not has multiple poles or zeros on the jo axis. The same statement applies
to the poles of 1/Y(s).

e The degrees of the numerator and denominator polynomials in Y(s) differ at most by 1.
Thus the number of finite poles and finite zeros of Y(s) differ at most by 1.

e Thetermsof lowest degree in the numerator and denominator polynomials of Y(s)
differ in degree at most by 1. So Y(s) has neither multiple poles nor zeros at the origin.

e There be no missing terms in humerator and denominator polynomials unless all even or
all odd terms are missing.

Test for necessary and sufficient conditions:

» Y(s) must be real when s is real.

» I Y(s) = p(s)/q(s), then p(s) + q(s) must be Hurwitz. This requires that:

I. the continued fraction expansion of the Hurwitz test give only real and positive
coefficients, and

ii. the continued fraction expansion not end prematurely.

» In order that Re [Y(jw)] >= 0 for all , it is necessary and sufficient that
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A(wz) = mlmz — NiN2 ;
§=Jjw

have no real positive roots of odd multiplicity. This may be determined by factoring
A (0)2) or by the use of Sturm's theorem.

Example The function

s24+ 2541 _s s+ D(s+1)
$3+ 252+ 25+40 (s + 4)(s2 — 2s + 10)

is not positive real because it has two poles in the right half plane.

$*+5s (s +5)
s*+22+1 (s2+1)2

is not positive real because of the multiple poles on the imaginary axis.

Y1(8) =H

Ya(s) =

3.9. System Poles and Zeros:

The transfer function provides a basis for determining important system response characteristics without
solving the complete differential equation. As defined, the transfer function is a rational function in the
complex variable s = ¢ + jw, that is

H(S) - ansn + an—lsn—l —+ a,,_zs"_z + - - - —|— ao
T ST A B 1 8% © =k By 28T — o i2 = o By
where a,, = O b,, 5= O

It is often convenient to factor the polynomials in the numerator and denominator, and to write the
transfer function in terms of those factors

as — Zy)s —23) - (s — Z,)
H —
8) = s =p)G =pa) - =)

Where the humerator and denominator polynomials, N(s) and D(s), have real coefficients defined by the
system’s differential equation and K = by/a,. As written in Eq. (2) the z;’s are the roots of the equation
N(s) =0
and are defined to be the system zeros, and the p;’s are the roots of the equation
D(s) =0,
and are defined to be the system poles. In Eq. (2) the factors in the numerator and denominator are
written so that when s = z; the numerator N(s) = 0 and the transfer function vanishes, that is
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limH() U 0

sl1zj
and similarly when s = pi the denominator polynomial D(s) = 0 and the value of the transfer function
becomes unbounded,

limH((s) U [

S pj
All of the coefficients of polynomials N(s) and D(s) are real, therefore the poles and zeros must be
either purely real, or appear in complex conjugate pairs. In general for the poles, either p; = g, or else
pi, pitl = oi+jw;. The existence of a single complex pole without a corresponding conjugate pole
would generate complex coefficients in the polynomial D(s). Similarly, the system zeros are either
real or appear in complex conjugate pairs.

A J(8)
X — pole
_ s-plane
O — zero 2
O X > ()
-2 -1
X 2

Figure 1: The pole-zero plot for a typical third-order system with one real pole and a complex conjugate pole
pair, and a single real zero.

3.10.Pole-Zero Plot:

A system is characterized by its poles and zeros in the sense that they allow reconstruction of the
input/output differential equation. In general, the poles and zeros of a transfer function may be
complex, and the system dynamics may be represented graphically by plotting their locations on the
complex s-plane, whose axes represent the real and imaginary parts of the complex variable s. Such
plots are known as pole-zero plots. It is usual to mark a zero location by a circle (°) and a pole
location a cross (x). The location of the poles and zeros provide qualitative insights into the response
characteristics of a system.

System stability:
The stability of a linear system may be determined directly from its transfer function. An nth order

linear system is asymptotically stable only if all of the components in the homogeneous response from
a finite set of initial conditions decay to zero as time increases, or

lim ce Pi
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TWO PORT NETWORK PARAMETERS
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TWO PORT NETWORK PARAMETERS

4.1. Introduction:

In general, it is easy to analyze any electrical network, if it is represented with an equivalent model, which gives the
relation between input and output variables. For this, we can use two port network representations. As the name
suggests, two port networks contain two ports. Among which, one port is used as an input port and the other port is
used as an output port. The first and second ports are called as portl and port2 respectively.

One port network: it is a two terminal electrical network in which, current enters through one terminal and leaves
through another terminal. Resistors, inductors and capacitors are the examples of one port network because each
one has two terminals. One port network representation is shown in the following figure.

—+ Two terminal

Linear Network

-~

Here, the pair of terminals, 1 & 1’ represents a port. In this case, we are having only one port since it is a one port
network.

Similarly,

Two port network: it is a pair of two terminal electrical network in which, current enters through one terminal
and leaves through another terminal of each port. Two port network representation is shown in the following figure.

1 Iy I 2
— Two terminal -
V4 V32

Linear Network

A
/

Here, one pair of terminals, 1 & 1’ represents one port, which is called as portl and the other pair of terminals, 2 &
2’ represents another port, which is called as port2.

There are four variables Vi, V,, I; and I, in a two port network as shown in the figure. Out of which, we can
choose two variables as independent and another two variables as dependent. So, we will get six possible pairs of
equations. These equations represent the dependent variables in terms of independent variables. The coefficients of
independent variables are called as parameters. So, each pair of equations will give a set of four parameters.

4.2. IMPEDANCE PARAMETERS (OR) Z PARAMETERS:

We will get the following set of two equations by considering the variables V; & V, as dependent and I; & I, as
independent. The coefficients of independent variables, 1; and I, are called as Z parameters.

Z parameters are also known as impedance parameters. When we use Z parameter for analyzing two part network,
the voltages are represented as the function of currents. So
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Vi = fildy; I2) and Vo = (1, I2)

the input and output of a two port network can either be voltage or current. If the network is voltage driven, that can
be represented as shown below.

I I:

Two T

Port

A
Metwork l

I+ ®

s

o

If the network is driven by current, that can be represented as shown below.

+ +
ey Twao -
L I:\,_T_..-’I Vi Port Ve I:\,_t_.-"l I
Metwork

From, both of the figures above, it is clear that, there are only four variables. One pair of voltage variables V; and
V, and one pair of current variables I, and I,. Thus, there are only four ratio of voltage to current, and those are,

Vv, vV, V5 V5
IIJIQJI[ 1—2

These four rations are considered as parameters of the network. We all know, This is why these parameters are
called either impedance parameter or Z parameter. The values of Z parameters of a two port network, can be
evaluated by making once

Voltage (V)

I 2o ) () — — =+
mpedance(Z) Currerst(l)

This is why these parameters are called either impedance parameter or Z parameter. The values of these Z
parameters of a two port network, can be evaluated by making once and another once
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The Z parameters are,
1%

Zas = CQutput impedance keeping input open — T
2

l1=0
Vi

Iz l1=0
Vs

I,

Z12 = Reverse transfer impedance keeping input open —

Zoy = Forward trans fer impedance keeping output open —
lz=0

Vi

Zyy = Input impedance keeping output open = T
1

l2=0

The voltages are represented as

Vi=Zuli+Zs1 and Vo = Zoy Iy + Zy 1,

) =Lz 2] L
Vol 20 Zn] L
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Admittance parameters or short circuit parameters(Y):We can represent current in terms of voltage bt
admittance parameters of a two port network. Then we will represent the current voltage relations as,

This can also be represented in matrix form as,
L] _[Yu Y] [V
I Yoo Yool V2

Here, Y11, Y15, Y21 and Yy, are admittance parameter. Sometimes these are called as Y parameters. We can
determine the values of the parameters of a particular two port network by making short-circuited output port and
input port alternatively as follows. First let us apply current source of I, at input port keeping the output port short
circuited as shown below.

1 2
L
+
e Two A
L 1 ) I V1 Port Vz=0 I:=
) MNetwork
= L
1 2

Now, the ratio of input current I; to input voltage V; while output voltage V, =0, is

L =Y11

This is called short circuit input admittance. The ratio of output current I, to input voltage V; while output voltage
Vz = 0, is

L — Yo
Vl Vﬂ'} — U ]

This is referred as short circuit transfer admittance from input port to output port. Now, let us short circuit the input
port of the network and apply current I, at output port, as shown below.
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In this case,

I = Y2
Vﬂ} Vl —

This is called short circuit output admittance.
T, 3
V-—, — 12

2| v, =0

This is called short circuit transfer admittance from input port to output port. So finally,

£ =Y, = short circuit input admittance

Vl "’E — D

I

Fl =Yy = short circuit trans fer admittance from output port to input port
2| v, =0

L =Y, = short circuit trans fer admittance from intput port to output port

Vl Vq — IJ

ﬁ =Y., = short circuit output admittance

Vﬂ} Vl — 0

Hybrid Parameters or h Parameters:

Hybrid parameters are also referred as h parameters. These are referred as hybrid because, here Z parameters, Y
parameters, voltage ratio, current ratio, all are used to represent the relation between voltage and current in a two
port network. The relations of voltages and current in hybrid parameters are represented as,

Vi =hy 0y + hyaVs
Iy = hoy Iy + hay V5
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Hybrid parameters or h parameters are very much useful in analyzing electronics circuit where, transistors like
elements are connected. In those circuits, sometimes it is difficult to measure Z parameters and Y parameters but h
parameters can be measured in much easier way.

Determining h Parameters

Let us short circuit the output port of a two port network as shown below,

1 Ii *I 2

° > 3
L Twao
[ +* ‘_] Vi Port V=0

T Metwork

® o
1 2

this is referred as short circuit input impedance. Now, the ratio of the output current to input current at short
circuited output port, is

I _

_2 = h:
I |Va=0 21

This is called short circuit current gain of the network. Now, let us open circuit the port 1. At that condition, there
will be no input current (1,=0) but open circuit voltage V, appears across the port 1, as shown below

1 Ii.:(}.. I: 5
- -+
»
+ I
Twao L
T
V1 Port '._\h—/_. Vz
Metwork I
° -
r 2

Vl 1

- — hi2 = open circuit reverse voltage gain
21 =0

82



https://www.electrical4u.com/jfet-or-junction-field-effect-transistor/
https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/two-port-network/

This is referred as reverse voltage gain because, this is the ratio of input voltage to output voltage of the network,
but voltage gain is defined as ratio of output voltage to input voltage of a network. Now,

E = ha
V2l =0

It is referred as open circuit output admittance.

h Parameter Equivalent Network of Two Port Network

To draw h parameter equivalent network of a two port network, first we have to write the equation of voltages and
currents using h parameters. These are,

Vi = hydy + hygVyeoeeeennennn (4)
IZ — h‘ZIIl + hZZI'fZ .............. {?,?,}

clearly, the equation (i) can be represented as circuit based on Kirchhoff VVoltage Law.

Ii b
. EA A Y
AT AT AV AY.
+
_.-""ﬂ“-h__
hisVe < + ™
V1 H"‘-\.-__.-""-.
-

Clearly, the equation (ii) can be represented as circuit based on Kirchhoff Current Law.

I:

-

-
+
,:1; hail1 = ha Vs
.
Combining these two parts of the network, we get,

I Iz
R SN | B Sl
+ W WO +
Vi hizVz ""_' , ": l,:j, haiT1 = ha V2

The h parameters equivalent network of a two port network
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ABCD Parameters of Transmission Line parameters:

A major section of power system engineering deals in the transmission of electrical power from one particular place
(eg. generating station) to another like substations or distribution units with maximum efficiency. So it's of
substantial importance for power system engineers to be thorough with its mathematical modeling. Thus the entire
transmission system can be simplified to a two port network for the sake of easier calculations.The circuit of a 2
port network is shown in the diagram below. As the name suggests, a 2 port network consists of an input port PQ
and an output port RS. In any 4 terminal network, (i.e. linear, passive, bilateral network) the input voltage and input
current can be expressed in terms of output voltage and output current. Each port has 2 terminals to connect itself to
the external circuit. Thus it is essentially a 2 port or a 4 terminal circuit, having

[ I
A > R >
P R
v Transmission v
S Line :
Q S
Supply end voltage = Vg
and Supply end current = Ig
Given to the input port PQ.
And there is the Receiving end voltage = Vi
and Receiving end current = [Ip

Now the ABCD parameters or the transmission line parameters provide the link between the supply and receiving
end voltages and currents, considering the circuit elements to be linear in nature.

Thus the relation between the sending and receiving end specifications are given using ABCD parameters by the
equations below.

Now in order to determine the ABCD parameters of transmission line let us impose the required circuit conditions
in different cases.
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ABCD Parameters, When Receiving End is Open Circuited

IS IR =El..,
o e —— R
] Transmission
4 "T Line Ve
Q s

The receiving end is open circuited meaning receiving end current Iz = 0. Applying this condition to equation (1)
we get,

Vo= AVe+ B O = Vo = AVg + O

Thus its implies that on applying short circuit condition to ABCD parameters, we get parameter B as the ratio of
sending end voltage to the short circuit receiving end current. Since dimension wise B is a ratio of voltage to
current, its unit is Q. Thus B is the short circuit resistance and is given by
B = Vs/1r Q. Applying the same short circuit condition i.e Vg = 0 to equation (2) we get

IE=CD+QIR#-I5=D+QIR

Thus its implies that on applying short circuit condition to ABCD parameters, we get parameter D as the ratio of
sending end current to the short circuit receiving end current. Since dimension wise D is a ratio of current to
current, it’s a dimension less parameter.

Find the z parameters for network shown in figure

oo 100

~ A
— " N ‘

1

W

= 200
o ] .
1 2
Let us put a voltage source V; at input,
I 10 0 10 0
1 ot WAL S — - 2
N [
vi (X)) = 200
| .
T 2
Vi (10 + 20)T.
Z — Y f— —] p—
11 T, I, — o T, 30 O
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Vt} o 201—1

Z.-_,. ——
' I] IQ :{] Il

=200

Now, let us connect one voltage source V,at output port and leave the input port as open as shown, below

100 100 I:
E ‘—A‘-\._.-f\ *-,_.-""*-,_.-"’"*,\_.- ‘ -L__-'""‘n._,-'}"x _,"A"\._.-"‘\"—.-.‘ 1
200 = (X)ve
. f |
2 1
V5 10 + 20) 1.
Zrog = — _ (10+200F _ 554
Iﬂ I] — D Iz
V, 201
Zys =— = 2 =200
- IQ I] =0 I2
le p— Zgg ﬂﬂ-d Zlg = Zm
Now,
Therefore the above network is symmetrical, reciprocal network
Paramet Symmet Reciproci
er y oy
Z Ly =L5 | Ly = L4,
Y Vg =Y, ¥V 5 =Y,
h A, =1 Ry = ho,
T A =D Ay =1
5. No. MName Function Matrix form
Express In terms of
1. Qpen circuit Impedance V1. Vo Iy, Iz |::‘1"j| = |:§11 ;;EJ [i;}
or [Z] Parameter » = — =
2. Sheort circuit admittance Iy, Ia Wy, Va [i;} = [:;i :;2} [:;J
or [¥] Parameter
3. ABCD or Transmissicon w7y, I Vo, Ia |:11j| = |:é E:| [if}
Paramerter 1 -
ES Inverse Transmission Va, Iz Vsl [}f} = [é: ]]:3):':| |:_VI1 :|
Parameter - .
5. Hybrid or [ft] Parameter Wy, I 11, Va :: = -i:;i i:; 510
(= lnverse hvbrid or I, Vg Ay, Iz _‘f{_’ e ﬁzlj iZ ‘;’2.1

[2] Parameter
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Procedure of two port parameter conversions

In the previous chapter, we discussed about six types of two-port network parameters. Now, let us convert one set
of two-port network parameters into other set of two port network parameters. This conversion is known as two port
network parameters conversion or simply, two-port parameters conversion.

Sometimes, it is easy to find one set of parameters of a given electrical network easily. In those situations, we can
convert these parameters into the required set of parameters instead of calculating these parameters directly with
more difficulty.

Now, let us discuss about some of the two port parameter conversions

e Step 1 — Write the equations of a two port network in terms of desired parameters.

e Step 2 — Write the equations of a two port network in terms of given parameters.

e Step 3 — Re-arrange the equations of Step2 in such a way that they should be similar to the equations of
Stepl.

e Step 4 — By equating the similar equations of Step1 and Step3, we will get the desired parameters in terms
of given parameters. We can represent these parameters in matrix form.

Z parameters to T parameters

Here, we have to represent T parameters in terms of Z parameters. So, in this case T parameters are
the desired parameters and Z parameters are the given parameters.

Step 1 — We know that, the following set of two egquations, which represents a two port network 1n
terms of T parameters.

Vi = AVs — BIs
Ii =CVa — D

Step 2 — We know that the following set of two equations, which represents a two port network in
terms of . parameters.

Vi=Zulh + Zia1>
Va = Znlh + Zaala
Step 3 — We can modify the above equation as

= Vo — Zaals = Zoy 14

1 Z
W — (22

21 Zaq

)12
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Step 4 — The above equation is in the form of I) = CVa — DIs Here,

1
o=
Za
A
D= 22
£

Step 5 — Substitute I3 value of Step 3 in V1 equation of Step 2.

1 bt
Vi = Zu{(z)Ve - [Z—:]Iz} + Z12I2

Step 6 — The above equation is 1n the form of ¥V} = AV, — BIs Here,

Z11
Za1

A=

_ Z11893 — L1pfn
Zm

B

Step 3 — We can modify it as
1
Vi Yu Y I
[ 1} = [ - 12] [ 1] Equation 4
Vo Yau Yoo Iy
Step 4 — By equating Equation 3 and Equation 4, we will get

[311 Zia | [Yll le]
321 222_ Y21 YEZ

[ Yoo —le]
N [211 Z1a Yy Yy
Ao Zag | AY
Where,
AY =Y11Yee — Yi2¥o

S0, just by doing the inverse of Y parameters matrix, we will get the 7 parameters matrix.
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Y parameters to T parameters

Here, we have to represent T parameters in terms of Y parameters. So, in this case, T parameters
are the desired parameters and Y parameters are the given parameters.

Step 1 — We know that, the following set of two equations, which represents a two port network in
terms of T parameters.

V, = AV, — BL,
I, = CVy — DI,

Step 2 — We know that the following set of two equations of two port network regarding Y
parameters.

I) = Y11 Vi + Y12V
I, = Y5 Vi + Yol
Step 3 — We can modify the above equation as
= Ip — You Vo = Yo V)
—Y;

- ~1
Vo — [— )1
Ve~ (ke

= V1 =

Step 4 — The above eguation 1s in the form of V; = AV, — BIs; Here,

—Y-
A= 22
Yo
—1
B —
Yo

Step 5 — Substitute V1 value of Step 3 1in Iy equation of Step 2.

Y 1

Iy = Y; —— Ve — [— ) Iat + Y215

1 111 ( Vo 2 [Y21] 2} 12 V3
Yi2¥a — Y1 ¥5 — ¥

o= (X2 21}’21 u¥m Yz:l )

Step 6 — The above equation 1s 1n the form of Ij = CVe — D'Is Here,

¥i12¥a1 — Y11 ¥as

O =
¥a

—Yn

D =
Yo
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Step 7 — Therefore, the T parameters matrix 1s

Yoo —1
A B| Ya Yar
C D - Yia¥a, ¥, ¥ Y
m ¥y

T parameters to h-parameters

Here, we have to represent h-parameters in terms of T parameters. So, in this case hparameters are
the desired parameters and T parameters are the given parameters.

Step 1 — We know that, the following h-parameters of a two port network.

1%
hy = I—l when Vy = 0

1

vV
his = —, when I; = 0

2
I
hay = —, when Va = 0
I,
I
has = Fz when I; = 0

Step 2 — We know that the following set of two equations of two port network regarding T

parameters.
Vi = AV, — B,

I, = CV, — DI,

Equation 5

Equation 6

Step 3 — Substitute V5 = 0 in the above equations in order to find the two h-parameters, hyy and

hzl.

= V; = —BI,

= Il s —DIZ

Substitute, V; and I; values in h-parameter, hqy.

hiy =

—BI,
— DI,
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Substitute I; value in h-parameter g

I
hoy =
21 —DI,
1
= hoy = ——
21 D

Step 4 — Substitute J7 = 0 in the second equation of step 2 in order to find the h-parameter has.

0=CVa — DI
:-CV2=DIE
_Ek_C
V» D

o

Step 5 — Substitute I, = [ED]VE in the first equation of step 2 in order to find the h-parameter, hyo.

c
Vi = AV - B()Va

AD — BC
V, = [——— V.
= Vi [ D ]2
Vi AD-BC
Va D
o _ AD-BC
12 — D

Step 6 — Therefore, the h-parameters matrix is

B
[hu hia ] _| D
hay hxn —
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h-parameters to Z parameters

Here, we have to represent 7 parameters in terms of h-parameters. So, in this case 7 parameters are
the desired parameters and h-parameters are the given parameters.

Step 1 — We know that, the following set of two equations of two port network regarding 7
parameters.

Vi=2Znlh + Z1212
Vo = Zo11h + Zasls

Step 2 — We know that, the following set of two equations of two-port network regarding
h-parameters.

Vi = hnli + hi2Va
Is = hoy Iy + hasVo
Step 3 — We can modify the above equation as

= Ja — ho1l1 = heVa

Iz — ha I
=V, — 2 IilI1.2221 1
—h 1
= Vo= (50 + (5-)E

The above equation 1s 1n the form of Vo = Za3 01 + Fasls. Here,

— ho
Zay —
2 Fron
1
o L
2" hos

Step 4 — Substitute Vo value in first egquation of step 2.

—h 1
Vi = ki1 0y + hae{ [ 2 )15+ (-—) 1=}
Froo hoo
hi1h — hi=2h R
v — 11fr22 12 21]114—[ 12]12
haz hza

The above equation is in the form of ¥V = £ 01 + F1272 Here,

fi11hez — Rishan

A =
11 hzz

fryo

F =
12 hos

Interconnections of two-port networks
Two-port networks may be interconnected in various configurations, such as series, parallel, cascade, series-

parallel, and parallel-series connections. For each configuration a certain set of parameters may be more useful than
others to describe the network.
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series connection

: '
v | l)a 1“0 : o
l‘ : . Nu * : IZ
]
) el 1z T2a_ :
! '
! [
|
v, ! : v,
1
' Ty Loy, ;
E il N, B ;
| Viy Van -
Z ]
-0 : — [ b] = : 0~
! '
|

Series connection of two two-port networks For network N ,,

¥ia Zita Z12a || Lia

v"..a Z’2la Z".!Za [?.a

(10.63)Va, = Za1al1a + Z22al 2
(1063)\«-2(1 — ZZIGIIG + 7.22(112“.

Vip Ziw Zaw || Lip

Vap Zowp Zagb || 1z

(10.65)Vap = Zo1plip + Zogplas
(10.65)Vap = Zoplip + Zogplas
The condition for series connection is
(10.67)V,=V,,+ Vy

Putting the values of V 1, and V 1, from Equation (10.62) and Equation (10.64), Putting the values of V 5, and V 5,
from Equation (10.63) and Equation (10.65) into Equation (10.67), we get

(10.69)V3 = (Z214 + Zo1p)ls + (Zaog + Zoap) 1
Vi =Zndiat Z12al2a + Z11slis + Z12s12p

(10.68) =Znay + Zipy + Zygply + Ziply [Lia =1y =11, Liy=I=1]
Vi =@uatZypp)h + (Zy2a+ Zy1p)1
Vi =Zyh+ 2,
Vo =27yl +Zxpl,.
The Z-parameters of the series-connected combined network can be written as
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\"'2 - 2211| + Z,‘zzlz,
2\l =ZyatZiyp
212 =ZyatZiy
Zol. = .4210 2 ZZlb
o2 =Zya+Zyy

[Z] = [Z4] + [Z4]-

The overall Z-parameter matrix for series connected two-port networks is simply the sum of Z-parameter
matrices of each individual two-port network connected in series.

Parallel Connection

Parallel connection of two two-port networks N ; and N p. The resultant of two admittances connected in

parallel is Y 1 + Y ,. So in parallel connection, the parameters are Y -parameters.

for a network,

for b network,

1 1
] 1
+ O - . 1 —.—O +
H + N, = i o
Va - Via Vaa ! Va2
o : - [Yal = L : e
: :
L 1
L} 1
L 1
L} )
] I1b IJD 1
L] — —
' + N, . -
] v V 1
: _® ¢ I :
' '
L 1

Parallel connections for two two-port networks For network N ,

I]u Ylla \'lla \rlu
L2 Yoia Yo ||V
(10.71)I5, = Y214Via + Y224V 20

(10.71)I34=Y314V1a + Y224V 20

Lip Yie Yiwn || Vis

Ly, Yo Yoo || Vab

4
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10.72)]1p = Y115 Vip + Y12V s
(10.73)I5p = Y21, Vip + Y225 Vb
Via=V, =V, Vy,=V,, =V, [Same voltage]
0.7, =1, + 1,

{08 =T+ 15

L =YnaViet Yi2aVaa+ Y1sVie + Y12sVas
= Y1aV1+ Yi2aV2 + Y1 Vi + Y1 V2

(10.76)I; = (Y11a+ Y11u) Vi + (Y20 + Y125)V,
(10.7D]; = (Ya15+ Ya1u) Vi + (Yo + Y22u) V2
the Y-parameters of the parallel connected combined network can be written as
L =Y,V +Y;V,
L =YyVi+YnV,

Cascade connection of twoport networks:

There 1s another set of network parameters particularly suited
for cascading two-port networks. This set 1s called the 4ABCD
matrix or, equivalently, the transmission matrix.

Consider this two-port network (Fig. 4.11a):

I, i,
+o ] 4 B 4
¥ c D I

! p——————— ©

Unlike in the definition used for Z and Y parameters, notice that
I, 1s directed away from the port. This 1s an important point and
we’ll discover the reason for it shortly.
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It 1s easy to show that

A A
I‘J‘*":=f:I jr21=l]-
c=1 p=1t
Vl 15=0 "’2 =0

Note that not all of these parameters have the same units.

To see this, consider the following two-port networks:

I I, 1, 1,
__J_o—)— A, B, —)—O_|_J _:_::b—>— A4, H‘J —)—f-___'
20 o | e -
In matrix form
W A B V,
| |c b1 ()
1] 1 1 2
Vv, A, B, | [V
and 1= - - (3)
f.h' Cz Dz 1 3
When these two-ports are cascaded,
1, Lo 1
L O] f——e—— P,
V, 4 5 ? pr || B v,
_I (S _zﬂ Ny ¢, D, _}

it is apparent that ¥, =V, and I," = I,. (The latter is the reason
for assuming /, out of the port.) Consequently, substituting (3)

into (2) yields
|:V]:|:|:A1 BI][AE BE][VE] @
1, C, D||C, D,||I

We can consider the matrix-matrix product in this equation as
describing the cascade of the two networks.
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Solution 1.
To get z,, and z,,, consider the circuit in Fig. (a).

10 40 =0
—A\\\ MW - -
+ L +
[l T \r| § \'?3
(a)
v,
2, =7 =1+6](4+2)=4Q
1
I
I, =;]| V, =21, =1,
l?-.
2, =1 =10

To get z,, and z, , consider the circuit in Fig. (b).

I,=0 18 40
——AN\, A .
+ ’ +
NG
(b)
V,
£ =5 =2]|(4+6)=1.667Q
2 1
— —_ — I r_
I, 2+|D]:_f}]' vV, =61"=1,
v,
E'T:[::LQ
H 14 ]a
enee, [Z1=] 1 1.667
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Solution 2.

Consider the circuit in Fig. (a) to get z,, and z

10 1, 1Q 10 10 L=0
—\W\, —\W\ MA W —
+ L +
L(H) v, = = v,
—\W\, W W W .
1Q 1Q 1Q 1Q
(a)
Vv,
,]=]— 2+1||[2+1]](2+1)]
_,, LAy 1
( ) T le11/4 =it =2
. 1.
L=r3h =3k
I, = I l—i]
S S B V2 S F
1 4 |
L=73h=750
V.ol =1
LI -:r_]5l
Vv,
z,
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To get z,,, consider the circuit in Fig. (b).

L=0 10 1Q 1Q 10
——ANN AN\ AN AN\—e
v = s w®
—AW M MW MA—s
1Q 1Q 1Q 1Q
(b)

v,
Z,, =]—‘=2+I||[2+]||3‘,|=z” =2733

Thus,
_[ 2.733 ﬂ.ﬂﬁﬁﬁ?]

0.06667 2.733

Solution 2 '

To obtain yy; and y»;, consider the circuit below.

LN « b

0.5V, ¢« 20 | V=0

502
Vi

The 2-02 resistor 15 short-circuited.

| I 2
V=52 — yl]zﬁ:§:n‘4
1
L=t — y LY
2_21 ?I_"I-""]_Q.S.l',_ .
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To obtain y,; and vy, consider the circuit below.

I 5
_'.. |
+ T+
502 05V, 7200 V; I
V]=ﬂ

At the top node, KCL gives

V, W |
rz :D.SVQ‘F_?*'_?:]‘QV? - =k Fﬂ:i:].z
2 5 v,
Vs h
5 v,
Hence,
] 0.4 -02 s
102 1.2
Find the y parameters for the network shown in figure below?
To get ¥v,;, and ¥,,, consider the circuit in Fig. (a).
140
A
A — -
+ 2 W,
Vi v, § Vi=10
(a) )
At node 1,
Vi v*+2v\=‘“—*+"—* — 2V, =-V, (1)
2 1 4
B B e M V- e L
ut , = > = > =1. . — v,,—v]__
v
Also, IL+—-=2V, —— I,=175V, =-35V,
1.
Nay = V_ =-3.5
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To get y,, and ¥, . consider the circuit in Fig.(b).

40
M
20 I
1 2 2
W >l
1 + .
1 2V, N
v, S )
(b)
At node 2,
L-2v, 2V 2)
3 — & 1+ 4 {.
At node 1,
v oY Ve VoV 30 L L
* 4 T2 1 20 S (

Substituting (3) into (2) gives
1
I,=2V, —;Vi =15V, =-15V,

Substituting (3) into (2) gives
|
I,=2V, —;\*’1 =15V, =-1.5V,

L s
Ya = \._rl =-L
-V, 'V, I,
L=—*="7 — yo=5 =05

Thus,
15 057
YI=| .35 15"

Determine the transmission parameters of the circuit in Fig. below

(%]
]
=]

L

—fla Ll —jaadl

Il Il
@ 1l il =

%.!U Ll
=]

101




To determine A and O | consider the circwmt im Fig (a))

L j1s 0
» OhND
I, -j10 £ S LLE ] I.=10
> {—— [l
| L ‘I’ I -
- |""F+_"\-. = -
Yy = v,
1| -H\“__j.l T z
{a) -
WV, =[20+ 00 (15— 320017,
I (H10M=sy 1 T 107
vV =202 gy _top— j— X
V=L 515 7L 3
I =1
—f—22 1 =!-E-|I.
| 10— 35 ) 1.3 )
V, = (2001, + 201" = —;%I +201I, = | lﬂ—j%.[[,
AN _(O-NODL, _ o 5eon 4 o 3461
v, T
|—D_JT:[|
L 3
=X 1 __ oo3461+j0023
———— - - - TS
Vi o202
-
Tofind B and I, comsider the cinowit im Fig (o)
jls o
TG
I, jlo o2 2002 L

1 - {E £ LS —
N i

(b

We may mansform the A subpetwrork to a T as showmn i Fig (c).

gz __EDGE® .,
15— L0 — j20

(= 10— i
i _%_ =

: —jis 3
(IS
z, - QX oy
T
I, j1o 0 jzn o L.

l—'—'ﬂ'ﬁ-‘-—ﬁ‘ TR -
s

)
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I, - - I - I

DD — 45+ j20 T E

-1 3+3 . -

- - = 05385+ jJO.6925
I, 3—j2

i (20— §40/3)
Vi '[—ﬂ':'_ 20— 40,3+ 20 |
V, = [{10+2(@+ jHIL, — jI, (24— 1)

-V, -IL (248 6
B - "Gam, -mIfeer®
3+

B—-60X34+ j25 38542

. THOE 4+ ji 346] - 6023 5 jES IS O

- I:ﬂ_ll.l-l-ﬁ1+jl]_[l£35 05385 + jo. 6923

]

5 20
[r1-— |:1 il |
olrtain the oty Toe Taro—port paraehars.

Chapiter 19 Solmi@om ST

Sy = ET— (200 — 1

A |
— = a
— o
=z1—| % 5 _[1 -+ |==2
T c ! —
T —aA_ 1 7 —1‘|
B B o
rl=] -1 iJ_ -1 3 IS
= = Lza =od
i =] S I 20
B a.] Pz 31 7]
m]— ™ | _ T -
~1 [ - L .
L in ] L = -
T AL TR -1
=] — A A || = a
1 B k3 20
A = 1 L = )
[ I» B
E— P o _r - el |
L - N I_].S- =
—"'T ‘f"'l'_
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% Find the transmission parameters for z parameters of the network are Z=[25 20;24 30]

25 2]
e . oC_ A
7] % 30 A7 = 25530~ 224 270
A.i_él E_E_@

, 1, M
(_i_l.j_ﬂ_ﬂ

Im ¥ o M

t —
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UNIT-V
FILTERS
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5. Introduction :

Filters are essential building blocks in many systems, particularly in communication
and instrumentation systems. A filter passes one band of frequencies while rejecting another.
Typically implemented in one of three technologies: passive RLC filters, active RC filters and
switched capacitor filters. Crystal and SAW filters are normally used at very high frequencies. Passive
filters work well at high frequencies, however, at low frequencies the required inductors are
large, bulky and non-ideal.

Furthermore, inductors are difficult to fabricate in monolithic from and are incompatible with
many modern assembly systems. Active RC filters utilize op-amps together with resistors and
capacitors and are fabricated using discrete, thick film and thin-film technologies. The performance of
these filters is limited by the performance of the op-amps (e.g., frequency response, bandwidth, noise,
offsets, etc.). Switched-capacitor filters are monolithic filters which typically offer the best
performance in the term of cost. Fabricated using capacitors, switched and op-amps. Generally poorer
performance compared to passive LC or active RC filters.

Filters are generally linear circuits that can be represented as a two-port network:

Filter Vo(s)
circuit -

The filter transfer function is given as follows:

Vois)

T{jo=T(s)=——

HE
The magnitude of the transmission is often expressed in dB in terms of gain function:
G(w)dB=20log(|T(jw)|

Or, alternatively, in terms of the attenuation function:
A(w)dB=-20log(|T(jo)|

5.1.Classification Of Filters:

A filter shapes the frequency spectrum of the input signal, according to the magnitude of the
transfer function. The phase characteristics of the signal are also modified as it passes through the
filter. Filters can be classified into a number of categories based on which frequency bands
are passes through and which frequency bands are stopped. Figures below show ideal responses
of various filters.
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& A

Passband Stopband

Stopband | Passband

HIGH.PASS FILTER RESPONSE

BW

Passhand Siwpband

L
fi 2 f

BAMDPASS FILTER RESPOMSE

BW

Stopband | Passband

..-

fi f2
BAMDSTOP FILTEE EESPOMSE
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BW

Stopband | Passband

F-
I'; I'; | |
BAMDSTOP FILTER EESPOMSE
Center frequency Chualjtw factor O thow fast the roll-off 15)
I':, = -u"llj.|.-.-1 '[‘;l _ I--I:
BW
Wideband filter Q< 1
A Marreearband filter: Q= |
&
-
f
LLPASS FILTER RESPONSE

5.2.1. Classification of Pass band and Stop band:

Ideal filters could not be realized using electrical circuits, therefore the actual response of
the filter is not a brick wall response as shown above but increases or decreases with a roll-
off factor. Realistic transmission characteristics for a low pass filter are shown below.
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iy | oy

Transmission of a low pass filter is specified by four parameters:
- Pass band edge, op
- Maximum allowed variation in pass band transmission, Amax
- Stop band edge, ®s
- Minimum required stop band attenuation, Amin

The ratio ws/wp is usually used to measure the sharpness of the filter response and is called
the selectivity factor. The more tightly one specifies a filter (i.e., lower Amax, higher Amin, ws/wp
Closer to unity) the resulting filter must be of higher order and thus more complex and expensive.
Amax is commonly referred as the pass band ripple. The process of obtaining a transfer function
that meets given specifications is known as filter approximation. Filter approximation is usually
performed using computer programs or filter design tables. In simple cases, filter approximation can
be performed using closed form expressions.

Figure below shows transmission specifications for a band pass filter.

|T|,-|1HJ

) S——— — ——1-—-
Aot

[ Lower siophand g Prasbond & u sinpband = ——

In circuit theory, a filter is an electrical network that alters the amplitude and/or phase characteristics
of a signal with respect to frequency. Ideally, a filter will not add new frequencies to the input signal,
nor will it change the component frequencies of that signal, but it will change the relative amplitudes
of the various frequency components and/or their phase relationships.

Filters are often used in electronic systems to emphasize signals in certain frequency ranges and
reject signals in other frequency ranges

109




5.2.2. Low-Pass:
Low pass filter as the name suggests, it allows (passes) only low frequency components. That means, it

rejects (blocks) all other high frequency components.
The s-domain circuit diagram (network) of Low Pass Filter is shown in the following figure.

+ﬂ T+

Vi(s) C Vo(s)

| l

It consists of two passive elements resistor and capacitor, which are connected in series. Input voltage is
applied across this entire combination and the output is considered as the voltage across capacitor.

Here, V;(s) and V,(8) are the Laplace transforms of input voltage, v;(¢) and

output voltage, v,(t) respectively.
The transfer function of the above network is

1

L AC I
Vi(s)  R+-L
= H(s) = L
14+ sCR
Substitute, 8 = jw in the above equation.
¥ = 11 jwCR
Magnitude of transfer function is
1

|H(jw)| =

VT @CRE

e At w =0, the magnitude of transfer function is equal to 1.
e At w=1/CR, the magnitude of transfer function is equal to 0.707.

e At w = o, the magnitude of transfer function is equal to 0.

Therefore, the magnitude of transfer function of Low pass filter will vary from 1 to 0 as w varies from 0

to oo.

5.2.3.High-Pass :
High pass filter as the name suggests, it allows (passes) only high frequency components. That means, it

rejects (blocks) all low frequency components

The s-domain circuit diagram (network) of High pass filter is shown in the following figure.
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Vi(s) R Val(s)

l l

* =

It consists of two passive elements capacitor and resistor, which are connected in series. Input voltage is
applied across this entire combination and the output is considered as the voltage across resistor

Here, V;(s) and V,(s) are the Laplace transforms of input voltage, v;(¢) and

output voltage, ¥,(t) respectively.

The transfer function of the above network is

Va(s) R
A= v6 “rez
sCR
= H(s)=1cR

Substitute, § = jw in the above equation.
. jwCR
H =
() = T 5uCR

Magnitude of transfer function is

o wCR
H ()] = (1 + (wCR)?

e At w =0, the magnitude of transfer function is equal to 0.
e At w=1/CR, the magnitude of transfer function is equal to 0.707.

o At w = o, the magnitude of transfer function is equal to 1.

Therefore, the magnitude of transfer function of High pass filter will vary from 0 to 1 as w varies from 0

to oo.

5.2.4.Band Pass :

Band pass filter as the name suggests, it allows (passes) only one band of frequencies. In general, this
frequency band lies in between low frequency range and high frequency range. That means, this filter
rejects  (blocks) both low and high frequency components

The s-domain circuit diagram (network) of Band pass filter is shown in the following

It consists of three passive elements inductor, capacitor and resistor, which are connected in series. Input
voltage is applied across this entire combination and the output is considered as the voltage across

resistor.
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Here, V;(s) and V,(8) are the Laplace transforms of input voltage, v;(¢) and
output voltage, U,(t) respectively.

The transfer function of the above network is

_ Vu(s) R
HE) =V = r+ L +sL
— H(s) — sCR

s?LC +sCR+1
Substitute 8§ = jw in the above equation.

JwC R

H(jw) —
Uw) = T 2LC 1+ juCR

Magnitude of transfer function is

wCR
v (1 —w?LC)? + (wCR)?

|H (jw)| =

e At w =0, the magnitude of transfer function is equal to 0.
e At w=1/LC, the magnitude of transfer function is equal to 1.
e At w = o, the magnitude of transfer function is equal to 0.

Therefore, the magnitude of transfer function of Band pass filter will vary from0to 1 & 1t0o 0 as w
varies from 0 to oo.

5.2.5.Band elimination Filter:

Band stop filter as the name suggests, it rejects (blocks) only one band of frequencies. In general, this
frequency band lies in between low frequency range and high frequency range. That means, this filter
allows (passes) both low and high frequency components.

The s-domain (network) of circuit diagramand stop filter is shown in the following figure.

R

+ MWW :+

Vi(s) = Vo(s)
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It consists of three passive elements resistor, inductor and capacitor, which are connected in series. Input
voltage is applied across this entire combination and the output is considered as the voltage across the
combination of inductor and capacitor.

Here, V;(s) and V,(s) are the Laplace transforms of input voltage, v;(¢) and

output voltage, v,(t) respectively.

The transfer function of the above network is

V(s sL+ &
H(S}:V(): .C"l
i(8) R+sL+ &
2
— H(s) — sLC+1

SP2LC+sCR+1

Substitute, 8 = jw in the above equation.

1—2ALC
1 —w?LC + jwCR

H(jw) =

Magnitude of transfer function is

1 — w2 LC
V(1 —PLO) 1 (WCR)?

|H(jw)| =

At o = 0, the magnitude of transfer function is equal to 1.
At w=1~NLC the magnitude of transfer function is equal to 0.
At w = oo, the magnitude of transfer function is equal to 1.

Therefore, the magnitude of transfer function of Band stop filter will vary from 1t0o 0 & 0to 1 as w

varies from 0 to oo.

5.2.6.Active Filters:

Active filters use amplifying elements, especially op amps, with resistors and capacitors in their
feedback

loops, to synthesize the desired filter characteristics. Active filters can have high input impedance,
low

output impedance, and virtually any arbitrary gain. They are also usually easier to design than passive
filters
Active Filters contain active components such as operational amplifiers, transistors or FET’s within

their circuit design. They draw their power from an external power source and use it to boost or
amplify the output signal.

5.3. Constant — K Low Pass Filter

A network, either T or \[\pi\], is said to be of the constant-k type if Z; and Z, of the network
satisfy the relation
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leg = k2
where Z; and Z, are impedance in the T and [pi] sections as shown in Fig.17.8. Equation 17.20 states
that Z; and Z, are inverse if their product is a constant, independent of frequency. k is a real constant,
that is the resistance. k is often termed as design impedance or nominal impedance of the constant k-
filter.

The constant k, T or \[\pi\] type filter is also known as the prototype because other more
complex networks can be derived, where Z; = jo, and Z, = 1/joc. Hence Z,Z,=\[{L \over C}={k"2}\]
which is independent of frequencyThe pass band can be determined graphically. The reactance’s of
Z; and 4Z, will vary with frequency as drawn in Fig.30.2. The cut-off frequency at the intersection of
the curves Z; and 47, is indicated as f.. On the X-axis as Z; = -4Z, at cut-off frequency, the pass
band lies between the frequencies at which Z; =0, and Z,=-4Z,.

All the frequencies above f lie in a stop or attenuation band
The characteristic impedance of a \[\pi\]-network is given by

THE Low PASS CONSTANT-K FILTER

The constant-k LPF can have the conligurations [rom Figure L2 L2 L

The cutolT [requency is given by: Lrws T e N T I N
2 - ’ ]

Generally the [iller works on a constant load (Rs). To design Figure
the filter, Ry and oy are given. The matching can not be done at any
[requency therelore we have 1o choose the [requency at which the [ilter will match. Most of the times, LPF maiches

ind.c. (m=10). The elements of the [ilter are given by:

R b
L=— =

(0, o, R,

[
At £
Reactance Ba
7

Pass 4 e
Band

./ :

e
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5.4.Constant K-High Pass Filter:

Constant K-high pass filter can be obtained by changing the positions of series and shunt arms
of the networks shown in Fig.30.1. The prototype high pass filters are shown in Fig.30.5, where Z; =-
jloc and Z; = joL.

gain, it can be observed that the product of Z; and Z, is independent of frequency, and the
filter design obtained will be of the constant k type.The plot of characteristic impedance with respect

to frequency is shown

Zgx
Zo
A PG R s e’ e | e i e e s et e S P8
Zor
o P — —
THE HIGH PAsS CONSTANT-K FILTER
The possible confligurations ol the constant-k HPF are shown e c C
The cutolT [requency is given by: o _I ' {—o !
/
W, = L 2L 2L
NLC
Il we are interesting in matching at very high [requency
{w —> o0 ), then L and C are given by: Figure
R . !
L=+ C=
2o, 2R (oo,
(a) (b)

5.5.m-Derived T-Section:

It is clear from previous chapter Figs 30.3 & 30.7 that the attenuation is not sharp in the stop
band for k-type filters. The characteristic impedance, Z; is a function of frequency and varies widely
in the transmission band. Attenuation can be increased in the stop band by using ladder section, i.e. by
connecting two or more identical sections. In order to join the filter sections, it would be necessary
that their characteristic impedance be equal to each other at all frequencies. If their characteristic
impedances match at all frequencies, they would also have the same pass band. However, cascading is
not a proper solution from a practical point of view. This is because practical elements have a certain
resistance, which gives rise to attenuation in the pass band also.

Therefore, any attempt to increase attenuation in stop band by cascading also results in an
increase of _a‘ in the pass band. If the constant k section is regarded as the prototype, it is possible to

design a filter to have rapid attenuation in the stop band, and the same characteristic impedance as the
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prototype at all frequencies. Such a filter is called m-derived filter. Suppose a prototype T-network
shown in Fig.31.1 (a) has the series arm modified as shown in Fig.31.1 (b), where m is a constant.

. .. mZ mz
Equating the characteu,shc,%péﬁnce of the,networks_(lrrvﬁé%ave -

; Zalrm

| Zw1—m?)
4m

where Zyr- is the characteristic impedance of the modified (m-derived) T-network.

Thus m-derived section can be obtained from the prototype by modifying its series and shunt
arms. The same technique can be applied to \[\pi\] section network. Suppose a prototype p-network
shown in Fig.31.3 (a) has the shunt arm modified as shown in Fig.31.3 (b).

mZy2 mZy2
E Z;/m
| zu1-m?)
| 4m
o -
21.!'2 21.!'2 mZ,IZ m2'1.'2
—T1 1} 1 — | s m T

- e

The characteristic impedances of the prototype and its modified sections have to belequal for
matching.

(a) (b)

The characteristic impedance of the modified (m-derived) \[\pi\]-network

116




Or A

m m 4
Z._‘Z] ['l_m_n}
m 4m>
4m* Z,4m
e M ey
T W = (31.2)
VT Z,4m, » 5., Zadm T
—+Zim  mZq+ ~
mil—m,) VT -m?)
mZy
S
L—J
-
2Z,/m .2 2Z,/m
1-
L3 -

The series arm of the m-derived \[\pi\] section is a parallel combination of mZ; and 4m22/1—m2
5.5.1.m-Derived Low Pass Filter

In Fig.31.5, both m-derived low pass T and \[\pi\] filter sections are shown. For the
T-section shown Fig.31.5(a), the shunt arm is to be chosen so that it is resonant at some
frequency fx above cut-off frequency f. its impedance will be minimum or zero. Therefore,

the output is zero and will correspond to infinite attenuation at this particular frequency

1-—m? c
4m
mii2 mLi2 —
|
— BT ——
1 [ L] l
mL
mei2 ==
e | ™
(a) (®)
mao,L = 12
[lim ij
4M
o = 4 <
LAl —m7
1
B e
JT-\IF.LCh—iN'b
mi
a =2cosh™ Lo .
1,(L]
Sa
S
m-—
And g =2sin || 2| = 2sin S 117
4z,




5.5.2. m-derived High Pass Filter:

If the shunt arm in T-section is series resonant, it offers minimum or zero impedance.
Therefore, the output is zero and, thus, at resonance frequency, or the frequency corresponds
to infinite attenuation.

-
i CO?, 4m ' C
1—m
am L
1-m?
2CIim 2CIm — S
| conmmeans | g ! ‘
L I
LUm c/m
2Um
Am_ -~ 2Um
5 T A-n? O 5
(a) (b)

The m-derived \[\pi\]-section, the resonant circuit is constituted by the series arm inductance and

4 1
1 mzer:w
i o, .

capacitance

@ =, =
4LC
N1-mt N1—m?

@ = or =
*2JIc Je Az JLC

B
i
0 f. fe -_f
|
— — — 4 . I
r,'Tx. }_ T;' i} . _z; : zo:asst;:}n&l -
_——— - — S !
2 | ."l| 1 fx: | | Attenuation “
1 / | \ { I Band = -~
7 e tn o LI _ 1/ .--"fﬁb) |
| i o —il:ll—.-a--"*!‘f | K.::_-__:'-L_
Ve TR TR
AN N
1/ | _.Altenuabqn,_-|Passba!1d,, ..| ______.-'- I |
(o HER Y
0 ‘_E'____‘.!F__ o SR P a —Zor. : \3
e S iy e R
(a) ® () @ -
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5.5.3..Band Pass Filter:

A band-pass filter is a circuit which is designed to pass signals only in a certain band of
frequencies while attenuating all signals outside this band. The parameters of importance in a band
pass filter are the high and low cut-off frequencies (fH and fl), the bandwidth (BW), the centre
frequency fc, centre-frequency gain, and the selectivity or Q.

There are basically two types of band pass filters viz wide band pass and narrow band pass
filters. Unfortunately, there is no set dividing line between the two. However, a band pass filter is
defined as a wide band pass if its figure of merit or quality factor Q is less than 10 while the band pass
filters with Q > 10 are called the narrow band pass filters. Thus Q is a measure of selectivity, meaning
the higher the value of Q the more selective is the filter, or the narrower is the bandwidth (BW). The
relationship between Q, 3-db bandwidth, and the centre frequency fc is given by an equation

For a wide band pass filter the centre frequency can be defined as where fH and fL are
respectively the high and low cut-off frequencies in Hz. In a narrow band pass filter, the output
voltage peaks at the centre frequency fc.

Wide Band Pass Filter:

A wide band pass filter can be formed by simply cascading high-pass and low-pass sections
and is generally the choice for simplicity of design and performance though such a circuit can be
realized by a number of possible circuits. To form a + 20 db/ decade band pass filter, a first-order
high-pass and a first-order low-pass sections are cascaded; for a + 40 db/decade band pass filter,
second-order high- pass filter and a second-order low-pass filter are connected in series, and so on. It
means that, the order of the band pass filter is governed by the order of the high-pass and low-pass
filters it consists of.
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A + 20 db/decade wide band pass filter composed of a first-order high-pass filter and a first-order
low-pass filter, is illustrated in fig. (a). Its frequency response is illustrated in fig. (b).

Narrow Band pass Filter:

A narrow bandpass filter employing multiple feedback is depicted in figure. This filter
employs only one op-amp, as shown in the figure. In comparison to all the filters discussed so far, this
filter has some unique features that are given below.

1. It has two feedback paths, and this is the reason that it is called a multiple-feedback filter.
2. The op-amp is used in the inverting mode.

The frequency response of a narrow bandpass filter is shown in fig(b).

Generally, the narrow bandpass filter is designed for specific values of centre frequency fc and Q or fc
and BW. The circuit components are determined from the following relationships.

For simplification of design calculations each ofC1 and C2 may be taken equal to C.
R1 = Q/2I1 fcCAf
R2 =Q/2II fc C(2Q2-Af)
and R3=Q /M fcC
where Af, is the gain at centre frequency and is given as
Af=R3/2R1
The gain Af however must satisfy the condition Af < 2 Q2.

[3

The centre frequency fc of the multiple feedback filter can be changed to a new frequency fc
without changing, the gain or bandwidth. This is achieved simply by changing R2 to R’2 so that

R’2 = R2 [fe/fc]2
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Band Stop or Band Elimination Filter:

By combining a basic RC low-pass filter with a RC high-pass filter we can form a simple
band-pass filter that will pass a range or band of frequencies either side of two cut-off frequency
points. But we can also combine these low and high pass filter sections to produce another kind of RC
filter network called a band stop filter that can block or at least severely attenuate a band of

frequencies within these two

cut-off frequency points.

Band Stop Filter Response
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The Band Stop Filter, (BSF) is another type of frequency selective circuit that functions in
exactly the opposite way to the Band Pass Filter we looked at before. The band stop filter, also known
as a band reject filter, passes all frequencies with the exception of those within a specified stop band

which are greatly attenuated.
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If this stop band is very narrow and highly attenuated over a few hertz, then the band stop
filter is more commonly referred to as a notch filter, as its frequency response shows that of a deep
notch with high selectivity (a steep-side curve) rather than a flattened wider band.

Also, just like the band pass filter, the band stop (band reject or notch) filter is a second-order
(two-pole) filter having two cut-off frequencies, commonly known as the -3dB or half-power points
producing a wide stop band bandwidth between these two -3dB points.

Then the function of a band stop filter is too pass all those frequencies from zero (DC) up to
its first (lower) cut-off frequency point £, and pass all those frequencies above its second (upper) cut-
off frequency fu, but block or reject all those frequencies in-between. Then the filters bandwidth, BW
is defined as: (fn — fL).

So for a wide-band band stop filter, the filters actual stop band lies between its lower and
upper -3dB points as it attenuates, or rejects any frequency between these two cut-off frequencies. The
frequency response curve of an ideal band stop filter is therefore given as:

Band Stop Filter Response:

We can see from the amplitude and phase curves above for the band pass circuit, that the
quantities f1, fy and fc are the same as those used to describe the behaviour of the band-pass filter.
This is because the band stop filter is simply an inverted or complimented form of the standard band-
pass filter. In fact the definitions used for bandwidth, pass band, stop band and center frequency are
the same as before, and we can use the same formulas to calculate bandwidth, BW, center
frequency, fc, and quality factor, Q.

The ideal band stop filter would have infinite attenuation in its stop band and zero attenuation
in either pass band. The transition between the two pass bands and the stop band would be vertical
(brick wall). There are several ways we can design a “Band Stop Filter”, and they all accomplish the
same purpose.

Generally band-pass filters are constructed by combining a low pass filter (LPF) in series with
a high pass filter (HPF). Band stop filters are created by combining together the low pass and high
pass filter sections in a “parallel” type configuration as shown.

Typical Band Stop Filter Configuration:

The summing of the high pass and low pass filters means that their frequency responses do
not overlap, unlike the band-pass filter. This is due to the fact that their start and ending frequencies
are at different frequency points. For example, suppose we have a first-order low-pass filter with a
cut-off frequency, f. of 200Hz connected in parallel with a first-order high-pass filter with a cut-off
frequency, fy of 800Hz. As the two filters are effectively connected in parallel, the input signal is
applied to both filters simultaneously as shown above.

All of the input frequencies below 200Hz would be passed unattenuated to the output by the
low-pass filter. Likewise, all input frequencies above 800Hz would be passed unattenuated to the
output by the high-pass filter. However, and input signal frequencies in-between these two frequency
cut-off points of 200Hz and 800Hz, that is f| to fywould be rejected by either filter forming a notch
in the filters output response.

In other words a signal with a frequency of 200Hz or less and 800Hz and above would pass
unaffected but a signal frequency of say 500Hz would be rejected as it is too high to be passed by the
low-pass filter and too low to be passed by the high-pass filter. We can show the effect of this
frequency characteristic below.
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The transformation of this filter characteristic can be easily implemented using a single low
pass and high pass filter circuits isolated from each other by non-inverting voltage follower, (Av = 1).

The output from these two filter circuits is then summed using a third operational amplifier connected
as a voltage summer (adder) as shown.

THE BAND PASS CONSTANT-K FILTER

The constant-k BPF conligurations are shown in Figure
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5.5.7.Band Stop Filter Circuit:

The use of operational amplifiers within the band stop filter design also allows us to introduce
voltage gain into the basic filter circuit. The two non-inverting voltage followers can easily be
converted into a basic non-inverting amplifier with a gain of Av = 1 + Rf/Rinby the addition of input
and feedback resistors, as seen in our non-inverting op-amp tutorial.

Also if we require a band stop filter to have its -3dB cut-off points at say, 1kHz and 10kHz
and a stop band gain of -10dB in between, we can easily design a low-pass filter and a high-pass filter
with these requirements and simply cascade them together to form our wide-band band-pass filter
design.

Now we understand the principle behind a Band Stop Filter, let us design one using the
previous cut-off frequency values.
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