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POWER SYSTEM NETWORK MATRICES 

 

 

INTRODUCTION 

 

The solution of a given linear network problem requires the formation of a set of equations 

describing the response of the network. The mathematical model so derived, must describe the 

characteristics of the individual network components, as well as the relationship which governs 

the interconnection of the individual components. In the bus frame of reference the variables are 

the node voltages and node currents. 

 
 

The independent variables in any reference frame can be either currents or voltages. 

Correspondingly, the coefficient matrix relating the dependent variables and the independent 

variables will be either an impedance or admittance matrix. The formulation of the appropriate 

relationships between the independent and dependent variables is an integral part of a digital 

computer program for the solution of power system problems. The formulation of the network 

equations in different frames of reference requires the knowledge of graph theory. Elementary 

graph theory concepts are presented here, followed by development of network equations in the 

bus frame of reference. 
 

ELEMENTARY LINEAR GRAPH THEORY: IMPORTANT TERMS 
 

The geometrical interconnection of the various branches of a network is called the topology of the 

network. The connection of the network topology, shown by replacing all its elements by lines is 

called a graph. A linear graph consists of a set of objects called nodes and another set called 

elements such that each element is identified with an ordered pair of nodes. An element is defined as 

any line segment of the graph respective of the characteristics of the components involved. A graph 

in which a 



 

 

direction is assigned to each element is called an oriented graph or a directed 

graph. It is to be noted that the directions of currents in various elements are 

arbitrarily assigned and the network equations are derived, consistent with the 

assigned directions. Elements are indicated by numbers and the nodes by 

encircled numbers. The ground node is taken as the reference node. In electric 

networks the convention is to use associated directions for the voltage drops. 

This means the voltage drop in a branch is taken to be in the direction of the 

current through the branch. Hence, we need not mark the voltage polarities in the 

oriented graph. 

 
 

Connected Graph : This is a graph where at least one path (disregarding 

orientation) exists between any two nodes of the graph. A representative power 

system and its oriented graph are as shown in Fig 1, with: 
 

e = number of elements = 6 
 

n = number of nodes = 4 

  
l = number of links = e-b = 3 
 
Tree = T(1,2,3) and 
 

b = number of branches = n-1 = 3 
 
Co-tree = T(4,5,6) 

 

Sub-graph : G is a sub-graph of G if the following conditions are satisfied: 
 

  sG is itself a graph  

  Every node of sG is also a node of G  

  Every branch of sG is a branch of G  
 

For eg., sG(1,2,3), sG(1,4,6), sG(2), sG(4,5,6), sG(3,4),.. are all valid sub-graphs 

of the oriented graph of Fig.1c. 

 

Loop : A sub-graph L of a graph G is a loop if 

  L is a connected sub-graph of G  
 

 Precisely two and not more/less than two branches are incident on each node  

in L
 

In Fig 1c, the set{1,2,4} forms a loop, while the set{1,2,3,4,5} is not a valid, although 
 

the set(1,3,4,5) is a valid loop. The KVL (Kirchhoff’s  Voltage Law) for the loop is 
 

stated as follows: In any lumped network, the algebraic sum of the branch voltages 
around any of the loops is zero.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1a. Single line diagram of a power system  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1b. Reactance diagram  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1c. Oriented Graph  



 
Cutset : It is a set of branches of a connected graph G which satisfies the 

following conditions : 
 

 The removal of all branches of the cutset causes the remaining graph to have 

two separate unconnected sub-graphs.  
  

 The removal of all but one of the branches of the set, leaves the remaining 

graph connected. 

 

Referring to Fig 1c, the set {3,5,6} constitutes a cutset since removal of them 

isolates node 3 from rest of the network, thus dividing the graph into two 

unconnected sub- 
 

graphs. However, the set(2,4,6) is not a valid cutset! The KCL (Kirchhoff’s Current 
 

Law) for the cutset is stated as follows: In any lumped network, the algebraic 

sum of all the branch currents traversing through the given cutset branches is 

zero. 

 
Tree: It is a connected sub-graph containing all the nodes of the graph G, but 

without any closed paths (loops). There is one and only one path between every 

pair of nodes in a tree. The elements of the tree are called twigs or branches. In a 

graph with n nodes, 
 

The number of branches: b = n-1 (1) 
 

For the graph of Fig 1c, some of the possible trees could be T(1,2,3), T(1,4,6), 

T(2,4,5), T(2,5,6), etc. 

 

Co-Tree : The set of branches of the original graph G, not included in the tree is 

called the co-tree. The co-tree could be connected or non-connected, closed or 

open. The branches of the co-tree are called links. By convention, the tree 

elements are shown as solid lines while the co-tree elements are shown by dotted 

lines as shown in Fig.1c for tree T(1,2,3). With e as the total number of elements, 
 

The number of links: l = e – b = e – n + 1 (2) For the graph of Fig 1c, 

the co-tree graphs corresponding to the various tree graphs are as shown in the 

table below: 
 

Tree T(1,2,3) T(1,4,6) T(2,4,5) T(2,5,6)  
 

Co-Tree T(4,5,6) T(2,3,5) T(1,3,6) T(1,3,4)  



 

Basic loops: When a link is added to a tree it forms a closed path or a loop. 

Addition of each subsequent link forms the corresponding loop. A loop 

containing only one link and remaining branches is called a basic loop or a 

fundamental loop. These loops are defined for a particular tree. Since each link is 

associated with a basic loop, the number of basic loops is equal to the number of 

links. 
 

Basic cut-sets: Cut-sets which contain only one branch and remaining links are 

called basic cutsets or fundamental cut-sets. The basic cut-sets are defined for a 

particular tree. Since each branch is associated with a basic cut-set, the number 

of basic cut-sets is equal to the number of branches. 

 
 

Examples on Basics of LG Theory: 
 

Example-1: Obtain the oriented graph for the system shown in Fig. E1. Select 

any four possible trees. For a selected tree show the basic loops and basic cut-

sets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E1a. Single line diagram of Example System  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. E1b. Oriented Graph of Fig. E1a.  



 

 

For the system given, the oriented graph is as shown in figure E1b. some of the 

valid Tree graphs could be T(1,2,3,4), T(3,4,8,9), T(1,2,5,6), T(4,5,6,7), etc. The 

basic cut-sets (A,B,C,D) and basic loops (E,F,G,H,I) corresponding to the 

oriented graph of Fig.E1a and tree, T(1,2,3,4) are as shown in Figure E1c and 

Fig.E1d respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. E1c. Basic Cutsets of Fig. E1a.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E1d. Basic Loops of Fig. E1a.  



 
 
 

 

INCIDENCE MATRICES 
ˆ 

 

  
Element–node incidence matrix: 

A 

 
The incidence of branches to nodes in a connected graph is given by the element-node 

 
ˆ ˆ  

incidence matrix, A . An element aij of A is defined as under: 
aij  = 1 if the branch-i is incident to and oriented away from the node-j.  

= -1 if the branch-i is incident to and oriented towards the node-j. 
 

= 0 if the branch-i is not at all incident on the node-j. 
 
 

ˆ 

Thus the dimension of A is e  n, where e is the number of elements and n is the 

number of nodes in the network. For example, consider again the sample system 
 

with its oriented graph as in fig. 1c. the corresponding element-node incidence 

matrix, is obtained as under: 

 

 Nodes 
0 1 2 3  

 

Elements 
 

     
 

 1 1 -1   
 

 2 1  -1  
 

A

ˆ
  = 3 1   -1 

 

 4  1 -1  
 

 5   1 -1 
 

 6  1  -1 
  

 

 

It is to be noted that the first column and first row are not part of the actual 

matrix and they only indicate the element number node number respectively as 

shown. Further, the sum of every row is found to be equal to zero always. Hence, 

the rank of the matrix is less than n. Thus in general, the matrix A satisfies the 

identity: 

n 

∑ aij = 0    i = 1,2,…..e. (3) 

j=1  



 

Bus incidence matrix: A 

 

By selecting any one of the nodes of the connected graph as the reference node, 
the ˆ  

corresponding column is deleted from A to obtain the bus incidence matrix, A. 

The dimensions of A are e  (n-1) and the rank is n-1. In the above example, 

selecting node-0 as reference node, the matrix A is obtained by deleting the 

column corresponding to node-0, as under: 

 

 Buses  
1 2 3 

    
 

 

Elements 
     

 

         
 

 1  -1       
 

 2   -1    b Branches 
 

A = 3    -1 =    
 

 

4 

 

1 -1 

     
 

       
 

 5   1 -1   
A

l Links 
 

 6  1  -1     
  

 

 

It may be observed that for a selected tree, say, T(1,2,3), the bus incidence 

matrix can be so arranged that the branch elements occupy the top portion of the 

A-matrix followed by the link elements. Then, the matrix-A can be partitioned 

into two sub matrices Ab and Al as shown, where, 
 

(i) Ab is of dimension (bxb) corresponding to the branches and  
(ii) Al is of dimension (lxb) corresponding to links. 

 

A is a rectangular matrix, hence it is singular. Ab is a non-singular square matrix 

of dimension-b. Since A gives the incidence of various elements on the nodes 

with their direction of incidence, the KCL for the nodes can be written as 

 
   

A
T
  i   = 0 (4) 

where A
T
 is the transpose of matrix A and i is the vector of branch currents. 

Similarly for the branch voltages we can write,  
 

v = A   Ebus (5) 

 

 

 

 

   



 

Examples on Bus Incidence Matrix: 
 

Example-2: For the sample network-oriented graph shown in Fig. E2, by selecting a 
ˆ
 . 

tree, T(1,2,3,4), obtain the incidence matrices A and A Also show the 

partitioned form of the matrix-A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. E2. Sample Network-Oriented Graph 

 

     nodes     
 

 e \ n 0 1 2 3 4   
 

  
1 

 
1  1 0 0 0 

  
 

     
 

  2  1 0  1 0 0   
 

  
3 

 

1 0 0 0 

   
 

ˆ    1   
 

A = Elements  4  0 0 0  1 1   
 

       

 1 

   
 

  5  0 0 1 0   
 

  6  0 1  1 0 0   
 

    

0 0 1 0 
   

 

  7   1  
 

      

buses 

   
 

         
 

  e \ b  1 2 3 4  
 

   
1 

 
 1 0 0 0 

 
 

     
 

   2  0  1 0 0  
 

   
3 

 
0 0 0 

   
 

      1 
 

A = Elements 
    

 1 
   

 

 4  0 0  1  
 

   

5 

 

0 1  1 0 

 
 

     
 

   6  1  1 0 0  
 

   
7 

 

0 1 0 
   

 

     1 
 

          







 

  



 
 
 

 

Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two 

sub-matrices as under: 
 

   buses    
 

 b \ b 1 2 3 4  
 

  
1  1 0 0 0 

 
 

   
 

Ab = branches  2 0  1 0 0  
 

  
3 0 0 0 

  
 

   1  
 

     

 1 

  
 

  4 0 0 1  
  

 

 

l \ b 
 

A = links 

 

5
 

l  6 

 7 

 

 
 
 

 buses   
 

1 2 3 4  
 

0 1  1 0 
 

 

 
 

1  1 0 0  
 

0 1 0  1 
 

 

 
  
 

 
 

Example-3: For the sample-system shown in Fig. E3, obtain an oriented graph. By 
ˆ .  

selecting a tree, T(1,2,3,4), obtain the incidence matrices A and A Also show 

the partitioned form of the matrix-A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. E3a. Sample Example network 
 

 

Consider the oriented graph of the given system as shown in figure E3b, below.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. E3b. Oriented Graph of system of Fig-E3a. 
 

 

Corresponding to the oriented graph above and a Tree, T(1,2,3,4), the 

incidence matrices Ậand A can be obtained as follows: 

 

 e\n 0 1 2 3 4  e\b 1 2 3 4 
 

 1 1 -1     1 -1    
 

ˆ
A      = 

2 1  -1    2  -1   
 

3 1   -1  A = 3   -1  
 

 4 1    -1  4    -1 
 

 5    1 -1  5   1 -1 
 

 6   -1 1   6  -1 1  
 

 7  1 -1    7 1 -1   
 

 8   -1  1  8  -1  1 
 

 9  -1  1   9 -1  1  
  

 
 

 

Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two 

sub-matrices as under: 

 

 e\b 1 2  3 4  e\b 1 2 3 4 

 1 -1      5   1 -1 

Ab = 2  -1    Al = 6  -1 1  

 3    -1   7 1 -1   

 4     -1  8  -1  1 

        9 -1  1   



PRIMITIVE NETWORKS 
 

So far, the matrices of the interconnected network have been defined. These 

matrices contain complete information about the network connectivity, the 

orientation of current, the loops and cutsets. However, these matrices contain no 

information on the nature of the elements which form the interconnected 

network. The complete behaviour of the network can be obtained from the 

knowledge of the behaviour of the individual elements which make the network, 

along with the incidence matrices. An element in an electrical network is 

completely characterized by the relationship between the current through the 

element and the voltage across it. 

General representation of a network element: In general, a network element 

may contain active or passive components. Figure 2 represents the alternative 

impedance and admittance forms of representation of a general network 

component. 

 
 

Epp Ep p  
 

ipq 
 

 

epq 

(ipq+ jpq) 
 

jpq 

 

z 

  

vpq = Ep - Eq 
pq

 
 
 

pq 
 

 ipq ipq 

   

Eq    q Eq    q 
 
 
 
 

Fig.2 Representation of a primitive network element 
 

(a) Impedance form (b) Admittance form 



 
 

The network performance can be represented by using either the impedance or 

the admittance form of representation. With respect to the element, p-q, let,  
vpq = voltage across the element p-q, 

epq = source voltage in series with the element p- 
q, ipq= current through the element p-q, 
jpq= source current in shunt with the element p- 
q, zpq= self impedance of the element p-q and 
ypq= self admittance of the element p-q. 

 

Performance equation: Each element p-q has two variables, vpq and ipq. The 

performance of the given element p-q can be expressed by the performance 

equations as under: 
 

vpq + epq = 

zpqipq (in its impedance form)  

ipq + jpq = 

ypqvpq (in its admittance form) (6) 
 

 

Thus the parallel source current jpq in admittance form can be related to the 

series source voltage, epq in impedance form as per the identity: 
 

jpq = - ypq epq (7) 
 

 

A set of non-connected elements of a given system is defined as a primitive 

Network and an element in it is a fundamental element that is not connected to 

any other element. In the equations above, if the variables and parameters are 

replaced by the corresponding vectors and matrices, referring to the complete set 

of elements present in a given system, then, we get the performance equations of 

the primitive network in 
 

the form as under:  

v + e = [z] i  

i + j = [y] v (8) 
 

 

Primitive network matrices: 
A diagonal element in the matrices, [z] or [y] is the self impedance zpq-pq  or self  

admittance, ypq-pq. An off-diagonal element is the mutual impedance, zpq-rs or mutual  
admittance, ypq-rs, the value present as a mutual coupling between the elements p-

q and r-s. The primitive network admittance matrix, [y] can be obtained also by 

 



 

inverting the primitive impedance matrix, [z]. Further, if there are no mutually 

coupled elements in the given system, then both the matrices, [z] and [y] are 

diagonal. In such cases, the self impedances are just equal to the reciprocal of the 

corresponding values of self admittances, and vice-versa. 

 
 
 
 

Examples on Primitive Networks: 
 

 

Example-4: Given that the self impedances of the elements of a network referred 

by the bus incidence matrix given below are equal to: Z1=Z2=0.2, Z3=0.25, 

Z4=Z5=0.1 and Z6=0.4 units, draw the corresponding oriented graph, and find 

the primitive network matrices. Neglect mutual values between the elements. 
 
 

 -1 0 0 

 0 -1 0 

A = 0 0 -1 

 1 -1 0 

 0 1 -1 

 1 0 -1  
 
 

 

Solution: 
 

ˆ 

The element node incidence matrix, A can be obtained from the given A matrix, by 
pre-augmenting to it an extra column corresponding to the reference node, as under. 

 

 

 1 -1 0 0 

 1 0 -1 0 

A

ˆ
  = 1 0 0 -1 

 0 1 -1 0 

 0 0 1 -1 

 0 1 0 -1 

 

      
 

 



 

Based on the conventional definitions of the elements of A , the oriented graph 

can be formed as under: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. E4 Oriented Graph 
 
 
 

 

Thus the primitive network matrices are square, symmetric and diagonal 

matrices of order e=no. of elements = 6. They are obtained as follows. 

 
 

 0.2 0 0 0 0 0 

 0 0.2 0 0 0 0 

[z] = 0 0 0.25 0 0 0 

 0 0 0 0.1 0 0 

 0 0 0 0 0.1 0 

 0 0 0 0 0 0.4  

 

And 
 

 5.0 0 0 0 0 0 

 0 5.0 0 0 0 0 

[y] = 0 0 4.0 0 0 0 

 0 0 0 10 0 0 

 0 0 0 0 10 0 

 0 0 0 0 0 2.5 
        



Example-5: Consider three passive elements whose data is given in Table E5 below. 
 

Form the primitive network impedance matrix. 
 

 

Table E5 
 

 

Element 
Self impedance (zpq-pq) Mutual impedance, (zpq-rs) 

 

    
 

number 
Bus-code, Impedance in Bus-code, Impedance in 

 

    
 

 (p-q) p.u. (r-s) p.u. 
 

     
 

1 1-2 j 0.452   
 

     
 

2 2-3 j 0.387 1-2 j 0.165 
 

     
 

3 1-3 j 0.619 1-2 j 0.234 
 

     
  

 
 

 

Solution:    
 

  1-2 2-3 1-3 
 

    
 

1-2 j 0.452 j 0.165 j 0.234 
 

 

[z] = 
2-3

 

   
 

 j 0.165 j 0.387 0 
 

1-3 j 0.234 0 j 0.619 
 

     
  

 

 Note: 
 

 
  The size of [z] is e  e, where e= number of elements,  

 

  The diagonal elements are the self impedances of the elements  
 

 
 

 
 

 The off-diagonal elements are mutual impedances between the corresponding

 elements. 


 Matrices [z] and [y] are inter-invertible.  



FORMATION OF YBUS  AND ZBUS 
 

The bus admittance matrix, YBUS plays a very important role in computer aided 

power system analysis. It can be formed in practice by either of the methods as 

under: 

1. Rule of Inspection 
2. Singular Transformation 
3. Non-Singular Transformation 
4. ZBUS Building Algorithms, etc. 

 
The performance equations of a given power system can be considered in three 
different frames of reference as discussed below: 

Frames of Reference: 
 

Bus Frame of Reference: There are b independent equations (b = no. of buses) 
relating the bus vectors of currents and voltages through the bus impedance 
matrix and bus admittance matrix: 

 
EBUS = ZBUS IBUS  

IBUS  = YBUS EBUS (9) 
 

Branch Frame of Reference: There are b independent equations (b = no. of 
branches of a selected Tree sub-graph of the system Graph) relating the branch 
vectors of currents and voltages through the branch impedance matrix and 
branch admittance matrix: 

 
EBR = ZBR IBR  

IBR  = YBR EBR (10) 
 

Loop Frame of Reference: There are b independent equations (b = no. of 

branches of a selected Tree sub-graph of the system Graph) relating the branch 

vectors of currents and voltages through the branch impedance matrix and 

branch admittance matrix: 
 

ELOOP = ZLOOP ILOOP  

ILOOP  = YLOOP ELOOP (11) 
Of the various network matrices refered above, the bus admittance matrix (YBUS) 
and the bus impedance matrix (ZBUS) are determined for a given power system 
by the rule of inspection as explained next. 
Rule of Inspection 

 
Consider the 3-node admittance network as shown in figure5. Using the basic 

branch relation: I = (YV), for all the elemental currents and applying Kirchhoff’s 

Current 
Law principle at the nodal points, we get the relations as 

under:  

At node 1: I1 =Y1V1 + Y3 (V1-V3) + Y6 (V1 – V2)  

At node 2: I2 =Y2V2 + Y5 (V2-V3) + Y6 (V2 – V1)  

At node 3: 0 = Y3 (V3-V1) + Y4V3 + Y5 (V3 – V2) (12)  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3 Example System for finding YBUS 

 

 

These are the performance equations of the given network in admittance form and 
they can be represented in matrix form as: 

 
 I

1 = (Y1+Y3 +Y6)-Y6 -Y3 

 V
1 

  
 

    
 

 
I
2 = -Y6 (Y2+Y5 +Y6) -Y5  

V
2   

 

 0 = -Y3 -Y5 (Y3 +Y4+Y5)  V3  (13) 
 

In other words, the relation of equation (9) can be represented in the form   

  

IBUS = YBUS 

EBUS      (14)   
Where, YBUS is the bus admittance matrix, IBUS & EBUS are the bus current and 
bus voltage vectors respectively.  
By observing the elements of the bus admittance matrix, YBUS of equation (13), 
it is observed that the matrix elements can as well be obtained by a simple 
inspection of the given system diagram: 

Diagonal elements: A diagonal element (Yii) of the bus admittance matrix,  
YBUS, is equal to the sum total of the admittance values of all the elements 
incident at the bus/node i, 
Off Diagonal elements: An off-diagonal element (Yij) of the bus admittance  
matrix, YBUS, is equal to the negative of the admittance value of the 
connecting element present between the buses I and j, if any. 

 

 
This is the principle of the rule of inspection. Thus the algorithmic equations for 
the rule of inspection are obtained as: 

Yii =  yij (j = 1,2,…….n)  
 

Y = - y  
(j = 1,2,…….n) 

 
 

ij ij (15) 
 

 

 
    

  



For i = 1,2,….n, n = no. of buses of the given system, yij  is the admittance of  
element connected between buses i and j and yii is the admittance of element 
connected between bus i and ground (reference bus). 

 
Bus impedance matrix  
In cases where, the bus impedance matrix is also required, it cannot be formed 
by direct inspection of the given system diagram. However, the bus admittance 
matrix determined by the rule of inspection following the steps explained above, 
can be inverted to obtain the bus impedance matrix, since the two matrices are 
inter-invertible. 

 
Note: It is to be noted that the rule of inspection can be applied only to those 
power systems that do not have any mutually coupled elements. 

 

Examples on Rule of Inspection: 

 

Example 6: Obtain the bus admittance matrix for the admittance network shown 
aside by the rule of inspection  

 

 

16 -8 -4 YBUS = 

j -8 24 -8 -4 -8 16  
 
 
 
 
 
 
 

 

Example 7: Obtain YBUS for the impedance network shown aside by the rule of  
inspection. Also, determine YBUS for the reduced network after eliminating the 
eligible unwanted node. Draw the resulting reduced system diagram.  

 
 
 
 

 

 -9.8 5 4 

YBUS= j 5 -16 10   
4 10 -14 

 
 
 

ZBUS = YBUS

-1
 

 
 
 
 
 
 
 

 

26  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
New   -1  

 

YBUS  = YA-YBYD YC 
 

YBUS = j 
 

-8.66 7.86 

 
 

 

 

 

 
 

  7.86 -8.66  
  

 
 

 

SINGULAR TRANSFORMATIONS 
 

The primitive network matrices are the most basic matrices and depend purely 

on the impedance or admittance of the individual elements. However, they do 

not contain any information about the behaviour of the interconnected network 

variables. Hence, it is necessary to transform the primitive matrices into more 

meaningful matrices which can relate variables of the interconnected network. 

 
Bus admittance matrix, YBUS and Bus impedance matrix, ZBUS 

 
In the bus frame of reference, the performance of the interconnected network is 

described by n independent nodal equations, where n is the total number of buses 

(n+1 nodes are present, out of which one of them is designated as the reference 

node). For example a 5-bus system will have 5 external buses and 1 ground/ ref. 

bus). The 
 



 

performance equation relating the bus voltages to bus current injections in bus 

frame of reference in admittance form is given by 
 

 IBUS = YBUS EBUS (17) 

Where  EBUS 

                      = vector of bus voltages measured with respect 

to reference bus  

           IBUS = Vector of currents injected into the bus  
YBUS = bus admittance matrix 

 
The performance equation of the primitive network in admittance form is 

given by i + j = [y] v 

Pre-multiplying by A
t
 (transpose of A), we obtain 

A
t
 i +A

t
 j = A

t
 [y] v (18) 

 
However, as per equation (4), 

t
 

A i =0, 
 

since it indicates a vector whose elements are the algebraic sum of element 

currents incident at a bus, which by Kirchhoff’s law is zero. Similarly, A
t
 j gives 

the algebraic sum of all source currents incident at each bus and this is nothing 

but the total current injected at the bus. Hence, 
 

A
t
 j  = IBUS  

Thus from (18) we have, IBUS = A
t
 [y] v 

 
However, from (5), we have 

v =A EBUS 
 

And hence substituting in (20) we get, 

IBUS = A
t
 [y] A EBUS 

 
Comparing (21) with (17) we obtain, 

YBUS = A
t
 [y] A 

 
 
(19) 
 
(20) 
 
 
 
 
 

 

(21) 
 

 

(22) 
 

The bus incidence matrix is rectangular and hence singular. Hence, (22) gives a 

singular transformation of the primitive admittance matrix [y]. The bus 

impedance matrix is given by , 

 -1 
Z
BUS  

= 

Y
BUS (23) 

Note: This transformation can be derived using the concept of power invariance, 

however, since the transformations are based purely on KCL and KVL, the 

transformation will obviously be power invariant. 
 



Examples on Singular Transformation: 
 

 

Example 8: For the network of Fig E8, form the primitive matrices [z] & [y] 

and obtain the bus admittance matrix by singular transformation. Choose a Tree 

T(1,2,3). The data is given in Table E8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig E8 System for Example-8 
 

 

Table E8: Data for Example-8 

 

Elements Self impedance Mutual impedance 
   

1 j 0.6 - 
   

2 j 0.5 j 0.1(with element 1) 
   

3 j 0.5 - 
   

4 j 0.4 j 0.2 (with element 1) 
   

5 j 0.2 - 
    

 
 

 

Solution: 
 

 

The bus incidence matrix is formed taking node 1 as the reference bus  



 1 0 0  
 

 
0  1 0 

 
 

  
 

A =  0 1  1 
 

 
 1 

   
 

 0 0  
 

 1 0 
 1  

 

     
 

 

The primitive incidence matrix is given by, 
 

 

 j0.6 j0.1 0.0 j0.2 0.0  
      

 j0.1 j0.5 0.0 0.0 0.0  
[z]=  0.0 0.0 j0.5 0.0 0.0  

      
 j0.2 0.0 0.0 j0.4 0.0  
      

 0.0 0.0 0.0 0.0 j0.2  

 

The primitive admittance matrix [y] = [z]
-1

 and given by, 

 

 j2.0833 j0.4167 0.0 j1.0417 0.0  
 

 
j0.4167  j2.0833 0.0  j0.2083 0.0 

 
 

  
 

[y]=  0.0 0.0  j2.0 0.0 0.0  
 

  
 j0.2083 

 
 j3.0208 

  
 

 j1.0417 0.0 0.0  
 

       
 

 0.0 0.0 0.0 0.0  j5.0  
 

 

The bus admittance matrix by singular transformation is obtained as 
 

 j8.0208 j0.2083 j5.0  
 

YBUS = A
t
 [y] A =   j0.2083  j4.0833 j2.0  

 

 
j5.0 j2.0 

 
 

  j7.0 
 

    
 

 j0.2713 j0.1264 j0.2299 
 

ZBUS  = YBUS
-1

  =   j0.1264 j0.3437 j0.1885 
 

  

j0.1885 
 

 

 j0.2299 j0.3609 
 

    
  



SUMMARY 
 

The formulation of the mathematical model is the first step in obtaining the 

solution of any electrical network. The independent variables can be either 

currents or voltages. Correspondingly, the elements of the coefficient matrix will 

be impedances or admittances. 

 
 

Network equations can be formulated for solution of the network using graph 

theory, independent of the nature of elements. In the graph of a network, the tree-

branches and links are distinctly identified. The complete information about the 

interconnection of the network, with the directions of the currents is contained in 

the bus incidence matrix. 

 
 

The information on the nature of the elements which form the interconnected 

network is contained in the primitive impedance matrix. A primitive element can 

be represented in impedance form or admittance form. In the bus frame of 

reference, the performance of the interconnected system is described by (n-1) 

nodal equations, where n is the number of nodes. The bus admittance matrix and 

the bus impedance matrix relate the bus voltages and currents. These matrices 

can be obtained from the primitive impedance and admittance matrices. 



       
FORMATION OF BUS IMPEDANCE MATRIX 

 
 

 

NODE ELIMINATION BY MATRIX ALGEBRA 
 

Nodes can be eliminated by the matrix manipulation of the standard node equations. 
 

However, only those nodes at which current does not enter or leave the network can be 
 

considered for such elimination. Such nodes can be eliminated either in one group or by 
 

taking the eligible nodes one after the other for elimination, as discussed next. 
 

 

CASE-A: Simultaneous Elimination of Nodes: 
 

Consider the performance equation of the given network in bus frame of 

reference in admittance form for a n-bus system, given by: 
 

I = Y E 
BUS BUS BUS (1)  

Where IBUS and EBUS are n-vectors of injected bus current and bus voltages and 
YBUS is the square, symmetric, coefficient bus admittance matrix of order n. 

 

 

Now, of the n buses present in the system, let p buses be considered for node-

elimination so that the reduced system after elimination of p nodes would be 

retained with m (= n-p) nodes only. Hence the corresponding performance 

equation would be similar to (1) except that the coefficient matrix would be of 

order m now, i.e., 

 
I = Y  

new
 E 

 
BUS BUS BUS (2) 

new    
Where YBUS is the bus admittance matrix of the reduced network and the vectors 
IBUS and EBUS are of order m. It is assumed in (1) that IBUS and EBUS are obtained 

with their elements arranged such that the elements associated with p nodes to be  
eliminated are in the lower portion of the vectors. Then the elements of YBUS 

also get located accordingly so that (1) after matrix partitioning yields,  



 
 
 
 

 

    m p   
 I

BUS-m 

 

m 

 Y
A 

Y
 B 

 E
BUS-m 

 

   
 

I  p  Y Y  E 
 

BUS-p    C D  BUS-p 
  

(3) 

Where the self and mutual values of YA and YD are those identified only with the 

nodes to be retained and removed respectively and YC=YB
t
 is composed of only 

the corresponding mutual admittance values, that are common to the nodes m 

and p. 
 

 
Now, for the p nodes to be eliminated, it is necessary that, each element of the 
vector IBUS-p should be zero. Thus we have from (3): 

 

I = Y E   + Y E    
 

BUS-m A BUS-m  BBUS-p   
 

I = Y E  + Y E = 0   
 

BUS-p C BUS-m  DBUS-p  (4) 
 

Solving,  E 

BUS-p 

= - Y -1Y  E 

BUS-m 

(5) 
 

    DC  
 

Thus, by simplification, we obtain an expression similar to (2) as,  
 

IBUS-m = {YA - YBYD
-1

YC} EBUS-m  (6) 
 

 

Thus by comparing (2) and (6), we get an expression for the new bus admittance 

matrix in terms of the sub-matrices of the original bus admittance matrix as: 
 

new -1 

Y 

BUS = {YA - YBYD YC} (7) 
 

  
  

This expression enables us to construct the given network with only the 

necessary nodes retained and all the unwanted nodes/buses eliminated. However, 

it can be observed from (7) that the expression involves finding the inverse of the 

sub-matrix YD (of order p). This would be computationally very tedious if p, the 

nodes to be eliminated is very large, especially for real practical systems. In such 

cases, it is more advantageous to eliminate the unwanted nodes from the given 

network by considering one node only at a time for elimination, as discussed 

next. 
 



CASE-B: Separate Elimination of Nodes: 
 

Here again, the system buses are to be renumbered, if necessary, such that the 

node to be removed always happens to be the last numbered one. The sub-matrix 

YD then would be a single element matrix and hence it inverse would be just 

equal to its own reciprocal value. Thus the generalized algorithmic equation for 

finding the elements of the new bus admittance matrix can be obtained from (6) 

as, 
 

Yij
new

 = Yij
old

 – Yin Ynj / Ynni,j = 1,2,…… n. (8) 

 

Each element of the original matrix must therefore be modified as per (7). 

Further, this procedure of eliminating the last numbered node from the given 

system of n nodes is to be iteratively repeated p times, so as to eliminate all the 

unnecessary p nodes from the original system. 

 
 

Examples on Node elimination: 

Example-1: Obtain YBUS for the impedance network shown below by the rule of 

inspection. Also, determine YBUS for the reduced network after eliminating the 

eligible unwanted node. Draw the resulting reduced system diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The admittance equivalent network is as follows:  



 

The bus admittance matrix is obtained by RoI as:  
 

 
      -9.8 5 4  

YBUS= j 5 -
16 10  

4  10 -14 

 

The reduced matrix after elimination of node 3 from the given 
system is determined as per the equation: 

 
New   -1  

 

YBUS = YA-YBYD YC  
 

  n/n 1 2 
 

new 

= 

1 -j8.66 j7.86 
 

Y    
 

BUS    
 

  2 j7.86 -j8.66 
 

     
  

 

Alternatively,  

Yij
new

 = Yij
old

 – Yi3 Y3j / Y33 i,j = 1,2. 

 

Y11 = Y11-Y13Y31/ Y33  = -j8.66 
 

Y22 = Y22 – Y23Y32/ Y33 = -j8.66 
 

Y12 = Y21 = Y12 – Y13Y32/Y33 = j7.86 
 

 

Thus the reduced network can be obtained again by the rule of inspection as 
shown be low.  



Example-2: Obtain YBUS for the admittance network shown below by the rule of 

inspection. Also, determine YBUS for the reduced network after eliminating the 

eligible unwanted node. Draw the resulting reduced system diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

n/n 1 2 3 4    
 

1 -j50 0 j20 j10    
 

Y
BUS

=2
 

     

Y
A 

Y
B 

 

0 -j60 0 j72 = 
 

3 j20 0 -j72 j50  YC YD 
 

        
 

4 j10 j72 j50 -j81    
 

        
  

 
 

 
New -1    

 

Y 
= YA-YBYD YC 

   
 

BUS    
 

    
 

  n/n 1 2 
 

 new 1 -j32.12 j10.32 
 

 BUS =   
 

  2 j10.32 -j51.36 
 

     
  

 
 

Thus the reduced system of two nodes can be drawn by the rule of 

inspection as under: 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ZBUS building 
 

FORMATION OF BUS IMPEDANCE MATRIX 

 
The bus impedance matrix is the inverse of the bus admittance matrix. An 

alternative method is possible, based on an algorithm to form the bus impedance 

matrix directly from system parameters and the coded bus numbers. The bus 

impedance matrix is formed adding one element at a time to a partial network of 

the given system. The performance equation of the network in bus frame of 

reference in impedance form using the currents as independent variables is given 

in matrix form by 

 


Z  


I

 
E bus bus bus (9) 

When expanded so as to refer to a n bus system, (9) will be of the form  

E1  Z11 I1  Z12 I 2  .......  .Z1k I k ...  Z1n I n  

 

Z I Z I 

 ......  Z kk I k   ....  Z kn I n 

 

Ek k1  1 k 2 2 
 

 

E 

n   Z n1 I1  Z n 2 I 2  .........ZnkIk.....ZnnIn (10) 

Now assume that the bus impedance matrix Zbus is known for a partial network 

of m buses and a known reference bus. Thus, Zbus of the partial network is of 

dimension m  m. If now a new element is added between buses p and q we 

have the following two possibilities:  



 

(i) p is an existing bus in the partial network and q is a new bus; in this 

case p-q is a branch added to the p-network as shown in Fig 1a, and 
 

(ii) both p and q are buses existing in the partial network; in this case p-q 

is a link added to the p-network as shown in Fig 1b. 
 
 

 

1 

2  

Partial  

Network 
 

p 

q  

Z 
 

BUS i 
 

m 
 

0 Ref. 
 

 

Fig 1a. Addition of branch p-q  
 
 
 

 

1 

2  

Partial  

Network 

 

p 
 

Z 
 

BUS q 
 

m 
 

0   Ref. 
 

 

Fig 1b. Addition of link p-q  



If the added element ia a branch, p-q, then the new bus impedance matrix would 
be of order m+1, and the analysis is confined to finding only the elements of the 
new row and column (corresponding to bus-q) introduced into the original 
matrix. 

 
If the added element ia a link, p-q, then the new bus impedance matrix will 
remain unaltered with regard to its order. However, all the elements of the 
original matrix are updated to take account of the effect of the link added. 

 
 

ADDITION OF A BRANCH 
 

Consider now the performance equation of the network in impedance form with 

the added branch p-q, given by 

E1   

Z
11 

Z Z Z 
 

12 1 p 1m 
 

   
Z Z Z 

 

 2  21 
 

   22 2 p 2m 
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 qm 
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pq  
 

Z
   

Z 
mq

  
 

qq 
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p  (11) 

 
  

m  

 
 

q   
It is assumed that the added branch p-q is mutually coupled with some elements of the 

 
partial network and since the network has bilateral passive elements only, we have 

Vector ypq-rs is not equal to zero and Zij= Zji i,j=1,2,…m,q (12) 
 

To find Zqi: 
 

The elements of last row-q and last column-q are determined by injecting a 

current of 1.0 pu at the bus-i and measuring the voltage of the bus-q with 

respect to the reference bus-0, as shown in Fig.2. Since all other bus currents 

are zero, we have from (11) that 

Ek = Zki Ii  = Zki k = 1, 2,…i.…...p,….m, q (13) 

Hence,  Eq = Zqi  ; Ep = Zpi  ………  

Also, Eq=Ep -vpq ; so that Zqi  = Zpi - vpq    i =1, 2,…i.…...p,….m, ≠q (14)  
To find vpq: 

 
In terms of the primitive admittances and voltages across the elements, the 

current through the elements is given by 
 



    y   v  
 

ipq   pq,pq   y pq,rs pq  
 

          (15) 
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y y 
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  rs    rs,pq rs,rs  rs   
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Fig.2 Calculation for Zqi 
 

where i pq  is current through element p-q 
 

irs is vector of currents through elements of the partial network   
v pq is voltage across element p-q 

 
y pq , pq is self – admittance of the added element 

 
y pq,rs is the vector of mutual admittances between the added elements p-q and   
elements r-s of the partial network. 

 
vrs is vector of voltage across elements of partial network.   
yrs, pq  is transpose of  y pq,rs .   
yrs ,rs is the primitive admittance of partial network.  

 

Since the current in the added branch p-q, is zero, i pq   0 . We thus have from (15), 

 

i  y v 

 

 

     
 

 
y pq ,rs v rs   0 (16)  pq pq , pq pq   
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Solving, v pq  
 y pq,rs vrs  

or 
 

 

     

pq, pq 
 

 

               
 

v 

                     
 

     

pq,rs 

 

E r E s 
  

    y    
 

 pq       y       (17) 
 

           pq, pq        
 

Using (13) and (17) in (14), we get  
 

         

pq,rs 

  
 

 

si  

 
 

 

Z 
    

Z Z 
  

Z       y ri  
 

qi  pi    y      i  1,2......m; i  q (18) 
 

pq, pq  
To find zqq: 

The element Zqq can be computed by injecting a current of 1pu at bus-q, Iq = 1.0 pu. 
 

As before, we have the relations as under:  
E

k 
= Z

kq 
I

q 
= Z

kq  k = 1, 2,…i.…...p,….m, q (19) 

Hence,  Eq = Zqq ; Ep = Zpq  ; Also, Eq =Ep - vpq ;  so that Zqq  = Zpq - vpq (20) 

Since now the current in the added element is ipq  Iq  1.0 , we have from (15) 
 

  

i  y v 
         

rs  1 

 

  

 y pq ,rsv 

 
 

  pq      pq , pq   pq  
 

Solving, v pq 1  
   y pq,rs v rs            

 

       

pq, pq 
          

 

                     
 

                         
 

 

v 
           

E r  Es 
   

       y pq,rs     
 

 pq 1           y         (21) 
 

               pq, pq   
 

Using (19) and (21) in (20), we get   
 

 

 Z  1  

             

 

 

  

pq,rs Z 
rq

Z sq 
 

 

Z y 
 

 qq pq              y         (22) 
  

pq, pq  
Special Cases 

The following special cases of analysis concerning ZBUS building can be 

considered with respect to the addition of branch to a p-network. 
 

Case (a): If there is no mutual coupling then elements of y pq ,rs are zero. Further, if 
 

p is the reference node, then Ep=0. thus,  

 Zpi = 0 i  1,2......m : i  q 
 

And Zpq = 0. 

i  1,2.......m; i  q 

 

Hence, from (18) (22) Zqi = 0 
 

Z z 
And 

 
qq pq, pq \ (23)  



Case (b): If there is no mutual coupling and if p is not the ref. bus, then, from (18) 

and (22), we again have, 
 

Z 

qi  Z pi , i  1,2....m; i  q 
 

Z z 
qq

   Z pq pq , pq (24) 
 

ADDITION OF A LINK 

 

Consider now the performance equation of the network in impedance form with 

the added link p-l, (p-l being a fictitious branch and l being a fictitious node) 

given by 
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It is assumed that the added branch p-q is mutually coupled with some elements 

of the partial network and since the network has bilateral passive elements only, 

we have 

Vector ypq-rs is not equal to zero and Zij= Zji  i,j=1,2,…m,l. (26) 

To find Zli: 
 

The elements of last row-l and last column-l are determined by injecting a 

current of 1.0 pu at the bus-i and measuring the voltage of the bus-q with respect 

to the reference bus-0, as shown in Fig.3. Further, the current in the added 

element is made zero by connecting a voltage source, el in series with element p-

q, as shown. Since all other bus currents are zero, we have from (25) that 

 Ek = Zki Ii = Zki  k = 1, 2,…i.…...p,….m, l (27) 

Hence, el = El = Zli ;  Ep = Zpi ;  Ep = Zpi   ………  

Also, el = Ep - Eq - vpq ;   

So that Zli  = Zpi - Zqi - vpq  i=1,2,…i.…p,...q,….m, ≠l (28) 



To find vpq: 
 

In terms of the primitive admittances and voltages across the elements, the 

current through the elements is given by 

ipl 


 ypl, pl y pl,rs
v
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Fig.3 Calculation for Zli 
 

where ipl is current through element p-q 

 

i rs  is vector of currents through elements of the partial network 
 

   v 
 

   pl is voltage across element p-q 
 

 pl , pl is self – admittance of the added element 
 

y  
 

   

is the vector of mutual admittances between the added elements p-q and 

 

y
 pl , rs 

 

elements r-s of the partial network. 
 

vrs is vector of voltage across elements of partial network. 
  

yrs, pl  is transpose of  y pl , rs . 
  

yrs ,rs is the primitive admittance of partial network. 
 



UNIT-II 

POWER FLOW STUDIES 

 

MODIFICATION OF ZBUS FOR NETWORK CHANGES 
 

An element which is not coupled to any other element can be removed easily. The  
Zbus is modified as explained in sections above, by adding in parallel with the 

element (to be removed), a link whose impedance is equal to the negative of the 

impedance of the element to be removed. Similarly, the impedance value of an 

element which is not coupled to any other element can be changed easily. The 

Zbus is modified again as explained in sections above, by adding in parallel with 

the element (whose impedance is to be changed), a link element of impedance 

value chosen such that the parallel equivalent impedance is equal to the desired 

value of 
 

impedance. When mutually coupled elements are removed, the Zbus is modified 

by introducing appropriate changes in the bus currents of the original network to 

reflect the changes introduced due to the removal of the elements. 
 

Examples on ZBUS building 
 

Example 1: For the positive sequence network data shown in table below, 
obtain ZBUS by building procedure.  

 

p-q 
Pos. seq.  

Sl. No. reactance 

 

(nodes) 

 

 

in pu 

 

   

1 0-1 0.25  

2 0-3 0.20  

3 1-2 0.08  

4 2-3 0.06   
 

Solution:  
The given network is as shown below with the data marked on it. Assume 
the elements to be added as per the given sequence: 0-1, 0-3, 1-2, and 2-3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E1: Example System  



Consider building ZBUS as per the various stages of building through 
the consideration of the corresponding partial networks as under: 

 
Step-1: Add element–1 of impedance 0.25 pu from the external node-1 
(q=1) to internal ref. node-0 (p=0). (Case-a), as shown in the partial 
network;  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 

ZBUS
(1)

 = 1   0.25 



 
Step-2: Add element–2 of impedance 0.2 pu from the external node-3 
(q=3) to internal ref. node-0 (p=0). (Case-a), as shown in the partial 
network;  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   1 3 

(2) 1  0.25 0 
ZBU

S =  3  0 0.2  
 

Step-3: Add element–3 of impedance 0.08 pu from the external node-2 
(q=2) to internal node-1 (p=1). (Case-b), as shown in the partial network;  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  1 3 2  

(3) 

1 0.25 0 0.25  

= 3 0 0.2 0 

 
ZB
US  

 2 0.25 0 0.33   
 

Step-4: Add element–4 of impedance 0.06 pu between the two internal 

nodes, node-2 (p=2) to node-3 (q=3). (Case-d), as shown in the partial 

network;  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  1 3 2 l 

 1 0.25 0 0.25 0.25 

(4) 3 0 0.2 0 -0.2 
ZBU

S =  2 0.25 0 0.33 0.33 

 l 0.25 -0.2 0.33 0.59  
 

The fictitious node l is eliminated further to arrive at the final impedance matrix 
as under: 

 

1 3 2   
 (fina

l) 

1  

ZB

US = 3 

 

  

  2  

 
0.1441 0.0847 0.1100  
0.0847 0.1322 0.1120  
0.1100 0.1120 0.1454 
 

Example 2: The ZBUS for a 6-node network with bus-6 as ref. is as given below. 

Assuming the values as pu reactances, find the topology of the network and the  
parameter values of the elements involved. Assume that there is no mutual 
coupling of any pair of elements. 

 

1 2 3 4 5   
1 

 
2 

Z
BUS 

=
 
4 

 
5 

 
2 0 0 0 2  
0 2 0 2 0  
0 0 2 0 0  
0 2 0 3 0  
2 0 0 0 3 
  

Solution: 
The  specified matrix  is so  structured that  by its  inspection,  we  can  obtain  the 
network by backward analysis through the various stages of ZBUS building and p-
networks as under: 
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Thus the final network is with 6 nodes and 5 elements connected as follows 
with the impedance values of elements as indicated.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E2: Resultant network of example-2 
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Example 3: Construct the bus impedance matrix for the system shown in the 
figure below by building procedure. Show the partial networks at each stage of 
building the matrix. Hence arrive at the bus admittance matrix of the system. 
How can this result be verified in practice?  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Solution: The specified system is considered with the reference node denoted by 
node-0. By its inspection, we can obtain the bus impedance matrix by building 
procedure by following the steps through the p-networks as under: 

 
Step1: Add branch 1 between node 1 and reference node. (q =1, p = 0)  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step2: Add branch 2, between node 2 and reference node. (q = 2, p = 0).  
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Step3: Add branch 3, between node 1 and node 3 (p = 1, q = 3)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 4: Add element 4, which is a link between node 1 and node 2. (p = 1, q = 2)  
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Now the extra node-l has to be eliminated to obtain the new matrix of 
step-4, using the algorithmic relation: 

 

Yij
new

 = Yij
old

 – Yin Ynj / Ynn i,j = 1,2, 3.  
 
 
 
 
 
 
 
 
 
 
 

 

Step 5: Add link between node 2 and node 3 (p = 2, q=3)  
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Thus, the new matrix is as under:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Node l is eliminated as shown in the previous step:  
 
 
 
 
 
 
 
 
 
 
 
 

Further, the bus admittance matrix can be obtained by inverting the 
bus impedance matrix as under:  

 
 
 
 
 
 
 
 

 

As a check, it can be observed that the bus admittance matrix, YBUS can also 

be obtained by the rule of inspection to arrive at the same answer. 
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Example 4: Form the bus impedance matrix for the network shown below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution:  
Add the elements in the sequence, 0-1, 1-2, 2-3, 0-3, 3-4, 2-4, as per the 
various steps of building the matrix as under: 

 
Step1: Add element 1, which is a branch between node-1 and reference node.  

 
 
 
 

 

Step2: Add element 2, which is a branch between nodes 1 and 2.  
 
 
 
 
 
 
 
 

 

Step3: Add element 3, which is a branch between nodes 2 and 3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step4: Add element 4, which is a link from node 3 to reference node. 
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Eliminating node l,  
 
 
 
 
 
 
 
 
 
 
 
 

 

Step5: Add element 5, a branch between nodes 3 and 4.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 6: Add element 6, a link between nodes 2 & 4.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Eliminating node l we get the required bus impedance , matrix 
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Example 5: Form the bus impedance matrix for the network data given below. 
 

 Self Impedance  
Mutual 
Impedance 

Element Bus 
zpq, 
pq  Bus  zpq, rs 

 p-q (pu)  r-s  (pu) 

1 1 – 2(1) j0.6     

2 1 – 2(2) j0.4  1 – 2(1)  j0.2  
 

Solution:  
Let bus-1 be the reference. Add the elements in the sequence 1-2(1), 1-2(2). 

Here, in the step-2, there is mutual coupling between the pair of elements 

involved.  
 
 
 
 
 
 
 
 

 

Step1: Add element 1 from bus 1 to 2, element 1-2(1). ( p=1, q=2, p is 
the reference node)  

 
 
 
 

Step2: Add element 2, element 1-2(2), which is a link from bus1 
to 2, mutually coupled with element 1, 1-2(1).  
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Consider the primitive impedance matrix for the two elements given by  
 
 
 
 
 
 
 
Thus the primitive admittance matrix is obtained by taking the inverse of [z] as  
 
 
 
 
 
 
 
 
 
 
 
Thus,  
 
 
 

So that we have,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Thus, the network matrix corresponding to the 2-node, 1-bus network given, is obtained after 
eliminating the extra node-l as a single element matrix, as under:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTRODUCTION  
 

 

In a three phase ac power system active and reactive power flows from the 

generating station to the load through different networks buses and branches. The 

flow of active and reactive power is called power flow or load flow. Power flow 

studies provide asystematic mathematical approach for determination of various bus 

voltages, there phase angle active and reactive power flows through 



different branches, generators and loads under steady state condition. Power flow 

analysis is used to determine the steady state operating condition of a power system. 

Power flow analysis is widely used by power distribution professional during the 

planning and operation of power distribution system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There three methods for load flow studies  
mainly  
1. Gauss siedel method  
2. Newton raphson method  
3. Fast decoupled method. 

 

a. OBJECTIVE OF LOAD FLOW STUDY 
 

i. Power flow analysis is very important in planning stages of 

new networks or addition to existing ones like adding new 

generator sites, meeting increase load demand and locating 

new transmission sites.  
ii. The load flow solution gives the nodal voltages and phase 

angles and hence the power injection at all the buses and 

power flows through interconnecting power channels.  
iii. It is helpful in determining the best location as well as optimal 

capacity of proposed generating station, substation and new 

lines.  
iv. It determines the voltage of the buses. The voltage level at the 

certain buses must be kept within the closed tolerances.  
v. System transmission loss minimizes.  

vi. Economic system operation with respect to fuel cost to 

generate all the power needed  
vii. The line flows can be known. The line should not be  



overloaded, it means, we should not operate the close to their 

stability or thermal limits. 
 

BUS CLASSIFICATION  
 

 

A bus is a node at which one or many lines, one or many loads and generators are 

connected. In a power system each node or bus is associated with 4 quantities, such 

as magnitude of voltage, phage angle of voltage, active or true power and reactive 

power in load flow problem two out of these 4 quantities are specified and remaining 

2 are required to be determined through the solution of equation. Depending on the 

quantities that have been specified, the buses are classified into 3 categories. 

 
VARIABLES AND BUS CLASSIFICATION  
 

Buses are classified according to which two out of the four variables are specified 

 

Load bus: No generator is connected to the bus. At this bus the real and reactive power 

are specified.it is desired to find out the volatage magnitude and phase angle through 

load flow solutions.It is required to specify only Pd and Qd at such bus as at a load bus 

voltage can be allowed to vary within the permissible values. 

 

Generator bus or voltage controlled bus: Here the voltage magnitude corresponding to 

the generator voltage and real power Pg corresponds to its rating are specified.It is 

required to find out the reactive power generation Qg and phase angle of the bus voltage. 

 

Slack (swing) bus: For the Slack Bus, it is assumed that the voltage magnitude |V| and 

voltage phase Θ are known,whereas real and reactive powers Pg and Qg are obtained 

through the load flow solution. 



UNIT-III 

SHORT CIRCUIT ANALYSIS 

 

Power System Fault Analysis 
 

Introduction 
 

The fault analysis of a power system is required in order to provide information for the 

selection of switchgear, setting of relays and stability of system operation. A power system 

is not static but changes during operation (switching on or off of generators and 

transmission lines) and during planning (addition of generators and transmission lines). 

Thus fault studies need to be routinely performed by utility engineers (such as in the CEB). 
 

Faults usually occur in a power system due to either insulation failure, flashover, physical 

damage or human error. These faults, may either be three phase in nature involving all 

three phases in a symmetrical manner, or may be asymmetrical where usually only one or 

two phases may be involved. Faults may also be caused by either short-circuits to earth or 

between live conductors, or may be caused by broken conductors in one or more phases. 

Sometimes simultaneous faults may occur involving both short-circuit and broken- 

conductor faults (also known as open-circuit faults). 
 

Balanced three phase faults may be analysed using an equivalent single phase circuit. With 

asymmetrical three phase faults, the use of symmetrical components help to reduce the 

complexity of the calculations as transmission lines and components are by and large 

symmetrical, although the fault may be asymmetrical. 
 

Fault analysis is usually carried out in per-unit quantities (similar to percentage quantities) 

as they give solutions which are somewhat consistent over different voltage and power 

ratings, and operate on values of the order of unity. 
 

In the ensuing sections, we will derive expressions that may be used in computer 

simulations by the utility engineers. 
 

Equivalent Circuits - Single phase and Equivalent Single Phase Circuits 
 

In a balanced three phase circuit, since the information relating to one single phase gives 

the information relating to the other two phases as well, it is sufficient to do calculations in 

a single phase circuit. There are two common forms used. These are (i) to take any one 

single phase of the three phase circuit and (ii) to take an equivalent single phase circuit to 

represent the full three phase circuit. 
 

Single Phase Circuit 
 

A   
 

IP = IAS   
 

Zs  
VP =VAS 

 

PT/3 
Z 

 

  
   

EA N 

Figure 2.1 - Single Phase Circuit 
 

S 
 

 

Figure 2.1 shows one single phase “AN” of the three phase circuit “ABC N”. Since the 

system is balanced, there is no current in the neutral, and there is no potential drop 



across the neutral wire. Thus the star point “S” of the system would be at the same 

potential as the neutral point “N”. Also, the line current is the same as the phase current, 

the line voltage is 3 times the phase voltage, and the total power is 3 times the power in a 

single phase. 
 

I = IP = IL, V = VP = VL/3 and S = SP = ST/3 
 

Working with the single phase circuit would yield single phase quantities, which can then 

be converted to three phase quantities using the above conversions. 
 

Equivalent Single Phase Circuit 
 

Of the parameters in the single phase circuit shown in figure 2.1, the Line Voltage and the 

Total Power (rather than the Phase Voltage and one-third the Power) are the most 

important quantities. It would be useful to have these quantities obtained directly from the 

circuit rather than having conversion factors of 3 and 3 respectively. This is achieved in the 

Equivalent Single Phase circuit, shown in figure 2.2, by multiplying the voltage by a factor 

of 3 to give Line Voltage directly.  
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Figure 2.2 - Equivalent Phase Circuit 
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The Impedance remains as the per-phase impedance. However, the Line Current gets 
artificially amplified by a factor of 3. This also increases the power by a factor of 

(3)2, which is the required correction to get the total power. 
 

Thus, working with the Equivalent single phase circuit would yield the required three 
phase quantities directly, other than the current which would be 3 IL. 

 

Revision of Per Unit Quantities 
 

Per unit quantities, like percentage quantities, are actually fractional quantities of a 
reference quantity. These have a lot of importance as per unit quantities of 
parameters tend to have similar values even when the system voltage and rating 
change drastically. The per unit system permits multiplication and division in 
addition to addition and subtraction without the requirement of a correction factor 
(when percentage quantities are multiplied or divided additional factors of 0.01 
or100 must be brought in, which are not in the original equations, to restore the 
percentage values). Per-unit values are written with “pu” after the value. 

 

For power, voltage, current and impedance, the per unit quantity may be obtained by 
dividing by the respective base of that quantity.  

 
 
 
 
 
 
 
 
 
 

 



Expressions such as Ohm’s Law can be applied for per unit quantities as well. Since 

Voltage, Current, Impedance and Power are related, only two Base or reference quantities 

can be independently defined. The Base quantities for the other two can be derived there 

from. Since Power and Voltage are the most often specified, they are usually chosen to 

define the independent base quantities. 
 

Calculation for Single Phase Systems  

If VAbase and Vbase are the selected base quantities of power (complex, active or reactive) 
 

and voltage respectively, then  
 
 
 
 
 
 
 
 
 
 
 
 

 

In a power system, voltages and power are usually expressed in kV and MVA, thus it is 

usual to select an MVAbase and a kVbase and to express them as 



 
 
 
 
 
 
 

 

In these expressions, all the quantities are single phase quantities. 
 

Calculations for Three Phase Systems 
 

In three phase systems the line voltage and the total power are usually used rather 
than the single phase quantities. It is thus usual to express base quantities in terms 
of these. 

 

If VA3base and VLLbase are the base three-phase power and line-to-line voltage respectively, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

It is to be noted that while the base impedance for the three phase can be obtained directly 

from the VA3base and VLLbase (or MVA3base and kVLLbase) without the need of any 

additional factors, the calculation of base current needs an additional factor of  3. 
However this is not usually a problem as the value of current is rarely required as a final 

answer in power systems calculations, and intermediate calculations can be done with a 

variable 1.732*3Ibase. 
 

Thus in three phase, the calculations of per unit quantities becomes 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Conversions from one Base to another 
 

It is usual to give data in per unit to its own rating [ex: The manufacturer of a certain piece 

of equipment, such as a transformer, would not know the exact rating of the power system 

in which the equipment is to be used. However, he would know the rating of his 

equipment]. As different components can have different ratings, and different from the 

system rating, it is necessary to convert all quantities to a common base to do arithmetic or 

algebraic operations. Additions, subtractions, multiplications and divisions will give 

meaningful results only if they are to the same base. This can be done for three phase 

systems as follows.  



Example: 

 

A 200 MVA, 13.8 kV generator has a reactance of 0.85 p.u. and is generating 1.15 pu 

voltage. Determine (a) the actual values of the line voltage, phase voltage and reactance, 

and (b) the corresponding quantities to a new base of 500 MVA, 13.5 kV. 
 

(a) Line voltage = 1.15 * 13.8 = 15.87 kV 

 Phase voltage = 1.15 * 13.8/3 = 9.16 kV 

 Reactance = 0.85 * 13.82/200 = 0.809  

(b) Line voltage = 1.15 * 13.8/13.5 = 1.176 pu 

 Phase voltage = 1.15 * (13.8/3)/(13.5/3) = 1.176 pu 

 Reactance = 0.85 * (13.8/13.5)2/(500/200) = 0.355 

 pu    
 

Per Unit Quantities across Transformers 
 

When a transformer is present in a power system, although the power rating on either side 

of a transformer remains the same, the voltage rating changes, and so does the base voltage 

across a transformer. [This is like saying that full or 100% (or 1 pu) voltage on the primary 

of a 220kV/33 kV transformer corresponds to 220 kV while on the secondary it 

corresponds to 33 kV.] Since the power rating remains unchanged, the impedance and 

current ratings also change accordingly. 
 

While a common MVA3base can and must be selected for a power system to do analysis, a 

common VLLbase must be chosen corresponding to a particular location (or side of 

transformer) and changes in proportion to the nominal voltage ratio whenever  
a transformer is encountered. Thus the current base changes inversely as the ratio.  
Hence the impedance base changes as the square of the ratio. 

 

For a transformer with turns ratio NP:NS, base quantities change as follows. 
 

Quantity Primary Base Secondary Base    
 

       
 

Power (S, P and Q) Sbase Sbase     
 

     
 

Voltage (V) V1base V1base . NS/NP  =  V2base 
 

   
 

Current (I) Sbase/3V1base Sbase/3V1base . NP/NS = Sbase/3V2base 
 

Impedance (Z, R and X) 

2
/S 

2
/S . (N /N )

2
 = V 

2
/S 

 

V1base     base V1base     base S P 2base base 
  

 

Example :   
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Transmission Line 
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Figure 2.3 - Circuit for Example T2 

 

  
 

 T1  
 



In the single line diagram shown in figure 2.3, each three phase generator G is rated at 200 

MVA, 13.8 kV and has reactances of 0.85 pu and are generating 1.15 pu. Transformer T1 is 

rated at 500 MVA, 13.5 kV/220 kV and has a reactance of 8%. The transmission line has a 

reactance of 7.8 . Transformer T2 has a rating of 400 MVA, 220 kV/33 kV and a 

reactance of 11%. The load is 250 MVA at a power factor of 0.85 lag. Convert all 

quantities to a common base of 500 MVA, and 220 kV on the line and draw the circuit 

diagram with values expressed in pu. 
 

Solution: 

 

The base voltage at the generator is (220*13.5/220) 13.5 kV, and on the load side is 

(220*33/220) 33 kV. [Since we have selected the voltage base as that corresponding to the 

voltage on that side of the transformer, we automatically get the voltage on the other side 

of the transformer as the base on that side of the transformer and the above calculation is in 

fact unnecessary. 
 

Generators G 

 

Reactance of 0.85 pu corresponds 0.355 pu on 500 MVA, 13.5 kV base (see earlier 

example) 
 

Generator voltage of 1.15 corresponds to 1.176 on 500 MVA, 13.5 kV base 

Transformer T1 

 

Reactance of 8% (or 0.08 pu) remains unchanged as the given base is the same as the new 

chosen base. 
 

Transmission Line 

 

Reactance of 7.8  corresponds to 7.8 * 500/2202 = 0.081 pu 

Transformer T2 

 

Reactance of 11% (0.11 pu) corresponds to 0.11 * 500/400 = 
 

0.1375 pu (voltage base is unchanged and does not come into the 

calculations) Load 
 

Load of 250 MVA at a power factor of 0.85 corresponds to 250/500 = 0.5 pu at a 

power factor of 0.85 lag (power factor angle = 31.79) 
 

 resistance of load = 0.5 * 0.85 = 0.425 pu 
 

and reactance of load = 0.5 * sin 31.79 = 0.263 pu 
 

The circuit may be expressed in per unit as shown in figure 2.4.  

 

1.176 pu j0.355    
 

j0.08 j0.081 j0.138 0.425 + j0.263  

 
  

 
j0.355 
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Figure 2.4 - Circuit with per unit values 



Symmetrical Three Phase Fault Analysis 
 

A three phase fault is a condition where either (a) all three phases of the system are short-

circuited to each other, or (b) all three phase of the system are earthed. 
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This is in general a balanced condition, and we need to only know the positive-

sequence network to analyse faults. Further, the single line diagram can be used, 

as all three phases carry equal currents displaced by 120o. 
 

Typically, only 5% of the initial faults in a power system, are three phase faults 

with or without earth. Of the unbalanced faults, 80 % are line-earth and 15% are 

double line faults with or without earth and which can often deteriorate to 3 phase 

fault. Broken conductor faults account for the rest. 
 
 

 

Fault Level Calculations 

 

In a power system, the maximum the fault current (or fault MVA) that can flow into a zero 

impedance fault is necessary to be known for switch gear solution. This can either be the 

balanced three phase value or the value at an asymmetrical condition. The Fault Level 

defines the value for the symmetrical condition. The fault level is usually expressed in 

MVA (or corresponding per-unit value), with the maximum fault current value being 

converted using the nominal voltage rating. 
 

MVAbase = 3 . Nominal Voltage(kV) . Ibase (kA) 
 

MVAFault = 3 . Nominal Voltage(kV) . Isc (kA) 

 

where 

 

MVAFault – Fault Level at a given point in MVA 
 

Ibase – Rated or base line current 
 

Isc – Short circuit line current flowing in to a fault 

The per unit value of the Fault Level may thus be 

written as 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The Short circuit capacity (SCC) of a busbar is the fault level of the busbar. The strength of 

a busbar (or the ability to maintain its voltage) is directly proportional to its SCC. An 

infinitely strong bus (or Infinite bus bar) has an infinite SCC, with a zero equivalent 

impedance and will maintain its voltage under all conditions. 
 

Magnitude of short circuit current is time dependant due to synchronous generators. It is 

initially at its largest value and decreasing to steady value. These higher fault levels tax 

Circuit Breakers adversely so that current limiting reactors are sometimes used. 
 

The Short circuit MVA is a better indicator of the stress on CBs than the short circuit 

current as CB has to withstand recovery voltage across breaker following arc interruption. 
 

The currents flowing during a fault is determined by the internal emfs of machines in the 

network, by the impedances of the machines, and by the impedances between the machines 

and the fault. 
 

Figure 2.6 shows a part of a power system, where the rest of the system at two points of 

coupling have been represented by their Thevenin’s equivalent circuit (or by a voltage 

source of 1 pu together its fault level which corresponds to the per unit value of the 

effective Thevenin’s impedance). 
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Figure 2.6 – Circuit for Fault Level Calculation 
 
 

With CB1 and CB2 open, short circuit capacities are 
 

SCC at bus 1 = 8 p.u. gives Zg1 = 1/8 = 0.125 pu 
 

SCC at bus 2 = 5 p.u. gives Zg2 = 1/5 = 0.20 pu 
 

Each of the lines are given to have a per unit impedance of 0.3 pu. 
 

Z1 = Z2 = 0.3 p.u. 
 

With CB1 and CB2 closed, what would be the SCCs (or Fault Levels) of the busbars in the 
 

system ? 

V=1 pu V=1 pu 
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Figure 2.7a Determination of Short circuit capacities 

 

This circuit can be reduced and analysed as in figure 2.7b.  
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Figure 2.7b Determination of Short circuit capacity at Bus 3 
 

Thus, the equivalent input impedance is given by to give Zin as 0.23 pu at bus 

3, so that the short circuit capacity at busbar 3 is given as 

 

| SCC3 |= 1/0.23 = 4.35 p.u 
 

The network may also be reduced keeping the identity of Bus 1 as in figure 2.7c. 



    0.12 

Bus1 0.108 Bus1 
 

0.125 

 
0.8 

 5 
 

1 

 
   

 

E = 1  E = 1 0.8 
 

1 
 

     
 

      
  

 

 

Figure 2.7c Determination of Short circuit capacity at Bus 1 



UNIT - IV 

POWER SYSTEM STEADY STATE STABILITY 

ANALYSIS 

 

Stability of power system is its ability to return to normal or stable operating condition after 

been subjected to some of disturbance. Instability means a condition representing loss of 

synchronism or fall out of step. 

The instability of power system is divided into two parts 
 

1. Steady state stability 
 

2. Transient stability 
 

Increase in load is a kind of disturbance to power system. If the increase in load takes place 

gradually and slowly in small steps and the system withstand this change in load and operates 

satisfactorily then this system phenomena is said to be STEADY STATE STABILITY. 
 
Cause of transient disturbances 
 

1. Sudden change of load. 
 

2. Switching operation. 
 

3. Loss of generation. 
 

4. Fault. 
 

Due to the following sudden disturbances in the power system, rotor angular difference, rotor 

speed and power transfer undergo fast changes whose magnitude are dependent upon the 

severity of disturbances. 
 
If the disturbance is so large that the angular difference increases so much which can cause 

the machine out of synchronism. This kind of instability is denoted as transient instability. It 

is a very fast phenomenon it occurs within one second for the generating unit closer to the 

disturbance. 

 

Dynamics Of A Synchronous Machine 
 

 

The kinetic energy of the rotor at synchronous machine is 
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J   =rotor moment of inertia in kg-m2  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

g =machine rating(base)in mva(3-phase) 
 
h =inertia constant in mj/mva or mw-s/mva 

so, 
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Taking G as base, the inertia constant in pu is 
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Swing Equation 

 

The differential equation that relates the angular momentum M, acceleration power Pa and the rotor angle 

 is known as swing equation. Solution of swing equation shows how the rotor angle changes with 

respect time following a disturbance. The plot δ Vs t is known as swing curve. The differential equation 

governing the rotor dynamics can then be written as. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 Electrical and mechanical power flow in motor 

 

While the rotor undergoes dynamics as per Equation (9), the rotor speed changes by 

insignificant magnitude for the time period of interest (1s) 
 
Equation ( 8) can therefore be converted into its more convenient power form by assuming the rotor 

.speed (ωsm). Multiplying both sides of Equation ( 8) by ωsm we can write 
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Where, 
 

Pm= mechanical power input in MW 

 

Pe=electrical power output in MW; stator copper loss is assumed neglected. 

 

Rewriting Equation ( 9)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where 

 

ϴe =angle in rad.(elect.)  



As it is more convenient to measure the angular position of the rotor with respect to a 

synchronously rotating frame of reference. 

 

Let us   
 

assume, 
  e  st ( 13) 

 

 
 

 
 

δ is rotor angular displacement from synchronously rotating reference frame, called 
 

Torque Angle/Power Angle. 

 

From Equation ( 9)  
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Hence Equation ( 11) can be written in terms of as  
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Using Equation ( 11) we can also write 
 

 GH  d 
2
 


 f 


 dt2

 
 

 

Dividing throught by G, the MVA rating of the machine 
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Equation ( 17) is called as swing equation and it describes the rotor dynamics for a  



synchronous machine (generating/motoring). It is a second-order differential equation where the 

damping term (proportional to d


 dt ) is absent because of the assumption of a 
 
loss less machine and the fact that the torque of damper winding has been ignored. Since the 

electrical power Pe depends upon the sine of angle  the swing equation is a non-linear second-

order differential equation. 
 

Multi-Machine System 

 

In a multi-machine system a common system base must be 

chosen Let 
 

Gmach=machine rating 
 

(base) Gsystem=system base 
 

Equation(18) can then be written as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Since the machine rotors swings together (coherently or in unison) 
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Adding Equation ( 20) and ( 21) 
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The two machines swinging coherently are thus reduced to a single machine as 

in Equation ( 22), the equivalent inertia in ( 22) can be written as 
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The above results are easily extendable to any number of machines swinging coherently. To 

solving the swing equation (Equation ( 23), certain simplifying assumptions are usually made. 

These are: 
 
1. Mechanical power input to the machine (Pm) remains constant during the period of 

electromechanical transient of interest. In other words, it means that the effect of the turbine 

governing loop is ignored being much slower than the speed of the transient. This assumption 

leads to pessimistic result-governing loop helps to stabilize the system. 
 
2. Rotor speed changes are insignificant-these have already been ignored in formulating the 

swing equation. 
 
3. Effect of voltage regulating loop during the transient is ignored, as a consequence the 

generated machine emf remains constant. This assumption also leads to pessimistic results- 

voltage regulator helps to stabilize the system. 
 



Before the swing equation can be solved, it is necessary to determine the dependence of the 

electrical power output (Pe) upon the rotor angle. 
 
Simplified Machine Model 

 

For a non-salient pole machine, the per-phase induced emf-terminal voltage equation under 

steady conditions is. 
 

E  V  jX d Id    X q ( 24) 

jX q Iq ; X d   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3 Simplified machine model. 
 
The machine model corresponding to Eq. ( 26) is drawn in Fig. ( 3) which also applies to a 

X d 
/
  

X
 
/
 q   X /s (transient synchronous reactance). 

 
 
 
 

 

E  , transient emf of generator motor remains constant  
 
 

the independent variable determined by the voltage regulating loop but V, the generator 

determined terminal voltage is a dependent variable. Therefore, the nodes (buses) of the stability 

study network to the ernf terminal in the machine model as shown in Fig. 4, while the machine 
 
reactance ( X 

d ) 

  
is absorbed in the system network as different from a load flow study. 
Further,  

 

Power Angle Curve 

For the purposes of stability 
studies or is 

 

cylindrical rotor 
machine where 



 

the loads (other than large synchronous motor) will be replaced by equivalent static 

admittances (connected in shunt between transmission network buses and the reference bus). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4 Simplified Machine studied Network  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 5 Power Angle Curve 

 

This is so because load voltages vary during a stability study (in a load flow study, these 

remain constant within a narrow band). The simplified power angle equation is 
 

Pe  Pmax sin ( 27) 
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The graphical representation of power angle equation ( 28) is shown in Fig. 5. The swing  



equation ( 27) can now be written as 
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It is a non linear second-order differential equation with no damping. 
 
Machine Connected to Infinite Bus 

 

Figure 6 is the circuit model of a single machine connected to infinite bus through a line of 

reactance Xe. In this simple case 
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From Eq ( 30) we get 
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Fig. 6 Machine connected to infinite bus bar 

 

The dynamics of this system are described in Eq. ( 15 ) as 
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Two Machine Systems 

 

The case of two finite machines connected through a line (Xe) is illustrated in Fig. 5 

where one of the machines must be generating and the other must be motoring. Under steady 

condition, before the system goes into dynamics and the mechanical input/output of the two 

machines is assumed to remain constant at these values throughout the dynamics (governor 

action assumed slow).During steady state or in dynamic condition, the electrical power output of 

the generator must be absorbed by the motor (network being lossless). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Two machine system  



 
 
 

 

Thus at all   
 

time 
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Pm1 Pm2 ( 32) 
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Steady State Stability 

 

The steady state stability limit of a particular circuit of a power system is defined as the 

maximum power that can be transmitted to the receiving end without loss of synchronism. 
 
Consider the simple system of Fig. 7 whose dynamics is described by equations  
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For determination of steady state stability, the direct axis reactance (Xd) and, voltage 
behind Xd 
 

are used in the above equations. Let the system be operating with steady power transfer of 

Pe0=Pm with torque angle  0 as indicated in the figure. Assume a small increment P in the 

electric power with the input from the prime mover remaining fixed at Pm (governor 

response is slow compared to the speed of energy dynamics), causing the torque angle to 

change to ( 0  ) . 
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The system stability to small change is determined from the characteristic equation. 
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Its two roots are 
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As long as pe 0it positive, the roots are purely imaginary and conjugate and 

thesystem 
 

behaviour is oscillatory about 0 . Line resistance and damper windings of machine, which 

have been ignored in the above modelling, cause the system oscillations to decay. The 

system is therefore stable for a small increment in power so long as 
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When pe 0, is negative, the roots are real, one positive and the other negative but 

ofequal 
 

magnitude. The torque angle therefore increases without bound upon occurrence of a small 

power increment (disturbance) and the synchronism is soon lost. The system is therefore 

unstable for 
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pe is known as synchronizing coefficient. This is also called stiffness (electrical) of 
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synchronous machine. 
 

Assuming |E| and |V| to remain constant, the system is unstable, if 
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The maximum power that can be transmitted without loss of stability (steady state) occurs 
for 
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If the system is operating below the limit of steady stability condition (Eq. 48), it may 

continue to oscillate for a long time if the damping is low. Persistent oscillations are a threat to 

system security. The study of system damping is the study of dynamical stability. 
 

The above procedure is also applicable for complex systems wherein governor action and 

excitation control are also accounted for. The describing differential equation is linerized about 

the operating point. Condition for steady state stability is then determined from the 

corresponding characteristic equation (which now is of order higher than two). 
 

It was assumed in the above account that the internal machine voltage |E| remains 

constant (i.e., excitation is held constant). The result is that as loading increases, the terminal 

voltage |Vt| dips heavily which cannot be tolerated in practice. Therefore, we must consider the 

steady state stability limit by assuming that excitation is adjusted for every load increase to keep 
 
|Vt| constant. This is how the system will be operated practically. It may be understood that 

we are still not considering the effect of automatic excitation control. 
 

Some Comment on Steady State Stability 

 

Knowledge of steady state stability limit is important for various reasons. A system can 

be operated above its transient stability limit but not above its steady state limit. Now, with 

increased fault clearing speeds, it is possible to make the transient limit closely approach the 

steady state limit. 
 

As is clear from Eq. ( 50), the methods of improving steady state stability limit of a 

system are to reduce X and increase either or both |E| and |V|. If the transmission lines are of 

sufficiently high reactance, the stability limit can be raised by using two parallel lines which 

incidentally also increases the reliability of the system. Series capacitors are sometimes 

employed in lines to get better voltage regulation and to raise the stability limit by decreasing the 

line reactance. Higher excitation voltages and quick excitation system are also employed to 

improve the stability limit. 
 



UNIT-V 

 

POWER SYSTEM TRANSIENT STATE STABILITY ANALYSIS 

 

Transient Stability 
 

 

The dynamics of a single synchronous machine connected to infinite bus bars is governed by 

the nonlinear differential equation 
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As said earlier, this equation is known as the swing equation. No closed form solution 

exists for swing equation except for the simple case Pm = 0 (not a practical case) which 

involves 
 
elliptical integrals. For small disturbance (say, gradual loading), the equation can be 

linearised 
 

leading to the concept of steady state stability where a unique criterion of stability pe     

 0
 

could be established. No generalized criteria are available for determining system stability with 

large disturbances (called transient stability). The practical approach to the transient stability 

problem is therefore to list all important severe disturbances along with their possible locations 
 



to which the system is likely to be subjected according to the experience and judgement of the 

power system analyst. Numerical solution of the swing equation (or equations for a multi- 

machine case) is then obtained in the presence of such disturbances giving a plot of  Vs t called 

the swing curve. If  starts to decrease after reaching a maximum value, it is normally 

assumed that the system is stable and the oscillation of  around the equilibrium point will decay 

and finally die out. As already pointed out in the introduction, important severe disturbances are 

a short circuit or a sudden loss of load. 
 

For ease of analysis certain assumptions and simplifications are always made (some of 

these have already been made in arriving at the swing equation (Eq. 49). All the assumptions are 

listed, below along with their justification and consequences upon accuracy of results. 

 
 

1. Transmission line as well as synchronous machine resistance is ignored. This leads to 

pessimistic result as resistance introduces damping term in the swing equation which helps 

stability. 
 
2. Damping term contributed by synchronous machine damper windings is ignored. This also 

leads to pessimistic results for the transient stability limit. 
 
3. Rotor speed is assumed to be synchronous. In fact it varies insignificantly during the course of 

the stability transient. 
 
4. Mechanical input to machine is assumed to remain constant during the transient, i.e., 

regulating action of the generator loop is ignored. This leads to pessimistic results. 
 
5. Voltage behind transient reactance is assumed to remain constant, i.e., action of voltage 

regulating loop is ignored. It also leads to pessimistic results. 

6. Shunt capacitances are not difficult to account for in a stability study. Where ignored, no 

greatly significant error is caused. 
 
7. Loads are modelled as constant admittances. This is a reasonably accurate 

representation. Note: Since rotor speed and hence frequency vary insignificantly, the 

network parameters remain fixed during a stability study. 
 

A digital computer programme to compute the transient following sudden disturbance 

can be suitably modified to include the effect of governor action and excitation control. 
 

Preset day power system are so large that even after lumping of machines (Eq.(24)),  
 

 

 

 

 



the system remains a multi-machine one. Even then, a simple two machine system greatly aids 

the 

 

understanding of the transient stability problem. It has been shown in that an equivalent single 

machine infinite bus system can be found for a two- machine system (Eq. 45) to (Eq. 49) 
 

Upon occurrence of a severe disturbance, say a short circuit, the power transfer between 

machines is greatly reduced, causing the machine torque angles to swing relatively. The circuit 

breakers near the fault disconnect the unhealthy part of the system so that power transfer can be 

partly restored, improving the chances of the system remain stable. The shorter the time to 

breaker operating, called clearing time, the higher is the probability of the system being stable. 

Most of the line faults are transient in nature and get cleared on opening the line. Therefore, it is 

common practice now to employ auto-reclose breakers which automatically close rapidly after 

each of the two sequential openings. If the fault still persists, the circuit breakers open and lock 

permanently till cleared manually. Since in the majority of faults the first reclosure will be 

successful, the chances of system stability are greatly enhanced by using autoreclose breakers. 
 

The procedure of determining the stability of a system upon occurrence of a disturbance 

followed by various switching off and switching on action called a stability study. Steps to be 

followed in stability study are outlined below for single- machine infinite bus bar system shown 

in fig. 6. The fault is assumed to be transient one which is cleared by the time of first reclosure. 

In the case of a permanent fault, this system completely falls apart. This will not be the case in a 

multi-machine system. The steps listed, in fact, apply to a system of any size. 
 

1. From prefault loading, determine the voltage behind transient reactance and the 
 

torque angle 0 of the machine with reference to the infinitebus. 
 
 
 

2. For the specified fault, determine the power transfer Pe ( ) during fault. In this 

equation 
 

system Pe = 0 for a three-phase fault. 
 

3. From the swing equation starting with 0 as obtained in step 1, calculate  as a 
 

function of time using a numerical technique of solving the nonlinear differential 

equation. 

4. After clearance of the fault, once again determine Pe( )  



 

Equal Area Criteria for Stability 

 

In a system where one machine is swinging with respect to an infinite bus, it is 
 
possible to study transient stability by means of a simple criterion, without resorting to the 
 
numerical solution of a swing equation. 
 
Consider the equation 
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Pa =accelerating power 
 

lf the system is unstable  continues to increase indefinitely with time and 
the machine 

 
loses synchronism. On the other hand, if the system is stable, (t)performs oscillations 
 
 
(nonsinusoidal) whose amplitude decreases in actual practice because of damping terms (not 

included in the swing equation).These two situations are shown in fig. 6. Since the system is no- 

linear, the nature of its response1 [  (t) ] is not unique and it may exhibit instability in a 

fashion different from that indicated in Fig. 6, depending upon the nature and severity of 

disturbance. 
 

 

However, experience indicates that the response  

(t) 
 
two broad categories as shown in the figure. It can 

easily be visualized now (this has also been stated earlier) that for a stables system, indication of 

stability will be given by observation of the first swing where  will go to a maximum and will 

start to reduce. 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8 Plot of δ vs t for stable and unstable system.  

 

in a power system generally falls in the 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Pe- δ diagram for sudden increase in mechanical input 

 

The condition of stability can therefore be stated as: the system is stable if the area under 

Pa (accelerating power) -  curve reduces to zero at some value of . In other words, the 

positive (accelerating) area under Pa -  curve must equal the negative (decelerating) area 

and hence the name „equal area‟ criterion of stability. To illustrate the equal area criterion 

of stability, we now consider several types of disturbances that may occur in a single 

machine infinite bus bar system. Figure 9 shows the transient model of a single machine 

tied to infinite bus-bar. The electrical power transmitted is given by 
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Under steady operating condition 
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This is indicated by the point a in the Pe -  diagram of Fig. 8. 
 

Let the mechanical input to the rotor be suddenly increased to Pm1 (by opening 
the steam 

 

valve). The accelerating P  P  P causes the rotor speed to (   ) and 
 

power 
am1 e 

increase 
s  

 

    
  



 
 

 
 
 
 
 
 

 

arrows in Fig. 8.It is easily seen that the system oscillates about the new steady state point b 
 
(  1) with angle excursion up to  0 and  2  on the two sides. These oscillations are similar 

to 
 
the simple harmonic motion of an inertia-spring system except that these are not sinusoidal. As 

the oscillations decay out because of inherent system damping (not modelled), the 

system settles to the new steady state where 
 

Pm1  Pe  Pmax sin 1 

 

From Fig. 12.20, areas A1=A2 are given by 
 

 0

 

A1   (Pm1  Pe )d 
 

 0

 
or 
 

 0

 

A1   (Pe  Pm1)d 
 

 0

 

 

s

reduce. The state point now traverses 
the 

 

and the rotor angle begins 
to 

Pe Vs curve in the opposite direction as indicated by 

 

Since the rotor is decelerating, the speed reduces below 

 

s ) 

point at c. At c), the-decelerating area A2 equals the accelerating area A1, (areas are shaded), 
i.e, 



 Pa d  0 

0

once again (state  begins to reduce but the angle continues to increase till at angle  2 , (  



For the system to be stable, it should be possible to find angle  2 such that A1=A2. As Pm1 is 

increased, a limiting condition is finally reached when A1 equals the area above the Pm1 line 

as shown in Fig 10.Under this condition,  2 acquires the maximum value such that 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 10 Limiting case of transient stability with mechanical input suddenly increased It has 

thus been shown by use of the equal area criterion that there-is an upper limit to sudden 

increase in mechanical input ( Pm1  Pm0 ), for the system in question to remain stable' 

It may be noted from Fig. 9 that the system will remain stable even though the rotor 
may 

 

oscillate beyond  90 , so long as the equal area criteria is met. The condition of  90 is 

  
 

meant for use in steady state stability only and does not apply to the transient stability case. 
 

 

Effect of Clearing Time on Stability 

 

Let the system of Fig. 9 be operating with mechanical input Pm at a steady angle of  

(Pm=Pe) as shown by the point a on the Pe Vs  diagram of Fig. 10. If a 3-phase fault occurs at 

the point P of the outgoing radial line, the electrical output of the generator instantly 

reduces to zero, i.e., Pe = 0 and the state point drops to b. The acceleration area A1 begins to 

increase and so does the rotor angle while the state point moves along bc. At time tc 

corresponding to angle c , 
 
the faulted line is cleared by the opening of the line circuit breaker. The values of tc and are 


c 

respectively known as clearing time and, clearing angle. The system once again becomes 
 
 

healthy and 

transmits 

 

 

Pe  Pmax sin  i.e. the state point shifts to d on the original Pe Vs  curve. 

 

The rotor now decelerates and the decelerating area A2, begins while the state point moves  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Limiting case of transient stability with critical angle 

 

The value of clearing time corresponding to a clearing angle can be established only 

by numerical integration except in this simple case. The equal area criterion therefore gives 

only qualitative answer to system stability as the time when the breaker should be opened 

is hard to establish. 
 

As the clearing of the faulty line is delayed, A1 increases and so does 1 , to find A2=A1 

till 1  max as shown in Fig. 10. For a clearing time (or angle) larger than this value, the 

system would be unstable as A2<A. The maximum allowable value of the clearing time and 

angle for the system to remain stable are known respectively as critical clearing time and 

angle. 
 

For this simple case (Pe=0 during fault), explicit relationships for 

c (critical) are established below. All angles are in radians. 

 

It is easily seen from Fig. 10 
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For the system to be stable, A2=A1 which gives 
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Where 
 

cr =critical clearing angle. 
 

 

Substituting Eq. (58) and (59) in Eq.(60), we get 
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During the period the fault is persisting, the swing equation  

is 
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From Eq. ( 61)   
 

 

2H (cr  0 ) 

 
 

cr 
 

 

 ( 62) 
  

 . f .P
 
 

Wherecr , is given by the expression of Eq. ( 62) 
 

An explicit relationship for determining tcr is possible in this case as during the 

faulted condition Pe =0 and so the swing equation can be integrated in closed form. This 

will not be the case in most other situations. 
 

Consider now a single machine tied to infinite bus through two parallel lines as in Fig. 
 

11a circuit model of the system is given in Fig. 11b. 
 

Let us study the transient stability of the system when one of the lines is suddenly 

switched off with the system operating at a steady road. Before switching off, power angle 

curve is given by 
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Immediately on switching off line 2, power angle curve is given by 
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Fig. 11 Single machine tied to infinite bus through two parallel lines  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 12 Equal area criterion applied to the opening of one of the two lines in parallel 
 

Both these curves are plotted in Fig. 12, wherein P 
maxII 

< P 
maxI 

as ( X   X 
1 
)  ( X  X 

1 
|| X 

2 
) 

 

  d  d   
 

 

.The system is operating initially with a steady power transfer Pe=Pm at a torque angle  0 

on curve I. Immediately on switching off line 2, the electrical operating point shifts to curve 

II (point b). Accelerating energy corresponding to area A1 is put into rotor followed by 

decelerating energy for 1   0 . Assuming that an area A2 corresponding to decelerating 

energy (energy out of rotor) can be found such that A1 = A2, the system will be stable and 

will finally operate at c 
 

corresponding to a new, rotor angle  1   1 . This is so because a single line offers 

larger 
 

reactance and larger rotor angle is needed to transfer the same steady power. 
 

It is also easy to see that if the steady load is increased (line Pm is shifted upward in Fig. 12, a 

limit is finally reached beyond which decelerating area equal to A1 cannot be found and 

therefore, the system behaves as an unstable one, For the limiting case of stability, 1 has 

maximum value given by 
 

1maxc 

 

 

This is the same condition as in the previous example. 
 

We shall assume the fault to be a three-phase one. Before the occurrence of a fault, the 

power angle curve is given by 
 



 

Upon occurrence of a three-phase fault at the generator end of line 2 (see Fig. 15a), 

the generator gets isolated from the power system for purposes of power flow as shown by 

Fig. 15b. Thus during the period the fault lasts, 

PeII=0 

 
 

 

The rotor therefore accelerates and angle  increases. Synchronism will be lost 

unless the fault is cleared in time. 
 

The circuit breakers at the two ends of the faulted line open at time tc 

(corresponding to angle  c ), the clearing time, disconnecting the faulted line. 

 

 

The power flow is now restored via the healthy line (through higher 

line reactance X2 in place of Xl || X2), with power angle curve 
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Fig. 13 Equal area criteria applied to the system, I system is normal, II fault applied, III 

faulted line isolated. 
 



Obviously, PmaxII < PmaxI. The rotor now starts to decelerate as shown in Fig. 13. The system 

will be stable if a decelerating area A2 can be found equal to accelerating area A1 before  
 

 
reache s the maxim um allowable value .As area A1 de pe nds upon clearing time tc 

 

(corresponding to clearing angle  c ), clearing time must be less than a certain value 

(critical clearing time) for the system to be stable. It is to be observed that the equal area 

criterion helps to determine critical clearing angle and not critical clearing time. Critical 

clearing time can be obtained by numerical solution of the swing equation 
 

It also easily follows that larger initial loading (Pm.) increases A1 for a given clearing angle 

(and time) and therefore quicker fault clearing would be needed to maintain stable 

operation. The power angle curve during fault is therefore given by 
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PeI , PeIII  and PeII  as obtained above are all plotted in Fig. 1  Accelerating area A1 
  

 

corresponding to a given clearing angle  is less in this case then in case a giving a better 

chance for stable operation. Stable system operation is shown in Fig. 14, wherein it is 

possible 

to find an area A2  equal to A1  for  2   max . As the clearing angle  c is increased, area A1 

 

increases and to find A2 = A1,  2 increases till it has a value  max , the maximum allowable 

for stability This case of critical clearing angle is shown in Fig. 15 
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Fig. 15 Fault on middle of one line of the system of, case of critical clearing angle  


