INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	ROCKET A	ROCKET AND MISSILES			
Course Code	AAE518	AAE518			
Programme	B.Tech	B.Tech			
Semester	VIII AE	VIII AE			
Course Type	Elective	Elective			
Regulation	IARE - R16	IARE - R16			
		Theory			al
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Chief Coordinator	Mr. V. Phan	Mr. V. Phaninder Reddy, Assistant Professor			
Course Faculty	Mr. V. Phan	Mr. V. Phaninder Reddy, Assistant Professor			

I. COURSE OVERVIEW:

This course Rockets and Missiles aims to develop a deep knowledge in the direction of space technology. This course utilizes the basic knowledge and understanding that a student has gained from basic engineering courses toward the practical space application.

II. COURSEPRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AAE007	V	Aircraft Propulsion	3
UG	AAE012	VI	Space Propulsion	4
UG	AAE016	VII	Space Mechanics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Rocket And Missiles	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Marker& Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
×	X Open Ended Experiments						

V. EVALUATIONMETHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in aquestion.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.	
50 %	To test the analytical skill of the concept OR to test the application skill of the Concept.	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	i otar wiarks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Presentations on real world problems
PO 2	Problem analysis : An ability to identify, formulate and solve problems in key areas of Aerodynamics, Structures, Propulsion, Flight Dynamics and Control, Design, Testing, Space and Missile Technologies and Aviation of Aeronautical Engineering discipline.	3	Assessing real- world problems by case study
PO 3	Design/development of solutions : An ability to design and conduct experiments, analyze and interpret data related to various areas of Aeronautical Engineering.	2	Seminar/ Research papers

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products.	2	Lectures, Assignments, Seminars
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of Components to complete the challenge of airworthiness for flight vehicles.	3	Tutorials, Software Practice
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	1	Assignment
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aeronautical/aerospace Allied systems to become technocrats.	-	Seminars

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The course should enable the students to:				
Ι	Learn Fundamentals of rocket and missile systems, functions and disciplines and the full spectrum of rocket systems, uses and technologies			
II	Understand the Fundamentals and uses of solid, liquid and hybrid rocket systems and differences between systems built as weapons and those built for commerce.			
III	Explain the use of low and high fidelity performance modeling, including performance loss factors, Staging theory, performance and practices for multi-stage rockets.			
IV	Discuss the reliability issues in rocket systems, and strategies to improve reliability, including random and systematic failures, non-linier reliability curves.			

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe the Classification of launch vehicles and missiles	CLO 1	List out the classification of launch vehicles and missiles, rocket systems, airframe component

COs	Course Outcome	CLOs	Course Learning Outcome
	and its dynamics	CLO 2	Acquire the basic knowledge on forces and moments acting on a rocket, propulsion, aerodynamics, gravity of rocket missiles
		CLO 3	Examine the equations of motion for three-dimensional motion through atmosphere and vacuum, earth's atmosphere, numerical problems
CO 2	Differentiating the components of and the design considerations of	CLO 4	Illustrate the solid propellant rockets and enlist components and their design considerations, propellant grain design
	solid and hybrid rocket systems and some design problems	CLO 5	Demonstrate the ballistics and burn rate design issues, igniter design, types of nozzles, thrust vector control, pyrotechnic devices and systems
		CLO 6	List out the classification, mechanisms and application of pyrotechnic devices in rockets and missiles; design problems in rocket systems.
CO 3	Understanding the concept of liquid	CLO 7	Describing the Liquid propellant rockets, classification and components.
	propulsion system ,component classification and design	CLO 8	Understanding the concepts of thrust chamber, feed systems, propellant tanks, turbo-pumps, types of valves and applications, design considerations.
	problems in rocket systems	CLO 9	Differentiate the bipropellant systems like cryogenics and their characteristics
CO 4	Estimation of optimization techniques	CLO 10	Interpret Navigation and guidance systems in rockets and missiles, aerodynamic control systems of missiles
	od navigation and guidance system in	CLO 11	Categorize multi-staging of rockets, vehicle optimization techniques, stage separation system
	rockets ,missiles and its aerodynamics control systems	CLO 12	Identify the separation techniques which are used for rocket flight dispersion, numerical problems
CO 5	Acquiring knowledge on design, materials and testing of rockets	CLO 13	Design requirements and selection, performance evaluation and assessment, space environment on the selection of materials for rockets and spacecraft
	space environment on the selection of materials for rockets	CLO 14	Describe the material selection for specific requirements, advance materials, super alloys and composite materials
	and spacecraft	CLO 15	Examine the qualification of rocket and missile systems, types of testing and evaluation of design and function.

X. COURSE LEARNING OUTCOMES(CLOs):

0	CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
A	AE518.01	CLO 1	List out the classification of launch vehicles and missiles, rocket systems, airframe component	PO 1	3
A	AE518.02	CLO 2	Acquire the basic knowledge on forces and moments acting on a rocket, propulsion, aerodynamics, gravity of rocket missiles	PO 1	2
A	AE518.03	CLO 3	Examine the equations of motion for three- dimensional motion through atmosphere and vacuum, earth's atmosphere, numerical problems	PO 1	3
A	AE518.04	CLO 4	Illustrate the solid propellant rockets and enlist components and their design considerations, propellant grain design	PO 1 PO 2	1
A	AE518.05	CLO 5	Demonstrate the ballistics and burn rate design issues, igniter design, types of nozzles, thrust vector control, pyrotechnic devices and systems	PO 1, PO 2	2

	CI O C		DO 1	2
AAE518.06	CLO 6	List out the classification, mechanisms and	PO 1	3
		application of pyrotechnic devices in rockets		
		and missiles; design problems in rocket		
		systems.		
AAE518.07	CLO 7	Describing the Liquid propellant rockets,	PO 1 PO 2	1
		classification and components.		
AAE518.08	CLO 8	Understanding the concepts of thrust	PO 1 PO 2	2
		chamber, feed systems, propellant tanks,		
		turbo-pumps, types of valves and applications,		
		design considerations.		
AAE518.09	CLO 9	Differentiate the bipropellant systems like	PO 1	2
		cryogenics and their characteristics	-	
AAE518.10	CLO 10	Interpret Navigation and guidance systems in	PO 1	2
AAL510.10	CLO IO	rockets and missiles, aerodynamic control	101	2
		systems of missiles		
AAE518.11	CLO 11	Categorize multi-staging of rockets, vehicle	PO 1	1
AAEJ10.11	CLO II		101	1
		optimization techniques, stage separation		
		system		
AAE518.12	CLO 12	Identify the separation techniques which are	PO 1 PO 2	3
		used for rocket flight dispersion, numerical		
		problems		
AAE518.13	CLO 13	Design requirements and selection,	PO 3	2
		performance evaluation and assessment,		
		space environment on the selection of		
		materials for rockets and spacecraft		
A A E 5 1 9 1 4	CLO 14	Describe the material selection for specific	PO 2	1
AAE518.14	CLU 14	-	PU 2	1
		requirements, advance materials, super alloys		
		and composite materials		
AAE518.15	CLO 15	Examine the qualification of rocket and	PO 1 PO 4	2
		missile systems, types of testing and		
		evaluation of design and function.		
	2 111 1			

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes (COs)		Program Outcomes (POs)							
	PO 1	PO 2	PO 3	PO 4					
CO 1	2	1							
CO 2	2	1							
CO 3	2	1							
CO 4	1	1	1	1					
CO 5	3	1		1					

3 = High; 2 = Medium; 1 = Low

Course Learning				Progr								Program Specific Outcomes (PSOs)			Os)	
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3												3			
CLO 2	2												1			
CLO 3	3												3			
CLO 4	1	1											2			
CLO 5	2	2											3			
CLO 6	3												3			
CLO 7	1												2			
CLO 8	2												3			
CLO 9	2												3			
CLO 10	2												1			
CLO 11	2												2			
CLO 12	3	3											1			
CLO 13		3											3			
CLO 14			1										1			
CLO 15		2											3			

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

3 = High; 2 = Medium; 1 = Low

XIII.ASSESSMENTMETHODOLOGIES-DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 4	SEE Exams	PO 1, PO 2 PO 3, PO 4	Assignments	PO 4	Seminars	PO 2
	PSO1, PSO2		PSO1, PSO2				
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 1 PO 2						

XIV.ASSESSMENTMETHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

UNIT-I	
-	ROCKET DYNAMICS
	of launch vehicles and missiles, rocket systems, airframe components, forces and moments cket, propulsion, aerodynamics, gravity, inertial and non-inertial frames, coordinate
	a, equations of motion for three-dimensional motion through atmosphere and vacuum, earth's
	umerical problems.
UNIT-II	SOLID PROPULSION AND PYROTECHNICS
grain mechan	nt rockets, classification, components and their design considerations, propellant grain design, ical properties, ballistics and burn rate design issues, igniter design, types of nozzles, thrust , pyrotechnic devices and systems, classification, mechanisms and application of pyrotechnic
	kets and missiles; design problems in rocket systems.
UNIT-III	LIQUID PROPULSION AND CONTROL SYSTEMS
	lant rockets, classification and components, thrust chamber, feed systems, propellant tanks, types of valves and applications, design considerations.
	opellant systems like cryogenics and their characteristics, pogo and slooh engine gimbal nusters for control; Spacecraft propulsion and control systems design problems.
UNIT-IV	MULTI-STAGING OF ROCKET AND SEPERATION DYNAMICS
multistaging	nd guidance systems in rockets and missiles, aerodynamic control systems of missiles, of rockets, vehicle optimization techniques, stage separation system, dynamics, separation cket flight dispersion, numerical problems.
UNIT-V	DESIGN, MATERIALS AND TESTING OF ROCKETS
Design requir selection of materials, sup	rements and selection, performance evaluation and assessment, space environment on the materials for rockets and spacecraft, material selection for specific requirements, advance
Design requir selection of materials, sup	rements and selection, performance evaluation and assessment, space environment on the materials for rockets and spacecraft, material selection for specific requirements, advance er alloys and composite materials, qualification of rocket and missile systems, types of testing
Design requir selection of materials, sup and evaluation <u>Text Books:</u> 1. Suttor	rements and selection, performance evaluation and assessment, space environment on the materials for rockets and spacecraft, material selection for specific requirements, advance er alloys and composite materials, qualification of rocket and missile systems, types of testing
Design requir selection of materials, sup and evaluation <u>Text Books:</u> 1. Suttor	rements and selection, performance evaluation and assessment, space environment on the materials for rockets and spacecraft, material selection for specific requirements, advance er alloys and composite materials, qualification of rocket and missile systems, types of testing n of design and function
Design requires selection of a materials, sup and evaluation Text Books: 1. Suttor 2. Martin Reference Boo	rements and selection, performance evaluation and assessment, space environment on the materials for rockets and spacecraft, material selection for specific requirements, advance er alloys and composite materials, qualification of rocket and missile systems, types of testing n of design and function a, G.P., et al., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 1993. a J.L Turner, "Rocket & Space Craft Propulsion", Springers –oraxis publishing, 2001. bks:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Classification of launch vehicles and missiles	CLO 1	T2: 1.1-1.5, T1: 4.1
3-4	Rocket systems, airframe components, forces and moments acting on a rocket, propulsion	CLO 1	T2: 2.1-2.2, R1: 3.1
5-6	Aerodynamics, gravity, inertial and non-inertial frames	CLO 2	T2: 2.3-2.4
7-8	Components, forces and moments acting on a rocket, propulsion, aerodynamics, gravity	CLO 2	T2: 2.5-2.6,
9-10	Inertial and non-inertial frames, coordinate transformation, equations of motion for three- dimensional motion through atmosphere	CLO 3	T2: 3.3
11	Vacuum, earth's atmosphere, numerical problems	CLO 4	T2: 3.4, R1:4.1
12	Solid propellant rockets, classification, components,	CLO 5	T2: 3.4
13-14	Their design considerations, propellant grain design,	CLO 5	T2: 3.3

XVI.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
	grain mechanical properties.		
15-16	Ballistics and burn rate design issues, igniter design,	CLO 6	T2: 4.2
17-18	Types of nozzles, thrust vector control	CLO 6	T2: 5.1
19-20	Pyrotechnic devices and systems, classification;	CLO 7	T2: 5.2
21-22	Mechanisms and application of pyrotechnic devices in rockets and missilesdesign problems in rocket systems.	CLO 7	T2: 5.3
23-24	Liquid propellant rockets, classification and components	CLO 8	T2: 4.5
25-26	Thrust chamber, feed systems, propellant tanks, turbo- pumps, types of valves and applications, design considerations.	CLO 8	T1: 4.1
27-28	Different bipropellant systems like cryogenics and their characteristics, pogo and slooh engine gimbal systems and thrusters for control	CLO 9	T1: 4.2
29-30	Spacecraft propulsion and control systems design problems	CLO 9	T1: 4.3
31-38	Navigation and guidance systems in rockets and missiles	CLO 10	T2: 5.2
39-40	Aerodynamic control systems of missiles, multistage of rockets	CLO 10	T2: 5.2
41-42	Vehicle optimization techniques, stage separation system	CLO 11	T2: 5.2
43-44	Dynamics, separation techniques	CLO 13	T1: 7.1
45-46	Rocket flight dispersion, numerical problems.	CLO 14	T1: 7.2
47-49	Design requirements and selection, performance evaluation and assessment	CLO 14	T1: 7.4
50	Space environment on the selection of materials for rockets	CLO 15	T1: 7.5, R2: 7.3
51	Space environment on the selection of materials for spacecraft	CLO 15	T1: 7.5
52	Material selection for specific requirements, advance materials,	CLO 15	T1: 7.6
53	Super alloys and composite materials	CLO 15	T1: 7.5, R2: 7.4
54	Qualification of rocket and missile systems	CLO 15	T1: 7.7
55	Types of testing and evaluation of design and function	CLO 15	R2:7.5

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSIONREQUIREMENTS:

S No	Description	Proposed actions	Relevancewith POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	To understand definitions better and be able to derive critical equations.	Seminars /	PO 3, PO 2	PSO 1
3	Develop trajectories and equations of motion for the various aspects of space flight	Seminars/ internship	PO 2	PSO 1

Prepared by:

Mr. V. Phaninder Reddy, Assistant Professor, AE