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UNIT V 
 

RADAR RECEIVERS  



 

Matched-Filter Receiver: 
A network whose frequency-response function maximizes the output peak-signal-to- 

mean-noise (power) ratio is called a matched filter. This  criterion,  or  its  equivalent,  is   used 

for the design of almost all radar receivers. 

The frequency-response function, denoted H(f), expresses the  relative  amplitude  and  

phase of the output of a network with respect to the input when the input is a pure sinusoid. The 

magnitude ׀H(f) ׀ of the frequency-response function is the receiver amplitude passband 

characteristic. 

If the bandwidth of the receiver passband is wide compared with that occupied by the 

signal energy, extraneous noise is introduced by the excess bandwidth which lowers the output 

signal-to-noise ratio. On the other hand, if the receiver bandwidth is narrower than the bandwidth 

occupied by the signal, the noise energy is reduced along with a considerable part of the signal 

energy. 

The net result is again a lowered signal-to-noise ratio. Thus there is an optimum 

bandwidth at which the signal-to-noise ratio is a maximum. This is well known to the radar 

receiver designer. 

The rule of thumb quoted in pulse radar practice is that the receiver bandwidth B should 

be approximately equal to the reciprocal of the pulse width τ. This is a reasonable approximation 

for pulse radars with conventional superheterodyne receivers. It is not generally valid for other 

waveforms, however, and is mentioned to illustrate in a qualitative manner the effect of the 

receiver characteristic on signal-to-noise ratio. 

The exact specification of the optimum receiver characteristic involves the frequency- 

response function and the shape of the received waveform. 

The receiver frequency-response function, is assumed to apply from the antenna terminals 

to the output of the IF amplifier. (The second detector and video portion of the well designed 

radar superheterodyne receiver will have negligible effect on the output signal-to- noise ratio if 

the receiver is designed as a matched filter.) Narrow banding is  most  conveniently  

accomplished in the IF. 



The bandwidths of the RF and mixer stages of the normal superheterodyne receiver are 

usually large compared with the IF bandwidth. Therefore the frequency-response function of the 

portion of the receiver included between the antenna terminals to the output of the IF amplifier is 

taken to be that of the IF amplifier alone. Thus we need only obtain the frequency-response 

function that maximizes the signal-to-noise ratio at the output of the IF. The IF amplifier may be 

considered as a filter with gain. The response of this filter as a function of frequency is the 

property of interest. For a received waveform s(t) with a given ratio of signal energy E to noise 

energy No (or noise power per hertz of bandwidth), North showed that the frequency-response 

function of the linear, time-invariant filter which maximizes the output peak-signal-to-mean- 

noise (power) ratio for a fixed input signal-tonoise (energy) ratio is 

 
 

The noise that accompanies the signal is assumed to be stationary and to have a uniform 

spectrum (white noise). It need not be gaussian. The filter whose frequency-response function is 

given by Eq. above has been called the North filter, the conjugate filter, or more usually the 

matched filter. It has also been called the Fourier transform criterion. It should not be confused 

with the circuit-theory concept of impedance matching, which maximizes the power transfer 

rather than the signal-to-noise ratio. 

The frequency-response function of the matched filter is the conjugate of the spectrum of 

the received waveform except for the phase shift exp (- j2Πft1). This phase shift varies uniformly 

with frequency. Its effect is to cause a constant time delay. A time delay is necessary in the 

specification of the filter for reasons of physical realizability since there can be no output from 

the filter until the signal is applied. 

The frequency spectrum of the received signal may be written as an amplitude spectrum 



 and a phase spectrum exp [- jφs  (f )].  The  matched-  filter  frequency-response ) ׀ S(f)׀

function may similarly be written in terms of its amplitude and phase spectra ׀H(f) ׀ and exp [- 

jφm(f)]. Ignoring the constant Ga, Eq. above for the matched filter may then be written as 
 

 
 

Thus the amplitude spectrum of the matched filter is the same as the amplitude spectrum 

of the signal, but the phase spectrum of the matched filter is the negative of the phase spectrum of 

the signal plus a phase shift proportional to frequency. 

The  matched  filter  may  also  be  specified  by  its  impulse  response  h(t),  which  is  

the inverse Fourier transform of the frequency-response function. 
 

 
Physically, the impulse response is the output of the filter as a function of time when the input is 

an impulse (delta function). 
 

 

 
A rather interesting result is that the impulse response of the matched filter is the image  

of the received waveform; that is, it is the same as the received signal run backward in time 

starting from the fixed time t1. Figure 1 shows a received waveform s(t) and  the impulse  

response h(t) of its matched filter. The impulse response of the filter, if it is to be realizable, is not 

defined for t< 0. (One cannot have any response before the impulse is applied.) Therefore we 

must always have t < t1. This is equivalent to the condition placed on the transfer function H(f) 

that there be a phase shift exp (-j2Πft1). However, for the sake of convenience, the impulse 

response of the matched filter is sometimes written simply as s(- t). 



Derivation of the matched-filter characteristic: 
 

The frequency-response function of the matched filter has been derived by a number of 

authors using either the calculus of variations or the Schwartz inequality. We shall derive the 

matched-filter frequency-response function using the Schwartz inequality. 

 

 
We wish to show that the frequency-response function of the linear, time-invariant filter 

which maximizes the output peak-signal-to-mean-noise ratio is 

 
When the input noise is stationary and white (uniform spectral density). The ratio 

we wish to maximize is 

 

Fig.1 (a) Received waveform s(t); (b) impulse response h(t) of the matched filter. 
 

Where ׀so(t) ׀max = maximum value of output signal voltage and N = mean noise power at 

receiver output. The ratio Rf is not quite the same as the signal-to-noise ratio which has been 

considered in the radar equation. The output voltage of a filter with frequency-response 

function H(f) is 

 
 



Where S(f) is the Fourier transform of the input (received) signal. The mean output noise power  

is 

 

 
 
 

Where No is the input noise power per unit bandwidth. The factor appears  before 

the integral because the limits extend from - ∞ to +∞, whereas No is defined as the noise 

power per cycle of bandwidth over positive values only. Assuming that the maximum value 

of ׀so(t) 2׀ occurs at time t = t1, the ratio Rf becomes 

 
Schwartz's inequality states that if P and Q are two complex functions, then 

 

 
The equality sign applies when P = kQ, where k is a constant. Letting 

 
 

 

We get, on applying the Schwartz inequality to the numerator of Eq. earlier, we get 
 



The frequency-response function which maximizes the peak-signal-to-mean-noise ratio 

Rf may be obtained by noting that the equality sign in Eq. applies when P = kQ, or 

 

Where the constant k has been set equal to 1/Ga. 
Relation between the matched filter characteristics and correlation function: 

 
The matched filter and the correlation function. The output of the matched filter is not a 

replica of the input signal. However, from the point of view of detecting signals in noise, 

preserving the shape of the signal is of no importance. If it is necessary to preserve the shape of 

the input pulse rather than maximize the output signal-to-noise ratio, some other criterion must be 

employed. 

The output of the matched filter may be shown to be proportional to the input signal 

cross-correlated with a replica of the transmitted signal, except for the time delay t1. The 

crosscorrelation function R(t) of two signals y(λ) and s(λ), each of finite duration, is defined as 

 

 
 
The output yo(t) of a filter with impulse response h(t) when the input is yin(t) = s(t) + n(t) is 

 
 

 
If the filter is a matched filter, then h(λ) = s(t1 - λ) and Eq. above becomes 

 
 

 
Thus the matched filter forms the cross correlation between the received signal corrupted 

by noise and a replica of the transmitted signal. The replica of the transmitted signal is "built in" 

to the matched filter via the frequency-response function. If the input signal yin (t) were the same 

as the signal s(t) for which the matched filter was designed (that is, the noise is assumed 

negligible), the output would be the autocorrelation function. The autocorrelation function of a 

rectangular pulse of width τ is a triangle whose base is of width 2τ. 



Efficiency of non-matched filters: 
 

In practice the matched filter cannot always be obtained exactly. It is appropriate, 

therefore, to examine the efficiency of non matched filters compared with the ideal matched 

filter. The measure of efficiency is taken as the peak signal-to-noise ratio from the non matched 

filter divided by the peak signal-to-noise ratio (2E/No) from the matched filter. Figure. Plots the 

efficiency for a single-tuned (RLC) resonant filter and a rectangular-shaped filter of half-power 

bandwidth Bτ when the input is a rectangular pulse of width τ. The maximum efficiency of the 

single-tuned filter occurs for Bτ ≈ 0.4. The corresponding loss in signal-to-noise ratio is 0.88 dB  

as compared with a matched filter. 

Table lists the values of Bτ which maximize the signal-to-noise ratio (SNR) for various 

combinations of filters and pulse shapes. It can be seen that the loss in SNR incurred by use of 

these non-matched filters is small. 

 

 
 

Fig: Efficiency, relative to a matched filter, of a single-tuned resonant filter and a rectangular 

shaped filter, when the input signal is a rectangular pulse of width τ. B = filter bandwidth 



 
 

Table: Efficiency of nonmatched filters compared with the matched filter 
 
Matched filter with nonwhite noise: 

 
In the derivation of the matched-filter characteristic, the spectrum of the noise 

accompanying the signal was assumed to be white; that is, it was independent of frequency.  If 

this assumption were not true, the filter which maximizes the output signal-to-noise ratio would 

not be the same as the matched filter. It has been shown that if the input power spectrum of the 

interfering noise is given by [Ni(f)]2, the frequency-response function of the filter which 

maximizes the output signal-to-noise ratio is 
 

 
When the noise is nonwhite, the filter which maximizes the output signal-to-noise ratio is called 

the NWN (nonwhite noise) matched filter. For white noise [Ni(f)]2 = constant and the NWN 

matched-filler frequency-response function of Eq. above reduces to that of Eq. discussed earlier 

in white noise. Equation above can be written as 
 

 
This indicates that the NWN matched filter can be considered as the cascade of two filters. The 

first filter, with frequency-response function l/Ni (f), acts to make the noise spectrum uniform, or 

white. It is sometimes called the whitening filter. The second is the matched filter when the input 

is white noise and a signal whose spectrum is S(f )/Ni(f ). 



Correlation Detection: 
 

 
Equation above describes the output of the matched filter as the cross correlation between the 

input signal and a delayed replica of the transmitted signal. This implies that the matched-filter 

receiver can be replaced by a cross-correlation receiver that performs the same mathematical 

operation as shown in Fig.5. The input signal y (t) is multiplied by a delayed replica of the 

transmitted signal s(t - Tr), and the product is passed through a low-pass filter to perform the 

integration. The cross-correlation receiver of Fig.5 tests for the presence of a target at only a 

single time delay Tr. Targets at other time delays, or ranges, might be found by varying Tr. 

However, this requires a longer search time. The search time can be reduced by adding parallel 

channels, each containing a delay line corresponding to a particular value of Tr, as well as a 

multiplier and low-pass filter. In some applications it may be possible to record the signal on 

some storage medium, and at a higher playback speed perform the search sequentially with 

different values of Tr. That is, the playback speed is increased in proportion to the number of 

time-delay intervals Tr that are to be tested. 

Since the cross-correlation receiver and the matched-filter receiver are equivalent 

mathematically, the choice as to which one to use in a particular radar application is determined 

by which is more practical to implement. The matched-filter receiver, or an approximation, has 

been generally preferred in the vast majority of applications. 
 

 
Fig: Block diagram of a cross-correlation receiver. 


