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UNIT - I

REAL TIME ENVIRONMENT



UNIT - I 
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REAL-TIME ENVIRONMENT 

Real-time computer system requirements 
classification of real time systems 
simplicity, global time
internal and external clock synchronization
real time model. Real time communication 
temporal relations, dependability
power and energy awareness
real time communication
event triggered
rate constrained 
time triggered. 



What is an Embedded system?
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What is a real-time system? 
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 A real-time system is any information processing system which has to 
respond to externally generated input stimuli within a finite and 
specified period 

–the correctness depends not only on the logical result but also the 
time it was delivered 
–failure to respond is as bad as the wrong response!

 The computer is a component in a larger engineering system => 
EMBEDDED COMPUTER SYSTEM 99% of all processors are for the 
embedded systems market 



Terminology 
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• Hard real-time — systems where it is absolutely imperative that
responses occur within the required deadline. E.g. Flight control
systems.

• Soft real-time — systems where deadlines are important but which
will still function correctly if deadlines are occasionally missed. E.g.
Data acquisition system.

• Real real-time — systems which are hard real-time and which the
response times are very short. E.g. Missile guidance system.

• Firm real-time — systems which are soft real-time but in which there
is no benefit from late delivery of service.

A single system may have all hard, soft and real real-time subsystems
In reality many systems will have a cost function associated with
missing each deadline.



Characteristics of a RTS 

7

• Large and complex — vary from a few hundred lines of assembler or C 
to 20 million lines of Ada estimated for the Space Station Freedom 

• Concurrent control of separate system components — devices operate 
in parallel in the real-world; better to model this parallelism by 
concurrent entities in the program 

• Facilities to interact with special purpose hardware — need to be able 
to program devices in a reliable and abstract way 



Characteristics of a RTS cont……
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 Extreme reliability and safe — embedded systems typically control 
the environment in which they operate; failure to control can result in 
loss of life, damage to environment or economic loss 

 Guaranteed response times — we need to be able to predict with 
confidence the worst case response times for systems; efficiency is 
important but predictability is essential 
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Embedded computing systems are becoming pervasive in our  
society (more than 109 units/year):

 Robotics

 Flight control systems

 Plant control

 Automotive

 Consumer electronics

 Multimedia systems

 Sensor/Actor



Criticality
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QoS management Safety critical

hard

High performance

firm

Timing contraints



Common features 
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 In these diversified domains some shared features can be identified:

Dedicated function (vs general-purpose computers) 

Reactive / Interactive 

Real-time 

Constraints on several metrics: 
cost, power, performance, noise, weight, size, flexibility, maintainabilit
y, correctness, safety, time-to-market 



Embedded systems overview 
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Embedded computing systems
Computing systems embedded within

electronic devices

Hard to define. Nearly any computing system
other than a desktop computer

Billions of units produced yearly, versus
millions of desktop units

Perhaps 50 per household and per
automobile

Computers are in here...

and here...

and even here...

Lots more of 

these,  though they 

cost a lot  less each.
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A “short list” of embedded systems

And the list
goes on and on

Anti-lock brakes  
Auto-focus cameras

Modems
MPEG decoders
Network cards  
Network  
switches/routers
On-board navigation  
Pagers
Photocopiers
Point-of-sale systems
Portable video games
Printers
Satellite phones  
Scanners
Smart  
ovens/dishwashers  
Speech recognizers  
Stereo systems  
Teleconferencing  
systems  
Televisions  
Temperature  
controllers
Theft tracking systems  
TV set-top boxes
VCR’s, DVD players
Video game consoles

Automatic teller  
machines
Automatic toll systems  
Automatic transmission  
Avionic systems  
Battery chargers  
Camcorders
Cell phones
Cell-phone base  
stations  
Cordless phones  
Cruise control
Curbside check-in  
systems
Digital cameras  
Disk drives
Electronic card readers
Electronic instruments
Electronic toys/games
Factory control
Fax machines  
Fingerprint identifiers  
Home security systems  
Life-support systems



Common characteristics of Embedded systems 
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Some common characteristics of embedded systems 

Single-functioned 
–Executes a single program, repeatedly 

Tightly-constrained 
–Low cost, low power, small, fast, etc. 

Reactive and real-time 
–Continually reacts to changes in the system’s environment 
–Must compute certain results in real-time without delay 



An embedded system example – Digital camera 
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Single-functioned -- always a digital camera 
Tightly-constrained -- Low cost, low power, small, fast 
Reactive and real-time -- only to a small extent 



What is real-time?
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What is real-time? Is there any other kind? 

A real-time computer system is a computer system where the 
correctness of the system behavior depends not only on the logical 
results of the computations, but also on the physical time when these 
results are produced. 

By system behavior we mean the sequence of outputs in time of a 
system. 



Real-time means reactive 
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A real-time computer system must react to stimuli from its 
environment 

The instant when a result must be produced is called a deadline.

 If a result has utility even after the deadline has passed, the 
deadline is classified as soft, otherwise it is firm.

 If severe consequences could result if a firm deadline is 
missed, the deadline is called hard. 

Example: Consider a traffic signal at a road before a railway
crossing. If the traffic signal does not change to red before the train
arrives, an accident could result.



Reliability 
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• The Reliability R(t) of a system is the probability that a system will
provide the specified service until time t, given that the system was
operational at the beginning (t-t0).

• The probability that a system will fail in a given interval of time is
expressed by the failure rate, measured in FITs (Failure In Time).

• A failure rate of 1 FIT means that the mean time to a failure (MTTF) of
a device is 10^9 h, i.e., one failure occurs in about 115,000 years.

• If a system has a constant failure rate of λ failures/h, then the reliability
at time t is given by,

R(t)= exp(-λ(t-to)) 
MTTF = 1/λ 



Computer System Organization 
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Computer-system operation 
• One or more CPUs, device controllers connect through common bus 

providing access to shared memory 
• Concurrent execution of CPUs and devices competing for memory 

cycles 



Distributed Systems 
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• Computation is distributed among several processors. In contrast to
tightly-coupled systems, the processors do not share a clock or
memory. Each has its own local memory.

• Communication is via a network. These systems are termed loosely-
coupled or distributed systems. The processors vary in size and
function and are called nodes.

Advantages of distributed systems:
• Reliability: If one node fails, the remaining nodes can continue

operating. So by building enough redundancy, the system will not fail if
one or more nodes fail (e.g. redundant web servers).

• Computation speedup: Computation can be distributed among various
nodes to run concurrently (e.g. load balanced web servers).



Distributed Systems (contd.) 
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• Resource Sharing: Software, data, and hardware resources can be
shared. E.g. data files in node A can be accessed by a user at node
B. Files can be printed at a shared laser printer.

• Communication: Processes at various nodes can exchange
information.



Special Purpose Systems
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WHEN IS A COMPUTER SYSTEM REAL-TIME? 
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• A real-time computer system is a computer system in which the 
correctness of the system behavior depends not only on the logical 
results of the computations, but also on the physical instant at which 
these results are produced. 

• A real-time computer system is always part of a larger system–this 
larger system is called a real-time system. 

• A real-time system changes its state as a function of physical time, 
e.g., a chemical reaction continues to change its state even after its 
controlling computer system has stopped. 

• It is reasonable to decompose a real-time system into a set of sub-
systems called clusters. 



Real- Time system cont…..
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• We refer to the
controlled object and
the operator collectively
as the environment of
the real-time computer
system.

• If the real-time
computer system is
distributed, it consists
of a set of computer)
nodes interconnected
by a real-time
communication
network



Real- Time system cont…..
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• The interface between the human operator and the real-time 
computer system is called the man-machine interface, and the 
interface between the controlled object and the real-time computer 
system is called the instrumentation interface. 

• The man-machine interface consists of input devices (e.g., keyboard) 
and output devices (e.g., display) that interface to the human operator. 

• The instrumentation interface consists of the sensors and actuators 
that transform the physical signals (e.g., voltages, currents) in the 
controlled object into a digital form and vice versa. 

• A node with an instrumentation interface is called an interface node. 



Real- Time system cont…..
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• A real-time computer system must react to stimuli from the controlled 
object (or the operator) within time intervals dictated by its 
environment. 

• The instant at which a result must be produced is called a deadline. If a 
result has utility even after the deadline has passed, the deadline is 
classified as soft, otherwise it is firm. If a catastrophe could result if a 
firm deadline is missed, the deadline is called hard. 



Real- Time system cont…..
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Consider a railway crossing a road with a traffic signal.

• If the traffic signal does not change to "red" before the train arrives, a
catastrophe could result.

• A real-time computer system that must meet at least one hard
deadline is called a hard real-time Computer system or a safety-critical
real-time computer system.

• If no hard real-time deadline exists, then the system is called a soft
real-time computer system.



Real- Time system cont…..
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• The design of a hard real-time system is fundamentally different from 
the design of a soft real-time system. 

• While a hard real-time computer system must sustain a guaranteed 
temporal behavior under all specified load and fault conditions, it is 
permissible for a soft real-time computer system to miss a deadline 
occasionally. 

FUNCTIONAL REQUIREMENTS 

• The functional requirements of real-time systems are concerned with 
the functions that a real-time computer system must perform. 

• They are grouped into data collection requirements, direct digital 
control requirements, and man-machine interaction requirements. 



Data Collection 
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• A controlled object, e.g., a car or an industrial plant, changes its state 
as a function of time.

• If we freeze time, we can describe the current state of the controlled 
object by recording the values of its state variables at that moment. 

• Possible state variables of a controlled object "car" are the position of 
the car, the speed of the car, the position of switches on the dash 
board, and the position of a piston in a cylinder. 

• We are normally not interested in all state variables, but only in the 
subset of state variables that is significant for our purpose. 

• A significant state variable is called a real-time (RT) entity. 



Data Collection cont..

30

• Every RT entity is in the sphere of control (SOC) of a subsystem, i.e., it 
belongs to a subsystem that has the authority to change the value of 
this RT entity. 

• Outside its sphere of control, the value of an RT entity can be 
observed, but cannot be modified. 

• For example, the current position of a piston in a cylinder of the
engine of a controlled car object is in the sphere of control of the car.
Outside the car, the current position of the piston can only be
observed.



Data Collection cont….
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• The first functional requirement of a real-time computer system is the 
observation of the RT entities in a controlled object and the collection 
of these observations. 

• An observation of an RT entity is represented by a real-time (RT) image 
in the computer system. 

• Since the state of the controlled object is a function of real time, a 
given RT image is only temporally accurate for a limited time interval. 

• The length of this time interval depends on the dynamics of the 
controlled object. 

• If the state of the controlled object changes very quickly, the 
corresponding RT image has a very short accuracy interval. 



Temporal accuracy of the traffic light

32

Example: Consider the example of Figure 1.2, where a car enters an intersection
controlled by a traffic light. How long is the observation "the traffic light is green"
temporally accurate? If the information "the traffic light is green" is used outside its
accuracy interval, i.e., a car enters the intersection after the traffic light has switched
to red, a catastrophe may occur. In this example, an upper bound for the accuracy
interval is given by the duration of the yellow phase of the traffic light.



Data Collection 
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• The set of all temporally accurate real-time images of the controlled
object is called the real-time database.

• The real-time database must be updated whenever an RT entity
changes its value.

• These updates can be performed periodically, triggered by the
progression of the real-time clock by a fixed period ( time-triggered
(TT) observation ), or immediately after a change of state, which
constitutes an event, occurs in the RT entity ( event-triggered (ET)
observation ).



Signal Conditioning 
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• A physical sensor, like a thermocouple, produces a raw data element
(e.g., a voltage). Often, a sequence of raw data elements is collected
and an averaging algorithm is applied to reduce the measurement
error.

• In the next step the raw data must be calibrated and transformed to
standard measurement units. The term signal conditioning is used to
refer to all the processing steps that are necessary to obtain
meaningful measured data of an RT entity from the raw sensor data.

• After signal conditioning, the measured data must be checked for
plausibility and related to other measured data to detect a possible
fault of the sensor.

• A data element that is judged to be a correct RT image of the
corresponding RT entity is called an agreed data element.



Historical background
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Real time Systems
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Real time Systems
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Elements of Real time systems
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Elements of a computer control system
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Overall structure of RT Systems
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What is a Real Time system?
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What is a Real Time system? Cont…..
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Classification of RTSs
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Classification of RTSs cont….
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Classification of RTSs cont…….
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Classification of RTSs cont…….

46



Classification of Real time systems
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Classification of Real time systems cont……
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Classification of programs
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Real Time programs
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Characteristics of a RTS
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Global Time 
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1. The notions of causal order, temporal order, and delivery order and 
their interrelationships are elaborated. 

2. The parameters that characterize the behavior and the quality of a 
digital clock are investigated. The positivist tradition by introducing 
an omniscient external observer with an absolute reference clock 
that can generate precise timestamps for all relevant events. 

3. These absolute timestamps are used to reason about the precision 
and accuracy of a global time base, and to expose the fundamental 
limits of time measurement in a distributed real-time system. 

4. The idea of a sparse time base is introduced to establish a consistent 
view of the order of computer-generated events in a distributed 
real-time system without having to execute an agreement protocol. 



TIME AND ORDER
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• The notion of time is fundamental to our existence. We can reflect on 
past events and on possible future events, and thus reason about 
events in the domain of time. 

• In many models of natural phenomena (e.g., Newtonian 
mechanics), time is an independent variable that determines the 
sequence of states of a system. 

• The basic constants of physics are defined in relation to the standard 
of time, the physical second. This is why the global time base in a 
distributed real-time system should be based on the metric of the 
physical second. 



TIME AND ORDER cont….
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• In a typical real-time application, the distributed computer system 
performs a multitude of different functions concurrently, 

• e.g., the monitoring of real-time (RT) entities (both their value and 
rate of change), the detection of alarm conditions, 

• Display of the observations to the operator, and the execution of 
control algorithms to find new set points. 

• These different functions are normally executed at different nodes. 



Different Orders 
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• Temporal Order

• Causal Order

• Delivery Order 

• Clocks: Physical Clock, Reference Clock, Clock Drift, Failure Modes of a
Clock

• Precision and Accuracy: Time Standards- International Atomic Time
(TAI–Temps Atomique Internationale), Universal Time Coordinated
(UTC)

• Time Measurement: Global Time, Reasonableness Condition: Interval
Measurement, / -Precendence



INTERNAL CLOCK SYNCHRONIZATION 
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Internal and external clock synchronization

• The purpose of internal clock synchronization is to ensure that the 
global ticks of all correct nodes occur within the specified precision II 
, despite the varying drift rate of the local real-time clock of each node. 

• Because the availability of a proper global time base is crucial for the 
operation of a distributed real-time system, the clock synchronization 
should be fault-tolerant. 



Synchronization condition 
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The Synchronization Condition 
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1. Every node of a distributed system has a local oscillator that
(micro)ticks with a frequency determined by the physical
parameters of the oscillator.

2. A subset of the local oscillator's microticks called the ticks (or
macroticks), are interpreted as the global time ticks at the node.
The global time ticks increment the node's local global time
counter.

3. The global time ticks of each node must be periodically
resynchronized within the ensemble of nodes to establish a global
time base with specified precision.

4. The period of resynchronization is called the resynchronization
interval.



The Synchronization Condition 
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1. At the end of each resynchronization interval, the clocks are
adjusted to bring them into better agreement with each other.

2. The convergence function denotes the offset of the time values
immediately after the resynchronization.

3. Then, the clocks again drift apart until they are resynchronized at
the end of the next resynchronization interval Rint.

4. The drift offset indicates the maximum divergence of any two good
clocks from each other during the resynchronization interval Rint,
where the clocks are free running.

5. The drift offset depends on the length of the resynchronization
interval Rint and the maximum specified drift rate of the clock:



The Synchronization Condition 
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Observations and examples 

• Byzantine Error: Behavior of a malicious clock. 
• Central Master Synchronization 
• Distributed Synchronization Algorithms: Reading the Global Time Result
• The Convergence Function



Table 3.2: Approximate jitter of the synchronization 
message. 
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Figure : Accepted and rejected time values. 
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Example: Figure shows an ensemble of 7 nodes and one tolerated 
Byzantine fault. The FTA takes the average of the five accepted time 
values shown. 



Figure : Worst possible behavior of a malicious 
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Figure : Worst possible behavior of a malicious 
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• The worst-case scenario occurs if all good clocks are at opposite ends
of the precision window , and the Byzantine clock is seen at different
corners by two nodes.

• In the example of Figure 3.12, node j will calculate an average value of
4phi/5 and node k will calculate an average value of 3/phi5; the
difference between these two terms, caused by the Byzantine fault, is
thus pi/5.



Precision of the FTA: Table: Byzantine error term μ(N,k) 
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State Correction versus Rate Correction 



EXTERNAL CLOCK SYNCHRONIZATION 
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• External synchronization links the global time of a cluster to an
external standard of time.

• For this purpose it is necessary to access a time server, i.e., an
external time source that periodically broadcasts the current
reference time in the form of a time message.

• This time message must raise a synchronization event (such as the
beep of a wrist watch) in a designated node of the cluster and must
identify this synchronization event on the agreed time scale.

• Such a time scale must be based on a constant measure of time,
e.g., the physical second, and must relate the synchronization event
to a defined origin of time, the epoch.

• The interface node to a time server is called a time gateway.



Principle of Operation 
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• Assume that the time gateway is connected to a GPS (Global
Positioning System) receiver.

• This UTC time server periodically broadcasts time messages containing
a synchronization event, as well as information to place this
synchronization event on the TAI scale.

• The time gateway must synchronize the global time of its cluster with
the time received from the time server.

• This synchronization is unidirectional, and therefore asymmetric.



Figure : Flow of external synchronization 
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Figure : Flow of external synchronization 
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• If another cluster is connected to this "primary" cluster by a
secondary time gateway, then, the unidirectional synchronization
functions in the same manner.

• The secondary time gateway considers the synchronized time of
the primary cluster as its time reference, and synchronizes the
global time of the secondary cluster.

• While internal synchronization is a cooperative activity among all
the members of a cluster, external synchronization is an
authoritarian process: the time server forces its view of external
time on all its subordinates.

• From the point of view of fault tolerance, such an authoritarian
regime introduces a problem: if the authority sends an incorrect
message, then all its "obedient" subordinates will behave
incorrectly.

• However, for external clock synchronization, the situation is under
control because of the "inertia" of time.



Figure : Flow of external synchronization 
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• Once a cluster has been synchronized, the fault-tolerant global time
base within a cluster acts as a monitor of the time server.

• A time gateway will only accept an external synchronization message if
its content is sufficiently close to its view of the external time.

• The time server has only a limited authority to correct the drift rate of
a cluster.

• The enforcement of a maximum common-mode drift rate– we propose
less than 10-4 sec/sec–is required to keep the error in relative time-
measurements small.

• The maximum correction rate is checked by the software in each node
of the cluster



Figure : Flow of external synchronization 
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• The implementation must guarantee that it is impossible for a faulty
external synchronization to interfere with the proper operation of the
internal synchronization, i.e., with the generation of global time within
a cluster.

• The worst possible failure scenario occurs if the external time server
fails maliciously.

• This leads to a common-mode deviation of the global time from the
external time base with the maximum permitted correction rate.

• The internal synchronization within a cluster will, however, not be
affected by this controlled drift from the external time base.



Time Formats 
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• Over the last few years, a number of external-time formats have been
proposed for external clock synchronization.

• The most important one is the standard for the time format proposed
in the Network Time Protocol (NTP) of the Internet [Mil91].

• This time format with a length of eight bytes contains two fields: a four
byte full seconds field, where the seconds are represented according
to UTC, and a fraction of a second field, where the fraction of a second
is represented as a binary fraction with a resolution of about 232 pico
second.



Time Formats 
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• On January 1, 1972, at midnight the NTP clock was set to
2,272,060,800.0 seconds, i.e., the number of seconds since January
1, 1900 at 00:00h.

Figure: Time format in the Network Time Protocol (NTP).

• The NTP time is not chronoscopic because it is based on UTC. The
occasional insertion of a leap second into UTC can disrupt the
continuous operation of a time- triggered real-time system.



Time Gateway 
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The time gateway must control the timing system of its cluster in the following
ways:

(i) It must initialize the cluster with the current external time.

(ii) It must periodically adjust the rate of the global time in the cluster to bring
it into agreement with the external time and the standard of time
measurement, the second.

(iii) It must periodically send the current external time in a time message to the
nodes in the cluster so that a reintegrating node can reinitialize its external
time



Real time model/ Modeling Real-Time Systems
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The Purpose of the Model:

• The limited information processing capacity of the human mind–
compared to the large amount of information in the real world–
requires a goal-oriented information reduction strategy to develop a
reduced representation of the world ( a model ) that helps in
understanding the problem posed.

• New concepts emerge and take shape if mental activity is focused on
solving a particular problem. Reality can be represented by a variety of
models:

• A physical-scale model of a building, a simulation model of a technical
process, a mathematical model of quantum physics phenomena, or a
formal logical model of the security in a computer system.



Real time model/ Modeling Real-Time Systems
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• All these models are different abstractions of reality, but should not be
mistaken for reality itself. A model that introduces a set of well-defined
concepts and their interrelationships is called a conceptual model.

• When proceeding from informal to formal modeling, a certain order
must be followed: a sound and stable conceptual model is a necessary
prerequisite for any more formal model.

• Formal models have the advantage of a precise notation and rigorous
rules of inference that support the automatic reasoning about selected
properties of the modeled system.

• Assumption Coverage
• What is Relevant?; Durations of Actions:
• Frequency of Activations: What Is Irrelevant? : Issues of

Representation



Temporal relations, dependability 
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• DEPENDABILITY: is a measure of a system’s availability, reliability and
its maintainability, and maintenance support performance --in some
cases, other characteristics such as durability, safety and security.

• FUNCTIONAL REQUIREMENTS: Data Collection, Signal
Conditioning:, Alarm Monitoring:, Direct Digital Control, Man-Machine
Interaction.

• TEMPORAL REQUIREMENTS: Where Do Temporal Requirements Come
From?, A Simple Control Loop:, The Controlled Object:, Controlling
Computer System:, Delay.



Temporal relations, dependability 
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Figure 1.2: Temporal accuracy of the traffic light information. 



Data Collection 
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• Controlled object, e.g., a car or an industrial plant, changes its state as
a function of time.

• If we freeze time, we can describe the current state of the controlled
object by recording the values of its state variables at that moment.

• Possible state variables of a controlled object "car" are the position of
the car, the speed of the car, the position of switches on the dash
board, and the position of a piston in a cylinder.

• We are normally not interested in all state variables, but only in the
subset of state variables that is significant for our purpose. A
significant state variable is called a real-time (RT) entity.



Data Collection 

80

• Every RT entity is in the sphere of control (SOC) of a subsystem, i.e., it 
belongs to a subsystem that has the authority to change the value of 
this RT entity. 

• Outside its sphere of control, the value of an RT entity can be 
observed, but cannot be modified.

• For example, the current position of a piston in a cylinder of the engine 
of a controlled car object is in the sphere of control of the car. 

• Outside the car, the current position of the piston can only be 
observed. 



Data Collection 
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• The first functional requirement of a real-time computer system is the
observation of the RT entities in a controlled object and the collection
of these observations.

• An observation of an RT entity is represented by a real-time (RT) image
in the computer system. Since the state of the controlled object is a
function of real time, a given RT image is only temporally accurate for a
limited time interval.

• The length of this time interval depends on the dynamics of the
controlled object. If the state of the controlled object changes very
quickly, the corresponding RT image has a very short accuracy
interval.



TEMPORAL REQUIREMENTS 
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Where Do Temporal Requirements Come From?: 

• The most stringent temporal demands for real-time systems have their
origin in the requirements of the control loops,

• e.g., in the control of a fast mechanical process such as an automotive
engine. The temporal requirements at the man-machine interface
are, in comparison, less stringent because the human perception
delay, in the range of 50-100 msec, is orders of magnitudes larger than
the latency requirements of fast control loops



Figure 1.3: A simple control loop. 
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A simple control loop. 
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• A Simple Control Loop: Consider the simple control loop depicted in 
Figure 1.3 consisting of a vessel with a liquid, 

• A heat exchanger connected to a steam pipe, and a controlling
computer system.

• The objective of the computer system is to control the valve ( control
variable) determining the flow of steam through the heat exchanger so
that the temperature of the liquid in the vessel remains within a small
range around the set point selected by the operator.

• The focus of the following discussion is on the temporal properties of
this simple control loop consisting of a controlled object and a
controlling computer system.



Figure 1.4: Delay and rise time of the step response. 
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TEMPORAL REQUIREMENTS 
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• A hard real-time system must maintain synchrony with the state of the
environment (the controlled object and the human operator) in all
operational scenarios.

• It is thus paced by the state changes occurring in the environment.
• Because the state of the controlled object changes as a function of

real-time,

• An observation is temporally accurate only for a limited time interval.
• Real-time systems have only small data files, the real-time database

that is formed by the temporally accurate images of the RT-entities.

• The key concern is on the short-term temporal accuracy of the real-
time database that is invalidated by the flow of real-time.



TEMPORAL REQUIREMENTS 
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• The most stringent temporal demands for real-time systems have their 
origin in the requirements of the control loops. 

• The temporal behavior of a simple controlled object can be 
characterized by process lag and rise time of the step-response 
function. 

• Example. 1. Event-Triggered Communication Systems 

2. Time-Triggered Communication Systems 
• Temporal control in an ET system is a global issue, depending on the 

behavior of all nodes in the system. From the point of view of temporal 
behavior, ET systems are not composable. 



TEMPORAL REQUIREMENTS 
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In a time-triggered communication system that transports only state
messages, temporal control resides within the communication system.

Since system integration will not change the temporal properties of the
CNI, a TT architecture is composable with respect to temporal
properties.

Observations;
Global Time: A global time base helps to establish such a consistent
temporal order on the basis of the time stamps of the events.
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• Event triggered, Rate constrained, Time triggered.

• Event-Triggered versus Time-Triggered

Event-Triggered Communication Systems:
• The decision of either settling for a time-triggered or an event-

triggered architecture clearly deals with non-functional properties of a
real-time system, and should therefore be postponed as far as
possible.
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• If a communication system transports event messages, the temporal
control is external to the communication system.

• It is within the sphere of control of the host computers to decide when
a message must be sent.

• Consider the case where a number of nodes decide to send a message
to a particular receiving node at the same instant.

• If the communication system has dedicated channels between any two
nodes, all messages will arrive simultaneously at the receiver, and
overload the receiver.
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• This does not solve the fundamental problem, namely that the 
temporal control at the CNI is not defined by an ET protocol. 

• Temporal control in an ET system is thus a global issue, depending on 
the behavior of the application software in all nodes of the distributed 
system. 

• From the point of view of temporal behavior, ET systems are not 
composable. 

• The basic capability to talk to each other does not ensure a disciplined 
conversation. 



Time-Triggered Communication Systems 

92

• In a time-triggered (TT) communication system, temporal control
resides within the communication system, and is not dependent on
the application software in the nodes.

• State messages are transported from the sender CNI to the receiver
CNI at predetermined points in time which are stored in message
scheduling tables within the communication controllers.

• The host computers have no opportunity to influence the temporal
behavior of the communication system.
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• The CNI is strictly a data-sharing interface without any control signals
crossing the interface.

• It thus acts as a temporal firewall, isolating the temporal behavior of
the host computer from the temporal behavior of the communication
system.

• There is no possibility for control-error propagation from the host to
the communication system, and vice versa.

• The temporal properties of the CNI between a node and the
communication system are fully defined at design time.

• It is thus possible to test each node individually with respect to the
CNI.

• Since system integration will not change the temporal properties of
the CNI, a TT architecture is composable with respect to
communication timeliness.
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Event-Triggered versus Time-Triggered are refined and extended 
beyond the communication system. 
A temporal control signal for the activation of a task in a node can arise 
from one of the following two sources: 

(i) The control signal is derived from a significant state change, an 
event, in the environment or within the computer system. 

(ii) Examples of such significant state changes are the depressing of a 
push button by an operator, the activation of a limit switch, the 
arrival of a new message at a node, or the completion of a task 
within a node. 



Time-Triggered Communication Systems 

95

• We call a control signal that is derived from a significant state change
an event trigger.

• A system where all the control signals are derived from event triggers
is called an event-triggered (ET) system.

• The control signal is derived from the progression of real-time.
Whenever the real-time clock within a node reaches a preset value
specified in a scheduling table, a temporal control signal is generated.
We call such a control signal that is derived from the progression of
time a time trigger. A system where all the control signals are derived
from time triggers is called a time-triggered (TT) system.
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• EXAMPLE: The design of a computer system controlling a set of 
elevators in a high rise building can be event-triggered or time-
triggered. 

• In an event-triggered implementation, every press of the lift-call
button causes an interrupt in the computer system, and activates a
task that reschedules the lifts to service the request.

• In a time-triggered implementation, every press of the lift-call button
sets a local memory element in the lift-call button.

• The memory elements of all the lift-call buttons are periodically
sampled with a sampling period of, say, 500 msec and then reset by
the computer system.

• After a complete sampling cycle, the lift scheduler is activated to
calculate a new schedule to service all requests.
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• If a user becomes impatient if the lift does not arrive and presses the 
lift-call button again, the different implementations will handle the 
redundant call-button pushes differently. 

• The event triggered implementation will relay additional interrupts to 
the computer system, while the time-triggered implementation will 
not recognize the redundant call-button signals as long as the memory 
elements are set. 
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Embedded system: a special-purpose computer designed to perform 
one or few dedicated functions, often with real-time computing 
constraints 

Real-time adjective: bounded response time 

Examples :Car Anti-Lock Braking System 
• Avionics Pressure Cabin Control 
• Mirowave Oven RF Controller 
• Train Inter-Lock System 
• GSM Subscriber Base Station 
• Bluetooth Hands-Free Set 
• Electronic Ignition System • Any many, many 
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Hard vs. Soft Real-Time Embedded Systems 
• Hard deadline systems: missing a program/task execution time 
deadline can have catastrophic consequences (financial, human loss of 
life, etc.) 
• Soft deadline systems: missing a dealine may not be critical and can be 
tolerated to a certain degree (e.g., VoIP)

Safety-Critical Embedded Systems 
• Usually are hard deadline systems 
• Must be extremely reliable and dependable (1 fault in 109 hours of 
operation) 
• Therefore the essential problem is: How to assure their dependability? 
Answer: Use hardware/software redundancy (replication) Redundancy 
idea: 
if one component fails then a spare can be used as a replacement 



Safety- critical Embedded systems 
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Embedded System’s main components
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Event Triggered and Time Triggered Design Paradigms
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Paradigm Relationship
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TT vs ET Network Medium Access Control
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UNIT II
REAL TIME OPERATING SYSTEMS
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REAL-TIME OPERATING SYSTEMS 

Inter Component Communication 

Task Management and dual role of time

Inter task interactions

process input/ouput

Agreement protocols

Error detection 
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• Real Time: A real time is the time which continuously increments at 
regular intervals after the start of the system and time for all the 
activities at difference instances take that time as a reference in the 
system. 

• RTOS: A real time operating system (RTOS) is multitasking operation 
system for the applications with hard or soft real time constraints. 

• Real-time constraint means constraint on occurance of an event and 
system expected response and latency to the event. 



Introduction
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• Embedded systems are tightly coupled to their environment.

• This imposes real-time constraints by the need to interact with the
environment.

–required speeds of motion,
– required precision of measurement,
– required time durations.
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RTOS
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• RTOS is an OS for response time controlled and event controlled 
processes. 

• The processes have predicable latencies and execute by preemptive 
scheduling 

• An RTOS is an OS for the systems having the hard or soft real timing 
constraints and deadline on the tasks, ISTs and ISRs 



Development process of an embedded system
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• Single purpose, Small size, Inexpensively mass-produced, Specific 
timing requirements 
System-on-a-Chip ; 

• Many real-time systems are designed using system-on-a-chip (SOC) 
strategy. 

• SOC allows the CPU, memory, memory-management unit, and 
attached peripheral ports (I.e. USB) to be contained in a single 
integrated circuit. 
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• Most real-time systems do not provide the features found in a 
standard desktop system. 

Reasons include,  
–Real-time systems are typically single-purpose. 
–Real-time systems often do not require interfacing with a user. 
–Features found in a desktop PC require more substantial hardware that 
what is typically available in a real-time system. 

Virtual Memory in Real-Time Systems 
Address translation may occur via: 
(1) Real-addressing mode where programs 
generate actual addresses. 
(2) Relocation register mode. 
(3) Implementing full virtual memory. 



Address Translation 
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Implementing Real-Time Operating Systems 
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In general, real-time operating systems must provide:
(1) Preemptive, priority-based scheduling
(2) Preemptive kernels
(3) Latency must be minimized

• RTOS is an OS for response time controlled and event controlled
processes. The processes have predicable latencies and execute by
pre-emptive scheduling

• An RTOS is an OS for the systems having the hard or soft real timing
constraints and deadline on the tasks



Real-Time Operating Systems 
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Motivation 
• Most current operating systems are not suitable for developing or

deploying applications with real-time constraints i.e. scheduling
policies, process synchronization, system architecture.

Goals
• Create an environment suitable for developing applications with hard

real-time constraints on task execution in a reactive environment. Two
key ideas:

Predictability: Predict direct consequences of any scheduling decision.
Schedulability Guarantees: Verify the schedulability of a given set of

tasks.
Design Issues
• How can I guarantee predictability and schedulability with the

different components of my system?
• Architecture, Memory Management, Task structure, Kernel, etc...
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• Objective: 
High performance for average response time to external events. 

• Characteristics: 
Fast context switching - small footprint - efficient interrupt handling –
pre-emptable primitives - fast communication mechanisms 

• Driven by a real-time clock Task Scheduling with fixed priorities 
Synchronization tools, limitations Communication protocols Problem? 
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• Real-Time extensions of timesharing OS Objective: 
Extend current (commerical) time-sharing systems to satisfy real-time 
constraints. 

• Characteristics: 
Reuse standard peripherals and interfaces - Speedier development 

• Reused Kernel 
Task Scheduling with fixed priorities 

• Tasks vs Threads?
Re-implemented User-Level Threads
Non pre-emptable syscalls, interrupts problems? 
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• Objective:
The ability to treat tasks with explicit timing constraints, such as 
periods and deadlines 

• Characteristics: 
Scheduling guarantee mechanisms - Characterize tasks with additional 
parameters - Avoidance of nondeterministic blocking time 

• General Purpose Operating System 
An interface between users and hardware 
Controlling and allocating memory 
Controlling input and output devices 
Managing file systems 
Facilitating networking 



Non-Real-Time systems 
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• Non-Real-Time systems are the operating systems most often used. 

• No guaranteed worst case scheduling jitter.

• System load may result in delayed interrupt response. 

• System response is strongly load dependent.

• System timing is a unmanaged resource.
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• RTOS is a pre-emptive multitasking operating system intended for real-
time applications. 

• Predictable OS timing behavior. 

• Able to determine task’s completion time.

• A system of priority inheritance has to exist.

• Guarantees task completion at a set deadline. 



Types of RTOS 
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Soft Real-Time system , Hard Real-Time system

• A real-time system requires that results be produced within a
specified deadline period.

• An embedded system is a computing device that is part of a larger
system (I.e. automobile, airliner.)

• A safety-critical system is a real-time system with catastrophic results
in case of failure.

• A hard real-time system guarantees that real-time tasks be completed
within their required deadlines.

• A soft real-time system provides priority of real-time tasks over non
real-time tasks.



Soft Real-Time system 
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• The soft real-time definition allows for frequently missed deadlines

• If the system fails to meet the deadline, possibly more than once ,the 
system is not considered to have failed 

• Example : Multimedia streaming , Video games 



Inter Component Communication/ Interprocess
Communication 
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• Interprocess communication is needed to exchange information
among concurrently executing tasks so progress towards the common
goal can be achieved.

• There are possible types of information exchange: the direct exchange
of messages among the involved tasks and the indirect exchange of
information via. a common region of data.

• Messages: If interprocess communication is based on messages, a
choice must be made between event-message semantics and state-
message semantics

• In many real-time systems the sender and receiver tasks are periodic
with differing periods.



Inter Component Communication/ Interprocess
Communication 
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• In these systems the one-to-one synchronization requirement of event
messages is not satisfied.

• Because state messages support the information exchange among
tasks of differing periods, state-message semantics matches better the
needs of real-time applications.

• The operating system must implement the atomicity property of a
state message: a process is allowed to see only a complete version of a
state message.

• The intermediate states that occur during a state message update
must be hidden by the operating system.
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• Tasks are implemented as threads in RTOS.

• Have timing constraints for tasks 

• Each task a triplet: (execution time, period, deadline)

• Can be initiated any time during the period 



Task States 

128

• Idle : task has no need for computer time 

• Ready : task is ready to go active, but waiting for processor time 

• Running : task is executing associated activities 

• Waiting : task put on temporary hold to allow lower priority task 
chance to execute

• Suspended: task is waiting for resource 
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Types of interrupts 
• Asynchronous or hardware interrupt 
• Synchronous or software interrupt 
• Very low Interrupt latency 
• The ISR of a lower-priority interrupt may be blocked by the ISR of a 

high-priority 



Memory management 
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• RTOS may disable the support to the dynamic block allocation 

• When a task is created the RTOS simply returns an already initialized 
memory location

• when a task dies, the RTOS returns the memory location to the pool 

• No virtual memory for hard RT tasks 
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• Exceptions are triggered by the 
CPU in case of an error 

• E.g. : Missing deadline, running 
out of 
memory, timeouts, deadlocks, div
ide by zero, etc. 

• Error at system level, e.g. 
deadlock 

• Error at task level, e.g. timeout 

• Standard techniques: 
• System calls with error code 
• Watch dog 
• Fault-tolerance 
• Missing one possible case may 

result in disaster 



Task Synchronization 
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Task Synchronization 

• Semaphore 

• Mutex

• Spinlock 

• Read/ write locks 



Task scheduling 
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• Scheduler is responsible for time-sharing of CPU among tasks.

• Priority-based Preemptive Scheduling.

• Rate Monotonic Scheduling.

• Earliest Deadline First Scheduling.

• Round robin scheduling.



Priority-based Preemptive Scheduling & 
Earliest Deadline First Scheduling 
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Priority-based Preemptive Scheduling 

• Assign each process a priority 

• At any time, scheduler runs highest priority process ready to run

• Rate Monotonic Scheduling 

• A priority is assigned based on the inverse of its period 

• Shorter execution periods = higher priority 

• Longer execution periods = lower priority 



Priority-based Preemptive Scheduling & 
Earliest Deadline First Scheduling 
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Earliest Deadline First Scheduling 

• Priorities are assigned according to deadlines 

• The earlier the deadline, the higher the priority 

• Priorities are dynamically chosen 

• Round robin scheduling 

• Designed for time-sharing systems 

• Jobs get the CPU for a fixed time 

• Ready queue treated as a circular buffer 

• Process may use less than a full time slice 



Example of Task scheduling (RR) 
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• Time interrupt: A high resolution hardware timer is programmed to
interrupt the processor at fixed rate

• Each time interrupt is called a system tick The tick may be chosen
according to the given task parameters

Existing RTOS categories 

• Priority based kernel for Embbeded applications, VxWorks, OSE, QNX, 
Real Time Extensions of existing time-sharing OS, Real time Linux , Real 
time NT, Research RT Kernels MARS, Spring 
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RT Linux: an example 
RT-Linux is an operating system, in which a small real-time kernel co-
exists with standard Linux kernel 



RT Linux Kernel 
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TASK MANAGEMENT 
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• Task management is concerned with the provision of the dynamic 
environment within a host for the initialization, execution, and 
termination of application tasks. 

Background: What’s a “Real Time” System? 
• When correctness of results depend on content and time 
• Hard or Soft: indicates how for giving the system is 
What makes an OS Real-Time? 
• Predictable (possibly deterministic behavior), that’s all 
• Not necessarily fast 
• Byproduct: mediocre throughputs 
How do they work? 
• Tasks are scheduled by OS according to fixed priority (typically) 
• Tasks can’t directly interact; they use messages or shared memory & 

semaphores to communicate 



Designing an RTOS
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Designing an RTOS: Typical Features

•Many POSIX Specs Exist 
•No virtual memory (swap file) 
•Shared memory capabilities 
•High-resolution timer(s) 
•Real-time signals/QoS

Designing an RTOS: End Goal 

•Have known switching & scheduling overhead 
•Avoid common problems like priority inversion and deadlock 
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Designing an RTOS: Common Problems (can’t) Deadlock 
• Two semaphores locked out of order by two tasks and circularly block

each other
• Solution: “Instant Inheritance” implementation of Priority Ceiling

Protocol – semaphores possibly needed by higher processes become
priority tokens

Designing with an RTOS: What do you need? 
Task information 
• Priorities for each task 
• Worst-case runtime 
• Best-case period 

Interference information 
• Deadline Monotonic Analysis (DMA) calculations 



Real Time Operating System (RTOS) 
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Fundamental requirements for an RTOS
– The OS behavior must be predictable
– The OS must be multithreaded and preemptive.
– The OS must support thread priority.
– The OS must support predictable thread synchronization mechanisms.

Additional Requirements:
–The maximum time that device drivers use to process an interrupt, and

specific IRQ information relating to those device drivers, must be
known.

–The interrupt latency (the time from interrupt to task run) must be
predictable and compatible with application requirements.
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Three groups,  
–Small, fast, proprietary kernels 
–Real-time extensions to commercial operating systems 
–Research operating systems 

Small, fast, proprietary kernels 
–homegrown 
–commercial offerings: QNX, PDOS, pSOS, VCOS, VRTX32, VxWorks
–To reduce the run-time overheads incurred by the kernel and to make the 

system fast, the kernel has a small size responds to external interrupts quickly 
minimizes intervals during which interrupts are disabled provides fixed or 
variable sized partitions for memory management as well as the ability to 
lock code and data in memory provides special sequential files that can 
accumulate data at a fast rate 
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RTOS

–To deal with timing constraints, the kernel provides bounded execution
time for most primitives maintains a real-time clock provides
primitives to delay processing by a fixed amount of time and to
suspend/resume execution

–Also, the kernel performs multitasking and intertask communication
and synchronization via standard primitives such as
mailboxes, events, signals, and semaphores.

– For complex embedded systems, these kernels are inadequate as they
are designed to be fast rather than to be predictable in every aspect.
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Open source: 
–eCos
–Fiasco (L4 clone) [1] 
–FreeRTOS
–Linux as of kernel 
version 2.6.18 
–Phoenix-RTOS 
–Nut/OS [2] 
–Prex
–RTAI 
–RTEMS 
–RTLinux
–SHaRK [3] 
–TRON Project 
–Xenomai [4] 

Proprietary: 
–Ardence RTX - BeOS 
–ChorusOS - DNIX 
–DSOS - embOS (Segger) 
–ITRON 
–LynxOS - MicroC/OS-II 
–MQX RTOS [5] - Nucleus 
–OS-9 - OSE 
–OSEK/VDX - OSEKtime
–PDOS - Phar Lap ETS 
–PikeOS - Portos
–pSOS - QNX 
–RMX - RSX-11 
–RT-11 - RTOS-UH 
–RTXC - Salvo RTOS [6] 
–SINTRAN III - Symbian OS 
–ThreadX - VRTX 
–VxWorks - Windows CE 
–μnOS - UNIX-RTR 



RT Linux 
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• Real-Time Linux (now part of FSMLabs Inc.) that is suitable for Real-Time 
applications. 

• Its view is that the application system can be split into two parts 
– Real-time 
– Non real-time 

• With this approach, it splits the applications to run on either the Linux kernel, or a 
real-time kernel! 

• Between the real and non-real parts communication is performed through FIFOs 
called RT-FIFOs. 

These FIFOs are: 
–Locked to memory in kernel space. 
–FIFOs appear as devices to Linux user processes. 
–Reads and writes are non-blocking and atomic. 



Vx Works 
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Monolithic Kernel 
• Reduced run-time overhead, but increased kernel size compared to     

Microkernel designs 
• Supports Real-Time POSIX standards 

Common in industry 
–Mars missions 
–Honda ASIMO robot 
–Switches 
–MRI scanners 
–Car engine control systems 



RTOS overview
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• The worst-case administrative overhead (WCAO) of every operating system
call of a real-time operating system must be known a priori, so that the
temporal properties of the behavior of the complete host can be determined
analytically.

• The a priori designed task schedule of a TT system must consider the
required precedence and mutual exclusion relationships between the tasks
such that an explicit coordination of the tasks by the operating system at run
time is not necessary.

• The simplest application program interface (API) is the API of a time-triggered
S-task.

• The coupling between the application program and the operating system
increases with the number and variety of the operating system calls.



ERROR DETECTION 
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• ERROR DETECTION 
A real-time operating system must support error detection in the 
temporal domain and error detection in the value domain by generic 
methods. 

• Monitoring Task Execution Times 
• Monitoring Interrupts 
• Double Execution of Tasks 

• Watchdogs 
ERCOS(Embedded Real-Time Control Operating System) 

• Monitoring Task Execution Times 
A tight upper bound on the worst-case execution time (WCET) of a 
real-time task must be established during software development 



Embedded Real-Time Control Operating System 
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ERCOS(Embedded Real-Time Control Operating System) 
• Task Model 
• Scheduling 
• Interprocess Communication 
• Error Detection 
• Off-line Software Tools(OLT) 

• The high production volume of embedded systems demands reliable 
system solutions that minimize the hardware resource requirements. 
Many design decisions in ERCOS (Embedded Real-Time Control 
Operating System) 

• An operating system for embedded real-time applications in the 
automotive industry, have been influenced by this quest for optimum 
performance and utmost reliability. 



ERCOS(Embedded Real-Time Control Operating System) 
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• ERCOS is used for the implementation of embedded systems, such as
engine control or transmission control, in vehicles.

• A typical state-of-the-art engine controller has a memory consisting of
256 kbyte ROM and 32 kbyte RAM.

• It interfaces to about 80 external sensors and actuators, and is
connected to the other system by a real-time communication
network, such as a CAN bus

• The software is organized into about 100 concurrently executing tasks.
The most demanding task, the injection control, must be precise within
a few microseconds.



Task Model 
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• The basic task model of ERCOS consists of S-tasks. 

• A set of S-tasks that follow one another in sequence forms a schedule 
sequence. 

• A schedule sequence is built offline during the static analysis of the 
application software. 

• Each schedule sequence is assigned a given priority level, and is 
treated as a single unit of scheduling by the operating system. 

• Whenever the activation event of a schedule sequence occurs, the 
whole schedule sequence is executed. 



Scheduling 
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ERCOS supports static and dynamic scheduling of schedule sequences.
• The time triggered static schedules are developed off-line such that

the required dependency relations, such as mutual exclusion and
precedence between the tasks, are integrated into the off-line
schedules and no explicit synchronization is needed.

Dynamic scheduling decisions are based on the priorities of ready
schedule sequences.
• Two different scheduling strategies, cooperative scheduling and

preemptive scheduling, are distinguished.
• Cooperative scheduling is non-preemptive at the task level.
• A context switch may only take place between the tasks of a schedule

sequence. This simplifies the maintenance of data consistency, since a
complete critical section is encapsulated in a single task.



Error Detection 
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ERCOS provides many mechanisms for run-time error detection, such 
as:
(i) A deadline checking service is provided by the operating system to

detect late system responses, and to make it possible for an
exception handler to react to such a failure.

(ii) The occurrence of interrupts originating from the controlled object
is continuously monitored. After each interrupt occurrence, the
interrupt line is disabled for the duration of the minimum inter
arrival period.

(iii) The actual number of active instances of a task is monitored by the
operating system at run time and compared with the permitted
maximum number of concurrently active instances of a task that
has been determined off-line.

(iv) A watchdog process generates a life-sign message with a known
period so that an outside observer is continuously informed of the
proper operation of a node.



OLST/ OLT(Off-line Software Tools) 
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• An extensive off-line software development tool (OLT) supports the design 
and implementation of application code for the ERCOS run-time system. 

• The OLT performs a static source code analysis of the application code and 
generates the necessary interface code to link the application to the run-time 
kernel. 

An overview on the OLT’s functionality is given in the following: 
• Support for object-based software construction and software reuse: The OLT 

provides the functions to structure the application software according to the 
ERCOS real-time object model. 

• This object model supports autonomously active objects and concurrent 
activity within and between objects. 

• To support the reuse of software in widely varying contexts, the OLT 
generates the necessary code to ensure data consistency in the presence of 
preemptive scheduling. 

• Object interfaces are checked for consistency, completeness and 
conformance to visibility rules. 



OLST/ OLT(Off-line Software Tools)  cont…….
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(ii) Automatic operating system configuration: 
• The ERCOS kernel configured and generated automatically by the OLT 

for each individual application. 
• All the necessary RAM and ROM data structures are reserved by the 

OLT based on the static source code analysis. 
• This avoids the effort for dynamic memory handling and ensures that 

only a minimal amount of memory is configured. 

(iii) Optimization of operating system functions: 
• Based on the static analysis of the source code, the OLT selects

optimized implementations for operating system functions.
• For example, the static source code analyzer detects the situations

where concurrency conflicts cannot arise during execution.
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•Scheduling problem 

•Static and dynamic scheduling

•System Design 

•Validation
•

•Time-triggered Architecure
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SYSTEM DESIGN 

• On system design starts with a philosophical discussion on design in
general.

• In computer system design, the most important goal is controlling
the complexity of the solution by introducing structure.

• This introduction of structure restricts the design phase and has a
negative impact on the performance of the system.

• In the context of real-time systems, these performance penalties
must be carefully evaluated.



SYSTEM DESIGN  cont……

The architecture design phase starts with analyzing the requirements. 

There are two opposing views on how to proceed in this phase: 

(i) To complete an unbiased and consistent capture of all requirements 
before starting the "real" design work, or 

(ii) To learn about the requirements by starting a rapid prototype 
implementation of key system functions at an early stage. 



SYSTEM DESIGN  cont……

• In any case, the designer must get a deep insight into all the 
different aspects of the problem domain before she/he can design 
the application architecture. 

• The crucial step is the development of the system structure, the 
clustering of the functions into nearly decomposable subsystems 
of high internal cohesion with simple external interfaces. 

• In distributed systems, a complete node forms such a subsystem 
of defined functionality. The node interfaces define the 
boundaries of  the error- containment regions.



SYSTEM DESIGN  cont……

Design is an iterative process.

• As more is learned about the problem domain, with different design
alternatives being explored, there is the need to start all over again
more often than once.

• At the end of the design phase the alternate solutions must be
evaluated and compared. TEST OF A DECOMPOSITION- contains
checklists that can assist the designer in evaluating a design.

• After the architecture design is completed and frozen, the detailed
design and implementation of the node software can be performed by
a number of teams in parallel



THE DESIGN PROBLEM

• Complexity: Horizontal Structuring, Vertical Structuring.

• Grand Design versus Incremental Development: Grand Design, Rapid
Prototyping, A Compromise.

• Legacy Systems

• Design Problems are Wicked

• REQUIREMENTS ANALYSIS: Developing Project Standards Information
Representation, Naming, Message
Interfaces, Documentation, Software Development Tools, Change
Control



THE DESIGN PROBLEM cont..

• Exploring the Constraints: Minimum Performance Criterion,
Dependability Constraints, Cost Constraints.

• DECOMPOSITION OF A SYSTEM INTO SUBSYSTEMS: Identification of
the Subsystems, The Communication Network Interface, Development
of the Message Schedules, Result of the Architecture Design Phase

• TEST OF A DECOMPOSITION: Functional Coherence, Testability,
Dependability



Physical Characteristics of System design

Physical Characteristics:

• DETAILED DESIGN AND IMPLEMENTATION: Definition of the I/O
Interfaces, Task Development, Task Scheduling.

• REAL-TIME ARCHITECTURE PROJECTS: SPRING, MAFT, FTPP.



Important Reviews of system design

Important reviews –system design 

• Design is a creative holistic human activity that cannot be reduced to 
following a set of rules out of a design rule book. 

• Design is an art, supplemented by scientific principles. 

• In every project, there is an ongoing conflict between what is desired 
and what can be done within the given technical and economic 
constraints. 

• A good understanding and documentation of these technical and 
economic constraints reduces the design space, and helps to avoid 
exploring unrealistic design alternatives. 



System design cont….

• Two kinds of structuring of a computer system can be distinguished to 
reduce the system complexity: horizontal versus vertical structuring. 

• Horizontal structuring (or layering) is related to the process of stepwise 
abstraction. 

• Vertical structuring is related to the process of partitioning a large 
system into a number of nearly independent subsystems. 

• The analysis and understanding of a large problem is never complete 
and there are always good arguments for asking more questions 
concerning the requirements before starting with the "real" design 
work. 



System design cont….

• Often it is easier to work on a well-specified detailed side problem 
than to keep focus on the critical system issues.

• It requires an experienced designer to decide what is a side problem 
and what is a critical system issue. 

• Every requirement must entail an acceptance criterion that allows to 
measure, at the end of the project, whether the requirement has been 
met. 

• If it is not possible to define a distinct acceptance test for a 
requirement, then the requirement cannot be very important:

• It can never be decided whether the implementation is meeting this 
requirement or not. 



System design cont….

• The minimum performance criteria establish a borderline between
what constitutes success and what constitutes failure.

• A precise specification of the minimum performance, both in the value
domain and in the temporal domain is necessary for the design of a
fault-tolerant system architecture that does not demand excessive
resources.



Dependability

• The dependability constraints of the application are often design
drivers.

• A precise specification of the minimal dependability requirements
helps to reduce the design space, and guides the designer in finding
acceptable technical solutions.

• In the context of distributed real-time systems, a node with an
autonomous temporal control can be considered a stable intermediate
form.

• The specification of the interface between the nodes and the
communication system, the CNI, is thus of critical importance.



System design Features

• The introduction of structure restricts the design space, and may have 
a negative impact on the performance of a system. 

• The key issue is to find the most appropriate structure where the 
performance penalties are outweighed by the other desirable 
properties of the structure.

• The allocation of functions to nodes must be guided by the desire to 
build functional units (nodes) with a high inner connectivity and small 
external interfaces. 



System design Features

• It can be expected that there will be misfits, that some requirements 
cannot be accommodated in any sensible way. 

• It is good practice to challenge these clashing requirements and to 
reexamine their economic utility. 

• Extreme requirements should never drive a design process, and 
determine an architecture. 

• The CNI determines the complexity at the cluster level, and acts as an 
error detection interface that defines the error-containment regions 
within a cluster. 

• Any error that is not detected at the CNI has the potential to cause a 
total system failure. 



THE TIME-TRIGGERED ARCHITECTURE 

Time-triggered architecture (TTA).

• This architecture is being implemented at the Technische Universität
Wien with industrial support, taking advantage of the lessons learned
during the more than fifteen years of research on dependable
distributed real-time systems.



The MARS (Maintainable Real-time System) project

• The MARS (Maintainable Real-time System) project.

• It then gives an overview of the time-triggered architecture (TTA) and
emphasizes the essential role of the real-time database in this
architecture.

• The building blocks of a TTA prototype implementation are described.
The only nonstandard hardware unit is the TTP/C communication
controller.

• The TTP/C controller implements all functions of the TTP/C protocol
and interfaces to the host via a dualported memory.

• The TTP controller contains ndependent bus guardians to protect the
bus against "babbling idiot" failures of the nodes.



MARS project

• Is devoted to the software support tools that are being implemented
and planned for the development of software in the TTA.

• The time-triggered operating system that has been developed for
MARS has been ported to the TTA host, and adapted to the
Communication Network Interface of the TTP controller.

• The generation of the message descriptor lists for the TTP controller is
supported by a "cluster compiler".

• The fault-tolerance strategy of the TTA TTA supports the
implementation of replicated communication channels and fault-
tolerant units consisting of replicated fail-silent nodes, TMR nodes, and
other FTU organizations.



LESSONS LEARNED FROM THE MARS PROJECT 

• The time-triggered architecture evolved out of the many years of
university research centered on the topic of distributed fault-tolerant
real-time systems, and carried out in the context of the MARS project.

• The MARS Project: Project Goals, The MARS Architecture, Building
Fail-Silent Nodes

• The High Error Detection Coverage Mode (HEDC): Time Redundant
Task Execution, End-to-End CR



TIME-TRIGGERED ARCHITECTURE

• THE TIME-TRIGGERED ARCHITECTURE: Economy of Concepts, The
Real-Time Database

• The Hardware Building Blocks: TTP Controller, TTA-Nodes, Fieldbus
Nodes

• SOFTWARE SUPPORT: Operating System, Time-Triggered Operating
System, Event-Triggered Operating System, interrupts

• The Cluster Compiler: Testing

• FAULT TOLERANCE: Fault-Tolerant Units, Redundant Sensors

• WIDE-AREA REAL-TIME SYSTEMS: The Emergence of ATM
Technology, An ATM Gateway



TIME-TRIGGERED ARCHITECTURE

Important Points 

• The time-triggered architecture is based on the vision that a node can 
be built on an inexpensive single chip. 

• The system architect is then free to use as many nodes as necessary to 
implement the given application requirements within a clean 
functional structure. 

• In the TTA a hardware node is considered a unit of failure with a single 
external failure mode: fail-silence. 

• The TTA is based on a small number of orthogonal concepts that are 
used over again to simplify the understanding of a design. 



TIME-TRIGGERED ARCHITECTURE

• The distributed real-time database, formed by the temporally accurate 
images of all relevant RT entities, is at the core of the time-triggered 
architecture. 

• The real time database contains a temporally valid "snapshot" of the 
current state of the cluster and the cluster environment. 

• In the time-triggered architecture the communication system controls 
autonomously the exchange of information among the nodes and 
provides the distributed services for node coordination, such as clock 
synchronization, membership, and redundancy management. 



TIME-TRIGGERED ARCHITECTURE

• The cluster compiler generates the message schedules and tries to
make the real time images parametric by selecting appropriate update
frequencies.

• At the end it produces the MEDL for each node.

• It is proposed to build wide-area time-triggered real-time systems by
making use of the emerging ATM technology.



UNIT- IV  

CAN



Presentation Goals

• CANBUS Introduction

– What is CANBUS?

– Who uses CANBUS?

– CANBUS history

– CANBUS timeline

• CANBUS Characteristics

– OSI Model

– Physical Layer

– Transmission Characteristics

• Message Oriented Communication

• Message Format

• Bus Arbitration

UNIT - IV



What is CANBUS?

• CANBUS or CAN bus – Controller Area Network bus

• An automotive serial bus system developed to satisfy the following 
requirements:

 Network multiple microcontrollers with 1 pair of wires.

 Allow microcontrollers communicate with each other.

 High speed, real-time communication.

 Provide noise immunity in an electrically noisy environment.

 Low cost

What is CANBUS?



Who uses CANBUS?

• Designed specifically for automotive applications

• Today - industrial automation / medical equipment
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Who uses CANBUS?



CANBUS History

• First idea - The idea of CAN was first conceived by engineers at Robert 
Bosch Gmbh in Germany in the early 1980s.

• Early focus - develop a communication system between a number of 
ECUs (electronic control units).

• New standard - none of the communication protocols at that time 
met the specific requirements for speed and reliability so the 
engineers developed their own standard.

History



CANBUS Timeline

 1983 : First CANBUS project at Bosch

 1986 : CAN protocol introduced

 1987 : First CAN controller chips sold

 1991 : CAN 2.0A specification published

 1992 : Mercedes-Benz used CAN network

 1993 : ISO 11898 standard

 1995 : ISO 11898 amendment

 Present : The majority of vehicles use CAN bus.

CANBUS TIMELINE



CANBUS and the OSI Model

• CAN is a closed network

– – no need for security, sessions or logins.

– - no user interface requirements.

• Physical and Data Link layers in silicon.

INTRODUCTION



CANBUS Physical Layer

Conventional multi-wire looms
CAN bus network

 Physical medium – two wires terminated at both ends by 
resistors.

 Differential signal - better noise immunity.

 Benefits:

 Reduced weight, Reduced cost

 Fewer wires = Increased reliability

vs.

CANBUS and the OSI Model



Transmission Characteristics

 Up to 1 Mbit/sec.

 Common baud rates: 1 MHz, 500 KHz and 125 KHz

 All nodes – same baud rate

 Max length:120’ to 15000’ (rate dependent)

Transmission Characteristics



Message Oriented Transmission Protocol

• Each node – receiver & transmitter

• A sender of information transmits to all devices on the bus

• All nodes read message, then decide if it is relevant to them

• All nodes verify reception was error-free

• All nodes acknowledge reception

CAN bus

Message Oriented Transmission Protocol



Message Format

• Each message has an ID, Data and overhead.

• Data –8 bytes max

• Overhead – start, end, CRC, ACK

Message Format



Example of Message TransactionExample of Message Transaction



Bus Arbitration

• Arbitration – needed when multiple nodes try to transmit at the 
same time

• Only one transmitter is allowed to transmit at a time.

• A node waits for bus to become idle

• Nodes with more important messages continue transmitting

CAN bus
© 2005 Microchip Technology Incorporated. All Rights Reserved.

Bus Arbitration



Bus Arbitration

• Message importance is encoded in message ID.

Lower value = More important

• As a node transmits each bit, it verifies that it sees the same bit 
value on the bus that it transmitted.

• A “0” on the bus wins over a “1” on the bus.

• Losing node stops transmitting, winner continues.

Bus Arbitration



Summary

• CAN bus – Controller Area Network bus

• Primarily used for building ECU (electronic control units). Networks in 
automotive applications.

• Two wires

• OSI - Physical and Data link layers

• Differential signal - noise immunity

• 1Mbit/s, 120

• Messages contain up to 8 bytes of data

Summary



Bus arbitration

A “0” (low voltage) on the bus by 1 node wins over a “1” (high 
voltage) on the bus.

Bus arbitration



Bus Arbitration FlowchartBus Arbitration Flowchart



UNIT- V  

CAN STANDARDS



• Configuration files,

• Service data objectives, 

• Network  management CAN open messages,

• Device profile encoder

UNIT- V



• The Controller Area Network, commonly known as CAN, was originally 
designed for use in automobiles. 

• By virtue of its massive adoption by automakers worldwide, 

• low-cost microcontrollers with CAN controller interfaces are available from 
over twenty manufacturers, making CAN a mainstream network technology 

INTRODUCTION TO CANOPEN



Moreover,

• CAN has migrated into many non-automobile applications over the
last ten years creating a requirement for an open,

• Standardized higher-layer protocol that provides a reliable message
exchange system along with a means to detect,

• Configure and operate nodes

• Several higher-layer CAN protocols emerged such as SAE
J1939, DeviceNet and CANopen.

INTRODUCTION TO CANOPEN



• While each protocol has its own special purpose, CANopen is the 
most popular higher-layer protocol for embedded networking 
applications .

• Those networks that are completely hidden within a machine cell and 
is found in over twenty vertical markets such as,

• Transportation, medical, industrial machinery, building automation 
and military, just to name a few.

INTRODUCTION TO CANOPEN



• In February of 1986, Robert Bosch introduced the CAN (Controller
Area Network) serial bus system at the SAE congress in Detroit.

• In mid-1987, Intel delivered the first stand-alone CAN controller
chip, the 82526. Shortly thereafter, Philips Semiconductors
introduced the 82C200.

• Today, almost every new passenger car manufactured in Europe is
equipped with at least one CAN network. Also used in other types of
vehicles, from trains to ships, as well as in industrial controls, CAN is
one of the most dominating bus protocols.

• To date, chip manufacturers have produced and sold more than 500
million CAN devices in total.

History of CAN and CANopen



• CAN was originally developed to be used in passenger cars, 

• the first applications came from other market segments. 

• Especially in northern Europe, 

• CAN was already very popular even in its early days. 

• At the beginning of 1992, users and manufacturers established the 
CAN in Automation (CiA) international users and manufacturers 
association. 

History of CAN and CANopen



• One of the first tasks of the CiA was the specification of the 
CAN Application Layer (CAL).

• Although the CAL approach was academically correct and it was 
possible to use it in industrial applications, every user needed to 
design a new profile because CAL was a true application layer. 

• Since 1993 and within the scope of the Esprit project ASPIC, 

• a European consortium led by Bosch had been developing a 
prototype of what would become CANopen, the CAL-based profile for 
embedded networking in production cells. 

History of CAN and CANopen



• In 1995, CiA released the completely revised CANopen
communications profile.

• The CANopen profile family defines a framework for programmable
systems as well as different device,

• Interface and application profiles. This is an important reason why
whole industry segments

• (e.g. printing machines, maritime applications, medical systems, etc.)
decided to use CANopen during the late 1990s.

Cont….



• In the early 1990s, engineers at the US mechanical engineering company 
Cincinnati Milacron started a joint venture together with Allen-Bradley and 
Honeywell Microswitch regarding a control and communications project 
based on CAN. 

• However, after a short while important project members changed jobs and 
the joint venture fell apart. 

• But Allen-Bradley and Honeywell continued the work separately. 

Cont….



• This led to the two higher layer protocols ‘DeviceNet’ and ‘Smart
Distributed System’ (SDS), which are quite similar, at least in the lower
communication layers.

• In early 1994, Allen-Bradley turned the DeviceNet specification over to the
Open DeviceNet Vendor Association (ODVA), which boosted the popularity
of DeviceNet.

• Honeywell failed to go a similar way with SDS, which makes SDS look more
like an internal solution by Honeywell Microswitch.

Cont….



• DeviceNet was developed especially for factory automation and therefore 
presents itself as a direct opponent to protocols like Profibus-DP and 
Interbus. 

• Providing off-the-shelf plug-and-play functionality, DeviceNet has become 
the leading bus system in this particular market segment in the US.

Cont….



• With DeviceNet and CANopen, two standardized (EN 50325) application
layers are now available, addressing different markets.

• DeviceNet is optimized for factory automation and CANopen is especially
well suited for embedded networks in all kinds of machine controls.

• This has made proprietary application layers obsolete; the necessity to
define application-specific application layers is history (except, perhaps, for
some specialized high-volume embedded systems).

Cont….



• Of course, the more than 50 semiconductor vendors who have 
implemented CAN modules into their micro-controllers and ASICs are 
mainly focused on the automotive industry. 

• Since the mid-1990s, Infineon Technologies (formerly Siemens) and 
Motorola have shipped large quantities of CAN controllers to European 
passenger car manufacturers.

• As a next wave, Far Eastern semiconductor vendors have also offered CAN 
controllers since the late 1990s. 

Cont….



• Since 1992, Mercedes-Benz has been using CAN in their high-end passenger 
cars.

• Now nearly all new European passenger cars are equipped with several 
networks, with some high-end cars implementing up to five CAN networks.

• Although the CAN protocol is now 15 years old, it is still being enhanced. 

• In the last two years an ISO task force defined a protocol for a time-
triggered transmission of CAN messages. 

Cont….



• The TTCAN extension will add about five to ten years to the lifetime of CAN.

• Considering CAN is still at the beginning of a global market
penetration, even conservative estimates show further growth for this bus
system for the next ten to fifteen years.

• This is underlined by the fact that the US and Far Eastern car manufacturers
are just starting to use CAN in the production of their vehicles.

Cont….



• Furthermore, new potentially high-volume applications are in the
pipeline – not only in passenger cars but also
entertainment, domestic appliances and automatic building
doors, among many others

• Several enhancements regarding the approval for different safety-
relevant and safety-critical applications can be expected for the
higher-layer protocols (HLP).

Cont….



• The German professional association BIA and the German safety 
standards authority TÜV have already certified some of the 
proprietary CAN-based safety systems. 

• CANopen-Safety and DeviceNet Safety are the first standardized CAN 
solutions to earn a tentative TÜV approval. 

• Approval of the CANopen framework for maritime applications by 
one of the leading classification societies worldwide, Germanischer
Lloyd, is in preparation. 

• Among other things, this specification defines the automatic 
switchover from a CANopen network to a redundant bus system.

Cont….



• In the future, CiA members will define several CANopen application 
profiles. 

• An application profile specifies all device interfaces used in a specific 
application. 

• This includes direct communication between dedicated devices 
overcoming the master/slave PDO communication as usual in 
standard device profiles. 

• The first CANopen application profiles will be for automatic building 
doors, lift control systems, road construction machinery and light 
railways.

Cont….



Communication in the Automation Pyramid 



Inputs and Outputs- Traditional



Inputs and Outputs - Embedded



Master/ Slave Communication Model



Direct Communication Model



Sample Network Layout



OSI MODEL



OSI MODEL



OSI MODEL cont….



OSI MODEL cont…



OSI MODEL cont…



• Electronic Data Sheets (EDS) offer a standardized way of specifying
supported Object Dictionary entries.

• Any manufacturer of a CANopen module delivers such a file with the
module, which in layout is similar to the “.ini” files used with
Microsoft Windows operating systems.

• (Note: a future standard for EDS files based on XML is currently in 
development.) 

Electronic Data Sheets



• An example of an Object Dictionary entry in an EDS file is:

[1000]

ParameterName=DeviceType

ObjectType=0x07

DataType=0x0007

AccessType=ro

DefaultValue=0x00030191

PDOMapping=0

• The example above shows the EDS definition of the Object Dictionary 
entry [1000h,00h]. The data type is 7 (UNSIGNED32, see Table 1.1).

Electronic Data Sheets



Electronic Data Sheets


