

COMPUTER SCIENCE AND ENGINEERING

SOFTWARE DEVELOPMENT METHODOLOGY (AIT508)

VI SEMESTER

 Prepared by:

 Mr. J Thirupathi
 Mr. C Praveen Kumar

UNIT –I
INTRODUCTION, A GENERIC VIEW OF

PROCESS AND PROCESS MODELS

CONTENTS

 Introduction to software engineering

 Software process

 perspective and specialized process models

 Software project management

 Estimation: LOC and FP based estimation

 COCOMO model

 Project scheduling: Scheduling, earned value analysis, risk management

Introduction to Software Engineering

Software products

 Generic products

 Stand-alone systems that are marketed and sold to any customer
who wishes to buy them. management tools; CAD software;
software for specific markets such as appointments systems for
dentists.

 Customized products

 Software that is commissioned by a specific customer to meet their
own needs.

 Embedded control systems, air traffic control software, traffic monitoring
systems.

Features of Software?

 Its characteristics that make it different from other things human being build.

 Features of such logical system:

 Software is developed or engineered, it is not manufactured in the classical
sense which has quality problem.

 Software doesn't "wear out.͟ but it deteriorates (due to change). Hardware has
bathtub curve of failure rate (high failure rate in the beginning, then drop to
steady state, then cumulative effects of dust, vibration, abuse occurs).

 Although the industry is moving toward component-based construction (e.g.
standard screws and off-the-shelf integrated circuits), most software continues
to be custom-built. Modern reusable components encapsulate data and
processing into software parts to be reused by different programs.
E.g. graphical user interface, window, pull-down menus in library etc.

Software Myths

–Software myths beliefs about software and the process used to build it.
Management Myths

Myth – We already have a book that’s full of standards and procedures for
building software. Won’t that provide my people with everything they
need to know?

Reality – The book of standards may very well exist but is it used? Are
software practitioners aware of its existence? Does it reflect modern
software engineering practice? Is it adaptable?

Myth – If we get behind schedule, we can add more programmers and
catch up

Reality – Software development is not a mechanistic process like
manufacturing.

Software Myths

–Software myths beliefs about software and the process used to build it

–Management Myths

Myth – If I decide to outsource the software project to a third
party, I can relax and let that firm build it

Reality – If an organization does not understand how to manage
and control software projects internally, it will invariably struggle
when it is outsourced.

Software Myths

–Customer Myths

Myth – A general statement of objectives is sufficient to begin writing
programs – we can fill in the details later

Reality – An ambiguous statement of objectives is a recipe for disaster.
Unambiguous requirements are developed only through effective and
continuous communication between customer and developer

Myth – Project requirements change, but change can be easily
accommodated because software is flexible

Reality – When requirement changes are requested early, cost impact
is relatively small. With time, cost impact grows rapidly, and a change
can cause additional resources and major design modifications.

Software Myths

–Practitioner Myths

 Myth – Once we write the program and get it to work.

 Reality – The sooner you begin writing code, the longer it will take
you to get done. Between 60 to 80 percent of all effort spent on
software will be spent after it is delivered to the customer for the
first time

 Myth–Until I get the program running, I have no way of assessing
its quality

 Reality – Software reviews are a d͞uality filter͟ that have found to

be more effective than testing for finding certain classes of
software errors

Software Myths

–Practitioner Myths

 Myth – The only deliverable work product for a successful project

 Reality – A working program is only one part of a software
configuration that includes many elements. Documentation
provides a foundation for successful engineering and guidance for
software support

 Myth – Software engineering will make us create voluminous and
unnecessary documentation and will invariably slow us down

 Reality – Software engineering is not about creating documents, it si
about creating quality. Better quality leads to reduced rework.
Reduced rework results in faster delivery times

Software Applications

 System software: such as compilers, editors, file management utilities

 Application software: stand-alone programs for specific needs.
 Engineering/scientific software: Characterized by ͞number crunching͟ such as

automotive stress analysis, molecular biology, orbital dynamics etc

 Embedded software resides within a product or system. (key pad control of a
microwave oven, digital function of dashboard display in a car)

 Product-line software focus on a limited marketplace to address mass
consumer market. (word processing, graphics, database management)

 WebApps (Web applications) network centric software. As web 2.0 emerges,

more sophisticated computing environments is supported integrated with

remote database and business applications.

 AI software uses non-numerical algorithm to solve complex problem. Robotics,
expert system, pattern recognition game playing

Importance of SE

 Weneed to be able to produce reliable and trustworthy
 systems economically and quickly.

 It is usually cheaper, in the long run, to use software engineering methods and
techniques for software systems rather than just write the programs as if it
was a personal programming project. For most types of system, the majority of
costs are the costs of changing the software after it has gone into use.

 Any engineering approach must rest on organizational commitment to quality
which fosters a continuous process improvement culture.

13

Software Layered Technology

Process layer as the foundation defines a framework with activities for effective
delivery of software engineering technology. Establish the context
where products (model, data, report, and forms) are produced,
milestone are established, quality is ensured and change is managed.

Method provides technical how-to’s for building software. It encompasses many
tasks including communication, requirement analysis, design modeling,
program construction, testing14and support.

 Tools provide automated or semi-automated support for the process and
methods.

 Communication: communicate with customer to understand objectives and gather
requirements.

 Planning: creates a map͟ defines the work by describing the tasks, risks and
resources, work products and work schedule.

 Modeling: Create a ͞sketchwhat it looks like architecturally, how the constituent
parts fit together and other characteristics.

 Construction: code generation and the testing.

 Deployment: Delivered to the customer who evaluates the products and
provides feedback based on the evaluation.

 These five framework activities can be used to all software development
regardless of the application domain, size of the project, complexity of the efforts
etc, though the details will be different in each case.

 For many software projects, these framework activities are applied iteratively as
a project progresses. Each iteration produces a software increment that provides
a subset of overall software features and functionality.

The process should be agile and adaptable to problems. Process adopted for one
project might be significantly different than a process adopted from another project.
(to the problem, the project, the team, organizational culture). Among the
differences are:

 The overall flow of activities, actions, and tasks and the interdependencies
among Them

 The degree to which actions and tasks are defined within each framework activity
 The degree to which work products are identified and required

 The manner which quality assurance activities are applied

 The manner in which project tracking and control activities are applied

 The overall degree of detail and rigor with which the process is described
 The degree to which the customer and other stakeholders are involved with

the project

 The level of autonomy given to the software team

 The degree to which team organization and roles are prescribed

Adapting a Process Model

The process should be agile and adaptable to problems. Process adopted for one
project might be significantly different than a process adopted from another
project. (to the problem, the project, the team, organizational culture). Among the
differences are:

 The overall flow of activities, actions, and tasks and the interdependencies
among them

 The degree to which actions and tasks are defined within each framework
activity

 The degree to which work products are identified and required

 The manner which quality assurance activities are applied

 The manner in which project tracking and control activities are applied

 The overall degree of detail and rigor with which the process is described
 The degree to which the customer and other stakeholders are involved

with the project

 The level of autonomy given to the software team

 The degree to which team organization and roles are prescribed

• Have you seen similar problems before? Are there patterns that are recognizable
in a potential solution? Is there existing software that implements the data,
functions, and features that are required?

• Has a similar problem been solved? If so, are elements of the solution reusable?

• Can subproblems be defined? If so, are solutions readily apparent for the
subproblems?

Carry Out the Plan

• Does the solutions conform to the plan? Is source code traceable to the design

model?

• Is each component part of the solution provably correct? Has the design and
code been reviewed, or better, have correctness proofs been applied to
algorithm?

Plan the Solution

A Generic Process Model

 A generic process framework for software engineering defines five
framework activities communication, planning, modeling, construction,
and deployment.

 In addition, a set of umbrella activities- project tracking and control, risk
 management, quality assurance, configuration management, technical

reviews, and others are applied throughout the process.
 Next question is: how the framework activities and the actions and tasks that

occur within each activity are organized with respect to sequence and time?
See the process flow for answer.

A Generic Process Model

7

Process Flow

5

 Linear process flow executes each of the five activities in sequence.
 An iterative process flow repeats one or more of the activities before

proceeding to the next.
 An evolutionary process flow executes the activities in a circular manner.
 Each circuit leads to a more complete version of the software.
 A parallel process flow executes one or more activities in parallel with other

activities modeling for one aspect of the software in parallel with construction
of another aspect of the software.

Cont.

6

Identifying a Task Set

 Before you can proceed with the process model, a key question: what

actions are appropriate for a framework

 A task set defines the actual work to be done to accomplish the objectives of
a software engineering action.

 A list of the task to beaccomplished

 A list of the work products to be produced

 A list of the quality assurance filters to be applied

For example, a small software project requested by one person with simple
requirements, the communication activity might encompass little more than a
phone all with the stakeholder. Therefore, the only necessary action is phone
conversation, the work tasks of this action are:
 Make contact with stakeholder via telephone.

 Discuss requirements and take notes.

 Organize notes into a brief written statement of requirements.

 E-mail to stakeholder for review and approval.

Examples of a Selection process

The task sets for Requirements gathering action for a simple project may
include:

1. Make a list of stakeholders for the project.
2. Invite all stake holders to an informal meeting.
3. Ask each stakeholder to make a list of features
4. Discuss requirements and build a finallist.
5. Prioritize requirements.
6. Note areas of uncertainty.

 Make a list of stakeholders for the project.

 Interview each stakeholders separately to determine overall wants and needs.

 Build a preliminary list of functions and features based on stakeholderinput.

 Schedule a series of facilitated application specification meetings.

 Conduct meetings.

 Produce informal user scenarios as part of each meeting.

 Refine user scenarios based on stakeholder feedback.

 Build a revised list of stakeholder requirements.

 Use quality function deployment techniques to prioritize requirements.

 Package requirements so that they can be delivered incrementally.

 Note constraints and restrictions that will be placed on thesystem.

 Discuss methods for validating the system.

Ex. For Task Set Elicitation

Both Do The Same Work With Different Depth And Formality. Choose The Task sets
That Achieve The Goal And Still Maintain qualityAndAgility.

 A process pattern

 describes a process-related problem that is encountered during
software engineering work, identifies the environment in which the
problem has been encountered, and suggests one or more proven
solutions to the problem.

 Stated in more general terms, a process pattern provides you with a
template [Amb98]—a consistent method for describing problem solutions
within the context of the software process. (defined at different levels of
abstraction)

 Problems and solutions associated with a complete process model (e.g.
prototyping).

 Problems and solutions associated with a framework activity (e.g. planning)
or an action with a framework activity (e.g. project estimating).

Process patterns

• STAGE PATTERNS—defines a problem associated with a framework activity for
Requirements Gathering and others.

• TASK PATTERNS—defines a problem associated with a software engineering
action or work task and relevant to successful software engineering practice

• Phase patterns—define the sequence of framework activities that occur with
the process, even when the overall flow of activities is iterative in nature.
Example includes Spiral Model or Prototyping.

Process patterns

 Describes an approach that may be applicable when stakeholders have a general
idea of what must be done but are unsure of specific software requirements.

 Pattern name. Requirement Unclear

 Intent pattern describes an approach for building a model that can be assessed
iteratively by stakeholders in an effort to identify or solidify software
requirements.

 Initial context. Conditions must be met (1) stakeholders have been identified; (2)
a mode of communication between stakeholders and the software team has
been established; (3) the overriding software problem to be solved has been
identified by stakeholders ; (4) an initial understanding of project scope, basic
business requirements and project constraints has been developed.

 Problem. Requirements are hazy or nonexistent. stakeholders are unsure of
whatthey want.

 Solution.Adescription of the prototyping process would be presentedhere.

 Resulting context. A software prototype that identifies basic requirements.
(modes of interaction, computational features, processing functions) is
approved by stakeholders. Following this, 1. This prototype may evolve through
a series of increments to become the production software or 2. the prototype
may be discarded.

An Example of ProcessPattern

 The existence of a software process is no guarantee that software will be
delivered on time, that it will meet the customer’s needs, or that it will exhibit
the technical characteristics that will lead to long-term quality characteristics.

A number of approaches to software process improvement have been proposed
over different r the past few decades:

 Standard CMMI Assessment Method for Process Improvement (SCAMPI)—
provides a five-step process assessment model that incorporates five phases:
initiating, diagnosing, establishing, acting, and learning. The SCAMPI method
uses the SEI CMMI as the basis for assessment [SEI00].

 CMM-Based Appraisal for Internal Process Improvement (CBA IPI)— provides
a diagnostic technique for assessing the relative maturity of a software
organization; uses the SEI CMM as the basis for the assessment [Dun01].

Process Assessment and Improvement

 SPICE (ISO/IEC15504)—a standard that defines a set of requirements for
software process assessment. The intent of the standard is to assist
organizations in developing an objective evaluation of the efficacy of any
defined software process[ISO08].

 ISO 9001:2000 for Software—a generic standard that applies to any

organization that wants to improve the overall quality of the products,
systems, or services that it provides. Therefore, the standard is directly
applicable to software organizations and companies [Ant06].

Prescriptive Models

 Prescriptive process models were originally proposed to bring order to chaos.

 Prescriptive process models advocate an orderly approach to software
engineering. However, will some extent of chaos (less rigid) be beneficial to bring
some creativity?

That leads to a few questions…

 If prescriptive process models strive for structure and order (prescribe a set of
process elements and process flow), are they inappropriate for a software world
that thrives on change?

 Yet, if we reject traditional process models (and the order they imply) and replace
them with something less structured, do we make it impossible to achieve
coordination and coherence in software work?

1

S/W Process Models

 Classic Process Models
 Waterfall Model (Linear SequentialModel)

 Incremental Process Models
 Incremental Model

 Evolutionary Software Process Models
 Prototyping
 Spiral Model
 Concurrent Development Model

The V-Model

A variation of waterfall model depicts
the relationship of quality assurance
actions to the actions associated with
communication, modeling and early
code construction activates.
Team first moves down the left side of
the V to refine the problem
requirements. Once code is generated,
the team moves up the right side of
the V, performing a series of tests that
validate each of the models created as
the team moved down the left side.
The V-model provides a way of
visualizing how verification and
validation actions are applied to
earlier engineering work.

Waterfall Model

The problems that are sometimes encountered when the waterfall model is
applied are:

 Real projects rarely follow the sequential flow that the model proposes.

Although the linear model can accommodate iteration, it does so indirectly. As a
result, changes can cause confusion as the project team proceeds.

 It is often difficult for the customer to state all requirements explicitly. The

waterfall model requires this and has difficulty accommodating the natural
uncertainty that exists at the beginning of many projects.

 The customer must have patience. A working version of the program(s) will not

be available until late in the project time span. A major blunder, if undetected
until the working program is reviewed, can be disastrous.

increment #n

Communicat ion

increment #2

delivery of

nthincrement

Communicat ion

increment #1

delivery of2nd

increment

Communication

delivery of1st

increment

Project Calendartime

Depl oy ment

del ivery fe

edback

Con struction

codetest

Model ing
analysis

design

Incremental Model

Deployment

deliveryfe

edback

Construct i on
code

test

Modeli ng

analysis design

Pl anni ng

Depl oy mentdel

veryfeedback

Construct ion
code

test

Model ing
analysis

design

Pl anni ng

Pl anni ng

 When initial requirements are reasonably well defined, but the overall
scope of the development effort precludes a purely linear process. A
compelling need to expand a limited set of new functions to a later
system release.

 It combines elements of linear and parallel process flows. Each linear
sequence produces deliverable increments of the software.

 The first increment is often a core product with many supplementary
features. Users use it and evaluate it with more modifications to better
meet the needs.

 The incremental process model focuses on the delivery of an operational
product with each increment. Early increments are stripped-down
versions of the final product, but they do provide capability that serves
the user and also provide a platform for evaluation by the user.

 Incremental development is particularly useful when staffing is
unavailable for a complete implementation by the business deadline that
has been established for the project

order to get a prototype working quickly. The less-than-ideal choice
may be adopted forever after you get used to it.

 When to use: Customer defines a set of general objectives but does not
identify detailed requirements for functions and features. or Developer
may be unsure of the efficiency of an algorithm, the form that human
computer interaction should take.

 What step: Begins with communication by meeting with stakeholders to
define the objective, identify whatever requirements are known, outline
areas where further definition is mandatory. A quick plan for
prototyping and modeling (quick design) occur. Quick design focuses
on a representation of those aspects the software that will be visible to
end users. (interface and output). Design leads to the construction of a
prototype which will be deployed and evaluated. Stakeholder’s
comments will be used to refine requirements.

 Both stakeholders and software engineers like the prototyping
paradigm.
Users get a feel for the actual system, and developers get to build
something immediately. However, engineers may make compromises in

Evolutionary Models:Prototyping

order to get a prototype working quickly. The less-than-ideal choice
may be adopted forever after you get used to it.

 When to use: Customer defines a set of general objectives but does not
identify detailed requirements for functions and features. or Developer
may be unsure of the efficiency of an algorithm, the form that human
computer interaction should take.

 What step: Begins with communication by meeting with stakeholders to
define the objective, identify whatever requirements are known, outline
areas where further definition is mandatory. A quick plan for
prototyping and modeling (quick design) occur. Quick design focuses
on a representation of those aspects the software that will be visible to
end users. (interface and output). Design leads to the construction of a
prototype which will be deployed and evaluated. Stakeholder’s
comments will be used to refine requirements.

 Both stakeholders and software engineers like the prototyping
paradigm.

 Users get a feel for the actual system, and developers get to build
something immediately. However, engineers may make compromises in

Constructionof
prototype

Q uick plan

Mo d e lin g

Q uick d esig n

Construction of

prototype

Depl oyment

De live ry

&Feedback

Communication

Modeling
Quickdesign

Construction
of prototype

Deployment

feedback

communicatio

n

Quick
plan

Prototypingcanbeproblematicforthefolowing reasons:

 software, unaware that the prototype is held together haphazardly,

unaware that in the rush to get it working you haveŶ’t considered

overall software quality or long-term maintainability.

 As a software engineer, you often make implementation

compromises in order to get a prototype working quickly.

 An inappropriate operating system or programming language may

be used simply because it is available and known;

 An inefficient algorithm may be implemented simply to demonstrate

capability. After a time, you may become comfortable with these

choices and forget all the reasons why they were inappropriate. The

less-than-ideal choice has now become an integral part of the system

• It couples the iterative nature of prototyping with the controlled and

systematic aspects of the waterfall

model generator that is used to

model and is a risk-driven process

guide multi-stakeholder concurrent

engineering of software intensive systems.

• Two main distinguishing

incrementally growing a

features: one is cyclic approach for

systeŵ’s degree of definition and

implementation while decreasing its degree of risk. The other is a set of anchor

point milestones for ensuring stakeholder commitment to feasible and mutually

satisfactory system solutions.

• A series of evolutionary releases are delivered. During the early iterations, the

release might be a model or prototype. During later iterations, increasingly

more complete version of the engineered system are produced.

• The first circuit in the clockwise direction might result in the product

specification; subsequent passes around the spiral might be used to develop a

prototype and then progressively more sophisticated versions of the software.

EvolutionaryModels:TheSpiral

• Each pass results in adjustments to the project plan. Cost and schedule are

adjusted based on feedback. Also, the number of iterations will be adjusted

by project manager.

• Good to develop large-scale system as software evolves as the process

progresses and risk should be understood and properly reacted to.

Prototyping is used to reduce risk.

• However, it may be difficult to convince customers that it is controllable as

it demands considerable risk assessment expertise.

planning estimation scheduling riskanalysis

communication

modeling analysis design

start

deployment

delivery

feedback

construction
code

test

 Spiral Mode

l

• Allow a software team to represent iterative and concurrent elements of any of

the process models. For example, the modeling activity defined for the spiral

model is accomplished by invoking one or more of the following actions:

prototyping, analysis and design.

• The Figure shows modeling may be in any one of the states at any given time.

For example, communication activity has completed its first iteration and in the

awaiting changes state. The modeling activity was in inactive state, now makes a

transition into the under development state. If customer indicates changes in

requirements, the modeling activity moves from the under development state

into the awaiting changes state.

• Concurrent modeling is applicable to all types of software development

and provides an accurate picture of the current state of a project. Rather than

confining software engineering activities, actions and tasks to a sequence of

events, it defines a process network. Each activity, action or task on the network

exists simultaneously with other activities, actions or tasks. Events generated at

one point trigger transitions among28the state.

Concurrent Model

Modeling activity

Under

developmen

 t

represents thestate
of a softwareengineering

activity ortask

Awaiting

change

 s

Underreview

Under

revisio

 n

Baselined

Done

none

Concurrent Model

• Component-Based Development

• The Formal Methods Model

• Aspect-Oriented Software Development

Specialized Process Models

Component-Based Development:
Commercial off-the-shelf (COTS) software components, developed by vendors
who offer them as products, provide targeted functionality with well-defined
interfaces that enable the component to be integrated into the software that is
to be built.
These components can be as either conventional software modules or object-
oriented packages or packages of classes

• Steps involved in CBS are

• Available component-based researched products are and evaluated
for the application domain in question.

• Components are integrated into the architecture

• Comprehensive testing is conducted ensure proper functionality.

Specialized process models

Build

componentsif

unavailable

Planning

RiskAnalysis

Customer

Communication

Engineering

Customer

Evaluation

Construction & Release

Component Assembly Model

Put new

components

in library

Look up

components

in library

Identify

candidate

component

Extract

components

if available

Construct

nthiteration

of system

Re-use Oriented Development

Specialized process model

Formal Methods Model
• Formal methods model encompasses a set of activities that leads to formal
mathematical specification of computer software

• They enable software engineers to specify, develop and verify a computer based
system by applying a rigorous mathematical notation

• Development of formal models is quite time consuming and expensive

• Extensive training is needed in applying formal methods

• Difficult to use the model as a communication mechanism for technically
unsophisticated customers

Specialized Process model

Aspect-oriented Software Development
• The aspect-oriented approach is based on the principle of identifying common
program code within certain aspects and placing the common procedures outside
the main business logic

• The process of aspect orientation and software development may include

modeling, design, programming, reverse engineering and re-engineering;

• The domain of AOSD includes applications, components and databases;

• Interaction with and integration into other paradigms is carried out with the help
of frameworks, generators, program languages and architecture-description
languages (ADL).

• The Unified Process is an iterative and incremental development process.
Unified Process divides the project into four phases
1. Inception 2. Elaboration 3. Construction 4. Transition

• The Inception, Elaboration, Construction and Transition phases are divided into
a series of time boxed iterations. (The Inception phase may also be divided into
iterations for a large project.)

• Each iteration results in an increment, which is a release of the system that
contains added or improved functionality compared with the previous release.

• Although most iterations will include work in most of the process disciplines
(e.g. Requirements, Design, Implementation, Testing) the relative effort and
emphasis will change over the course of the project.

• Risk Focused

The Unified Process requires the project team to focus on addressing the most
critical risks early in the project life cycle. The deliverables of each iteration,
especially in the Elaboration phase, must be selected in order to ensure that the
greatest risks are addressed first. Risk Focused

Unified Process

• Inception Phase

– Inception is the smallest phase in the project, and ideally it should be quite
short. If the Inception Phase is long then it is usually an indication of
excessive up-front specification, which is contrary to the spirit of the Unified
Process.

– The following are typical goals for the Inception phase.
• Establish a justification or business case for the project
• Establish the project scope and boundaryconditions
• Outline the use cases and key requirements that will drive the design

tradeoffs
• Outline one or more candidate architectures
• Identify risks
• Prepare a preliminary project schedule and costestimate

– The Lifecycle Objective Milestone marks the end of the Inception phase.

Unified Process Model

http://en.wikipedia.org/wiki/Business_case
http://en.wikipedia.org/wiki/Business_case
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Risk

• Elaboration Phase

– During the Elaboration phase the project team is expected to capture a
majority of the system requirements. The primary goals of Elaboration are
to address known risk factors and to establish and validate the system
architecture.

– Common processes undertaken in this phase include the creation of use
case diagrams, conceptual diagrams (class diagrams with only basic
notation) and package diagrams (architectural diagrams).

– The architecture is validated primarily through the implementation of an
Executable Architectural Baseline. This is a partial implementation of the
system which includes the core, most architecturally significant,
components. It is built in a series of small, timeboxed iterations.

Unified Process

• Elaboration Phase

– By the end of the Elaboration phase the system architecture must have
stabilized and the executable architecture baseline must demonstrate that
the architecture will support the key system functionality and exhibit the
right behavior in terms of performance, scalability and cost.

– The final Elaboration phase deliverable is a plan (including cost and
schedule estimates) for the Construction phase. At this point the plan
should be accurate and credible, since it should be based on the
Elaboration phase experience and since significant risk factors should
have been addressed during the Elaboration phase.

– The Lifecycle Architecture Milestone marks the end of the Elaboration
phase.

• Construction Phase

– Construction is the largest phase in the project. In this phase the remainder
of the system is built on the foundation laid in Elaboration. System
features are implemented in a series of short, timeboxed iterations. Each
iteration results in an executable release of the software. It is customary
to write full text use cases during the construction phase and each one
becomes the start of a new iteration.

– Common UML (Unified Modeling Language) diagrams used during this
phase include Activity, Sequence, Collaboration, State (Transition) and
Interaction Overview diagrams.

– The Initial Operational Capability Milestone marks the end of the
Construction phase.

• Transition Phase

– The final project phase is Transition. In this phase the system is deployed
to the target users. Feedback received from an initial release (or initial
releases) may result in further refinements to be incorporated over the
course of several Transition phase iterations. The Transition phase also
includes system conversions and user training.

– The Product Release Milestone marks the end of the Transition phase.

• Advantages of UP SoftwareDevelopment

– This is a complete methodology in itself with an emphasis on accurate
documentation

– It is proactively able to resolve the project risks associated with other
projects.

– Less time is required for integration as the process of integration goes on
throughout .

– The development time required is less due to reuse of components.

• Disadvantages of RUP SoftwareDevelopment

– The team members need to be expert in their field to develop a software
under this methodology.

– On cutting edge projects which utilise new technology, the reuse of
components will not be possible. Hence the time saving one could have
made will be impossible to fulfill.

– Integration throughout the process of software development, in theory
sounds a good thing. But on particularly big projects with multiple
development streams it will only add to the confusion and cause more
issues during the stages of testing

• The best software process is one that is close to the people who will be
doing the work. The PSP model defines five framework activities.

1. Personal Software Process (PSP)

Planning: This activity isolates requirements and develops both size and
resource estimates. In addition, a defect estimate is made. All
metrics are recorded on worksheets or templates. Finally,
development tasks are identified and a project schedule is created.

High-level design:External specifications for each component to be
constructed are developed and a component design is
created. Prototypes are built when uncertainty exists. All
issues are recorded and tracked.

High-level design review: Formal verification methods (Chapter 21) are applied
to uncover errors in the design. Metrics are
maintained for all important tasks and work results.

Personal Team and Process Models

• Development. The component-level design is refined and reviewed. Code is
generated, reviewed, compiled, and tested. Metrics are maintained for all
important tasks and work results.

• Postmortem. Using the measures and metrics collected, the effectiveness of the
process is determined. Measures and metrics should provide guidance for
modifying the process to improve its effectiveness.

2. Team Software Process (TSP): The goal of TSP is to build a ͞self directed͟ project
team that organizes itself to produce high-qualitysoftware. TSP objectivesare,

• Build self-directed teams that plan and track their work, establish goals, and
own their processes and plans. These can be pure software teams or
integrated product teams (IPTs) of 3 to about 20 engineers.

• Show managers how to coach and motivate their teams and how to help them
sustain peak performance.

• Accelerate software process improvement by making CMM23 Level 5
behavior normal and expected.

• Provide improvement guidance to high-maturityorganizations.

• Facilitate university teaching of industrial-grade team skills.

Personal team and process models

Estimation is attempt to determine how much money, effort, resources & time it
will take to build a specific software based system or project.
Estimation involves answering the following questions:

1. How much effort is required to complete each activity?
2. How much calendar time is needed to complete each activity?
3. What is the total cost of each activity?

Project cost estimation and project scheduling are normally carried out together.
The costs of development are primarily the costs of the effort involved, so the
effort computation is used in both the cost and the schedule estimate.
Do some cost estimation before detailed schedules are drawn up. These initial
estimates may be used to establish a budget for the project or to set a price for
the software for a customer.

What is Estimation ?

There are three parameters involved in computing the total cost of asoftware
development project:

• Hardware and software costs including maintenance

• Travel and training costs

• Effort costs (the costs of paying software engineers).
The following costs are all part of the total effort cost:

1. Costs of providing, heating and lighting office space

2. Costs of support staff such as accountants, administrators, system managers,
cleaners and technicians

3. Costs of networking and communications

4. Costs of central facilities such as a library or recreationalfacilities

5. Costs of Social Security and employee benefits such as pensions and health
insurance.

Factors affecting software pricing

Cost Estimation Process

Estimation Process

Size Table

Lines of Code

Effort

Development Time

Number of Use Case Number of Personnel

Function Point Errors

1

Function points..

• STEP 2: Multiply each number by a weight factor, according to

complexity (simple, average or complex) of the parameter,

associated with that number. The value is given by a table:

• STEP 3: Calculate the total UFP(Unadjusted Function Points)

• STEP 4: Calculate the total TCF (Technical Complexity Factor) by givinga
value
between 0 and 5 accordingto the importance of the following points:

• Technical Complexity Factors:

– 1.

– 2.

– 3.

– 4.

– 5.

– 6.

– 7.

– 8.

– 9.

Data Communication

Distributed DataProcessing

Performance Criteria

Heavily Utilized Hardware

High Transaction Rates

Online Data Entry

Online Updating End-user

Efficiency

– 10. Complex Computations

– 11. Reusability

– 12. Ease of InstallationEase of

– 13. Operation Portability

– 14. Maintainability

• STEP 5: Sum the resulting numbers too obtain DI (degree of influence)

• STEP 6: TCF (Technical Complexity Factor) by given by theformula

– TCF=0.65+0.01*DI

• STEP 6: Function Points are by given by the formula

– FP=UFP*TCF
Relation between LOC andFP

– LOC = LanguageFactor * FP
– where

• LOC (Lines of Code)

• FP (FunctionPoints)

• The Basic COCOMO model computes effort as a function of program
size. The Basic COCOMO equation is:

– E = aKLOC^b

• Effort for three modes of Basic COCOMO.

Mode a b

Organic 2.4 1.05

Semi-

detached

3.0 1.12

Embedded 3.6 1.20

Effort Computation

• The intermediate COCOMO model computes effort as a function
of program size and a set of cost drivers. The Intermediate
COCOMO equation is:

– E = aKLOC^b*EAF

• Effort for three modes of intermediate COCOMO.

Mode a b

Organic 3.2 1.05

Semi-

detached

3.0 1.12

Embedded 2.8 1.20

TotalEAF = Product of the selected factors

Adjusted value of Effort:Adjusted PersonMonths:

APM = (Total EAF) * PM

• DevelopmentTimeEquationParameterTable:

Parameter Organic Semi-

detached
Embedded

C 2.5 2.5 2.5

D 0.38 0.35 0.32

DevelopmentTime, TDEV=C* (APM**D)

NumberofPersonnel, NP=APM / TDEV

S/W Development Time

• A development process typically consists ofthe following stages:

• Requirements Analysis

• Design (High Level +Detailed)

• Implementation & Coding

• Testing (Unit + Integration)

Distribution of Effort

 Error Estimatio

• Calculatetheestimatednumberoferrorsinyourdesign,i.e.total errors found
inrequirements,specifications,code,usermanuals,andbad fixes:

– AdjusttheFunctionPointcalculatedinstep1
AFP=FP** 1.25

Usethefollowingtableforcalculatingerror estimates

Error Type Error / AFP

Requirements 1

Design 1.25

Implementation 1.75

Documentation 0.6

Due to Bug Fixes 0.4

n

• LOC based estimation

• Source lines of code (SLOC), also known as lines of code (LOC), is a software
metric used to measure the size of a computer program by counting the
numberof lines in the text of the program's source code.

• SLOC is typically used to predict the amount of effort that will be required to
develop a program, as well as to estimate programming productivity or
maintainability once the software is produced.

• Lines used for commenting the code and header file are ignored.

• Two major types of LOC:

1. Physical LOC
• Physical LOC is the count of lines in the text of the program's source code

including
comment lines.

• Blank lines are also included unless the lines of code in a section consists
ofmore
than 25% blank lines.

Estimation

2. Logical LOC
• Logical LOC attempts to measure the number of executable statements, but

their
specific definitions are tied to specific computer languages.

• Ex: Logical LOC measure for C-like programming languages is the number
of statement-terminating semicolons(;)

LOC‐based Estimation

The problems of lines of code (LOC)
–Different languages lead to different lengths of code
–It is not clear how to count lines of code
– A report, screen, or GUI generator can generate thousands of lines ofcode
in minutes
– Depending on the application, the complexity of code is different.

S/W Cost Estimation

• The Constructive Cost Model (COCOMO) is the most widely used

software estimation model in the world.

• The COCOMO model predicts the effort and duration of a project based on
inputs relating to the size of the resulting systems and a number of "cost
drives" that affect productivity.

Effort

• Effort Equation

– PM = C * (KDSI)n (person-months)

• where PM = number of person-month (=152 working hours),

• C = a constant,

• KDSI = thousands of "delivered source instructions" (DSI) and

INTRODUCTION TO COCOMO MODELS

• n = a constant.

• Productivityequation

– (DSI) /(PM)

• where PM = number of person-month (=152 working hours),

• DSI = "delivered sourceinstructions―

• Schedule equation

– TDEV = C * (PM)n (months)

• where TDEV = number of months estimated forsoftware
development.

• Average Staffing Equation
–

• (PM) / (TDEV)

INTRODUCTION TO COCOMO MODELS

•

•

(FSP)

whereFSPmeansFul-time)-equivalentSoftware Personnel.

• COCOMO is defined in terms of three different models:

– the Basic model,

– the Intermediate model, and

– the Detailed model.

• The more complex models account for more factors that
influence software projects, and make more accurate estimates.

COCOMO MODELS

• The most important factors contributing to a project's duration and cost is the
Development Mode

• Organic Mode:The project is developed in a familiar,stable environment, and the
product is similar to previously developed

• Mode: The project'scharacteristics are intermediate between Organic and Embedded.

• Embedded Mode: The project is characterized by tight, inflexible constraints
and interface requirements. An embedded mode project will require a great deal
of innovation.

The development model

Feature Organic Semidetached Embedded

Organizational
understanding of product and

objectives

Thorough Considerable General

Experience inworking
with relatedsoftware

systems

Extensive Considerable Moderate

Need forsoftware
conformance withpre-

established

requirements

Basic Considerable Full

Need for software
conformance with
external interface

specifications

Basic Considerable Full

Modes

Feature Organic Semidetached Embedded

Concurrent development

of associated new

hardware and

operational procedures

Some Moderate Extensive

Need for innovative data

processing architectures,

algorithms

Minimal Some Considerable

Premium on early

completion
Low Medium High

Product size range <50 KDSI <300KDSI All

write a computer program for an automated manufacturing application. The
reason for his selection was simple. He was the only person in his technical group
who had attended a computer programming seminar. He knew the ins and outs
of assembly language and FORTRAN but nothing about software engineering and
even less about project scheduling and tracking. His boss gave him the
appropriate manuals and a verbal description of what had to be done. He was
informed that the project must be completed in two months. He read the
manuals, considered his approach, and began writing code. After two weeks, the
boss called him into his office and asked how things were going. ͞Really great, the
young engineer with youthful enthusiasm. ͞This was much simpler thought. I’ŵ
probably close to 75 percent finished.

 You’ǀeselected an appropriate processmodel.

 You’eǀ identified the software engineering tasks that have to be

performed.

 You estimated the amount of work and the number of people, you know the

deadline, you’ǀeevenconsidered therisks.

 Now it’s time to connect the dots. That is, you have to create

What Is project scheduling

 Why it’s Important?

 In order to build a complex system, many software engineering tasks

occur in parallel.

 The result of work performed during one task may have a profound

effect on work to be conducted in another task.

 These interdependencies are very difficult to understand withouta

schedule.

 lt’s also virtually impossible to assess progress on a moderate or large

software project without a detailedschedule

 What are the steps?

 The software engineering tasks dictated by the software are refined for

the functionality to be built.

Effort and duration are allocated to each task and a task network is

created in a manner that enables the software team to meet the

delivery deadline established.

What Is project scheduling

Basic Concept of Project Scheduling

 An unrealistic deadline established by someone outside the software
development group and forced on managers and practitioner's within the
group.
 Changing customer requirements that are not reflected in schedulechanges.
 An honest underestimate of the amount of effort and/or the number
of resourcesthat will be required to do the job.
 Predictable and/or unpredictable risks that were not considered when the

project commenced.

 Technical difficulties that could not have been foreseen in advance.

 Why should we do when the management demands that we make a dead
line I

impossible?
 Perform a detailed estimate using historical data from past projects.
 Determine the estimated effort and duration for the project.

 Using an incremental process model, develop a software engineering strategy
that will deliver critical functionality by the imposed deadline, but delay
other functionality until later. Document the plan.

 Meet with the customer and (using the detailed estimate), explain why the
imposed deadline is unrealistic.

What Is project scheduling

Project scheduling

• Project Scheduling

• Basic Principles

• The Relationship Between People and Effort

• Effort Distribution

• Software project scheduling is an action that distributes estimated effort acrossthe
planned project duration by allocating the effort to specific software engineering
tasks.

• During early stages of project planning, a macroscopic schedule is developed. As the
project gets under way, each entry on the macroscopic schedule is refined into a
detailed schedule.

Project scheduling

 Basic Principles of Project Scheduling.

1. Compartmentalization: The project must be compartmentalized into a
number of manageable activities and tasks. To accomplish
compartmentalization, both the product and the process are refined.

2. Interdependency: The interdependency of each compartmentalized activity
or task must be determined. Some tasks must occur in sequence, while others
can occur in parallel. Other activities can occur independently.

3. Time allocation: Each task to be scheduled must be allocated some number
of work units (e.g., persoŶ‐days of effort). In addition, each task must be
assigned a start date and a completion date. whether work will be conducted
on a full-time or part-time basis.

4. Effort validation: Every project has a defined number of people on the
software team. The project manager must ensure that no more than the
allocated number of people have been scheduled at any given time.

5. Defined responsibilities. Every task that is scheduled should be assigned to a
specific team member.

6. Defined outcomes: Every task that is scheduled should have a defined

outcome. For software projects, the outcome is normally
a work (e.g., the Product design of a component) or a
part of a work product. Work products are often
combined in deliverables.

7. Defined milestones: Every task or group of tasks should be associated with a
project milestone. A milestone is accomplished when one
or more work products has been reviewed for quality
and has been approved. Each of these principles is
applied as the project scheduleevolves.

Project scheduling

UNIT –II

SOFTWARE REQUIREMENTS AND

REQUIREMENTS ENGINEERING PROCESS

 Software requirements: Functional and nonfunctional, user requirements,
system requirements

 Software requirements document
 Requirement engineering process
 Feasibility studies, requirements elicitation and analysis
 Requirements validation, requirements management
 Classical analysis: Structured system analysis, petri nets, data dictionary.

Contents

• Concerned with demonstrating that the requirements define the system that the
customer really wants.

• Requirements error costs are high so validation is very important

• Fixing a requirements error after delivery may cost up to 100 times the cost of
fixing an implementation error.

• Requirements Checking

• Validity : Does the system provide the functions which best support the
customers needs

• Consistency: Are there any requirements conflicts?

• Completeness: Are all functions required by the customer included?

• Realism: Can the requirements be implemented given available budget and
technology

• Verifiability: Can the requirements be checked?

Requirement Validation

• Requirements reviews

– Systematic manual analysis of the requirements.

• Prototyping

– Using an executable model of the system to check requirements.

• Test-case generation

– Developing tests for requirements to checktestability.

• Regular reviews should be held while the requirements definition is being
formulated.

• Both client and contractor staff should be involved in reviews.

• Reviews may be formal (with completed documents) or informal. Good
communications between developers, customers and users can resolve
problems at an early stage.

• Don't underestimate the problems involved in requirements validation.
Ultimately, it is difficult to show that a set of requirements does in fact meet a
user’s needs. Users need to picture the system in operation and imagine how
that system would fit into their work.

• It is hard even for skilled computer professionals to perform this type of
abstract analysis and harder still for system users. As a result, you rarely find all
requirements problems during the requirements validation process. It is
inevitable that there will be further requirements changes to correct omissions
and misunderstandings after the requirements document has been agreed
upon.

Requirements Reviews

Requirement Management

• Requirements during the requirements engineering process and system
development.

• Requirements are inevitably incomplete and inconsistent

 New requirements emerge during the process as business needs change
and a better understanding of the system is developed;

 Different viewpoints have different requirements and these are often
contradictory.

Requirements Change

• The priority of requirements from different viewpoints changes during the

development process.

• System customers may specify requirements from a business perspective that
conflict with end-user requirements.

• The business and technical environment of the system changes during its
development.

Requirements Evaluation

• Enduring requirements

– These are relatively stable requirements that derive from the core activity of
the organization

– Relate directly to the domain of the system

– These requirements may be derived from domain models that show the
entities and relations which characterize an application domain

– For example, in a hospital there will always be requirements
concerned with patients, doctors, nurses, treatments, etc.

• Volatile Requirements

– These are requirements that are likely to change during the system
development process or after the system has been become operational.

– Examples of volatile requirements are requirements resulting from
government health-care policies or healthcare charging mechanisms.

• Volatile requirements

– These are requirements that are likely to change during the system
development process or after the system has been become operational.

– Examples of volatile requirements are requirements resulting from
government health-care policies or healthcare charging mechanisms

• Traceability is concerned with the relationships between requirements,
their sources and the system design

• Source traceability

– Links from requirements to stakeholders who proposed these
requirements;

• Requirements traceability

– Links between dependent requirements;

• Design traceability

– Links from the requirements to the design;

Traceability

Req.

id

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

1.1 D R

1.2 D D D

1.3 R R

2.1 R D D

2.2 D

2.3 R D

3.1 R

3.2 R

A Traceability Matrix

Case Tool Support

• Requirements storage

– Requirements should be managed in a secure, managed data store.

• Change management

– The process of change management is a workflow process whose stages can
be defined and information flow between these stages partially automated.

• Traceability management

– Automated retrieval of the links between requirements.

Requirements Management

• During the requirements engineering process, one has to plan:

– Requirements identification

• How requirements are individually identified;

– A change management process

• The process followed when analyzing a requirements change;

– Traceability policies

• The amount of information about requirements relationships that is
maintained;

– CASE tool support

• The tool support required to help manage requirements change;

Requirements Change

• Should apply to all proposed changes to the requirements.

• Principal stages

– Problem analysis. Discuss requirements problem and propose change;

– Change analysis and costing. Assess effects of change on other
requirements;

– Change implementation. Modify requirements document and other
documents to reflect change.

Classical Analysis

High-Level Petri Nets

• Theclassical Petri net was invented by Carl Adam Petri in 1962.

• A lot of research has been conducted (>10,000 publications). Until 1985 it

was mainly used by theoreticians.

• Since the 80’s their practical use has increased because of the introduction
of high-level Petri nets and the availability ofmany tools.

• High-level Petri nets are Petri nets extended with color (for the modeling of
attributes)

 time (for performance analysis)

 hierarchy (for the structuring of models, DFD's)
• Petri Nets can be used to rigorously define a system (reducing ambiguity, making the

operationsofasystemclear,allowingustoprove propertiesofa system etc.)

• They are often used for distributed systems (with several subsystems acting
independently) and forsystems with resourcesharing.

The Classical Petrint Model

• Petri Nets can be used to rigorously define a system (reducing ambiguity, making the
operationsofasystemclear,lowingustoprove propertiesofa system etc.)

• They are often used for distributed systems (with several subsystems acting
independently) and forsystems with resourcesharing.

• Sincethere may be morethan one transition inthe Petri Netactiveatthe
• same time (andwe do notknowwhich will fade first), they arenon- deterministic.

• Transition t1 has three input places (p1, p2 and p3) and two output places (p3 and
p4).

• Place p3 is both an input and an output place of t1.

• Transition t1 has three input places (p1, p2 and p3) and two output places (p3 and
p4).

• Place p3 is both an input and an output place of t1.

• Transition t1 has three input places (p1, p2 and p3) and two output

places (p3 and p4).

• Place p3 is both an input and an output place of t1.

Transition with Multiple Input

• An enabled transition mayfire.

• Firing corresponds to consuming tokens from the input places and
producing tokens for the outputplaces.

• Firing is atomic (only one transition fires at a time, even if more than one is
enabled)

Transitions with Multiple Inputs

Example for Pertinet

• A transition without any input can fire at any time and produces tokens in the connected
places:

Creating / Consuming Token

Two fight for the sametoken:conflict. Even if there are two tokens, there is

stil a conflict.

Thenexttransitiontofire(t1 ort2) is arbitrary (non-deterministic).

Creating/ConsumingTokens

Data Dictionary

• A tool for recording and processing information(metadata)
organization uses.

• A central catalogue formetadata.

• Can be integrated within the DBMS or be separate

• May be referenced during system design, programming, and by actively
executing programs.

• Can be used as a repository for common code (e.g. library routines).

Benefits of DDS

Benefits of a DDS are mainly due to the fact that it is a central store of
information about the database.

Benefits include -

• Improved documentation and control

• Consistency in data use

• Easier data analysis

• Reduced data redundancy

• Simpler programming

• The enforcement of standards

• Better means of estimating the effect of change.

DD Management

• With so much detail held on the DDS, it is essential that an cross-
referencing facility is provided by the DDS.

• The DDS can produce reports for use by the data administration staff (to
investigate the efficiency of use and storage of data), systems analysts,
programmers, and users.

• A query language is provided for ad-hoc queries. If the DD is the DBMS,
then the query language will be that of the DBMS itself.

Management Objective

From an management point of view, the DDS should

• Provide facilities for documenting information collected during computer
project.

• provide details of applications usage and their data usage once a system has
been implemented, so that analysis and redesign may be facilitated as the
environment changes.

• make access to the DD information easier than a paper-based approach by
providing cross-referencing and indexing facilities.

• make extension of the DD information easier.

• Encourage systems analysts to follow structured methodologies.

Management Advantages

A number of possible benefits may come from using a DDS:

• Improve control and knowledge about the data resource.

• Allows accurate assessment of cost and time scale to effect any changes.

• Reduces the clerical load of database administration, and gives more
control

• Over the design and use of the database.

• Accurate data definitions can be provided securely directly to programs.

• Aid the recording, processing, storage and destruction of data and
associated documents.

A DDS is a useful management tool, but at a price.

• The DDS project may itself take two or three years.

• It needs careful planning, defining the exact requirements designing its
contents, testing, implementation and evaluation.

• The cost of a DDS includes not only the initial price of its installation and any
hardware requirements, but also the cost of collecting the information entering
it into the DDS, keeping it up-to-date and enforcing standards.

• The use of a DDS requires management commitment, which is not easy to
achieve, particularly where the benefits are intangible and long term.

UNIT-III

DESIGN ENGINEERING, CREATING AN

ARCHITECTURAL DESIGN AND MODELING

COMPONENT-LEVEL DESIGN

• Quality Guidelines

• A design should exhibit an architecturethat

(1) Has been created using recognizable architectural styles
or patterns

(2) Is composed of components that exhibit good design
characteristics (these are discussed later in this
chapter)

(3) Can be implemented in an evolutionary fashion,
thereby facilitating implementation and testing.

• A design should be modular; that is, the software should be logically
partitioned into elements or subsystems.

• A design should contain distinct representations of data,
architecture, interfaces, and components.

• A design should lead to data structures that are appropriate for the classes to
be implemented and are drawn from recognizable data patterns.

Design Process

• Quality Guidelines

• A design should lead to components that exhibit independent functional

characteristics.

• A design should lead to interfaces that reduce the complexity of Connections

between components and with the environment.

• A design should be derived using a repeatable method that is driven

• A design should be represented using a notation that effectively

• communicates its meaning.

Design model can be viewed as

–Process dimension indicating the evolution of the design model as design tasks
are executed as part of the software process.

–Abstraction dimension represents the level of detail as each element of the
analysis model is transformed into a design equivalent and then refined
iteratively

• Design Model Elements are as follows

• Data design elements

• Architectural design elements

• Interface design elements

• Component-level design elements

• Deployment-level design elements

Design Model

a n a l y s i s m o d e l

h i g h

c l a s s d i a g r a ms

a n a l y s i s p a c k a g e s C RC m o d e l

s

co l l a b o r a t i o n d i a g r a m s

d a t a f l o w d i a g r a m s

co n t r o l - f l o w d i a g r a m s p r o c e s

 s i n g n a r r a t i v e s

u s e - c a s e s - t e xt

u s e - c a s e d i a g r a m s

a c t i v i t y d i a g r am s

s w i m l a n e d i a g r a m s

co l l a b o r a t i o n d i a g r a m s s t a t e

d i a g r a ms

se q u e n c e d i a g r a m s

c l a s s d i a g r a ms

an a l y s i s p a c k a g e s

C RC m o d e ls

co l l a bo r a t i o n d i a g r a m s d a t a f

l o w d i a g r a m s

c o n t r o l - f l o w d i a g r a m s p r o c e s s

i n g n a r r a t i v e s s t a t e d i a g r a m s

s e q u e n c e d i a g r a m s

Re q u ir e m e n t s : c o n s

t r a in t s

in t e r o p e r a b i l it y t a r

g e t s a n d

c o n f ig u r a t ion

de s i g n c l a s s r e a l i z a t i o n s s u b s y s t

e m s

co l l a bo r a t i o n d i a g r a m s

d e s i g n m o d e

l

r e f i n e m e n t s t o:

de s i g n c l a s s r e a l i z a t i o n s s u b s y s t e

m s

t e c h n i c a l i n t e r f a c e d e s i g

n

N a v i g a t i o n d e s i g n

GU I d e s i g n

co m p o n e n t d i a g r a m s d e s i g

n c l a s s es

a c t i v i t y d i a g r a m s

s e q u e n c e d i a g r a m s

r e f i n e m e n t s t o:

c o m p o n e n t d i a g r a m s d e s i g n c l

a s s es

a c t i v i t y d i a g r a m s

de s i g n c l a s s r e a l i z a t i o n s s u b s y s t

e m s

co l l a b o r a t i o n d i a g r a m s

co m p o n e n t d i a g r a m s d e s i g

n c l a s s es

a c t i v i t y d i a g r a m s

s e q u e n c e d i a g r a m s

l o w co l l a b o r a t i o n d i a g r a m s

s e q u e n c e d i a g r a m s

d e p l o y m e n t d i a g r a m s

a r c h i t e c t u r e e l

e m e n t s

i n t e r f a c e e l

e m e n t s

c o m p o n e n t - l e v e l e l e

m e n t s

d e p l o y m e n t - l e v e l e l e

m e n t s

p r o c e s s d i m e n s i o n

The DesignModel

• Data design elements

– Data design creates a model of data and/or information that is
represented at a high level of abstraction.

– Data model is then refined into progressively more implementation-
specific representations that can be processed by thecomputer-
based system

• Architectural level databases and files
• Component level data structures

Architectural design elements

• The architectural design for software is the equivalent to the floor plan of a
house. The floor plan depicts the overall layout of the rooms; their size, shape,
and relationship to one another; and the doors and windows that allow
movement into and out of the rooms. The floor plan gives us an overall view of
the house. Architectural design elements give us an overall view of the software.

– The architectural model is derived from

• Information about the application domain for the software to be built

• Specific requirements model elements such as data flow diagrams or
analysis classes, their relationships and collaborations for the problem
at hand

• The availability of architectural patterns and styles

• Interface design elements

– The interface design elements for software tell how information flows into
and out of the system and how it is communicated among the components
defined as part of the architecture

– Important elements of interface design

• The user interface (UI): Usability design incorporates aesthetic elements
(e.g., layout, color, graphics, interaction mechanisms), ergonomic
elements (e.g., information layout and placement, metaphors, UI
navigation), and technical elements (e.g., UI patterns, reusable
components). In general, the UI is a unique subsystem within the overall
application architecture.

• External interfaces to other systems, devices, networks or other
producers or consumers of informationThe design of external interfaces
requires definitive information about the entity to which information is
sent or received.

• Internal interfaces between various design componentsThe design
of internal interfaces is closely aligned with component-level design

Design Model - Interface Elements

Design Model

Design Model

Component-level design elements

• The component-level design for software is the equivalent to a set of detailed
drawings (and specifications) for each room in a house. These drawings depict
wiring and plumbing within each room, the location of electrical receptacles and
wall switches, faucets, sinks, showers, tubs, drains, cabinets, and closets.

• Component-level design for software fully describes the internal detail of
each software component.

• Component-level design defines data structures for all local data objects and
algorithmic detail for all processing that occurs within a component and an
interface that allows access to all component operations

• The design details of a component can be modelled at many different
levels of abstraction.

• An UML activity diagram can be used to represent processing logic. Detailed
procedural flow for a component can be represented using either
pseudocode or diagrammatic form (e.g., flowchart or box diagram.

ComponentElements

SensorManagement

Sensor

• Deployment-level design elements

– Deployment-level design elements indicate how software functionality
and subsystems will be allocated within the physical computing
environment that will support the software.

– Deployment diagrams shows the computing environment but does not
explicitly indicate configuration details

What is software Architecture

• When you consider the architecture of a building, many different attributes come
to mind. At the most simplistic level, you think about the overall shape of the
physical structure. But in reality, architecture is much more. It is the manner in
which the various components of the building are integrated to form a cohesive
whole.

• The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally
visible properties of those components, and the relationships among them

• Software architecture enables to

– Analyze the effectiveness of the design in meeting its stated requirements

– Consider architectural alternatives at a stage when making design changes is
still relatively easy

– Reduce the risks associated with the construction of the software

S/W Architecture

Why Is ArchitectureImportant?

• Representations of software architecture are an enabler for communication
between all parties, interested in the development of a computer-based system.

• The architecture highlights early design decisions that will have a profound impact
on all software engineering work that follows and, as important, on ultimate success
of the system as an operational entity.

• Architecture constitutes a relatively small, intellectually graspable model of how

the system is structured and how its components work together.

4

Ex: S/W Architecture Diagram

Architectural Descriptions

• Each of us has a mental image of what the word architecture means. In
reality, however, it means different things to different people.

• The implication is that different stakeholders will see an architecture from
different viewpoints that are driven by different sets of concerns.

• An architectural description is actually a set of work products that reflect
different views of the system.

• Developers want clear, decisive guidance on how to proceed with design.

• Customers want a clear understanding on the environmental changes that must
occur and assurances that the architecture will meet their business needs.

Software Architecture

Architectural Decisions

• Each view developed as part of an architectural description addresses a specific
stakeholder concern.

• To develop each view (and the architectural description as a whole) the system
architect considers a variety of alternatives and ultimately decides on the specific
architectural features that best meet the concern.

• Therefore, architectural decisions themselves can be considered to be one
view of the architecture.

• The reasons that decisions were made provide insight into the structure of a
system and its conformance to stakeholder concerns.

1. A Brief Taxonomy ofArchitectural Styles
2. Architectural Patterns
3. Organization and Refinement

S/W Architecture Styles

S/W Architecture Styles of Home

• The software that is built for computer-based systems exhibit one of many
architectural styles

• Each style describes a system category that encompasses

– A set of component types that perform a function required by thesystem

– A set of connectors (subroutine call, remote procedure call, data stream,
socket) that enable communication, coordination, and cooperation among
components

– constraints that define how components can be integrated to
form the system;

– semantic models that enable a designer to understand the overall
properties of a system by analyzing the known properties of its
constituent parts

S/W Architecture Style

Communicating

Processes

EventSystems

Client/Server Peer-to-Peer
Implicit

Invocation

Explicit

Invocation

Pipeand

Filter

BatchSequential

DataFlow

Blackboard Repository

Data-Centered

Independent Components

A Brief Taxonomy of Arct’l Style

CallandReturn

MainProgram

andSubroutine Layered
Object

Oriented

RemoteProcedure Call 10

Rule-Based

System

Interpreter

VirtualMachine

A Brief Taxonomy of Architectural Styles

• Data-centered architectures.

• A data store (e.g., a file or database) resides at the center of this architecture
and is accessed frequently by other components that update, add, delete, or
otherwise modify data within the store.

• Illustrates a typical data-centered style. Client software accesses a central
repository. In some cases the data repository is passive. That is, client software
accesses the data independent of any changes to the data or the actions of
other client software. A variation on this approach transforms the repository
into a ͞ďlaĐkďoard

SharedData

ClientD ClientE ClientF

ClientC ClientB ClientA

Data Centered Styles

Data-flow architectures

• This architecture is applied when input data are to be transformed througha
series of computational or manipulative components into output data.

• A pipe-and-filter pattern shows has a set of components, called filters,

connected by pipes that transmit data from one component to thenext.

• Each filter works independently of those components upstream

and
downstream, is designed to expect data input of a certain form,
produces data output (to the next filter) of a specified form.

• However, the filter does not require knowledge of the workings of its
neighboring filters.

Sort Update Report

Validate

pipe

fIilter

Data Flow Styles

16

ClassW

Physicallayer

ClassZ

Datalayer

Networklayer

Transportlayer

ClassV Applicationlayer

SubroutineB

Main module

SubroutineA-2 SubroutineA-1

SubroutineA

 Call & Return Styl

ClassX ClassY

e

Object-oriented architectures

• The components of a system encapsulate data and the operations that must
be applied to manipulate the data.

• Communication and coordination between components are accomplished
via message passing.

Layered architectures.

• The basic structure of a layered architecture is illustrated in Figure.

• A number of different layers are defined, each accomplishing operations that
progressively become closer to the machine instruction set.

• At the outer layer, components service user interface operations.

• At the inner layer, components perform operating system interfacing.

• Intermediate layers provide utility services and application S/W functions.

S/W Arct. Styles

Layered Architecture

• As the requirements model is developed, you’ll notice that the software must
address a number of broad problems that span the entire application.

• For example, the requirements model for virtually every e-commerce
application is faced with the following problem: How do we offer a broad array
of goods to a broad array of customers and allow those customers to purchase
our goods online?

• Architectural patterns address an application-specific problem within a specific
context and under a set of limitations and constraints. The pattern proposes an
architectural solution that can serve as the basis for architectural design.

Architectural Patterns

19

Organization and Refinement

• Because the design process often leaves you with a number of architectural
alternatives, it is important to establish a set of design criteria that can be used to
assess an architectural design that is derived.

Control.

• How is control managed within the architecture? Does a distinct control hierarchy
exist, and if so, what is the role of components within this control hierarchy? How
do components transfer control within the system? How is control shared among
components? What is the control topology (i.e., the geometric form that the
control takes)? Is control synchronized or do components operate
asynchronously?

S/W Architecture

• As architectural design begins, the software to be developed must be put into
context—that is, the design should define the external entities (other systems,
devices, people) that the software interacts with and the nature of the
interaction.

1. Represent the system in context

2. Define archetypes

3. Refine the architecture into components

4. Describe instantiations of thesystem

Architectural Design Steps

Architectural Design Steps

Represent the System in Context

• Use an architectural context diagram (ACD) that shows

– The identification and flow of all information into and out of a system

– The specification of all interfaces

– Any relevant support processing from/by other systems

An ACD models the manner in which software interacts with entities to its
boundaries.

Architectural Design Steps

Targetsystem

"Super"ordinatesystems

Usedby

Uses

Actors

Producesor

consumes

Dependson

Producesor

consumes

Peers

"Sub"ordinatesystems

I/F I/F

I/F I/F I/F

• An ACD identifies systems that interoperate with the target system

– Super-ordinate systems
• Use target system as part of some higher level processing scheme

– Sub-ordinate systems

• Those systems that are used by the target system and provide data or
processing that are necessary to complete target system functionality

- Peer-level systems

• Interact on a peer-to-peer basis with target system to produced or
consumed by peers and target system

– Actors

• People or devices that interact with target system to produce or
consume data

Define Archetypes
• Archetypes indicate the important abstractions within the problem domain
(i.e., they model information).
• An archetype is a class or pattern that represents a core abstraction that is

critical to the design of an architecture for the target system.
• Only a relatively small set of archetypes is required in order to designeven

relatively complex systems.
• The target system architecture is composed of these archetypes.

– They represent stable elements of the architecture.
– They may be instantiated in different ways based on the behavior of the

system.

Architectural Design Steps

• Archetypes in SoftwareArchitecture

• Node

- Represents a cohesive collection of input and output elements of the home
security function

• Detector/Sensor - An abstraction that encompasses all sensingequipment

that feeds information into the target system.

• Indicator - An abstraction that represents all mechanisms (e.g., alarm siren,

flashing lights, bell) for indicating that an alarm condition is occurring.

• Controller - An abstraction that depicts the mechanism that allows the arming
or disarming of a node. If controllers reside on a network, they have the ability
to communicate with one another.

Arct. Types - Attributes

Arct. Types - Methods

• AMUL class diagram can represent the classes of the refined architecture and
their relationships

Describe Instantiations of the System

• The architectural design that has been modeled to this point is still
relatively high level.

• The context of the system has been represented, archetypes that indicate the
important abstractions within the problem domain have been defined, the overall
structure of the system is apparent, and the major softwarecomponents

have been identified.

• However, further refinement (recall that all design is iterative) is still
necessary.

Architectural Design Steps

• Transform mapping is a set of design steps that allows a DFD with
transform flow characteristics to be mapped into a specific architectural
style.

– Information must enter and exit software in an external world. The
externalized data must be converted into an internal form for processing.
Information enters along paths that transform external data into an internal
form. These paths are identified are Incomingflow.

– Incoming data are transformed through a transform center and move along
the paths that now lead ͞out͟ of the software. Data moving along thesepaths are
called Outgoing flow.

• Transaction Flow

– Information flow Is often characterized by a Singledata item
called Transaction, that triggers other data flow along one of many paths.

– Transaction flow is characterized by data moving along an incoming path
that converts external world information into a transaction

– The transaction is evaluated and, based on its value, flow along one of
many action paths is initiated. The hub of information from which many
action paths emanate is called a transaction center

Architectural Mapping using Data

Architectural Mapping using Data Flow

Flow characteristics

Transform flow

Transaction

flow

2

Architectural Mapping using Data Flow

Transform Mapping

b g h

a
d e

f

c i
j

data flow model

x1

x2 x3 x4

"Transform" mapping

b c d e f g i

a h j

Factoring

direction of increasing

decision making

typical "decision

making" modules

typical "worker" modules

Architectural Mapping using Data

Architectural Mapping using Data Flow

input
controller

processing
controller

output

controller

First Level Factoring

main programcontroller

Architectural Mapping using Data

SecondLevelFactoring

 D

 C

 B
A

control

A

main

 B

 C

mapping from the D

flow boundary outward

• Transaction Mapping

1. Review the fundamental system model.
2. Review and refine data flow diagrams for the software
3. Determine whether the DFD has transform or transaction flow

characteristics.
4. Isolate the transaction center and the flow characteristics along each of the

action paths.
5. Map the DFD in a program structure amenable to transaction processing.
6. Factor and refine the transaction structure and the structure of each

action path.
7. Refine the first-iteration architecture using design heuristics for improved

software quality.

Architectural Mapping using Data

Architectural Mapping using Data Flow

Isolate Flow Paths

command

read

command

command

validate

command

validcommand

produce

errormsg

invalidcommand

determine

type

errormsg

status

read
fixture
status

combined

status

determine

setting

rawsetting

format
setting

fixturesetting

robotcontrol

send

read
record

record

calculate
output

values values

control
value

start/stop

assembly

record

format

report

report

Architectural Mapping using Data Flow

Transaction Mapping

Data flowmodel
f

a e

b d

t

g i

l h
k

m j

mapping

b

x1

program structure

t

a x2 x3 x4
n

d e f g h x3.1 l m n

i j

k

Architectural Mapping using Data Flow

process

operator

commands

command

input

controller

determine

type

read

command
validate

command

produceerror

message

fixturestatus

controller

report

generation

controller

send contro

value

each of the action paths mustbe expandedfurther

Map theFlowModel

Architectural Mapping using Data Flow

Refining

process

operator

command

s

comman

d input

controller

determin

e

type

read

comman

d

validate

comman

d

produce

error

messag

e

fixture

status

controlle

r

report

generatio

n

controller

send

contro

lvalue

read

recor

d

calculat

e

output

values

forma

t

report

read

fixture

status

determine

setting

 formatsetting

Architectural Mapping Using Data Flow

• Refining the Architectural Design

• Any discussion of design refinement should be prefaced with the following
comment:

• You should be concerned with developing a representation of software that will
meet all functional and performance requirements and merit acceptance based
on design measures and heuristics.

• Refinement of software architecture during early stages of design is
to be encouraged.

UNIT –IV

TESTING STRATEGIES AND PRODUCT

METRICS

Software testing fundamentals: Internal and external views of testing, white box

testing, basis path testing, control structure testing, black box testing, regression

testing, unit testing, integration testing, validation testing, system testing and

debugging;

Software implementation techniques: Coding Practices, refactoring.

Contents

• System testing is a series of different test whose primary purpose is to fully
exercise the computer-based system.

• Each test has a different purpose, all work to verify that system elements
have been properly integrated and perform allocated functions.

1. Recovery testing

– Tests for recovery from system faults

– Forces the software to fail in a variety of ways and verifies that
recovery is properly performed

– Tests reinitialization, checkpointing mechanisms, data recovery, and
restart for correctness

– If recovery is automatic, reinitialization, checkpointing mechanisms, data
recovery, and restart are evaluated for correctness

System Testing

– If recovery requires human intervention, the mean-time-to-repair is
evaluated to determine whether it is within acceptable limits

2. Security testing

– Verifies that protection mechanisms built into a system will, in fact,
protect it from improper access

– During security testing, the tester plays the role of the individual
who desires to penetrate the system.

– Anything goes! The tester may attempt to acquire passwords through
external clerical means.

– may attack the system with custom software designed to break down any
defenses that have been constructed

3. Stress testing

– Executes a system in a manner that demands resources in abnormal
quantity, frequency, or volume.

– Stress tests are designed to confront programs with abnormal situations. In
essence, the tester who performs stress testing asks: How high can we
crank this up before it fails?

– A variation of stress testing is a technique called sensitivitytesting.

• A very small range of data contained within the bounds of valid data for a
program may cause extreme and even erroneous processing or profound
performance degradation.

• Sensitivity testing attempts to uncover data combinations within valid input
classes that may cause instability or improper processing.

4. Performance Testing

• Performance testing is designed to test the run-time performance of software
within the context of an integrated system.

• Performance testing occurs throughout all steps in the testing process. Even at
the unit level, the performance of an individual module may be assessed as
tests are conducted

• Performance tests are often coupled with stress testing and usually requires
both hardware and software instrumentation.

• That is, it is often necessary to measure resource utilization (e.g.,

processor cycles) in an exacting fashion

• Debugging occurs as a consequence of successful testing. When a test case
uncovers an error, debugging is an action that results in the removal of the error.

1. The debugging process

The debugging process attempts to match symptom with cause, thereby
leading to error correction.

The debugging process will usually have one of two outcomes:

(1) The cause will be found and corrected or

(2) The cause will not be found. In the latter case, the person performing
debugging may suspect a cause, design a test case to help validate that
suspicion, and work toward error correction in an iterative fashion.

–Debugging process beings with the execution of a test case. Results are
assessed and a lack of correspondence between expected and actual
performance is observed

The Art of Debugging

–Debugging attempts to match symptom with cause, thereby leading to error
correction .

The Art of Debugging

• Characteristics of bugs

– The symptom and the cause may be geographically remote.

– The symptom may disappear (temporarily) when another error is
corrected

– The symptom may actually be caused by non-errors

– The symptom may be caused by human error that is not easily
traced

– The symptom my be a result of timing problems, rather than processing
problems

– It may be difficult to accurately reproduce input conditions

– The symptom may be intermittent.

– The symptom may be due to causes that are distributed across a number of
tasks running on different processors

1. Brute force 2. Backtracking 3. Cause elimination

2. Psychological Considerations

• Unfortunately, there appears to be some evidence that debugging prowess is an
innate human trait. Some people are good at it and others are not.

• Although experimental evidence on debugging is open to many interpretations,
large variances in debugging ability have been reported for programmers with the
same education and experience.

3. Debugging Strategies

• Objective of debugging is to find and correct the cause of a software error or
defect.

• Bugs are found by a combination of systematic evaluation, intuition, and luck.

• Debugging methods and tools are not a substitute for careful evaluation based on
a complete design model and clear source code

• There are three main debugging strategies

• BruteForce

– Most commonly used and least efficient method for isolating the causeof
a software error

– Used when all else fails

– Involves the use of memory dumps, run-time traces, and output
statements

– Leadsmanytimestowastedeffortandtime

• Backtracking

– Can be used successfully in small programs

– The method starts at the location where a symptom has been uncovered

– The source code is then traced backward (manually) until the locationof
the cause is found

– In large programs, the number of potential backward paths may become
unmanageably large

• This is the first step toward software quality assurance
• By correcting the process as well as the product, the bug will be

removed from the current program and may be eliminated from all
future programs

4. Correcting the Error
• Once a bug has been found, it must be corrected.
• But the correction of a bug can introduce other errors and therefore do more

harmthan good.
• Van Vleck suggests three simple questions that you should ask before making the

correction that removes the cause of a bug.
Three Questions to ask Before Correcting the Error

– Is the cause of the bug reproduced in another part of the
program?

• Similar errors may be occurring in other parts of the program

– What next bug might be introduced by the fix that I’ŵ about to make?

• The source code (and even the design) should be studied to assess the
coupling of logic and data structures related to the fix

– What could we have done to prevent this bug in the first place?

Refactoring:
• Refactoring is usually motivated by noticing a codesmell.
• For example the method at hand may be very long, or it may be a near

duplicate of another nearby method.
• Once recognized, such problems can be addressed by refactoring the source

code, or transforming it into a new form that behaves the same as before but
that no longer"smells".

There are two general categories of benefits to the activity ofrefactoring.
Maintainability. It is easier to fix bugs because the source code is easy to read and
the intent of its author is easy to grasp. This might be achieved by reducing large
monolithic routines into a set of individually concise, well-named, single-purpose
methods. It might be achieved by moving a method to a more appropriate class, or
by removing misleading comments.
Extensibility. It is easier to extend the capabilities of the application if it uses
recognizable
design patterns, and it provides some flexibility where none before may have
existed.
• Before applying a refactoring to a section of code, a solid set of automatic unit

tests is needed. The tests are used to demonstrate that the behavior of the
module is correct before the refactoring.

• The tests can never prove that there are no bugs, but the important point is
that this process can be cost-effective: good unit tests can catch enough errors
to make them worthwhile and to make refactoring safe enough. 1

Software implementation Techniques

• Organising, planning and scheduling software projects

• Objectives

– To introduce software project management and to describe its distinctive
characteristics

– To discuss project planning and the planning process

– To show how graphical schedule representations are used by project
management

– To discuss the notion of risks and the risk management process

Project Management

UNIT –V

RISK MANAGEMENT AND QUALITY

MANAGEMENT

contents

Estimation: FP based, LOC based, make/buy decision COCOMO II: Planning,

project plan, planning process, RFP risk management, identification,

projection;

RMMM: Scheduling and tracking, relationship between people and effort, task

set and network, scheduling

EVA: Process and project metrics.

Software Project

• Concerned with activities involved in ensuring that software is delivered

– on time

– within the budget

– in accordance with the requirements

• Project management is needed because software development is always
subject to budget and schedule constraints

– Set by the development organisation or the customer

Software Management

• The product is intangible

• The product is uniquely flexible

• The product is uniquely complex

• Software engineering is not recognized as an engineering discipline with the
same status as mechanical, electrical engineering, etc.

• The software development process is not standardised

• Many software projects are one-off projects

Management Activities

• Proposal writing

• Project planning andscheduling

• Projectcosting

• Project monitoring andreviews

• Personnel selection andevaluation

• Report writing andpresentations

• May not be possible to appoint the ideal people to work on a
project

– Project budget may not allow for the use of highly-paid staff

– Staff with the appropriate experience may not be available

An organization may wish to develop on a software project

Employee skills

• Here’s Bob. He’s a sophomore. He’ll be a member of your HazMat Rover
team. He doesn’t know much yet, but he can brew a mean cup of coffee
and has a great personality.

• Managers have to work within these constraints

Project Staffing

• Probably the most time-consuming project management activity

• Continuous activity from initial concept through to system delivery

• Plans must be regularly revised as new information become available

–Beware of grumbling developers

• Various different types of plan may be developed to support the main Software
project plan that is concerned with schedule and budget.

Project Planning

Plan Description

Quality plan Describes the quality procedures and

standards that will be used in a project

Validation plan Describes the approach, resources and

schedule used for system validation.

Configuration management

plan

Describes the configuration management

procedures and structures to be used.

Maintenance plan Predicts the maintenance requirements of

the system, maintenance costs and effort

required.

Staff development plan Describeshow the skill and

experience of the project team

members will be developed.

Types of Project Plan

• Software cost and effort estimation will never be an exact science. Too many
variables—human, technical, environmental, political—can affect the ultimate
cost of software and effort applied to develop it.

• Toachieve reliable cost and effort estimates, a number of optionsarise:
1. Delay estimation until late in the project (obviously, we can achieve

100 percent accurate estimates after the project iscomplete!).
2. Base estimates on similar projects that have already been completed.
3. Use relatively simple decomposition techniques to generateproject

cost and effort estimates.
4. Use one or more empirical models for software cost and effortestimation.

• Unfortunately, the first option, however attractive, is not practical. Cost estimates
must be provided up-front. However, recognize that the longer you wait, the
more you know, and the more you know, the less likely you are to make serious
errors in your estimates.

• The second option can work reasonably well, if the current project is quite similar
to past efforts and other project influences (e.g., the customer, business
conditions, the software engineering environment, deadlines) are roughly
equivalent. Unfortunately, past experience has not always been a good indicator
of future results.

Estimation

Function point Based Estimation

Function Point based Estimation :
• A Function Point (FP) is a unit of measurement to express the amount of business

functionality, an information system (as a product) provides to a user. FPs measure
software size. They are widely accepted as an industry standard for functional
sizing. Function point analysis is a method of quantifying the size and complexity of
a software

• system in terms of the functions that the system delivers to the user
• It is Independent of the computer language, development methodology,

technology or capability of the project team used to develop the application

• Function point analysis is designed to measure business applications (not scientific

• applications)
• Scientific applications generally deal with complex algorithms that the function

point method is not designed to handle

• Function points are independent of the language, tools, or methodologies used
for implementation (ex. Do not take into consideration programming languages,
DBMS, or processing hardware)Function points can be estimated early in analysis
and design

LOC Base Estimation

LOC based estimation
• Source lines of code (SLOC), also known as lines of code (LOC), is a software

metric used to measure the size of a computer program by counting the number
of lines in the text of the program's source code.

• SLOC is typically used to predict the amount of effort that will be required to
develop a program, as well as to estimate programming productivity or
maintainability once the software is produced.

• Lines used for commenting the code and header file areignored.
Two major types of LOC:
1. Physical LOC

• Physical LOC is the count of lines in the text of the program's source code
including comment lines.

• Blank lines are also included unless the lines of code in a section consists of
more than 25% blank lines.

2. Logical LOC
• Logical LOC attempts to measure the number of executable statements, but

their specific definitions are tied to specific computer languages.
• Ex: Logical LOC measure for C-like programming languages is the number of

statement-terminating semicolons(;)

The problems of lines of code (LOC)
– Different languages lead to different lengths ofcode
– It is not clear how to count lines of code
– Areport, screen, or GUI generator can generate thousands of lines of code in

minutes
– Depending on the application, the complexity of code is different.

• In many software application areas, it is often more cost effective to acquire
rather than develop computer software.

• Software engineering managers are faced with a make/ buy decision that
canbe further complicated by a number of acquisitionoptions.

(1) Software may be purchased (or licensed) off-the-shelf

(2) full-experience͟ or partial experience͟ software components may be
acquired and then modified and integrated to meet specific needs.

(3) Software may be custom built by an outside contractor to meet the
purchaser’s specifications.

• In the final analysis the make/buy decision is made based on thefollowing
conditions:

(1) Will the delivery date of the software product be sooner than that for
internally developed software?

(2) Will the cost of acquisition plus the cost of customization be less than
the cost of developing the software internally?

(3) Will the cost of outside support (e.g., a maintenance contract) be less than
the cost of internal support?

Make / Buy Decision

Creating a Decision Tree:
• The steps just described can be augmented using statistical techniques such
as decision treeanalysis.
• For example, considered the figure below it depicts a decision tree for a software

based system X. In this case, the software engineering organization can

(1) build system X from scratch

(2) reuse existing partial-experience components to construct the system

(3) buy an available software product and modify it to meet local needs, or
(4) contract the software development to an outsidevendor.

If the system is to be built from scratch, there is a 70 percent probability that
the job will be difficult.
The expected value for cost, computed along any branch of the decision tree,is:
where i is the decision tree path. For the build path.

• It is important to note, however, that many criteria —not just cost—must
be considered during the decision-making process. Availability, experience of
the developer/ vendor/contractor, conformance to requirements, local politics
and the͞, likelihood of change are but a few of the criteria that may affect the
decision.

Outsourcing
• Sooner or later, every company that develops computer software asks a

fundamental question: I͞s there a way that we can get the software and systems we
need at a lower price?

• The answer to this question is not a simple one, and the emotional discussions
that occur in response to the question always lead to a single word: outsourcing.
Regardless of the breadth of focus, the outsourcing decision is often a financial
one.

• Outsourcing is extremely simple. Software engineering activities are contracted to
a third party who does the work at lower cost and, hopefully, higherquality.

• The decision to outsource can be either strategic ortactical.
• At the strategic level, business managers consider whether a significant portion

of all software work can be contracted to others.
• At the tactical level, a project manager determines whether part or all of a

project can be best accomplished by subcontracting the software work.
• On the positive side, cost savings can usually be achieved by reducing the

number of software people and the facilities (e.g., computers, infrastructure)
that support them.

• On the negative side, a company loses some control over the software that it
needs.

• The COCOMO II application composition model uses object points :
• The object point is an indirect software measure that is computed using counts
of the number of

(1) Screens (at the user interface),

(2) Reports
(3) Components likely to be required to build the application.

• Each object instance (e.g., a screen or report) is classified into one of three
complexity levels (i.e., simple, medium, or difficult). Once complexity is determined,
the number of screens, reports, and components are weighted according to the
table given below

• When component-based development or general software reuse is to be
applied, the percent of reuse (%reuse) is estimated and the object point count
is adjusted:

where NOP is defined as new object points.

• To derive an estimate of effort based on the computed NOP value, a

͞productivity rate͟must bederived.

• A Hazardis

Any real or potential condition that can cause injury, illness, or death to personnel;
damage to or loss of a system, equipment or property; or damage to the
environment. Simpler A threat of harm. A hazard can lead to one or several
consequences.

• Risk is

The expectation of a loss or damage (consequence) The combined severity and
probability of a loss The long term rate of loss. A potential problem (leading to a

loss) that may - or may not occur in the future.
• Risk Management is A set of practices and support tools to identify, analyze,
and treat risks explicitly.
• Treating a risk means understanding it better, avoiding or reducing it (risk
mitigation), or preparing for the risk to materialize.
• Risk management tries to reduce the probability of a risk to occur and the
impact (loss) caused by risks.

Risk Management

• Reactive versus Proactive Risk Strategies

• Software risks

Reactive versus Proactive Risk Strategies

• The majority of software teams rely solely on reactive risk strategies. At best, a
reactive strategy monitors the project for likely risks. Resources are set aside to
deal with them, should they become actual problems.

• The software team does nothing about risks until something goes wrong. Then,
the team flies into action in an attempt to correct the problem rapidly. This is
often called a fire- fighting mode.

• A considerably more intelligent strategy for risk management is to be proactive.

• A proactive strategy begins long before technical work is initiated. Potential risks
are identified, their probability and impact are assessed, and they are ranked by
importance. Then,

• The software team establishes a plan for managing risk. The primary objective is to
avoid risk, but because not all risks can be avoided, the team works to develop a
contingency plan that will enable it to respond in a controlled and effective
manner.

Risk always involves two characteristics:

• Risk always involves two characteristics: uncertainty the risk may or may not
happen; that is, there are no 100 percent probable risks and loss if the risk
becomes a reality, unwanted consequences or losses will occur.

• When risks are analyzed, it is important to quantify the level of uncertainty and the

degree of loss associated with each risk.

• Different categories of risks are follows:

1. Project risks

 Threaten the project plan. That is, if project risks become real, it is likely
that the project schedule will slip and that costs will increase.

 Project risks identify potential budgetary, schedule, personnel (staffing and
organization), resource, stakeholder, and requirements problems and their
impact on a software project.

SoftwareRisks

2. Technical risks
 Threaten the quality and timeliness of the software to be produced.
 If a technical risk becomes a reality, implementation may become difficult or

impossible. Technical risks identify potential design, implementation, interface,
verification, and maintenance problems.

 In addition, specification ambiguity, technical uncertainty, technical
obsolescence, and ͞leading-edge͟technology are also risk factors. Technical risks
occur because the problem is harder to solve than you thought it wouldbe.

3. Business risks
 Business risks threaten the viability of the software to be built and often

jeopardize the project or the product.
 Candidates for the top five business risks are

(1) Building an excellent product or system that no one really wants (market
risk)

(2) Building a product that no longer fits into the overall business strategy for
the company (strategic risk)

(3) Building a product that the sales force doesn’t understand how to sell (sales
risk)

(4) Losing the support of senior management due to a change in focus or a
change in people (management risk)

(5) Losing budgetary or personnel commitment (budget risks).

Another general categorization of risks has been proposed by Charette.

1. Known risks are those that can be uncovered after careful evaluation of the project
plan, the business and technical environment in which the project is being
developed, and other reliable information sources (e.g., unrealistic delivery date,
lack of documented requirements or software scope, poor development
environment).

2. Predictable risks are extrapolated from past project experience (e.g., staff turnover,
poor communication with the customer, dilution of staff effort as ongoing
maintenance requests are serviced).

3. Unpredictable risks are the joker in the deck. They can and do occur, but they are
extremely difficult to identify in advance.

Software Risk

• Risk projection, also called risk estimation, attempts to rate each risk in two
ways.

(1) The likelihood or probability that the risk is realand

(2) The consequences of the problems associated with the risk, should it
occur

Managers and technical staff to perform four risk projection steps:

1. Establish a scale that reflects the perceived likelihood of a risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Assess the overall accuracy of the risk projection so that there will be no
misunderstandings.

The intent of these steps is to consider risks in a manner that leads to
prioritization. No software team has the resources to address every possible risk
with the same degree of rigor.

By prioritizing risks, you can allocate resources where they will have the most
impact.

Risk Projection

1. Developing a Risk Table
• A risk table provides you with a simple technique for risk projection. Asample

risk table is illustrated in Figure.

• List all the risks (no matter how remote) in the first column of the table.

• Each risk is categorized in the second column (e.g., PS implies a project size
risk, BU implies a business risk).

• The probability of occurrence of each risk is entered in the next column of the
table. The probability value for each risk can be estimated by team members
individually.

• Next, the impact of each risk is assessed. Each risk component is assessed,

and an impact category is determined.

• The categories for each of the four risk components—performance, support,
cost, and schedule—are averaged to determine an overall impact value.

Once the first four columns of the risk table have been completed, the table is
sorted by probability and by impact.

• High-probability, high-impact risks percolate to the top of the table, and low-
probability risks drop to the bottom.

SampleRisk table priorto sorting

Basic Concept of Project Scheduling
 An unrealistic deadline established by someone outside the software

development group and forced on managers and practitioner's within the
group.

 Changing customer requirements that are not reflected in schedule
changes.

 An honest underestimate of the amount of effort and/or the
number of resources that will be required to do the job.

 Predictable and/or unpredictable risks that were not considered when the
project commenced.

 Technical difficulties that could not have been foreseen in advance.
 Why should we do when the management demands that we make a dead
line I impossible?
 Perform a detailed estimate using historical data from past projects.
 Determine the estimated effort and duration for theproject.

 Using an incremental process model, develop a software engineering
strategy that will deliver critical functionality by the imposed deadline, but
delay other functionality until later. Document the plan.

 Meet with the customer and (using the detailed estimate), explain why the
imposed deadline is unrealistic.

What is Project Scheduling?

• Project Scheduling

• Basic Principles

• The Relationship Between People and Effort

• Effort Distribution

• Software project scheduling is an action that distributes estimated efforts across
the planned project duration by allocating the effort to specific software
engineering tasks.

• During early stages of project planning, a macroscopic schedule is developed.

• As the project gets under way, each entry on the macroscopic schedule is refined
into a detailed schedule.

 Basic Principles of Project Scheduling.

1. Compartmentalization: The project must be compartmentalized into a
number of manageable activities and tasks. To accomplish
compartmentalization, both the product and the process are refined.

2. Interdependency: The interdependency of each compartmentalized activity
or task must be determined. Some tasks must occur in sequence, while others
can occur in parallel. Other activities can occur independently.

3. Time allocation: Each task to be scheduled must be allocated some number
of work units (e.g., persoŶ‐days of effort). In addition, each task must be
assigned a start date and a completion date. whether work will be conducted
on a full-time or part-time basis.

4. Effort validation: Every project has a defined number of people on the
software team. The project manager must ensure that no more than the
allocated number of people have been scheduled at any given time.

5. Defined responsibilities. Every task that is scheduled should be assigned to a
specific team member.

6. Defined outcomes: Every task that is scheduled should have a defined
outcome. For software projects, the outcome is normally a work product (e.g.,
the design of a component) or a part of a work product. Work products are
often combined in deliverables.

7. Defined milestones: Every task or group of tasks should be associated with a
project milestone. A milestone is accomplished when one or more work
products has been reviewed for quality and has been approved.

Each of these principles is applied as the project scheduleevolves.

• The Relationship Between People and effort

• In a small software development project a single person can analyze requirements,
perform design, generate code, and conduct tests. As the size of a project
increases, more people must become involved.
• There is a common myth that is still believed by many managers who are

responsible for software development projects: I͞f we fall behind schedule, wecan
always add more programmers and catch up later in the project.

• Unfortunately, adding people late in a project often has a disruptive effect on the
project, causing schedules to slip even further. The people who are added must
learn the system, and the people who teach them are the same people who were
doing the work.

•While teaching, no work is done, and the project falls further behind. In
addition to the time it takes to learn the system, more people.
• Although communication is absolutely essential to successful software

development, every new communication path requires additional effort and
therefore additional time.

The Relationship Between People and Effort

Effort Distribution

• A recommended distribution of effort across the software process is often
referred to as the 40–20–40 rule.

• Forty percent of all effort is allocated to frontend analysis and design. A similar
percentage is applied to back-end testing. You can correctly infer that coding (20
percent of effort) is deemphasized.

• Work expended on project planning rarely accounts for more than 2 to 3 percent
of effort, unless the plan commits an organization to large expenditures with high
risk. Customer communication and requirements analysis may comprise 10 to 25
percent of project effort.

• Effort expended on analysis or prototyping should increase in direct proportion
with project size and complexity.

• A range of 20 to 25 percentof effort is normally applied to software design.
Time expended for design review and subsequent iteration must also be
considered.

• Because of the effort applied to software design, code should follow with
relatively little difficulty.

• A range of 15 to 20 percent of overall effort can be achieved. Testing and
subsequent debugging can account for 30 to 40 percent of software development
effort.

• The criticality of the software often dictates the amount of testing that is
required. If software is human rated (i.e., software failure can result in loss of
life), even higher percentages are typical.

• A task set is a collection of software engineering work tasks, milestones, work
products, and quality assurance filters that must be accomplished to complete
a particular project.

• The task set must provide enough discipline to achieve high software quality.
But, at the same time, it must not burden the project team with unnecessary
work.

• Most software organizations encounter the followingprojects:
1. Concept development projects that are initiated to explore some new

business concept or application of some newtechnology.
2. New application development projects that are undertaken as a

consequence of a specific customerrequest.

3. Application enhancement projects that occur when existing software
undergoes major modifications to function, performance, or interfaces that
are observable by the enduser.

4. Application maintenance projects that correct, adapt, or extend existing
software in ways that may not be immediately obvious to the end user.

5. Reengineering projects that are undertaken with the intent of rebuilding
an existing (legacy) system in whole or in part.

Defining a task for the Software

1. A Task SetExample

• Concept development projects are initiated when the potential for some new
technology must be explored. There is no certainty that the technology will be
applicable, but a customer (e.g., marketing) believes that potential benefit
exists.

2. Refinement of Software Engineering Actions

• The software engineering actions are used to define a macroscopic
schedule for a project.

• The macroscopic schedule must be refined to create a detailed project
schedule.

• Refinement begins by taking each action and decomposing it into a set of
tasks (with related work products and milestones).

• A task network, also called an activity network, is a graphic representation of
the task flow for a project.

• It is sometimes used as the mechanism through which task sequence
and dependencies are input to an automated project scheduling tool.

• In its simplest form (used when creating a macroscopic schedule), the task
network depicts major software engineering actions. Figure below shows a
schematic task network for a concept development project.

• It is important to note that the task network shown in Figure 27.2 is
macroscopic. In a detailed task network (a precursor to a detailed schedule),
each action shown in the figure would be expanded.

Defining a task Network

Scheduling of a software project does not differ greatly from scheduling of any
multitask engineering effort. Therefore, generalized project scheduling tools and
techniques can be applied with little modification for software projects.

Program evaluation and review technique and the critical path method (CPM) are
two project scheduling methods that can be applied to software development.

1.Time-Line Charts:

• When creating a software project schedule, begin with a set of tasks.

• If automated tools are used, the work breakdown is input as a task network or
task outline. Effort, duration, and start date are then input for each task. In
addition, tasks may be assigned to specific individuals.

• As a consequence of this input, a time-line chart, also called a Gantt chart, is
generated.

• A time-line chart can be developed for the entire project. Alternatively,
separate charts can be developed for each project function or for each
individual working on the project.

Scheduling

• All project tasks (for concept scoping) are listed in the left hand column. The
horizontal bars indicate the duration of each task. When multiple bars occur at
the same time on the calendar, task concurrency is implied. The diamonds
indicate milestones.

• Once the information necessary for the generation of a time-line chart has been
input, the majority of software project scheduling tools produce project tables.
A tabular listing of all project tasks, their planned and actual start and end dates,
and a variety of related information. Used in conjunction with the time-line
chart, project tables enable you to track progress.

2. Tracking the Schedule

• If it has been properly developed, the project schedule becomes a road map that
defines the tasks and milestones to be tracked and controlled as the project
proceeds.

• Tracking can be accomplished in a number of different ways:

• Conducting periodic project status meetings in which each team member
reports progress and problems.

• Evaluating the results of all reviews conducted throughout the software
engineering process.

• Determining whether formal project milestones have been accomplished
by the scheduled date.

• Comparing the actual start date to the planned start date for each project task
listed in the resource table.

• Meeting informally with practitioners to obtain their practitioners assessment of
progress to date and problems on the horizon.
• Using earned value analysis to assess progress quantitatively. In reality, al of these
tracking techniques areused byexperienced project managers.

3. Tracking Progress for an OO Project
Technical milestone: OO analysis complete

• All hierarchy classes defined and reviewed

• Class attributes and operations are defined andreviewed

• Class relationships defined and reviewed o Behavioral model defined and

reviewed and Reusable classed identified

Technical milestone: OO design complete

• Subsystems defined and reviewed

• Classes allocated to subsystems and reviewed

• Task allocation has been established andreviewed

• Responsibilities and collaborations have been identified Attributes and

operations have been designed and reviewed o Communication model

has been created and reviewed

• Technical milestone: OO programming complete

 Each new design model class has been implemented

 Classes extracted from the reuse library have been implemented o

Prototype or increment has been built

• Technical milestone: OO testing

 The correctness and completeness of the OOA and OOD models
 has been reviewed

 Class-responsibility-collaboration network has been Developed and reviewed

 Test cases are designed and class-level tests have been conducted for
 each class

 Test cases are designed, cluster testing is completed, and classes have
 been integrated

 System level tests are complete

Scheduling for WebApp Projects

• WebApp project scheduling distributes estimated effort across the planned time
line (duration) for building each WebAppincrement.

• This is accomplished by allocating the effort to specific tasks.

• The overall WebApp schedule evolves over time.

• During the first iteration, a macroscopic schedule is developed.

• This type of schedule identifies all WebApp increments and projects the dates
on which each will be deployed.

• As the development of an increment gets under way, the entry for the
increment on the macroscopic schedule is refined into a detailed schedule.

• Here, specific development tasks (required to accomplish an activity) are
identified and scheduled.

• It is reasonable to ask whether there is a quantitative technique for assessing
progress as the software team progresses through the work tasks allocated to the
project schedule.

• A Technique for performing quantitative analysis of progress does exist. It
is called earned value analysis (EVA).

• To determine the earned value, the following steps are performed:

1. The budgeted cost of work scheduled (BCWS) is determined for each work
task represented in the schedule. During estimation, the work (in person-
hours or person-days) of each software engineering task is planned. Hence,
BCWSi is the effort planned for work task i. To determine progress at a given
point along the project schedule, the value of BCWS is the sum of the BCWSi
values for all work tasks that should have been completed by that point in
time on the project schedule.

2. The BCWS values for all work tasks are summed to derive the budget at

Earned Value Analysis

completion (BAC). Hence, BAC (BCWSk) for all tasks k

3. Next, the value for budgeted cost of work performed (BCWP) is computed.
The value for BCWP is the sum of the BCWS values for all work tasks that
have actually been completed by a point in time on the project schedule.

͞Given values for BCWS, BAC, and BCWP, important progress indicators can be
computed:
Schedule performance index, SPI = BCWP/ BCWS
Schedule variance, SV = BCWP
– BCWS
SPI is an indication of the efficiency with which the project is utilizing scheduled
resources. An SPI value close to 1.0 indicates efficient execution of the project
schedule. SV is simply an absolute indication of variance from the planned
schedule.
Percent scheduled for completion = BCWS / BAC
provides an indication of the percentage of work that should have been
completed by time t.
Percent complete = BCWP/ BAC
provides a quantitative indication of the percent of completeness of the project at
a given point in time t. It is also possible to compute the actual cost of work
performed (ACWP). The value for ACWP is the sum of the effort actual y
expended on work tasks that have been completed by a point in time on the
project schedule. It is then possible to compute.

Cost performance index, CPI = BCWP /ACWP Cost variance, CV

= BCWP -ACWP

A CPI value close to 1.0 provides a strong indication that the project is within

its defined budget. CV is an absolute indication of cost savings (against
planned costs) or shortfall at a particular stage of a project.

What are Metrics?

•Software process and project metrics are quantitative measures

•They are a management tool

• They offer insight into the effectiveness of the software Process and the projects

that are conducted using the process as aframework

•Basic quality and productivity data are collected

•These data are analyzed, compared against past averages, and assessed

• The goal is to determine whether quality and productivity improvements

have occurred

•The data can also be used to pinpoint problem areas

• Remedies can then be developed and the softwareprocess can be

Improved

Process and Project Metrics

Reasons to Measure

Tocharacterize in order to

Gain an understanding of processes,products, resources, and environments
Establish baselines for comparisons withfuture

assessments
Toevaluate in orderto

Determine statuswith respect to plans
Topredict in order to

Gain understanding of relationships amongprocesses and products
Build models of these relationships
Toimprove in order to

Identify roadblocks, root causes, inefficiencies, and other opportunities
for
improving product quality and process performance

• Process metrics are collected overlong periods of time.

• Their intent is to provide a set of process indicators that lead to long-term
software processimprovement.

• Project metrics enable a software project manager to

• assess the status of an ongoing project,
• track potential risks,
• uncover problem areas before they go
• adjust work flow ortasks,

• evaluate the project teaŵ’s ability to control quality of software work
products

Metrics In The Process and Project Domains

 Metrics In The Process and Project Domain

Determinant software quality and organizational effectiveness

s

• Measure the effectivenessof a process should be a set of metrics based on
outcomes of the process such as

• Errors uncovered before release of thesoftware

• Defects delivered to and reported by the end users

• Work products delivered

• Human effortexpended

• Calendar timeexpended

• Conformance to theschedule

• Time and effort to complete each generic activity.

• Etiquette(good manners) of Process Metrics:
• Use common sense and organizationalsensitivity when interpreting metrics

data
• Provide regular feedback to the individuals and teams who collect measures

andmetrics

• DoŶ’t use metrics to evaluate individuals

Metrics In TheProcessand Project

Project Metrics:-
• Many of the same metrics are used in both the process and project domain

Project metrics are used for making tactical decisions
• They are used to adapt project workflow and technical activities .
• The first application of project metrics occurs during estimation

• Metrics from past projects are used as a basis for estimating time and effort.
• As a project proceeds, the amount of time and effort expended are

compared to original estimates.
• As technical work commences, other project metrics become important
• Production rates are measured (represented in terms of models created,

review hours, function points, and delivered source lines of code)
• Error uncovered during each generic framework activity (i.e, communication,

planning, modeling, construction, deployment) are measured

Software Measurement

Reconciling LOC and FP Metrics:-

Relationship between LOC and FP dependsupon
The programming language that is used to implement thesoftware. The
quality of thedesign
FP and LOC have been found to be relatively accurate predictors of
software development effort and cost

However, a historical baseline of informationmust first beestablished.
LOC and FP can be used to estimate object-orientedsoftwareprojects
However, they do not provide enough granularity for the schedule and
effort adjustments required in the iterations of an evolutionary or
incremental process The table on the next slide provides a rough estimate
of the average LOC to one FP in various programming languages.

Software Measurement

LOC per function point

Language Average Median Low High

Ada 154 -- 104 205

Assembler 337 315 91 694

C 162 109 33 704

C++ 66 53 29 178

COBOL 77 77 14 400

Java 55 53 9 214

PL/1 78 67 22 263

Visual Basic 47 42 16 158

Object-oriented Metrics:-

Following set of metrics for OOprojects:

Number of scenario scripts:- A scenario script isa detailed sequence of steps
that describe the interaction between the user and the application.
Each script is organized into triplets of theform
{initiator, action, participant}
where initiator is the object that requests some service, action is theresult
of the request, and participant is the server object that satisfies the request.

Number of key classes.:- Key classes are the ͞h ighly independent components
that are defined early in object-oriented analysis

Because key classes are central to the problem domain, the number of such
classes is an indication of the amount of effort required to develop the software.
Also an indication of the potential amount of reuse to be applied during system
development.

key classes

Non-GUI applications have between oneand two times more support classes as

key classes

Numberof support classes:- Support classes are required to implement the
system but are not immediately related to the problemdomain.

• The number of support classes is an indication of the amount of effort required
to develop the software and also an indication of the potential amount of reuse
to be applied during systemdevelopment.

• Number of subsystems

• A subsystem is an aggregation of classes that support a function that is
visible to the end user of a system.

Average number of support classes per key class
Key classes are identified early in a project (e.g., at requirements analysis)
Estimation of the number of support classes can be made from the number
of keyclasses

GUI applications have between two and three times more support classes as

Use-Case–OrientedMetrics:-
Use cases describe user-visible functions and features that are basic
requirements for a system.
The number of use cases is directly proportional to the size of the application in
LOC and to the number of test cases that will have to be designed to fully
exercise the application.

WebApp Project Metrics:-

The objective of all WebApp projects is to deliver a combination of content and

functionality to the end user.

The measures that can be collected are:

• Number of static Webpages.
• Number of dynamic Webpages.
• Number of internal page links.:-Internal page linksare pointers that provide a

hyperlink to some other Web page within theWebApp

Number of persistent dataobjects.

Number of external systems interfaced:- WebApps must often interface
with ď͞ aĐkrooŵ͟business applications.

Number of static content objects:-Static content objects encompass static text-
based, graphical, video, animation, and audio information that are
incorporated within the WebApp.
Number of dynamic contentobjects.
Number of executablefunctions

SoftwareMeasurement

Measurements in the physical world can cartelize in two ways. direct
measures andindirect measures.
Direct measures of the software process include cost andeffortapplied.
Direct measures of the product include lines of code (LOC) produced,
execution speed, memory size, and defects reported over some set period of
time.

Indirect measures of the product include functionality, quality, efficiency,
reliability, maintainability.
Project metrics can be consolidated to create process metricsforan
organization.

• Size-Oriented Metrics
Size-oriented metrics are not universallyaccepted as thebest
wayto measure thesoftwareprocess.

Opponents argue that KLOCmeasurements Are

dependent on the programminglanguage

Penalize well-designed but shortprograms

Cannot easily accommodatenonprocedural languages

Requirea level of detail that may be difficult to achieve.

• Function-Oriented Metrics:-

Function-oriented metrics use a measure of the functionalitydelivered

• by the application as anormalizationvalue

Mostwidely used metric of this type is the function point

Computationof the function point is based on characteristics of

the software’s information domain andcomplexity.

The overriding goal of software engineering is to produce a high-quality system,
application, or product within a time frame that satisfies a marketneed.

The quality of a system, application, or product is only as good as the requirements
that describe the problem, the design that models the solution, the code that
leads to an executable program, and the tests that exercise the software to
uncover errors.

Measuring Quality

• There are many measures of software quality,8 correctness, maintainability,
integrity, and usability provide useful indicators for the projectteam

Correctness:

• Correctness is the degree to which the software performs its requiredfunction.
• The most common measure for correctness is defects per KLOC, where a defect

is defined as a verified lack of conformance torequirements.
• Defects are those problems reported by a userof the program after the

program has been released for generaluse.

MetricsForSoftwareQuality

Maintainability:
• Maintainability is the ease with which a program can be corrected if an error is

encountered, adapted if its environment changes, or enhanced if the customer
desires a change inrequirements.

• Mean -time-to-change (MTTC), the time it takes to analyze the change
request, design an appropriate modification, implement the change, test it,
and distribute the change to allusers.

• Integrity:
• Software integrity has become increasingly important in the age of

cyberterrorists and hackers.
• Attackscan be made on all three components of software: programs, data, and

documentation.
• Tomeasure integrity, two attributes mustbedefined:

• threat andsecurity.

Metric for Software Quality

• Usability:
• If a program is not easy to use, it is often doomed to failure, even if the functions

that it performs arevaluable

Establishing aBaseline:-
• By establishing a metrics baseline, benefits can be obtained at thesoftware

process, product, and project levels

• Thesame metrics can serve many masters

• The baselineconsists of data collected from past software development
projects.

Baselinedata must havethe following attributes
Data must be reasonably accurate (guesses should be avoided)
Measures must be consistent (e.g., a line of code must
beinterpretedconsistentlyacross allprojects) Pastapplicationsshould be
similar to the work that is to beestimated.

Metrics Collection, Computation, and Evaluation
• Data collection requires an historical investigation of past projects to

reconstruct required data

Integrating Metrics Within TheSoftwareProcess

Data
Collection

Metrics

Computation

Sofware metrIc baselIne process

Measures

Metrics

Indicators

IntegratingMetrics Within The SoftwareProcess

Metrics
Evaluation

Software
Engineering

Process

Software

Project

Software

Product

Metric for Small Organization

• Mostsoftware organizations have fewer than 20 software engineers.

• It is reasonable to suggest that software organizations of all sizes measure
and then use the resultant metrics to help improve their local software
process and the quality and timeliness of the products they produce.

• A commonsense approach to the implementation of any software
process- related activity is: keep it simple, customize to meet local needs,
and be sure it adds value.

Asmall organizationmight select the followingset of easily collectedmeasures:

• Time (hours or days) elapsed from the time a request is made until evaluation is
complete, tqueue.

• Effort (person-hours) to performtheevaluation,Weval.

• Time (hours or days) elapsed from completion of evaluation to assignmentof
change order to personnel,teval.

Establishing a S/W Metrics

The Software Engineering Institute has developed a comprehensive guidebook
for establishing a ―goal-driven software metricsprogram.

The guidebook suggests the followingsteps:

• Identify businessgoal

• Identify what you wantto know

• Identifysubgoals

• Identify subgoal entitiesandattributes

• Formalize measurementgoals

• Identify quantifiablequestions and indicators related to subgoals

• Identifydata elements needed to be collected to construct the indicators

• Define measures to be used and create operational definitions for them.

•

•

Identify actions needed to implementthemeasures

Prepareaplan to implement the measures

• For example,consider the SafeHome product. Working as a team,
• software engineering and business managers develop a list of

prioritized business goals:

1. Improve our customers’ satisfaction with our products.

2. Make our products easier touse.

3. Reduce the time it takes us to get a new productto market.

4. Make support for our productseasier.

5. Improve our overall profitability.

	COMPUTER SCIENCE AND ENGINEERING
	Prepared by:

	INTRODUCTION, A GENERIC VIEW OF PROCESS AND PROCESS MODELS
	 Introduction to software engineering
	Software products
	–Management Myths
	Software Myths
	Software Myths (1)
	Software Myths (2)
	Carry Out the Plan
	The problems that are sometimes encountered when the waterfall model is applied are:
	Project Calendartime
	Aspect-oriented Software Development
	1. Inception 2. Elaboration 3. Construction 4. Transition
	• Risk Focused
	• Inception Phase
	• Elaboration Phase
	• Elaboration Phase (1)
	• Construction Phase
	• Transition Phase
	• Advantages of UP SoftwareDevelopment
	• Disadvantages of RUP SoftwareDevelopment
	1. Personal Software Process (PSP)
	– TCF=0.65+0.01*DI
	– FP=UFP*TCF
	– E = aKLOC^b
	– E = aKLOC^b*EAF

	Adjusted value of Effort:Adjusted PersonMonths: APM = (Total EAF) * PM
	AFP=FP** 1.25

	• Two major types of LOC:
	2. Logical LOC
	LOC‐based Estimation
	Effort
	– (DSI) /(PM)
	• (PM) / (TDEV)
	 Why it’s Important?
	 What are the steps?
	Basic Concept of Project Scheduling
	 Why should we do when the management demands that we make a dead line I
	 Basic Principles of Project Scheduling.
	UNIT –II
	• Requirements Checking
	• Enduring requirements
	• Volatile Requirements
	High-Level Petri Nets
	From an management point of view, the DDS should

	UNIT-III
	Design Model - Interface Elements

	Call & Return Styl
	Organization and Refinement
	Control.
	• Archetypes in SoftwareArchitecture
	• Transform mapping is a set of design steps that allows a DFD with transform flow characteristics to be mapped into a specific architectural style.
	• Transaction Flow
	Transform Mapping
	Factoring
	• Transaction Mapping
	Map theFlowModel
	Refactoring:
	UNIT –V
	–Beware of grumbling developers
	• Toachieve reliable cost and effort estimates, a number of optionsarise:
	Function Point based Estimation :
	LOC based estimation
	Two major types of LOC:
	2. Logical LOC
	Creating a Decision Tree:
	Outsourcing
	1. Developing a Risk Table
	Basic Concept of Project Scheduling
	 Why should we do when the management demands that we make a dead line I impossible?
	 Basic Principles of Project Scheduling.
	2. Tracking the Schedule
	3. Tracking Progress for an OO Project Technical milestone: OO analysis complete
	Technical milestone: OO design complete
	• Technical milestone: OO programming complete
	• Technical milestone: OO testing
	Scheduling for WebApp Projects
	Reasons to Measure
	• Measure the effectivenessof a process should be a set of metrics based on outcomes of the process such as
	• Etiquette(good manners) of Process Metrics:
	Project Metrics:-
	Reconciling LOC and FP Metrics:-
	LOC per function point
	• Number of subsystems
	Average number of support classes per key class
	Use-Case–OrientedMetrics:-
	WebApp Project Metrics:-
	Number of persistent dataobjects.
	Measuring Quality
	Correctness:
	Maintainability:
	• Integrity:
	Establishing aBaseline:-
	Metrics Collection, Computation, and Evaluation
	Asmall organizationmight select the followingset of easily collectedmeasures:
	The guidebook suggests the followingsteps:

