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The most known particles are photons, electrons and neutrons

with different masses. Their masses are

me = 9.10x 10-31 kilograms

mp = 1.67x 10-27 kilograms

these masses leads to gravitational force between them, given as                                        
F = G me mp / r2

The force between two opposite charges placed 1cm apart likely

to be 5.5x10-67 and force between two like charges placed 1cm

apart likely to be 2.3x10-24.this force between them is called as

electric force .

Electric force is larger than gravitational force. Gravitational force

due to their masses. Electric force is due to their properties. Neutron

has only mass but no electric force.
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INTRODUCTION

We should be able to analyze the performance of power systems
both in normal operating conditions and under fault (short-circuit)
condition. The analysis in normal steady-state operation is called a
power-flow study (load-flow study) and it targets on determining
the voltages, currents, and real and reactive power flows in a
system under a given load conditions.

The purpose of power flow studies is to plan ahead and account for
various hypothetical situations. For instance, what if a transmission
line within the power system properly supplying loads must be
taken off line for maintenance. Can the remaining lines in the
system handle the required loads without exceeding their rated
parameters?
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The equations used to update the estimates differ for different types of 
busses. Each bus in a power system can be classified to one of three types:

1. Load bus (PQ bus) – a buss at which the real and reactive power are
specified, and for which the bus voltage will be calculated. Real and reactive
powers supplied to a power system are defined to be positive, while the
powers consumed from the system are defined to be negative. All busses
having no generators are load busses.

2. Generator bus (PV bus) – a bus at which the magnitude of the voltage is
kept constant by adjusting the field current of a synchronous generator on
the bus (as we learned, increasing the field current of the generator
increases both the reactive power supplied by the generator and the
terminal voltage of the system). We assume that the field current is adjusted
to maintain a constant terminal voltage VT. We also know that increasing the
prime mover’s governor set points increases the power that generator
supplies to the power system. Therefore, we can control and specify the
magnitude of the bus voltage and real power supplied.

Basic techniques for power-flow studies.



3. Slack bus (swing bus) – a special generator bus serving as the reference bus
for the power system. Its voltage is assumed to be fixed in both magnitude and
phase (for instance, 10˚ pu). The real and reactive powers are uncontrolled:
the bus supplies whatever real or reactive power is necessary to make the power
flows in the system balance.
In practice, a voltage on a load bus may change with changing loads. Therefore,
load busses have specified values of P and Q, while V varies with load conditions.

Real generators work most efficiently when running at full load. Therefore, it is
desirable to keep all but one (or a few) generators running at 100% capacity,
while allowing the remaining (swing) generator to handle increases and
decreases in load demand. Most busses with generators will supply a fixed
amount of power and the magnitude of their voltages will be maintained
constant by field circuits of generators. These busses have specific values of P
and |Vi|.

The controls on the swing generator will be set up to maintain a constant voltage
and frequency, allowing P and Q to increase or decrease as loads change.

Basic techniques for power-flow studies



The most common approach to power-flow analysis is based on the bus
admittance matrix Ybus. However, this matrix is slightly different from the one
studied previously since the internal impedances of generators and loads
connected to the system are not included in Ybus. Instead, they are accounted for as
specified real and reactive powers input and output from the busses.

Example 11.1: A simple power system has 4 
busses, 5 transmission lines, 1 generator, and 3 
loads. Series per-unit impedances are:

line 

#

Bus to 

bus

Series Z 

(pu)

Series Y (pu)

1 1-2 0.1+j0.4 0.5882-j2.3529

2 2-3 0.1+j0.5 0.3846-j1.9231

3 2-4 0.1+j0.4 0.5882-j2.3529

4 3-4 0.5+j0.2 1.1765-j4.7059

5 4-1 0.5+j0.2 1.1765-j4.7059
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Constructing Ybus for power-flow analysis

The shunt admittances of the transmission lines are ignored. In this
case, the Yii terms of the bus admittance matrix can be constructed
by summing the admittances of all transmission lines connected to
each bus, and the Yij (i  j) terms are just the negative of the line
admittances stretching between busses i and j. Therefore, for
instance, the term Y11 will be the sum of the admittances of all
transmission lines connected to bus 1, which are the lines 1 and 5, so
Y11 = 1.7647 – j7.0588 pu.

If the shunt admittances of the transmission lines are not ignored,
the self admittance Yii at each bus would also include half of the
shunt admittance of each transmission line connected to the bus.

The term Y12 will be the negative of all the admittances stretching
between bus 1 and bus 2, which will be the negative of the
admittance of transmission line 1, so Y12 = -0.5882 + j2.3529.

Constructing Ybus For Power-flow Analysis



busY V I

11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

Y Y Y Y V I

Y Y Y Y V I

Y Y Y Y V I

Y Y Y Y V I

     
     
     
     
     

    

21 1 22 2 23 3 24 4 2Y V Y V Y V Y V I   

The basic equation for power-flow analysis is derived from the nodal analysis equations for 
the power system:

For the four-bus power system shown above, becomes

where Yij are the elements of the bus admittance matrix, Vi are the bus voltages, and Ii are 
the currents injected at each node. For bus 2 in this system, this equation reduces to

Power-flow Analysis Equations



However, real loads are specified in terms of real and reactive powers, not as
currents. The relationship between per-unit real and reactive power supplied to
the system at a bus and the per-unit current injected into the system at that bus is:

*S VI P jQ  

where V is the per-unit voltage at the bus; I* - complex conjugate of the per-unit
current injected at the bus; P and Q are per-unit real and reactive powers.
Therefore, for instance, the current injected at bus 2 can be found as

* * 2 2 2 2
2 2 2 2 2 2 *

2 2

P jQ P jQ
V I P jQ I I

V V

 
     

Substituting (11.10.2) into (11.9.3), we obtain

2 2
21 1 22 2 23 3 24 4 *

2

P jQ
Y V Y V Y V Y V

V


   
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Solving the last equation for V2, yields

 2 2
2 21 1 23 3 24 4*

22 2

1 P jQ
V Y V Y V Y V

Y V

 
    

 

Similar equations can be created for each load bus in the power system.

(11.11.1) gives updated estimate for V2 based on the specified values of real and
reactive powers and the current estimates of all the bus voltages in the system.
Note that the updated estimate for V2 will not be the same as the original estimate
of V2

* used in (11.11.1) to derive it. We can repeatedly update the estimate wile
substituting current estimate for V2 back to the equation. The values of V2 will
converge; however, this would NOT be the correct bus voltage since voltages at the
other nodes are also needed to be updated. Therefore, all voltages need to be
updated during each iteration!

The iterations are repeated until voltage values no longer change much between
iterations.

Power-flow Analysis Equations



This method is known as the Gauss-Siedel iterative method. Its basic procedure is:

1. Calculate the bus admittance matrix Ybus including the admittances of all 
transmission lines, transformers, etc., between busses but exclude the 
admittances of the loads or generators themselves.

2. Select a slack bus: one of the busses in the power system, whose voltage will 
arbitrarily be assumed as 1.00˚.

3. Select initial estimates for all bus voltages: usually, the voltage at every load bus 
assumed as 1.00˚ (flat start) lead to good convergence.

4. Write voltage equations for every other bus in the system. The generic form is

*
1

1 N
i i

i ik k

kii i
k i

P jQ
V Y V

Y V 


 
  

 
 
 


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5. Calculate an updated estimate of the voltage at each load bus in succession
using (11.12.1) except for the slack bus.

6. Compare the differences between the old and new voltage estimates: if the
differences are less than some specified tolerance for all busses, stop.
Otherwise, repeat step 5.

7. Confirm that the resulting solution is reasonable: a valid solution typically has
bus voltages, whose phases range in less than 45˚.

Example 11.2: in a 2-bus power system, a generator
attached to bus 1 and loads attached to bus 2. the series
impedance of a single transmission line connecting them is
0.1+j0.5 pu. The shunt admittance of the line may be
neglected. Assume that bus 1 is the slack bus and that it has
a voltage V1 = 1.00˚ pu. Real and reactive powers supplied
to the loads from the system at bus 2 are P2 = 0.3 pu, Q2 =
0.2 pu (powers supplied to the system at each busses is
negative of the above values). Determine voltages at each
bus for the specified load conditions.

Power-flow Analysis Equations



1. We start from calculating the bus admittance matrix Ybus. The Yii terms can be
constructed by summing the admittances of all transmission lines connected to
each bus, and the Yij terms are the negative of the admittances of the line
stretching between busses i and j. For instance, the term Y11 is the sum of the
admittances of all transmission lines connected to bus 1 (a single line in our case).
The series admittance of line 1 is

1

1

11

1 1
0.3846 1.9231

0.1 0.5
line

line

Y j
j

Y
Z





    


Applying similar calculations to other terms, we complete the admittance matrix as

0.3846 1.9231 0.3846 1.9231

0.3846 1.9231 0.3846 1.9231
bus

j j
Y

j j

   
  

   

2. Next, we select bus 1 as the slack bus since it is the only bus in the system 
connected to the generator. The voltage at bus 1 will be assumed 1.00˚.

Power-flow Analysis Equations



3. We select initial estimates for all bus voltages. Making a flat start, the initial 
voltage estimates at every bus are 1.00˚.

4. Next, we write voltage equations for every other bus in the system. For bus 2:

2 2
2 21 1*

22 2,

1

old

P jQ
V Y V

Y V

 
  

  

Since the real and reactive powers supplied to the system at bus 2 are P2 = -0.3 pu
and Q2 = -0.2 pu and since Ys and V1 are known, we may reduce the last equation:

  

  

2 1*

2,

*

2,

1 0.3 0.2
0.3846 1.9231

0.3846 1.9231

1 0.3603 146.3
1.9612 101.3 1 0

1.9612 78.8

old

old

j
V j V

j V

V

  
    

   

  
      

    

(11.15.1)

(11.15.2)

Power-flow Analysis Equations



5. Next, we calculate an updated estimate of the voltages at each load bus in
succession. In this problem we only need to calculate updated voltages for bus 2,
since the voltage at the slack bus (bus 1) is assumed constant. We repeat this
calculation until the voltage converges to a constant value.

The initial estimate for the voltage is V2,0 = 10˚. The next estimate for the voltage
is

  

 

2,1 *

2,

1 0.3603 146.3
1.9612 101.3 1 0

1.9612 78.8

1 0.3603 146.3
1.9612 101.3

1.9612 78.8 1 0

0.8797 8.499

old

V
V

  
      

    

  
        

  

This new estimate for V2 substituted back to the equation will produce the second 
estimate:

(11.16.1)
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  2,2

1 0.3603 146.3
1.9612 101.3 1 0

1.9612 78.8 0.8797 8.499

0.8412 8.499

V
  

          

  

The third iteration will be

  2,3

1 0.3603 146.3
1.9612 101.3 1 0

1.9612 78.8 0.8412 8.499

0.8345 8.962

V
  

          

  

The fourth iteration will be

  2,4

1 0.3603 146.3
1.9612 101.3 1 0

1.9612 78.8 0.8345 8.962

0.8320 8.962

V
  

          

  

The fifth iteration will be

  2,5

1 0.3603 146.3
1.9612 101.3 1 0

1.9612 78.8 0.8320 8.9

0.8315 8.994

62
V

  
         





 
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This power system converged to the answer in five iterations. The voltages at each
bus in the power system are:

6. We observe that the magnitude of the voltage is barely changing and may 
conclude that this value is close to the correct answer and, therefore, stop the 
iterations.

1

2

1.0 0

0.8315 8.994

V

V

  

  

7. Finally, we need to confirm that the resulting solution is reasonable. The results
seem reasonable since the phase angles of the voltages in the system differ by only
10˚. The current flowing from bus 1 to bus 2 is

1 2
1

1

1 0 0.8315 8.994
0.4333 42.65

0.1 0.5line

V V
I

Z j

    
    



(11.18.1)

(11.18.2)
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The power supplied by the transmission line to bus 2 is

  
** 0.8315 8.994 0.4333 42.65 0.2999 0.1997S VI j       

This is the amount of power consumed by the loads; therefore, this solution
appears to be correct.

Note that this example must be interpreted as follows: if the real and reactive
power supplied by bus 2 is 0.3 + j0.2 pu and if the voltage on the slack bus is 10˚
pu, then the voltage at bus 2 will be V2 = 0.8315-8.994˚.

This voltage is correct only for the assumed conditions; another amount of power
supplied by bus 2 will result in a different voltage V2.

Therefore, we usually postulate some reasonable combination of powers supplied
to loads, and determine the resulting voltages at all the busses in the power
system. Once the voltages are known, currents through each line can be
calculated.

The relationship between voltage and current at a load bus as given by is
fundamentally nonlinear! Therefore, solution greatly depends on the initial guess.

Power-flow Analysis Equations



Adding generator busses to power-flow studies

At a generator bus, the real power Pi and the magnitude of the bus voltage |Vi| are
specified. Since the reactive power for that bus is usually unknown, we need to
estimate it before applying to get updated voltage estimates. The value of reactive
power at the generator bus can be estimated by solving for Qi:

*

*
1 1

1 N N
i i

i ik k i i i ii i ik k

k kii i
k i k i

P jQ
V Y V P jQ V Y V Y V

Y V  
 

   
        

   
   
   

 

Bringing the case k = I into summation, we obtain

*

1

*

1

Im
N N

i i ik ki i i ik k

k k

P jQ V Y Q VV Y V


  
 

   
 


Once the reactive power at the bus is estimated, we can update the bus voltage at 
a generator bus using Pi and Qi as we would at a load bus. However, the magnitude 
of the generator bus voltage is also forced to remain constant. Therefore, we must 
multiply the new voltage estimate by the ratio of magnitudes of old to new 
estimates.

(11.20.1)

(11.20.2)
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Therefore, the steps required to update the voltage at a generator bus are:

1. Estimate the reactive power Qi according to (11.20.2);

2. Update the estimated voltage at the bus according to (11.12.1) as if the bus was
a load bus;

3. Force the magnitude of the estimated voltage to be constant by multiplying the
new voltage estimate by the ratio of the magnitude of the original estimate to
the magnitude of the new estimate. This has the effect of updating the voltage
phase estimate without changing the voltage amplitude.

Adding generator busses to power-flow studies



Example 11.3: a 4-bus power system with 5 
transmission lines, 2 generators, and 2 loads. 
Since the system has  generators connected 
to 2 busses, it will have one slack bus, one 
generator bus, and two load busses. Assume 
that bus 1 is the slack bus and that it has a 
voltage V1 = 1.00˚ pu. Bus 3 is a generator 
bus. The generator is supplying a real power 
P3 = 0.3 pu to the system with a voltage 
magnitude 1 pu. The per-unit real and 
reactive power loads at busses 2 and 4 are P2

=

0.3 pu, Q2 = 0.2 pu, P4 = 0.2 pu, Q4 = 0.15 pu (powers supplied to the system at 
each busses are negative of the above values). The series impedances of each bus 
were evaluated in Example 11.1. Determine voltages at each bus for the specified 
load conditions.

Adding generator busses to power-flow studies



The bus admittance matrix was calculated earlier as

1.7647 7.0588 0.5882 2.3529 0 1.1765 4.7059

0.5882 2.3529 1.5611 6.6290 0.3846 1.9231 0.5882 2.3529

0 0.3846 1.9231 1.5611 6.6290 1.1765 4.7059

1.1765 4.7059 0.5882 2.3529 1.1765 4.7059 2

bus

j j j

j j j j
Y

j j j

j j j

    

      


    

      .9412 11.7647j

 
 
 
 
 

 

Since the bus 3 is a generator bus, we will have to estimate the reactive power at
that bus before calculating the bus voltages, and then force the magnitude of the
voltage to remain constant after computing the bus voltage. We will make a flat
start assuming the initial voltage estimates at every bus to be 1.00˚.

Therefore, the sequence of voltage (and reactive power) equations for all busses is:

Adding generator busses to power-flow studies



 

 

 

2 2
2 21 1 23 3 24 4*

22 2,

*

3 3

1

3 3
3 31 1 32 2 34 4*

33 3,

3,

3 3

3

4 4
4 41 1 42 2 43 3*

44 4,

1

Im

1

1

old

N

ik k

k

old

old

old

P jQ
V Y V Y V Y V

Y V

Q V Y V

P jQ
V Y V Y V Y V

Y V

V
V V

V

P jQ
V Y V Y V Y V

Y V



 
    

  

 
   

 

 
    

  



 
    

  


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1

2

3

4

1.0 0

0.964 0.97

1.0 1.84

0.98 0.27

V pu

V pu

V pu

V pu

  

  

  

  

The voltages and the reactive power should be updated iteratively, for instance,
using Matlab.

Computations converge to the following solution:

The solution looks reasonable since the bus voltage phase angles is less than 45˚.

Adding generator busses to power-flow studies



After the bus voltages are calculated at all busses in a power system, a power-flow
program can be set up to provide alerts if the voltage at any given bus exceeds, for
instance, 5% of the nominal value. This is important since the power needs to be
supplied at a constant voltage level; therefore, such voltage variations may indicate
problems…

Additionally, it is possible to determine the net real and reactive power either
supplied or removed from the each bus by generators or loads connected to it. To
calculate the real and reactive power at a bus, we first calculate the net current
injected at the bus, which is the sum of all the currents leaving the bus through
transmission lines.

The current leaving the bus on each transmission line can be found as:

 
1

N

i ik i k

k
k i

I Y V V



 

The information derived from power-flow studies



The resulting real and reactive powers injected at the bus can be found from

*

i i i i iS V I P jQ   

where the minus sign indicate that current is assumed to be injected instead of 
leaving the node.

Similarly, the power-flow study can show the real and reactive power flowing in
every transmission line in the system. The current flow out of a node along a
particular transmission line between bus i and bus j can be calculated as:

 ij ij i jI Y V V 

where Yij is the admittance of the transmission line between those two busses. The 
resulting real and reactive power can be calculated as:

*

ij i ij ij ijS V I P jQ   

The information derived from power-flow studies



Also, comparing the real and reactive power flows at either end of the
transmission line, we can determine the real and reactive power losses on each
line.In modern power-flow programs, this information is displayed graphically.
Colors are used to highlight the areas where the power system is overloaded,
which aids “hot spot” localization.Power-flow studies are usually started from
analysis of the power system in its normal operating conditions, called the base
case. Then, various (increased) load conditions may be projected to localize
possible problem spots (overloads). By adding transmission lines to the system, a
new configuration resolving the problem may be found. This estimated models can
be used for planning.

Another reason for power-flow studies is modeling possible failures of particular
lines and generators to see whether the remaining components can handle the
loads.

Finally, it is possible to determine more efficient power utilization by redistributing
generation from o locations to other. This variety of power-flow studies is

called economic dispatch.

The information derived from power-flow studies





So far we've assumed that the load is independent of

the bus voltage (i.e., constant power).  However, the

power flow can be easily extended to include voltage

depedence with both the real and reactive l

Di Di

1

1

oad.  This

is done by making P  and Q  a function of :

( cos sin ) ( ) 0

( sin cos ) ( ) 0

i

n

i k ik ik ik ik Gi Di i
k

n

i k ik ik ik ik Gi Di i
k

V

V V G B P P V

V V G B Q Q V

 

 





   

   





Modeling Voltage Dependent Load

Modeling Voltage Dependent Load



2
2 2 2 2

2 2
2 2 2 2 2

2 2 2 2

In previous two bus example now assume the load is

constant impedance, so 

P ( ) (10sin ) 2.0 0

( ) ( 10cos ) (10) 1.0 0

Now calculate the power flow Jacobian

10 cos 10sin 4.0
( )

10

V V

Q V V V

V V
J





 

  

    




x

x

x
2 2 2 2 2sin 10cos 20 2.0V V V 

 
    

Voltage Dependent Load Example



(0)

2
2 2 2(0)

2 2
2 2 2 2

(0)

1
(1)

0
Again set   0, guess 

1

Calculate 

(10sin ) 2.0 2.0
f( )

1.0( 10cos ) (10) 1.0

10 4
( )

0 12

0 10 4 2.0 0.1667
Solve

1 0 12 1.0 0.9167

v

V V

V V V







 
   

 

   
    

     

 
  
 

      
       
     

x

x

J x

x


 
 

Voltage Dependent Load Example



Line Z = 0.1j

One Two 1.000 pu

 0.894 pu

 160 MW

  80 MVR

160.0 MW

120.0 MVR

-10.304 Deg

 160.0 MW

 120.0 MVR

-160.0 MW

 -80.0 MVR

With constant impedance load the MW/Mvar load at bus 2 varies with the
square of the bus 2 voltage magnitude. This if the voltage level is less than
1.0, the load is lower than 200/100 MW/Mvar

Voltage Dependent Load Example



 Since most of the time in the Newton-Raphson iteration is spend calculating
the inverse of the Jacobian, one way to speed up the iterations is to only
calculate/inverse the Jacobian occasionally

 known as the “Dishonest” Newton-Raphson

 an extreme example is to only calculate the Jacobian for the first iteration

( 1) ( ) ( ) -1 ( )

( 1) ( ) (0) -1 ( )

( )

Honest: - ( ) ( )

Dishonest: - ( ) ( )

Both require ( )  for a solution

v v v v

v v v

v 











x x J x f x

x x J x f x

f x

Dishonest  Newton  Raphson Method



2

1(0)
( ) ( )

( ) ( ) 2

(0)

( 1) ( ) ( ) 2

(0)

Use the Dishonest Newton-Raphson to solve 

( )  - 2 0

( )
( )

1
(( ) - 2)

2

1
(( ) - 2)

2

v v

v v

v v v

f x x

df x
x f x

dx

x x
x

x x x
x





 

 
   

 

 
  

  

 
 

  

Dishonest  Newton  Raphson Method



( 1) ( ) ( ) 2

(0)

(0)

( ) ( )

1
(( ) - 2)

2

Guess x 1.  Iteratively solving we get

v (honest) (dishonest)

0 1 1

1 1.5 1.5

2 1.41667 1.375

3 1.41422 1.429

4 1.41422 1.408

v v v

v v

x x x
x

x x

  
 

  



We pay a price
in increased
iterations, but
with decreased
computation
per iteration

Dishonest  Newton  Raphson Method



Slide shows the region of convergence for different initial guesses for the 
2 bus case using the Dishonest N-R Red region

converges
to the high
voltage
solution,
while the
yellow region
converges
to the low
voltage
solution

Two Bus Dishonest ROC



Maximum
of 15

iterations

Honest N-R Region Of Convergence



Decoupled Power Flow

 The completely Dishonest Newton-Raphson is not used for power flow
analysis. However several approximations of the Jacobian matrix are
used.

 One common method is the decoupled power flow. In this approach
approximations are used to decouple the real and reactive power
equations.

Decoupled  Power Flow



( ) ( )

( ) ( )
( )

( )( ) ( ) ( )

( )
2 2 2

( )

( )

General form of the power flow problem

( )
( )

( )

where

( )

( )

( )

v v

v v
v

vv v v

v
D G

v

v
n Dn Gn

P P P

P P P

  
             
           
   

  
 

   
   

P P

θθ V P x
f x

Q xVQ Q

θ V

x

P x

x



Decoupled  Power Flow



( ) ( )

( )

( ) ( )
( )

( ) ( ) ( )

Usually the off-diagonal matrices, and 

are small.  Therefore we approximate them as zero:

( )
( )

( )

Then the problem 

v v

v

v v
v

v v v

 

 

 
            
        
 

 

P Q

V θ

P
0

θ P xθ
f x

Q Q xV
0

V

1 1( ) ( )
( )( ) ( ) ( )

can be decoupled

( ) ( )
v v

vv v v

 
    

          
    

P Q
θ P x V Q x

θ V

Decoupling Approximation



 

 

Justification for Jacobian approximations:

1. Usually r x, therefore 

2. Usually  is small so sin 0

Therefore

cos sin 0

cos sin 0

ij ij

ij ij

i
i ij ij ij ij

j

i
i j ij ij ij ij

j

G B

V G B

V V G B

 

 

 




  




   



P

V

Q

θ

 

Off-diagonal Jacobian Terms



Decoupled N-R Region Of Convergence



 By continuing with our Jacobian approximations we can actually
obtain a reasonable approximation that is independent of the
voltage magnitudes/angles.

 This means the Jacobian need only be built/inverted once.

 This approach is known as the fast decoupled power flow (FDPF)

 FDPF uses the same mismatch equations as standard power flow so
it should have same solution

 The FDPF is widely used, particularly when we only need an
approximate solution

Fast Decoupled Power Flow



ij

( ) ( )
( )( ) 1 1

( ) ( )

bus

The FDPF makes the following approximations:

1. G 0

2. 1

3. sin 0 cos 1

Then

( ) ( )

Where  is just the imaginary part of the ,

except the slack bus row/co

i

ij ij

v v
vv

v v

V

j

 

 





 

 
   

 

P x Q x
θ B V B

V V

B Y G B

lumn are omitted 

FDPF Approximations



Line Z = j0.07

Line Z = j0.05 Line Z = j0.1

One Two

 200 MW

 100 MVR

Three 1.000 pu

 200 MW

 100 MVR

Use the FDPF to solve the following three bus system

34.3 14.3 20

14.3 24.3 10

20 10 30

bus j

 
  
 

  

Y

FDPF Three Bus Example



1

(0)(0)
2 2

3 3

34.3 14.3 20
24.3 10

14.3 24.3 10
10 30

20 10 30

0.0477 0.0159

0.0159 0.0389

Iteratively solve, starting with an initial voltage guess

0 1

0 1

bus j

V

V







 
          

  

  
    

     
     
    

Y B

B

(1)
2

3

0 0.0477 0.0159 2 0.1272

0 0.0159 0.0389 2 0.1091






 
 

           
                     

FDPF Three Bus Example



(1)

2

3

i

i i1

(2)
2

3

1 0.0477 0.0159 1 0.9364

1 0.0159 0.0389 1 0.9455

P ( )
( cos sin )

V V

0.1272 0.0477 0.0159

0.1091 0.0159 0.0389

n
Di Gi

k ik ik ik ik
k

V

V

P P
V G B 







          
                    


  

       
            


x

(2)

2

3

0.151 0.1361

0.107 0.1156

0.924

0.936

0.1384 0.9224
Actual solution: 

0.1171 0.9338

V

V

   
      

   
   

  

   
       

θ V

FDPF Three Bus Example



FDPF Region Of Convergence



 The “DC” power flow makes the most severe approximations:

 completely ignore reactive power, assume all the voltages are
always 1.0 per unit, ignore line conductance

 This makes the power flow a linear set of equations, which can be 
solved directly .

1θ B P

“DC” Power Flow



1) A major problem with power system operation is the limited
capacity of the transmission system.

2) lines/transformers have limits (usually thermal)

3) no direct way of controlling flow down a transmission line (e.g.,
there are no valves to close to limit flow)

4) open transmission system access associated with industry
restructuring is stressing the system in new ways

5) We need to indirectly control transmission line flow by changing
the generator outputs

Power System Control



DC Power Flow Example



slack

One

Two

ThreeFourFive
A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

1.000 pu 1.000 pu

 1.000 pu

1.000 pu

1.000 pu

 0.000 Deg -4.125 Deg

-18.695 Deg

-1.997 Deg

 0.524 Deg

 360 MW

   0 Mvar

 520 MW

   0 Mvar

 800 MW

   0 Mvar

  80 MW

   0 Mvar

Notice with the dc power flow all of the voltage magnitudes are 

1 per unit.  

DC Power Flow 5 Bus Example



What we would like to determine is how a change in 
generation at bus k affects the power flow on a line 
from bus i to bus j.  

The assumption 
is
that the change
in generation is
absorbed by the
slack bus

Indirect Transmission Line Control



One way to determine the impact of a generator change is to 
compare a before/after power flow.

For example below is a three bus case with an overload

Z for all lines = j0.1

One Two

 200 MW

 100 MVR
200.0 MW

 71.0 MVR

Three 1.000 pu

   0 MW

  64 MVR

 131.9 MW

  68.1 MW   68.1 MW

124%

Power Flow Simulation - Before



Power Flow Simulation - After

Z for all lines = j0.1
Limit for all lines = 150 MVA

One Two

 200 MW

 100 MVR
105.0 MW

 64.3 MVR

Three
1.000 pu

  95 MW

  64 MVR

 101.6 MW

   3.4 MW   98.4 MW

 92%

100%

Increasing the generation at bus 3 by 95 MW (and hence 

decreasing it at bus 1 by a corresponding amount), results

in a 31.3 drop in the MW flow on the line from bus 1 to 2. 

Power Flow Simulation - After



Calculating control sensitivities by repeat power flow solutions is

tedious and would require many power flow solutions. An alternative

approach is to analytically calculate these values

The power flow from bus i to bus j is 

sin( )

So We just need to get 

i j i j
ij i j

ij ij

i j ij
ij

ij Gk

V V
P

X X

P
X P

 
 

  


  

   
 



Analytic Calculation of Sensitivities



1

From the fast decoupled power flow we know

( )

So to get the change in  due to a change of

 generation at bus k, just set ( ) equal to 

all zeros except a minus one at position k.  

0

1

0

  







  



θ B P x

θ

P x

P





 Bus k

 


 
 

 
 
 
 

Analytic Sensitivities





In the per-unit system, the voltages, currents, powers, impedances,
and other electrical quantities are expressed on a per-unit basis by
the equation:

Quantity per unit =

Actual value  to 

Base value of quantity

It is customary to select two base quantities to define a given per-unit
system. The ones usually selected are voltage and power.

Per-Unit System



Assume:

Then compute base values for currents and impedances:

ratedb VV 

ratedb SS 

b

b
b

V

S
I 

b

b

b

b
b

S

V

I

V
Z

2



Per-Unit System
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And the per-unit system is:

b

actual
up

V

V
V ..

b

actual
up

I

I
I ..

b

actual
up

S

S
S ..

b

actual
up

Z

Z
Z ..

%100% ..  upZZ Percent of base Z

Per-Unit System
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An electrical lamp is rated 120 volts, 500 watts. Compute the per-unit 
and percent impedance of the lamp. Give the p.u. equivalent circuit.

Solution:
(1) Compute lamp resistance

power factor = 1.0

 8.28
500

)120( 222

P

V
R

R

V
P

 08.28Z

Per-Unit System
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(2) Select base quantities

(3) Compute base impedance

(4) The per-unit impedance is:

VASb 500

VVb 120

 8.28
500

)120( 22

b

b
b

S

V
Z

..01
8.28

08.28
.. up

Z

Z
Z

b

up 




Per-Unit System
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(5) Percent impedance:

(6) Per-unit equivalent circuit:

%100% Z

..01 upZ 

..01 upVS 

Per-Unit System



67

One-phase circuits

LVbLV VV 

 IVSSb  1

where
neutraltolineVV 

currentlineII 

HVbHV VV 

bLV

b
bLV

V

S
I 

bHV

b
bHV

V

S
I 

Per-unit System For 1-  Circuits
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b

bLV

bLV

bLV
bLV

S

V

I

V
Z

2)(


b

bHV

bHV

bHV
bHV

S

V

I

V
Z

2)(


*

pupu

b

pu IV
S

S
S 

cospupu

b

pu IV
S

P
P 

sinpupu

b

pu IV
S

Q
Q 

Per-unit System For 1-  Circuits
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Selection 1

Ab VV 1
Ab SS 1

Then

1

1

b

L
pu

Z

Z
Z 

1

2

1
1

b

b
b

S

V
Z 

Selection 2

Bb VV 2Bb SS 2

Then

2

2

b

L
pu

Z

Z
Z 

2

2

2
2

b

b
b

S

V
Z 

Transformation Between Bases
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2

2

2

1

2

1

2

11

21

2

b

b

b

b

b

b

L

b

b

L

pu

pu

V

S

S

V

Z

Z

Z

Z

Z

Z

Z

Z

























1

2

2

2

1
12

b

b

b

b
pupu

S

S

V

V
ZZ

“1” – old
“2” - new































oldb

newb

newb

oldb

oldpunewpu
S

S

V

V
ZZ

,

,

2

,

,

,,

Transformation Between Bases
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Generally per-unit values given to another base can be converted to
new base by by the equations:

2

1
1___2___ ),,(),,(

base

base
baseonpubaseonpu

S

S
SQPSQP 

2

1
1___2___

base

base
baseonpubaseonpu

V

V
VV 

1

2

2

2

2

1
1___2___

)(

)(
),,(),,(

basebase

basebase
baseonpubaseonpu

SV

SV
ZXRZXR 

When performing calculations in a power system, every per-unit
value must be converted to the same base.

Transformation Between Bases



Consider the equivalent circuit of transformer referred to LV side and
HV side shown below:

LVV HVV LVV HVV

SS jXR 

1N 2N

22 a

X
j

a

R SS 

(1) Referred to LV side (2) Referred to HV side

Define 1
2

1 
N

N

V

V
a

HV

LV

S

Per-unit System For 1- Transformer



Choose:

ratedLVb VV ,1 

ratedb SS 

Compute:

112

1
bb

LV

HV
b V

a
V

V

V
V 

b

b
b

S

V
Z

2

1
1 

b

b
b

S

V
Z

2

2
2 

2

2

1

2

1

2

2

2

1

2

1

)
1

(

a

V
a

V

V

V

Z

Z

b

b

b

b

b

b 

Normal choose rated 
values as base values

Per-unit System For 1- Transformer



Per-unit System for 1- Transformer

Per-unit impedances are:

1

1..

b

SS
up

Z

jXR
Z




1
2

1

22

2

22

2..

b

SS

b

SS

b

SS

up
Z

jXR

a

Z
a

jX

a

R

Z

a

jX

a

R

Z












So:

2..1.. upup ZZ 
Per-unit equivalent circuits
of transformer referred to LV
side and HV side are
identical !!

Per-unit System For 1- Transformer



LVV HVV

SS jXR 

1N 2N

Fig 1. Eq Ckt referred to LV side

1
2

1 
N

N

V

V
a

HV

LV

S

1bZ

1bV 2bV

Fig 2. Per-unit Eq Ckt referred to LV side Fig 3.

puSZ ,

1:1

1bV 2bV

puSZ ,

1bV 2bV

bS

Per-unit Eq. Ckt For 1- Transformer



LVV HVV

1N
2N

Fig 4. Eq Ckt referred to HV side

1
2

1 
N

N

V

V
a

HV

LV

S

2bZ

2bV
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below rated voltage

Vno-load: The no load voltage when the primary voltage is the desired
voltage in order the secondary voltage be at its desired
value at full load
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A single-phase transformer rated 200-kVA, 200/400-V, and 10% short
circuit reactance. Compute the VR when the transformer is fully
loaded at unity PF and rated voltage 400-V.

Solution:

Fig 7. Per-unit equivalent circuit
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1. The Bulk Power Supply

 Elaborate, complex, interconnection of power 
components which make up an interconnected power 
system.

 When we talk about reliability and security of power 
systems, we are interested in what we call “THE BULK 
POWER SUPPLY SYSTEM”

 The part of the network which connects the power 
plants, the major substations, and the main EHV/HV 
lines.

 Interruptions in the bulk power supply are very serious
- Many users are affected by these interruptions
- They can be costly

INTRODUCTION
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2. RELIABILITY

Power Systems are built and operated with the following goal:

TO ACHIEVE A RELIABLE and ECONOMIC ELECTRIC POWER SUPPLY.

For the consumer to have a reliable and economic electric power supply, a 
complex set of engineering analysis and design solutions need to be 
implemented.

Reliability of a power system refers to the probability of its satisfactory
operation over the long run. It denotes the ability to supply adequate
electric service on a nearly continuous basis, with few interruptions over an
extended time period. - IEEE Paper on Terms & Definitions, 2004

INTRODUCTION
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3. REQUIREMENTS OF A RELIABLE ELECTRIC POWER SERVICE

 Steady-state and transient voltages and frequency must be held within close 
tolerances

 Steady-state flows must be within circuit limits

 Synchronous generators must be kept running in parallel with adequate 
capacity to meet the load demand

 Maintain the “integrity” of the bulk power network (avoid cascading 
outages)

NERC, North American Electric Reliability Corporation:  Mission is to ensure 
reliability of the bulk power system in North America. They develop/enforce 
reliability standards; assess reliability annually via 10-year and seasonal 
forecasts; monitor the bulk power system; evaluate users, owners, and 
operators for preparedness; and educate, train, and certify industry 
personnel. NERC is a self-regulated organization, subject to oversight by the 
U.S. Federal Energy Regulatory Commission & governmental authorities in 
Canada.  It is composed of 9 regional reliability councils & encompasses 
virtually all power systems in US & Canada. NERC’s activities play an essential 
role in preventing contingencies and mitigating their consequences.

STAEDY STATE STABILITY
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4. SYSTEM DYNAMIC PERFORMANCE

In designing and operating the interconnected power network, system dynamic 
performance is taken into account because:

 The power system is subjected to changes (small and large).  It is important 
that when the changes are completed, the system settles to new operating 
conditions such that no constraints are violated.

 Not only should the new operating conditions be acceptable (as revealed by 
steady-state analysis) but also the system must survive the transition to these 
conditions.  This requires dynamic analysis.

ONE ASPECT OF SYSTEM SECURITY IS THE ABILITY OF THE SYSTEM TO “STAY 
TOGETHER.”  THE KEY IS THAT THE GENERATORS CONTINUE TO OPERATE “IN 
SYNCHRONISM,”  OR NOT TO “LOSE SYNCHRONISM” OR NOT TO “GO OUT OF 
STEP.”  THIS IS THE PROBLEM OF

“POWER SYSTEM STABILITY”

STAEDY STATE STABILITY
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IMPORTANCE OF POWER SYSTEM STABILITY

 Generators must be kept in synchronism; if their relative motion begins to
change too much, uncontrollable oscillations may appear in the grid causing
damage to generators and to equipment.

 Therefore, relays are used to detect this condition and trip generators before
the damage occurs. Although tripping prevents the damage, it results in
under-frequency, and possibly load interruption, and in the worst case,
cascading outages and blackout.

STAEDY STATE STABILITY
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DEFINITIONS
 Power System: A network of one or more electrical generating units, loads,

and/or power transmission lines, including the associated equipment
electrically or mechanically connected to the network.

 Operating Quantities of a Power System: Physical quantities, measured or
calculated, that can be used to describe the operating conditions of a power
system. Operating quantities include real, reactive, and apparent powers, &
rms phasors of alternating voltages & currents.

 Steady-State Operating Condition of a Power System: An operating condition
of a power system in which all the operating quantities that characterize it can
be considered to be constant for the purpose of analysis.

STAEDY STATE STABILITY



90

DEFINITIONS
 Synchronous Operation:

 Synchronous Operation of a Machine: A machine is in synchronous
operation with a network or another machine(s) to which it is connected
if its average electrical speed (product of its rotor angular velocity and the
number of pole pairs) equals the angular frequency of the ac network or
the electrical speed of the other machine(s).

 Synchronous Operation of a Power System: A power system is in
synchronous operation if all its connected synchronous machines are in
synchronous operation with the ac network and with each other.

STAEDY STATE STABILITY
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DEFINITIONS

 Asynchronous or nonsynchronous operation:

 Asynchronous Operation of a Machine: A machine is in asynchronous
operation with a network or another machine to which it is connected if it is
not in synchronous operation.

 Asynchronous Operation of a Power System: A power system is in
asynchronous operation if one or more of its connected synchronous
machines are in asynchronous operation.

 Hunting of a Machine: A machine is hunting if any of its operating quantities
experience sustained oscillations.

STAEDY STATE STABILITY
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DEFINITIONS
 Disturbance in a Power System: A disturbance in a power system is a sudden

change or a sequence of changes in one or more parameters of the system, or in
one or more of the operating quantities.

 Small Disturbance In a Power System: A small disturbance is a disturbance for
which the equations that describe the dynamics of the power system may be
linearized for the purpose of accurate analysis.

 Large Disturbance In a Power System: A large disturbance is a disturbance for
which the equations that describe the dynamics of the power system cannot
be linearized for the purpose of accurate analysis.

 Steady-State Stability of a Power System: A power system is steady-state stable
for a particular steady-state operating condition if, following any small
disturbance, it reaches a steady-state operating condition which is identical or
close to the pre-disturbance operating condition. This is also known as Small
Disturbance Stability of a Power System. It should NOT be called “dynamic
stability.”

 Transient Stability of a Power System: A power system is transiently stable for a
particular steady-state operating condition and for a particular disturbance if,
following that disturbance, it reaches an acceptable steady-state operating
condition.

STAEDY STATE STABILITY
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DEFINITIONS
 Power system stability: Power system stability is the ability of an electric power

system, for a given initial operating condition, to regain a state of operating
equilibrium after being subjected to a physical disturbance, with most system
variables bounded so that practically the entire system remains intact.

 …Stability of a power system… refers to the continuance of intact operation
following a disturbance. It depends on the operating condition and the nature of
the physical disturbance.

 An equilibrium set of a power system is stable if, when the initial state is in the
given starting set, the system motion converges to the equilibrium set, and
operating constraints are satisfied for all relevant variables along the entire
trajectory.

 IEEE Terms and definitions, 2004.

• If the oscillatory response of a power system during the transient period following a
disturbance is damped and the system settles in a finite time to a new steady
operating condition, we say the system is stable. If the system is not stable, it is
considered unstable.

– Anderson & Fouad, pg. 5.

STAEDY STATE STABILITY
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Differences between reliability, security, and stability
 Reliability is the overall objective in power system design and operation. To be

reliable, the power system must be secure most of the time. To be secure, the
system must be stable but must also be secure against other contingencies that
would not be classified as stability problems e.g., damage to equipment such as
an explosive failure of a cable, fall of transmission towers due to ice loading or
sabotage. As well, a system may be stable following a contingency, yet insecure
due to post-fault system conditions resulting in equipment overloads or voltage
violations

 System security may be further distinguished from stability in terms of the
resulting consequences. For example, two systems may both be stable with
equal stability margins, but one may be relatively more secure because the
consequences of instability are less severe.

 Security and stability are time-varying attributes which can be judged by
studying the performance of the power system under a particular set of
conditions. Reliability, on the other hand, is a function of the time-average
performance of the power system; it can only be judged by consideration of the
system’s behavior over an appreciable period of time.

-
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IEEE paper on terms and definitions,  2004.STAEDY STATE STABILITY
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Disturbance
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5. HOW ARE RELIABILITY CRITERIA USED?

A) In System Planning or Design

 Make decisions on size, type and timing of new generation and
transmission facilities

 Design transmission network to withstand normal & prescribed abnormal
conditions

 The latter includes such things as short circuits (faults) followed by loss of
major components (to isolate the fault).

B) In System Operation

 Establish most economic operating conditions under “normal” conditions

 Operate the system such that if an unscheduled event occurs, it does not
result in violation of reliability criteria.

 Establish “Safe Operating Limits” for all situations

STAEDY STATE STABILITY
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The most salient feature of reliability criteria is a philosophy
captured by the following statement taken from the WSCC criteria for
transmission system planning, which describes its disturbance-performance
table:

“The table is based on the planning philosophy that a HIGHER level of
PERFORMANCE is required for disturbances generally having a higher
frequency of occurrence.”

Or stated another way,
“The table is based on the planning philosophy that a LOWER 

level of SEVERITY is required for disturbances generally 
having a higher frequency of occurrence.”

Considering risk ~ frequency  severity, we see that the criteria
suggests a uniform maximum risk for different kinds of contingencies.

STAEDY STATE STABILITY
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6. TYPES OF STABILITY STUDIES

A. Steady-state instability

Use linear system analysis techniques to study modal system
response

Calculation input: (a) pre-disturbance system conditions (the power
flow solution); (b) the dynamic models.

Typical purpose of such studies:

 Obtain safe operating limits and guidelines

 Identify poorly damped modes of oscillation

 Setting of controls (e.g., exciters, power system stabilizers)

STAEDY STATE STABILITY
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B. Transient instability

 Use of non-linear system analysis tools to study the system response to
(large) disturbances.

 Traditional method is to use time-d

 omain simulation to “track” the evolution of system states &
parameters during the transient

 Simulation input: (a) pre-disturbance system conditions (the power
flow solution), (b) the dynamic models. (c) the switching sequence.

 Simulation results: short-term (2-20 seconds) trajectory of all system
parameters and final (post-disturbance) conditions.

 Any change in input WILL change the results, the question that one
needs to answer based on judgment is “how much?”

TRANSIENT  STABILITY
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Switching sequences

 The simplest switching sequence is “no-disturbance.” Why would we ever
want to do that?

 The next simplest is:

 0 cycles: remove circuit 10-29

 10 seconds: end simulation

 The next simplest, and most common, is:

 0 cycles: apply fault at bus 2339

 4 cycles: clear fault

 4 cycles: remove circuit 2339-2337

 10 seconds: end simulation

 The most complicated (ever?) is the WECC islanding scheme – 44 steps.

TRANSIENT  STABILITY
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 “First-swing” or “early-swing” (1-5 secs) is a standard problem for which 
analysis is performed where a large disturbance (fault) is applied to see if the 
system remains in synchronism during first one or two swings. But often, large 
disturbances also create damping problems (oscillatory instability) which 
require 10-20 seconds of simulation time.

 Why not run simulations for 3 minutes of simulation time?

 Build-up of numerical error for most common type of integration technique

 Usually, models are for short-term analysis only and do not include, for 
example, boiler dynamics, thermostatic load models, load tap changers, 
AGC, etc.

 If you eliminate numerical error from integration scheme, and use 
appropriate models, you can perform mid- or long-term simulation 
(EUROSTAG)

TRANSIENT  STABILITY
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 Typical purpose of such studies

 New generation studies (to meet reliability criteria)

 Transmission planning studies (to analyze plans for future
transmission expansion, and to meet reliability criteria)

 Operations planning studies (to check that a given system
configuration (and operations schedule) meets reliability criteria)

 Special control to maintain stability (e.g., generation tripping,
braking resistor insertion, etc.)

 Severe disturbance (extreme contingency) studies

 Special purpose studies (e.g., verifying known system upsets,
and system restoration.)

TRANSIENT  STABILITY
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Frequency instability is the ability of a power system to maintain steady frequency
following a severe system upset resulting in a significant imbalance between
generation and load. It depends on the ability to maintain/restore equilibrium
between system generation and load, with minimum unintentional loss of load.
Instability that may result occurs in the form of sustained frequency swings
leading to tripping of generating units and/or loads.

TRANSIENT  STABILITY
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7. Stability Implications of Changing Conditions

A. Stability is now considered a problem for system operations in many
systems

Here is a quote from a recent paper by B.C. Hydro Engineers about their on-
line dynamic

security assessment scheme:

“Conventionally, dynamic security assessment has been performed using off-
line calculations. In this process, detailed stability analysis is conducted for
each credible contingency under a variety of operating conditions. In real
system operations, conditions frequently do not match those studied off-
line. Consequently, the guidelines and limits produced are usually
provided on the conservative side. Power system networks nowadays
operate more and more in a stressed state where conservative operation
often results in significant financial consequences. A more effective
approach is to assess only those contingencies likely to cause dynamic
violations for the operating condition encountered in real time. The new
B. C. Hydro EMS system offered an opportunity for implementation of an
on-line transient stability assessment (TSA).

TRANSIENT  STABILITY
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The need is to enable on-line dynamic security analysis.

It is not enough to just say a particular contingency is

acceptable or not – we also need to know the “limit.”

Thus we need to:

 Use faster or more computers

 Parallelization

 Continuous computing

 Enhance algorithm computational efficiency

 Direct methods

 “Smarter” integration schemes

 Limit contingencies to be analyzed

 Filtering techniques

TRANSIENT  STABILITY
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Important approximations inherent to all that we will do:

 Network electromagnetic transients (DC and higher harmonics) are
neglected; we are therefore only interested in current and voltage
variations associated with the fundamental (60 Hz).

 We use phasor representation of voltages and currents. Thus, we regard
the network, during the electromechanical (as opposed to
electromagnetic) transient conditions, as though it were passing directly
from one electromagnetic steady-state to another. In other words, we
consider only the variations in the amplitude-envelope of the
fundamental.

 Impedances:

 are represented using lumped (not distributed) parameter models

 are independent of frequency variation (computed at 60 Hz).

 We may model different fault types, but we study the effects of
disturbances on only the positive sequence network, therefore the
network is modeled as a per-phase network.

TRANSIENT  STABILITY
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B. Context of Stability Analysis May Change

 The nature of the problems, and the required answers required may change

 Enhance modeling (e.g., wind!)

 Mid-term and long-term analysis: need extended models for this (boiler, tap
changers, thermostatic loads, induction motors)

 Large disturbance voltage instability

 New types of answers are required (e.g., if a new transaction is requested
the stability implications, consequences, and the amount of additional flow
which can reliably be transacted will need to be known in a relatively short
interval of time)

 Very fast computational capability is needed

 Reliability criteria as they exist today are deterministic

 To relieve the constraints of conservative limits obtained from deterministic
criteria, it may be essential to incorporate concepts of probability and risk.

 New criteria involving probability and risk would have to be translated into
meaningful operating guidelines in order to find acceptance with system
operators.
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C. Your and my goals

Your goal is to obtain a clear understanding of the physical aspects of each
phenomena, be able to use the appropriate representation of the power
system to analyze the phenomena, and apply new or existing tools in an
original and creative manner to provide needed answers.

My goal in this course is to motivate and channel your thought process towards
your goal and provide the various building blocks, tools, and relevant
reference material you will need.
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