

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	PRINCIP	PRINCIPLES OF DISTRIBUTED EMBEDDED SYSTEMS						
Course Code	BESB06	BESB06						
Programme	M.Tech	M.Tech						
Semester	I E	I EMBEDDED SYSTEMS						
Course Type	PROFESSIONAL CORE ELECTIVE							
Regulation	IARE - R18							
Theory				Practical				
Course Structure	Lecture	s Tutorials	Credits	Laboratory	Credits			
3 - 3 -								
Chief Coordinator	Dr. S. Vinoth, Associate Professor, ECE							
Course Faculty	Dr. S. Vinoth, Associate Professor, ECE							

I. COURSE OVERVIEW:

2000

This subject deals with the importance of real time communication systems, classification of real time systems, real time operating systems and the design of real-time protocols are also highlighted. Protocols, such as the CAN (Control Area Network) system should provide a predictable service to the application tasks of distributed real-time applications. This Course can be used by professionals in the industry, the relevance of the latest scientific insights to the solution of everyday problems in the design and implementation of distributed and embedded real-time systems.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Pre-requisites	Credits
UG	-	-	-	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
PDES	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
×	Copen Ended Experiments						

V. EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIE during the semester, marks are awarded by taking average of two session examinations.

Semester End Examination (SEE): The SEE shall be conducted for 70 marks of 3 hours duration. The syllabus for the theory courses shall be divided into FIVE UNITS and each UNIT carries equal weight age in terms of marks distribution. The question paper pattern shall be as defined below. Two full questions with 'either' 'or' choice will be drawn from each UNIT. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.	
30 %	To test the analytical skill of the concept.	
20 % To test the application skill of the concept.		

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty/teacher handling the course as given in Table 4. CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Technical Seminar and Term Paper.

Component	Theory		T-4-1 Marsha
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	Total Marks
CIA Marks	25	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one-mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments/ Exams
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Guest Lectures
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Design Exercises
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid	2	Presentation on real world problems
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	1	
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	1	
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. 3 = High: 2 = Medium: 1 = Low	1	

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM EDUCATIONAL OUTCOMES ARE ASSESSED:

	Program educational Outcomes (PEOs)	Strength	Proficiency assessed
			by
PEO 1	Professional Skills:	2	Board Lectures
	An ability to understand the basic concepts in		and Assignments
	Electronics & Communication Engineering and to		
	apply them to various areas, like Electronics,		
	Communications, Signal processing, VLSI, Embedded		
	systems etc., in the design and implementation of		
	complex systems.		
PEO 2	Problem-solving skills:	2	Ideas implementation/
	An ability to solve complex Electronics and		Tutorials
	communication Engineering problems, using latest		
	hardware and software tools, along with analytical		
	skills to arrive cost effective and appropriate solutions.		

PEO 3 Successful career and Entrepreneurship: 2 An understanding of social awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur	Proficiency assessed by	Strength	Program educational Outcomes (PEOs)			
optimar resources as an Entrepreneur.	Seminars, Projects and Technical presentation	2	An understanding of social awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain			

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES :

The cour	The course should enable the students to:				
Ι	Understand the design principles of distributed embedded systems				
II	Design CAN network based systems.				
III	Understand RTOS to design embedded systems.				

IX. COURSE OUTCOMES (COs):

COs	Course Outcomes	CLOs	Course Learning Outcome
CO 1	Understand Real Time Computer Systems requirements Real Time	CLO 1	Understand Real Time Computer Systems requirements Real Time Systems and Real Time Communication.
	Systems and Real Time Communication.	CLO 2	Understand global time, Internal , external clock synchronization and Real Time Model
		CLO 3	Understand Real Time Communication, temporal relations and dependability
		CLO 4	Understand Power energy awareness, event triggered, rate constrained and time triggered.
CO 2	Understand and remember Operating System, Real Time Operating Systems	CLO 5	Understand and remember Operating System, Real Time Operating Systems Inter component communication
	Inter component communication	CLO 6	Understand and remember task management, dual role of time, inter task interactions process input/output and agreement protocols
		CLO 7	Understand and remember error detection and importance of RTOS, System design and scheduling problem
CO 3	Understand and remember state and dynamic scheduling, system design and validation time- triggered architecture.	CLO 8	Understand and remember state and dynamic scheduling, system design and validation time - triggered architecture
CO 4	Understand and remember Can open CAN open	CLO 9	Understand and remember CAN open, CAN open standard object directory
	standard object directory.	CLO 10	Understand and remember Electronic data sheets , devices , analyze CAN Standards
		CLO 11	Understand and remember CAN Standards and configuration files ,service data objectives and network management CAN open messages
		CLO 12	Understand and remember CAN Standards and device profile encoder, real time environment RTOS with examples of Real Time Communication.
CO 5	Analyze to understand CAN	CLO 13	Analyze to understand real time system design with
	and Design CAN network		CAN Standards

COs	Course Outcomes	CLOs	Course Learning Outcome
	based systems with examples.	CLO 14	Analyze to understand RTOS to design Embedded Systems with examples
		CLO 15	Analyze to understand CAN and Design CAN network based systems with examples.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
BESB06.01	CLO 1	Understand real time computer systems		2
		requirements real time systems and real time	PO 3	
		communication.		
BESB06.02	CLO 2	Understand global time, Internal, external clock	PO 1, PO 2,	2
		synchronization and Real Time Model	PO 3, PO 4	
BESB06.03	CLO 3	Understand Real Time Communication, temporal	PO 1,	2
		relations and dependability	PO 2	
BESB06.04	CLO 4	Understand Power energy awareness, event	PO 1, PO 2,	1
		triggered, rate constrained and time triggered.	PO 3	
BESB06.05	CLO 5	Understand and remember Operating System,	PO 1, PO 2,	2
		Real Time Operating Systems Inter component	PO 3	
		communication		
BESB06.06	CLO 6	Understand and remember task management, dual	PO 1, PO 2,	2
		role of time, inter task interactions process	PO 4	
		input/output and agreement protocols		
BESB06.07	CLO 7	Understand and remember error detection and	PO 1,	3
		importance of RTOS, System design and	PO 2, PO 4	
		scheduling problem		
BESB06.08	CLO 8	Understand and remember state and dynamic	PO 1, PO 2,	1
		scheduling, system design and validation time	PO 3	
		triggered architecture		
BESB06.09	CLO 9	Understand and remember CAN open, CAN open	PO 1, PO 2,	1
		standard object directory	PO 3	
BESB06.10	CLO 10	Understand and remember Electronic data sheets,	PO 1, PO 2	1
		devices ,analyze CAN Standards		
BESB06.11	CLO 11	Understand and remember CAN Standards and	PO 3, PO 4	2
		configuration files ,service data objectives and		
		network management CAN open messages		
BESB06.12	CLO 12	Understand and remember CAN Standards and	PO 1, PO 2	2
		device profile encoder, real time environment		
		RTOS with examples of Real Time		
		Communication.		
BESB06.13	CLO 13	Analyze to understand real time system design	PO 1, PO 2,	2
		with CAN Standards	PO 4	
BESB06.14	CLO 14	Analyze to understand RTOS to design Embedded	PO 3, PO 4	2
		Systems with examples		
BESB06.15	CLO 15	Analyze to understand CAN and Design CAN	PO 2, PO 4	2
		network based systems with examples.		

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course	Program Outcomes (POs)							
Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO5	PO6	PO7	
CO 1	3	2	2	2				
CO 2	2	2	1	1				
CO 3	1	2	2	1				
CO 4	2		2	2				
CO 5			2	1				

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Learning			Program	m Outcom	es (POs)		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO 1	2	2	2				
CLO 2	2	2	2	2			
CLO 3	2	2					
CLO 4	1	1	1				
CLO 5	2	2	2				
CLO 6		1	1	1			
CLO 7	1	1	1				
CLO 8	2	2		2			
CLO 9	1	1	1				
CLO 10	2	2					
CLO 11	2		2	2			
CLO 12	2		2	2			
CLO 13	2	2					
CLO 14	2	2		2			
CLO 15		2	2				

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO2, PO 3, PO 4	SEE Exams	PO1, PO2, PO 4	Assignments	PO 1	Seminars	PO 1, PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XIV. ASSESSMENT METHODOLOGIES-INDIRECT

>	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

UNIT-I	REAL-TIME ENVIRONMENT
internal and relations, of	computer system requirements, classification of real time systems, simplicity, global time, nd external clock synchronization, real time model. Real time communication, temporal dependability, power and energy awareness, real time communication, event triggered, rate d, time triggered.
UNIT-II	REAL-TIME OPERATING SYSTEMS
-	bonent communication, task management and dual role of time, Inter task interactions, process ut, agreement protocols, Error detection.
UNIT-III	SYSTEM DESIGN
Scheduling architectur	g problem, static and dynamic scheduling, system design. Validation, time-triggered e.
UNIT-IV	INTRODUCTION TO CAN
Introductio	on to CAN open CAN open standard, object directory, Electronic data sheet and devices.
UNIT-V	CAN STANDARDS
Configurat encoder.	ion files, service data objectives, network management CAN open messages, device profile
Text Book	IS:
Appli 2. Glaf I	ann Kopetz, "Real–Time systems-Design Principles for distributed Embedded cations", Springer, 2 nd Edition, 2011. P. Feiffer, Andrew Ayre and Christian Keyold, "Embedded networking with CAN and open", Copperhill Media Corporation, 1 st Edition, 2008.
Reference	Books:
2011. 2. Frank	mal, 'Embedded system-Architecture-Programming-Design", Tata Mc Graw Hill, 3 rd Edition, Vahid, Tony Givargis, "Embedded System Design", John Wiley and sons, 2 nd Edition, 2002. B Das, "Embedded Systems-An Integrated Approach", Pearson,1 st Edition,2013.

Lyia B Das, Embedded Systems-An megrated Approach, Fearson, Fearson, Fearson, 1 St Edition, 2013.
David E. Simon, "An Embedded Software Primer", Pearson Education, 1st Edition, 1999.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Real-time computer system requirements	CLO 1	T1:1.1,1.2 T2:1.2
2	Classification of real time systems	CLO 1	T1:1.5,1.4
3	Simplicity, global time	CLO 2	T1:3.1 T2:1.5
4	Internal and external clock synchronization	CLO 2	T1:3.4,3.5 T2:1.8

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
5	Real time model and Real time communication	CLO 3	T1:1.3,1.4 T2: 1.10
6	Temporal relations, dependability	CLO 3	T1:7.1,7.3 T2:6.2
7	Power and energy awareness	CLO 4	T1:5.6 T2:6.3
8	Event triggered architecture, rate constrained	CLO 4	T1:4.3 T2:5.2
9	Time triggered architecture	CLO 4	T1: 4.4 T2:5.3
10	Inter component communication	CLO 5	T1:4.5
11	Task management and dual role of time	CLO 5	T2:5.4 T1:4.6
12	Inter task interactions	CLO 6	T2:5.5 T1: 4.5
13	Process input/output	CLO 6	T2: 5.6 T1:4.4
14	Agreement protocols	CLO 6	T2:5.5 T1:4.6
15	Failure faults and errors	CLO 7	T2:5.5 T1:6.1,6.2
16	Error detection	CLO 7	T2:5.6 T1:4.7
17	Fault-Tolerant Units	CLO 7	T2:5.8 T1:4.7
18	System design	CLO 8	T2:5.8 T1:4.8
19	Scheduling problem	CLO 8	T2:5.9 T1:4.9
20	Static and dynamic scheduling	CLO 8	T2:5.7 T1:6.2
21	Validation	CLO 8	T2:5.6 T1:6.3
22	Time triggered architecture	CLO 8	T2:5.7 T1:8.1
			T2:5.8
23	Introduction to Time-Triggered Protocols	CLO 8	T1:8.2 T2:5.3
24	Overview of the TTP/C Protocol Layers	CLO 8	T1:8.3 T2:5.2
25	The Basic CNI, Internal Operation of TTP/C	CLO 8	T1:8.4 T2:5.3
26	TTP/A for Field Bus Applications	CLO 8	T1:8.5 T2:7.5
27	Wide-Area Real-Time Systems	CLO 8	T1:14.1, 14.2
28	CAN Overview, An Introduction to CAN	CLO 9	T2: 5.2
29	Object Dictionary Organization	CLO 9	T2:5.3 R2:7.2
30	Data Type Definitions, Communication Profile	CLO 9	T2:5.4 R2:7.3
31	CAN open Devices, Object Dictionary Access Sequences	CLO 9	T2:5.5 R2:7.5
32	Using Identifiers and Objects	CLO 10	T2: 2.2 R2: 5.6

Lecture	Topics to be covered	Course	Reference
No		Learning	
		Outcomes	
		(CLOs)	
33	The Electronic Data Sheets (EDS)	CLO 10	T2:2.3
			R2:5.7
34	Device Configuration Files (DCF)	CLO 11	T2:2.4
			R2:5.8
35	Choosing the Devices and Tools	CLO 11	T2:4.1
			R2:9.1
36	Accessing the CAN open Object Dictionary (OD) with Service	CLO 12	T2:2.2
	Data Objects (SDO)		R2:9.2
37	Handling Process Data with Process Data Objects (PDO)	CLO 12	T2: 2.1
			R2: 9.1
38	Network Management (NMT)	CLO 13	T2:2.6
			R1:5.1
39	CAN open Example Configurations and Exercises	CLO 13	T2:2.7
			R1:5.2
40	Contents of CAN open Messages	CLO 13	T2:3.8
			R1:5.5
41	Masters and Managers (DS302)	CLO 14	T2:3.1
			R1:5.6
42	Device Profile for Encoder	CLO 14	T2:3.2
			R1:5.4
43	Device Profile for Generic I/O (DS401)	CLO 15	T2:3.4
			R1:5.5
44	Safety-Relevant Communication (DSP304, DSP307)	CLO 15	T2:3.4
			R1:5.5
45	Evaluating the System Requirements	CLO 15	T2:4.1
			R2:5.5

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S. NO.	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PEOs
1	Real time embedded system and communication.	Seminars/NPTEL	PO 1	PEO 1, PEO 2

Prepared by: Dr. S. Vinoth, Associate Professor

HOD, ECE