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NETWORK ANALYSIS
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UNIT 1
NETWORK THEOREMS (DC AND AC)



TELLEGEN’S THEOREM

According to Tellegen theorem, the summation of instantaneous
powers for the n number of branches in an electrical network is
zero. Are you confused? Let's explain. Suppose n number of
branches in an electrical network have il, i2, i3, ............. in
respective instantaneous currents through them. These currents
satisfy Kirchhoff's Current Law.

Again, suppose these branches have instantaneous voltages
across them arevl, v2,v3, ........... vn respectively. If these
voltages across these elements satisfy Kirchhoff Voltage Law
then,
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Vk is the instantaneous voltage across the kth branch
the instantaneous current flowing through this branch.

Tellegen theorem is applicable mainly in general class of lu
networks that consist of linear, non-linear, active, passive, t
variant and time variant elements.
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In the network shown, arbitrary reference directions have been
selected for all of the branch currents, and the corresponding
branch voltages have been indicated, with positive reference
direction at the tail of the current arrow.

@For this network, we will assume a set of branch voltages
satisfy the Kirchhoff voltage law and a set of branch current
satisfy Kirchhoff current law at each node.
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We will then show that these arbitrary assumed voltages and

currents satisfy the equation.

We get,

Db+ D=9+ 3x 34+ 1k 3 (-8 + () =0

Hence Tellegen theorem is verified



Super Position Theorem

® “In an any linear, bi-lateral network consisting number of
sources, response in any element(resistor) is given as sum of the
individual Reponses due to individual sources, while other sources
are non-operative”

@Example Problem

ELEk
aka

+
riE L - Ik
&N -'IJ.I:?-I- {OEL

Let V=6v,|=3A, R1=8 ohmsand R2 =4 ohms

® Let us find current through 4 ohms using V source , while | is
zero. then eauivalent circuit is

ELk
A =]

W Cl;- I"T;'l -n:z_%-.-.

T
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Let il is the current through 4 ohms, i1 =V / (R1+R2)
Let us find current through 4 ohms using | source , while V is zero.
then equivalent circuit is

ELY
A

F
qu%:u (1) 2a

Let i2 is the current through 4 ohms, i2 = 1. R1 / (R1+R2)
Hence total current through 4 ohms is = 11+I1( as both currents are
in same direction or otherwise 11-12)




Problems

Problem 01:

In an network consisting three parallel branches, first across
is defined as 20V in series with 5 ohms , second branch 7
ohms and third branch 10V in series with 4 ohms. Apply
super-position theorem to Determine voltage drop across 7
ohms resistor.




Reciprocity theorem

* In any linear bi-lateral network ratio of voltage in one mesh
to current in other mesh is same even if their positions are
inter-changed”.

Example: B B3
1k 270ochnm
10VD G| 4,y 1200bm . o5 = RL=320chm

* Find the total resistance of the circuit, Rt = R1+ [R2(R3+Rl)] /
R2+R3+RL.

* Hence source current, | = V1 / Rt.

e CurrentthroughRLis 11 =1.R2 / (R2+R3+RL)

* Take theratioof,V1/ I11---1

* Draw the circuit by inter changing position of V1 and 11
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1K 270ohm

RL=330chm
=

L 1o0vD.c

Find the total resistance of the circuit, Rt = (R3+RL) +
[R2(RI)] / R2+R1.

Hence source current, | = V1/Rt.

Current through RL is 11 = 1. R2 | (R2+R1)

Take the ratio of , V1/ 11 ---
If ratio 1 = ratio 2, then CII‘CUIt IS said to be satisfy reciprocity.



Problems

Verify reciprocity theorem for given circuit

R, Ry
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THEVENIN’S THEOREM

« DC: “ An complex network consisting of number voltage and
current sources can be replaced by simple series circuit
consisting of equivalent voltage source in series with
equivalent resistance, where equivalent voltage is called as
open circuit voltage and equivalent resistance is called as
Thevenin’s resistance calculated across open circuit terminals
while all energy sources are non-operative”

* Thevenin’s equivalent circuit

Rs

A Linear A :
Network ' Vs
Containing e—
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As far as the load resistor RL is concerned, any complex “one-
port” network consisting of multiple resistive circuit elements and
energy sources can be replaced by one single equivalent
resistance Rs and one single equivalent voltage Vs. Rs is the
source resistance value looking back into the circuit and Vs is the
open circuit voltage at the terminals.

For example, consider the circuit from the previous section.

1002 A 200

—1

10w 20v
p— 100 je—
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The value of the equivalent resistance, Rs is found by calculating the
total resistance looking back from the terminals A and B with all the
voltage sources shorted. We then get the following circuit.

10 <2 2002

—:—T—l:l—

Find the Equivalent Resistance (Rs)

1082 Resistor inParallel with the 2002 Resistor

R, xR, _ 20x10 _
= = 6.670
R, +R, 20+10

T

The voltage Vs is defined as the total voltage across the
terminals A and B when there is an open circuit between them. That is
without the load resistor R, connected.
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Find the Equivalent Voltage (Vs)

10 €2 A 2002

We now need to reconnect the two voltages back into the circuit,

and as V. = V,; the current flowing around the loop is calculated as:

=2 2020 a3 s
R 20Q+100

This current of 0.33 amperes (330mA) is common to both resistors
so the voltage drop across the 20Q resistor or the 10Q resistor can
be calculated as:
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20 — (20Q x 0.33amps) = 13.33 volts.

= 10 + (10Q x 0.33amps) = 13.33 volts, the same

13.33v

66702




NORTON’S THEOREM:

“ An complex network consisting of number voltage and current
sources can be replaced by simple parallel circuit consisting of
equivalent current source in parallel with equivalent resistance,
where equivalent current source is called as short circuit current and
equivalent resistance is called as norton’s resistance calculated
across open circuit terminals while all energy sources are non-
operative”

Norton’s equivalent circuit

3!

i

A Linear | I
Network
containing
several energy
sources and
resistances

Ryl = T Rs RL

o — ]




Maximum Power Transfer Theorem

In linear bi-lateral network maximum power can be transferred from
source to load if load resistance is equal to source or Thevenin’s or
internal resistances”.

For the below circuit explain maximum power transfer theorem

=+ |

Let | be the source current, 1=V /(R1+R2)

Power absorbed by load resistor is, PL = 12 .R2

=[V / (R1+R2)]%.R2.

To say that load resistor absorbed maximum power, dPL / dR2 = 0.
When we solve above condition we get, R2 = R1.

Hence maximum power absorbed by load resistor is, PLmax = V? /4R2



Example

Rs

Where:

R =250

R, is variable between 0 —100Q

V¢ =100v

Then by using the following Ohm’s Law equations:

I = Vs

2
= and P=1 R¢
RS-I-RL




We can now complete the following table to determine the current and

power in the circuit for different values of load resistance.

R, (Q) I (amps) P (watts)
0 4.0 0
5 3.3 95

10 2.8 78
15 2.5 93
20 2.2 97
25 2.0 100
30 1.8 97
40 1.5 94
60 1.2 83
0.8
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* Using the data from the table above, we can plot a graph of load
resistance, RL against power, P for different values of load
resistance. Also notice that power is zero for an open-circuit
(zero current condition) and also for a short-circuit (zero voltage
condition).

* Graph of Power against Load Resistance

Maximum Power is

Power Transferred when

100 RL=250
90
80
70
60
50
40
30
20
10

s

0*
0 20 : 30 40 50 60 VO 80 S0 100

25 Load Resistance



From the above table and graph we can see that the Maximum
Power Transfer occurs in the load when the load resistance, RL is
equal in value to the source resistance, RS that is: RS = RL = 25Q.
This is called a “matched condition” and as a general rule,
maximum power is transferred from an active device such as a
power supply or battery to an external device when the
impedance of the external device exactly matches the
impedance of the source.



Milliman’s Theorem

An complex network consisting of number of parallel branches , where
each parallel branch consists of voltage source with series resistance,
can be replaced with equivalent circuit consisting of one voltage source
in series with equivalent resistance

Millman's theorem is applicable to a circuit which may contain only
voltage sources in parallel or a mixture of voltage and current sources
connected in parallel. Let’s discuss these one by one.

Circuit consisting only Voltage Sources

V5 2 Vs

fig-a



Milliman’s Theorem

Here V1, V2 and V3 are voltages of respectively 1st, 2nd and 3rd branch
and R1, R2 and R3 are their respective resistances. IL, RL and VT are load
current, load resistance and terminal voltage respectively.

Now this complex circuit can be reduced easily to a single equivalent
voltage source with a series resistance with the help of Millman’s

Theorem as shown in figure b.

R — R
Vr

Ve =

fig-b

The value of equivalent voltage V; is specified as per Millman’s
theorem will be



Milliman’s Theorem

This V¢ is nothing but Thevenin voltage and Thevenin resistance R, can
be determined as per convention by shorting the voltage source. So R,
will be obtained as

1‘;[ _I_ 1".2 1'{3 1’_"
VE R Hs Ry H
1 1 1 1
nTEL T B
1
Rypy =
(S B

i Ha Hj

Now load current and terminal voltage can be easily found by

~ Vrm
Ry + Rty

& Vp=1I; x R

Iy




Milliman’s Theorem

Circuit is Consisting Mixture of Voltage and Current Source

Millman’s Theorem is also helpful to reduce a mixture of
voltage and current source connected in parallel to a single
equivalent voltage or current source. Let’s have a circuit as
shown in below figure - f.

fig-f
Here all letters are implying their conventional representation.

This circuit can be reduced to a circuit as shown in figure - g.



Milliman’s Theorem

fig-g
Here V¢ which is nothing but thevenin voltage which will be
obtained as per Millman’s theorem and that is

'i_.-" "__.-" "__.-" r

mtmtamtht+th-—L Y 5+31
1 1 1 1
TR TR 2R

VE:

And R., will be obtained by replacing current sources with open
circuits and voltage sources with short circuits.

Ve
JTL —
ry = 5 1 Ry + Rry

1
1
BT m TR

& VT:JTL}{RL




COMPENSATION THEOREM:

compensation theorem states that any element in the network
can be replaced with Voltage source whose value is
product of current through that element and its value” It is
useful in finding change in current when sudden change in
resistance value.




COMPENSATION THEOREM:

*For the above circuit source current is given as, | =V / (R1+R2)
*Element R2 can be replaced with voltage source of, V' = [.R2
*Let us assume there is change in R2 by AR, now source current
isI’=V / (R1+R2+ AR)

*Hence actual change in current from original circuit to present
circuitis=1-1.

*This can be find using compensation theorem as, making
voltage source non-operative and replacing AR with voltage
source of I’. AR.

*Then change in current is given as = I’. AR / (R1+R2)



COMPENSATION THEOREM:

g ks

Fig 1

Tl ks

Fig 2

Fig 3

R,+AR




UNIT li
SOLUTION OF FIRST AND SECOND
ORDER NETWORKS
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Transient analysis of Capacitor

 The duration in which current changes in capacitor is known as
transient period. The phenomenon of charging current or other
electrical quantities like voltage, in capacitor is known as transient.
To understand transient behavior of capacitor let us draw a RC

circuit as shown below,

* Now, if the switch S is suddenly closed, the current starts flowing
through the circuit. Let us current at any instant is i(t). Also consider
the voltage developed at the capacitor at that instant is V(t). Hence,

by applying



DETAILED ESTIMATE

The problem of Economic operation of the power syste
involves two sub problems:

®@Unit Commitment
@®@Economic Dispatch
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Kirchhoff’s Voltage Law, in that circuit we get,
V = Ri(t) + v (t).....(i)

Now, if transfer of charge during this period (t) is g coulomb, then i(t)
can be writtenas ;.
dt
Therefore,
i{t):% = dg(t) = i(t)dt ::vqu fz(t)dt

dt
— f% t)dt = q Again, q= Cv.(+)
du,(t)

.'.fi(t)dt:Cun(H = i(t) = C—




Putting this expression of i(t) in equation (i) we get,

dv.(+)
dit

dv.(+)
dt

V =RC +v.(+) = RC =V —v.(+)

dt du.(+)
RC V—U.:[—F)

—

Now integrating both sides with respect to time we get,

L
I V —
RO log { Uc{ﬁ}] + K

Where, K is a constant can be determined from initial condition. Let us
consider the time t = 0 at the instant of switching on the circuit putting t

=0 in above equation we get,

—log (V —v.(0))+ K =0= K +logV
as, v.(0) =0
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There will be no voltage developed across capacitor at t =0 as it was
previously unchanged. Therefore,
t/Re=—~log(V —v,(t)) +log (V) = —t/Rc=log[V —u,(t)] - logV

Vug) e V—udt)
V I 4

= vo(t) = V= Ve B =y (t) = VL -] (i)
Now if we put RC =t at above equation, we get
V. =0.632V
Again, at the instant of switching on the circuiti.e. t =0, there will be no
voltage developed across the capacitor. This can also be proved from
equation (ii).

= —t/Rc=log { ] >e

v (0)=V[1-¢e]=V[1-1]=0
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So initial current through the circuit is, V/R and let us consider it as I,.
Now at any instant, current through the circuit will be,
‘ V—u.lt) V-V[1-e k] V
== 7= "R
Now when, t = Rc the circuit current.

[=Let=0367]

—t/Re —] E,—t,.-"Hc
— o

So at the instant when, current through the capacitor is 36.7% of the
initial current, is also known as time constant of the RC circuit. The time
constant is normally denoted will T (taw). Hence

T = He



The RL Circuit without a Source

i(t) —> i(t=0) =Ip energy stored:

2
2 N u(t=0) = %Llo
L =R di
2 Ld_t + iR = 0
o x
di i 1=k

v (t) = Ld_t tlme-tconstant. T=R :
using KVL: it)=Toe"R  i(t)=Ioe?

VL+ VR=0



TRANSIENT RESPONSE OF RC SERIES CIRCUIT

RC Circuit Transient Analysis

I C —H(l e_r/R( ) 'VVVV

I =1, swhere I, == T+ T
R J —_—

and let 7 =RC @

7 is a time constant

» The voltage across the capacitor o
reaches 98% of the battery =0 =Re Ie SKe
EMFin4T ®

&

=

« The transient response of the circuit is
over in approximately 4 -57

Current /

1 1
0 RC 2RC 3RC 1
(©) Time

Copyright © 2008 Pearson Education, inc.
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RC Crcuits

i(t)
- R
AC @ u(t) ——

The response of RC circuits can be categorized into two parts:

* Transient Response
* Forced Response

Transientresponse comes from the dynamicof R,C.
Forced response comes from the voltage source.
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The complete response

- The combination of natural and step (or forced) responses

- For RC circuit, the complete response is:

t t

v.t)=V,e T+ V. (1—e ©)

- Response due to initial energy
stored in capacitor
- \V, is the initial value, i.e. v.(0O)

- Response due to the present
of the source
- V. is the final value i.e v.(==)

Note: this is what we obtained when we solved the step
response with initial energy (or initial voltage) at £ =0




RLC CIRCUIT

Step Response of A Series RLC Circuit

Applyving KVL for 7> 0,

di
Ri+L —+v=1T" 1
s w (1)
But 7'=C£
dt
d*v R dv Vv V.,
= —+——+—=—=
gt L.dt T.C LC

(2) has the same form as

in the source - tree case.

R L i

t=0>< —
y
v. @ &=

< +

(2)
V()Y =v(t)+v _(7)
where

{vt : the transient response

v_ . : the steady - state response
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Step Response - Series RLC Circuit

= Comparison of the three responses with different R
value.




DIFFERENTIAL APPROACH

Example

Find the differential equation for the circuit below in
terms of v, and also terms of i,

Ipif}
N
) [ | +
o vRll)
Show: . .
it % A -1 ial
13{’f}:£( ‘ -:C R(_-f(1c 1}_;' — 1S{~_):( -LC'_'_E(‘C_'_ _I.-‘_C
i o FRda Fi= L I
t #
('JF.TL 1 [ Yog 1:?") (]'FFL A 1 [
1V lfy= L +Rig+— W rpichds = s Narlwir
s {1 ot L¥m | ratex z ar Trr e e
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Example

The series RLC circuit shown in Fig. 7.18 has the following parameters: C=0.04 F. Z=1 H,
R=6.i;(0) =4 A. and v(0) = -4 V. Let us determine the expression for both the current
and the capacitor voltage.

iy Lo

L +
R 1 C == v(0)
. . . 1 . di
Applying Kirchhoff voltage law to the loop. IR+ = £ Hx)dxy+ v (0)+ LW =0
: G
9 o 2 i ;
g i B, & _g 9T 6% 25i=0
df L dt LC dr dt
Trial solution : i(7r) = Ke™
Characteristic equation : 2 65k 25=0
~6++/62—100 —6+8j .
= = =—=3+:4 7

2 2

- —_




First order transient circuits

Solution to 1°* order differential equation:

dx(z)
de

+ax(r)= £ (1)

f () = 0 — homogeneous equation
f () # 0 — inhomogeneous equation

—(]x"‘" €2 +ax (r)=0
dr

xu(?) or x_(7) — homogeneous or complementary solution
x,(7) — inhomogeneous or particular solution

X(2)=x, (D) + x.(2)




Transform Pairs

The Laplace (0 F(s)
transforms pairs 5(t) 1
u(t) {a constant} 1
By
e-at l
s+
t L,
S2
te-at 1




In the critically damped case, the two poles are real and equal
Assume that the poles are s, =5, =—«a , the forms for I(s) and V(s)
can be expressed as

%
ﬁ The damping factor: & = ﬂ
I(s) = ;2 2L
(s +x) O\ :
v
Vate)= s(sL-f:ar)2

The inverse transforms are of the forms

. C,=V,/L
(1) = Goter= = Yl grmme =1 Co=Vi/L ]

L

____f‘rhu maost significant aspect of the natural
response function for the critically damped case is
~Ay2L
ve(t)=V,+(Ct+C,)e "~ = the te ™ form. Although the t factor increases
with increasing t the te “' decreases ata faster
\_rate. so the product eventually approaches zero.

=73




DIFFERENTAL APPROACH CASE Il

1 .Assign the loop currents in clockwise directions and redrawn the
circuit as shown in . The voltage across the terminals “ and “ can be
obtained by solving the following loop equations.

2 6% -
692
7 v(t)
e i ' ) '
i ' L(D L=2H
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Solution
Loop-1:
10 =64, (1) —-6(i (1)1, (1))=0=10= 12§ (1) - 65, ()= i (1) = Tli(lo+6i2 (1))
Loop-2:
_6i, (1)~ L d’;ﬁ’) _6(i,(1) =i, (1)) =0 = —6i,(1) +12i, (1) +2 d’;ﬁ’) -0

Using the value of /() 1n equation , we get

diy (1)

9i, (1) +2 x =5

drt




where, i2(t) and il(t)can be obtained

To solve the above first order differential equation we must know nductor’s initial and
final conditions and their values are already known (see. =4, (07)=1,(07)=34 and
5 . . : . :

iy(F=on)= vy =0.555 amp.). The solution of differential equation provides an
+
expression of current 7,(f) and this, 1n turn, will give us the expression of (). The

voltage across the termunals ‘" and *b " is given by

dii(t i
v, =10 -6x (r)=6i2(t)+21'—()=[3.339-7.335xe -'] y

dt




where, i2(t) and i1(t)can be obtained

9 R
|

Il(r):{mzlsxe'?‘wsﬁ d )= ~(10463 )| 3 {111+122256_5r

1]

/

I



DIFFERENTAL APPROACH 3

The switch ‘' S’ is closed in position ‘1’ sufficiently

long time and then it is kept in position
“2’ as shown in fig. Compute the value of compute the
value of V and |,.

mstant just prior to the switch changing; (11) the mstant just after the switch changes. Find

i "-,II

. . A
also the rate of change of current through the inductor at time £ =07 [I.E.._ # J
[ ey
| S(switch) 102
® a




Cont.. o~

IARE

m
o
[
o
7

», &
7 \%
¥ ror V\°

Solution: We assume that the circuit has reached at steady state condition when the
switch was 1 position “1°. Note, at steady state the inductor acts as short circuit and
voltage across the inductor 1s zero.

At t=0"., the cwrent through and the wvoltage across the inductor are

o 10
L O0)=10710

position “ 27, current through the inductor cannot change instantaneously but this 1s not
true for the voltage across the inductor. At 7=07. one can write the following
eXPressions:

i; (07)=54 and v; (07)=— (10 + 10)x5 =—100¥F (*b" is more + ve potential than “a’
termunal). Note that the stored energy in inductor 1s dissipated in the resistors. Now, the
rate of change of current through inductor at time 7 =07 is obtained as

, di®) di(| _ -100

x10=54 and v, (07)=0V respectively. When the switch is kept in

— _100V — =—25amp./ sec.

dr |_q dr |._g 4
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Step Response of A Series RLC Circuit

i

Applyving KVL for 7> 0, = >§ '\/\]5\/\« rb’%b’\
Ri+Lﬁ+v=f"s (1) v

dt L4 ‘ = 2
But i =C s —

dt
|l By Py P B i
Ar? L df T 1.C V(f) = Vt(f) + V.S’.S‘(r)
where

v, : the transient response

in the source -tree case.

(2) has the same form as {

v, : the steady - state response
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Step Response - Series RLC Circuit

=  Comparison of the three responses with different R
value.

’2(2‘ ‘

6.324Q
/

7C=~=_._w._____

™~ 200
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Solution: We assume that the circuit has reached at steady state condition when the
switch was in position “1°. Note, at steady state the inductor acts as short circuit and
voltage across the inductor 1s zero.

At =0, the cwrent through and the wvoltage across the inductor are

10
O =100

position “2°, current through the inductor cannot change instantaneously but this is not
true for the voltage across the inductor. At 7=0". one can write the following
eXpressions:

i; (07)=54 and v; (07)=— (10 + 10)x5 =—100¥7 (‘b is more + ve potential than ‘a’
terminal). Note that the stored energy in inductor is dissipated in the resistors. Now, the
rate of change of current through inductor at time 7 =07 is obtained as

di, (f) di(H| _ -100

x10=54 and v;(07)=0FV respectively. When the switch 1s kept in

L =-100V =

=—25amp./ sec.

dt | _o dr |_» 4




DIFFERENTAIAL EQUATIONS APPROACH

Find the differential equation for the circuit below in
terms of v, and also terms of i,

i)

L +
o v
Show , i
"sfi’]=ﬂ'rf 1-,": +Rf.'*{ﬁ'¢ ti, T'?{,”= d 1‘,.": +£”L'-" + 1, e
o= ofi L = L &t L7

L ot L L

t
' 1 o i1) ] A 1
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Example

The series RLC circuit shown in Fig. 7.18 has the following parameters: C=0.04 F. Z=1 H,
R=6.i;(0) =4 A. and v(0) = -4 V. Let us determine the expression for both the current
and the capacitor voltage.

i(1) i7(0)
L +
R <_ C == vc(0)
. . _ | di
Applying Kirchhoff voltage law to the loop. IR+ -~ J: H(x)dx + 0, (0)+ L7 =0
: G
e o g 72 :
i, Bl 1 _pg AT 6L asi=0
¢  Ldt LC dr dr
Trial solution : (1) = Ke™
Characteristic equation : 24 65+25=0

—6+£+/62—100 —6+8;

2 2

5 = —3+4;




First order transient circuits

Solution to 15t order differential equation:

dx(t)

dt

waxti)= F 1)

f () = 0 — homogeneous equation
f(7) # 0 — inhomogeneous equation

dx_ (1)
dt

+ax (r)=0

x,(2) or x(f) — homogeneous or complementary solution
x,(2) — inhomogeneous or particular solution

x(8)=x,()+ x,(?)




Transient analysis of a series RL circuits oy

Follow these basic steps to analyze a circuit using Laplace techniques:

1. Develop the differential equation in the time-domain using
Kirchhoff’s laws and element equations.

2. Apply the Laplace transformation of the differential equation
to put the equation in the s-domain.

3. Algebraically solve for the solution, or response transform.

4. Apply the inverse Laplace transformation to produce the
solution to the original differential equation described in the
time-domain.
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@Here is an RL circuit that has a switch that’s been in Position A for
a long time. The switch moves to Position B at time t = 0.

) R i(t)

s B
VA V[_ ( t) L




For this circuit, you have the following KVL equation:

Ve(t) +v (t) =0
Next, formulate the element equation (or i-v characteristic) for each
device. Using Ohm’s law to describe the voltage across the resistor,
you have the following relationship:
Ve(t) =i (t)R

The inductor’s element equation is



* Substituting the element equations, v,(t) and v,(t), into the KVL
equation gives you the desired first-order differential equation

di ()
Fod g R e )
o i)

 Onto Step 2: Apply the Laplace transform to the differential
equation:

o
£\ Iiﬂﬂjgm}m

=
J_L;%—Em}rﬁ[jj[zm]:o

* The preceding equation uses the linearity property which says you
can take the Laplace transform of each term. For the first term on
the left side of the equation, you use the differentiation property:



2 000

contoo S IARE §
% &
W, &
¥ ror W

di L (£)
it

,.{i'[L }:L[sfz[s}—fu]
*This equation uses I,(s) = i (t)], and I, is the initial current flowing
through the inductor.
*The Laplace transform of the differential equation becomes
I (s)R+L[sl(s)-1,]=0

Solve for | (s):
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Numerical Problems on series RL circuits o

In the RL circuit shown in below figure the switch is in position 1
long enough to establish the steady state conditions. At t=0, the
switch is thrown to position 2. Find the expression for the resulting

current.

\ 25 Q

25V 100 V 0.02 H




In the circuit shown in figure the switch S is kept in position 1
for long period to establish the steady state condition. The
switch is then moved to position 2 at t=0. Find out the
expression for the current after switching the switch to

positi

14 Switch S
t=g 20Q

] 2f
20\ =~
T

209




Numerical Problems on series RC circuits

The switch S is moved from position 1 to 2 at t=0. Find
the voltages vR(t) and vC(t) for t>0.

+
100V 2 W
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2. Switch is moved from position 1 to 2 at t=0. Find the voltages
vR(t) and vC(t) for t>0.

100 V = —— 1uF

s
i |
'
2
|
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Transient Response of a series R-L-C circuit %.AREg

Consider a series RL circuit as shown in fig.11.1, and it is excited with a
dc voltage source C—-sV.
Applying around the closed path for,

9 d;(:) +Ri(D+v (D) =V,
R L
O AW — e ——

The current through the capacitor can be written as Substituting the
current “expression in eq.(11.1) and rearranging the terms,




Cont..

i(t)=c LD

d:r(r) o 3%®)
The above equation is a 2nd-order linear differential
equation and the parameters associated with the differential
equation are constant with time. The complete solution of
the above differential equation has two components; the
transient response and the steady state response.

Mathematically, one can write the complete solution as
V)=V, )+, () = (4 €™ +4,e%" )+ 4

LC

+v_ () =

d v (r) o (t)H}(r) & O:d-"‘,(t) %R d\;(r)+ 1 il =
. d*v (1) ) v, (1)

dt’

R 1
+¢ v (t) =0 (where a=1. b=— and c=—)
L EC
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The natural or transient response (see Appendix in Lesson-10) of
second order differential equation can be obtained from the

homogeneous equation (i.e., from force free system) that is expressed
by
s .1

a” +—a+ =0 =aa’+ba+c=0 (where a=1. b=£ and C‘=L)
L i % ) Y 4 9,

And solving the roots of this equation (11.5) on that associated with
transient part of the complete solution (eq.11.3) and they are given

below. ( w7 [ - -
LAY (_] —ae:

R Ry 1
a=l-—+ -
or W2r) rIc

where. b= E and ¢ = L
;5 IC



2 000

contoo S IARE §
% &
W, &
¥ ror W

The roots of the characteristic equation are classified in three
groups depending upon the values of the parameters, Rand of
the circuit Case-A (over damped response): That the roots are
distinct with negative real parts. Under this situation, the natural
or transient part of the complete solution is written as

v, () =4e" +4,e™



Transient analysis of a series RLC Circuit 7an:

Follow these basic steps to analyze a circuit using Laplace techniques:
1. Develop the differential equation in the time-domain using
Kirchhoff’s laws and element equations.
2. Apply the Laplace transformation of the differential equation to put
the equation in the s-domain.
3. Algebraically solve for the solution, or response transform.
4. Apply the inverse Laplace transformation to produce the solution to

the original differential equation described in the time-domain.



2 000

Cont.. % IARE &
° A
7, &
O”Fon\-\%

To get comfortable with this process, you simply need to practice
applying it to different types of circuits such as an RC (resistor-capacitor)
circuit, an RL (resistor-inductor) circuit, and an RLC (resistor-inductor-
capacitor) circuit.

Here you can see an RLC circuit in which the switch has been open for a

long time. The switch is closed at time t = 0.

+ vgft) - + v, (t) -
ANN— O
R A 7% R L o |45
Va Vaeltl— — B
[ -
R = 800 & C= 45-10° F=2.439 uF

L=1H V=5V



In this circuit, you have the following KVL equation:
Vg(t) + v (t) +v(t) =0

Next, formulate the element equation (or i-v characteristic) for each
device. Ohm’s law describes the voltage across the resistor (noting
that i(t) =i (t) because the circuit is connected in series, where I(s) =

| (s) are the Laplace transforms):
vi(t) = i(t)R
The inductor’s element equation is given by

diz(2)
dF

And the capacitor’s element equation is

v () =L

1 ¢t
v, (£) = E[Dz{r}w.fm}



Here, v(0) = V, is the initial condition, and it’s equal to 5 volts.

Substituting the element equations, vq(t), vL(t), and v,(t), into the KVL
equation gives you the following equation (with a fancy name:

the integro-differential equation):
di () 1 -
I ;ﬁ +z£{£]R+E_|-D£[T]+v{{D}—D

The next step is to apply the Laplace transform to the preceding
equation to find an /(s) that satisfies the integral-differential equation

for a given set of initial conditions:

dﬁ;f’} IR +%_I::-.E{T}¢:ET+ rfu] )

|2

#F (2] : 1 gz,
;::'I:L ;ﬁ :|+ﬁ[:{z}R]+£|:EL:(T}dT+PB:|=D




The preceding equation uses the linearity property allowing you to take
the Laplace transform of each term. For the first term on the left side of

the equation, you use the differentiation property to get the following
transform:

P
;'ﬂ = L{sl(s)-1,]

o1

This equation uses | (s) = L[i(t)], and |, is the initial current flowing
through the inductor. Because the switch is open for a long time, the
initial condition /, is equal to zero.
For the second term of the KVL equation dealing with resistor R, the
Laplace transform is simply

L[i(t)R] = I(s)R
For the third term in the KVL expression dealing with capacitor C, you
have
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*The Laplace transform of the integro-differential equation becomes

L[sf(s}—fn]m;s}m@ _g
sC 5
*Rearrange the equation and solve for I(s):
Fa
fl:E,':l _ S..'.'T - T
E-' +IS+E

*To get the time-domain solution i(t), use the following table, and notice

that the preceding equation has the form of a damping sinusoid.
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Numerical Problems on RLC Circuits
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The relaxed series RLC circuit of Fig, 6-23a is excited at t = 0 by the sinusoidal
source shown. Solve for the current i(t) for t > 0.

50 mH 0055
\ 00— —
// - ‘\ 7 \\ P
' J " 55 10° 7 \ L 5x10%
00 sin 50001(%) ' i ?ﬁz: ';2‘?_;57155@ SOMEE L
MW AW —
100 & 00

(o) (b)
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Solution Aldthough the mathematics will eventually reveal the tvpc
of response, a preliminary calculation should prove interesting. We will first
calculate R/,2I. and 1/ JI.C.

= 100 o >
— — 2 -125:z
>z > < 005 10 (6-1 a)
1 1
e —— —— — 10* (6-125b)
S L.C ~ 005 < 0.2 < 10
Since R/2I <= 1/JZX.C, the circuit is underdamped and oscillatory. Wec have
o< — 10> mepers”’ (6-126)
g — 10% rad/s (6-127)
gy — Jerg — == — 995 = 102 rad/ s (6-128)

As a result of the relatively small amount of damping,. the damped resonant
fregquency differs from the undamped resomant fregquency by only O0.52,. As a

matter of interest. the damped repetition frequency is [, — /257w — 1548 H=.
Notice that the natural damped freguency is about twice the freguency of the
excitation. Again, we point out that these preliminaryv calculations arc not

absolutely necessary as the results will “*fall cut™ of the math that follows.
The transformed circuit is shown in Fig. 6-23b. Using the impedance con-

cept. we have
S5 10O~

Z(s) — 0.05s + 100 —+
5
OSs= : <
__()Os +1()(£5+5><10 (6-129)
__s= 4+ 2000s + 10*
o 20s
T he current is
7 (=) 107 s
I(s)y — = - - -130
=== (= + 25 = 10°)(s= + 2000s + 109 =120
T he poles due to the guadratic with three terms arc
{i‘ — — 103 &+ ;995 =< 103 (6-131)

which agrees with cour preliminary calculations.
We obtain the final desired result by finding the inverse transform of Fi(s).
Since one gquadratic has imaginary roots and the other has complex roots, we
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may invert the function by applying the special formula of Section 5-7 indivi-
dually to the two quadratic factors. The reader i1s invited to show that the
result 1s

i(1) = 0.133¢ 199%in (9.95 x 10t - 99.517)
4+ 0.132 sin (50001 + 82.41°)

The response is seen to consist of a damped sinusoidal term whose frequency
is the natural damped resonant frequency of the circuit, and an undamped
sinusoid whose frequency 1s that of the excitation. The former term is transient
in nature, whereas the latter term is the steady-state response. After the transient
disappears, the steady-state or forced response is

(6-132)

i(t) = 0.132 sin (5000t + 82.41°) (6-133)
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LOCUS DIAGRAMS

Locus diagrams are the graphical representations of the way
in which the response of electrical circuits vary, when one or
more parameters are continuously changing. They help us to
study the way in which current / power factor vary, when
voltage is kept constant, Voltage / power factor vary, when
current is kept constant, when one of the parameters of the
circuit (whether series or parallel) is varied.

The Locus diagrams yield such important information as | __,,
lin » Vinax Vinin & the power factor's at which they occur. In
some parallel circuits, they will also indicate whether or not,
a condition for response is possible.



LOCUS OF SERIES RL CIRCUIT

» Consider an R — X series circuit as shown below, ac
which a constant voltage is applied. By varying R or
range of currents and potential differences can be obt

» R can be varied by the rheostat adjustment and X, ca
varied by using a variable inductor or by applying a variz
frequency source.

> When the variations are uniform and lie between 0 and
infinity, the resulting locus diagrams are circles

Case 1:when R is varied




LOCUS OF SERIES RL CIRCUIT

When R =0, the current is maximum and is given by
| = and lagsV by 90°

max

Power factor is zero

When R = infinity, the current is minimum and is given
byl . =0, and power factor=1

For any other values of R’, the current lags the voltage
by an angle tan

min

The general expression for current is

The is the equation of a circle in the polar form, where
is the diameter of the circle.

The Locus diagram of current i.e the way in which the
current varies in the circuit, as R is varied from zero to
infinity is shown in below which is_a semi -circle.



LOCUS OF SERIES RL CIRCUIT CURRENT WITH R VARIED %




LOCUS OF SERIES RL CIRCUIT WITH X, IS VARIED %%




RC SERIES CIRCUIT

Case 1:when 'R’ is varied




LOCUS OF SERIES RL CIRCUIT WITH X IS VARIED %

Case 2: Where X, Is varied




LOCUS OF CURRENT OF RLC SERIES CIRCUIT %

» casel: whenris varied and the other three parameters are
constant, the locus diagram of current shown below

=] M. -'fc
Sy p— YV
|

I.!'I"‘\.

(=Y
f—

L2

//
// |
i~
!
’ i
X === | v
N X|_> XE
2R




LOCUS OF CURRENT OF RLC SERIES CIRCUIT %

Case 2:When X|is varied

Case 3 : When X is varied

}{c}}[l
m -
X, 2o 20 L
1
'\
Il"\
<
\M'\-\-\_\_L_\____ }[I: }:l
X, =0




LOCUS DIAGRAMS OF PARALLEL CIRCUITS

Case 1:R & X, in parallel R Varying




LOCUS DIAGRAMS OF PARALLEL CIRCUITS

Case 2: R-X. in parallel with R & ‘R’ varying.

c c

A
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)
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|
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NETWORK FUNCTIONS

A network function is the Laplace transform of an
impulse response. Its format is a ratio of two polynomials
of the complex frequencies. Consider the general two-
port network shown in Figure 2.2a. The terminal voltages
and currents of the two-port can be related by two classes
of network functions, namely, the driving point functions
and the transfer functions.

IIN ,O IN
| + ——

xe
Vin |75} Vin

— O— }_—o— -O

(a) A two port network. (b) Measuring input impedance.

- p—r)
V’NE VO
‘ —o0 —

(c) Measuring voltage gain.




POSSIBLE FORMS OF TRANSFER FUNCTIONS . Ture

» The voltage transfer function, which is a ratio of one voltage
to another voltage.

> The current transfer function, which is a ratio of one current
to another current.

» The transfer impedance function, which is the ratio of a
voltage to a current. '

> The transfer admittance function, which is the ratio of a
current to a voltage

The voltage transfer functions are defined with the output

Vols)
Vinls)

voltage gain =

Vin(s)
Vols)

voltage loss (attenuation) =



PROPERTIES OF ALL NETWORK FUNCTIONS

The network functions of all passive networks and all stable active
Must be rational functions in s with real coefficients.

» May not have poles in the right half s plane.
» May not have multiple poles on the jw axis.




PROPERTIES OF DRIVING POINT FUNCTIONS

These conditions are required to satisfy to be positive realness

> Y(s) must be a rational function in s with real coefficients,
i.e., the coefficients of the numerator and denominator
polynomials is real and positive.

» The poles and zeros of Y(s) have either negative or zero real
parts, i.e., Y(s) not have poles or zeros in the right half s plane.

Poles of Y(s) on the imaginary axis must be simple and their
residues must be real and positive, i.e., Y(s) not has multiple
poles or zeros on the jw axis. The same statement applies to
the poles of I/Y(s).



PROPERTIES OF DRIVING POINT FUNCTIONS

» The degrees of the numerator and denominator polynomials
in Y(s) differ at most by 1. Thus the number of finite poles
and finite zeros of Y(s) differ at most by 1.

» The terms of lowest degree in the numerator and
denominator polynomials of Y(s) differ in degree at most by 1.
So Y(s) has neither multiple poles nor zeros at the origin.

> There be no missing terms in numerator and denominator
polynomials unless all even or all odd terms are missing.
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SYSTEM POLES AND ZEROS

It is often convenient to factor the polynomials in the
numerator and denominator, and to write the transfer
function in terms of those factors

aplsS — Zy)S — 23) -+ (8 — Z,)
bm(s - pl)(s - p2) et (S - pm)

H(s) =

Where the numerator and denominator polynomials, N(s)
and D(s), have real coefficients defined by the system’s
differential equation and K= b, /a,. As written in Eq. (2) the
z;'s are the roots of the equation N(s) =0

and are defined to be the system zeros, and the p.’s are the
roots of the equation D(s) =0



POLE-ZERO PLOT

» The sense that they allow reconstruction of the input/output
differential equation. In general, the poles and zeros of a
transfer function may be complex, and the system dynamics
may be represented graphically by plotting their locations on
the complex s-plane, whose axes represent the real and
imaginary parts of the complex variable s. Such plots are
known as pole-zero plots.

» It is usual to mark a zero location by a circle (°) and a pole
location a cross (x). The location of the poles and zeros
provide qualitative insights into the response characteristics
of a system.



EXAMPLE OF POLE-ZERO PLOT

A 5(6)

X — pole

O — zero X _______________ P s-plane
O—X 0 > N(s)
-2 1
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TWO PORT NETWORK

It is a pair of two terminal electrical network in which,
current enters through one terminal and leaves through
another terminal of each port. Two port network
representation is shown in the following figure.

+ Two terminal -+

Linear Network

Here, one pair of terminals, 1 & 1’ represents one port, which
is called as portl and the other pair of terminals, 2 & 2’
represents another port, which is called as port2.



TWO PORT NETWORK

»There are four variables V;, V,, I, and |, in a two port network
as shown in the figure.

» Out of which, we can choose two variables as independent and
another two variables as dependent. So, we will get six possible
pairs of equations.

»These equations represent the dependent variables in terms of
independent variables.

»The coefficients of independent variables are called as
parameters. So, each pair of equations will give a set of four
parameters.



IMPEDANCE PARAMETERS (2)

/ parameters are also known as impedance parameters.
When we use Z parameter for analyzing two part network,
the voltages are represented as the function of currents.

V= fl(II:IE) and Vs Zfz(InIz}

ITwo Port Networksl

I Z parameters: |

| z, ., is the impedance seen looking into port 1

. & |
11 7, 1,=0 when port 2 is open.
ry Zz,, is a transfer impedance. Itis the ratio of the
ZE2T I, | 7. =0 voltage at port 1 to the current at port 2 when
1 port 1 is open.
PT— > I z,, is a transfer impedance. Itis the ratio of the
=1 4y 7,=0 voltage at port 2 to the current at port 1 when
port 2 is open.
L 3
= _2Z z,, is the impedance seen looking into port 2

= | o
2 7y when port 1 is open.

2>




IMPEDANCE PARAMETERS (2)

The voltages are represented as

Vi=Zyli 4 Ziply and Vy = 2y I} + Zp ]

[Vl

Lz &l




PROBLEMS

Problem: Find the z parameters for network shown in figure

100 100

200




ADMITTANCE PARAMETERS (Y)

» We can represent current in terms of voltage for admittance
parameters of a two port network. Then we will represent the

current voltage relations as.
I =Y Vi + Y Vs

L =YuVi+Ynl

>  This can also be represented in matrix form

[L Y le] [Vl]
LI [Yu YullW




2 000

ADMITTANCE PARAMETERS (Y) %

Here, Y11, Y12, Y21 and Y22 are admittance parameter.
Sometimes these are called as Y parameters. We can determine
the values of the parameters of a particular two port network by
making short-circuited output port and input port alternatively
as follows. First let us apply current source of I1 at input port
keeping the output port short circuited as shown below.

1 .Z
¢
+
s Two A
'. I V -
\h_“#) ! ! Part Va0 | |1z
Network




ADMITTANCE PARAMETERS (Y) %

7

N 1 ¥1; is the admittanceseen lookinginto port 1
B e v, = when port 2 is shorted.
I 1 V12 is a transfer admittance. Itis the ratio of the
Yi2= r-z— 1 — current at port 1 to the voltage at port 2 when
1 port 1 is shorted.
= Zy Y,; is a transfer impedance. It is the ratio of the
I |
1 | E5=0 current at port 2 to the voltage at port 1 when
port 2 is shorted.
G 4
Fan= r'2‘ I — ¥», is the admittance seen looking into port 2
B 1= when port 1 is shorted.




NUMERICAL PROBLEMS




HYBRID PARAMETERS OR h PARAMETERS ;e

» Hybrid parameters are also referred as h parameters. These are
referred as hybrid because, here Z parameters, Y parameters,
voltage ratio, current ratio, all are used to represent the relation
between voltage and current in a two port network.The relations

of voltages and current in hybrid parameters are represented as

Vi =k 0y + By Vo
Iy = hoy Iy + has Vo

This can be represented in matrix form as,

I:E"le| _ [hu hm] [L}
IE h‘ﬁl h’EZ LE
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DETERMINING h PARAMETERS %

Let us short circuit the output port of a two port network as

shown below
{ I I: 5

Two
vi Port Ve=0

Metwork

1 2
Now, ratio of input voltage to input current, at short circuited
output port, is

Y
I

= hii
Vo =10

This is referred as short circuit input impedance. Now, the ratio of
the output current to input current at short circuited output
port, is
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> This is called short circuit current gain of the network. Now, let
us open circuit the port 1. At that condition, there will be no
input current (I11=0) but open circuit voltage V1 appears across
the port 1, as shown below

=0 Iz
— - 2

1‘
+ I
Twao -
W1 ort 2

g ]

V|
Valr, =0
» This is referred as reverse voltage gain because, this is the ratio

of input voltage to output voltage of the network, but voltage
gain is defined as ratio of output voltage to input voltage of a
network. Now

= hi2 = open circuit reverse voltage gain

E :hil
Wil =0
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ABCD PARAMETERS

Concerning the equivalent port representations of networks
we’ve seen in this course:

/ parameters are useful for series connected networks.

Y parameters are useful for parallel connected networks.
parameters are  useful for describing interaction of
voltage and current waves with a network.

There is another set of network parameters particularly suited
for cascading two-port networks. This set is called the ABCD
matrix or, equivalently, the transmission matrix



ABCD PARAMETERS




ABCD PARAMETERS

The ABCD parameters are defined as follows:

‘ 2 I 12—0 open circuit reverse voltage transfer

12 | v 2—0= short circuit reverse transfer
impedance

| B} I
.~ 2 12=0 open circuit reverse transfer

admittance

I

o= — |
—Io IVa=0

short circuit reverse current

transfer ratio.




NUMERICAL PROBLEMS

Derive the ABCD Parameters for the T network




PROBLEMS ON TWO PORT NETWORKS

® Find the z parameters for network shown in figure

10 10 10 10
——\\ AN AN ———
+ l +
() w = = T v=¢
—A A AW A -
182 1582 142 1£2

[ 2.733 ﬂ.ﬁﬁ-ﬁﬁ?]
Zl=

0.06667 2.733




PROBLEMS ON TWO PORT NETWORKS

Find the Y parameters for network shown in figure

40
NN
20 I:
W T
Vi Ct) » § ) "h"z-'
(@) i}
Thus,
1.5 05 ]5
YI=| 35 .15

m =

2 IARE 3

% \;
& 5




PROBLEMS ON TWO PORT NETWORKS %%

Find the transmission parameters for network shown in figure

J1% 53
AP
— 1S K — 0 g2
T T
= 11 11 =
25 LR
(= ==

0.7692 + j0.3461 -6.923+ j253850)

m-[l.m+j'ﬂ.ﬂ135 0.5385 + j0.6923




CONDITION FOR RECIPROCITY

- Properties:

1) Reciprocity

i

The two-port network is reciprocal if
the transmission characteristics are
the same in both directions (i.e. S,;
= S42)-

It is a property of passive circuits
(circuits with no active devices or
ferrites) that they form reciprocal
networks.

A network is reciprocal if it is equal
to its transpose. Stated
mathematically, for a reciprocal
network

[s]=[sT. Condition for Reciprocity: ©42= S54

¢
|:‘9ll SI2:| =|:Sll s2l:|
S21 s22 Sl2 s22

port port
1 2
g e ——— S ' '
v, Ww : [S ] 1 AN\ \/2'
\/I' “ N/~ _L : V2 "4\/\/\
Zo Zo

Bs, inspection =¥ the netWork i<
Symmetricel > FetiPloal|




CONDITION FOR SYMMETRY

A network is symmetrical if its input impedance is equal to its output
impedance. Most often, but not necessarily, symmetrical networks are
also physically symmetrical

Symmetry . For the network to be symmetrical. the voltage-to-current
-atio at one port should be the same as the voltage-to-current ratio at the
other port with one of the port short circuited.

Condition for symmetry I, =Y,, V;.;'}}lz vV, |
=YV, +Y)V,

When the output port is short circuited, i.e., V, = 0.] When the input port is short circuited, i.e.. V, = 0.

From the Y-parameter equation From the Y-parameter equation,
L=Y,V, v’z""zz v,
Vv, 1 L/ 1
— — T e s
5L, Ty, I Y
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TWO PORT PARAMETER CONVERSIONS

convert one set of two-port network parameters into other set
of two port network parameter inversion is known as two port
network parameters conversion or simply, two-port parameters

conversion.

Step 1 - Write the equations of a two port network in terms of
desired parameters

Step 2 - Write the equations of a two port network in terms of
given parameters.

Step 3 - Re-arrange the equations of Step2 in such a way that
they should be similar to the equations of Step1.

Step 4 - By equating the similar equations of Step1 and Step3,
we will get the desired parameters in terms of given parameters.
We can represent these parameters in matrix form.



TWO PORT PARAMETER CONVERSIONS %

»

Z parameters to T parameters

Here, we have to represent T parameters in terms of Z parameters. So, 1n this case T parameters are
the desired parameters and Z parameters are the given parameters.

Step 1 — We know that, the following set of two equations, which represents a two port network in
terms of T parameters.

V1 = AVe — Bl
Iy =CVa — D Is

Step 2 — We know that the following set of two equations, which represents a two port network in
terms of Z parameters.

Vi = Znl1 + Z1212
Vo = Zoq171 + Zoola

Step 3 — We can modify the above equation as

= Vo — Zosls = Zay 1y

1 Z.
= L= (-2~ ()5



TWO PORT PARAMETER CONVERSIONS

Step 4 — The above equation 1s 1in the form of I; = C'Vo — DIs. Here,
1

—
FaAs
ot

D - =222
A

Step 5 — Substitute I3 value of Step 3 in V3 equation of Step 2.
1 Z
Vi=Zu{l=—1>1V= — [E]Iz} + F121s
AT Za1

Zi1 L1 E22 — L1280

) L2

oy
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® Interconnections of two-port networks

Two-port networks may be interconnected in various
configurations, such as series, parallel, cascade, series-parallel,
and parallel-series connections. For each configuration a certain
set of parameters may be more useful than others to describe
the network.

® Series connection

i '
! '
+ O T : - = : 41—04-
1 : o ; : 2
: _ Iy Z,] 2a_ :
| '
: :
1
' Ty Loy, '
: + N, ¥ :
' Vi Vo -
Z ]
- O : — [ D" — : o -
| '




® Series connection of two two-port networks for network N

Vla o lea ZlZa Ila
Va, Zora ZLaa || l2a

(10.63)V1, = Zaialia + Zazsl2a

(10-63)V2a o ZZlaIIa + Z22al2a'
Vis Linp Ly || i

Vap g Zzzb_ Iy

(10.65)Vay = Zyyplip + Lyl




network can be written as
V, =2Z,1) +24,,1,
Vo, =25zl + 23515,

Z31l =Zjyyat+ Ziis
4,2 = 2Zy9a 4 L5
Z21 =Zoya+ 2o,
L22 =ZLozgt+ Zssy,

(] = [Z4] + [Z].




PARALLEL CONNECTION

Parallel connection of two two-port networks N a and N b. The
resultant of two admittances connected in parallelisY1+Y 2. So
in parallel connection, the parameters are Y-parameters.

; L I :
+ O —— —317 -0+
T T T i
11 1 N. 1 12
Vv, . Via Vaa : Va
-0 - — [¥al — —t O~
] 1
! 1
1 1
! 1
] 1
: Lip Loy ‘
| Lyl <> :
] + Nb + 1
. v Voo :
; % [Ys) - ‘
] 1
] 1
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There 1s another set of network parameters particularly suited
for cascading two-port networks. This set 1s called the ABCD
matrix or, equivalently, the transmission matrix.

Consider this two-port network (Fig. 4.11a):

Unlike in the definition used for Z and Y parameters, notice that
I, 1s directed away from the port. This 1s an important point and
we’ll discover the reason for it shortly.
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It 1s easy to show that

| [ 8
S S |
AN
2 1r,=0 2 liy=0
— 1 - 1
>
Vz Io=0 IE P =0

Note that not all of these parameters have the same units.

To see this, consider the following two-port networks:

I, ! I, I

o
+

L

[Aa 3.] —— +o——

. r
C“l Dl ! . P}

- "
A, B,
< Dy

In matrix form

v, 4 B | [r]
= - (2)
_11_ _CI D‘l Iz_
28 I S Bz} [V]
and = . (3)
|:j'2'_ _Cz Dz Ia

When these two-ports are cascaded,
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it is apparent that V, =V, and I,' =I,. (The latter is the reason
for assuming /, out of the port.) Consequently, substituting (3)
into (2) yields

e sile slle) @

We can consider the matrix-matrix product in this E-‘E[llﬂtlﬂll as
describing the cascade of the two networks.
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INTRODUCTION TO FILTERS

Filters are essential building blocks in many systems,
particularly in  communication and instrumentation
systems. A filter passes one band of frequencies while
rejecting another.

Typically implemented in one of three technologies: passive

RLC filters, active RC filters and switched capacitor filters.
Crystal and SAW filters are normally used at very high
frequencies.

Passive filters work well at high frequencies, however, at low
frequencies the required inductors are large, bulky and non-
ideal.



INTRODUCTION TO FILTERS

Furthermore, inductors are difficult to fabricate in monolithic
from and are incompatible with many modern assembly
systems. Active RC filters utilize op- amps together with
resistors and capacitors and are fabricated using discrete,
thick film and thin-film technologies.

The performance of these filters is limited by the performance
of the op-amps (e.g., frequency response, bandwidth, noise,
offsets, etc.). Switched-capacitor filters are monolithic filters
which typically offer the best performance in the term of cost.

Fabricated using capacitors, switched and op-amps. Generally

poorer performance compared to passive LC or active RC
filters.



Filter
cireuit

The filter transfer function is given as follows:

T(jw)=T(s)=

Yols)

Vils)

The magnitude of the transmission is often expressed in dB
in terms of gain function: G(w)dB=20log(|T(jw)|

Or, alternatively, in terms of the attenuation function:
A(w)dB=-20log(| T(jw)|




CLASSIFICATION OF FILTERS

A filter shapes the frequency spectrum of the input signal,
according to the magnitude of the transfer function. The
phase characteristics of the signal are also modified as it
passes through the filter. Filters can be classified into a
number of categories based on which frequency bands are
passes through and which frequency bands are stopped.
Figures below show ideal responses of various filters.

AA

Passband | Stopband Stopband | Passband

»

k J f £




—>
BW

Passband | Stopband
Stwopband | Passband

> >
rl fl f fi fz f

BANDSTOP FILTER RESPONSE

BANDPASS FILTER RESPONSE

Classification of Pass band and Stop band:

|deal filters could not be realized using electrical circuits,
therefore the actual response of the filter is not a brick
wall response as shown above but increases or decreases
with a roll-off factor. Realistic transmission characteristics
for a low pass filter are shown below



FILTERS

Frequency-selective or filter circuits pass to the output only
those input signals that are in a desired range of frequencies
(called pass band).

The amplitude of signals outside this range of frequencies

(called stop band) is reduced (ideally reduced to zero).

Typically in these circuits, the input and output currents are
kept to a small valueand as such, the current transfer function
is not an important parameter.

The main parameter is the voltage transfer function in the
frequency domain, Hv (jw) = Vo/Vi. As Hv (jw) is complex
number, it has both a magnitude and a phase, filters in
general introduce a phase difference between input and

output signals.
To minimize the number of subscripts, hereafter, we will drop

subscript v of Hv. Furthermore, we concentrate on the ||open-
loop|| transfer functions, Hvo, and denote this simply by H(jw).



Low-Pass Filters:

An ideal low-pass filter’s transfer function is shown. The
frequency between the

pass- and-stop bands is called the cut-off frequency (wc).
All of the signals with frequencies below wc are transmitted
and all other signals are stopped.

Band-pass filters:

A band pass filter allows siﬁnals with a range of frequencies
#pass band) to pass through and attenuates signals with
requencies outside this range.



CONSTANT K -LOW PASS FILTER

THE LOW PASS CONSTANT-K FILTER

The constant-k LPF can have the configurations [rom Figure I L

‘The cutofl frequency is given by: °"W"I'm"'°
2 C WENY)
0, =
T I 1

Generally the Nilter works on a constant load (Rg). To desin

the [1lter, Ry and e; are gven. The matching can not be done at any
[requency therefore we have to choose the frequency at which the filier will match. Most of the imes, LPF maiches
ndc.(@=0). The elements of the filler are given by:

R, 2

= — C:—

(t o,k

Figure




CONSTANT K—-HIGH PASS FILTER

(@) (b)




DESIGN OF CONSTANT K-HIGH PASS FILTER

THE HIGH PASS CONSTANT-K FILTER

The possible configurations of the constant-k HPF are shown oo C

The cutolT requency 15 given by: 00—

|
t) W L IRE

[ we are mierestng i malching af very high [requency
(&= m),then L and Care given by: Figure

R
[=5 [ RS
2o)

R




m-DERIVED LOW PASS FILTER

T
P 2 ik
T B
mc — T
1 o molfl —— k. — vl 2
~dam C
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mnrer I = 12
[1 — e )m,C’
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af — 4
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m-DERIVED HIGH PASS FILTER:

Am_ -~ 2Um




BAND PASS FILTER

-
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Frequency Response

Frequency Response wide bandpass filter




DESIGN OF BAND PASS FILTER

THE BAND PASS CONSTANT-K FILTER
The constant-k BPF configurations are shown in Figure

L2 .7C1 JC; L2

C] I L;
Figure

[T the cutoff frequencies (o and wy) and the load (R,) are given, then the elements of the [ilter are given by:

¢

Je 2Rs L _(ws-wi)R
| £33 )
' (0 — J 2('06
. =)
Cl= s ; = 2
2R - (o-a;)R




BAND STOP FILTER CHARACTERISTICS

Band Stop
Response

Pass Band

oo
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-2dB |— — — —
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