INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	SOFTWARE DEVELOPMENT METHODOLOGY						
Course Code	AIT5	AIT508					
Programme	B.Tec	B.Tech					
Semester	VI	CSE					
Course Type	Elective						
Regulation	IARE	- R16					
	Theory				Practical		
Commo			Theory			Tacucai	
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits	
	Lectu	ares	-	Credits 3	Laboratory		
		3	-	3			

I. COURSE OVERVIEW:

The Present course concentrates on developing basic understanding about various activities that are involved in a software development. This course enables the student to develop necessary skills for developing a product or applications. The course focuses on all activities involved in software development (communication, planning, modeling, construction, deployment). In this course; students will gain a broad understanding of the discipline of software engineering and its application to the development and management of software systems.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	Fundamentals of computer hardware and software	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Software Development Methodology	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

X	Chalk & Talk	V	Quiz	√	Assignments	X	MOOCs
V	LCD/ PPT	\checkmark	Seminars	X	Mini Project	1	Videos
X	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks Allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage In terms of marks distribution. The question paper pattern is as follows: Two full questions with "either" or " choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz / Alternative Assessment Tool (AAT).

Component		Theory	Total Marks
Type of Assessment	CIE Exam	Quiz / AAT	i otar ivrarks
CIA Marks	25	05	30

 Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 20 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization on the Solution of complex engineering problems.	2	Assignments
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated Conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Assignments
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments

PO 10	Communication: Communicate effectively on complex	2	Seminars
	engineering activities with the engineering community and with		
	society at large, such as, being able to comprehend and write		
	effective reports and design documentation, make effective		
	Presentations, and give and receive clear instructions.		

3= High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system	1	Seminar
	software, multimedia, web design, big data analytics and		
	networking for efficient design of computer-based systems of		
	varying complexity.		
PSO 2	Problem-Solving Skills: The ability to apply standard practices	1	Mini Projects
	and strategies in software project development using open-ended		
	programming environments to deliver a quality product for business		
	success.		
PSO 3	Successful Career and Entrepreneurship: The ability to employ	1	5 minutes
	modern computer languages, environments and platforms in		video
	Creating innovative career paths to be an entrepreneur and a zest for		
	higher studies.		

3= High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES :

The cou	The course should enable the students to:					
Ι	Understand the fundamental principles and architecture of distributed database systems.					
Π	Understand the design considerations for enterprise integration and deployment.					
III	Analyze quality assurance techniques and testing methodologies					
IV	Understand implementation issues such as modularity and coding standards					
V	Prepare a project plan for a software project that includes estimates of size and effort, a schedule, resource allocation, configuration control, and project risk					

IX. COURSE OUTCOMES (COs):

COs	COURSE OUTCOMES	CLOs	COURSE LEARNING OUTCOMES
CO 1	Identify the approach to risks management	CLO 1	Understand the key concerns that are common to all software development processes.
	through risk identification, risk measurement and risk	CLO 2	Identify the appropriate process models approaches and techniques to manage a given software development process.
	mitigation.	CLO 3	Identify the approach to risks management through risk identification, risk measurement and risk mitigation.
		CLO 4	Use the concept of Earned Value Analysis (EVA) to measure the projects progress at any given point in time, forecasting its completion date and final cost, and analyzing variances in the schedule and budget as the project proceeds.
		CLO 5	Memorize project planning activities that accurately help in selection and initiation of Individual projects and of portfolios of projects in the enterprise.
		CLO 6	Identify dependability and security issues that affect a given software product.

CO 2	Use the concept of	CLO 7	Use the concept of classical analysis to determine the
02	classical analysis to	CLO /	acceptance criteria part of specification.
	determine the acceptance	CLO 8	Memorize the importance of eliciting the
	criteria part of		requirements for a software product and translate
	specification		these into a documented design.
	-	CLO 9	Understand the concept of data dictionary in order to
			manage the details in large-scale systems, to locate
			errors and omissions in the system.
		CLO 10	Understand the concept of petri nets that exhibit
			Concurrency, synchronization and used as a visual communication aid to model the system behavior.
CO 3	Understand the principles	CLO 11	Memorize the design of object oriented software
005	of graphical user	02011	using with the aid of a formal system modeling
	interface design.		notation.
	C	CLO 12	Learn to model the structure and behavior of a
		<u> </u>	software system.
		CLO 13	Memorize different architectural styles, patterns and
		CL 0 14	architectural mapping using data
		CLO 14	Understand the principles of graphical user interface design.
		CLO 15	Understand the concept of component-level design
		CLO 15	used to define interface characteristics and
			communication mechanisms for each software
			component identified in the architectural design.
CO 4	Identify the major	CLO 16	Understand the importance of testing with the
	differences between		performance of root cause analysis.
	white box testing and	CLO 17	Memorize the concepts of software testing
	black box testing.	CT O 10	approaches such as unit testing and integration
		CLO 18	Understand the approaches to verification and validation including static analysis and reviews.
		CLO 19	Identify the major differences between white box
		CLO 19	testing and black box testing.
		CLO 20	Understand the importance of refactoring which
		CEO 20	improves the performance of non-functional
			Attributes of the software.
CO 5	Identify the importance	CLO 21	Learn to manage time, processes and resources
	of earned value analysis		effectively by prioritizing competing demands to
	related to project		Achieve personal and team goals.
	scheduling and also	CLO 22	Use a proactive, structured risk assessment and
	understand the		analysis activity to identify and analyze root causes.
	Various process and	CLO 23	Understand the concept of risk management through
	project metric used to		risk identification, risk measurement and
	improve the quality of	CLO 24	Mitigation.
	software.	CLU 24	Memorize the relationship between people and effort.
		CLO 25	Identify the importance of earned value analysis
		020 20	related to project scheduling and also understand the
			Various process and project metric used to improve
			the quality of software.
		CLO 26	Possess the knowledge and skills for employability
			and to succeed in national and international level
			competitive exams.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AIT508 .01	CLO 1	Understand the key concerns that are common to all software development processes.	PO 1, PO 2	2
AIT508 .02	CLO 2	Identify the appropriate process models, approaches and techniques to manage a given software development process.	PO 1, PO 2	2

AIT508.03	CLO 3	Identify the approach to risks management through risk identification, risk measurement	PO 1, PO 2	2
		and Risk mitigation.		
AIT508.04	CLO 4	Use the concept of Earned Value Analysis	PO 1,	2
111300.04	CLO +	(EVA) to measure the projects progress at any	PO 2, PO 3	2
		given point in time, forecasting its completion	102,105	
		date and final cost, and analyzing variances in		
		the schedule and budget as the project proceeds.	201	
AIT508 .05	CLO 5	Memorize project planning activities that	PO 1,	1
		accurately help in selection and initiation of	PO 2	
		Individual projects and of portfolios of projects		
		in the enterprise.		
AIT508 .06	CLO 6	Identify dependability and security issues that	PO 10	3
		affect a given software product.		-
AIT508.07	CLO 7	Use the concept of classical analysis to	PO 3	2
111200.07	CLO /	determine the acceptance criteria as part of	105	2
		specification.		
AIT508.08	CLO 8	Memorize the importance of eliciting the	PO 3	2
		requirements for a software product and		-
		Translate these into a documented design.		
A ITTEOR 00				2
AIT508 .09	CLO 9	Understand the concept of data dictionary in	PO 3	2
		order to manage the details in large-scale		
		systems, to locate errors and omissions in the		
		system.		
AIT508.10	CLO 10	Understand the concept of petri nets that exhibit	PO 2	2
		Concurrency, synchronization and used as a		
		visual communication aid to model the system		
		behavior.		
AIT508.11	CLO 11	Memorize the design of object oriented software	PO 10	3
		using with the aid of a formal system modeling		
		notation.		
AIT508.12	CLO 12	Learn to model the structure and behavior of a	PO 1,	2
		software system.	PO 2	
AIT508.13	CLO 13	Memorize different architectural styles, patterns	PO 3	3
		and		
		architectural mapping using data		
AIT508.14	CLO 14	Understand the principles of graphical user	PO 3	3
		interface design.		
AIT508.15	CLO 15	Understand the concept of component-level	PO 3,	3
		design used to define interface characteristics	PO 10	-
		and communication mechanisms for each	-	
		software component identified in the		
		architectural design.		
AIT508.16	CLO 16	Understand the importance of testing with the	PO 2	2
		performance of root cause analysis.		
AIT508.17	CLO 17	Memorize the concepts of software testing	PO 1,	2
	-	approaches such as unit testing and integration	PO 2	
AIT508.18	CLO 18	Understand the approaches to verification and	PO 10	3
		validation including static analysis and reviews.		e e
AIT508.19	CLO 19	Identify the major differences between white box	PO 3	2
		testing and black box testing.	105	4
AIT508.20	CLO 20	Understand the importance of refactoring which	PO 1,	2
ATT 500.20	CLO 20		PO 1, PO 2	2
		improves the performance of non-functional	r0 2	
A 100 - 00	or o - :	attributes of the software.		
AIT508.21	CLO 21	Learn to manage time, processes and resources	PO 3	3
		effectively by prioritizing competing demands to		
		achieve personal and team goals.		
AIT508.22	CLO 22	Use a proactive, structured risk assessment and	PO 3	2
		analysis activity to identify and analyze root		
		causes.		
AIT508.23	CLO 23	Understand the concept of risk management	PO 10	2
		through risk identification, risk measurement and		-
		mitigation.		
AIT508.24	CLO 24	Memorize the relationship between people and	PO 1,	1
		effort.	PO 10	-

AIT508.25	CLO 25	Identify the importance of earned value analysis	PO 10	2
		related to project scheduling and also understand		
		the various process and project metric used to		
		improve the quality of software.		
AIT508.26	CLO 26		PO 1,	2
		employability and to succeed in national and	PO 10	
		international level competitive exams.		

3 = High; **2** = Medium; **1** = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

COURSE OUTCOMES (Cos)	PROGR	AM OU	TCOME	S(POs)	PROGRAM SPECIFIC OUTCOMES(PSOs)				
	PO1	PO2	PO3	PO10	PSO1	PSO2	PSO3		
CO1	1	1	3	2	2	2	1		
CO2		3	1			1			
CO3	2	2	2	3					
CO4	1	1	1	2	2		3		
CO5	2	2		1		3	1		

3 = High; **2** = Medium; **1** = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	2											2		
CLO 2	2	3											2	1	
CLO 3	2	3													
CLO 4	3	2	3										1		
CLO 5	2	1													1
CLO 6										3					
CLO 7			2												
CLO 8			2												
CLO 9			2												
CLO 10		2													
CLO 11										3			1		
CLO 12	3	1													
CLO 13			3										1		
CLO 14			3										1		
CLO 15			3							3					
CLO 16		2												1	
CLO 17	2	2												2	
CLO 18										3				1	
CLO 19			2											1	

CLO 20	2	2							1		
CLO 21			3							1	
CLO 22			2								
CLO 23							2				1
CLO 24	1						2				1
CLO 25							2				
CLO 26							3				

3= High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT:

CIE Exams	PO1, PO2, PO 3, PSO1, PSO 2, PSO 3	SEE Exams	PO 1, PO 2, PO 3, PSO1, PSO 2, PSO 3	Assignments	PO 1, PO 2, PO 3, PSO1, PSO 2,	Seminars	PO 10, PSO 1
Laboratory Practices Term Paper	- PO 4, PSO 2, PSO 3	Student Viva	-	Mini Project	PSO 3	Certification	-

XIV. ASSESSMENT METHODOLOGIES – INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS:

UNIT- I	INTRODUCTION, A GENERIC VIEW OF PROCESS AND PROCESS MODELS						
Introduction to software engineering: The evolving role of software, changing nature of							
software, legacy software, software myths; A generic view of process: Software engineering, a							
layered tech	hnology, a process framework, the capability maturity model integration (CMMI),						
process patterns, process assessment, personal and team process models, process models: the							
waterfall m	odel, incremental process models, the unified process.						

UNIT-II SOFTWARE REQUIREMENTS AND REQUIREMENTS ENGINEERING PROCESS

Software requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document; Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management

UNIT-III DESIGN ENGINEERING, CREATING AN ARCHITECTURAL DESIGN AND MODELING COMPONENT-LEVEL DESIGN

Design engineering: Design process and design quality, design concepts, the design model, pattern based software design.

Creating an architectural design: Software architecture, data design, architectural styles and patterns, architectural design, assessing alternative architectural designs, mapping data flow into software architecture.

UNIT-IV TESTING STRATEGIES AND PRODUCT METRICS

Testing strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging; Product metrics: Software quality, frame work for product metrics, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance..

UNIT -V RISK MANAGEMENT AND QUALITY MANAGEMENT

Risk management: Reactive vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM(Risk Mitigation, Monitoring and Management), RMMM plan; Quality Management: Quality concepts, software quality assurance, software Reviews, formal technical reviews, statistical software quality assurance, software reliability, The ISO 9000 quality standards.

TEXT BOOKS:

1. Roger S. Pressman," Software Engineering – A Practitioner's Approach", McGraw-HillInternational Edition, 7th Edition, 2010.

2. Ian Somerville, "Software Engineering", Pearson Education Asia, 9th Edition, 2011.

REFERENCES:

1.Rajib Mall, "Fundamentals of Software Engineering", PHI Learning Private Limited, 3rd Edition, 2009 2.Pankaj Jalote, "Software Engineering, A Precise Approach", Wiley India, 1st Edition, 2010

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Describe professional software development, Software engineering ethics, Case studies	CLO 1	T2: 1.1-1.3
2-5	Understand process assessment and improvement, prescriptive proves models,	CLO 2	T1: 2.2-2.3
6-9	Explain generic process model, Specialized process models, the unified process, personal and team process models.	CLO 2	T1:2.1, 2-3-2.6
10-11	Estimate about estimation	CLO 3	R2:2.4
11-12	Describe Introduction about LOC and FP based estimation, COCOMO model	CLO 4	R2:2.5
12-13	Interpret project scheduling and EVA	CLO 2	T1: 27.1, 27.2, 27.6
14	Estimate the Introduction to risk management	CLO 3	T1: 28.1
15-17	Define requirement, Functional and nonfunctional requirements, user requirements, system requirements, Software requirements document.	CLO 8	T2: 4.1-4.3
18-19	Understand Requirements Elicitation, Analysis, validation, Documentation, reviews, Feasibility study and Requirement management.	CLO 8	T1: 4.4-4.7
20-21	Explain structured system analysis, petri nets, data dictionary.	CLO 9	R1:4.5
22-24	Distinguish between design concepts, design model, design heuristic.	CLO 11	T1 8.1-8.4
25-28	State and apply Software Architecture, Architectural design, Architectural styles, Architectural design, and Architectural mapping using dataflow.	CLO 13	T1:9.1, 9.3 9.4,9.6
29-33	Recognize Interface analysis, interface design	CLO 14	T1:11.1,11.3- 11.4
34-37	Distinguish between Designing class based components and Traditional components	CLO 15	T1:10.2, 10.5
38-44	Identify Internal and external view of testing, white box testing, basis path testing, control structure testing, black box testing, regression testing, unit testing, integration testing, validation testing, system testing and debugging.	CLO 17	T1:17.3,17.6- 17.8 T1:18.1-18.6

45-47	State and apply Coding practices and refactoring.	CLO 16	T1:20.2
48-51	Contrast Estimation, FP based, LOC based, make/buy decision.	CLO 20	T1: 26.2, 26.6.4, 26.6.6, 26.10
52-55	Understand Planning, project plan, planning process, RFP risk management, identification, projection, RMMM.	CLO 22	T1:26.1-26.3 28.1- 28.7

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSIONREQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	How to collect useful requirements to build right	Seminars	PO 1, PO 2, PO 3	PSO 1, PSO 2
	product			
2	Real time Risk management System	Seminars/ NPTEL	PO 2, PO 3	PSO 1
3	Generation of test cases for usage of ATM machine and Banking Applications	Assignments / NPTEL	PO 1, PO 3	PSO 2

Prepared by: Mr. J.Thirupathi, Assistant Professor, CSE

HOD, CSE