
COMPUTER SCIENCE AND ENGINEERING

SOFTWARE ENGINEERING (ACS008)SOFTWARE ENGINEERING (ACS008)

V SEMESTER
 Prepared by:
Mr. C Raghavendra
Dr. Y Mohana Roopa
Ms. CH Srividya
Ms. J Hareesha

UNIT –I
Software Process and Project Software Process and Project

Management

contents

Introduction to software engineering
Software process
perspective and specialized process models
Software project management
Estimation: LOC and FP based estimation

COCOMO modelCOCOMO model
Project scheduling: Scheduling, earned value analysis, risk

management

Introduction to Software Engineering

Software products
 Generic products
 Stand-alone systems that are marketed and sold to any customer

who wishes to buy them. management tools; CAD software;
software for specific markets such as appointments systems for
dentists.

Customized productsCustomized products
 Software that is commissioned by a specific customer to meet their

own needs.
 Embedded control systems, air traffic control software, traffic monitoring

systems.

Features of Software?

 Its characteristics that make it different from other things human
being build.

 Features of such logical system:
 Software is developed or engineered, it is not manufactured in

the classical sense which has quality problem.
 Software doesn't "wear out.͟ but it deteriorates (due to change).

Hardware has bathtub curve of failure rate (high failure rate in
the beginning, then drop to steady state, then cumulative effectsthe beginning, then drop to steady state, then cumulative effects
of dust, vibration, abuse occurs).

 Although the industry is moving toward component-based
construction (e.g. standard screws and off-the-shelf integrated
circuits), most software continues to be custom-built. Modern
reusable components encapsulate data and processing into
software parts to be reused by different programs.

E.g. graphical user interface, window, pull-down menus in library
etc.

Software Myths
–Software myths beliefs about software and the process used to
build it
–Management Myths

Myth – We already have a book that’s full of standards
and procedures for building software. Won’t that
provide my people with everything they need to know?

Reality – The book of standards may very well exist but Reality – The book of standards may very well exist but
is it used? Are software practitioners aware of its
existence? Does it reflect modern software engineering
practice? Is it adaptable?

Myth – If we get behind schedule, we can add more
programmers and catch up

Reality – Software development is not a mechanistic
process like manufacturing.

Software Myths
–Software myths beliefs about software and the process used to build it
–Management Myths

Myth – If I decide to outsource the software project to a third
party, I can relax and let that firm build it

Reality – If an organization does not understand how to manage
and control software projects internally, it will invariably struggle and control software projects internally, it will invariably struggle
when it is outsourced.

Software Myths
–Customer Myths

Myth – A general statement of objectives is sufficient to begin
writing programs – we can fill in the details later

Reality – An ambiguous statement of objectives is a recipe for
disaster. Unambiguous requirements are developed only through
effective and continuous communication between customer andeffective and continuous communication between customer and
developer

Myth – Project requirements change, but change can be easily
accommodated because software is flexible

Reality – When requirement changes are requested early, cost
impact is relatively small. With time, cost impact grows rapidly, and
a change can cause additional resources and major design
modifications

Software Myths
–Practitioner Myths

 Myth – Once we write the program and get it to work.
 Reality – The sooner you begin writing code, the longer it will take

you to get done. Between 60 to 80 percent of all effort spent on
software will be spent after it is delivered to the customer for the
first time

 Myth–Until I get the program running, I have no way of assessing
its quality

 Reality – Software reviews are a ͞duality filter͟ that have found to
be more effective than testing for finding certain classes of
software errors

Software Myths
–Practitioner Myths

 Myth – The only deliverable work product for a successful
project

 Reality – A working program is only one part of a software
configuration that includes many elements. Documentation
provides a foundation for successful engineering and guidanceprovides a foundation for successful engineering and guidance
for software support

 Myth – Software engineering will make us create voluminous and
unnecessary documentation and will invariably slow us down

 Reality – Software engineering is not about creating documents,
it si about creating quality. Better quality leads to reduced
rework. Reduced rework results in faster delivery times

 System software: such as compilers, editors, file management utilities
 Application software: stand-alone programs for specific needs.
 Engineering/scientific software: Characterized by ͞number crunching͟such as

automotive stress analysis, molecular biology, orbital dynamics etc
 Embedded software resides within a product or system. (key pad control of

a microwave oven, digital function of dashboard display in a car)
 Product-line software focus on a limited marketplace to address mass

Software Applications

 Product-line software focus on a limited marketplace to address mass
consumer market. (word processing, graphics, database management)

 WebApps (Web applications) network centric software. As web 2.0
emerges, more sophisticated computing environments is supported
integrated with remote database and business applications.

 AI software uses non-numerical algorithm to solve complex problem.
Robotics, expert system, pattern recognition game playing

Weneed to be able to produce reliable and trustworthy
systems economically and quickly.
It is usually cheaper, in the long run, to use software engineering methods
and techniques for software systems rather than just write the programs as
if it was a personal programming project. For most types of system, the
majority of costs are the costs of changing the software after it has gone into
use.

Importance of SE

13

use.

Software Layered Technology

 Any engineering approach must rest on organizational commitment to quality which fostersa
continuous process improvement culture.

Process layer as the foundation defines a framework with activities for effective delivery of software
engineering technology. Establish the context where products (model, data, report, and forms) are
produced, milestone are established, quality is ensured and change ismanaged.

Method provides technical how-to’s for building software. It encompasses many tasks including
communication, requirement analysis, design modeling, program construction, testing14and
support.

Tools provide automated or semi-automated support for the process andmethods.

• A process is a collection of activities, actions and tasks that are
performed when some work product is to be created. It is not a rigid
prescription for how to build computer software. Rather, it is an adaptable
approach that enables the people doing the work to pick and choose the
appropriate set of work actions and tasks.

manner and with
its creation and

• Purpose of process is to deliver software in a timely
sufficient quality to satisfy those who have sponsored

Software Process

its creation andsufficient quality to satisfy those who have sponsored
those who will use it.

 Communication: communicate with customer to understand objectives and gather
requirements.

 Planning: creates a map͟ defines the work by describing the tasks, risks and
resources, work products and work schedule.

 Modeling: Create a ͞sketch͟, what it looks like architecturally, how the constituent
parts fit together and other characteristics.
 Construction: code generation and the testing.
 Deployment: Delivered to the customer who evaluates the products and Deployment: Delivered to the customer who evaluates the products and

provides feedback based on the evaluation.
 These five framework activities can be used to all software development

regardless of the application domain, size of the project, complexity of the efforts
etc, though the details will be different in each case.

 For many software projects, these framework activities are applied iteratively as
a project progresses. Each iteration produces a software increment that provides
a subset of overall software features and functionality.

The process should be agile and adaptable to problems. Process adopted for one
project might be significantly different than a process adopted from another project.
(to the problem, the project, the team, organizational culture). Among the
differences are:

 The overall flow of activities, actions, and tasks and the interdependencies
among Them

 The degree to which actions and tasks are defined within each framework activity
 The degree to which work products are identified and required

Adapting a Process Model

 The manner which quality assurance activities are applied
 The manner in which project tracking and control activities are applied
 The overall degree of detail and rigor with which the process is described
 The degree to which the customer and other stakeholders are involved with

the project
 The level of autonomy given to the software team
 The degree to which team organization and roles are prescribed

The process should be agile and adaptable to problems. Process adopted for one
project might be significantly different than a process adopted from another
project. (to the problem, the project, the team, organizational culture). Among the
differences are:

 The overall flow of activities, actions, and tasks and the interdependencies
among them

 The degree to which actions and tasks are defined within each framework
activity

 The degree to which work products are identified and required
 The manner which quality assurance activities are applied
 The manner in which project tracking and control activities are applied
 The overall degree of detail and rigor with which the process is described
 The degree to which the customer and other stakeholders are involved

with the project
 The level of autonomy given to the software team
 The degree to which team organization and roles are prescribed

• Have you seen similar problems before? Are there patterns that are recognizable
in a potential solution? Is there existing software that implements the data,
functions, and features that are required?

• Has a similar problem been solved? If so, are elements of the solution reusable?
• Can subproblems be defined? If so, are solutions readily apparent for the

subproblems?

Carry Out the Plan

Plan the Solution

• Does the solutions conform to the plan? Is source code traceable to the design
model?

• Is each component part of the solution provably correct? Has the design and
code been reviewed, or better, have correctness proofs been applied to
algorithm?

A Generic ProcessModel

A generic process framework for software engineering
defines five framework activities communication, planning,
modeling, construction, and deployment.
In addition, a set of umbrella activities- project tracking and

control, risk
management, quality assurance, configuration management,

technical reviews, and others are applied throughout the

A Generic Process Model

technical reviews, and others are applied throughout the
process.
Next question is: how the framework activities and the actions

and tasks that occur within each activity are organized with
respect to sequence and time? See the process flow for answer.

7

Process Flow

Linear process flow executes each of the five activities in
sequence.
An iterative process flow repeats one or more of the

activities before proceeding to the next.
An evolutionary process flow executes the activities in a circular

manner.

Cont.

manner.
Each circuit leads to a more complete version of the software.
A parallel process flow executes one or more activities in parallel
with other activities modeling for one aspect of the software in
parallel with construction of another aspect of the software.

5

Before you can proceed with the process model, a key
question: what actions are appropriate for a framework
A task set defines the actual work to be done to accomplish

the objectives of a software engineering action.
 A list of the task to be accomplished
 A list of the work products to be produced
 A list of the quality assurance filters to be applied

Identifying a Task Set

6

 A list of the quality assurance filters to be applied

For example, a small software project requested by one person with
simple requirements, the communication activity might encompass
little more than a phone all with the stakeholder. Therefore, the only
necessary action is phone conversation, the work tasks of this action
are:

Make contact with stakeholder via telephone.
Discuss requirements and take notes.

Identifying a Task Set

7

Discuss requirements and take notes.
Organize notes into a brief written statement of requirements.
E-mail to stakeholder for review and approval.

Examples of a election process

The task sets for Requirements gathering action for a simple project may
include:

1. Make a list of stakeholders for the project.
2. Invite all stakeholdersto an informal meeting.
3. Ask each stakeholder to make a list offeatures
4. Discuss requirements and build a finallist.
5. Prioritizerequirements.5. Prioritizerequirements.
6. Note areas ofuncertainty.

 Make a list of stakeholders for the project.
 Interview each stakeholders separately to determine overall wants and

needs.
 Build a preliminary list of functions and features based on stakeholder

input.
 Schedule a series of facilitated application specification meetings.
 Conduct meetings.
 Produce informal user scenarios as part of each meeting.

Ex. For Task Set Elicitation

 Produce informal user scenarios as part of each meeting.
 Refine user scenarios based on stakeholder feedback.
 Build a revised list of stakeholder requirements.
 Use quality function deployment techniques to prioritize requirements.
 Package requirements so that they can be delivered incrementally.
 Note constraints and restrictions that will be placed on the system.
 Discuss methods for validating the system.
Both Do The Same Work With Different Depth And Formality. Choose The Task
sets That Achieve The Goal And Still Maintain qualityAndAgility.

Process patterns

 A process pattern
 describes a process-related problem that is encountered

during software engineering work,
 identifies the environment in which the problem has been

encountered, and
 suggests one or more proven solutions to the problem.

 Stated in more general terms, a process pattern provides you with
a template [Amb98]—a consistent method for describing problema template [Amb98]—a consistent method for describing problem
solutions within the context of the software process.
(defined at different levels of abstraction)

 Problems and solutions associated with a complete process model
(e.g. prototyping).

 Problems and solutions associated with a framework activity (e.g.
planning) or an action with a framework activity (e.g. project
estimating).

Process patterns

• STAGE PATTERNS—defines a problem associated with a framework
activity for Requirements Gathering and others.

• TASK PATTERNS—defines a problem associated with a software
engineering action or work task and relevant to successful software
engineering practiceengineering practice

• Phase patterns—define the sequence of framework activities that occur
with the process, even when the overall flow of activities is iterative in
nature. Example includes Spiral Model or Prototyping.

An Example of ProcessPattern

 Describes an approach that may be applicable when stakeholders have a general idea of
what must be done but are unsure of specific softwarerequirements.

 Pattern name. Requirement Unclear
Intent. This pattern describes an approach for building a model that can be assessed

iteratively by stakeholders in an effort to identify or solidify software requirements.
 Initial context. Conditions must be met (1) stakeholders have been identified; (2) a mode

of communication between stakeholders and the software team has been established; (3)
the overriding software problem to be solved has been identified by stakeholders ; (4) an
initial understanding of project scope, basic business requirements and project
constraints has been developed.constraints has been developed.

 Problem. Requirements are hazy or nonexistent. stakeholders are unsure of what
they want.

 Solution.Adescription of the prototyping process would be presentedhere.
 Resulting context. A software prototype that identifies basic requirements. (modes of

interaction, computational features, processing functions) is approved by stakeholders.
Following this, 1. This prototype may evolve through a series of increments to become
the production software or 2. the prototype may be discarded.

 Related patterns. CustomerCommunication, IterativeDesign, Iterative Development,
Customer Assessment, RequirementExtraction.

 The existence of a software process is no guarantee that software
will be delivered on time, that it will meet the customer’s needs,
or that it will exhibit the technical characteristics that will lead to
long-term quality characteristics.

A number of different approaches to software process improvement have been
proposed over the past few decades:

 Standard CMMI Assessment Method for Process Improvement
(SCAMPI)— provides a five-step process assessment model that

Process Assessment and Improvement

(SCAMPI)— provides a five-step process assessment model that
incorporates five phases: initiating, diagnosing, establishing,
acting, and learning. The SCAMPI method uses the SEI CMMI as
the basis for assessment [SEI00].

 CMM-Based Appraisal for Internal Process Improvement (CBA IPI)—
provides a diagnostic technique for assessing the relative maturity
of a software organization; uses the SEI CMM as the basis for the
assessment [Dun01].

 SPICE (ISO/IEC15504)—a standard that defines a set of
requirements for software process assessment. The intent of
the standard is to assist organizations in developing an
objective evaluation of the efficacy of any defined software
process[ISO08].

 ISO 9001:2000 for Software—a generic standard that applies ISO 9001:2000 for Software—a generic standard that applies
to any organization that wants to improve the overall quality
of the products, systems, or services that it provides.
Therefore, the standard is directly applicable to software
organizations and companies [Ant06].

 Prescriptive process models were originally proposed to bring order
to chaos.

 Prescriptive process models advocate an orderly approach to
software engineering. However, will some extent of chaos (less
rigid) be beneficial to bring some creativity?

That leads to a few questions …

Prescriptive Models

1

That leads to a few questions …
 If prescriptive process models strive for structure and order

(prescribe a set of process elements and process flow), are they
inappropriate for a software world that thrives on change?

 Yet, if we reject traditional process models (and the order they
imply) and replace them with something less structured, do we
make it impossible to achieve coordination and coherence in
software work?

 Classic Process Models
Waterfall Model (Linear SequentialModel)

 Incremental Process Models
Incremental Model

 Evolutionary Software Process Models
Prototyping

S/W Process Models

Prototyping
Spiral Model
Concurrent Development Model

TheV-Model
Waterfall Model

A variation of waterfall model
depicts the relationship of quality
assurance actions to the actions
associated with communication,
modeling and early code
construction activates.
Team first moves down the left side
of the V to refine the problem
requirements. Once code isrequirements. Once code is
generated, the team moves up the
right side of the V, performing a
series of tests that validate each of
the models created as the team
moved down the left side.
The V-model provides a way of
visualizing how verification and
validation actions are applied to
earlier engineering work.

The problems that are sometimes encountered when the waterfall
model is
applied are:

Real projects rarely follow the sequential flow that the model
proposes. Although the linear model can accommodate iteration,
it does so indirectly. As a result, changes can cause confusion as
the project team proceeds.

It is often difficult for the customer to state all requirements
explicitly. The waterfall model requires this and has difficulty
accommodating the natural uncertainty that exists at the
beginning of many projects.

The customer must have patience. A working version of the
program(s) will not be available until late in the project time
span. A major blunder, if undetected until the working program
is reviewed, can be disastrous.

increment#2
delivery of
nthincrement

increment#n

Communicat ion
Planni ng

Depl oy ment
del ivery fe
edback

Construction

codetest

Model ing
analysis
design

Incremental Model

Communication
Planni ng

Construct ion
code
test

Deployment

deliveryfe
edback

Modeling

analysis design

increment#1

increment#2

delivery of1st
increment

delivery of2nd
increment

nthincrement

Project Calendartime

Communicat ion
Planning

Construct ion
code
test

Depl oy mentdel
veryfeedback

Model ing
analysis
design

 When initial requirements are reasonably well defined, but the overall
scope of the development effort precludes a purely linear process. A
compelling need to expand a limited set of new functions to a later
system release.

 It combines elements of linear and parallel process flows. Each linear
sequence produces deliverable increments of the software.

 The first increment is often a core product with many supplementary
features. Users use it and evaluate it with more modifications to better
meet the needs.meet the needs.

 The incremental process model focuses on the delivery of an operational
product with each increment. Early increments are stripped-down
versions of the final product, but they do provide capability that serves
the user and also provide a platform for evaluation by the user.

 Incremental development is particularly useful when staffing is
unavailable for a complete implementation by the business deadline that
has been established for the project

 When to use: Customer defines a set of general objectives but does not
identify detailed requirements for functions and features. or Developer
may be unsure of the efficiency of an algorithm, the form that human
computer interaction should take.

 What step: Begins with communication by meeting with stakeholders to
define the objective, identify whatever requirements are known, outline
areas where further definition is mandatory. A quick plan for
prototyping and modeling (quick design) occur. Quick design focuses
on a representation of those aspects the software that will be visible to

Evolutionary Models:Prototyping

on a representation of those aspects the software that will be visible to
end users. (interface and output). Design leads to the construction of a
prototype which will be deployed and evaluated. Stakeholder’s
comments will be used to refine requirements.

 Both stakeholders and software engineers like the prototyping
paradigm.
Users get a feel for the actual system, and developers get to build
something immediately. However, engineers may make compromises in
order to get a prototype working quickly. The less-than-ideal choice
may be adopted forever after you get used to it.

 When to use: Customer defines a set of general objectives but does not
identify detailed requirements for functions and features. or Developer
may be unsure of the efficiency of an algorithm, the form that human
computer interaction should take.

 What step: Begins with communication by meeting with stakeholders to
define the objective, identify whatever requirements are known, outline
areas where further definition is mandatory. A quick plan for
prototyping and modeling (quick design) occur. Quick design focuses
on a representation of those aspects the software that will be visible toon a representation of those aspects the software that will be visible to
end users. (interface and output). Design leads to the construction of a
prototype which will be deployed and evaluated. Stakeholder’s
comments will be used to refine requirements.

 Both stakeholders and software engineers like the prototyping
paradigm.

 Users get a feel for the actual system, and developers get to build
something immediately. However, engineers may make compromises in
order to get a prototype working quickly. The less-than-ideal choice
may be adopted forever after you get used to it.

Constructionof
prototype

Communication

Q uick plan

Mo d e ling
Q uick d esig n

Quick
plan

Modeling
Quickdesign

communicatio
n

Construction of

prototype

Depl oyment
De live ry
&Feedback Construction

of prototype

Deployment

feedback

Prototypingcanbeproblematicfor the folowing reasons:

software, unaware that the prototype is held together haphazardly,
unaware that in the rush to get it working you haveŶ’t considered
overall software quality or long-term maintainability.

As a software engineer, you often make implementation
compromises in order to get a prototype working quickly.compromises in order to get a prototype working quickly.

An inappropriate operating system or programming language may
be used simply because it is available and known;

An inefficient algorithm may be implemented simply to demonstrate
capability. After a time, you may become comfortable with these
choices and forget all the reasons why they were inappropriate. The
less-than-ideal choice has now become an integral part of the system

• It couples the iterative nature of prototyping with the controlled and
systematic aspects of the waterfall
model generator that is used to

model and is a risk-driven process
guide multi-stakeholder concurrent

engineering of software intensive systems.

• Two main distinguishing
incrementally growing a

features: one is cyclic approach for
systeŵ’s degree of definition and

implementation while decreasing its degree of risk. The other is a set of anchor
point milestones for ensuring stakeholder commitment to feasible and mutually

EvolutionaryModels:TheSpiral

point milestones for ensuring stakeholder commitment to feasible and mutually
satisfactory system solutions.

• A series of evolutionary releases are delivered. During the early iterations, the
release might be a model or prototype. During later iterations, increasingly
more complete version of the engineered system are produced.

• The first circuit in the clockwise direction might result in the product
specification; subsequent passes around the spiral might be used to develop a
prototype and then progressively more sophisticated versions of the software.

• Each pass results in adjustments to the project plan. Cost and schedule are
adjusted based on feedback. Also, the number of iterations will be adjusted
by project manager.

• Good to develop large-scale system as software evolves as the process
progresses and risk should be understood and properly reacted to.
Prototyping is used to reduce risk.

• However, it may be difficult to convince customers that it is controllable as
it demands considerable risk assessment expertise.

planning estimation scheduling riskanalysis

communication

modeling analysisdesign

start

Spiral Model

deployment
delivery
feedback

construction
code
test

• Allow a software team to represent iterative and concurrent elements of any of
the process models. For example, the modeling activity defined for the spiral
model is accomplished by invoking one or more of the following actions:
prototyping, analysis and design.

• The Figure shows modeling may be in any one of the states at any given time.
For example, communication activity has completed its first iteration and in the
awaiting changes state. The modeling activity was in inactive state, now makes a
transition into the under development state. If customer indicates changes in

Concurrent Model

transition into the under development state. If customer indicates changes in
requirements, the modeling activity moves from the under development state
into the awaiting changes state.

• Concurrent modeling is applicable to all types of software development
and provides an accurate picture of the current state of a project. Rather than
confining software engineering activities, actions and tasks to a sequence of
events, it defines a process network. Each activity, action or task on the network
exists simultaneously with other activities, actions or tasks. Events generated at
one point trigger transitions among28the state.

Awaiting

change

s

Under

developmen

t

none

Modelingactivity

representsthestate
ofa softwareengineering
activity ortask

Concurrent Model

Underreview

Done

Under

revisio

n

Baselined

s

Specialized Process Models

• Component-Based Development

• The Formal Methods Model

• Aspect-Oriented Software Development

Specialized process models

Component-Based Development:
Commercial off-the-shelf (COTS) software components, developed by vendors who
offer them as products, provide targeted functionality with well-defined interfaces
that enable the component to be integrated into the software that is to be built.
These components can be as either conventional software modules or object-
oriented packages or packages of classes

• Steps involved in CBS are
• Available component-based researched productsareand evaluated for • Available component-based researched productsareand evaluated for

the application domain in question.
• Components are integrated into the architecture
• Comprehensive testing is conducted ensure proper functionality

Specialized Process Model

•Component-Based Development

• Component-based development model software reuse andleads to
with areusability helps

benefits

• Component-based

number of measurablesoftware engineers

development leads
development cycle time, 84 percent

to a 70 percent reduction in
reduction in project cost and

productivity index of 26.2 compared to an industry norm of 16.9

RiskAnalysis

Planning

Customer
Communication

Identify
candidate
component

Construct
nthiteration
of system

Look up
components
in library

Engineering

Component Assembly Model

Construction & Release

Customer
Evaluation

Build
componentsif
unavailable

Put new
components
in library

Extract
components
if available

Re-use Oriented Development

Specialized process model

Formal Methods Model

•Formal methods model encompasses a set of activities that leads to
formal mathematical specification of computer software

•They enable software engineers to specify, develop and verify a
computer based system by applying a rigorous mathematical notation

•Development of formal models is quite time consuming and•Development of formal models is quite time consuming and
expensive

•Extensive training is needed in applying formal methods

•Difficult to use the model as a communication mechanism for
technically

unsophisticated customers

Specialized Process model

Aspect-oriented Software Development
•The aspect-oriented approach is based on the principle of
identifying common program code within certain aspects and
placing the common procedures outside the main business logic
•The process of aspect orientation and software development may
include modeling, design, programming, reverse engineering and
re-engineering;re-engineering;

•The domain of AOSD includes applications, components and
databases;

•Interaction with and integration into other paradigms is carried out
with the help of frameworks, generators, program languages and
architecture-description languages (ADL).

• The Unified Process is an iterative and incremental development process.
Unified Process divides the project into four phases
1. Inception 2. Elaboration 3. Construction 4. Transition

• The Inception, Elaboration, Construction and Transition phases are divided into
a series of time boxed iterations. (The Inception phase may also be divided into
iterations for a large project.)

• Each iteration results in an increment, which is a release of the system that
contains added or improved functionality compared with the previous release.

• Although most iterations will include work in most of the process disciplines
(e.g. Requirements, Design, Implementation, Testing) the relative effort and

Unified Process

• Although most iterations will include work in most of the process disciplines
(e.g. Requirements, Design, Implementation, Testing) the relative effort and
emphasis will change over the course of the project.

• Risk Focused
The Unified Process requires the project team to focus on addressing the most
critical risks early in the project life cycle. The deliverables of each iteration,
especially in the Elaboration phase, must be selected in order to ensure that the
greatest risks are addressed first. Risk Focused

• Inception Phase
– Inception is the smallest phase in the project, and ideally it should be quite

short. If the Inception Phase is long then it is usually an indication of
excessive up-front specification, which is contrary to the spirit of the Unified
Process.

– The following are typical goals for the Inception phase.
• Establish a justification or business case for the project
• Establish the project scope and boundaryconditions
• Outline the use cases and key requirements that will drive the design

Unified Process Model

• Outline the use cases and key requirements that will drive the design
tradeoffs

• Outline one or more candidate architectures
• Identify risks
• Prepare a preliminary project schedule and costestimate

– The Lifecycle Objective Milestone marks the end of the Inception phase.

• Elaboration Phase
– During the Elaboration phase the project team is expected to capture

a majority of the system requirements. The primary goals of
Elaboration are to address known risk factors and to establish and
validate the system architecture.

– Common processes undertaken in this phase include the creation of use
case diagrams, conceptual diagrams (class diagrams with only basic

Unified Process

case diagrams, conceptual diagrams (class diagrams with only basic
notation) and package diagrams (architectural diagrams).

– The architecture is validated primarily through the implementation of
an Executable Architectural Baseline. This is a partial implementation
of the system which includes the core, most architecturally significant,
components. It is built in a series of small, timeboxed iterations.

• Elaboration Phase
– By the end of the Elaboration phase the system architecture must have

stabilized and the executable architecture baseline must demonstrate
that the architecture will support the key system functionality and
exhibit the right behavior in terms of performance, scalability and cost.

– The final Elaboration phase deliverable is a plan (including cost and
schedule estimates) for the Construction phase. At this point the plan
should be accurate and credible, since it should be based on theshould be accurate and credible, since it should be based on the
Elaboration phase experience and since significant risk factors should
have been addressed during the Elaboration phase.

– The Lifecycle Architecture Milestone marks the end of the Elaboration
phase.

• Construction Phase
– Construction is the largest phase in the project. In this phase the

remainder of the system is built on the foundation laid in Elaboration.
System features are implemented in a series of short, timeboxed
iterations. Each iteration results in an executable release of the
software. It is customary to write full text use cases during the
construction phase and each one becomes the start of a new
iteration.iteration.

– Common UML (Unified Modeling Language) diagrams used during
this phase include Activity, Sequence, Collaboration, State (Transition)
and Interaction Overview diagrams.

– The Initial Operational Capability Milestone marks the end of the
Construction phase.

• Transition Phase
– The final project phase is Transition. In this phase the system is

deployed to the target users. Feedback received from an initial release
(or initial releases) may result in further refinements to be incorporated
over the course of several Transition phase iterations. The Transition
phase also includes system conversions and user training.

– The Product Release Milestone marks the end of the Transitionphase.– The Product Release Milestone marks the end of the Transitionphase.

• Advantages of UP SoftwareDevelopment
– This is a complete methodology in itself with an emphasis on accurate

documentation

– It is proactively able to resolve the project risks associated with other
projects.

– Less time is required for integration as the process of integration goes on
throughout .throughout .

– The development time required is less due to reuse of components.

• Disadvantages of RUP SoftwareDevelopment
– The team members need to be expert in their field to develop a software

under this methodology.
– On cutting edge projects which utilise new technology, the reuse of

components will not be possible. Hence the time saving one could have
made will be impossible to fulfill.

– Integration throughout the process of software development, in theory
sounds a good thing. But on particularly big projects with multiple
development streams it will only add to the confusion and cause moredevelopment streams it will only add to the confusion and cause more
issues during the stages of testing

Personal Team and Process Models

• The best software process is one that is close to the people who will be
doing the work. The PSP model defines five framework activities.

1. Personal Software Process (PSP)
Planning. This activity isolates requirements and develops both size and

resource estimates. In addition, a defect estimate is made. All metrics are
recorded on worksheets or templates. Finally, development tasks are
identified and a project schedule is created.

High-level design. External specifications for each component to beHigh-level design. External specifications for each component to be
constructed are developed and a component design is created. Prototypes
are built when uncertainty exists. All issues are recorded and tracked.

High-level design review. Formal verification methods (Chapter 21) are applied
to uncover errors in the design. Metrics are maintained for all important
tasks and work results.

Personal team and process models

• Development. The component-level design is refined and reviewed. Code is
generated, reviewed, compiled, and tested. Metrics are maintained for all important
tasks and work results.

• Postmortem. Using the measures and metrics collected, the effectiveness of the
process is determined. Measures and metrics should provide guidance for modifying
the process to improve its effectiveness.

2. Team Software Process (TSP): The goal of TSP is to build a s͞elf directed͟ project
team that organizes itself to produce high-qualitysoftware. TSP objectivesare,

• Build self-directed teams that plan and track their work, establish goals, and own• Build self-directed teams that plan and track their work, establish goals, and own
their processes and plans. These can be pure software teams or integrated
product teams (IPTs) of 3 to about 20 engineers.

• Show managers how to coach and motivate their teams and how to help them
sustain peak performance.

• Accelerate software process improvement by making CMM23 Level 5 behavior
normal and expected.

• Provide improvement guidance to high-maturityorganizations.
• Facilitate university teaching of industrial-grade team skills.

What is Estimation ?

Estimation is attempt to determine how much money, effort, resources & time
it will take to build a specific software based system or project.
Estimation involves answering the following questions:
1. How much effort is required to complete each activity?
2. How much calendar time is needed to complete each activity?
3. What is the total cost of each activity?
Project cost estimation and project scheduling are normally carried out
together.together.
The costs of development are primarily the costs of the effort involved, so the
effort computation is used in both the cost and the schedule estimate.
Do some cost estimation before detailed schedules are drawn up. These initial
estimates may be used to establish a budget for the project or to set a price for
the software for a customer.

There are three parameters involved in computing the total cost of asoftware
development project:

•Hardware and software costs including maintenance
•Travel and training costs
•Effort costs (the costs of paying software engineers).

The following costs are all part of the total effort cost:
1.Costs of providing, heating and lighting office space1.Costs of providing, heating and lighting office space
2.Costs of support staff such as accountants, administrators, system managers,
cleaners and technicians

3.Costs of networking and communications
4.Costs of central facilities such as a library or recreationalfacilities
5.Costs of Social Security and employee benefits such as pensions and health
insurance.

Factors affecting software pricing

Effort
Size Table

Cost Estimation Process

Errors

Development Time

Function Point

Lines of Code
Estimation Process

Number of Use Case Number of Personnel

1

Function points
• STEP 1: measure size in terms of the amount of functionality in

a system. Function points are computed by first calculating an
unadjusted function point count (UFC). Counts are made for
the following categories
– External Inputs – Those Items Provided By The User That

Describe Distinct Application-oriented Data (Such As File
Names And Menu Selections)

– External outputs – those items provided to the
data (such asgenerate distinct application-oriented

– External outputs – those items provided to the
user that data (such as

the individual

generate distinct application-oriented
reports and messages, rather than
components of these)

– External inquiries – interactive inputs requiring
aresponse
- External files – machine-readable interfaces

toother
systems

- Internal files – logical master files in the system

• STEP 2: Multiply each number by a weight factor, according to complexity
(simple, average or complex) of the parameter, associated with that number.
The value is given by a table:

Function points..

• STEP3: Calculate the total UFP(Unadjusted Function Points)

• STEP 4: Calculate the total TCF (Technical Complexity Factor) by giving a
value
between 0 and 5 accordingto the importance of the following points:

• Technical Complexity Factors:
– 1.

– 2.

– 3.

– 4.

– 5.

– 6.

– 7.

– 8.

– 9.

Data Communication

Distributed DataProcessing

Performance Criteria

Heavily Utilized Hardware

High Transaction Rates

Online DataEntry

Online UpdatingEnd-user

Efficiency– 9.

– 10.

– 11.

– 12.

– 13.

– 14.

Efficiency

Complex Computations

Reusability

Ease of InstallationEase of

OperationPortability

Maintainability

• STEP5: Sum the resulting numbers too obtain DI (degree of influence)

• STEP 6: TCF (Technical Complexity Factor) by given by theformula

– TCF=0.65+0.01*DI

• STEP 6: Function Points are by given by the formula

– FP=UFP*TCF

Relation between LOC andFP

– LOC = LanguageFactor * FP– LOC = LanguageFactor * FP

– where

• LOC (Lines of Code)

• FP (FunctionPoints)

• The Basic COCOMO model computes effort as a function of program
size. The Basic COCOMO equation is:

– E = aKLOC^b

• Effort for three modes of Basic COCOMO.

Mode a b

Effort Computation

Organic 2.4 1.05

Semi-
detached

3.0 1.12

Embedded 3.6 1.20

• The intermediate COCOMO model computes effort as a function
of program size and a set of cost drivers. The Intermediate
COCOMO equation is:

– E = aKLOC^b*EAF

• Effort for three modes of intermediate COCOMO.

Mode a b

Organic 3.2 1.05

Semi-
detached

3.0 1.12

Embedded 2.8 1.20

TotalEAF= Product of the selected factors

Adjusted value of Effort:Adjusted PersonMonths:

APM = (Total EAF) * PM

• DevelopmentTimeEquationParameterTable:

DevelopmentTime, TDEV=C* (APM**D)

Parameter Organic Semi-
detached

Embedded

C 2.5 2.5 2.5

D 0.38 0.35 0.32

S/W Development Time

DevelopmentTime, TDEV=C* (APM**D)

NumberofPersonnel, NP=APM / TDEV

• A development process typically consists ofthe following stages:

• RequirementsAnalysis

• Design (High Level +Detailed)

• Implementation & Coding

• Testing (Unit + Integration)

Distribution of Effort

• Calculate theestimatednumberof errorsin yourdesign,i.e.total
errors found
in requirements,specifications,code,usermanuals,andbad fixes:
– Adjust theFunctionPointcalculated instep1

AFP=FP** 1.25
– Usethe folowing table forcalculatingerrorestimates

Error Estimation

– Usethe folowing table forcalculatingerrorestimates

Error Type Error / AFP

Requirements 1

Design 1.25

Implementation 1.75

Documentation 0.6

Due to Bug Fixes 0.4

• LOC based estimation
• Source lines of code (SLOC), also known as lines of code (LOC), is a software

metric used to measure the size of a computer program by counting the number
of lines in the text of the program's sourcecode.

• SLOC is typically used to predict the amount of effort that will be required to develop
a program, as well as to estimate programming productivity or maintainability once
the software is produced.

• Lines used for commenting the code and header file are ignored.
• Two major types of LOC:

Estimation

• Two major types of LOC:
1. Physical LOC

• Physical LOC is the count of lines in the text of the program's source codeincluding
comment lines.

• Blank lines are also included unless the lines of code in a section consistsofmore
than 25% blank lines.

2. Logical LOC
• Logical LOC attempts to measure the number of executable statements, buttheir

specific definitions are tied to specific computerlanguages.
• Ex: Logical LOC measure for C-like programming languages is the number of

statement-terminating semicolons(;)

LOC-based Estimation

The problems of lines of code (LOC)
–Different languages lead to different lengths of code
–It is not clear how to count lines of code
– A report, screen, or GUI generator can generate thousands of lines of

code
in minutes

– Depending on the application, the complexity of code is different.– Depending on the application, the complexity of code is different.

The software cost estimationprovides:

• The vital link between the general concepts and techniques of economic analysis
and the particular world of software engineering.

• Software cost estimation techniques also provides an essential part of the
foundation for good softwaremanagement.

Cost of a project

•The cost in a project is due to:

COCOMO Model Motivation

•The cost in a project is due to:

– due the requirements for software, hardware and human resources

– the cost of software development is due to the human resources needed

– most cost estimates are measured in person-months (PM)

– the cost of the project depends on the nature and characteristics of
the project, at any point, the accuracy of the estimate will depend on the
amount of reliable information we have about the finalproduct.

S/W Cost Estimation

INTRODUCTION TO COCOMO MODELS

• The Constructive Cost Model (COCOMO) is the most widely used
software estimation model in the world.

• The COCOMO model predicts the effort and duration of a project based
on inputs relating to the size of the resulting systems and a number of
"cost drives" that affect productivity.

Effort

• Effort Equation• Effort Equation

– PM = C * (KDSI)n (person-months)

• where PM = number of person-month (=152 working hours),

• C = a constant,

• KDSI = thousands of "delivered source instructions" (DSI)and

• n = a constant.

INTRODUCTION TO COCOMO MODELS

• Productivityequation

– (DSI) / (PM)

• where PM = number of person-month (=152 working hours),

• DSI = "delivered sourceinstructions―

• Schedule equation

– TDEV = C * (PM)n(months)– TDEV = C * (PM)n(months)

• where TDEV = number of months estimated forsoftware
development.

• Average Staffing Equation

– (PM) / (TDEV) (FSP

• whereFSPmeansFul-time)-equivalentSoftware Personnel.

COCOMO MODELS

• COCOMO is defined in terms of three different models:

– the Basic model,

– the Intermediate model, and

– the Detailed model.

• The more complex models account for more factors that influence
software projects, and make more accurate estimates.

The development model

• The most important factors contributing to a project's duration and cost is
the Development Mode

• Organic Mode:The project is developed in afamiliar,stable
environment, and the product is similar to previously developed

• Mode: The project's characteristics are intermediate between Organic and
Embedded.

• Embedded Mode: The project is characterized by tight, inflexible
constraints and interface requirements. An embedded mode project will
require a great deal of innovation.

Feature Organic Semidetached Embedded

Organizational
understanding of product
andobjectives

Thorough Considerable General

Experience inworking
with relatedsoftware
systems

Extensive Considerable Moderate

Need forsoftware Basic Considerable Full

Modes

Need forsoftware
conformance withpre-
established
requirements

Basic Considerable Full

Need for software
conformance with
external interface
specifications

Basic Considerable Full

Feature Organic Semidetached Embedded

Concurrent development
of associated new
hardware and
operational procedures

Some Moderate Extensive

Need for innovative data Minimal Some ConsiderableNeed for innovative data
processing architectures,
algorithms

Minimal Some Considerable

Premium on early
completion

Low Medium High

Product size range <50 KDSI <300KDSI All

What Is project scheduling

• In the late 1960s, a bright-eyed young engineer was chosen to
write a computer program for an automated manufacturing application. The
reason for his selection was simple. He was the only person in his technical
group who had attended a computer programming seminar. He knew the ins
and outs of assembly language and FORTRAN but nothing about software
engineering and even less about project scheduling and tracking. His boss
gave him the appropriate manuals and a verbal description of what had to be
done. He was informed that the project must be completed in two months.done. He was informed that the project must be completed in two months.
He read the manuals, considered his approach, and began writing code.
After two weeks, the boss called him into his office and asked how things
were going. ͞Really great, the young engineer with youthful enthusiasm. ͞This
was much simpler thought. I’ŵ probably close to 75 percent finished.

What Is project scheduling

 You’ǀeselected an appropriate processmodel.

 You’eǀ identified the software engineering tasks that have to be
performed.

 You estimated the amount of work and the number of people, you know the
deadline, you’ǀeeven considered the risks.

 Now it’s time to connect the dots. That is, you have to create
enable you to getnetwork of software engineering tasks that will enable you to getnetwork of software engineering tasks that will

the job done on time.

Once the network is created, you have to assign responsibility for
adapt the network as riskseach task, make sure it gets done, and

become reality.

What Is project scheduling

 Why it’s Important?
 In order to build a complex system, many software engineering tasks

occur in parallel.
 The result of work performed during one task may have a profound

effect on work to be conducted in another task.
 These interdependencies are very difficult to understand withouta

schedule.
 lt’s also virtually impossible to assess progress on a moderate or large

software project without a detailedschedulesoftware project without a detailedschedule

process model

 What are the steps?

 The software engineering tasks dictated by thesoftware
are refined for the functionality to be built.

 Effort and duration are allocated to each task and a task network is
created in a manner that enables the software team tomeet the
delivery deadline established.

What Is project scheduling

Basic Concept of Project Scheduling

An unrealistic deadline established by someone outside the software development group and
forced on managers and practitioner's within thegroup.
Changing customer requirements that are not reflected in schedulechanges.
An honest underestimate of the amount of effort and/or the number of resourcesthat
will be required to do the job.
Predictable and/or unpredictable risks that were not considered when the project commenced.
Technical difficulties that could not have been foreseen in advance.

Why should we do when the management demands that we make a dead line IWhy should we do when the management demands that we make a dead line I
impossible?
 Perform a detailed estimate using historical data from past projects.
 Determine the estimated effort and duration for the project.
 Using an incremental process model, develop a software engineering strategy that will

deliver critical functionality by the imposed deadline, but delay other functionality until
later. Document the plan.

 Meet with the customer and (using the detailed estimate),explain why the imposed deadline
is unrealistic.

•Project Scheduling

•Basic Principles

•The Relationship Between People and Effort

•Effort Distribution

•Software project scheduling is an action that distributes estimated effort

Project scheduling

•Software project scheduling is an action that distributes estimated effort
across the planned project duration by allocating the effort to specific
software engineering tasks.

•During early stages of project planning, a macroscopic schedule is
developed.

•As the project gets under way, each entry on the macroscopic schedule is
refined into a detailed schedule.

Project scheduling
 Basic Principles of ProjectScheduling.

1. Compartmentalization: The project must be compartmentalized into a
number of manageable activities and tasks. To accomplish
compartmentalization, both the product and the process are refined.

2. Interdependency: The interdependency of each compartmentalized activity
or task must be determined. Some tasks must occur in sequence, while others
can occur in parallel. Other activities can occur independently.

3. Time allocation: Each task to be scheduled must be allocated some number3. Time allocation: Each task to be scheduled must be allocated some number
of work units (e.g., persoŶ-days of effort). In addition, each task must be
assigned a start date and a completion date. whether work will be conducted
on a full-time or part-time basis.

4. Effort validation: Every project has a defined number of people on the
software team. The project manager must ensure that no more than the
allocated number of people have been scheduled at any given time.

5. Defined responsibilities. Every task that is scheduled should be assigned to a
specific team member.

Project scheduling

6. Defined outcomes: Every task that is scheduled should have a defined
productoutcome. For software projects, the outcome is normally a work

(e.g., the design of a component) or a part of a work product. Work
products are often combined in deliverables.

7. Defined milestones: Every task or group of tasks should be associated with
a project milestone. A milestone is accomplished when one or more work
products has been reviewed for quality and has been approved. Each of
these principles is applied as the project scheduleevolves.these principles is applied as the project scheduleevolves.

UNIT –II
Requirement Analysis and Specification Requirement Analysis and Specification
T -II

contents

Software requirements: Functional and nonfunctional, user
requirements, system requirements
Software requirements document
Requirement engineering process
Feasibility studies, requirements elicitation and analysis
Requirements validation, requirements managementRequirements validation, requirements management
Classical analysis: Structured system analysis, petri nets, data

dictionary.

• Concerned with demonstrating that the requirements define the
system that the customer really wants.

• Requirements error costs are high so validation is very important
• Fixing a requirements error after delivery may cost up to 100

times the cost of fixing an implementation error.
•Requirements Checking
• Validity : Does the system provide the functions which best

support the customers needs

Requirement Validation

support the customers needs
• Consistency: Are there any requirements conflicts?
• Completeness: Are all functions required by the customer

included?
• Realism: Can the requirements be implemented given available

budget and technology
• Verifiability: Can the requirements be checked?

• Requirements reviews
– Systematic manual analysis of the requirements.

• Prototyping
– Using an executable model of the system to check requirements.

• Test-casegeneration
– Developing tests for requirements to checktestability.

Requirements Reviews
• Regular reviews should be held while the requirements definition is being

formulated.
• Both client and contractor staff should be involved in reviews.
• Reviews may be formal (with completed documents) or informal. Good

communications between developers, customers and users can resolve
problems at an early stage.

• Don't underestimate the problems involved in requirements validation.
Ultimately, it is difficult to show that a set of requirements does in fact meet a
user’s needs. Users need to picture the system in operation and imagine howuser’s needs. Users need to picture the system in operation and imagine how
that system would fit into their work.

• It is hard even for skilled computer professionals to perform this type of
abstract analysis and harder still for system users. As a result, you rarely find all
requirements problems during the requirements validation process. It is
inevitable that there will be further requirements changes to correct omissions
and misunderstandings after the requirements document has been agreed
upon.

• Requirements during the requirements engineering process and system
development.

• Requirements are inevitably incomplete and inconsistent
 New requirements emerge during the process as business needs change

and a better understanding of the system is developed;
 Different viewpoints have different requirements and these are often

contradictory.

Requirement Management

contradictory.

• The priority of requirements from different viewpoints changes
during the development process.

• System customers may specify requirements from a business
perspective that conflict with end-user requirements.

• The business and technical environment of the system changes
during its development.

Requirements Change

during its development.

Requirements Evaluation

• Enduring requirements
– These are relatively stable requirements that derive from the

core activity of the organization
– Relate directly to the domain of the system
– These requirements may be derived from domain models that

show the entities and relations which characterize an
application domainapplication domain

– For example, in a hospital there will always be
requirements concerned with patients, doctors, nurses,
treatments, etc

• Volatile Requirements
– These are requirements that are likely to change during the

system development process or after the system has been
become operational.

– Examples of volatile requirements are requirements resulting
from government health-care policies or healthcare chargingfrom government health-care policies or healthcare charging
mechanisms

• Volatile requirements
– These are requirements that are likely to change

during the system development process or after the
system has been become operational.

– Examples of volatile requirements are requirements
resulting from government health-care policies or resulting from government health-care policies or
healthcare charging mechanisms

• Traceability is concerned with the relationships between
requirements,
their sources and the system design

• Source traceability
– Links from requirements to stakeholders who proposed these

requirements;
• Requirements traceability

Traceability

• Requirements traceability
– Links between dependent requirements;

• Design traceability
– Links from the requirements to the design;

Req.
id

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

1.1 D R
1.2 D D D
1.3 R R
2.1 R D D

A Traceability Matrix

2.1 R D D
2.2 D
2.3 R D
3.1 R
3.2 R

• Requirements storage
– Requirements should be managed in a secure,

managed data store.
• Change management

– The process of change management is a workflow
process whose stages can be defined and information

Case Tool Support

process whose stages can be defined and information
flow between these stages partially automated.

• Traceability management
– Automated retrieval of the links between

requirements.

• During the requirements engineering process, one has to plan:
– Requirements identification

• How requirements are individually identified;
– A change management process

• The process followed when analyzing a requirements
change;

– Traceability policies

Requirements Management

– Traceability policies
• The amount of information about requirements

relationships that is
maintained;

– CASE tool support
• The tool support required to help manage requirements

change;

Requirements Change

• Should apply to all proposed changes to the requirements.
• Principal stages

– Problem analysis. Discuss requirements problem and propose
change;

– Change analysis and costing. Assess effects of change on other
requirements;

– Change implementation. Modify requirements document and
otherother
documents to reflect change.

High-Level Petri Nets
• Theclassical Petri net was invented by Carl Adam Petri in 1962.
• A lot of research has been conducted (>10,000 publications).

Until 1985 it was mainly used by theoreticians.
• Since the 80’s their practical use has increased because of the

introduction of high-level Petri nets and the availability of many

Classical Analysis

introduction of high-level Petri nets and the availability of many
tools.

• High-level Petri nets are Petri nets extended with color (for the
modeling of attributes)

time (for performance analysis)
hierarchy (for the structuring of models, DFD's)

•Petri Nets can be used to rigorously define a system (reducing ambiguity,
makingthe operationsofasystemclear, allowingustoprove propertiesofa
systemetc.)
•They are often usedfor distributed systems (with severalsubsystems
acting independently) and forsystems with resourcesharing.
•Since there may be more than one transition inthe Petri Netactiveatthe•Since there may be more than one transition inthe Petri Netactiveatthe
•same time (and we do notknowwhich will fade first), they arenon-
deterministic.

The Classical Petrint Model

•Petri Nets can be used to rigorously define a system (reducing ambiguity,
makingthe operationsofasystemclear, lowingustoprove propertiesofa
systemetc.)
•They are often usedfor distributed systems (with severalsubsystems
acting independently) and forsystems with resourcesharing.
•Since there may be more than one transition inthe Petri Netactiveatthe
•same time (and we do notknowwhich will fade first), they arenon-•same time (and we do notknowwhich will fade first), they arenon-
deterministic.

• Transition t1 has three input places (p1, p2 and p3)
and two output places (p3 and p4).

• Place p3 is both an input and an output place of t1.
• Transition t1 has three input places (p1, p2 and p3)
and two output places (p3 and p4).and two output places (p3 and p4).

• Place p3 is both an input and an output place of t1.

•Transitiont1 has three input places (p1, p2 and p3) and
two output places (p3 and p4).
•Place p3 is both an input and an output place of t1.

Transition with Multiple Input

Transitions withMultiple Inputs

• An enabled transition may fire.
• Firing corresponds to consuming tokens from the input places

and producing tokens for the outputplaces.

•Firing is atomic (only one transition fires at a time, even if more
than one is enabled)

Example for Pertinet

•Atransition withoutany inputcanfire atanytimeandproducestokensin the
connectedplaces:

Creating / Consuming Token

Creating/ConsumingTokens

Two fight for the sametoken:conflict. Evenif

therearetwotokens, thereisstil a conflict.

Thenexttransitiontofire(t1 ort2) isarbitrary (non-
deterministic).

• A tool for recording and processing information
(metadata)
organization uses.

• A central catalogue for metadata.
• Can be integrated within the DBMS or be

separate
• May be referenced during system design,

Data Dictionary

• May be referenced during system design,
programming, and by actively executing
programs.

• Can be used as a repository for common code
(e.g. library routines).

Benefits of a DDS are mainly due to the fact that it is a central
store of information about the database.

Benefits include -
• Improved documentation and control
• Consistency in data use
• Easier data analysis

Benefits of DDS

• Easier data analysis
• Reduced data redundancy
• Simpler programming
• The enforcement of standards
• Better means of estimating the effect of change.

• With so much detail held on the DDS, it is essential
that an cross-referencing facility is provided by the
DDS.

• The DDS can produce reports for use by the data
administration staff (to investigate the efficiency of
use and storage of data), systems analysts,

DD Management

use and storage of data), systems analysts,
programmers, and users.

• A query language is provided for ad-hoc queries. If
the DD is the DBMS, then the query language will
be that of the DBMS itself.

From an management point of view, the DDS should

• Provide facilities for documenting information collected
during computer project.

• provide details of applications usage and their data usage
once a system has been implemented, so that analysis and
redesign may be facilitated as the environment changes.

Management Objective

• make access to the DD information easier than a paper-
based approach by providing cross-referencing and indexing
facilities.

• make extension of the DD information easier.
• Encourage systems analysts to follow structured

methodologies.

A number of possible benefits may come from using a DDS:
• Improve control and knowledge about the data resource.
• Allows accurate assessment of cost and time scale to effect any

changes.
• Reduces the clerical load of database administration, and gives

more control
• Over the design and use of the database.

Management Advantages

• Over the design and use of the database.
• Accurate data definitions can be provided securely directly to

programs.
• Aid the recording, processing, storage and destruction of data

and associated documents.

A DDS is a useful management tool, but at a price.
• The DDS project may itself take two or three years.
• It needs careful planning, defining the exact requirements

designing its contents, testing, implementation and
evaluation.

• The cost of a DDS includes not only the initial price of its• The cost of a DDS includes not only the initial price of its
installation and any hardware requirements, but also the
cost of collecting the information entering it into the DDS,
keeping it up-to-date and enforcing standards.

• The use of a DDS requires management commitment, which
is not easy to achieve, particularly where the benefits are
intangible and long term.

UNIT -III

UNIT-III
Software DesignSoftware Design

• Quality Guidelines
• A design should exhibit an architecturethat

(1) Has been created using recognizable architectural styles
or patterns

(2) Is composed of components that exhibit good design
characteristics(these are discussed later in this
chapter)

Design Process

chapter)
(3) Can be implemented in an evolutionary fashion,

thereby facilitating implementation and testing.
• A design should be modular; that is, the software should be logically

partitioned into elements or subsystems.
• A design should contain distinct representations of data,

architecture, interfaces, and components.
• A design should lead to data structures that are appropriate for the classes to

be implemented and are drawn from recognizable data patterns.

• Quality Guidelines

• A design should lead to components that exhibit independent functional
characteristics.

• A design should lead to interfaces that reduce the complexity of
externalconnections between components and with the

environment.
• A design should be derived using a repeatable method that is driven
• A design should be represented using a notation that effectively • A design should be represented using a notation that effectively

communicates its meaning.

2. The Evolution of Software Design:

•The evolution of software design is a continuing process that has now spanned
almost six decades.

•All these methods have a number of common characteristics:

1. a mechanism for the translation of the requirements model into a design
representation,

2. a notation for representing functional components and their

3. interfaces,

Regardless of the design method that is used, you should apply a set of basic
concepts to data, architectural, interface, and component-level design. These
concepts are considered in the sections that follow

3. interfaces,

heuristics for refinement and partitioning, and

4. guidelines for qualityassessment.

Design model can be viewed as
–Process dimension indicating the evolution of the design model as
designtasks are executed as part of the software process.
–Abstraction dimension represents the level of detail as each
element of the analysis model is transformed into a design
equivalent and then refined iteratively

• Design Model Elements are as follows
• Data design elements

Design Model

• Data design elements
• Architectural design elements
• Interface design elements
• Component-level design elements
• Deployment-level design elements

The DesignModel

u s e - c a s e s - t e xt

u s e - c a s e d i a g r a m s

a c t i v i t y d i a g r am s

s w i m l a n e d i a g r a m s

co l l a bo r a t i o n d i a g r a m s s t a t e

d i a g r a ms

se q u en c e d i a g r am s

c l a s s d i a g r a ms

an a l y s i s p a c k ag e s

C RC m o d e ls

co l l a bo r a t i o n d i a g r a m s d a t a f

l o w d i a g r a m s

c o n t r o l - f l o w d i a g r a m s p r o c e s s

i n g n a r r a t i v e s s t a t e d i a g r a m s

s e q u e n c e d i a g r a m s

de s i g n c l a s s r e a l i z a t i o n s s u b s y s t

e m s

h i g h

a n a l y s i s m o d e l

c l a s s d i a g r a ms

a n a l y s i s p a c k a g e s C RC m o d e l

s

co l l a b o r a t i on d i a g r a m s

d a t a f l o w d i a g r a m s

co n t r o l - f l o w d i a g r a m s p r o c e s

s i ng n a r r a t i v es

Re q u ir e m e n t s : c o n s

t r a in t s

in t e r o p e r a b i l it y t a r

g e t s a n d

c o n f ig u r a t ion

t e c h n i c a l i n t e r f a c e d e s i g

p r o c e s s d i m e n s i o n

a r c h i t e c t u r e e l

e m e n t s

i n t e r f a c e e l

e m e n t s

c o m p o n e n t - l e v e l e l e

m e n t s

d e p l o y m e n t - l e v e l e l e

m e n t s

l o w

co l l a bo r a t i o n d i a g r a m s

r e f i n e m e n t s t o:

de s i g n c l a s s r e a l i z a t i o n s s u b s y s t e

m s

co l l a bo r a t i o n d i a g r a m s

d e p l o y m e n t d i a g r a m s

co m p o n e n t d i a g r a m s d e s i g

n c l a s s es

a c t i v i t y d i a g r a m s

s e q u e n c e d i a g r a m s

r e f i n e m e n t s t o:

c o m p o n e n t d i a g r a m s d e s i g n c l

a s s es

a c t i v i t y d i a g r a m s

s eq u en c e d i a g r am s

de s i g n c l a s s r e a l i z a t i on s s u b s y s t

e m s

co l l a bo r a t i o n d i a g r a m s

co m p o n e n t d i a g r a m s d e s i g

n c l a s s es

a c t i v i t y d i a g r a m s

s e q u e n c e d i a g r a m s

d e s i g n m o d e
l

t e c h n i c a l i n t e r f a c e d e s i g

n

Na v i g a t i o n d e s i g n

GU I de s i g n

• Data design elements
– Data design creates a model of data and/or information that is

represented at a high level of abstraction.
– Data model is then refined into progressively more implementation-

specific representations that can be processed by thecomputer-
based system

• Architectural level databases and files
• Component level data structures• Component level data structures

Architectural design elements
•The architectural design for software is the equivalent to the floor plan of a
house. The floor plan depicts the overall layout of the rooms; their size, shape,
and relationship to one another; and the doors and windows that allow
movement into and out of the rooms. The floor plan gives us an overall view of
the house. Architectural design elements give us an overall view of the software.

– The architectural model is derived from
• Information about the application domain for the software to be built
• Specific requirements model elements such as data flow diagrams or• Specific requirements model elements such as data flow diagrams or

analysis classes, their relationships and collaborations for the problem
at hand

• The availability of architectural patterns and styles

• Interface design elements
– The interface design elements for software tell how information flows into

and out of the system and how it is communicated among the components
defined as part of the architecture

– Important elements of interface design
• The user interface (UI): Usability design incorporates aesthetic elements

(e.g., layout, color, graphics, interaction mechanisms), ergonomic
elements (e.g., information layout and placement, metaphors, UI
navigation), and technical elements (e.g., UI patterns, reusable
elements (e.g., information layout and placement, metaphors, UI
navigation), and technical elements (e.g., UI patterns, reusable
components). In general, the UI is a unique subsystem within the overall
application architecture.

• External interfaces to other systems, devices, networks or other
producers or consumers of informationThe design of external interfaces
requires definitive information about the entity to which information is
sent or received.

• Internal interfaces between various design componentsThe design
of internal interfaces is closely aligned with component-level design

Design Model - Interface Elements

Design Model

Component-level design elements
•The component-level design for software is the equivalent to a set of detailed
drawings (and specifications) for each room in a house. These drawings depict
wiring and plumbing within each room, the location of electrical receptacles and
wall switches, faucets, sinks, showers, tubs, drains, cabinets, and closets.

• Component-level design for software fully describes the internal detail of
each software component.

• Component-level design defines data structures for all local data objects and
algorithmic detail for all processing that occurs within a component and an

Design Model

algorithmic detail for all processing that occurs within a component and an
interface that allows access to all component operations

• The design details of a component can be modelled at many different
levels of abstraction.

• An UML activity diagram can be used to represent processing logic. Detailed
procedural flow for a component can be represented using either
pseudocode or diagrammatic form (e.g., flowchart or box diagram.

ComponentElements

SensorManagement

Sensor

• Deployment-level design elements

– Deployment-level design elements indicate how software functionality
and subsystems will be allocated within the physical computing
environment that will support the software.

– Deployment diagrams shows the computing environment but does not
explicitly indicate configuration details

What is software Architecture
•When you consider the architecture of a building, many different attributes come to
mind. At the most simplistic level, you think about the overall shape of the physical
structure. But in reality, architecture is much more. It is the manner in which the
various components of the building are integrated to form a cohesive whole.
•The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally visible
properties of those components, and the relationships among them

S/W Architecture

•Software architecture enables to
– Analyze the effectiveness of the design in meeting its stated requirements
– Consider architectural alternatives at a stage when making design changes is

still relatively easy
– Reduce the risks associated with the construction of the software

• Architectural design represents the structure of data and program
components that are required to build a computer-based system.

• It considers the architectural style that the system will take, the structure and
properties of the components that constitute the system, and the
interrelationships that occur among all architectural components of a system

• Architecture considers two levels of the design – data design and
architectural design. Data design enables us to represent the data
component of the architecture.

• Architectural design focuses on the representation of the structure of• Architectural design focuses on the representation of the structure of
software components, their properties, and interactions

Why Is Architecture Important?
•Representations of software architecture are an enabler for
communication between all parties, interested in the development of
a computer-based system.
•The architecture highlights early design decisions that will have a
profound impact on all software engineering work that follows and,
as important, on ultimate success of the system as an operational
entity.entity.
•Architecture constitutes a relatively small, intellectually graspable
model of how the system is structured and how its components work
together.

Ex: S/W Architecture Diagram

4

Architectural Descriptions
•Each of us has a mental imageof what theword architecture
means. In reality, however, it means different things to different people.

•The implication is that different stakeholders will see an architecture
from different viewpoints that are driven by different sets of concerns.

•An architectural description is actually a set ofwork productsthat
reflect different views of the system.

Software Architecture

reflect different views of the system.
•Developers want clear, decisive guidance on how to proceed with
design.

•Customers want a clear understanding on the environmental changes
that must occur and assurances that the architecture will meet their
business needs.

Architectural Decisions
•Each view developed as part of an architectural description
addresses a specific stakeholder concern.

•To develop each view (and the architectural description as a whole)
the system architect considers a variety of alternatives and
ultimately decides on the specific architectural features that best
meet the concern.meet the concern.
•Therefore, architectural decisions themselves can be considered
to be one view of the architecture.

•The reasons that decisions were made provide insight into the
structure of a system and its conformance to stakeholder concerns.

1. A Brief Taxonomy ofArchitectural Styles
2. Architectural Patterns
3. Organization and Refinement

S/W Architecture Styles

S/W Architecture Styles of Home

• The software that is built for computer-based systems exhibit one
of many architectural styles

• Each style describes a system category that encompasses
– A set of component types that perform a function required by

the system
– A set of connectors (subroutine call, remote procedure call,

data stream, socket) that enable communication,

S/W Architecture Style

data stream, socket) that enable communication,
coordination, and cooperation among components

– constraints that define how components can be integrated to
form the system;

– semantic models that enable a designer to understand
the overall properties of a system by analyzing the
known properties of its constituent parts

IndependentComponents

Communicating
Processes

EventSystems

Client/Server Peer-to-Peer
Implicit
Invocation

Explicit
Invocation

DataFlow Data-Centered

A Brief Taxonomy of Arct’l Style

10

DataFlow

BatchSequential Pipeand
Filter

VirtualMachine

Interpreter Rule-Based
System

Data-Centered

Repository Blackboard

CallandReturn

MainProgram
andSubroutine

Object
OrientedLayered

RemoteProcedure Call

A Brief Taxonomy of ArchitecturalStyles
•Data-centered architectures.
•A data store (e.g., a file or database) resides at the center of this architecture
and is accessed frequently by other components that update, add, delete, or
otherwise modify data within the store.
•Illustrates a typical data-centered style. Client software accesses a central
repository. In some cases the data repository is passive. That is, client software
accesses the data independent of any changes to the data or the actions of otheraccesses the data independent of any changes to the data or the actions of other
client software. A variation on this approach transforms the repository into
a ͞ďlaĐkďoard

SharedData

ClientA ClientB ClientC

Data Centered Styles

SharedData

ClientD ClientE ClientF

Data-flow architectures

•This architecture is applied when input data are to be transformed througha
series of computational or manipulative components into output data.

•A pipe-and-filter pattern shows has a set of components, called filters,
connected by pipes that transmit data from one component to thenext.

•Each filter works independently of those components upstream and
anddownstream, is designed to expect data input of a certain form,

produces data output (to the next filter) of a specifiedform.produces data output (to the next filter) of a specifiedform.

•However, the filter does not require knowledge of the workings of its
neighboring filters.

Sort Update Report

p

Validate

ipe

Data Flow Styles

Sort Update ReportValidate

fIilter

Call and return architectures.

•This architectural style enables you to achieve a program structure that is
relatively easy to modify and scale.

•A number of substyles exist within this category:

•Main program/subprogram architectures: This
decomposes function into a control hierarchy
invokes a number of program components that

classic program structure
where a program turn

mayinvoke still
other components. Figure illustrates an architecture of this type.

S/W Arct. Styles

other components. Figure illustrates an architecture of this type.

•Remote procedure call architectures: The components of a main
program/subprogram architecture are distributed across multiple
computers on a network.

Mainmodule

SubroutineA
SubroutineB

SubroutineA-1 SubroutineA-2

Call & Return Style

Physicallayer

Datalayer

Networklayer

Transportlayer

Applicationlayer ClassWClassV

ClassZ

16

ClassX ClassY

Object-oriented architectures
• The components of a system encapsulate data and the operations

that must be applied to manipulate the data.
• Communication and coordination between components are

accomplished via message passing.
Layered architectures.

• The basic structure of a layered architecture is illustrated in Figure.

S/W Arct. Styles

• The basic structure of a layered architecture is illustrated in Figure.
• A number of different layers are defined, each accomplishing

operations that progressively become closer to the machine
instruction set.

• At the outer layer, components service user interface operations.
• At the inner layer, components perform operating system

interfacing.
• Intermediate layers provide utility services and application S/W

functions.

Layered Architecture

• As the requirements model is developed, you’ll notice that the
software must address a number of broad problems that span
the entire application.

• For example, the requirements model for virtually every e-
commerce application is faced with the following problem: How
do we offer a broad array of goods to a broad array of
customers and allow those customers to purchase our goods

Architectural Patterns

19

customers and allow those customers to purchase our goods
online?

• Architectural patterns address an application-specific problem
within a specific context and under a set of limitations and
constraints. The pattern proposes an architectural solution that
can serve as the basis for architectural design.

Organization and Refinement
• Because the design process often leaves you with a number of architectural alternatives, it

is important to establish a set of design criteria that can be used to assess an architectural
design that is derived.

Control.
• How is control managed within the architecture? Does a distinct control hierarchy exist, and

if so, what is the role of components within this control hierarchy? How do components
transfer control within the system? How is control shared among components? What is the
control topology (i.e., the geometric form that the control takes)? Is control synchronized or

S/W Architecture

control topology (i.e., the geometric form that the control takes)? Is control synchronized or
do components operate asynchronously?

Data.
• How are data communicated between components? Is the flow of data continuous, or are

data objects passed to the system sporadically? What is the mode of data transfer (i.e., are
data passed from one component to another or are data available globally to be shared
among system components)? Do data components (e.g., a blackboard or repository) exist,
and if so, what is their role? How do functional components interact with data
components? Are data components passive or active (i.e., does the data component
actively interact with other components in the system)? How do data and control interact
within the system?

Architectural Design Steps

• As architectural design begins, the software to be developed must be put
into context—that is, the design should define the externalentities (other
systems, devices, people) that the software interacts with and the nature of
the interaction.

1. Represent the system in context
2. Define archetypes
3. Refine the architecture into components3. Refine the architecture into components
4. Describe instantiations of thesystem

Architectural Design Steps

Represent the System in Context
•Use an architectural context diagram (ACD) that shows

– The identification and flow of all information into and out of a system
– The specification of all interfaces
– Any relevant support processing from/by other systems

•An manner in which software interactsACD models the
with entities external to its boundaries

Architectural Design Steps

I/F I/F I/F

"Super"ordinatesystems

Usedby

Uses

Targetsystem

I/F I/FActors
Peers

"Sub"ordinatesystems

Producesor
consumesProducesor

consumes
Dependson

• An ACD identifies systems that interoperate with the target system
– Super-ordinate systems

• Use target system as part of some higher level processing scheme
– Sub-ordinate systems

• Those systems that are used by the target system and provide data
or processing that are necessary to complete target system
functionality

- Peer-level systemsPeer-level systems
• Interact on a peer-to-peer basis with target system to produced or

consumed by peers and target system
– Actors

• People or devices that interact with target system to produce or
consume data

DefineArchetypes
•Archetypes indicate the important abstractions within the problem domain
(i.e., they model information)
•An archetype is a class or pattern that represents a core abstraction that is
critical to the design of an architecture for the target system
•Only a relatively small set of archetypes is required in order to designeven
relatively complex systems
•The target system architecture is composed of these archetypes

– They represent stable elements of the architecture

Architectural Design Steps

– They represent stable elements of the architecture
– They may be instantiated in different ways based on the behavior of the

system
– They can be derived from the analysis class model

•The can bearchetypes
illustrated

and
in

their relationships
a UML class diagram

• Archetypes in SoftwareArchitecture
• Node -Represents a cohesive collection of input and

output elements of the home security function

• Detector/Sensor - An abstraction that encompasses all sensing equipment
that feeds information into the target system.

• Indicator - An abstraction that represents all mechanisms (e.g., alarmsiren,
flashing lights, bell) for indicating that an alarm condition is occurring.

• Controller - An abstraction that depicts the mechanism that allows the arming or
disarming of a node. If controllers reside on a network, they have the ability to
communicate with one another.

Arct. Types - Attributes

Arct. Types - Methods

Refine the Architecture intoComponents

•Based on the archetypes, the architectural designer refines the software
overall structure andarchitecture into components to illustrate the

architectural style of the system
•These components are derived from various sources

– The application domain provides application components, which are the
domain classes in the analysis model that represent entities in the real world
–The infrastructure domain provides design components (i.e., design classes) that

Arct. Design Steps

–The infrastructure domain provides design components (i.e., design classes) that
enable application components but have no business connection

• Examples: memory management, communication, database, and task
management

•These components are derived from various sources

– Theinterfaces in the ACD imply one or more specialized
components that modelthe data that flow across the interface.

• AMUL class diagram can represent the classes of the refined architecture and their
relationships

Describe Instantiations of the System
•The architectural design that has been modeled to this point is still
relatively high level.
•The context of the system has been represented, archetypes that indicate the
important abstractions within the problem domain have been defined, the
overall structure of the system is apparent, and the major softwarecomponents
have been identified.
However, further refinement (recall that all design is iterative) is still

Architectural Design Steps

•However, further refinement (recall that all design is iterative) is still
necessary.

Architectural Mapping using Data

• Transform mapping is a set of design steps that allows a DFD with
transform flow characteristics to be mapped into a specific architectural
style.
– Information must enter and exit software in an external world. The

externalized data must be converted into an internal form for processing.
Information enters along paths that transform external data into an internal
form. These paths are identified are Incomingflow.

– Incoming data are transformed through a transform center and move along
the paths that now lead ͞out͟ of the software. Data moving along thesepaths are
called Outgoing flow.
the paths that now lead ͞out͟ of the software. Data moving along thesepaths are
called Outgoing flow.

• Transaction Flow
– Information Singledata itemflow Is often characterized by a

called Transaction, that triggers other data flow along one of many paths.
– Transaction flow is characterized by data moving along an incoming path

that converts external world information into a transaction
– The transaction is evaluated and, based on its value, flow along one of

many action paths is initiated. The hub of information from which many
action paths emanate is called a transaction center

Transformflow

Architectural Mapping using Data Flow

Flow characteristics

2

Transaction
flow

Architectural Mapping using Data Flow

• Transform Mapping
1. Review the fundamental system model.
2. Review and refine data flow diagrams for the software
3. Determinewhether the DFD has transform or transaction flow

characteristics.
4. Isolate the transform center by specifying incoming and outgoing

flow boundaries.flow boundaries.
5. Perform ͞first-level factoring
6. Perform ͞second-level factoring
7. Refinethefirst-iteration architecture using design heuristics for

improved software quality.

data flow model

a
b

c

d e f
g h

i
j

Architectural Mapping using Data Flow

Transform Mapping

data flow model

"Transform" mappingx1

x2 x3 x4

b c

a

d e f g i

h j

Architectural Mapping using Data

typical "decision
making" modules

direction of increasing
decision making

Factoring

typical "worker" modules

Architectural Mapping using Data
Flow

First Level Factoring

main programcontroller

input processing outputinput
controller

processing
controller

output
controller

Architectural Mapping using Data

D

C

B
A

A

main

control

SecondLevelFactoring

A

C

B

Dmapping from the
flow boundary outward

Architectural Mapping usingData

• Transaction Mapping
1. Review the fundamental system model.
2. Review and refine data flow diagrams for the software
3. Determine whether the DFD has transform or transaction flow

characteristics.
4. Isolate the transaction center and the flow characteristics along each of

the action paths.
5. Map the DFD in a program structure amenable to transaction processing.5. Map the DFD in a program structure amenable to transaction processing.
6. Factor and refine the transaction structure and the structure of each

action path.
7. Refine the first-iteration architecture using design heuristics for improved

software quality.

read
command

validate
command

determine
type

produce
errormsg

read
fixture
status

determine
setting

format
setting

command

command
invalidcommand

errormsg

status

combined
status

rawsetting

fixturesetting

validcommand

Architectural Mapping using Data Flow

Isolate Flow Paths

type

read
record

format
report

send
control
value

robotcontrol

start/stop

assembly
record

record

calculate
output
values values

report

validcommand

a

b

t

g

d

e

f

i

Data flowmodel

x1mapping

programstructure

Architectural Mapping using Data Flow

Transaction Mapping

h
k

j

l

m

n

b

a

t

x2 x3 x4

d e f g h x3.1 l m n

i j

k

programstructure

Architectural Mapping usingData Flow

process
operator

commands

command

input

controller

determine

type

Map theFlowModel

read

command
validate

command

produceerror

message

fixturestatus

controller

report

generation

controller

send contro

value

each of the action paths mustbe expandedfurther

Architectural Mapping using Data Flow

process

operator

command

s

comman

d input

controller

determin

e

type

Refining

read

comman

d

validate

comman

d

produce

error

messag
e

send

contro

lvalue

read

recor

d

calculat

e

output

values

forma

t

report

fixture

status

controlle

r

report

generatio

n

controller

read
fixture

status

determine

setting

formatsetting

• Refining the Architectural Design
• Any discussion of design refinement should be prefaced with

the following comment:
• You should be concerned with developing a representation of

software that will meet all functional and performance
requirements and merit acceptance based on design measures

Architectural Mapping Using Data Flow

requirements and merit acceptance based on design measures
and heuristics.

• Refinement of software architecture during early
stages of design is to be encouraged.

UNIT -IV
IMPLEMENTATION ANDTESTING

contents

Software testing fundamentals: Internal and external views of testing, white

box testing, basis path testing, control structure testing, black box testing,

regression testing, unit testing, integration testing, validation testing, system

testing and debugging;

Software implementation techniques: Coding Practices, refactoring. Software implementation techniques: Coding Practices, refactoring.

• System testing is a series of different test whose primary purpose is to fully
exercise the computer-based system.

• Each test has a different purpose, all work to verify that system elements
have been properly integrated and perform allocatedfunctions.

1. Recovery testing
– Tests for recovery from system faults
– Forces the software to fail in a variety of ways and verifies that

recovery is properly performed

System Testing

recovery is properly performed
– Tests reinitialization, checkpointing mechanisms, data recovery, and

restart for correctness
– If recovery is automatic, reinitialization, checkpointing mechanisms, data

recovery, and restart are evaluated for correctness
– If recovery requires human intervention, the mean-time-to-repair is

evaluated to determine whether it is within acceptable limits

2. Security testing
– Verifies that protection mechanisms built into a system will, in fact,

protect it from improper access
– During security testing, the tester plays the role of the individual

who desires to penetrate the system.
– Anything goes! The tester may attempt to acquire passwords through

external clerical means.
– may attack the system with custom software designed to break down any– may attack the system with custom software designed to break down any

defenses that have been constructed
3. Stress testing

– Executes a system in a manner that demands resources in abnormal
quantity, frequency, or volume.

– Stress tests are designed to confront programs with abnormal situations. In
essence, the tester who performs stress testing asks: How high can we
crank this up before it fails?

– A variation of stress testing is a technique called sensitivitytesting.

• A very small range of data contained within the bounds of valid data for a
program may cause extreme and even erroneous processing or profound
performance degradation.

• Sensitivity testing attempts to uncover data combinations within valid input
classes that may cause instability or improper processing.

4. Performance Testing
• Performance testing is designed to test the run-time performance of

software within the context of an integrated system.software within the context of an integrated system.
• Performance testing occurs throughout all steps in the testing process.

Even at the unit level, the performance of an individual module may be
assessed as tests are conducted

• Performance tests are often coupled with stress testing and usually
requires both hardware and software instrumentation.

• That is, it is often necessary to measure resource utilization
(e.g., processor cycles) in an exacting fashion

• Debugging occurs as a consequence of successful testing. When a test case
uncovers an error, debugging is an action that results in the removal of the error.

1. The debugging process
The debugging process attempts to match symptom with cause, thereby
leading to error correction.
The debugging process will usually have one of two outcomes:

(1) the cause will be found and corrected or
(2)the cause will not be found. In the latter case, the person performing

The Art of Debugging

(2)the cause will not be found. In the latter case, the person performing
debugging may suspect a cause, design a test case to help validate that
suspicion, and work toward error correction in an iterative fashion.

– Debugging process beings with the execution of a test case. Results are
assessed and a lack of correspondence between expected and actual
performance is observed

– Debugging attempts to match symptomwith cause, thereby leading to error
correction .

The Art of Debugging

• Characteristics of bugs
– The symptom and the cause may be geographically remote.
– The symptom may disappear (temporarily) when another error is

corrected
– The symptom may actually be caused by non-errors
– The symptom may be caused by human error that is not easily

traced
– The symptom my be a result of timing problems, rather than processing– The symptom my be a result of timing problems, rather than processing

problems
– It may be difficult to accurately reproduce input conditions
– The symptom may be intermittent.
– The symptom may be due to causes that are distributed across a

number of tasks running on different processors

2. Psychological Considerations
• Unfortunately, there appears to be some evidence that debugging prowess is

an innate human trait. Some people are good at it and others are not.
• Although experimental evidence on debugging is open to many

interpretations, large variances in debugging ability have been reported for
programmers with the same education and experience.

3. Debugging Strategies
• Objective of debugging is to find and correct the cause of a software error or• Objective of debugging is to find and correct the cause of a software error or

defect.
• Bugs are found by a combination of systematic evaluation, intuition, and luck.
• Debugging methods and tools are not a substitute for careful evaluation

based on a complete design model and clear source code
• There are three main debugging strategies

1. Brute force 2. Backtracking 3. Cause elimination

• BruteForce
– Most commonly used and least efficient method for isolating the causeof

a software error
– Used when all else fails
– Involves the use of memory dumps, run-time traces, and output

statements
– Leadsmanytimestowastedeffortandtime– Leadsmanytimestowastedeffortandtime

• Backtracking
– Can be used successfully in small programs
– The method starts at the location where a symptom has been uncovered
– The source code is then traced backward (manually) until the locationof

the cause is found
– In large programs, the number of potential backward paths may become

unmanageably large

• Cause Elimination

– Involves the use of induction or deduction and introduces the concept of
binary partitioning

• Induction (specific to general): Prove that a specific starting valueis
true; then prove the general case is true

(general to specific): Show that
specific conclusion follows from a set of general premises.

• Deduction
a

– Data related to the error occurrence are organized to isolate potential causes

– A cause hypothesis is devised, and the aforementioned data are used to
prove or disprove the hypothesis

a list of all possible causes is developed, and tests

– Alternatively, to eliminate each cause are conducted

– If initial tests indicate that a particular cause hypothesis showspromise,
data are refined in an attempt to isolate the bug

4. Correcting the Error
• Once a bug has been found, it must be corrected.
• But the correction of a bug can introduce other errors and therefore do more harmthan

good.
• Van Vleck suggests three simple questions that you should ask before making the

correction that removes the cause of a bug.
Three Questions to ask Before Correcting the Error

– Is the cause of the bug reproduced in another part of theprogram?– Is the cause of the bug reproduced in another part of theprogram?
• Similar errors may be occurring in other parts of the program

– What next bug might be introduced by the fix that I’ŵ about tomake?
• The source code (and even the design) should be studied to assess the

coupling of logic and data structures related to the fix
– What could we have done to prevent this bug in the first place?

• This is the first step toward software quality assurance
• By correcting the process as well as the product, the bug will be removed

from the current program and may be eliminated from all future programs

CodingPractices:

• Best coding practices are a set of informal rules that the software
development community has learned over time which can help improve the
quality of software
•Many computer programs remain in use for far longer than the
authors ever envisaged (sometimes 40 years or more) so any rules

original
need to

facilitate both initial development and subsequent maintenance and
enhancement by people other than the original authors.

Software implementation

•In Ninety-ninety rule, Tim Cargill is credited with this explanation as to why
programming projects often run late: "The first 90% of the code accounts for
the first 90% of the development time. The remaining 10% of the code
accounts for the other 90% of the development time." Any guidance which
can redress this lack of foresight is worth considering.
•The size of a project or program has a significant effect on error
rates, programmer productivity, and the amount of management needed
a) Maintainability b) Dependability c)Efficiency d) Usability.

Refactoring:
• Refactoring is usually motivated by noticing a codesmell.
• For example the method at hand may be very long, or it may be a near duplicate of another

nearby method.
• Once recognized, such problems can be addressed by refactoring the source code, or

transforming it into a new form that behaves the same as before but that no longer"smells".
There are two general categories of benefits to the activity ofrefactoring.
Maintainability. It is easier to fix bugs because the source code is easy to read and the
intent of its author is easy to grasp. This might be achieved by reducing large monolithic
routines into a set of individually concise, well-named, single-purpose methods. It might
be achieved by moving a method to a more appropriate class, or by removing misleading

Software implementation Techniques

1

be achieved by moving a method to a more appropriate class, or by removing misleading
comments.
Extensibility. It is easier to extend the capabilities of the application if it uses recognizable
design patterns, and it provides some flexibility where none before may have existed.

• Before applying a refactoring to a section of code, a solid set of automatic unit tests is
needed. The tests are used to demonstrate that the behavior of the module is correct
before the refactoring.

• The tests can never prove that there are no bugs, but the important point is that this
process can be cost-effective: good unit tests can catch enough errors to make them
worthwhile and to make refactoring safe enough.

• Organising, planning and scheduling software projects
• Objectives

– To introduce software project management and to describe
its distinctive characteristics

– To discuss project planning and the planning process
– To showhow graphical schedule representations are used

by project management

Project Management

by project management
– To discuss the notion of risks and the risk management

process

UNIT -V
PROJECT MANAGEMENTPROJECT MANAGEMENT

contents

Estimation: FP based, LOC based, make/buy decision COCOMO II:
Planning, project plan, planning process, RFP risk management,
identification, projection;
RMMM: Scheduling and tracking, relationship between people and effort,
task set and network, scheduling
EVA: Process and project metrics.EVA: Process and project metrics.

• Concerned with activities involved in ensuring that software is
delivered
– on time
– within the budget
– in accordance with the requirements

• Project management is needed because software

Software Project

• Project management is needed because software
development is always subject to budget and schedule
constraints
– Set by the development organisation or the customer

• The product is intangible
• The product is uniquely flexible
• The product is uniquely complex
• Software engineering is not recognized as an engineering

discipline with the same status as mechanical, electrical
engineering, etc.

Software Management

engineering, etc.
• The software development process is not standardised
• Many software projects are one-off projects

• Proposal writing

• Project planning andscheduling

• Project costing

• Project monitoring andreviews

• Personnel selection andevaluation

Management Activities

• Personnel selection andevaluation

• Report writing andpresentations

• May not be possible to appoint the ideal people to work on a
project
– Project budget may not allow for the use of highly-paid staff
– Staff with the appropriate experience may not be available

– An organisation
Employee skills

may wish to develop
on a software project

• Here’s Bob. He’s a sophomore. He’ll be a member of your HazMat
Rover team. He doesn’t know much yet, but he can brew a mean

Project Staffing

Rover team. He doesn’t know much yet, but he can brew a mean
cup of coffee and has a great personality.

• Managers have to work within these constraints

– especially when (as is currently the case) there is an
international shortage of skilled ITstaff

• Probably the most time-consuming project management
activity

• Continuous activity from initial concept through to system
delivery

• Plans must be regularly revised as new information become
available

Project Planning

available
–Beware of grumbling developers
• Various different types of plan may be developed to support

the main Software project plan that is concerned with
schedule and budget.

Plan Description

Quality plan Describes the quality procedures and
standards that will be used in a project

Validation plan Describes the approach, resources and
schedule used for system validation.

Configuration management
plan

Describes the configuration management
procedures and structures to be used.

Types of Project Plan

Maintenance plan Predicts the maintenance requirements of
the system, maintenance costs and effort
required.

Staff development plan Describeshow the skill and
experience of the project team
members will be developed.

• Software cost and effort estimation will never be an exact science. Too many
variables—human, technical, environmental, political—can affect the ultimate cost
of software and effort applied to develop it.

• To achieve reliable cost and effort estimates, a number of optionsarise:
1. Delay estimation until late in the project (obviously, we can achieve 100

percent accurate estimates after the project iscomplete!).
2. Base estimates on similar projects that have already been completed.
3. Use relatively simple decomposition techniques to generateproject

cost and effort estimates.

Estimation

cost and effort estimates.
4. Use one or more empirical models for software cost and effortestimation.

• Unfortunately, the first option, however attractive, is not practical. Cost estimates
must be provided up-front. However, recognize that the longer you wait, the more
you know, and the more you know, the less likely you are to make serious errors in
your estimates.

• The second option can work reasonably well, if the current project is quite similar to
past efforts and other project influences (e.g., the customer, business conditions, the
software engineering environment, deadlines) are roughly equivalent. Unfortunately,
past experience has not always been a good indicator of future results.

Function Point based Estimation :
• A Function Point (FP) is a unit of measurement to express the amount of business

functionality, an information system (as a product) provides to a user. FPs measure
software size. They are widely accepted as an industry standard for functional sizing

• Function point analysis is a method of quantifying the size and complexity of a software
• system in terms of the functions that the system delivers to the user
• It is Independent of the computer language, development methodology, technology or

capability of the project team used to develop the application
• Function point analysis is designed to measure business applications (not scientific

Function point Based Estimation

• Function point analysis is designed to measure business applications (not scientific
• applications)
• Scientific applications generally deal with complex algorithms that the function point

method is not designed to handle
• Function points are independent of the language, tools, or methodologies used for

implementation (ex. Do not take into consideration programming languages, DBMS, or
processing hardware)

• Function points can be estimated early in analysis and design

Uses of Function Point:
•Measure productivity (ex. Number of function points achieved per work hour
expended)
•Estimate development and support (cost benefit analysis, staffing estimation)
•Monitor outsourcing agreements (Ensure that the outsourcing entity delivers
the level of support and productivity gains that they promise)

•Drive is related business decisions(Allow decisions regarding the retaining,
retiring and redesign of applications to be made)retiring and redesign of applications to be made)

•Normalize other measures (Other measures, such as defects, frequently
require the size in function points)

LOC based estimation
• Source lines of code (SLOC), also known as lines of code (LOC), is a software metric

used to measure the size of a computer program by counting the number of lines in
the text of the program's source code.

• SLOC is typically used to predict the amount of effort that will be required to develop a
program, as well as to estimate programming productivity or maintainability once the
software is produced.

• Lines used for commenting the code and header file areignored.
Two major types of LOC:

LOC Base Estimation

Two major types of LOC:
1.Physical LOC

• Physical LOC is the count of lines in the text of the program's source codeincluding
comment lines.

• Blank lines are also included unless the lines of code in a section consists of more
than 25% blank lines.

1.Logical LOC
• Logical LOC attempts to measure the number of executable statements, but their

specific definitions are tied to specific computerlanguages.
• Ex: Logical LOC measure for C-like programming languages is the number of

statement-terminating semicolons(;)

The problems of lines of code (LOC)
– Different languages lead to different lengths of code
– It is not clear how to count lines of code
–Areport, screen, or GUI generator can generate thousands of lines

of code in minutes
–Depending on the application, the complexity of code is different.

• In many software application areas, it is often more cost effective to acquire rather
than develop computer software.

• Software engineering managers are faced with a make/ buy decision that can
be further complicated by a number of acquisitionoptions.
(1) Software may be purchased (or licensed)off-the-shelf
(2) full-experience͟ or partial experience͟ software components may be acquired

and then modified and integrated to meet specific needs.
(3) Software may be custom built by an outside contractor to meet the purchaser’s

specifications.

Make / Buy Decision

specifications.
• In the final analysis the make/buy decision is made based on thefollowing

conditions:
(1) Will the delivery date of the software product be sooner than that for internally

developed software?
(2) Will the cost of acquisition plus the cost of customization be less than the

costof developing the software internally?
(3) Will the cost of outside support (e.g., a maintenance contract) be less than the

cost of internal support?

Creating a Decision Tree:
•The steps just described can be augmented using statistical techniques
such as decision tree analysis.
•For example, considered the figure below it depicts a decision tree for a software
based system X. In this case, the software engineering organizationcan

(1) build system X from scratch
(2) reuse existing partial-experience components to construct the system
(3) buy an available software product and modify it to meet local needs, or(3) buy an available software product and modify it to meet local needs, or
(4) contract the software development to an outsidevendor.

If the system is to be built from scratch, there is a 70 percent probability that
the job will be difficult.
The expected value for cost, computed along any branch of the decision tree,is:
where i is the decision tree path. For the build path.

• It is important to note, however, that many criteria —not justcost—must be
considered during the decision-making process. Availability, experience of the

and the
ultimate

developer/ vendor/contractor, conformance to requirements, local politics ,͞
likelihood of change are but a few of the criteria that may affect the
decision to build, reuse, buy, or contract.

Outsourcing
• Sooner or later, every company that develops computer software asks a fundamental

question: ͞Is there a way that we can get the software and systems we need at a lower
price?

• The answer to this question is not a simple one, and the emotional discussions that
occur in response to the question always lead to a single word: outsourcing.
Regardless of the breadth of focus, the outsourcing decision is often a financial one.

• Outsourcing is extremely simple. Software engineering activities are contracted to a
third party who does the work at lower cost and, hopefully, higherquality.

• The decision to outsource can be either strategic ortactical.• The decision to outsource can be either strategic ortactical.
• At the strategic level, business managers consider whether a significant portion of

all software work can be contracted toothers.
• At the tactical level, a project manager determines whether part or all of a project

can be best accomplished by subcontracting the softwarework.
• On the positive side, cost savings can usually be achieved by reducing the number

of software people and the facilities (e.g., computers, infrastructure) that support
them.

• On the negative side, a company loses some control over the software that it needs.

• BarryBoehm[Boe81]introduceda hierarchy ofsoftwareestimationmodels bearingthe
name COCOMO,for Constructive Cost MOdel.Theoriginal COCOMO model became

estimation models inthe

models that

one of the most widely used and discussed software cost
industry. It has evolved into a more
comprehensive estimation model, calledCOCOMOII.

•COCOMOII is actually a hierarchy of estimation
following areas:

address the

of software
software and

Application composition model. Used during the early stages
engineering, when prototyping of user interfaces, consideration of

COCOMO - II

software and
of technology

engineering, when prototyping of user interfaces, consideration of
system interaction, assessment of performance, and evaluation
maturity are paramount.

Early design stage model. Used once requirements have been stabilized and basic
software architecture has been established.

Post-architecture-stage model. Used during the construction of the software.

•The COCOMO II models require sizing information.

•Three different sizing options are available as part of the model hierarchy:
object points, function points, and lines of source code.

• The COCOMO II application composition model uses object points :

• The object point is an indirect software measure that is computed using
counts of the number of

(1) screens (at the user interface),

(2) reports

(3) components likely to be required to build the application.

• Each object instance (e.g., a screen or report) is classified into one of three
complexity levels (i.e., simple, medium, or difficult).complexity levels (i.e., simple, medium, or difficult).

determined, the number ofscreens, reports, and• Once complexity is
components are weighted according to the table given below

rate has been det er

• When component-based development or general software reuse is to be
applied, the percent of reuse (%reuse) is estimated and the object point
count is adjusted:

where NOP is defined as new object points.

• To derive an estimate of effort based on the computed NOP value, a
͞productivity rate͟ must bederived.

• Once the productivity mined, an estimate of projectrate has been det er• Once the productivity mined, an estimate of project
effort is computed using,

• The Project Planning Phase is the second phase in the project life cycle. It
involves creating of a set of plans to help guide your team
through the execution and closure phases of the project.

• The plans created during this phase will help you to manage time, cost, quality,
change, risk and issues. They will also help you manage staff and external
suppliers, to ensure that you deliver the project on time and within budget.

• The objective of software project planning is to provide a framework that
enables the manager to make reasonable estimates of resources, cost, and
schedule.

Project Planning Process

schedule.
• In addition,estimates should attempt to define best-case and worst-case

scenarios so that project outcomes can be bounded.
• Although there is an inherent degree of uncertainty, the S/W team

embarks on a plan that has been established as a consequence of these tasks.
• Therefore, the plan must be adapted and updated as the project proceeds.
• The Project Planning Phase is often the most challenging phase for a Project

Manager, as you need to make an educated guess of the staff, resources and
equipment needed to complete your project. You may also need to plan your
communications and procurement activities, as well as contract any 3rd party
suppliers.

• A Hazardis
Any real or potential condition that can cause injury, illness, or death to personnel;

damage to or loss of a system, equipment or property; or damage to the environment.
Simpler A threat of harm. A hazard can lead to one or several consequences.

• Risk is
The expectation of a loss or damage (consequence) The combined severityand

probability of a loss The long term rate of loss
A potential problem (leading to a loss) that may - or may not occur in the future.

Risk Management

• Risk Management is A set of practices and support tools to identify, analyze, and
treat risks explicitly.

• Treating a risk means understanding it better, avoiding or reducing it (risk mitigation),
or preparing for the risk to materialize.

• Risk management tries to reduce the probability of a risk to occur and theimpact
(loss) caused by risks.

• Reactive versus Proactive Risk Strategies
• Software risks

Reactive versus Proactive Risk Strategies
• The majority of software teams rely solely on reactive risk strategies. At best, a reactive

strategy monitors the project for likely risks. Resources are set aside to deal with them,
should they become actual problems.

• The software team does nothing about risks until something goes wrong. Then, the team
flies into action in an attempt to correct the problem rapidly. This is often called a fire-flies into action in an attempt to correct the problem rapidly. This is often called a fire-
fighting mode.

• A considerably more intelligent strategy for risk management is to be proactive.
• A proactive strategy begins long before technical work is initiated. Potential risks are

identified, their probability and impact are assessed, and they are ranked by importance.
Then,

• The software team establishes a plan for managing risk. The primary objective is to avoid
risk, but because not all risks can be avoided, the team works to develop a contingency
plan that will enable it to respond in a controlled and effective manner.

Software Risks

Risk always involves two characteristics:
• Risk always involves two characteristics: uncertainty the risk may or may not

happen; that is, there are no 100 percent probable risks and loss if the risk
becomes a reality, unwanted consequences or losses will occur.

• When risks are analyzed, it is important to quantify the level of uncertainty and
the degree of loss associated with each risk.

•Different categories of risks are follows:•Different categories of risks are follows:
1.Project risks
 Threaten the project plan. That is, if project risks become real, it is likely

that the project schedule will slip and that costs will increase.
 Project risks identify potential budgetary, schedule, personnel (staffing and

organization), resource, stakeholder, and requirements problems and their
impact on a software project.

2. Technical risks
 Threaten the quality and timeliness of the software to be produced.
 If a technical risk becomes a reality, implementation may become difficult or

impossible. Technical risks identify potential design, implementation, interface,
verification, and maintenance problems.

 In addition, specification ambiguity, technical uncertainty, technical obsolescence,
and ͞leading-edge͟ technology are also risk factors. Technical risks occur because the
problem is harder to solve than you thought it wouldbe.

3. Business risks
 Business risks threaten the viability of the software to be built and often jeopardize the

project or the product.project or the product.
 Candidates for the top five business risks are

(1) building an excellent product or system that no one really wants (market risk)
(2) building a product that no longer fits into the overall business strategy for

the company (strategic risk)
(3) building a product that the sales force doesn’t understand how tosell (sales risk)
(4) losing the support of senior management due to a change in focus or a change in

people (management risk)
(5) losing budgetary or personnel commitment (budget risks).

Another general categorization of risks has been proposed by Charette.
1.Known risks are those that can be uncovered after careful evaluation of the
project plan, the business and technical environment in which the project is being
developed, and other reliable information sources (e.g., unrealistic delivery date,
lack of documented requirements or software scope, poor development
environment).
2.Predictable risks are extrapolated from past project experience (e.g., staff
turnover, poor communication with the customer, dilution of staff effort as ongoing

Software Risk

turnover, poor communication with the customer, dilution of staff effort as ongoing
maintenance requests are serviced).
3.Unpredictable risks are the joker in the deck. They can and do occur, but they are
extremely difficult to identify in advance.

• Risk identification is a systematic attempt to specify threats to the project
plan (estimates, schedule, resource loading, etc.).

• By identifying known and predictable risks, the project manager takes a first
step toward avoiding them when possible and controlling them when
necessary.

• There are two distinct types of risks: generic risks and product-
specific risks.

• Generic risks are a potential threat to every software project.

Risk Identification

• Generic risks are a potential threat to every software project.

• Product-specific risks can be identified only by those with a
clear understanding of the technology, the people, and the environment that
is specific to the software that is to be built.

• To identify product-specific risks, the project plan and the
software statement of scope are examined, and an answer to the following
question is developed: ͞What special characteristics of this product maythreaten
our project plan?

• One method for identifying risks is to create a risk itemchecklist.
• The checklist can be used for risk identification and focuses on some subset of

known and predictable risks in the following genericsubcategories:
• Product size—risks associated with the overall size of the software to be built

or modified.
• Business impact—risks associated with constraints imposed by management or

the marketplace.
• Stakeholder characteristics—risks associated with the sophistication of the

stakeholders and the deǀeloper’s ability to communicate with stakeholders in astakeholders and the deǀeloper’s ability to communicate with stakeholders in a
timely manner.

• Process definition—risks associated with the degree to which the software
process has been defined and is followed by the development organization. •
Development environment—risks associated with the availability and quality of
the tools to be used to build theproduct.

• Technology to be built—risks associated with the complexity of the system to
be built and the n͞eǁnes͟ of the technology that is packaged by thesystem.

• Staff size and experience—risks associated with the overall technical and
project experience of the software engineers who will do thework.

Assessing Overall Project Risk
The following questions have been derived from risk data obtained by surveying
experienced software project managers in different parts of the world.
1. Have top software and customer managers formally committed to supportthe

project?
2. Are end users enthusiastically committed to the project and the system/ product

to be built?
3. Are requirements fully understood by the software engineering team

and its customers?and its customers?
4. Have customers been involved fully in the definition ofrequirements?
5. Do end users have realistic expectations?
6. Is the project scope stable?
7. Does the software engineering team have the right mix ofskills?
8. Are project requirementsstable?
9. Doestheprojectteamhaveexperiencewiththetechnologytobeimplemented?
10.Is the number of people on the project team adequate to do the job?
11.Do all customer/user constituencies agree on the importance of the project and on

the requirements for the system/product to bebuilt

• The project manager identify the risk drivers that affect
software risk components— performance, cost, support, and schedule.

• The risk components are defined in the following manner:
• Performance risk—the degree of uncertainty that the product will meet

Its requirements and be fit for its intended use.
• Cost risk—the degree ofuncertainty that the project budget willbe maintained.
• Support risk—the degree of uncertainty that the resultant software willSupport risk—the degree of uncertainty that the resultant software will

be easy to correct, adapt, and enhance.
• Schedule risk—the degree of uncertainty that the project schedule will

be maintained and that the product will be delivered on time.
• The impact of each risk driver on the risk component is divided into one of
four impact categories—negligible, marginal, critical, or catastrophic.

• Risk projection, also called risk estimation, attempts to rate each risk in two
ways.

(1) The likelihood or probability that the risk is realand
(2) The consequences of the problems associated with the risk, should it

occur
Managers and technical staff to perform four risk projection steps:

1. Establish a scale that reflects the perceived likelihood of a risk.
2. Delineate the consequences of the risk.

Risk Projection

2. Delineate the consequences of the risk.
3. Estimate the impact of the risk on the project and the product.
4. Assess the overall accuracy of the risk projection so that there will be

no misunderstandings.
The intent of these steps is to consider risks in a manner that leads to
prioritization. No software team has the resources to address every possible
risk with the same degree of rigor.

By prioritizing risks, you can allocate resources where they will have the most
impact.

1. Developing a Risk Table
• A risk table provides you with a simple technique for risk projection. Asample

risk table is illustrated in Figure.
• List all the risks (no matter how remote) in the first column of the table.
• Each risk is categorized in the second column (e.g., PS implies a project size

risk, BU implies a business risk).
• The probability of occurrence of each risk is entered in the next column of the

table. The probability value for each risk can be estimated by team members
individually.individually.

• Next, the impact of each risk is assessed. Each risk component is assessed,
and an impact category is determined.

• The categories for each of the four risk components—performance,support,
cost, and schedule—are averaged to determine an overall impact value.
Once the first four columns of the risk table have been completed, the table is
sorted by probability and by impact.

• High-probability, high-impact risks percolate to the top of the table, and low-
probability risks drop to the bottom.

Sample Risk table priorto sorting

2. Assessing RiskImpact
•Three factors affect the consequences that are likely if a risk does occur: its nature,
its scope, and its timing.
•The nature of the risk indicates the problems that are likely if it occurs. For
example, a poorly defined external interface to customer hardware (a technical risk)
will preclude early design and testing and will likely lead to system integration
problems late in a project.
•The scope of a risk combines the severity (just how serious is it?) with its overall
distribution (how much of the project will be affected or how many stakeholders
The scope of a risk combines the severity (just how serious is it?) with its overall

distribution (how much of the project will be affected or how many stakeholders
are harmed?).
•The timing of a risk considers when and for how long the impact will be felt. In
most cases, you want the ͞bad to occur as soon as possible, but in some
longer the delay, the better.
•The overall risk exposure RE is determined using the following relationship

RE= P * C
where P is the probability of occurrence for a risk, and C is the cost to the project
should the risk occur.

Risk Mitigation, Monitoring,and Management

• An effective strategy for dealing with risk must consider three issues
(Note: these are not mutually exclusive)

– Risk mitigation
– Risk monitoring
– Risk management and contingency planning
Risk mitigation: is the primary strategy and is achieved through a plan
– Example: Risk of high staff turnover

•

– Example: Risk of high staff turnover
•

•
•

Meet with current staff to determine causes for turnover (e.g., poor
working conditions, low pay, competitive job market)
Mitigate those causes that are under our control before the project starts
Once the project commences, assume turnover will occur and develop
techniques to ensure continuity when people leave

• Organize project teams so that information about each
development activity is widely dispersed

• Define documentation standards and establish mechanisms to
ensure that documents are developed in a timely manner.

• Conduct peer reviews of all work (so that more than one person is
"up to speed")

• Assign a backup staff member for every critical technologist.
• During risk monitoring, the project manager monitors factors

that may provide an indication of whether a risk is becoming more
or less likely

• Risk management and contingency planning assume that
mitigation efforts have failed and that the risk has become a
reality.

•

• RMMM steps incur additional project cost
– Large projects may have identified 30 – 40 risks
• Risk is not limited to the software project itself

– Risks can occur after the software has been delivered to the user
Software safety and hazard analysis

– These are software quality assurance activities that focus on the
identification and assessment of potential hazards that may affectidentification and assessment of potential hazards that may affect
software negatively and cause an entire system to fail

software
control

– If hazards can be identified early in the software process,
design features can be specified that will either eliminate or
potential hazards.

• It is important to note that risk mitigation, monitoring,
and
management (RMMM) steps incur additional project cost

• The RMMM plan may be a part of the software developmentplan or may be a
separate document

• Once RMMM has been documented and the project has begun, the risk
mitigation, and monitoringsteps

– Risk mitigation is a problem avoidance activity

– Risk monitoring is a project tracking activity

• Risk monitoring has threeobjectives

The RMMM Plan

aversion steps defined for

• Risk monitoring has threeobjectives

– To assess whether predicted risks do, in fact, occur

– Toensure that risk are
the risk being properly applied

– To collect information that can be used for future riskanalysis

The findings from risk monitoring may allow the project manager to
ascertain what risks caused which problems throughout theproject

 Youselected an appropriate process model.

 You’ǀe identified the software engineering tasks that have to
be performed.

 You estimated the amount of work and the number of people
you know the deadline, you’ǀe even considered the risks.

Now it’s time to connect the dots. That is, you have to create a

enable you to getnetwork of software engineering tasks that will

What is Project?

enable you to getnetwork of software engineering tasks that will
the job done on time.

Once the network is created, you have to assign responsibility for
adapt the network as riskseach task, make sure it gets done, and

become reality.

 Why it’s Important?
 In order to build a complex system, many software engineering

tasks
occur in parallel.

 The result of work performed during one task may have a profound
effect on work to be conducted in another task.

 These interdependencies are very difficult to understand without a
schedule.

 lt’s also virtually impossible to assess progress on a moderate or large lt’s also virtually impossible to assess progress on a moderate or large
software project without a detailedschedule

 What are the steps?

 The software engineering tasks dictated by the software proposed
model are refined for the functionality to be built.

 Effort and duration are allocated to each task and a task network
is created in a manner that enables the software team to meet the
delivery deadline established.

Basic Concept of Project Scheduling

 An unrealistic deadline established by someone outside the software development
group and forced on managers and practitioner's within thegroup.

 Changing customer requirements that are not reflected in schedulechanges.
 An honest underestimate of the amount of effort and/or the number of

resources that will be required to do the job.
 Predictable and/or unpredictable risks that were not considered when the project

commenced.
 Technical difficulties that could not have been foreseen in advance.

What is Project Scheduling?

Why should we do when the management demands that we make a dead line I
impossible?
 Perform a detailed estimate using historical data from past projects.
 Determine the estimated effort and duration for theproject.
 Using an incremental process model, develop a software engineering strategy that will

deliver critical functionality by the imposed deadline, but delay other functionality until
later. Document the plan.

 Meet with the customer and (using the detailed estimate),explain why the imposed
deadline is unrealistic.

•Project Scheduling
•Basic Principles
•The Relationship Between People and Effort
•Effort Distribution

• Software project scheduling is an action that distributes estimated efforts
across the planned project duration by allocating the effort to specific software across the planned project duration by allocating the effort to specific software
engineering tasks.

• During early stages of project planning, a macroscopic schedule is developed.
• As the project gets under way, each entry on the macroscopic schedule is

refined into a detailed schedule.

 Basic Principles of ProjectScheduling.
1. Compartmentalization: The project must be compartmentalized into a

number of manageable activities and tasks. To accomplish
compartmentalization, both the product and the process are refined.

2. Interdependency: The interdependency of each compartmentalized activity
or task must be determined. Some tasks must occur in sequence, while others
can occur in parallel. Other activities can occur independently.

3. Time allocation: Each task to be scheduled must be allocated some number3. Time allocation: Each task to be scheduled must be allocated some number
of work units (e.g., persoŶ-days of effort). In addition, each task must be
assigned a start date and a completion date. whether work will be conducted
on a full-time or part-time basis.

4. Effort validation: Every project has a defined number of people on the
software team. The project manager must ensure that no more than the
allocated number of people have been scheduled at any given time.

5. Defined responsibilities. Every task that is scheduled should be assigned to a
specific team member.

6. Defined outcomes: Every task that is scheduled should have a defined
outcome. For software projects, the outcome is normally a work product
(e.g., the design of a component) or a part of a work product. Work
products are often combined in deliverables.

7. Defined milestones: Every task or group of tasks should be associated with
a project milestone. A milestone is accomplished when one or more work
products has been reviewed for quality and has been approved.

Each of these principles is applied as the project scheduleevolves.Each of these principles is applied as the project scheduleevolves.

TheRelationship BetweenPeople and Effort

•The Relationship Between People and effort

•In a small software development project a single person can analyze requirements,
perform design, generate code, and conduct tests. As the size of a project
increases, more people must become involved.

•There is a common myth that is still believed by many managers who are
responsible for software development projects: ͞If we fall behind schedule, wecan
always add more programmers and catch up later in the project.always add more programmers and catch up later in the project.
•Unfortunately, adding people late in a project often has a disruptive effect on the
project, causing schedules to slip even further. The people who are added must
learn the system, and the people who teach them are the same people who were
doing the work.
•While teaching, no work is done, and the project falls further behind. In
addition to the time it takes to learn the system, more people.
•Although communication is absolutely essential to successful software
development, every new communication path requires additional effort and
therefore additional time.

• A recommended distribution of effort across the software process is often referred toas
the 40–20–40 rule.

• Forty percent of all effort is allocated to frontend analysis and design. A similar
percentage is applied to back-end testing. You can correctly infer that coding (20 percent
of effort) is deemphasized.

• Work expended on project planning rarely accounts for more than 2 to 3 percent of
effort, unless the plan commits an organization to large expenditures with high risk.

• Customer communication and requirements analysis may comprise 10 to 25 percent of
project effort.

• Effort expended on analysis or prototyping should increase in direct proportion with

Effort Distribution

• Effort expended on analysis or prototyping should increase in direct proportion with
project size and complexity.

• A range of 20 to 25 percent of effort is normally applied to software design.
Time expended for design review and subsequent iteration must also be considered.

• Because of the effort applied to software design, code should follow with
relatively little difficulty.

• A range of 15 to 20 percent of overall effort can be achieved. Testing andsubsequent
debugging can account for 30 to 40 percent of software development effort.

• The criticality of the software often dictates the amount of testing that is required. If
software is human rated (i.e., software failure can result in loss of life), even higher
percentages are typical.

• A task set is a collection of software engineering work tasks, milestones, work
products, and quality assurance filters that must be accomplished to complete a
particular project.

• The task set must provide enough discipline to achieve high software quality.
But, at the same time, it must not burden the project team with unnecessary
work.

• Most software organizations encounter the followingprojects:
1. Concept development projects that are initiated to explore some new

business concept or application of some newtechnology.

Defining a task for the Software

business concept or application of some newtechnology.
2. New application development projects that are undertaken as a

consequence of a specific customerrequest.
3. Application enhancement projects that occur when existing software

undergoes major modifications to function, performance, or interfaces that
are observable by the end user.

4. Application maintenance projects that correct, adapt, or extend existing
software in ways that may not be immediately obvious to the end user.

5. Reengineering projects that are undertaken with the intent of rebuilding
an
existing (legacy) system in whole or in part.

1. A Task SetExample
• Concept development projects are initiated when the potential for some

new technology must be explored. There is no certainty that the
technology will be applicable, but a customer (e.g., marketing) believes
that potential benefit exists.

2. Refinement of Software Engineering Actions
• The software engineering actions are used to define a macroscopic

schedule for a project.schedule for a project.
• The macroscopic schedule must be refined to create a detailed project

schedule.
• Refinement begins by taking each action and decomposing it into a set of

tasks (with related work products and milestones).

• A task network, also called an activity network, is a graphic representationof
the task flow for a project.

• It is sometimes used as the mechanism through which task sequence
and dependencies are input to an automated project scheduling tool.

• In its simplest form (used when creating a macroscopic schedule), the task
network depicts major software engineering actions. Figure below shows a
schematic task network for a concept development project.

• It is important to note that the task network shown in Figure 27.2 is

Defining a task Network

• It is important to note that the task network shown in Figure 27.2 is
macroscopic. In a detailed task network (a precursor to a detailed schedule),
each action shown in the figure would be expanded.

• Scheduling of a software project does not differ greatly from scheduling of any
multitask engineering effort. Therefore, generalized project scheduling tools
and techniques can be applied with little modification for software projects.

Program evaluation and review technique and the critical path method (CPM) are
two project scheduling methods that can be applied to software development.
1.Time-Line Charts:

• When creating a software project schedule, begin with a set of tasks.
• If automated tools are used, the work breakdown is input as a task network or

Scheduling

• If automated tools are used, the work breakdown is input as a task network or
task outline. Effort, duration, and start date are then input for each task. In
addition, tasks may be assigned to specific individuals.

• As a consequence of this input, a time-line chart, also called a Gantt chart, is
generated.

• A time-line chart can be developed for the entire project. Alternatively,
separate charts can be developed for each project function or for each
individual working on the project.

• All project tasks (for concept scoping) are listed in the left hand column.
The horizontal bars indicate the duration of each task. When multiple bars
occur at the same time on the calendar, task concurrency is implied. The
diamonds indicate milestones.

• Once the information necessary for the generation of a time-line chart has been
input, the majority of software project scheduling tools produce project tables. A
tabular listing of all project tasks, their planned and actual start and end dates, and
a variety of related information. Used in conjunction with the time-line chart,
project tables enable you to track progress.project tables enable you to track progress.

2. Tracking the Schedule
•If it has been properly developed, the project schedule becomes a road map
that defines the tasks and milestones to be tracked and controlled as the
project proceeds.
•Tracking can be accomplished in a number of different ways:
•Conducting periodic project status meetings in which each team member
reports progress and problems.
•Evaluating the results of all reviews conducted throughout the software•Evaluating the results of all reviews conducted throughout the software
engineering process.
•Determining whether formal project milestones have been accomplished
by the scheduled date.
•Comparing the actual start date to the planned start date for each project task
listed in the resource table.
• Meeting informally with practitioners to obtain their practitioners

assessment of progress to date and problems onthe horizon.
• Using earned value analysis to assess progress quantitatively.
Inreality, al ofthesetrackingtechniquesareusedbyexperienced project
managers.

3. Tracking Progress for an OO Project

Technical milestone: OO analysis complete

•All hierarchy classes defined and reviewed
•Class attributes and operations are defined andreviewed
•Class relationships defined and reviewed o Behavioralmodel defined
and reviewed and Reusable classed identified

Technical milestone: OO design completeTechnical milestone: OO design complete

•Subsystems defined and reviewed

•Classes allocated to subsystems and reviewed
•Task allocation has been established andreviewed
•Responsibilities and collaborations have been identified Attributes and

operations have been designed and reviewed o Communication model

has been created and reviewed

• Technical milestone: OO programming complete
Each new design model class has been implemented
Classes extracted from the reuse library have been implemented o
Prototype or increment has been built

• Technical milestone: OO testing
The correctness and completeness of the OOA and OOD models
has been reviewedhas been reviewed
Class-responsibility-collaboration network has been Developed and
reviewed
Test cases are designed and class-level tests have been conducted for
each class
Test cases are designed, cluster testing is completed, and classes have
been integrated
System level tests are complete

Scheduling for WebAppProjects
• WebApp project scheduling distributes estimated effort across the planned

time line (duration) for building each WebAppincrement.
• This is accomplished by allocating the effort to specific tasks.
• The overall WebApp schedule evolves over time.
• During the first iteration, a macroscopic schedule is developed.
• This type of schedule identifies all WebApp increments and projects the

dates on which each will be deployed.dates on which each will be deployed.
• As the development of an increment gets under way, the entry for the

increment on the macroscopic schedule is refined into a detailed
schedule.

• Here, specific development tasks (required to accomplish an activity) are
identified and scheduled.

• It is reasonable to ask whether there is a quantitative technique for assessing
progress as the software team progresses through the work tasks allocated to the
project schedule.

• A Technique for performing quantitative analysis of progress does exist. It
is called earned value analysis (EVA).

• To determine the earned value, the following steps are performed:
1. The budgeted cost of work scheduled (BCWS) is determined for each work

task represented in the schedule. During estimation, the work (in person-
hours or person-days) of each software engineering task is planned. Hence,

Earned Value Analysis

task represented in the schedule. During estimation, the work (in person-
hours or person-days) of each software engineering task is planned. Hence,
BCWSi is the effort planned for work task i. To determine progress at a given
point along the project schedule, the value of BCWS is the sum of the BCWSi
values for all work tasks that should have been completed by that point in
time on the project schedule.

2. The BCWS values for all work tasks are summed to derive the budget at
completion (BAC). Hence, BAC (BCWSk) for all tasks k

3. Next, the value for budgeted cost of work performed (BCWP) is computed.
The value for BCWP is the sum of the BCWS values for all work tasks that
have actually been completed by a point in time on the project schedule.

͞Given values for BCWS, BAC, and BCWP, important progress indicators can
be computed:
Schedule performance index, SPI = BCWP/ BCWS
Schedule variance, SV = BCWP
– BCWS
SPI is an indication of the efficiency with which the project is utilizing
scheduled resources. An SPI value close to 1.0 indicates efficient
execution of the project schedule. SV is simply an absolute indication of
variance from the planned schedule.variance from the planned schedule.
Percent scheduled for completion = BCWS / BAC
provides an indication of the percentage of work that should have been
completed by time t.
Percent complete = BCWP/ BAC
provides a quantitative indication of the percent of completeness of the
project at a given point in time t. It is also possible to compute the actual
cost of work performed (ACWP). The value for ACWP is the sum of the
effort actual y expended on work tasks that have been completed by a
point in time on the project schedule. It is then possible to compute.

Cost performance index, CPI = BCWP /ACWP Cost variance,CV
= BCWP -ACWP

A CPI value close to 1.0 provides a strong indication that the project is
within its defined budget. CV is an absolute indication of cost
savings (against planned costs) or shortfall at a particular stage of asavings (against planned costs) or shortfall at a particular stage of a
project.

What are Metrics?
•Software process and project metrics are quantitative measures
•They are a management tool
•They offer insight into the effectiveness of the software Process and the
projects that are conducted using the process as aframework

•Basic quality and productivity data are collected
•These data are analyzed, compared against past averages, and assessed

Process and Project Metrics

•These data are analyzed, compared against past averages, and assessed
•The goal is to determine whether quality and productivity improvements
haveoccurred

•The data can also be used to pinpoint problem areas
•Remedies can then be developed and the softwareprocess can be
improved

Reasons to Measure
Tocharacterize in orderto

Gain an understanding of processes,products, resources, and environments
Establish baselines for comparisons withfuture

assessments
Toevaluate in orderto

Determine statuswith respect to plans
Topredict in ordertoTopredict in orderto

Gain understanding of relationships amongprocesses and products
Build models of these relationships
Toimprove in order to

Identify roadblocks, root causes, inefficiencies, and other opportunities
for
improving product quality and process performance

MetricsIn TheProcessandProject Domains
• Process metrics are collected overlong periodsof time.

• Their intent is to provide a set of process indicators that lead to long-term
software processimprovement.

• Project metrics enable a software project manager to

• assess the status of an ongoing project,
• track potential risks,
• uncover problem areas before they go
• adjust work flow ortasks,• adjust work flow ortasks,
• evaluate the project teaŵ’s ability to control quality of software work

products

Metrics In TheProcess and Project Domains

Determinant software quality and organizational effectiveness

MetricsIn TheProcessandProject
• Measure the effectivenessof a process should be a set of metrics based on outcomes of

the process such as

• Errors uncovered before release of thesoftware
• Defects delivered to and reported by the end users
• Work products delivered
• Human effortexpended
• Calendar timeexpended
• Conformance to theschedule
• Time and effort to complete each generic activity.• Time and effort to complete each generic activity.

• Etiquette(good manners) of Process Metrics:
• Use common sense and organizationalsensitivity when interpreting metrics data
• Provide regular feedback to the individuals and teams who collect measures andmetrics
• DoŶ’t use metrics to evaluate individuals
• Work with practitioners and teams to set clear goals and metrics that will be used to

achieve them.
• Never use metrics to pressure individuals or teams.
• Metrics data that indicate a problem should not be considered͞ŶegaƟve

Project Metrics:-
• Many of the same metrics are used in both the process and project

domain Project metrics are used for making tactical decisions
• They are used to adapt project workflow and technical activities .
• The first application of project metrics occurs during estimation
• Metrics from past projects are used as a basis for estimating time and

effort.
• As a project proceeds, the amount of time and effort expended are• As a project proceeds, the amount of time and effort expended are

compared to original estimates.
• As technical work commences, other project metrics become important
• Production rates are measured (represented in terms of models

created, review hours, function points, and delivered source lines of
code)

• Error uncovered during each generic framework activity (i.e,
communication, planning, modeling, construction, deployment) are
measured

Measurements in the physical world can be categorized in two ways: direct
measures andindirect measures.
Direct measures of the software process include cost and effort applied.
Direct measures of the product include lines of code (LOC) produced,
execution speed, memory size, and defects reported over some set period of
time.
Indirect measures of the product include functionality, quality, complexity,

Software Measurement

Indirect measures of the product include functionality, quality, complexity,
efficiency, reliability, maintainability.

Project metrics can be consolidated to create process metrics for an
organization.

Size-Oriented Metrics
Size-oriented metrics are not universallyaccepted as the best way to measure

the software process.
Opponents argue that KLOCmeasurements

Are dependent on the programminglanguage
Penalize well-designed but shortprograms
Cannot easily accommodatenonprocedural languages
Require a level of detail that may be difficult to achieve.Require a level of detail that may be difficult to achieve.

functionality delivered
Function-Oriented Metrics:-

Function-oriented metrics use a measure of the
by the application as a normalization value

Mostwidely used metric of this type is the function point
Computation of the

characteristics of
based onfunction point is

the
software’s information domain and complexity.

Reconciling LOC and FP Metrics:-

Relationship between LOC and FPdependsupon

The programming language that is used to implement thesoftware

The quality of thedesign
FPand LOC have been found to be relatively accurate predictors of software
development effort and cost

However, a historical baseline of informationmust first beestablished.
LOC and FP can be used to estimate object-orientedsoftwareprojects

Software Measurement

LOC and FP can be used to estimate object-orientedsoftwareprojects

However, they do not provide enough granularity for the schedule and effort
adjustments required in the iterations of an evolutionary or incremental
process Thetable on the next slide provides a rough estimate of the average
LOC to one FP invarious programming languages.

Language Average Median Low High

Ada 154 -- 104 205

Assembler 337 315 91 694

C 162 109 33 704

C++ 66 53 29 178

Software Measurement

LOC per function point

C++ 66 53 29 178

COBOL 77 77 14 400

Java 55 53 9 214

PL/1 78 67 22 263

VisualBasic 47 42 16 158

Object-oriented Metrics:-
Following set of metrics for OOprojects:

Number of scenario scripts:- A scenarioscript isa detailed sequence of
steps that describe the interaction between the user and the application.

Each script is organized into triplets of theform
{initiator, action, participant}

where initiator is the object that requests some service, action is theresult
of the request, and participant is the server object that satisfies the request.of the request, and participant is the server object that satisfies the request.

Number of key classes.:- Key classes are the ͞h ighly independent components
that are defined early in object-oriented analysis

Because key classes are central to the problem domain, the number of such
classes is an indication of the amount of effort required to develop the software.

Also an indication of the potential amount of reuse to be applied during
system development.

Numberof support classes:- Support classes are required to implement the
system but are not immediately related to the problemdomain.

• The number of support classes is an indication of the amount of effort required
to develop the software and also an indication of the potential amount of reuse
to be applied during systemdevelopment.

• Number of subsystems
• A subsystem is an aggregation of classes that support a function that is

visible to the end user of a system.visible to the end user of a system.

Average number of support classes per key class
Key classes are identified early in a project (e.g., at requirements analysis)
Estimation of the number of support classes can be made from the number
of keyclasses
GUI applications have between two and three times more support classes as

key classes
Non-GUI applications have between oneand two times more support classes as
key classes

Use-Case–OrientedMetrics:-

Use cases describe user-visible functions and features that are basic
requirements for a system.

The number of use cases is directly proportional to the size of the application in
LOC and to the number of test cases that will have to be designed to fully
exercise the application.

WebApp Project Metrics:-
The objective of all WebApp projects is to deliver a combination of contentand

functionality to the end user.
The measures that can be collected are:
• Number of static Webpages.
• Number of dynamic Webpages.
• Number of internal page links.:-Internal page linksare pointers that provide

a hyperlink to some other Web page within theWebApp

Number of persistent dataobjects.

Number of external systems interfaced:- WebApps must often interface
with ď͞ aĐkrooŵ͟ business applications.

Number of static content objects:-Static content objects encompass static text-
based, graphical, video, animation, and audio information that are incorporated
within the WebApp.

Number of dynamic contentobjects.

SoftwareMeasurement

Number of dynamic contentobjects.
Number of executablefunctions

Measurements in the physical world can cartelize in two ways. direct
measures andindirect measures.
Direct measures of the software process include cost andeffortapplied.
Direct measures of the product include lines of code (LOC) produced,
execution speed, memory size, and defects reported over some set period of
time.
Indirect measures of the product include functionality, quality, efficiency,
reliability, maintainability.
Project metrics can be consolidated to create process metricsforan
organization.

• Size-Oriented Metrics
Size-oriented metrics are not universallyaccepted as thebest
wayto measure the softwareprocess.
Opponents argue that KLOCmeasurements

Are dependent on the programminglanguage
Penalize well-designed but shortprograms
Cannot easily accommodatenonprocedural languages
Requirea level of detail that may be difficult to achieve.Requirea level of detail that may be difficult to achieve.

• Function-Oriented Metrics:-
Function-oriented metrics use a measure of the functionalitydelivered

• by the application as anormalizationvalue

Mostwidely used metric of this type is the function point

Computationof the function point is based on characteristicsof
the software’s information domain andcomplexity.

The overriding goal of software engineering is to produce a high-quality system,
application, or product within a time frame that satisfies a marketneed.

The quality of a system, application, or product is only as good as the requirements
that describe the problem, the design that models the solution, the code that leads
to an executable program, and the tests that exercise the software to uncover errors.

Measuring Quality

• There are many measures of software quality,8 correctness, maintainability,
integrity, and usability provide useful indicators for the projectteam

MetricsForSoftwareQuality

integrity, and usability provide useful indicators for the projectteam

Correctness:

• Correctness is the degree to which the software performs its requiredfunction.
• The most common measure for correctness is defects per KLOC, where a defect

is defined as a verified lack of conformance torequirements.
• Defects are those problems reported by a userof the program after the

program has been released for generaluse.

Maintainability:

• Maintainability is the ease with which a program can be corrected if an error is
encountered, adapted if its environment changes, or enhanced if the customer desires a
change inrequirements.

• Mean -time-to-change (MTTC), the time it takes to analyze the change request, design
an appropriate modification, implement the change, test it, and distribute the change to
allusers.

• Integrity:

Metric for Software Quality

• Integrity:
• Software integrity has become increasingly important in the age of cyberterrorists

and hackers.
• Attackscan be made on all three components of software: programs, data, and

documentation.
• To measure integrity, two attributes mustbedefined:

• threat andsecurity.

• Usability:
• If a program is not easy to use, it is often doomed to failure, even if the functions that

it performsarevaluable

Defect RemovalEfficiency:

Defectremoval efficiency provides benefits at both the project and processlevel
It is a measure of the filtering ability ofquality

activities as there are assurances applied

throughout all process framework activities

It indicates the percentage of software errors found
beforesoftwarerelease

MetricsForSoftwareQuality

beforesoftwarerelease

It is defined as DRE = E / (E+D)

Establishing aBaseline:-
• By establishing a metrics baseline, benefits can be obtained at thesoftwareprocess,

product, and project levels
• The same metrics can serve many masters

• The baselineconsistsof data collected from past software development
projects.

Baselinedata must have the following attributes
Data must be reasonably accurate (guesses should be avoided)
Datashould be collected foras many projectsas

IntegratingMetricsWithin TheSoftwareProcess

Datashould be collected foras many projectsas
possible
Measures must be consistent (e.g., a line of code must beinterpretedconsistently
across allprojects)
Pastapplicationsshould be similar to the work that is to beestimated.

Metrics Collection, Computation, and Evaluation
• Data collection requires an historical investigation of past projects toreconstruct

required data
• Afterdata is collected and metrics are computed, the metrics should be evaluated and

applied during estimation, technical work, projectcontrol, and processimprovement.

Software
Engineering
Process

Software
Project

Data
Collection

Measures

IntegratingMetricsWithin TheSoftwareProcess

SoftwareMetricsBaselineProcess

Project

Software
Product

Metrics

Computation

Metrics
Evaluation

Metrics

Indicators

• Mostsoftware organizations have fewer than 20 software engineers.

• It is reasonable to suggest that software organizations of all sizes measure
and then use the resultant metrics to help improve their local software
process and the quality and timeliness of the products they produce.

• A commonsense approach to the implementation of any software process-
related activity is: keep it simple, customize to meet local needs, and be
sure it adds value.

Asmall organizationmight select the following set of easily collectedmeasures:

Metric for Small Organization

Asmall organizationmight select the following set of easily collectedmeasures:

• Time (hours or days) elapsed from the time a request is made until evaluation is
complete, tqueue.

• Effort (person-hours) to performtheevaluation,Weval.

• Time (hours or days) elapsed from completion of evaluation to assignmentof
change order to personnel, teval.

Time required (hoursor days) to make the change, tchange.

Errorsuncovered during work to make change,Echange.

Defectsuncoveredafter change is released to the customer base, Dchange.

Effort (person-hours) required to make thechange,Wchange.

The defectremoval efficiency can becomputed as

DRE can be compared to elapsed time and total effort to determine the impact of
quality assurance activities on the time and effort required to make achange.

The Software Engineering Institute has developed a comprehensive guidebookfor
establishing a ―goal-driven software metricsprogram.

The guidebook suggests the followingsteps:
• Identify businessgoal
• Identify what you wantto know
• Identifysubgoals
• Identify subgoal entitiesandattributes

Establishing a S/W Metrics

• Identify subgoal entitiesandattributes
• Formalize measurement goals

• Identify quantifiablequestions and indicators related to subgoals

• Identifydata elements needed to be collected to construct the indicators

• Define measures to be used and create operational definitions for them.

• Identify actions needed to implement themeasures
• Prepareaplan to implement the measures

• For example,consider the SafeHome product. Working as a team,
• software engineering and business managers develop a list of
prioritized business goals:

1. Improve our customers’satisfaction with our products.

2. Make our products easier touse.

3. Reduce the time it takes us to get a new productto market.

4. Make support for our productseasier.4. Make support for our productseasier.

5. Improve our overall profitability.

