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1. INTRODUCTION: 

In electric network analysis, the fundamental rules are Ohm‘s Law and Kirchhoff‘s Laws. While these humble 

laws may be applied to analyze just about any circuit configuration (even if we have to resort to complex algebra 

to handle multiple unknowns), there are some ―shortcut‖ methods of analysis to make the math easier for the 

average human. 

As with any theorem of geometry or algebra, these network theorems are derived from fundamental rules. In this 

chapter, I‘m not going to delve into the formal proofs of any of these theorems. If you doubt their validity, you 

can always empirically test them by setting up example circuits and calculating values using the ―old‖ 

(simultaneous equation) methods versus the ―new‖ theorems, to see if the answers coincide. 

Network theorems are also can be termed as network reduction techniques. Each and every theorem got its 

importance of solving network. Let us see some important theorems with DC and AC excitation with detailed 

procedures. 

 

1. 1 TELLEGEN‟S THEOREM: 

Dc Excitation: 

Tellegen‘s theorem states algebraic sum of all delivered power must be equal to sum of all received powers. 

According to Tellegen‘s theorem, the summation of instantaneous powers for the n number of branches in an 

electrical network is zero. Are you confused? Let's explain. Suppose n number of branches in an electrical network 

have i1, i2, i3…. in respective instantaneous currents through them. These currents satisfy Kirchhoff's Current Law. 

Again, suppose these branches have instantaneous voltages across them are v1, v2, v3, ........... vn respectively. If 

these voltages across these elements satisfy Kirchhoff Voltage Law then, 

 

 
 

vk is the instantaneous voltage across the k
th
 branch and ik is the instantaneous current flowing through this branch. 

Tellegen‟s theorem is applicable mainly in general class of lumped networks that consist of linear, non-linear, 

active, passive, time variant and time variant elements. 
 

This theorem can easily be explained by the following example. 

 
 

https://www.allaboutcircuits.com/video-lectures/electrical-quantities-b/
https://www.allaboutcircuits.com/textbook/direct-current/chpt-6/kirchhoffs-voltage-law-kvl/
https://www.electrical4u.com/voltage-or-electric-potential-difference/
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In the network shown, arbitrary reference directions have been selected for all of the branch currents, and the 

corresponding branch voltages have been indicated, with positive reference direction at the tail of the current arrow. 

For this network, we will assume a set of branch voltages satisfy the Kirchhoff voltage law and a set of branch 

current satisfy Kirchhoff current law at each node. 

 

We will then show that these arbitrary assumed voltages and currents satisfy the equation. 

 

 
 
And it is the condition of Tellegen‟s theorem. In the network shown in the figure, let v1, v2 and v3 be 7, 2 and 3 

volts respectively. Applying  Kirchhoff Voltage   Law around loop ABCDEA. We see that v4 = 2 volt is required. 

Around loop CDFC, v5 is required to be 3 volt and around loop DFED, v6 is required to be 2. We next apply 

Kirchhoff's Current Law successively to nodes B, C and D. At node B let ii = 5 A, then it is required that i2 = - 5 A. 

At node C let i3 = 3 A and then i5 is required to be - 8. At node D assume i4 to be 4 then i6 is required to be - 9. 

Carrying out the operation of equation, 

 
We get, 

 

 
 

Hence Tellegen‟s theorem is verified. 
 
 
1.2 SUPER-POSITION THEOREM: 
 

   DC: “ In an any linear , bi-lateral network consisting number of sources , response in any element(resistor) is 

given as sum of the individual Reponses due to individual sources, while other sources are non-operative” 

 

   AC: “ In an any linear , bi-lateral network consisting number of sources , response in any element(impedance) is 

given as sum of the individual Reponses due to individual sources, while other sources are non-operative” 

 

Procedure of Superposition Theorem: 

Follow these steps in order to find the response in a particular branch using superposition theorem. 

Step 1 − Find the response in a particular branch by considering one independent source and eliminating the 

remaining independent sources present in the network. 

Step 2 − Repeat Step 1 for all independent sources present in the network. 

Step 3 − Add all the responses in order to get the overall response in a particular branch when all independent 

sources are present in the network. 

   Eg:                                              

 
  Let V = 6v, I = 3A, R1 = 8 ohms and R2 = 4 ohms  

 

  Let us find current through 4 ohms using V source, while I is zero. Then equivalent circuit is 
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                                       Let i1 is the current through 4 ohms, i1 = V / (R1+R2) 

 

Let us find current through 4 ohms using I source, while V is zero. Then equivalent circuit is 

 

                                                       
 
                                       Let i2 is the current through 4 ohms, i2 = I. R1 / (R1+R2) 

 

Hence total current through 4 ohms is =  I1+I2( as both currents are in same direction or otherwise  I1-I2) 

 

 

   Eg:                                              

 

  Let  V = 6v, I = 3A, Z1 = 8 ohms and Z2 = 4 ohms  
 

  Let us find current through 4 ohms using V source , while I is zero. Then equivalent circuit is 

 

                                                     

 

                                    Let i1 is the current through 4 ohms, i1 = V / (Z1+Z2) 
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Let us find current through 4 ohms using I source, while V is zero. Then equivalent circuit is 

 

 
 
                                       Let i2 is the current through 4 ohms, i2 = I. Z1 / (Z1+Z2) 

 

Hence total current through 4 ohms is =  I1+I2 ( as both currents are in same direction or otherwise  I1-I2).  

 

1.3 RECIPROCITY THEOREM: 

 

 
DC & AC: ― In any linear bi-lateral network ratio of voltage in one mesh to current in other mesh is same even if 

their positions are inter-changed‖. 

 

Eg:                   

Find the total resistance of the circuit, Rt = R1+ [R2(R3+Rl)] / R2+R3+RL. 

 

Hence source current, I = V1 / Rt. 

 

Current through RL is I1 = I. R2 / (R2+R3+RL) 

 

Take the ratio of , V1 /  I1 ---1 

 

Draw the circuit by  inter changing position of V1 and I1 
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Find the total resistance of the circuit, Rt = (R3+RL) + [R2(Rl)] / R2+R1. 

 

Hence source current, I = V1 / Rt. 

 

Current through RL is I1 = I. R2 / (R2+R1)  

 

Take the ratio of , V1 /  I1 ---2 

 

If  ratio 1 = ratio 2, then circuit is said to be satisfy reciprocity. 

 

 

Eg: With AC source 

                                      
Find the total impedance of the circuit, Zt = Z1+ [Z2(Z3+ZL)] / Z2+ Z 3+ Z L. 

 

Hence source current, I = V1 / Z t. 

 

Current through ZL is I1 = I. Z 2 / (Z2+ Z3+ ZL)  

 

Take the ratio of , V1 /  I1 ---1 

 

Draw the circuit by  inter changing position of V1 and I1 
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Find the total impedanceof the circuit, Zt = (Z3+ ZL) + [Z2(ZL)] / Z2+ Z1. 
 

Hence source current, I = V1 / Z t. 

 

Current through ZL is I1 = I. Z2 / (Z2+ Z1)  

 

Take the ratio of , V1 /  I1 ---2 

 

If  ratio 1 = ratio 2, then circuit is said to be satisfy reciprocity. 

 

*** Here only magnitudes are compared 

 

 

 

 

1.4 THEVENIN‟S THEOREM: 

 
DC: ― An complex network consisting of number voltage and current sources and be replaced by simple series 

circuit consisting of equivalent voltage source in series with equivalent resistance, where equivalent voltage is 

called as open circuit voltage and equivalent resistance is called as Thevenin‘s resistance calculated across open 

circuit terminals while all energy sources are non-operative‖ 

 

AC: ― An complex network consisting of number voltage and current sources and be replaced by simple series 

circuit consisting of equivalent voltage source in series with equivalent impedance, where equivalent voltage is 
called as open circuit voltage and equivalent impedance is called as Thevenin‘s impedance calculated across open 

circuit terminals while all energy sources are non-operative‖ 

 

 

 

 

 

 

 

 

 

 

 

 

Eg:  

Here we need to find current through RL using Thevenin‘s theorem. 

 

Open circuit the AB terminals to find the Thevenin‘s voltage. 
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Thevenin‘s voltage , Vth = E1. R3 / (R1+R3) ----1  from figure .1 

 

Thevenin‘s resistance, Rth = (R1.R3)/ (R1+R3) + R2 ----2  from figure 2. 

 

Now draw the thevenin‘s equivalent circuit as shown in figure 3 with calculated values. 

 

Eg: With AC excitation 

 
Here we need to find current through ZL using thevenin‘s theorem. 

 

Open circuit the AB terminals to find the Thevenin‘s voltage. 

 

Thevenin‘s voltage , Vth = E1. R3 / (R1+R3) ----1  from figure .1 

 

Thevenin‘s impedance, Zth = (Z1. Z3)/ (Z1+ Z3) + Z2 ----2  from figure 2. 

 

Now draw the thevenin‘s equivalent circuit as shown in figure 3 with calculated values. 

 

              
1.5 NORTON‟S THEOREM: 

 

DC: ― An complex network consisting of number voltage and current sources and be replaced by simple parallel 

circuit consisting of equivalent current source in parallel with equivalent resistance, where equivalent current source 

is called as short circuit current and equivalent resistance is called as Norton‘s resistance calculated across open 

circuit terminals while all energy sources are non-operative‖ 

 

AC: ―An complex network consisting of number voltage and current sources and be replaced by simple parallel 

circuit consisting of equivalent current source in parallel with equivalent impedance, where equivalent current 

source is called as short circuit current and equivalent impedance is called as Norton‘s impedance calculated across 

open circuit terminals while all energy sources are non-operative‖ 

 

   
 

 
Here we need to find current through RL using Norton‘s theorem. 

 

Short  circuit the AB terminals to find the Norton‘s current. 

 

Total resistance of circuit is, Rt = (R2.R3) / (R2+R3) + R1 

 

Source current, I = E / Rt 

 

Norton‘s current , IN = I. R3 / (R2+R3) ----1  from figure .1 

 

Norton‘s resistance, RN = (R1.R3)/ (R1+R3) + R2 ----2  from figure 2. 
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Now draw the Norton‘s equivalent circuit as shown in figure 3 with calculated values. 

 

Eg: With AC excitation 

 
Here we need to find current through ZL using Norton‘s theorem. 

 

Short circuit the AB terminals  to find the Norton‘s current. 

 

Total impedance of circuit is, Zt = (Z2. Z3) / (Z2+Z3) + Z1 

 

Source current, I = E / Zt 

 

Norton‘s current, IN = I. Z3 / (Z2+Z3) ----1  from figure .1 

 

Norton‘s impedance, ZN = (Z1. Z3)/ (Z1+Z3) + Z2 ----2  from figure 2. 

 

Now draw the Norton‘s equivalent circuit as shown in figure 3 with calculated values. 

 

*** These two theorems are useful in determining the load value for which maximum power transfer can be 

happened. 

 

 

 

 

 

 

 

1.6 MAXIMUM POWER TRANSFER THEOREM: 

 

 

DC: “ In linear bi-lateral network maximum power can be transferred from source to load if load resistance is equal 

to source or thevenin‘s or internal resistances‖. 

 

AC: “ In linear bi-lateral network maximum power can be transferred from source to load if load impedance is 

equal to  complex conjugate of source or thevenin‘s or internal impedances‖ 

 

Eg: For the below circuit explain maximum power transfer theorem. 

                                         
 
Let I be the source current,  I = V / (R1+R2) 

 

Power absorbed by load resistor is, PL = I
2
 .R2 

 

                                                               = [ V / (R1+R2)]
2 
.R2. 

 

To say that load resistor absorbed maximum power , dPL / dR2 = 0. 
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When we solve above condition we get, R2 = R1. 

 

Hence maximum power absorbed by load resistor is, PLmax =  V
2  

/ 4R2. 

 

Eg: AC excitation 
                             
Let I be the source current,  I = V / (Z1+ Z 2) 

 

Power absorbed by load impedance is, PL = I
2
 . Z2 

 

                                                               = [ V / (Z1+ Z2)]
2 
. Z2. 

 

To say that load resistor absorbed maximum power , dPL / d Z2 = 0. 

 

When we solve above condition we get, Z2 = Z1
*
. 

 

Hence maximum power absorbed by load resistor is, PLmax =  V
2  

/ 4 Z2.(magnitude) 

 

1.7 MILLIMAN‟S THEOREM: 

 

DC: “ An complex network consisting of number of parallel branches , where each parallel branch consists of 

voltage source with series resistance, can be replaced with equivalent circuit consisting of one voltage source in 

series with equivalent resistance‖ 
 

                              
 
                   Where equivalent voltage source value is , V‘ = (V1G1+V2G2+------+VnGn) 

                                                                                                  -------------------------------- 

                                                                                                   G1+G2+----------------Gn 

 

                            Equivalent resistance is , R‘ =    1 / ( G1+G2+-------------------Gn) 

 

AC: “ An complex network consisting of number of parallel branches , where each parallel branch consists of 

voltage source with series impedance, can be replaced with equivalent circuit consisting of one voltage source in 

series with equivalent impedance‖ 

 

                   Where equivalent voltage source value is , V‘ = (V1Y1+V2Y2+------+VnYn) 

                                                                                                  -------------------------------- 

                                                                                                   Y1+Y2+----------------Yn 

 

                            Equivalent resistance is , Z‘ =    1 / ( Y1+Y2+-------------------Yn) 

 

*** It is also useful in designing load value for which it absorbs maximum power. 

 
1.8 . COMPENSATION THEOREM: 

 

DC &AC: ―compensation theorem states that any element in the network can be replaced with 
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                   Voltage source whose value is product of current through that element and its value‖ 

                   It is useful in finding change in current when sudden change in resistance value. 

 

 

                                               
For the above circuit source current is given as, I = V / (R1+R2)  

 

Element R2 can be replaced with voltage source of ,V‘ = I.R2 

 

Let us assume there is change in R2 by ΔR, now source current is I‘= V / (R1+R2+ ΔR) 

 

Hence actual change in current from original circuit to present circuit is = I – I‘. 

 

This can be find using compensation theorem as, making voltage source non-operative and replacing ΔR with 

voltage source of I‘. ΔR. 

 

Then change in current is given as  =  I‘. ΔR / (R1+R2) 

 

 

Eg: AC excitation 

                    

For the above circuit source current is given as, I = V / (Z1+Z2)  

 

Element R2 can be replaced with voltage source of ,V‘ = I.Z2 

 

Let us assume there is change in R2 by ΔR, now source current is I‘= V / (Z1+Z2+ ΔZ) 

 

Hence actual change in current from original circuit to present circuit is = I – I‘. 

 

This can be find using compensation theorem as, making voltage source non-operative and replacing ΔR with 

voltage source of I‘. ΔZ. 

 

Then change in current is given as  =  I‘. Z/ (Z1+Z2)                    
 

EXAMPLES: 

Steps to Analyze Electric Circuit through Thevenin‘s Theorem 

1. Open the load resistor. 

2. Calculate / measure the open circuit voltage. This is the Thevenin Voltage (VTH). 

3. Open current sources and short voltage sources. 

4. Calculate /measure the Open Circuit Resistance. This is the Thevenin Resistance (RTH). 

5. Now, redraw the circuit with measured open circuit Voltage (VTH) in Step (2) as voltage source and 

measured open circuit resistance (RTH) in step (4) as a series resistance and connect the load resistor which we 

had removed in Step (1). This is the equivalent Thevenin circuit of that linear electric network or complex 

circuit which had to be simplified and analyzed by Thevenin’s Theorem. You have done. 

6. Now find the Total current flowing through load resistor by using the Ohm‘s Law: IT = VTH/ (RTH+ RL). 

 

https://www.electricaltechnology.org/2013/10/ohms-law-with-simple-explanation.html
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Solved Example by Thevenin‟s Theorem: 

Example: 
Find VTH, RTH and the load current flowing through and load voltage across the load resistor in fig (1) by using 

Thevenin’s Theorem. 

 
Solution: 

Step 1: 

Open the 5kΩ load resistor (Fig 2). 

 

Step 2: 

Calculate / measure the open circuit voltage. This is the Thevenin Voltage (VTH). Fig (3). 

We have already removed the load resistor from figure 1, so the circuit became an open circuit as shown in fig 2. 

Now we have to calculate the Thevenin‘s Voltage. Since 3mA current flows in both 12kΩ and 4kΩ resistors as this 

is a series circuit because current will not flow in the 8kΩ resistor as it is open. 

So 12V (3mA  x 4kΩ) will appear across the 4kΩ resistor. We also know that current is not flowing through the 

8kΩ resistor as it is open circuit, but the 8kΩ resistor is in parallel with 4k resistor. So the same voltage i.e. 12V 

will appear across the 8kΩ resistor as well as 4kΩ resistor. Therefore 12V will appear across the AB terminals. 

So, 

VTH = 12V  
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Step 3:Open current sources and short voltage sources as shown below. Fig (4) 

 

 

calculate / measure the open circuit resistance. This is the Thevenin Resistance (RTH) 

We have removed the 48V DC source to zero as equivalent i.e. 48V DC source has been replaced with a short in step 3 (as 

shown in figure 3).  We can see that 8kΩ resistor is in series with a parallel connection of 4kΩ resistor and  12k Ω resistor. i.e.: 

8kΩ + (4k Ω || 12kΩ) ….. (|| = in parallel with) 
  

RTH = 8kΩ +  [(4kΩ x 12kΩ) / (4kΩ + 12kΩ)] 
RTH = 8kΩ + 3kΩ 

RTH = 11kΩ 

 

                                                 

 

 
 

Step 5. 
Connect the RTHin series with Voltage Source VTH and re-connect the load resistor. This is shown in fig (6) i.e. 

Thevenin circuit with load resistor. This the Thevenin‘s equivalent circuit. 

 

 
 

 

now apply the last step i.e Ohm‘s law . Calculate the total load current & load voltage as shown in fig 6. 

IL = VTH / (RTH + RL) 
= 12V / (11kΩ + 5kΩ) → = 12/16kΩ 

IL= 0.75mA 
And 

VL = ILx RL 
VL = 0.75mA x 5kΩ 

VL= 3.75V 

 

 

 

 

 

 

 

 

 

https://www.electricaltechnology.org/2013/10/ohms-law-with-simple-explanation.html
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UNIT – II 
 

 

SOLUTION OF FIRST AND SECOND ORDER 

 

NETWORKS 
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TRANSIENT RESPONSE FOR DC CIRCUITS 

 
 INTRODUCTION: 

 

For higher order differential equation, the number of arbitrary constants equals the order of the equation. If 

these unknowns are to be evaluated for particular solution, other conditions in network must be known. A set of 

simultaneous equations must be formed containing general solution and some other equations to match number of 

unknown with equations. 

  

We assume that at reference time t=0, network condition is changed by switching action. Assume that switch 

operates in zero time. The network conditions at this instant are called initial conditions in network. 

   

2. 1 Resistor : 

 
Equation 1 is linear and also time dependent. This indicates that current through resistor changes if applied voltage 

changes instantaneously. Thus in resistor, change in current is instantaneous as there is no storage of energy in it. 

2.2. Inductor: 
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If dc current flows through inductor, dil/dt becomes zero as dc current is constant with respect to time. Hence 

voltage across inductor, VL becomes zero. Thus, as for as dc quantities are considered, in steady stake, inductor acts 

as short circuit. 

 

 

 
 

 

 

2.3. capacitor: 

 
If dc voltage is applied to capacitor, dVC / dt becomes zero as dc voltage is constant with respect to time. 

  

Hence the current through capacitor iC becomes zero, Thus as far as dc quantities are considered capacitor acts as 

open circuit. 
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Thus voltage across capacitor can not change instantaneously. 

 

2.4Initial Condition for (DC steady state solution) 

• Initial condition: response of a circuit before a switch is first activated. 

– Since power equals energy per unit time, finite power requires continuous 

change in energy. 

• Primary variables: capacitor voltages and inductor currents-> energy 

storage elements 

                       
 

  

 Capacitor voltages and inductor currents cannot change instantaneously but should be continuous. -> continuity 

of capacitor voltages and inductor currents 

 

 

 The value of an inductor current or a capacitor voltage just prior to the closing (or opening) of a switch is equal 

to the value just after the switch has been closed (or opened). 

               
 

 

2.5 TRANSIENT RESPONSE OF RL CIRCUITS WITH DC EXCITATIO: 
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Both Equation 5 and Equation 6 are same. But, we can easily understand the above waveform of current flowing 

through the circuit from Equation 6 by substituting a few values of t like 0, τ, 2τ, 5τ, etc. 
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In the above waveform of current flowing through the circuit, the transient response will present up to five time 

constants from zero, whereas the steady state response will present from five time constants onwards. 

 
 

2.5.1 Current decay in source free series RL circuit: - 

 
t = 0- , , switch k is kept at position ‗a‘ for very long time. Thus, the network is in steady state. Initial current 

through inductor is given as, 

 
Because current through inductor can not change instantaneously 

Assume       that at t = 0 switch k is moved to position 'b'. 

Applying KVL, 

 
 

Rearranging the terms in above equation by separating variables 

 
Integrating both sides with respect to corresponding variables 

 
Where   k‘   is   constant   of   integration.  

To   find-    k‘:                                                      

Form equation 1, at t=0, i=I0   

Substituting the values in equation 3 

Where   k‘   is   constant   of   integration. 
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To   find-    k‘:Form equation 1, at t=0, i=I0   

Substituting the values in eq 

 

 

 
fig. shows variation of current i with respect to time 

 
From the graph, H is clear that current is exponentially decaying. At point P on graph. The current value is 

(0.363) times its maximum value. The characteristics of decay are determined by values R and L which are two 

parameters of network. 

The voltage across inductor is given by 

 

 
 

Voltage, vc and current i are reduced to 36.8 % of their initial value 
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2.6. TRANSIENT RESPONSE OF RC CIRCUIT WITH DC EXCITATION: 
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2.7 TRANSIENT RESPONSE OF RLC CIRCUITS WITH DC EXCITATION: 
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In the preceding lesson, our discussion focused extensively on dc circuits having resistances with either inductor () 

or capacitor () (i.e., single storage element) but not both. Dynamic response of such first order system has been 

studied and discussed in detail. The presence of resistance, inductance, and capacitance in the dc circuit introduces 

at least a second order differential equation or by two simultaneous coupled linear first order differential equations. 

We shall see in next section that the complexity of analysis of second order circuits increases significantly when 

compared with that encountered with first order circuits. Initial conditions for the circuit variables and their 

derivatives play an important role and this is very crucial to analyze a second order dynamic system. 

  

Response of a series R-L-C circuit 

Consider a series RL circuit as shown in fig.11.1, and it is excited with a dc voltage source C−−sV.  

Applying around the closed path for, 

 

 
The current through the capacitor can be written as Substituting the current ‗‘expression in eq.(11.1)  and 

rearranging the terms, 

 

The above equation is a 2nd-order linear differential equation and the parameters associated with the differential 

equation are constant with time. The complete solution of the above differential equation has two components; the 

transient response and the steady state response. Mathematically, one can write the complete solution as 
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Since the system is linear, the nature of steady state response is same as that of forcing function (input voltage) and 

it is given by a constant value. Now, the first part of the total response is completely dies out with time while and it 

is defined as a transient or natural response of the system. The natural or transient response (see Appendix in 

Lesson-10) of second order differential equation can be obtained from the homogeneous equation (i.e., from force 

free system) that is expressed by 

 

and solving the roots of this equation (11.5) on that associated with transient part of the complete solution (eq.11.3) 

and they are given below. 

 

 
The roots of the characteristic equation are classified in three groups depending upon the values of the 

parameters ,,Rand of the circuit Case-A (over damped response): That the roots are distinct with negative real parts. 

Under this situation, the natural or transient part of the complete solution is written as 

 

and each term of the above expression decays exponentially and ultimately reduces to zero as and it is termed as 

over damped response of input free system. A system that is over damped responds slowly to any change in 

excitation. It may be noted that the exponential term t→∞11tAeαtakes longer time to decay its value to zero than 

the term21tAeα. One can introduce a factor ξ that provides an information about the speed of system response and 

it is defined by damping ratio 
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33 
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2 . 8. RESPONSE OF SERIES RL CIRCUIT (AC EXCITATION): 

Consider the following series RL circuit diagram. 

 
In the above circuit, the switch was kept open up to t = 0 and it was closed at t = 0. So, the AC voltage source 

having a peak voltage of Vm volts is not connected to the series RL circuit up to this instant. Therefore, there is no 

initial current flows through the inductor. 

The circuit diagram, when the switch is in closed position, is shown in the following figure. 

 
Now, the current i(t) flows in the entire circuit, since the AC voltage source having a peak voltage of Vm volts is 

connected to the series RL circuit. 

We know that the current i(t) flowing through the above circuit will have two terms, one that represents the 

transient part and other term represents the steady state. 

Mathematically, it can be represented as 

Equation 1 
Where, 

  is the transient response of the current flowing through the circuit. 

 is the steady state response of the current flowing through the circuit. 

In the previous chapter, we got the transient response of the current flowing through the series RL circuit. It is in the 

form of   

Substitute  in Equation 1. 

Equation 2 
Calculation of Steady State Current 

If a sinusoidal signal is applied as an input to a Linear electric circuit, then it produces a steady state output, which 

is also a sinusoidal signal. Both the input and output sinusoidal signals will be having the same frequency, but 

different amplitudes and phase angles. 
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We can calculate the steady state response of an electric circuit, when it is excited by a sinusoidal voltage source 

using Laplace Transform approach. 

 

 

 

The s-domain circuit diagram, when the switch is in closed position, is shown in the following figure. 

 
 

In the above circuit, all the quantities and parameters are represented in s-domain. These are the Laplace 

transforms of time-domain quantities and parameters. 
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2.9.Transient Response of a series R-L-C circuit 

       Consider a series RL circuit as shown in fig.11.1, and it is excited with a dc voltage source C−−sV.  

      Applying around the closed path for  
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The current through the capacitor can be written as 
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NUMERICAL PROBLEMS: 
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1. Assign the loop currents in clockwise directions and redrawn the circuit as shown in . The 

voltage across the terminals „‟ and „‟ can be obtained by solving the following loop equations. 

 

 

Solution 

 

 

where, i2(t) and i1(t)can be obtained  
 

 

2.The switch „ S ‟ shown  is kept open for a long time and then it is closed at time „ t = 0 ‟. 

Find 
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The circuit shown in Fig.below  has been established for a long time 
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Laplace Transform Table 

There is always a table that is available to the engineer that contains information on the Laplace transforms. An 

example of Laplace transform table has been made below. We will come to know about the Laplace transform of 

various common functions from the following table . 
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2.10. TRANSIENT ANALYSIS OF A SERIES RL CIRCUITS USING LAPLACE TRANSFORM:  

Using the Laplace transform as part of your circuit analysis provides you with a prediction of circuit response. 

Analyze the poles of the Laplace transform to get a general idea of output behavior. Real poles, for instance, 

indicate exponential output behavior. 

Follow these basic steps to analyze a circuit using Laplace techniques: 

1. Develop the differential equation in the time-domain using Kirchhoff‘s laws and element equations. 

2. Apply the Laplace transformation of the differential equation to put the equation in the s-domain. 

3. Algebraically solve for the solution, or response transform. 

4. Apply the inverse Laplace transformation to produce the solution to the original differential equation described 

in the time-domain. 

To get comfortable with this process, you simply need to practice applying it to different types of circuits such as an 

RC (resistor-capacitor) circuit, an RL (resistor-inductor) circuit, and an RLC (resistor-inductor-capacitor) circuit. 

Here is an RL circuit that has a switch that‘s been in Position A for a long time. The switch moves to Position B at 

time t = 0. 

 

For this circuit, you have the following KVL equation: 

vR(t) + vL(t) = 0 

Next, formulate the element equation (or i-v characteristic) for each device. Using Ohm‘s law to describe the 

voltage across the resistor, you have the following relationship: 

vR(t) = iL(t)R 

The inductor‘s element equation is 

 

Substituting the element equations, vR(t) and vL(t), into the KVL equation gives you the desired first-order 

differential equation: 

 

On to Step 2: Apply the Laplace transform to the differential equation: 
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The preceding equation uses the linearity property which says you can take the Laplace transform of each term. For 

the first term on the left side of the equation, you use the differentiation property: 

 

This equation uses IL(s) = ℒ[iL(t)], and I0 is the initial current flowing through the inductor. 

The Laplace transform of the differential equation becomes 

IL(s)R + L[sIL(s) – I0] = 0 

Solve for IL(s): 

 

For a given initial condition, this equation provides the solution iL(t) to the original first-order differential equation. 

You simply perform an inverse Laplace transform of IL(s) — or look for the appropriate transform pair in this table  

to get back to the time-domain. 
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The preceding equation has an exponential form for the Laplace transform pair. You wind up with the following 

solution: 

 

The result shows as time t approaches infinity, the initial inductor current eventually dies out to zero after a long 

period of time — about 5 time constants (L/R) 

2.11.TRANSIENT RESPONSE OF SERIES RC CIRCUIT USING LAPLACE TRANSFORMS: 

Using the Laplace transform as part of your circuit analysis provides you with a prediction of circuit response. 

Analyze the poles of the Laplace transform to get a general idea of output behavior. Real poles, for instance, 

indicate exponential output behavior. 

Follow these basic steps to analyze a circuit using Laplace techniques: 

1. Develop the differential equation in the time-domain using Kirchhoff‘s laws and element equations. 

2. Apply the Laplace transformation of the differential equation to put the equation in the s-domain. 

3. Algebraically solve for the solution, or response transform. 

4. Apply the inverse Laplace transformation to produce the solution to the original differential equation described 

in the time-domain. 

To get comfortable with this process, you simply need to practice applying it to different types of circuits such as an 

RC (resistor-capacitor) circuit, an RL (resistor-inductor) circuit, and an RLC (resistor-inductor-capacitor) circuit. 

Consider the simple first-order RC series circuit shown here. To set up the differential equation for this series 

circuit, you can use Kirchhoff‘s voltage law (KVL), which says the sum of the voltage rises and drops around a 

loop is zero. This circuit has the following KVL equation around the loop: 

-vS(t) + vr(t) + vc(t) = 0 

 
Next, formulate the element equation (or i-v characteristic) for each device. The element equation for the source is 

vS(t) = VAu(t) 

Use Ohm‘s law to describe the voltage across the resistor: 
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vR(t) = i(t)R 

The capacitor‘s element equation is given as 

 

Substituting this expression for i(t) into vR(t) gives you the following expression: 

 

Substituting vR(t), vC(t), and vS(t) into the KVL equation leads to 

 

Now rearrange the equation to get the desired first-order differential equation: 

 

Now you‘re ready to apply the Laplace transformation of the differential equation in the s-domain. The result is 

 

On the left, the linearity property was used to take the Laplace transform of each term. For the first term on the left 

side of the equation, you use the differentiation property, which gives you 

 

This equation uses VC(s) = ℒ[vC(t)], and V0 is the initial voltage across the capacitor. 

Using the following table, the Laplace transform of a step function provides you with this: 
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Based on the preceding expressions for the Laplace transforms, the differential equation becomes the following: 

 

 

Next, rearrange the equation: 

 

Solve for the output Vc(s) to get the following transform solution: 

 

By performing an inverse Laplace transform of VC(s) for a given initial condition, this equation leads to the 

solution vC(t) of the original first-order differential equation. 

On to Step 3 of the process. To get the time-domain solution vC(t), you need to do a partial fraction expansion for 

the first term on the right side of the preceding equation: 
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2.13. TRANSIENT ANALYSIS OF A SERIES RLC CIRCUIT USING LAPLACE TRANSFORMS: 

Using the Laplace transform as part of your circuit analysis provides you with a prediction of circuit response. 

Analyze the poles of the Laplace transform to get a general idea of output behavior. Real poles, for instance, 

indicate exponential output behavior. 

Follow these basic steps to analyze a circuit using Laplace techniques: 

1. Develop the differential equation in the time-domain using Kirchhoff‘s laws and element equations. 

2. Apply the Laplace transformation of the differential equation to put the equation in the s-domain. 

3. Algebraically solve for the solution, or response transform. 

4. Apply the inverse Laplace transformation to produce the solution to the original differential equation described 

in the time-domain. 

To get comfortable with this process, you simply need to practice applying it to different types of circuits such as an 

RC (resistor-capacitor) circuit, an RL (resistor-inductor) circuit, and an RLC (resistor-inductor-capacitor) circuit. 

Here you can see an RLC circuit in which the switch has been open for a long time. The switch is closed at time t = 

0. 

 

In this circuit, you have the following KVL equation: 

vR(t) + vL(t) + v(t) = 0 

Next, formulate the element equation (or i-v characteristic) for each device. Ohm‘s law describes the voltage across 

the resistor (noting that i(t) = iL(t) because the circuit is connected in series, where I(s) = IL(s) are the Laplace 

transforms): 

vR(t) = i(t)R 

The inductor‘s element equation is given by 

 

And the capacitor‘s element equation is 
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Here, vC(0) = V0 is the initial condition, and it‘s equal to 5 volts. 

Substituting the element equations, vR(t), vC(t), and vL(t), into the KVL equation gives you the following equation 

(with a fancy name: the integro-differential equation): 

 

The next step is to apply the Laplace transform to the preceding equation to find an I(s) that satisfies the integro-

differential equation for a given set of initial conditions: 

 

The preceding equation uses the linearity property allowing you to take the Laplace transform of each term. For the 

first term on the left side of the equation, you use the differentiation property to get the following transform: 

 

This equation uses IL(s) = ℒ[i(t)], and I0 is the initial current flowing through the inductor. Because the switch is 

open for a long time, the initial condition I0 is equal to zero. 

For the second term of the KVL equation dealing with resistor R, the Laplace transform is simply 

ℒ[i(t)R] = I(s)R 

For the third term in the KVL expression dealing with capacitor C, you have 

 

The Laplace transform of the integro-differential equation becomes 

 

Rearrange the equation and solve for I(s): 
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To get the time-domain solution i(t), use the following table, and notice that the preceding equation has the form of 

a damping sinusoid. 

 

Now, you plug in I0 = 0 and some numbers from this figure: 

 

Now you‘ve got this equation: 

 

You wind up with the following solution: 

i(t) = [-0.01e
-400t 

sin500t]u(t) 
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For this RLC circuit, you have a damping sinusoid. The oscillations will die out after a long period of time. For this 

example, the time constant is 1/400 and will die out after 5/400 = 1/80 seconds. 

Numerical Problems on RLC Circuits: 

1. 
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SOLVED PROBLEMS  
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UNIT- III 
LOCUS DIAGRAMS AND NETWORKS FUNCTIONS 
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LOCUS DIAGRAMS 

 

3.1.INTRODUCTION: 
 

Locus diagrams are the graphical representations of the way in which the response of electrical circuits vary, when 

one or more parameters are continuously changing. They help us to study the way in which  

a. Current / power factor vary, when voltage is kept constant,  

b. Voltage / power factor vary, when current is kept constant, when one of the parameters of the circuit 

(whether series or parallel) is varied. 

The Locus diagrams yield such important information as Imax, Imin , Vmax ,Vmin & the power factor`s at which they 

occur. In some parallel circuits, they will also indicate whether or not, a condition for response is possible. 

 

3.2. RL Series Circuit: 

Consider an R – XL series circuit as shown below, across which a constant voltage is applied. By varying R 

or XL, a wide range of currents and potential differences can be obtained. 

 `R ` can be varied by the rheostatic adjustment and XL can be varied by using a variable inductor or by 

applying a variable frequency source. 

When the variations are uniform and lie between 0 and infinity, the resulting locus diagrams are circles  

 

Case 1: when `R` is varied 

 

When R = 0 , the current is maximum and is given by Imax = 
𝑉

𝑋1
 and  lags V by 90

0
 

  Power factor is zero  

When R = infinity, the current is minimum and is given by Imin = 0, ∅ = 0 and power factor = 1 

For any other values of`R`, the current lags the voltage by an angle ∅ =tan−1 𝑋𝐿

𝑅
 

 The general expression for current is 

 

I = 
𝑉

 𝑅2+𝑋𝐿
2
 = 

𝑉

𝑍

𝑋𝐿

𝑋𝐿
 =  

𝑉

𝑋𝐿

𝑋𝐿

𝑍
=  

𝑉

𝑋𝐿
sin∅ 

The equation I = 
𝑉

𝑋𝐿
sin∅ is the equation of a circle in the polar form, where 

𝑉

𝑋𝐿
 is the diameter of the circle. 

The Locus diagram of  current i.e the way in which the current varies in the circuit, as `R` is varied from zero to 

infinity is shown in below which is  a semi  -circle. 
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   Locus of current in a series RL circuit is a semi circuit with radius = 
𝑉

2𝑋𝐿
 & whose center is given by 

 (0, 
𝑉

2𝑋𝐿
 )  

 

Case 2: When XL is varied  

 

When XL = 0, current is maximum and is given by  
𝑉

𝑅
 and is in phase with V. The power factor is unity. 

When XL = to infinity, the current is zero, the power factor is zero and ∅ = 900 

For any other value of `R`, the current lags the voltage by an angle ∅ =  
𝑋𝐿

𝑅
  

  The general expression for current is I = 
𝑉

 𝑅2+𝑋𝐿
2
 =

𝑉

𝑅
 
𝑅

𝑅
=  

𝑉

𝑅

𝑅

𝑍
=  

𝑉

𝑅
cos  ∅ 

The equation of a circle in the polar form where 
𝑉

𝑅
  is the diameter of the circle 

 

  The Locus of current in a series RL circuit is a semi circuit whose radius is 
𝑉

2𝑅
 and whose center is  

𝑉

2𝑅
 , 0   

 

3.3. RC Series Circuit: 

Case 1: when `R` is varied 

 
 

When R = 0 current is maximum and is given by Imax = 
𝑉

𝑋𝑐
, which leads the voltage by 90

0
 .Power factor is zero. 

When R = ∞, the current is zero. The power factor is unity & ∅ = 0 

For any other value of R the current leads the voltage by an angle ∅ = 𝑡𝑎𝑛−1 𝑋𝑐

𝑅
 

 The general expression for current is  

 

I =  
𝑉

 𝑅2+𝑋𝐿
2
 = 

𝑉

𝑍

𝑋𝑐

𝑋𝑐
=  

𝑉

𝑋𝑐
  
𝑋𝑐

𝑍
=

𝑉

𝑋𝑐
sin∅  

 
𝑉

𝑋𝑐
sin∅ is the equation of a circle in the polar form, where 

𝑉

𝑋𝑐
 is the diameter of the circle. 
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 Locus is a semi – circle where radius is 
𝑅

2𝑋𝑐
 & center is 0,

𝑉

2𝑋𝑐
 . 

Case 2: Where Xc is varied 

 

When Xc = 0 , current is maximum & is given by Imax = 
𝑉

𝑅
 , which is  in phase with V. Power factor  is unity and  

∅ = 0 

When Xc = ∞ , the current is zero. Power factor is 0 & ∅ = 900, for any other value of Xc , the current leads the 

voltage by an angle ∅ = 𝑡𝑎𝑛−1 𝑋𝑐

𝑅
 

 

The general equation for the current is  

                             

I = 
𝑉

𝑍
=  

𝑉

𝑍

𝑅

𝑅
=

𝑉

𝑅
𝑋

𝑅

𝑍
 =  

𝑉

𝑅
 𝑐𝑜𝑠∅ 

 

The equation  𝐼 =  
𝑉

𝑅
 𝑐𝑜𝑠∅ is the equation of the circle in polar form, where  

𝑉

𝑅
  is the diameter of the circle. 

 
  

 

 The locus is a circle of radius 
𝑉

2𝑅
 , 0  . 
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3.4. RLC series circuit:        

 
The figure represents an R – XL – Xc series circuit across which, a constant voltage source is applied `I` is the 

current flowing through the circuit. The characteristics of this circuit can be studied by varying any one of the 

parameters, R, XL, Xc & f . 

Case1:  when R is varied and  the other three parameters are constant, the locus diagram of current are similar to 

those of    

                                 a) R – XL series circuit, if XL Xc 

                                 b) R – Xc Series circuit if Xc XL 

The only difference would be, the resulting reactance is either XL – Xc or Xc – XL 

Case2: When XLis varied 

When Xc = 0 the circuit behaves as an R-Xc series circuit & the current is given by  

I =  
𝑉

 𝑅2+𝑋𝐿
2
       &     ∅ = 𝑡𝑎𝑛−1 𝑋𝑐

𝑅
 

When XL = Xc , the circuit behaves as a pure resistance, circuit the current is maximum or is given by Imax  =  
𝑉

𝑅
 & 

∅ = 0 The power factor is unity 

Where XL > XC, The circuit behaves as an R – XL series circuit & the current is given by  

I =  
𝑉

 𝑅2+ 𝑋𝐿−𝑋𝐶 
2
  & ∅ =  𝑡𝑎𝑛−1 𝑋𝐿−𝑋𝑐

𝑅
 (𝑙𝑎𝑔𝑔𝑖𝑛𝑔) 

When XL = , I = 0  

 For any value of XL Lying between XC & , the locus of current is a semi circle of radius =  
𝑉

2𝑅
. 

The complete locus diagram of current as XL varies from zero to infinity is as shown below. 

 
Case3 : When XC is varied  

When XC = 0 the circuit behaves as an R-XL series circuit & the circuit is given by  

I =  
𝑉

 𝑅2+ 𝑋𝐿−𝑋𝐶 
2
  & ∅ =  𝑡𝑎𝑛−1 𝑋𝐿

𝑅
 (𝑙𝑎𝑔𝑔𝑖𝑛𝑔) 

When XC = XL, the circuit behaves as a pure resistance circuit. The current is maximum and is given by Imax  =  
𝑉

𝑅
 & 

∅ = 0. The power factor is unity 

When XC>XL, the circuit behaves as an R – XC series circuit and the current is given by  

 

I =  
𝑉

 𝑅2+ 𝑋𝐶−𝑋𝐿 
2
   & ∅ =  𝑡𝑎𝑛−1 𝑋𝐶−𝑋𝐿

𝑅
 (𝑙𝑒𝑎𝑑𝑖𝑛𝑔) 

For any value of XC lying between XL  & , the locus of current is a semi circle of radius 
𝑉

2𝑅
.  

The complete locus diagram of current as XC varies from o to  is as shown below. 
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Case 4:  When ‗f‘ is varied 

 When f=0, Xc = ∞, hence I=0. 

For values of ‗f‘, for which Xc>XL, the circuit behaves as an R-Xc series circuit and the locus is a semi 

circle in upper half of X-Y plane with V/2R as radius. 

For values of ‗f‘, which  Xc=XL, the current is maximum and is equal to Imax= V/R, Φ=0, P.F=1. 

For values of ‗f‘, for which Xc <XL the circuit behaves as an R-XL series circuit and the locus is a semi 

circle in lower half of X-Y plane with V/2R as radius. 

 For f =  ∞, XL=  ∞, Xc =0 and hence I=0. 

Therefore the complete locus diagram of current as f varies from 0 to ∞ is as shown in figure bellow 

 
3.5. Locus Diagrams of parallel circuits:  

When a constant voltage, constant frequency source is applied across a parallel circuit and any one 

parameters in one of the parallel branches is verified, current varies only in that branch and the total current locus is 

get by adding the variable current locus with the constant current flowing in the other branch. 

 

Case 1: R & XL in parallel R Varying: 
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Consider a parallel circuit as shown below, across which a constant voltage, constant frequency source is applied. 

𝐼
 = 

𝐼𝐿+
   

𝐼𝑅
 = 

𝐼
 = 

𝐼𝐿+
   

𝐼𝑅
  

   As XL Is constant IL is constant  

   As R is variable IR is Variable 

   When R = , IR = 0 and I = IL which lags V by 90
0
  

For any other values of R = R1, the current IL remains constant, but IR1 = 
𝑉

𝑅1
 and is in phase with V. 

 
For other values of R=R2, R3.. etc., IR2,IR3 etc., and I1 ,I2 etc., can be found and plotted. 

 

Case 2:  R-XC in parallel with R & ‗R‘ varying.    

 
Consider a parallel circuit consisting of RC-XC branch in parallel with ‗R‘ as shown. 

I =   
𝐼𝐶
    +    

𝐼𝑅
  

As RC & XC are constants, IC remains constant & is given by 

IC =   
𝑉

  𝑅𝐶
2 + 𝑋𝐶

2 

     &  ∅𝐶 =  𝑡𝑎𝑛−1 𝑋𝐶

𝑅
 (𝑙𝑒𝑎𝑑𝑖𝑛𝑔) 

As R is variable IR is also variable.   

When R =  IR = 0, hence I = IC 

 

For any other values of R = R1, IC remains constant, but IR1 = 
𝑉

𝑅1
  & is in phase with V 

The total current is given by Type equation here. 
 
𝐼
  =   

𝐼𝐶
    +     

𝐼𝑅
  

 

Similarly for other values of 𝑅2,𝑅3 , 𝑒𝑡𝑐. , 𝐼𝑅2
, 𝐼𝑅3

𝑒𝑡𝑐. , &𝐼2 𝐼3𝑒𝑡𝑐., can be plotted 

The locus of the total current is as shown below. 
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Problem:A 230 volts, 50 H source is connected to a series circuit consisting of a resistance of 30 ohms and an 

inductance which varies between 0.03 henries and 0.15 henries. Draw the Locus Diagram of current. 

 

 

Diameter of circle = 
𝑉

𝑅
 = 

230

30
 = 7.67 amps 

Xmin = 2X 3.14 X 50 X 0.03 = 9.42 ohms 

Imax = 
230

  30 2+ 9.42 
 

Xmax = 2X3.14x50x0.15 = 47.1ohms 

Imin = 
230

  30 2+ 47.1 2
 = 4.52 am 
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3.6 Network Functions: 

A network function is the Laplace transform of an impulse response. Its format is a ratio  of two 

polynomials of the complex frequencies. Consider the general two-port network shown in Figure 

2.2a. The terminal voltages and currents of the two-port can be related by two classes of network 

functions, namely, the driving point functions and the transfer functions. 

 

The driving point functions relate the voltage at a port to the current at  the same port.  Thus, these 

functions are a property of a  single  port.  For  the  input  port  the  driving point impedance 

function ZIN(s) is defined as: 

This function can be measured by observing the current IIN  when  the  input  port  is driven by a 

voltage source VIN (Figure 2.2b). The driving point admittance function YIN(s) is the reciprocal of 

the impedance function, and is given by: 

 

The output port driving point functions are denned in a similar way. The transfer functions of the 

two-port relate the voltage (or current) at one port to the voltage (or current) at the other port. The 

possible forms of transfer functions are: 

1. The voltage transfer function, which is a ratio   of one voltage to  another  voltage. 

2. The current transfer function, which is a   ratio of  one  current  to  another  current. 

3. The transfer impedance function, which is the ratio of a voltage to a current. 

 

4. The transfer  admittance  function,  which  is  the  ratio  of  a  current  to  a voltage. 

The voltage transfer functions are defined with the output port an open circuit, as:
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To evaluate the voltage gain, for example, the output voltage VO is measured  with the  input port 

driven by a voltage source VIN (Figure 2.2c). The other three types of transfer functions can be 

defined in a similar manner. Of the four types of transfer functions, the voltage transfer function is 
the one most often specified in the design of filters. 

The functions  defined  above,  when  realized  using  resistors,  inductors,  capacitors, and 

active devices, can be shown to be the ratios  of polynomials  in  s with  real coefficients. This is so 

because the network functions are obtained by solving simple algebraic node equations, which 

involve   at  most  the  terms R, sL, sC and their  reciprocals. The active device, if one exists, the 

solution still involves only the  addition  and multiplication of simple terms, which can only lead to 

a ratio of polynomials in s. In addition, all the coefficients of the numerator and denominator 

polynomials will be real. Thus, the general form of a network function is: 

 

 

 
 

 
and all the coefficients ai and bi are real. If the numerator and denominator polynomials  are 
factored, an alternate form of H(s) is obtained: 

     I 

 

n this expression  z1, z2, ..., zn  are called  the zeros of H(s), because H(s) = 0  when s =  zi. The roots of 
the denominator pl, p2, ..., pm  are called the  poles of  H(s).  It  can be  seen that H(s) = ∞ at the poles, s 
= pi.The poles and zeros can be plotted on the complex  s plane (s =  σ + jω), which  has the  real p art σ 
for the abscissa, and the imaginary part jω for the ordinate below
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3.7. Properties of  all Network Functions: 
 

 

We have already seen that network functions are ratios of polynomials in s with real 

coefficients. A consequence of this property is that complex poles (and zeros) must occur in 

conjugate pairs. To demonstrate this fact consider a complex root at (s  =  -a  –  jb) which leads to  

the factor (s + a + jb) in the network function. The jb term will make     some of the coefficients 

complex in the polynomial, unless the conjugate of the complex root at (s = -a + jb) is also present 

in the polynomial. The product of a complex factor and its conjugate is 

 

 

 

Further important properties of network functions are obtained by restricting the networks to  be 

stable, by which we mean that a bounded input excitation to the network must yield  a bounded 

response. Put differently, the output of a stable network cannot be made to increase indefinitely by 

the application   of  a  bounded input excitation. Passive networks are stable by their very nature, 

since they do not contain energy sources that might inject additional energy into the network. Active 

networks, however, do contain energy sources that could join forces with the input excitation to 

make the output increase indefinitely. Such unstable networks, however, have no use in  the world  

of practical  filters and are therefore precluded from all our future discussions. 

A convenient way of determining the stability of the general network function H(s) 

 

is by considering its response to an impulse function, which is obtained by taking the inverse 

Laplace transform of the partial fraction expansion of the function. 

 If  the network function has a simple pole on the real axis, the impulse  response due                 to it 

(for t >= 0) will have the form: 
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For p1 positive, the impulse response is seen to increase exponentially with time, corresponding to an 

unstable circuit. Thus, H(s) cannot have poles on the positive real axis. 

 Suppose H(s) has a pair of complex conjugate poles at s = a +/- jb.  The  contribution to the 
impulse response due to this pair of poles is 

 

Now if a is positive, corresponding to poles in the right  half s plane, the response is  seen to be 

an exponentially increasing sinusoid (Figure  2.4b).  Therefore,  H(s) cannot  have poles in the right 

half s plane. An additional restriction on the poles of H(s) is  that any poles on the imaginary axis 

must be simple. 

Similarly, it can be shown that  higher  order  poles  on  the  jω  axis  will  also  cause the 

network to be  unstable.  From  the  above  discussion  we  see  that  H(s)  has  the following 

factored form: 

Where N(s) is the numerator polynomial and the constants associated with the denominator ai, ck, 

and dk are real and nonnegative. The (s + ai) terms represent  poles  on  the negative real axis and 

the second order terms represent complex conjugate poles in the left half s plane. It is easy to see 

that the product of these factors can only lead to a polynomial, all of whose coefficients are real 

and positive; moreover, none of the coefficients may be zero unless all the even or all the odd 

terms are missing. 
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In summary, the network functions of all passive networks and all stable  active  Must be 

rational functions in s with real coefficients. 

 May not have poles in the right half s 

plane. 

  May not have multiple poles on the jω 

axis. 

 

Example: Check to see whether the following are stable network functions: 

 
The first function cannot be realized by a stable network because one of the coefficients in the 

denominator polynomial is negative. It can easily be verified that the poles are in the right half s plane.  

The second function is stable. The poles are on the jω axis (at s = +/- 2j) and are simple. Note that the 

function has a zero in the right  half  s  plane;  however,  this  does  not  violate any of the requirements 

on network functions. 

 

3.8.Properties of Driving Point (Positive Real) Functions: 

These conditions are required to satisfy to be positive realness 

 

 Y(s) must be a  rational  function  in  s  with  real  coefficients,  i.e.,  the  coefficients of the 

numerator and denominator polynomials is real and positive. 

 

 The poles and zeros of Y(s) have either negative or zero real parts, i.e., Y(s) not have poles 
or zeros in the right half s plane. 

 Poles of Y(s) on the imaginary axis must be  simple  and  their  residues must be real and 

positive, i.e., Y(s) not has multiple poles or zeros on the jω axis. The same statement applies 

to the poles of l/Y(s). 

 

 The degrees of the numerator and denominator polynomials  in  Y(s) differ  at  most by 1. 

Thus the number of finite poles  and  finite  zeros  of  Y(s)  differ  at most by 1. 

 The terms of   lowest   degree   in   the   numerator   and   denominator polynomials of Y(s) 
differ in degree at most by 1. So Y(s) has neither multiple  poles nor zeros at the origin. 

 There be no missing terms in numerator and  denominator  polynomials  unless  all even or 
all odd terms are missing. 

 

Test for necessary and sufficient conditions: 

 
 Y(s) must be real when s is real. 

 If Y(s) = p(s)/q(s), then p(s) + q(s) must be Hurwitz. This requires that: 

 

i. the continued fraction expansion of the Hurwitz test give only real and positive 

coefficients, and 

ii. the continued fraction expansion not end prematurely. 

 In order that Re [Y(jω)] >= 0 for all ω, it is necessary and sufficient that 
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have no real positive roots of odd multiplicity. This may be determined by factoring 

A (ω
2
) or by the use of Sturm's theorem. 

 

 

        
 

 

 

3.9. System Poles and Zeros: 
 

The transfer function provides a basis for determining important system response characteristics without 

solving the complete differential equation. As defined, the transfer function is a rational function in the 

complex variable s = σ + jω, that is 

 

 

 

 

 

It is often convenient to factor the polynomials in the numerator and denominator, and to write the 

transfer function in terms of those factors 

 

 

Where the numerator and denominator polynomials, N(s) and D(s), have real coefficients defined by the 

system‘s differential equation and K = bm/an. As written in Eq. (2) the zi‘s are the roots of the equation 

N(s) =0 

and are defined to be the system zeros, and the pi‘s are the roots of the equation 

D(s) = 0, 

and are defined to be the system poles. In Eq. (2) the factors in the numerator and denominator are 

written so that when s = zi the numerator N(s) = 0 and the transfer function vanishes, that is 
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n 

lim H (s)  0 

szi 

and similarly when s = pi the denominator polynomial D(s) = 0 and the value of the transfer function 

becomes unbounded, 

lim H (s)   

s pi 

All of the coefficients of polynomials N(s) and D(s) are real, therefore the poles and zeros must be 

either purely real, or appear in complex conjugate pairs. In general for the poles, either pi = σi, or else 

pi, pi+1 = σi+jωi. The existence of a single complex pole without a corresponding conjugate pole 

would generate complex coefficients in the polynomial D(s). Similarly, the system zeros are either 

real or appear in complex conjugate pairs. 

 

 

Figure 1: The pole-zero plot for a typical third-order system with one real pole and a complex conjugate pole 

pair, and a single real zero. 

 

 

3.10.Pole-Zero Plot: 
 

A system is characterized by its poles and zeros in the sense that they allow reconstruction of the 

input/output differential equation. In general, the poles and zeros of a transfer function may be 

complex, and the system dynamics may be represented graphically by plotting their locations on the 

complex s-plane, whose axes represent the real and imaginary parts of the complex variable s. Such 

plots are known as pole-zero plots. It is usual to mark a zero location by a circle (◦) and a pole 

location a cross (×). The location of the poles and zeros provide qualitative insights into the response 

characteristics of a system. 

 

System stability: 

 

The stability of a linear system may be determined directly from its transfer function. An nth order 

linear system is asymptotically stable only if all of the components in the homogeneous response from 

a finite set of initial conditions decay to zero as time increases, or 

lim ce 
pi
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UNIT-IV 

 

TWO PORT NETWORK PARAMETERS 
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TWO PORT NETWORK PARAMETERS 

4.1. Introduction: 

In general, it is easy to analyze any electrical network, if it is represented with an equivalent model, which gives the 

relation between input and output variables. For this, we can use two port network representations. As the name 

suggests, two port networks contain two ports. Among which, one port is used as an input port and the other port is 

used as an output port. The first and second ports are called as port1 and port2 respectively. 

One port network: it is a two terminal electrical network in which, current enters through one terminal and leaves 

through another terminal. Resistors, inductors and capacitors are the examples of one port network because each 

one has two terminals. One port network representation is shown in the following figure. 

 

Here, the pair of terminals, 1 & 1‘ represents a port. In this case, we are having only one port since it is a one port 

network. 

Similarly,  

Two port network:  it is  a pair of two terminal electrical network in which, current enters through one terminal 

and leaves through another terminal of each port. Two port network representation is shown in the following figure. 

 

Here, one pair of terminals, 1 & 1‘ represents one port, which is called as port1 and the other pair of terminals, 2 & 

2‘ represents another port, which is called as port2. 

There are four variables V1, V2, I1 and I2 in a two port network as shown in the figure. Out of which, we can 

choose two variables as independent and another two variables as dependent. So, we will get six possible pairs of 

equations. These equations represent the dependent variables in terms of independent variables. The coefficients of 

independent variables are called as parameters. So, each pair of equations will give a set of four parameters. 

4.2. IMPEDANCE PARAMETERS (OR) Z PARAMETERS: 

We will get the following set of two equations by considering the variables V1 & V2 as dependent and I1 & I2 as 

independent. The coefficients of independent variables, I1 and I2 are called as Z parameters. 

Z parameters are also known as impedance parameters. When we use Z parameter for analyzing two part network, 

the voltages are represented as the function of currents. So 

https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/electric-current-and-theory-of-electricity/
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the input and output of a two port network can either be voltage or current. If the network is voltage driven, that can 

be represented as shown below. 

 

 

If  the network is driven by current, that can be represented as shown below. 

 

From, both of the figures above, it is clear that, there are only four variables. One pair of voltage variables V1 and 

V2 and one pair of current variables I1 and I2. Thus, there are only four ratio of voltage to current, and those are, 

 

These four rations are considered as parameters of the network. We all know, This is why these parameters are 

called either impedance parameter or Z parameter. The values of Z parameters of a two port network, can be 

evaluated by making once                         

 

This is why these parameters are called either impedance parameter or Z parameter. The values of these Z 

parameters of a two port network, can be evaluated by making once and another once 

 

 

 

 

 

 

https://www.electrical4u.com/two-port-network/
https://www.electrical4u.com/voltage-or-electric-potential-difference/
https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.electrical4u.com/two-port-network/
https://www.electrical4u.com/two-port-network/
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The Z parameters are, 

 

The voltages are represented as 

 

 

 

 

https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/voltage-or-electric-potential-difference/
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Admittance parameters or  short circuit parameters(Y):We can represent current in terms of voltage bt 

admittance parameters of a two port network. Then we will represent the current voltage relations as, 

 

This can also be represented in matrix form as, 

 

Here, Y11, Y12, Y21 and Y22 are admittance parameter. Sometimes these are called as Y parameters. We can 

determine the values of the parameters of a particular two port network by making short-circuited output port and 

input port alternatively as follows. First let us apply current source of I1 at input port keeping the output port short 

circuited as shown below. 

 

Now, the ratio of input current I1 to input voltage V1 while output voltage V2 = 0, is 

 

This is called short circuit input admittance. The ratio of output current I2 to input voltage V1 while output voltage 

V2 = 0, is  

 

This is referred as short circuit transfer admittance from input port to output port. Now, let us short circuit the input 

port of the network and apply current I2 at output port, as shown below. 

https://www.electrical4u.com/two-port-network/
https://www.electrical4u.com/two-port-network/
https://www.electrical4u.com/ideal-dependent-independent-voltage-current-source/
https://www.electrical4u.com/admittance/
https://www.electrical4u.com/admittance/


81 
 

 

In this case, 

 

This is called short circuit output admittance. 

 

This is called short circuit transfer admittance  from input port to output port. So finally, 

 

Hybrid Parameters or h Parameters: 

Hybrid parameters are also referred as h parameters. These are referred as hybrid because, here Z parameters, Y 

parameters, voltage ratio, current ratio, all are used to represent the relation between voltage and current in a two 

port network. The relations of voltages and current in hybrid parameters are represented as, 

 

This can be represented in matrix form as, 

 

https://www.electrical4u.com/admittance/
https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/two-port-network/
https://www.electrical4u.com/two-port-network/
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Hybrid parameters or h parameters are very much useful in analyzing electronics circuit where, transistors like 

elements are connected. In those circuits, sometimes it is difficult to measure Z parameters and Y parameters but h 

parameters can be measured in much easier way. 

 

Determining h Parameters 

Let us short circuit the output port of a two port network as shown below, 

 

 

Now, ratio of input voltage to input current, at short circuited output port, is 

 

this is referred as short circuit input impedance. Now, the ratio of the output current to input current at short 

circuited output port, is 

 

 

This is called short circuit current gain of the network. Now, let us open circuit the port 1. At that condition, there 

will be no input current (I1=0) but open circuit voltage V1 appears across the port 1, as shown below 

,  

 

https://www.electrical4u.com/jfet-or-junction-field-effect-transistor/
https://www.electrical4u.com/impedance-parameter-or-z-parameter/
https://www.electrical4u.com/admittance-parameters-or-y-parameters/
https://www.electrical4u.com/two-port-network/
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This is referred as reverse voltage gain because, this is the ratio of input voltage to output voltage of the network, 

but voltage gain is defined as ratio of output voltage to input voltage of a network. Now, 

 

It is referred as open circuit output admittance. 

 

 

h Parameter Equivalent Network of Two Port Network 

To draw h parameter equivalent network of a two port network, first we have to write the equation of voltages and 

currents using h parameters. These are, 

 

clearly, the equation (i) can be represented as circuit based on Kirchhoff Voltage Law. 

 

Clearly, the equation (ii) can be represented as circuit based on Kirchhoff Current Law. 

 

Combining these two parts of the network, we get, 

 

https://www.electrical4u.com/admittance/
https://www.electrical4u.com/two-port-network/
https://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
https://www.electrical4u.com/kirchhoff-current-law-and-kirchhoff-voltage-law/
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ABCD Parameters of Transmission Line parameters: 

A major section of power system engineering deals in the transmission of electrical power from one particular place 

(eg. generating station) to another like substations or distribution units with maximum efficiency. So it's of 

substantial importance for power system engineers to be thorough with its mathematical modeling. Thus the entire 

transmission system can be simplified to a two port network for the sake of easier calculations.The circuit of a 2 

port network is shown in the diagram below. As the name suggests, a 2 port network consists of an input port PQ 

and an output port RS. In any 4 terminal network, (i.e. linear, passive, bilateral network) the input voltage and input 

current can be expressed in terms of output voltage and output current. Each port has 2 terminals to connect itself to 

the external circuit. Thus it is essentially a 2 port or a 4 terminal circuit, having 

 

 

 

 

 

Given to the input port PQ. 

 

Now the ABCD parameters or the transmission line parameters provide the link between the supply and receiving 

end voltages and currents, considering the circuit elements to be linear in nature. 

Thus the relation between the sending and receiving end specifications are given using ABCD parameters by the 

equations below. 

 

Now in order to determine the ABCD parameters of transmission line let us impose the required circuit conditions 

in different cases. 

 

 

https://www.electrical4u.com/electrical-power-transmission-system-and-network/
https://www.electrical4u.com/electrical-power-substation-engineering-and-layout/
https://www.electrical4u.com/voltage-or-electric-potential-difference/
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ABCD Parameters, When Receiving End is Open Circuited 

 

 

The receiving end is open circuited meaning receiving end current IR = 0. Applying this condition to equation (1) 

we get, 

 

Thus its implies that on applying short circuit condition to ABCD parameters, we get parameter B as the ratio of 

sending end voltage to the short circuit receiving end current. Since dimension wise B is a ratio of voltage to 

current, its unit is Ω. Thus B is the short circuit resistance and is given by 

B = VS ⁄ IR Ω. Applying the same short circuit condition i.e VR = 0 to equation (2) we get 

 

Thus its implies that on applying short circuit condition to ABCD parameters, we get parameter D as the ratio of 

sending end current to the short circuit receiving end current. Since dimension wise D is a ratio of current to 

current, it‘s a dimension less parameter.  

Find the z parameters for network shown in figure 

 

Let us put a voltage source V1 at input, 

 

 

https://www.electrical4u.com/electric-current-and-theory-of-electricity/
https://www.electrical4u.com/electrical-resistance-and-laws-of-resistance/
https://www.electrical4u.com/voltage-source/
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Now, let us connect one voltage source V2 at output port and leave the input port as open as shown, below 

 

 

 

Now,  

Therefore the above network is symmetrical, reciprocal network 
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Procedure of two port parameter conversions 

In the previous chapter, we discussed about six types of two-port network parameters. Now, let us convert one set 

of two-port network parameters into other set of two port network parameters. This conversion is known as two port 

network parameters conversion or simply, two-port parameters conversion. 

Sometimes, it is easy to find one set of parameters of a given electrical network easily. In those situations, we can 

convert these parameters into the required set of parameters instead of calculating these parameters directly with 

more difficulty. 

Now, let us discuss about some of the two port parameter conversions 

 Step 1 − Write the equations of a two port network in terms of desired parameters. 

 Step 2 − Write the equations of a two port network in terms of given parameters. 

 Step 3 − Re-arrange the equations of Step2 in such a way that they should be similar to the equations of 

Step1. 

 Step 4 − By equating the similar equations of Step1 and Step3, we will get the desired parameters in terms 

of given parameters. We can represent these parameters in matrix form. 
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Interconnections of two-port networks 

Two-port networks may be interconnected in various configurations, such as series, parallel, cascade, series-

parallel, and parallel-series connections. For each configuration a certain set of parameters may be more useful than 

others to describe the network. 
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series connection 

 

 

Series connection of two two-port networks For network N a, 

 

 

 

 

 

 

The condition for series connection is 

  

Putting the values of V 1a and V 1b from Equation (10.62) and Equation (10.64), Putting the values of V 2a and V 2b 

from Equation (10.63) and Equation (10.65) into Equation (10.67), we get 

 

 

 

The Z-parameters of the series-connected combined network can be written as 
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The overall Z-parameter matrix for series connected two-port networks is simply the sum of Z-parameter 

matrices of each individual two-port network connected in series. 

Parallel Connection 

Parallel connection of two two-port networks N a and N b. The resultant of two admittances connected in 

parallel is Y 1 + Y 2. So in parallel connection, the parameters are Y-parameters. 

 

Parallel connections for two two-port networks  For network N a 

 

 

 
for a network, 

 

 

 

for b network, 
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the Y-parameters of the parallel connected combined network can be written as 

 

 

Cascade connection of twoport networks: 
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Find the y parameters for the network shown in figure below? 
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Determine the transmission parameters of the circuit in Fig. below 
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 Find the transmission parameters  for z parameters of the network are   Z=[25 20;24 30] 

 

t 
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UNIT- V 

FILTERS 
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5. Introduction : 

 

Filters  are  essential  building  blocks  in many  systems,  particularly  in  communication  

and instrumentation systems. A filter passes one band of frequencies while rejecting another. 

Typically implemented  in  one  of  three  technologies:  passive  RLC  filters,  active  RC  filters  and  

switched capacitor filters. Crystal and SAW filters are normally used at very high frequencies. Passive  

filters  work  well  at  high  frequencies,  however,  at  low  frequencies  the  required inductors  are  

large,  bulky  and  non-ideal.   

Furthermore, inductors are difficult to fabricate in monolithic from and are incompatible with 

many modern assembly systems. Active RC filters utilize op-amps together with resistors and 

capacitors and are fabricated using discrete, thick film and thin-film technologies. The performance of 

these filters is limited by the performance of the op-amps (e.g., frequency response, bandwidth, noise, 

offsets, etc.). Switched-capacitor filters are monolithic filters which typically offer the best 

performance in the term of cost. Fabricated using capacitors, switched and op-amps. Generally poorer 

performance compared to passive LC or active RC filters. 

 

Filters are generally linear circuits that can be represented as a two-port network: 

 

 

 
 

 

The filter transfer function is given as follows:  

 

 
            

The magnitude of the transmission is often expressed in dB in terms of gain function:  

G()dB=20log(|T(j)| 

 

Or, alternatively, in terms of the attenuation function:  

A()dB=-20log(|T(j)| 

 

5.1.Classification Of Filters: 

 

A filter shapes the frequency spectrum of the input signal, according to the magnitude of the 

transfer function. The phase characteristics of the signal are also modified as it passes through the 

filter. Filters  can  be  classified  into  a  number  of  categories  based  on which  frequency  bands  

are passes  through  and which  frequency  bands  are  stopped.  Figures below  show  ideal  responses  

of various filters. 
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5.2.1. Classification of Pass band and Stop band: 

 
Ideal  filters could  not be  realized using  electrical circuits,  therefore  the actual  response of 

the  filter  is  not  a  brick wall  response  as  shown  above  but  increases  or  decreases with  a  roll-

off factor. Realistic transmission characteristics for a low pass filter are shown below. 
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Transmission of a low pass filter is specified by four parameters:  

  - Pass band edge, p  

  - Maximum allowed variation in pass band transmission, Amax  

  - Stop band edge, s   

  - Minimum required stop band attenuation, Amin  

  

The ratio ws/wp is usually used to measure the sharpness of the filter response and is called 

the selectivity factor. The more tightly one specifies a filter (i.e., lower Amax, higher Amin, ws/wp 

Closer to unity) the resulting filter must be of higher order and thus more complex and expensive. 

Amax is commonly referred as the pass band ripple. The  process  of  obtaining  a  transfer  function  

that meets  given  specifications  is  known  as filter approximation. Filter approximation is usually 

performed using computer programs or filter design tables. In simple cases, filter approximation can 

be performed using closed form expressions.  

  

Figure below shows transmission specifications for a band pass filter. 

 
 

 

 

In circuit theory, a filter is an electrical network that alters the amplitude and/or phase characteristics 

of a signal with respect to frequency. Ideally, a filter will not add new frequencies to the input signal, 

nor will it change the component frequencies of that signal, but it will change the relative amplitudes 

of the various frequency components and/or their phase relationships. 

 

 Filters are often used in electronic systems to emphasize signals in certain frequency ranges and 

reject signals in other frequency ranges 
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5.2.2. Low-Pass: 
Low pass filter as the name suggests, it allows (passes) only low frequency components. That means, it                 

rejects (blocks) all other high frequency components. 

      The s-domain circuit diagram (network) of Low Pass Filter is shown in the following figure. 

 

It consists of two passive elements resistor and capacitor, which are connected in series. Input voltage is    

applied across this entire combination and the output is considered as the voltage across capacitor. 

       

 At ω = 0, the magnitude of transfer function is equal to 1. 

 At ω=1/CR , the magnitude of transfer function is equal to 0.707. 

 At ω = ∞, the magnitude of transfer function is equal to 0. 

Therefore, the magnitude of transfer function of Low pass filter will vary from 1 to 0 as ω varies from 0 

to ∞. 

 

5.2.3.High-Pass  : 

 High pass filter as the name suggests, it allows (passes) only high frequency components. That means, it     

rejects (blocks) all low frequency components 

The s-domain circuit diagram (network) of High pass filter is shown in the following figure. 
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It consists of two passive elements capacitor and resistor, which are connected in series. Input voltage is 

applied  across this entire combination and the output is considered as the voltage across resistor 

      

 At ω = 0, the magnitude of transfer function is equal to 0. 

 At ω=1/CR , the magnitude of transfer function is equal to 0.707. 

 At ω = ∞, the magnitude of transfer function is equal to 1. 

       Therefore, the magnitude of transfer function of High pass filter will vary from 0 to 1 as ω varies from 0 

to ∞. 

 

5.2.4.Band Pass : 

 Band pass filter as the name suggests, it allows (passes) only one band of frequencies. In general, this      

frequency band lies in between low frequency range and high frequency range. That means, this filter 

rejects     (blocks) both low and high frequency components 

The s-domain circuit diagram (network) of Band pass filter is shown in the following 

It consists of three passive elements inductor, capacitor and resistor, which are connected in series. Input 

voltage   is applied across this entire combination and the output is considered as the voltage across 

resistor. 
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 At ω = 0, the magnitude of transfer function is equal to 0. 

 At ω=1/LC , the magnitude of transfer function is equal to 1. 

 At ω = ∞, the magnitude of transfer function is equal to 0. 

Therefore, the magnitude of transfer function of Band pass filter will vary from 0 to 1 & 1 to 0 as ω 

varies from 0 to ∞. 

5.2.5.Band elimination Filter: 

Band stop filter as the name suggests, it rejects (blocks) only one band of frequencies. In general, this 

frequency band lies in between low frequency range and high frequency range. That means, this filter 

allows (passes) both low and high frequency components. 

The s-domain (network) of circuit diagramand stop filter is shown in the following figure. 
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It consists of three passive elements resistor, inductor and capacitor, which are connected in series. Input 

voltage is applied across this entire combination and the output is considered as the voltage across the 

combination of inductor and capacitor. 

 

  At ω = 0, the magnitude of transfer function is equal to 1. 

  At ω=1/√LC   the magnitude of transfer function is equal to 0. 

   At ω = ∞, the magnitude of transfer function is equal to 1. 

Therefore, the magnitude of transfer function of Band stop filter will vary from 1 to 0 & 0 to 1 as ω 

varies from 0 to ∞. 

5.2.6.Active Filters: 
 

Active filters use amplifying elements, especially op amps, with resistors and capacitors in their 

feedback   

 

loops, to synthesize the desired filter characteristics. Active filters can have high input impedance, 

low  

 

output impedance, and virtually any arbitrary gain. They are also usually easier to design than passive 

 

 filters 

 

Active Filters contain active components such as operational amplifiers, transistors or FET‘s within 

their circuit design. They draw their power from an external power source and use it to boost or 

amplify the output signal. 

 

5.3. Constant – K Low Pass Filter 
 

A network, either T or \[\pi\], is said to be of the constant-k type if Z1 and Z2 of the network 

satisfy the relation 
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Z1Z2 = k
2
 

where Z1 and Z2 are impedance in the T and [pi] sections as shown in Fig.17.8. Equation 17.20 states 

that Z1 and Z2 are inverse if their product is a constant, independent of frequency. k is a real constant, 

that is the resistance. k is often termed as design impedance or nominal impedance of the constant k-

filter. 

The constant k, T or \[\pi\] type filter is also known as the prototype because other more 

complex networks can be derived, where Z1 = jωL and Z2 = 1/jωC. Hence Z1Z2= \[{L \over C}={k^2}\] 

which is independent of frequencyThe pass band can be determined graphically.  The reactance‘s of 

Z1 and 4Z2 will vary with frequency as drawn in Fig.30.2.  The cut-off frequency at the intersection of 

the curves Z1 and 4Z2 is indicated as ƒc.  On the X-axis as Z1 = -4Z2 at cut-off frequency, the pass 

band lies between the frequencies at which Z1 = 0, and Z1=-4Z2. 

All the frequencies above ƒc lie in a stop or attenuation band 
The characteristic impedance of a \[\pi\]-network is given by 
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5.4.Constant K-High Pass Filter: 

 
Constant K-high pass filter can be obtained by changing the positions of series and shunt arms 

of the networks shown in Fig.30.1. The prototype high pass filters are shown in Fig.30.5, where Z1 =-

j/ωC and Z2 = jωL. 

gain, it can be observed that the product of Z1 and Z2 is independent of frequency, and the 

filter design obtained will be of the constant k type.The plot of characteristic impedance with respect 

to frequency is shown 

 

 

 

 

 

 

 

 

 

 

 

 
 

5.5.m-Derived T-Section: 

 
It is clear from previous chapter Figs 30.3 & 30.7 that the attenuation is not sharp in the stop 

band for k-type filters. The characteristic impedance, Z0 is a function of frequency and varies widely 

in the transmission band. Attenuation can be increased in the stop band by using ladder section, i.e. by 

connecting two or more identical sections. In order to join the filter sections, it would be necessary 

that their characteristic impedance be equal to each other at all frequencies. If their characteristic 

impedances match at all frequencies, they would also have the same pass band. However, cascading is 

not a proper solution from a practical point of view. This is because practical elements have a certain 

resistance, which gives rise to attenuation in the pass band also.  

Therefore, any attempt to increase attenuation in stop band by cascading also results in an 

increase of ‗a‗ in the pass band. If the constant k section is regarded as the prototype, it is possible to 

design a filter to have rapid attenuation in the stop band, and the same characteristic impedance as the 
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prototype at all frequencies. Such a filter is called m-derived filter. Suppose a prototype T-network 

shown in Fig.31.1 (a) has the series arm modified as shown in Fig.31.1 (b), where m is a constant. 

Equating the characteristic impedance of the networks in we have 

 

 

 

 

 

 

 

 

 
where Z0T‗ is the characteristic impedance of the modified (m-derived) T-network. 

 

Thus m-derived section can be obtained from the prototype by modifying its series and shunt 

arms. The same technique can be applied to \[\pi\] section network. Suppose a prototype p-network 

shown in Fig.31.3 (a) has the shunt arm modified as shown in Fig.31.3 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The characteristic impedances of the prototype and its modified sections have to be equal for 

matching. 

 

 

 

 

 

 

 

The characteristic impedance of the modified (m-derived) \[\pi\]-network 
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The series arm of the m-derived \[\pi\] section is a parallel combination of mZ1 and 4mZ2/1-m
2
 

5.5.1.m-Derived Low Pass Filter 
 
 

In Fig.31.5, both m-derived low pass T and \[\pi\] filter sections are shown.  For the 

T-section shown Fig.31.5(a), the shunt arm is to be chosen so that it is resonant at some 

frequency ƒx above cut-off frequency ƒc its impedance will be minimum or zero. Therefore, 

the output is zero and will correspond to infinite attenuation at this particular frequency 
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5.5.2. m-derived High Pass Filter: 
 

If the shunt arm in T-section is series resonant, it offers minimum or zero impedance. 
Therefore, the output is zero and, thus, at resonance frequency, or the frequency corresponds 
to infinite attenuation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The m-derived \[\pi\]-section, the resonant circuit is constituted by the series arm inductance and 

capacitance 
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5.5.3..Band Pass Filter: 

  

A band-pass filter is a circuit which is designed to pass signals only in a certain band of 

frequencies while attenuating all signals outside this band. The parameters of importance in a band 

pass filter are the high and low cut-off frequencies (fH and fl), the bandwidth (BW), the centre 

frequency fc, centre-frequency gain, and the selectivity or Q.  

 

There are basically two types of band pass filters viz wide band pass and narrow band pass 

filters. Unfortunately, there is no set dividing line between the two. However, a band pass filter is 

defined as a wide band pass if its figure of merit or quality factor Q is less than 10 while the band pass 

filters with Q > 10 are called the narrow band pass filters. Thus Q is a measure of selectivity, meaning 

the higher the value of Q the more selective is the filter, or the narrower is the bandwidth (BW). The 

relationship between Q, 3-db bandwidth, and the centre frequency fc is given by an equation  

 

For a wide band pass filter the centre frequency can be defined as where fH and fL are 

respectively the high and low cut-off frequencies in Hz. In a narrow band pass filter, the output 

voltage peaks at the centre frequency fc. 

  

Wide Band Pass Filter: 

 

A wide band pass filter can be formed by simply cascading high-pass and low-pass sections 

and is generally the choice for simplicity of design and performance though such a circuit can be 

realized by a number of possible circuits. To form a ± 20 db/ decade band pass filter, a first-order 

high-pass and a first-order low-pass sections are cascaded; for a ± 40 db/decade band pass filter, 

second-order high- pass filter and a second-order low-pass filter are connected in series, and so on. It 

means that, the order of the band pass filter is governed by the order of the high-pass and low-pass 

filters it consists of.  
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A ± 20 db/decade wide band pass filter composed of a first-order high-pass filter and a first-order 

low-pass filter, is illustrated in fig. (a). Its frequency response is illustrated in fig. (b).  

 

Narrow Band pass Filter: 

 

A narrow bandpass filter employing multiple feedback is depicted in figure. This filter 

employs only one op-amp, as shown in the figure. In comparison to all the filters discussed so far, this 

filter has some unique features that are given below.  

 

1. It has two feedback paths, and this is the reason that it is called a multiple-feedback filter.  

2. The op-amp is used in the inverting mode.  

 

The frequency response of a narrow bandpass filter is shown in fig(b).  

 

Generally, the narrow bandpass filter is designed for specific values of centre frequency fc and Q or fc 

and BW. The circuit components are determined from the following relationships.  

 

For simplification of design calculations each ofC1 and C2 may be taken equal to C.  

 

R1 = Q/2Π fcCAf 

R2 =Q/2Π fc C(2Q2-Af) 

and R3 = Q / Π fc C 

 

where Af, is the gain at centre frequency and is given as 

  

Af = R3 / 2R1 
 

The gain Af however must satisfy the condition Af < 2 Q2.  
 

The centre frequency fc of the multiple feedback filter can be changed to a new frequency fc‗ 

without changing, the gain or bandwidth. This is achieved simply by changing R2 to R‘2 so that  

 

R‟2 = R2 [fc/f‟c]2 
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Band Stop or Band Elimination Filter: 

By combining a basic RC low-pass filter with a RC high-pass filter we can form a simple 

band-pass filter that will pass a range or band of frequencies either side of two cut-off frequency 

points. But we can also combine these low and high pass filter sections to produce another kind of RC 

filter network called a band stop filter that can block or at least severely attenuate a band of 

frequencies within these two cut-off frequency points. 

 

The Band Stop Filter, (BSF) is another type of frequency selective circuit that functions in 

exactly the opposite way to the Band Pass Filter we looked at before. The band stop filter, also known 

as a band reject filter, passes all frequencies with the exception of those within a specified stop band 

which are greatly attenuated. 
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If this stop band is very narrow and highly attenuated over a few hertz, then the band stop 

filter is more commonly referred to as a notch filter, as its frequency response shows that of a deep 

notch with high selectivity (a steep-side curve) rather than a flattened wider band. 

Also, just like the band pass filter, the band stop (band reject or notch) filter is a second-order 

(two-pole) filter having two cut-off frequencies, commonly known as the -3dB or half-power points 

producing a wide stop band bandwidth between these two -3dB points. 

Then the function of a band stop filter is too pass all those frequencies from zero (DC) up to 

its first (lower) cut-off frequency point ƒL, and pass all those frequencies above its second (upper) cut-

off frequency ƒH, but block or reject all those frequencies in-between. Then the filters bandwidth, BW 

is defined as: (ƒH – ƒL). 

So for a wide-band band stop filter, the filters actual stop band lies between its lower and 

upper -3dB points as it attenuates, or rejects any frequency between these two cut-off frequencies. The 

frequency response curve of an ideal band stop filter is therefore given as: 

Band Stop Filter Response: 

  

We can see from the amplitude and phase curves above for the band pass circuit, that the 

quantities ƒL, ƒH and ƒC are the same as those used to describe the behaviour of the band-pass filter. 

This is because the band stop filter is simply an inverted or complimented form of the standard band-

pass filter. In fact the definitions used for bandwidth, pass band, stop band and center frequency are 

the same as before, and we can use the same formulas to calculate bandwidth, BW, center 

frequency, ƒC, and quality factor, Q. 

The ideal band stop filter would have infinite attenuation in its stop band and zero attenuation 

in either pass band. The transition between the two pass bands and the stop band would be vertical 

(brick wall). There are several ways we can design a ―Band Stop Filter‖, and they all accomplish the 

same purpose. 

Generally band-pass filters are constructed by combining a low pass filter (LPF) in series with 

a high pass filter (HPF). Band stop filters are created by combining together the low pass and high 

pass filter sections in a ―parallel‖ type configuration as shown. 

Typical Band Stop Filter Configuration: 

  

The summing of the high pass and low pass filters means that their frequency responses do 

not overlap, unlike the band-pass filter. This is due to the fact that their start and ending frequencies 

are at different frequency points. For example, suppose we have a first-order low-pass filter with a 

cut-off frequency, ƒL of 200Hz connected in parallel with a first-order high-pass filter with a cut-off 

frequency, ƒH of 800Hz. As the two filters are effectively connected in parallel, the input signal is 

applied to both filters simultaneously as shown above. 

All of the input frequencies below 200Hz would be passed unattenuated to the output by the 

low-pass filter. Likewise, all input frequencies above 800Hz would be passed unattenuated to the 

output by the high-pass filter. However, and input signal frequencies in-between these two frequency 

cut-off points of 200Hz and 800Hz, that is ƒL to ƒHwould be rejected by either filter forming a notch 

in the filters output response. 

In other words a signal with a frequency of 200Hz or less and 800Hz and above would pass 

unaffected but a signal frequency of say 500Hz would be rejected as it is too high to be passed by the 

low-pass filter and too low to be passed by the high-pass filter. We can show the effect of this 

frequency characteristic below. 
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Band Stop Filter Characteristics: 

 

  

The transformation of this filter characteristic can be easily implemented using a single low 

pass and high pass filter circuits isolated from each other by non-inverting voltage follower, (Av = 1). 

The output from these two filter circuits is then summed using a third operational amplifier connected 

as a voltage summer (adder) as shown. 
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5.5.7.Band Stop Filter Circuit: 

  

The use of operational amplifiers within the band stop filter design also allows us to introduce 

voltage gain into the basic filter circuit. The two non-inverting voltage followers can easily be 

converted into a basic non-inverting amplifier with a gain of Av = 1 + Rƒ/Rinby the addition of input 

and feedback resistors, as seen in our non-inverting op-amp tutorial. 

Also if we require a band stop filter to have its -3dB cut-off points at say, 1kHz and 10kHz 

and a stop band gain of -10dB in between, we can easily design a low-pass filter and a high-pass filter 

with these requirements and simply cascade them together to form our wide-band band-pass filter 

design. 

Now we understand the principle behind a Band Stop Filter, let us design one using the 

previous cut-off frequency values. 


