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According to Tellegen theorem, the summation of instantaneous 
powers for the n number of branches in an electrical network is 
zero. Are you confused? Let's explain. Suppose n number of 
branches in an electrical network have i1, i2, i3, ............. in 
respective instantaneous currents through them. These currents 
satisfy Kirchhoff's Current Law.

Again, suppose these branches have instantaneous voltages 
across them are v1, v2, v3, ........... vn respectively. If these 
voltages across these elements satisfy Kirchhoff Voltage Law 
then,

TELLEGEN’S THEOREM 
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Vk is the instantaneous voltage across the kth branch and ik is 
the instantaneous current flowing through this branch. 

Tellegen theorem is applicable mainly in general class of lumped 
networks that consist of linear, non-linear, active, passive, time 
variant and time variant elements.

Cont..
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In the network shown, arbitrary reference directions have been 
selected for all of the branch currents, and the corresponding 
branch voltages have been indicated, with positive reference 
direction at the tail of the current arrow.

For this network, we will assume a set of branch voltages 
satisfy the Kirchhoff voltage law and a set of branch current 
satisfy Kirchhoff current law at each node.

Example
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We will then show that these arbitrary assumed voltages and

currents satisfy the equation.

We get,

Hence Tellegen theorem is verified

Cont.
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 “ In an any linear , bi-lateral network consisting number of 
sources , response in any element(resistor) is given as sum of the 
individual Reponses due to individual sources, while other sources 
are non-operative”

Example Problem

Let  V = 6v, I = 3A, R1 = 8 ohms and R2 = 4 ohms 

 Let us find current through 4 ohms using V source , while I is 
zero. then equivalent circuit is

Super Position Theorem 
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Let i1 is the current through 4 ohms, i1 = V / (R1+R2)
Let us find current through 4 ohms using I source , while V is zero. 
then equivalent circuit is

Let i2 is the current through 4 ohms, i2 = I. R1 / (R1+R2)
Hence total current through 4 ohms is =  I1+I1( as both currents are 
in same direction or otherwise  I1-I2)
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Problems

• Problem 01:

• In an network consisting three parallel branches, first across
is defined as 20V in series with 5 ohms , second branch 7
ohms and third branch 10V in series with 4 ohms. Apply
super-position theorem to Determine voltage drop across 7
ohms resistor.
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Reciprocity theorem 

• In any linear bi-lateral network ratio of voltage in one mesh 
to current in other mesh is same even if their positions are 
inter-changed”.

Example:

• Find the total resistance of the circuit, Rt = R1+ [R2(R3+Rl)] / 
R2+R3+RL.

• Hence source current, I = V1 / Rt.
• Current through RL is I1 = I. R2 / (R2+R3+RL) 
• Take the ratio of , V1 /  I1 ---1
• Draw the circuit by  inter changing position of V1 and I1
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Find the total resistance of the circuit, Rt = (R3+RL) + 

[R2(Rl)] / R2+R1.

Hence source current, I = V1 / Rt.

Current through RL is I1 = I. R2 / (R2+R1) 

Take the ratio of , V1 /  I1 ---2

If  ratio 1 = ratio 2, then circuit is said to be satisfy reciprocity.
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Problems

Verify reciprocity theorem for given circuit
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THEVENIN’S THEOREM

• DC: “ An complex network consisting of number voltage and
current sources can be replaced by simple series circuit
consisting of equivalent voltage source in series with
equivalent resistance, where equivalent voltage is called as
open circuit voltage and equivalent resistance is called as
Thevenin’s resistance calculated across open circuit terminals
while all energy sources are non-operative”

• Thevenin’s equivalent circuit
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As far as the load resistor RL is concerned, any complex “one-
port” network consisting of multiple resistive circuit elements and 
energy sources can be replaced by one single equivalent 
resistance Rs and one single equivalent voltage Vs. Rs is the 
source resistance value looking back into the circuit and Vs is the 
open circuit voltage at the terminals.
For example, consider the circuit from the previous section.
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The value of the equivalent resistance, Rs is found by calculating the
total resistance looking back from the terminals A and B with all the
voltage sources shorted. We then get the following circuit.

Find the Equivalent Resistance (Rs)

The voltage Vs is defined as the total voltage across the
terminals A and B when there is an open circuit between them. That is
without the load resistor RL connected.
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Find the Equivalent Voltage (Vs)

We now need to reconnect the two voltages back into the circuit,
and as VS = VAB the current flowing around the loop is calculated as:

This current of 0.33 amperes (330mA) is common to both resistors
so the voltage drop across the 20Ω resistor or the 10Ω resistor can
be calculated as:
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VAB = 20 – (20Ω x 0.33amps) = 13.33 volts.
or
VAB = 10 + (10Ω x 0.33amps) = 13.33 volts, the same
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NORTON’S THEOREM:

“ An complex network consisting of number voltage and current
sources can be replaced by simple parallel circuit consisting of
equivalent current source in parallel with equivalent resistance,
where equivalent current source is called as short circuit current and
equivalent resistance is called as norton’s resistance calculated
across open circuit terminals while all energy sources are non-
operative”
Norton’s equivalent circuit
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Maximum Power Transfer Theorem

In linear bi-lateral network maximum power can be transferred from
source to load if load resistance is equal to source or Thevenin’s or
internal resistances”.
For the below circuit explain maximum power transfer theorem

Let I be the source current,  I = V / (R1+R2)
Power absorbed by load resistor is, PL = I2 .R2
= [V / (R1+R2)]2 .R2.
To say that load resistor absorbed maximum power, dPL / dR2 = 0.
When we solve above condition we get, R2 = R1.
Hence maximum power absorbed by load resistor is, PLmax = V2  / 4R2
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Example

Where:
RS = 25Ω
RL is variable between 0 – 100Ω
VS = 100v
Then by using the following Ohm’s Law equations:
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We can now complete the following table to determine the current and

power in the circuit for different values of load resistance.

RL (Ω) I (amps) P (watts)

0 4.0 0

5 3.3 55

10 2.8 78

15 2.5 93

20 2.2 97

25 2.0 100

30 1.8 97

40 1.5 94

60 1.2 83

100 0.8 64
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• Using the data from the table above, we can plot a graph of load
resistance, RL against power, P for different values of load
resistance. Also notice that power is zero for an open-circuit
(zero current condition) and also for a short-circuit (zero voltage
condition).

• Graph of Power against Load Resistance
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From the above table and graph we can see that the Maximum
Power Transfer occurs in the load when the load resistance, RL is
equal in value to the source resistance, RS that is: RS = RL = 25Ω.
This is called a “matched condition” and as a general rule,
maximum power is transferred from an active device such as a
power supply or battery to an external device when the
impedance of the external device exactly matches the
impedance of the source.
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Milliman’s Theorem 

An complex network consisting of number of parallel branches , where
each parallel branch consists of voltage source with series resistance,
can be replaced with equivalent circuit consisting of one voltage source
in series with equivalent resistance
Millman's theorem is applicable to a circuit which may contain only 
voltage sources in parallel or a mixture of voltage and current sources 
connected in parallel. Let’s discuss these one by one.
Circuit consisting only Voltage Sources
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Milliman’s Theorem 

Here V1, V2 and V3 are voltages of respectively 1st, 2nd and 3rd branch 
and R1, R2 and R3 are their respective resistances. IL, RL and VT are load 
current, load resistance and terminal voltage respectively.
Now this complex circuit can be reduced easily to a single equivalent 
voltage source with a series resistance with the help of Millman’s
Theorem as shown in figure b.

The value of equivalent voltage VE is specified as per Millman’s
theorem will be 
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Milliman’s Theorem 

This VE is nothing but Thevenin voltage and Thevenin resistance RTH can 
be determined as per convention by shorting the voltage source. So RTH

will be obtained as

Now load current and terminal voltage can be easily found by
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Milliman’s Theorem 

• Circuit is Consisting Mixture of Voltage and Current Source

• Millman’s Theorem is also helpful to reduce a mixture of 
voltage and current source connected in parallel to a single 
equivalent voltage or current source. Let’s have a circuit as 
shown in below figure - f.

• Here all letters are implying their conventional representation. 
This circuit can be reduced to a circuit as shown in figure - g.
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Milliman’s Theorem 

Here VE which is nothing but thevenin voltage which will be
obtained as per Millman’s theorem and that is

And RTH will be obtained by replacing current sources with open
circuits and voltage sources with short circuits.
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COMPENSATION THEOREM:

compensation theorem states that any element in the network
can be replaced with Voltage source whose value is
product of current through that element and its value” It is
useful in finding change in current when sudden change in
resistance value.
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COMPENSATION THEOREM:

•For the above circuit source current is given as, I = V / (R1+R2) 
•Element R2 can be replaced with voltage source of, V’ = I.R2
•Let us assume there is change in R2 by ΔR, now source current 
is I’= V / (R1+R2+ ΔR)
•Hence actual change in current from original circuit to present 
circuit is = I – I’.
•This can be find using compensation theorem as, making 
voltage source non-operative and replacing ΔR with voltage 
source of I’. ΔR.
•Then change in current is given as = I’. ΔR / (R1+R2)
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COMPENSATION THEOREM:
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Transient analysis of Capacitor

• The duration in which current changes in capacitor is known as 

transient period. The phenomenon of charging current or other 

electrical quantities like voltage, in capacitor is known as transient. 

To understand transient behavior of capacitor let us draw a RC 

circuit as shown below,

• Now, if the switch S is suddenly closed, the current starts flowing 

through the circuit. Let us current at any instant is i(t). Also consider 

the voltage developed at the capacitor at that instant is Vc(t). Hence, 

by applying
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The problem of Economic operation of the power system 
involves two sub problems:

Unit Commitment 

Economic Dispatch 

DETAILED  ESTIMATE
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Kirchhoff’s Voltage Law, in that circuit we get,

Now, if transfer of charge during this period (t) is q coulomb, then i(t) 
can be written as

Therefore,

35



Cont..

Putting this expression of i(t) in equation (i) we get, 

Now integrating both sides with respect to time we get,

Where, K is a constant can be determined from initial condition. Let us 

consider the time t = 0 at the instant of switching on the circuit putting t 

= 0 in above equation we get,
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There will be no voltage developed across capacitor at t = 0 as it was 
previously unchanged. Therefore, 

Now if we put RC = t at above equation, we get 

Again, at the instant of switching on the circuit i.e. t = 0, there will be no 
voltage developed across the capacitor. This can also be proved from 
equation (ii).
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So initial current through the circuit is, V/R and let us consider it as I0. 
Now at any instant, current through the circuit will be, 

Now when, t = Rc the circuit current.

So at the instant when, current through the capacitor is 36.7% of the 
initial current, is also known as time constant of the RC circuit. The time 
constant is normally denoted will τ (taw). Hence
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TRANSIENT RESPONSE OF RC SERIES CIRCUIT
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RLC CIRCUIT
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DIFFERENTIAL APPROACH
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DIFFERENTAL APPROACH CASE II

1 .Assign the loop currents in clockwise directions and redrawn the
circuit as shown in . The voltage across the terminals ‘’ and ‘’ can be
obtained by solving the following loop equations.
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Solution
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where, i2(t) and i1(t)can be obtained 

Cont..

52



Cont..

where, i2(t) and i1(t)can be obtained 
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DIFFERENTAL APPROACH 3 

The switch ‘ S ’ is closed in position ‘1’ sufficiently

long time and then it is kept in position 
‘ 2 ’ as shown in fig. Compute the value of compute the 

value of VL and IL.
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TRANSIENT RESPONSE OF RLC SERIES CIRCUIT
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DIFFERENTAIAL EQUATIONS APPROACH
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Transient analysis of a series RL circuits

Follow these basic steps to analyze a circuit using Laplace techniques:
1. Develop the differential equation in the time-domain using 

Kirchhoff’s laws and element equations.
2. Apply the Laplace transformation of the differential equation 

to put the equation in the s-domain.
3. Algebraically solve for the solution, or response transform.
4. Apply the inverse Laplace transformation to produce the 

solution to the original differential equation described in the 
time-domain.
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Here is an RL circuit that has a switch that’s been in Position A for 
a long time. The switch moves to Position B at time t = 0.

Cont.. 
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/For this circuit, you have the following KVL equation:

vR(t) + vL(t) = 0

Next, formulate the element equation (or i-v characteristic) for each 

device. Using Ohm’s law to describe the voltage across the resistor, 

you have the following relationship:

vR(t) = iL(t)R

The inductor’s element equation is
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strength to resist any impact.

Cont.. 

• Substituting the element equations, vR(t) and vL(t), into the KVL 
equation gives you the desired first-order differential equation

• On to Step 2: Apply the Laplace transform to the differential 
equation:

• The preceding equation uses the linearity property which says you 
can take the Laplace transform of each term. For the first term on 
the left side of the equation, you use the differentiation property:
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•This equation uses IL(s) = ℒ[iL(t)], and I0 is the initial current flowing 

through  the inductor.

•The Laplace transform of the differential equation becomes

IL(s)R + L[sIL(s) – I0] = 0

Solve for IL(s):
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Numerical Problems on series RL circuits

1. In the RL circuit shown in below figure the switch is in position 1 
long enough to establish the steady state conditions. At t=0, the 
switch is thrown to position 2. Find the expression for the resulting 
current.
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In the circuit shown in figure the switch S is kept in position 1 
for long period to establish the steady state condition. The 
switch is then moved to position 2 at t=0. Find out the 
expression for the current after switching the switch to 
position 
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Numerical Problems on series RC circuits

The switch S is moved from position 1 to 2 at t=0. Find 
the voltages vR(t) and vC(t) for t>0.
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2. Switch is moved from position 1 to 2 at t=0. Find the voltages 
vR(t) and vC(t) for t>0.

Cont..
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Transient Response of a series R-L-C circuit

Consider a series RL circuit as shown in fig.11.1, and it is excited with a 

dc voltage source C−−sV.

Applying around the closed path for,

The current through the capacitor can be written as Substituting the 

current ‘’expression in eq.(11.1) and rearranging the terms,
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The above equation is a 2nd-order linear differential
equation and the parameters associated with the differential
equation are constant with time. The complete solution of
the above differential equation has two components; the
transient response and the steady state response.
Mathematically, one can write the complete solution as
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The natural or transient response (see Appendix in Lesson-10) of 

second order differential equation can be obtained from the 

homogeneous equation (i.e., from force free system) that is expressed 

by

And solving the roots of this equation (11.5) on that associated with 

transient part of the complete solution (eq.11.3) and they are given 

below.
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The roots of the characteristic equation are classified in three 
groups depending upon the values of the parameters, Rand of 
the circuit Case-A (over damped response): That the roots are 
distinct with negative real parts. Under this situation, the natural 
or transient part of the complete solution is written as
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Transient analysis of a series RLC Circuit

Follow these basic steps to analyze a circuit using Laplace techniques:

1. Develop the differential equation in the time-domain using  

Kirchhoff’s laws and element equations.

2. Apply the Laplace transformation of the differential equation to put 

the equation in the s-domain.

3. Algebraically solve for the solution, or response transform.

4. Apply the inverse Laplace transformation to produce the solution to 

the original differential equation described in the time-domain.
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To get comfortable with this process, you simply need to practice

applying it to different types of circuits such as an RC (resistor-capacitor)

circuit, an RL (resistor-inductor) circuit, and an RLC (resistor-inductor-

capacitor) circuit.

Here you can see an RLC circuit in which the switch has been open for a 

long time. The switch is closed at time t = 0.
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In this circuit, you have the following KVL equation:
vR(t) + vL(t) + v(t) = 0

Next, formulate the element equation (or i-v characteristic) for each 

device. Ohm’s law describes the voltage across the resistor (noting 

that i(t) = iL(t) because the circuit is connected in series, where I(s) = 

IL(s) are the Laplace transforms):

vR(t) = i(t)R
The inductor’s element equation is given by

And the capacitor’s element equation is
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Here, vC(0) = V0 is the initial condition, and it’s equal to 5 volts.

Substituting the element equations, vR(t), vC(t), and vL(t), into the KVL 

equation gives you the following equation (with a fancy name: 

the integro-differential equation):

The next step is to apply the Laplace transform to the preceding 

equation to find an I(s) that satisfies the integral-differential equation 

for a given set of initial conditions:
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The preceding equation uses the linearity property allowing you to take 
the Laplace transform of each term. For the first term on the left side of 
the equation, you use the differentiation property to get the following 
transform:

This equation uses IL(s) = ℒ[i(t)], and I0 is the initial current flowing 
through the inductor. Because the switch is open for a long time, the 
initial condition I0 is equal to zero.
For the second term of the KVL equation dealing with resistor R, the 
Laplace transform is simply

ℒ[i(t)R] = I(s)R
For the third term in the KVL expression dealing with capacitor C, you 
have
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•The Laplace transform of the integro-differential equation becomes

•Rearrange the equation and solve for I(s):

•To get the time-domain solution i(t), use the following table, and notice 

that the preceding equation has the form of a damping sinusoid.
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Numerical Problems on RLC Circuits
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 Locus diagrams are the graphical representations of the way
in which the response of electrical circuits vary, when one or
more parameters are continuously changing. They help us to
study the way in which current / power factor vary, when
voltage is kept constant, Voltage / power factor vary, when
current is kept constant, when one of the parameters of the
circuit (whether series or parallel) is varied.

 The Locus diagrams yield such important information as Imax,
Imin , Vmax ,Vmin & the power factor`s at which they occur. In
some parallel circuits, they will also indicate whether or not,
a condition for response is possible.

LOCUS DIAGRAMS
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 Consider an R – XL series circuit as shown below, across 
which a constant voltage is applied. By varying R or XL, a wide 
range of currents and potential differences can be obtained.

 R  can be varied by the rheostat adjustment and XL can be 
varied by using a variable inductor or by applying a variable 
frequency source.

 When the variations are uniform and lie between 0 and 
infinity, the resulting locus diagrams are circles 

LOCUS OF SERIES RL CIRCUIT 

Case 1:when `R` is varied
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 When R = 0 , the current is maximum and is given by

 Imax =  and  lags V by 900

 Power factor is zero 

 When R = infinity, the current is minimum and is given 
by Imin = 0,  and power factor = 1

 For any other values of`R`, the current lags the voltage 
by an angle tan

 The general expression for current is

 The is the equation of a circle in the polar form, where  
is the diameter of the circle.

 The Locus diagram of  current i.e the way in which the 
current varies in the circuit, as `R` is varied from zero to 
infinity is shown in below which is  a semi  -circle.

LOCUS OF SERIES RL CIRCUIT 
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I 

LOCUS OF SERIES RL CIRCUIT CURRENT WITH R VARIED   
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LOCUS OF SERIES RL CIRCUIT WITH XL IS VARIED 
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Case 1:when `R` is varied

RC SERIES CIRCUIT
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Case 2: Where Xc is varied

LOCUS OF SERIES RL CIRCUIT WITH XC IS VARIED
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 case1: when r is varied and  the other three parameters are 

constant, the locus diagram of current shown below

LOCUS OF CURRENT OF RLC SERIES CIRCUIT       
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Case 2:When XLis varied

Case 3 : When XC is varied 

LOCUS OF CURRENT OF RLC SERIES CIRCUIT 
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LOCUS DIAGRAMS OF PARALLEL CIRCUITS

Case 1:R & XL in parallel R Varying
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Case 2:  R-XC in parallel with R & ‘R’ varying.   

LOCUS DIAGRAMS OF PARALLEL CIRCUITS
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NETWORK FUNCTIONS
.

A network function is the Laplace transform of an
impulse response. Its format is a ratio of two polynomials
of the complex frequencies. Consider the general two-

port network shown in Figure 2.2a. The terminal voltages
and currents of the two-port can be related by two classes
of network functions, namely, the driving point functions
and the transfer functions.
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POSSIBLE FORMS OF TRANSFER FUNCTIONS 

 The voltage transfer function, which is a ratio   of one voltage 
to  another  voltage.

 The current transfer function, which is a   ratio of  one  current  
to  another  current.

 The transfer impedance function, which is the ratio of a 
voltage to a current. 

 The transfer  admittance  function,  which  is  the  ratio  of  a  
current  to  a voltage

The voltage transfer functions are defined with the output port 

an open circuit, as:
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The network functions of all passive networks and all stable active  
Must be rational functions in s with real coefficients.

May not have poles in the right half s plane.

 May not have multiple poles on the jω axis.

PROPERTIES OF  ALL NETWORK FUNCTIONS
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These conditions are required to satisfy to be positive realness

 Y(s) must be a  rational  function  in  s  with  real  coefficients,  
i.e.,  the  coefficients of the numerator and denominator 
polynomials is real and positive.

 The poles and zeros of Y(s) have either negative or zero real 
parts, i.e., Y(s) not have poles or zeros in the right half s plane.

PROPERTIES OF DRIVING POINT FUNCTIONS

Poles of Y(s) on the imaginary axis must be simple and their
residues must be real and positive, i.e., Y(s) not has multiple
poles or zeros on the jω axis. The same statement applies to
the poles of l/Y(s).
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 The degrees of the numerator and denominator polynomials
in Y(s) differ at most by 1. Thus the number of finite poles
and finite zeros of Y(s) differ at most by 1.

 The terms of lowest degree in the numerator and
denominator polynomials of Y(s) differ in degree at most by 1.
So Y(s) has neither multiple poles nor zeros at the origin.

 There be no missing terms in numerator and denominator
polynomials unless all even or all odd terms are missing.

PROPERTIES OF DRIVING POINT FUNCTIONS
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 It is often convenient to factor the polynomials in the 
numerator and denominator, and to write the transfer 
function in terms of those factors

 Where the numerator and denominator polynomials, N(s) 
and D(s), have real coefficients defined by the system’s 
differential equation and K = bm/an. As written in Eq. (2) the 
zi’s are the roots of the equation N(s) =0

 and are defined to be the system zeros, and the pi’s are the 
roots of the equation D(s) = 0

SYSTEM POLES AND ZEROS
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 The sense that they allow reconstruction of the input/output
differential equation. In general, the poles and zeros of a
transfer function may be complex, and the system dynamics
may be represented graphically by plotting their locations on
the complex s-plane, whose axes represent the real and
imaginary parts of the complex variable s. Such plots are
known as pole-zero plots.

 It is usual to mark a zero location by a circle (◦) and a pole 
location a cross (×). The location of the poles and zeros 
provide qualitative insights into the response characteristics 
of a system.

POLE-ZERO PLOT
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EXAMPLE OF POLE-ZERO PLOT
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It is a pair of two terminal electrical network in which,
current enters through one terminal and leaves through
another terminal of each port. Two port network
representation is shown in the following figure.

Here, one pair of terminals, 1 & 1’ represents one port, which
is called as port1 and the other pair of terminals, 2 & 2’
represents another port, which is called as port2.

TWO PORT NETWORK 
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There are four variables V1, V2, I1 and I2 in a two port network
as shown in the figure.

 Out of which, we can choose two variables as independent and
another two variables as dependent. So, we will get six possible
pairs of equations.

These equations represent the dependent variables in terms of
independent variables.

The coefficients of independent variables are called as
parameters. So, each pair of equations will give a set of four
parameters.

TWO PORT NETWORK 
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Z parameters are also known as impedance parameters.

When we use Z parameter for analyzing two part network,

the voltages are represented as the function of currents.

IMPEDANCE PARAMETERS (Z)
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IMPEDANCE PARAMETERS (Z)

The voltages are represented as
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Problem: Find the z parameters for network shown in figure

PROBLEMS
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 We can represent current in terms of voltage for admittance

parameters of a two port network. Then we will represent the

current voltage relations as.

 This can also be represented in matrix form a

s

ADMITTANCE PARAMETERS (Y)
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Here, Y11, Y12, Y21 and Y22 are admittance parameter.
Sometimes these are called as Y parameters. We can determine
the values of the parameters of a particular two port network by
making short-circuited output port and input port alternatively
as follows. First let us apply current source of I1 at input port
keeping the output port short circuited as shown below.

ADMITTANCE PARAMETERS (Y)
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ADMITTANCE PARAMETERS (Y)
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NUMERICAL PROBLEMS

Problem: Find the Y- Parameters for the given network shown 

in figure

113



 Hybrid parameters are also referred as h parameters. These are

referred as hybrid because, here Z parameters, Y parameters,

voltage ratio, current ratio, all are used to represent the relation

between voltage and current in a two port network.The relations

of voltages and current in hybrid parameters are represented as

This can be represented in matrix form as,

HYBRID PARAMETERS OR h PARAMETERS
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DETERMINING h  PARAMETERS

Let us short circuit the output port of a two port network as 
shown below

Now, ratio of input voltage to input current, at short circuited 
output port, is

This is referred as short circuit input impedance. Now, the ratio of 
the output current to input current at short circuited output 
port, is
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 This is called short circuit current gain of the network. Now, let
us open circuit the port 1. At that condition, there will be no
input current (I1=0) but open circuit voltage V1 appears across
the port 1, as shown below

 This is referred as reverse voltage gain because, this is the ratio 
of input voltage to output voltage of the network, but voltage 
gain is defined as ratio of output voltage to input voltage of a 
network. Now
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 Concerning the equivalent port representations of networks 
we’ve seen in this course:

 Z parameters are useful for series connected networks.
 Y parameters are useful for parallel connected networks.     

parameters are useful for describing interaction of 
voltage and current waves with a network.

 There is another set of network parameters particularly suited 
for cascading two-port networks. This set is called the ABCD 
matrix or, equivalently, the transmission matrix

ABCD PARAMETERS
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ABCD PARAMETERS

118



ABCD PARAMETERS

119



Derive the ABCD Parameters for the T network

NUMERICAL PROBLEMS
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 Find the z parameters for network shown in figure

PROBLEMS ON TWO PORT NETWORKS
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PROBLEMS ON TWO PORT NETWORKS

Find the Y parameters for network shown in figure
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PROBLEMS ON TWO PORT NETWORKS

Find the transmission parameters for network shown in figure
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CONDITION FOR RECIPROCITY 
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A network is symmetrical if its input impedance is equal to its output 
impedance. Most often, but not necessarily, symmetrical networks are 
also physically symmetrical

CONDITION FOR SYMMETRY
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 1. Procedure of two port parameter conversions

 convert one set of two-port network parameters into other set 

of two port network parameter inversion is known as two port 

network parameters conversion or simply, two-port parameters 

conversion.

 Step 1 − Write the equations of a two port network in terms of 
desired parameters

 Step 2 − Write the equations of a two port network in terms of 
given parameters.

 Step 3 − Re-arrange the equations of Step2 in such a way that 
they should be similar to the equations of Step1.

 Step 4 − By equating the similar equations of Step1 and Step3, 
we will get the desired parameters in terms of given parameters. 
We can represent these parameters in matrix form.

TWO PORT PARAMETER CONVERSIONS
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TWO PORT PARAMETER CONVERSIONS
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TWO PORT PARAMETER CONVERSIONS
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 Interconnections of two-port networks

Two-port networks may be interconnected in various 
configurations, such as series, parallel, cascade, series-parallel, 
and parallel-series connections. For each configuration a certain 
set of parameters may be more useful than others to describe 
the network.

 Series connection

INTERCONNECTIONS OF TWO-PORT NETWORKS
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 Series connection of two two-port networks for network N a
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network can be written as

Z-parameters of the series-connected combined
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Parallel connection of two two-port networks N a and N b. The 
resultant of two admittances connected in parallel is Y 1 + Y 2. So 
in parallel connection, the parameters are Y-parameters.

PARALLEL CONNECTION
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CASCADE CONNECTION OF TWO PORT NETWORKS
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CASCADE CONNECTION OF TWO PORT NETWORKS
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CASCADE CONNECTION OF TWO PORT NETWORKS
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• Filters are essential building blocks in many systems,
particularly in communication and instrumentation
systems. A filter passes one band of frequencies while
rejecting another.

• Typically implemented in one of three technologies: passive
RLC filters, active RC filters and switched capacitor filters.
Crystal and SAW filters are normally used at very high
frequencies.

• Passive filters work well at high frequencies, however, at low
frequencies the required inductors are large, bulky and non-
ideal.

INTRODUCTION TO FILTERS
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• Furthermore, inductors are difficult to fabricate in monolithic 
from and are  incompatible with many modern assembly 
systems. Active RC filters utilize op- amps together with 
resistors and capacitors and are fabricated using discrete, 
thick  film and thin-film technologies.

• The performance of these filters is limited by the performance 
of the op-amps (e.g.,  frequency response, bandwidth, noise, 
offsets, etc.). Switched-capacitor filters are  monolithic filters 
which typically offer the best performance in the term of cost. 

• Fabricated using capacitors, switched and op-amps. Generally 
poorer performance  compared to passive LC or active RC
filters.

INTRODUCTION TO FILTERS
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• Filters are generally linear circuits that can be represented as a two-port network:

•

• The filter transfer function is given as follows:

• The magnitude of the transmission is often expressed in dB 
in terms of gain function: G(w)dB=20log(|T(jw)|

Or, alternatively, in terms of the attenuation function:
A(w)dB=-20log(|T(jw)|

139



• A filter shapes the frequency spectrum of the input signal,
according to the magnitude of the transfer function. The
phase characteristics of the signal are also modified as it
passes through the filter. Filters can be classified into a
number of categories based on which frequency bands are
passes through and which frequency bands are stopped.
Figures below show ideal responses of various filters.

CLASSIFICATION OF FILTERS
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Classification of Pass band and Stop band:

Ideal filters could not be realized using electrical circuits,
therefore the actual response of the filter is not a brick
wall response as shown above but increases or decreases
with a roll-off factor. Realistic transmission characteristics
for a low pass filter are shown below
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• Frequency-selective or filter circuits pass to the output only
those input signals that are in a desired range of frequencies
(called pass band).

• The amplitude of signals outside this range of frequencies
(called stop band) is reduced (ideally reduced to zero).

• Typically in these circuits, the input and output currents are
kept to a small valueand as such, the current transfer function
is not an important parameter.

• The main parameter is the voltage transfer function in the
frequency domain, Hv (jω) = Vo/Vi. As Hv (jω) is complex
number, it has both a magnitude and a phase, filters in
general introduce a phase difference between input and
output signals.

• To minimize the number of subscripts, hereafter, we will drop
subscript v of Hv. Furthermore, we concentrate on the ‖open-
loop‖ transfer functions, Hvo, and denote this simply by H(jω).

FILTERS
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Low-Pass Filters:
• An ideal low-pass filter‘s transfer function is shown. The

frequency between the
• pass- and-stop bands is called the cut-off frequency (ωc).
• All of the signals with frequencies below ωc are transmitted 

and all other signals  are stopped.

Band-pass filters:
• A band pass filter allows signals with a range of frequencies 

(pass band) to pass through and attenuates signals with 
frequencies outside this range.

143



CONSTANT K -LOW PASS FILTER 
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, where Z1 =

CONSTANT K –HIGH  PASS FILTER 
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DESIGN OF CONSTANT K-HIGH PASS FILTER
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m-DERIVED LOW PASS FILTER
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m-DERIVED HIGH PASS FILTER:
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BAND PASS FILTER
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DESIGN OF BAND PASS FILTER
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BAND STOP FILTER CHARACTERISTICS
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