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Analogy between Vectors and Signals

- There Is a perfect analogy between vectors and signals
which gives better understanding of signal analysis.

- A vector contains magnitude and

direction.
- We shall denote all vectors by boldface type and

their magnitudes by lightface type.

- For example, A is a certain vector with magnitude
A.



Analogy between Vectors and Signals

. Consider two vectors V,and V,as shown in Figure. Let
- the component of V_ along V, be given by C_V..
- Geometrically the component of a vector V, along the

vector V,is obtained by drawing a perpendicular from the
end of V, on the vector V..

- V,=CLV, 4V, /
Ve




Analogy between Vectors and Signals

Minimum

Vi efrdris
Ve presghén it is

dropped
perpendi
cular on

V,=C,V,+V V,=C\V +V,_



Analogy between Vectors and Signals

. If C_,Is zero, then the vector has no component along the
other vector and hence the two vectors are mutually

erpendicular.
uch vectors are known as orthogonal

vectors. |
- Orthogonal vectors are thus independent

vectors.



Analogy between Vectors and Signals

- A.B = AB cos6
- A.B=B.A
A.B
Component of A along B = Acos0= B




Analogy between Vectors and Signals

; . V2-V2

< |-

- If V,and V, are orthogonal then V_.V,=0 and
C,=0



Analogy between Vectors and Signals

- The concept of vector comparison and orthogonality can
be extended to signals.

. Let us consider two signals, f,(t) and f,(t) and approximate
f,(t) in terms of f,(t) over a certain interval (t,<t<t)

RO ~=CLh)  for  (<t<t)

" If a error function is defined between actual and
approximated function is minimum over the interval (t,<t<t)

- f,(0)=f,(t) - C,,
f,(t) i



Analogy between Vectors and Signals

. Possible criterion for minimizing the error f_(t) over the
taken interval is to minimize the average value of f_(t)
over this,to minimize

t
L, JTR®-C o f, )]t
1 b

- This criterion Is inadequate because there can be large
positive and negative errors present that may cancel one
another in this process of averaging and error becomes
Zero.

10



Analogy between Vectors and Signals

- This can be corrected if we choose square of the error
Instead of error itself.

L,
€= [f (t)Fdt
o,

t,
s:l ) {[fl(t)—C L (017 dt

11



Analogy between Vectors and Signals

o To find value of C_, which will minimize g, we must
have

de

t,
That Is . d _
c Hz-tltf”l(”‘c12f2“)]2d”‘°

1

12



Analogy between Vectors and Signals

o Changing the order of integration and differentiation, we
get
t

t t
1 d ., : :

-2 | f f 2 f =
ot [dclzfl(t)dt tj (O (t)dt+ Clzt;]' 2(t)dt]=0

L, . .
The first integral is obviously zero and

hence
t

I fl(t)fz(tjng L

L
[f2(t) dt
L

13



Analogy between Vectors and Signals

. By analogy with vectors, f,(t) has a component of waveform
f,(t) and this component has a magnitude C,.

. If C_, disappears, then the signal f,(t) contains no
component of signal f,(t), so the two functions are
orthogonal over the interval(t,,t,).

- Condition for orthogonality

t,
[ i) f,(t) dt=0
t,

14



Analogy between Vectors and Signals

. It can be shown that the functions sin nwt and sin mw,t
are orthogonal over any interval (t,,t,+ 2m/w,) for integral

values of ‘m’ and ‘n’.

- Consider Integral I:

t,+21T /W,

| = I sinn w ,tsin mw 4t
b dt

t,+2 T /W

| = J- % [cos (N-m)w ,t—cos (n+m)w ,t] dt

1 15



Analogy between Vectors and Signals

e Since 'n’ and ‘m’ are integers, (n-m) and (n+m) are also
Integers

« In that case the integral | is zero.

e, the two func onsaeor ogonal.
|m| an’ly, F”t‘ca es ownt at sin ﬂ ?and cos mw,t are

orthogonal functions and cos nw,t , cos mw,t are also
mutually orthogonal.

16



Analogy between Vectors and Signals

Graphical Evaluation of a Component of one Function in the

Oth er 50 SIGNAL REPRESENTATION BY DISCRENE fExpx N
Hicod o
0 —
72t 7o)

AA AN S
EATATATAVE

F108) fa(L)h

(a) :
Figure 3.4 Graphical-evaluation of the eomponent

(b)

of waveform f,(z) in a signal jifl
R S s S e e A et Ve
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Analogy between Vectors and Signals

Orthogonal Vector Space

- Analogy can be extended further to 3-dimensional space.

Zy A(X0,YorZo)

Yo

y

18



Analogy between Vectors and Signals

Orthogonal Vector Space

. Component of A along the x axis = A.a,
. Component of A along the y axis = A.a,
. Component of A along the z axis = A.a,

A= XoFYody 12,8,

a,.a~a.a,=a,.a,=0 a.a=a.a~a,a,=1

19



Analogy between Vectors and Signals

Orthogonal Vector Space

a_.a=0m#n
=1 m=n

Considering n mutually perpendicular
coordinates

A = Cx+CX+C X, +.....+C X_

X X =0 m#n
=1 m=n

20



Analogy between Vectors and Signals

Orthogonal Vector Space

Component  C=A.x For an

orthogonal vector space,

AX=Cx.x=Ck

X_.X.=0m#n
=Kk _m=n

21



Analogy between Vectors and Signals

Orthogonal Vector Space

If vector space Is complete, any vector F can be expressed as
F=CX+CX+C X +.....+C X +.....

F.X F X,
"k, X.X,

22



Analogy between Vectors and Signals

Orthogonal Signal Space

Let us consider a set of n functions
g,(t),9,(t),....,0,.(t) which are Orthogonal to one

another gver an interval t;to t,
s g;(t) gi(t)dt 7
=0 K

L

And let

t,
[git)dt=K .
t,

23



Analogy between Vectors and Signals

Orthogonal Signal Space

Let an arbitrary function f(t) be approximated
over an interval (t,,t,) by a linear combination of
these n mutually orthogonal

Functions.

f(t)=C,g,(t)+C,g,(O)+.......+C.g,()+......C.. (1)

n

f(t)=); Crg,(t)

r=1

24



Analogy between Vectors and Signals

Orthogonal Signal

Space

f (t) f(t)- 2 C, g, (t)
r=1 "

6&.':6&.'— :6—: :6—:

S5C, 6C, 6Cj6Cn

25



Analogy between Vectors and Signals

Orthogonal Signal

Space

e -0

o€, a ,
SL[J‘[f(t)—Z C g,/(t)] dt]=0

i ot r=1

C

t

2 t, t,
O 2 :i 2 2 _ o _
5c JIrwid= g [iIcimgiid= £ fic fmg old=0
] j j

26



Analogy between Vectors and Signals

Orthogonal Signal Space

This leaves only two non zero terms
t

6_?3 I[—Z ij (t) gj(t)+CJ?gJ?(t )] dt =0
t,

Changing the order of integration and differentiation

t, t,
_ 2
ZtIf(t)gj(t)dt—Z C jtj g%(t) dit

27



Analogy between Vectors and Signals

Orthogonal Signal
Space

Therefore,

t,
[ ft)g;t) .
c-dt_ =in f(t)g(t)dt
[g4t)at o
t,

28



Analogy between Vectors and Signals

Orthogonal Signhal Space

«Given a set of n functions g,(t),9,(t),....... g.(t)
mutually orthogonal over the interval (t,,t,),it
IS possible to approximate an arbitrary
function f(t) over the interval by a linear

combination of these
n functions.

f(t)=C,g,(t)+C,g,(t)+....... +C.g,()+......C_g.(t)

f(t)=); C.g.(t)



Analogy between Vectors and Signals

Orthogonal Signal Space

For best approximation we have to
choose C,,C,,......C_such that it will
minimize Mean of the square of the
error

over the interval

30



Analogy between Vectors and Signals

Evaluation of Mean Square
Error

- Let it be to consider to find the value of ‘€’ when
mphmamf coefﬁments Cl,CZ, C are chosen as to

aive j[f(t) ZC g,(t )] ot

1t1

n t,
jf (t)+ ZCZ gat) dt-2 Y C, f(t)g,(t)dt]

J J

r=1 t, r=1 t; 31



Analogy between Vectors and Signals

Evaluation of Mean Square Error

- But from previous
approximation,

jf(t)g (t)dt=C jg (t)dt=C K,

- Substituting this in above
equaﬂon

[jf (t)dt+ZC K ~2 ZC K]

2 1t1

32



Analogy between Vectors and Signals

Evaluation of Mean Square Error

So, the error €

[J'f (t) dt Zc K]

1 —,
=1

This implies mean square error can be evaluated
by

&=

L,
[ £2(t) dt ~(CIK +CoK +...+CZK )]

o=

33



Analogy between Vectors and Signals

Representation of a Function by a Complete
Set of Mutually Orthogonal Signals

- From above equation it is evident that if we increase
n, Iif we approximate f(t) by a larger number of
orthogonal functions, the error will be smaller.

- But by its very definition, € is a positive quantity;
l.e., Inthe limit as the number of terms is made
Infinity, the

SU i 2 t
Z c?k, Mmay converge to

:
. f2(t
L, integral djt *) o

t



Analogy between Vectors and Signals

Representation of a Function by a Complete
Set of Mutually Orthogonal Signals

When integral and summation converge then ‘€’
vanishes.

ts n
[t2tydt=) CZK,
t, r

=1

Under these conditions f(t) is represented by the infinite
series:

f(t)zclgl(t)+C2g2(t)+Crgr(t)+ . 35



Analogy between Vectors and Signals

Representation of a Function by a Complete
Set of Mutually Orthogonal Signals

- The infinite series on the right-hand side of above
equation converges to f(t) such that the mean square of
the error is zero.

- The series Is said to converge Iin the
mean.

* Note that f(t) is now
exact.

- And should there be no other x(t) having orthogonality ~ *°
with any g (t).



Analogy between Vectors and Signals

Representation of a Function by a Complete
Set of Mutually Orthogonal Signals

. Let us now summarize the results. For a set {g (1)},
(r=1,2,....) mutually orthogonal over the interval

(t,t,),

t I On () g, () =0ifm#n
| dt :Kmifm:n

37



Analogy between Vectors and Signals

Representation of a Function by a Complete
Set of Mutually Orthogonal Signals

- If this function set is complete, then any
function f(t), can be expressed as

f(t)=C,0,(t)+Co0,(t)+... C.g,(t)+...

t, t,

wher [foge)  [fogn)

€ c - dt _ dt
r Kr

t,
[git)dt
L

38



Analogy between Vectors and Signals

Representation of a Function by a Complete Set
of Mutually Orthogonal Signals

o T his draws an analogy between vectors and

S|gnals
- Any vector can be expressed as a sum of its

components along ‘n’ mutually orthogonal vectors,
provided these vectors form a complete set.

- Similarly, any function f(t) can be expressed as a sum
of its components along mutually orthogonal
functions, provided these functions form a closed or

complete set. ,



Analogy between Vectors and Signals

t,
AB ~ [ ft)fg(t)
dt

AA=A ~ [f(t)dt

If a vector is expressed in terms of its mutually
orthogonal Components, the square of the length is
given by the sum of the squares of the lengths of the

component vectors.
40



Analogy between Vectors and Signals

eRepresentation of f(t) by a set of
Infinite mutually orthogonal
functions is called generalized
Fourier Series Representation of

().

41



Analogy between Vectors and Signals

Orthogonality in Complex Functions

. Let us consider two signals, f,(t) and f,(t) as complex
functions of real variable t, over a certain interval (t,<t<t,)

() ~=C, () for  (t<t<t)

t,
[ £000) Fox(t) dt
C= ttll
J f20) fox()
dt 42

t




Analogy between Vectors and Signals

Orthogonality in Complex Functions

Condition for orthogonality

t, ¢

[ i@ t)dt=[ fyx(t)f,(t)dt =0

L4

43



Analogy between Vectors and Signals

Orthogonality in Complex Functions

For a set of complete functions {g (1)}, (r=1,2,...)

mutually orthogonal over the interval (t,,t,):
t,

[ gn®) g*(t)dt=0  m#
Ly N

t,
[ gn®) gx(t)dt= m=
K. n

t,

AL



Analogy between Vectors and Signals

Orthogonality in Complex Functions

If this set of functions is complete, then any
function f(t) can be expressed as

f(t)=C,g,()+C,a,()+....... +C g, (t)+.....

L,

1
Co=nc | ft) gx(t)clt

rt,

45



Analogy between Vectors and Signals

Orthogonality in Complex Functions

- If this set of functions is real, then g *(t)=g(t) and all the

results
for complex functions reduce to those obtained for real
functions as shown the analysis of real functions.

46



Analogy between Vectors and Signals

Summary

1) With two functions

C,=. Vai-Vo _ Vi-Va V,.V,=0 and
Vg V,.V, C. =0

t,
[ 1.0 1,0)

t
— Ly
C12_ Uty

L,
[f2)dt [ f,@)f,) dt
t, :ho

47



Analogy between Vectors and Signals

Summary

i) With n dimensional functions

A X,
A = C,= ”
CX+C X +C. X +.....+C X_ r
f(t)=C,0,()+C,9,(O+.....C,g, (1 I (g ©
' c,=dt =int f(t)g (t)dt
f(t)=), C,g,t) Jgoa "
r o

=1



Analogy between Vectors and Signals

Summary

i) For a complete set of mutually orthogonal functions

= F.x, F.X
F= C.= =
C X +C X AC Koo A C X H . ST,
ft)g t)dt [ ft)g
f(t)=Cy 0, (t)+Cy0,(t)+....C, g, (t)+... C_{ (t) 9. (t) _,4{ t) g, (t)
r- K = Oty
| [oit)at

t,

49



Analogy between Vectors and Signals

Summary

Iv) For Complex functions

f(t)=C,g,(t)+C.g,(t)+....... +C g.(t)+..... t
[ fi)foxc

C t\1:~I+

t, 12—
r——l I f(t) g *(t)dt If (t) fox(t
Kr t, )dt



Classification of Signals and Systems

Signals

- Asignal Is a function representing a physical quantity or
variable, and typically it contains information about the behavior
or nature
of the phenomenon.

- Signals are represented by real- or complex-valued functions of
one or more independent variables.

- They may be one-dimensional, that is, functions of only
one independent variable, or multidimensional.

51



Classification of Signals and Systems

Classification of Signals
Signals can be classified into:

1. Continuous-time and Discrete-time
signals

. Analog and Digital Signals

. Real and Complex Signals

. Deterministic and Random Signals
. Even and Odd signals

. Periodic and Non-periodic signals
. Energy and Power signals

52
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Classification of Signals and Systems

Continuous-time and Discrete-time signals

- Asignal X(t) is a continuous-time signal if t is a
continuous variable.

- If t is a discrete variable-that is, x(t) is defined at discrete
times- then x(t) Is a discrete-time signal.

* Since a discrete-time signal is defined at discrete times,
a discrete-time signal is often identified as a sequence of

numbers, denoted by {X } or x[n], where n = integer.

53



Classification of Signals and Systems

Continuous-time and Discrete-time signals

x(1) x{n]

0 t S5 -4-32-1 01 2 3 456 n

Continuous Time Signal Discrete Time Signal

54



Classification of Signals and Systems

{I”] = {---:nr(}:]:z:z:l:[}:linrzin:{]:”-}

[‘rn] = {112121:1101]30,2}

Representation of discrete signals
55



Classification of Signals and Systems

Analog and Digital Signals

- If a continuous-time signal x(t) can take on any value in the
continuous interval (a, b), where a may be -« and b may be
+e0  then the continuous-time signal x(t) is called an analog

ignal. . . ..
. ﬁ‘% (?lscrete-tlme signal x[n] can take on only a finite number
of distinct values, then we call this signal a digital signal.

56



Classification of Signals and Systems

Analog and Digital Signals

-
&

Digital Off On Off
signal
ul
4 *&“
Analog = A %
signal

57



Classification of Signals and Systems

Real and Complex Signals

A signal x(t) is a real signal if its value Is a real number,

and a signal x(t) is a complex signal if its value is a
complex number.

A general complex signal x(t) is a function of the form

X (t)=x, (t)+ Jx; (t)

58



Classification of Signals and Systems

Deterministic and Random Signals

- Deterministic signals are those signals whose values are
completely specified for any given time. Thus, a deterministic
signal can be modeled by a known function of time t.

- Random signals are those signals that take random values at
any given time and must be characterized statistically.

59



Classification of Signals and Systems

Even and Odd Signals

X(-t)=x(t X(—-t)=-Xx(t)
)

X [-n]=x [ n] X[=n]=-xIn]

Even Signal Odd Signal

60



Classification of Signhals and Systems

Even and Odd Signals

x(t)

(@)

fe)

61



Classification of Signals and Systems

Even and Odd Signals

- Any signal can be split into even and odd
parts

o X(t) = x,(t) + X (1)

X[n] = x, [n] + X, [N]

62



Classification of Signals and Systems

Even and Odd Signals
- X (t) = 1/2 {x(t) + x(- 1)} even part of x(t)
* X [n] = 1/2 {X|[n] + x[- n]} even part of
X[n]

Cx () = 1/2 {x(t) - x(- )} odd part of x(t)

* X [n] = 1/2 {xX[n] - x[- n]} odd part of
x[n]

63



Classification of Signals and Systems

Periodic and Non-Periodic Signals

- A continuous-time signal x(t) is said to be periodic with
period T If there is a positive nonzero value of T for which

X(t+T)=x(t) all t
X(t + mT) = x(t) for m an integer

- The fundamental period T,of x(t) is the smallest positive value of
- T.

This definition does not work for a constant signal x(t) (known as
*a dcsignal).

a constant signal x(t) the fundamental period is undefined since

X(t) is periodic for any choice of T. o4



Classification of Signals and Systems

Periodic and Non-Periodic Signals

x(f)

AAAAAAA

27 T o 2T

Ll ]

Continuous Periodic Signal

- Any continuous-time signal which is not periodic Is
called a
nonperiodic signal. 65



Classification of Signals and Systems

Periodic and Non-Periodic Signals

For a discrete-time signal,
X[n + N] =x[n] all n

X[n +m N] = x[n] for m an integer

The fundamental period N, of x[n] is the smallest positive integer N.

66



Classification of Signals and Systems

Periodic and Non-Periodic Signals

xin]
L ] L [ ] L ] L ]
L] L] L] [ ] L ]

L] 4 4 L} T

L L ] @ ® ® &

—2N —i g M 2N n

Periodic
Sequence

67



Classification of Signals and Systems

Periodic and Non-Periodic Signals

- Note that a sequence obtained by uniform sampling of a
periodic continuous-time signal may not be periodic.

- Note also that the sum of two continuous-time periodic
signals may not be periodic but that the sum of two periodic

sequences Is always periodic.

68



Classification of Signals and Systems

Energy and Power Signals

Consider v(t) to be the voltage across a resistor R producing a current i(t).
The instantaneous power p(t) per ohm is defined as

p(t)= iz )
Total energy is o
E=| () dt

— 00

Average power Is
gep 1

p=lim ~ ZJ' i2(t )dt

Toel -T/2 69



Classification of Signals and Systems

Energy and Power Signals

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t)
is defined as

Ezﬁx (t)[?dt

Normalized Average power is

1 5
P=1lim = 2[ |x (t)]"dt

T -0 _T/2

70



Classification of Signals and Systems

Energy and Power Signals

- Similarly, for a discrete-time signal x[n], the normalized energy content E
of X[n] is defined as

E= ) [xM]f’

N=—-0o0

o he normalized average power P of x[n] is defined as

_ s 1§ 2
P= le N +1”ZN|X [n]|

— 00

71



Classification of Signals and Systems

Energy and Power Signals

- Similarly, for a discrete-time signal x[n], the normalized energy content E
of X[n] is defined as

E= ) [xM]f’

N=—-0o0

o he normalized average power P of x[n] is defined as

_ s 1§ 2
P= le N +1”ZN|X [n]|

— 00

72



Classification of Signals and Systems

Energy and Power Signals

- A signal with finite energy has zero power. (ENERGY SIGNAL)

- A signal with finite power has infinite energy. (POWER SIGNAL)

- A signal cannot both be an energy signal and a power signal.

- There are signals, that are neither energy nor power signals.

- A periodic signal is a power signal if its energy content per period is finite,
and then the average power of this signal need only be calculated over a

period. Not all periodic signals are power signals.

73



Operations on Signals

« Sometime a given mathematical function
may completely describe a signal .

 Different operations are required for
different purposes of arbitrary signals.

* The operations on signals can be Time
Shifting

Time Scaling

Time Inversion or Time Folding
74



Operations on Signals

Time Shifting

X(t * t,) is time shifted version of the signal
X(t). x (t +ty) > negative shift

X (t - ty) =2 positive shift
x(t) X(t - o) X(t +1o)

JANSIS VANNIVAN I

\ ,




Operations on Signals

Time Scaling

X(At) Is time scaled version of the
signal x(t). whereA IS always positive.

|A| > 1 — Compression of the signal

|A| <1 — Expansion

76




Operations on Signals

Time Scaling

Example: Given x(t) and we are to find y(t) = x(2t)

1 ™ x(t)
3 2 1 0 1 2 3 t

1
LA YAYILTAYAT 77

The period of x(t) is 2 and the period of y(t) is 1,



Operations on Signals

Time Scaling

PED
o

*Given y(1), 5 : )
find w(t) = y(3t)
and v(t) = y(t/3 oo
T v =33 78




Operations on Signals

Time Reversal (Or) Time Folding

eTime reversal is also called time folding

e|n Time reversal signal is reversed with respect
to time i.e.
y(t) = x(-t) is obtained for the givenfunction

79



Operations on Signals

Time Reversal (Or) Time

xUED
Imasc __/‘
] o £n t
O T ») =x(—n)

80
\\‘-—

\
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Fal

Operations on Signals

Amplitude Scaling

C x(t) is a amplitude scaled version
of x(t) whose amplitude is scaled
by a factor C.

Al x(t)
0.5 x (t)

L

L

L

31



Operations on Signals

Addition
X1 (t)
F.
1
3 3 Tt
+
2 A ox2(t)
10 10 ot
3 Az (t)
2 — | L 82




Operations on Signals

Subraction

83



Operations on Signals

Multiplication

Here multiplication of amplitude of two  or more
signals at each instance of time or any other
independent variables is done which are common

between the signals.

Xi(t) X2(t) Y(1) = Xi(t) x Xz(t)
A A A
7 7 -7
6 6 -6
. X 5 :> 5
4 4 4 84
-3 -3 -3
-2
/_r?]\ g R il g b
<-4 .0l . p < e o > < s : \l L p
-4 -3-2-1 v]234 -5-4-3-2-]v]2345 -4-3-2-]'1234
©)



Operations on Signals

Time Shifting for discrete sequences

Timeshifting n— n+ny, ngan integer

nl g[ln] ‘n n+3 g[n+3]
-4 -1 |
gln L oln + 3] 3 0 2
! ' -2 1 3
101 : 2 4 10 .' _1 . ’
T J 3 5 I 0 3 5
1 9 4 6 | 1 4 6
1 5 # 2 5 7
, 3 ‘[ DA
'l 7 9 —MT] n 4 7 9 85
R Sessen n " - 5 " 10
9 5 6 9 5
7 10 0

f—t
o
o



Operations on Signals

Scaling for discrete sequences

n — Kn

1

el
10
e

ey
£x
o

’“.I

71 |

il

K an integer >

gll2n
10]

LGONRFOR
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Classification of Signals and Systems

Systems and Classification

- Asystem is a mathematical model of a physical process that
relates the input (or excitation) signal to the output(or response)
* signal.
Let X and y be the input and output signals, respectively, of a

system.
Then the system is viewed as a transformation (or mapping) of x

. . ,

into . e _n C
—P :".I. — : System :

y=TXx — >

Xn Yo

87



Classification of Signals and Systems

Deterministic and Stochastic Systems

- If the input and output signals x and y are deterministic
signals, then the system is called a deterministic system.

- If the input and output signals x and y are random
sighals, then the system is called a stochastic system.

38



Classification of Signals and Systems

Continuous-Time and Discrete-Time Systems

- Acontinuous time system is characterized
by
differential equation.

- A discrete time system is often expressed
by
difference equation

89



Classification of Signals and Systems

Systems with Memory and without Memory

- A system Is said to be memoryless if the output at any
time depends on only the input at that same time.

- Otherwise, the system is said to have

memory. _ | _
- An example of a memoryless system is a resistor R with

the input x(t) taken as the current and the voltage taken
as the output y(t).

y =R X (t)

90



Classification of Signals and Systems

Systems with Memory and without Memory

- An example of a system with memory is a capacitor C with
the current as the input x(t) and the voltage as the output y(t);
then

k=00 91



Classification of Signals and Systems

Causal and Non-Causal Sytems

- A system is called causal if its output at the present time
depends on only the present and/or past values of the
Input.

- Thus, In a causal system, it is not possible to obtain
an output before an input is applied to the system.

- A system is called noncausal (or anticipative) if its output at
the present time depends on future values of the input.

92



Classification of Signals and Systems

Causal and Non-Causal Sytems

Examples of non-causal Systems
y (t)=x(t +1)

y[n]=x[-n]

* Note that all memoryless systems are causal, but not vice
versa.

93



Classification of Signals and Systems

Linear Systems and Nonlinear Systems

- A system is said to be linear if it possesses additivity
and homogenity.

- T{X,+X,} = y,+y, (Additivity)
* T{ax} = ay (Homogeneity or Scaling)
o T{ax,ta,x,} = ay,ta)y,

(Superposition)
94



Classification of Signals and Systems

Linear Systems and Nonlinear Systems

- Consequence of homogeneity Is that for a linear system
that
zero input yields zero output.

Examples of non linear

systems
y=X* y=CO0S X

95



Classification of Signals and Systems

Time In-Variant and Time Varying Systems

A system is called time-invariant if a time shift (delay or
advance) in the input signal causes the same time shift in the
output signal.

TIX(t-1 )} =y(t-T1)
Tix[n - K]} = y[n - K]

- To check a system for time-invariance, we can compare the

shifted output with the output produced by the shifted input.
96



Classification of Signals and Systems

Linear Time-Invariant Systems

olf the system is linear and also time-
Invariant, then itis called a linear time-
invariant (LTI) system.

97



Classification of Signals and Systems

Stable Systems

A system is bounded-input/bounded-output (BIBO)
* stable
If for any bounded input ‘X’ defined by

X[ <ky

the corresponding output y is also bounded defined
by lyl<k,

where k, and k, are finite real
constants

An unstable system is one in whjch
not all bounded inputs lead to
bounded output.



Standard Signals

Unit Step

Signal
- The unit step function u(t), also known as the Heaviside
unit function, is defined as

[1 t=>0
u(t)=

ull)

0 t<<1() -

>
U i

Note that it is discontinuous at t = 0 and that the value at t = 0 is undefined.
99



Standard Signals

Unit Step Signal

- Time shifted version of unit step
signal

I 1>

0

o
S
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Standard Signals

Unit Impulse Function

- The unit impulse function, d(t), also known as the Dirac
delta function, is defined as:

o(t) = 0 for t # 0;
= undefined forr=0

30)

101



Standard Signals

Unit Impulse Function

if(r)é(r—r)dr=f(r)
Tc?(t)drzl

102



Standard Signals

Unit Impulse
A consequence of the delta function 1s that

it can be approximated by a narrow pulse
as the width of the pulse approaches zero
while the area under the curve = 1

o(?)
|

10

lim 0@)=l/¢for-¢/2 < t < ¢/2;=0 otherwise.
-0 :

AN

@ 0.5 103

1 -5 0505 5 1




Standard Signals

Unit Impulse

o(?)

10

1.5

N

-1 =5 =05 05 5 |
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Standard Signals

Unit Impulse Function

The area under an impulse Is called its strength or
weight. It Is represented graphically by a vertical arrow.
An Impulse with a strength of one iIs called a unit
Impulse.

(1) 58(2-1)
1 ot

[ [
1

Representation of Unit Impulse Shifted Impulse of Amplitudes
105



Standard Signals

Unit Impulse Function

The Sampling Property

Tg(t)a(t—to)dt =g(t,

The Scaling Property

s(a(t- t))_ 5(t t,)

106



Standard Signals

Unit Impulse Function

* o) — u(?)

* u(t)—> tu(t) 15 order
u()=["_6(rydr m(l‘)f Cury 2" order

’ — & I—HU(Z‘) n order
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Standard Signals

Uses of Impulse Function

Modeling of electrical, mechanical, physical
phenomenon:

— point charge,
— impulsive force,
— point mass

— point light

108



Standard Signals

Signum Function

(1 , t>0)
sgn(t)=10 , t=0} = 2u(t)-1
{—1 ,t<0 |J
Precise Graph Commonly-Used Graph
sen(t) sen(r)
A

1 L

-1 ot}
—L—l i

The signum function, is closely related to the unit-step
function.
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Standard Signals

Rectangular Pulse or Gate Function

Va , |t|<al

[
Rectangular pulse, o (t)=
(1) o T?(|>a/
2

5.41)
i
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Standard Signals

Unit Triangular function

tri(t)

1

-

111



Standard Signals

Sinc functlon

112



Standard Signals

Discrete unit Step function

1, n>0
uln|=
[] {O,n<0

u|n]
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Standard Signals

Discrete unit Impulse function

n=0
nz«0

5[n]:{(1):

O[]

—‘_—1 n

114



Module — Il

FOURIER SERIES

115



- Fourier Series is a representation of signals as a linear
combination of a set of basic sighals(sinusoidal or
exponential).

- Representation of continuous-time and discrete-time
periodic signals is referred as Fourier Series.

- Representation of aperiodic, finite energy signals is done
through Fourier Transform.

116

. Used for analyzing, designing and understanding signals and
LTI
systems



Series

/P Linear O/
Circuit P
Sinusoidal * O K
Inputs
F7N\
Nonsinusoidal k@
Inputs \ 117
. : ) . iﬂ\'r,/})
Nonsinusoidal Sinusoidal ”/
Inputs Inputs o

< Fourier Series— =




Perception of Fourier Series

- Trigonometric sums — Babylonians - predict Astronomical
events

- Year 1748 — L Euler — examined motion of string —
normal modes — discarded trigonometric series

- Year 1753 — D Bernoulli = linear combinations of normal
modes.

- Year 1759 — J. L Lagrange — criticized use of
trigonometric series for vibrating strings.

118



Perception of Fourier Series

- After a half century later Fourier developed his ideas
on Trigonometric series.

Joseph
Fourier 1768
to 1830 119




Perception of Fourier Series

- Year 1807 — Fourier represented a series for
temperature distribution through a body.

- Any periodic signal could be represented by such a
series.

. For aperiodic signals weighted integrals of sinusoids that
are

not at all harmonically related.

- Lagrange rejected this trigonometric series saying
discontinuities can never be represented in sinusoidal.

120



Perception of Fourier Series

- Year 1807 — Fourier represented a series for
temperature distribution through a body.

- Any periodic signal could be represented by such a
series.

. For aperiodic signals weighted integrals of sinusoids that
are

not at all harmonically related.

- Lagrange rejected this trigonometric series saying
discontinuities can never be represented in sinusoidal.
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Application areas of Fourier Series

- In Theory of Integration, point-set topology and eigen
function expansion.

- Sinusoidal signals arise naturally in describing the motion
of the planets and periodic behaviour of the earth’s
climate.

- Alternating current sources generate voltages and 122
currents used for describing LTI systems.



Application areas of Fourier Series

- Waves in ocean — linear combination of sinusoidal waves of
diff. wavelengths (or) periods.

B == e
= Wavelength 150 t 500 ft 123
== — = Wavelenght 500 ft
-l-q-wmmumu



Application areas of Fourier Series

- Radio signals are sinusoidal in
nature.

- Discrete-time concepts and methods — numerical
analysis.

- Predicting motion of a heavenly body, given a sequence
of observations.

- Mid 1960s — FFT was introduced — reduced the time of Lo

computation

- With this tool many interesting but previously impractical ideas
with discrete time Fourier series and transform have come
practical.



Periodic Signals

Linear Combinations of harmonically Related
Complex Exponentials

A periodic signal with period of T, x(t) =x(t + T ) for all
L,

X(t) =cosw,t  x(t) =e’"

Both these signals are periodic with fundamental frequency
w, and fundamental period T =2 1w/ w, .



Periodic Signals

Linear Combinations of harmonically Related
Complex Exponentials

.The set of harmonically related complex exponentials

(pk (t) :ejkwot :ejk(Zﬂz/T)t

k=0, 1 2 ..

- Each of these signals is periodic with period of
-



Periodic Signals

Linear Combinations of harmonically Related
Complex Exponentials

.Thus, a linear combination of harmonically related
complex exponentials of the form

+00 +00
B jkogt jk(2n 1T)t
X(t) = Zake = Zake
k =0 k=—0
IS also periodic with period of T 127

k=0, x (t)is a constant.

k=+1andk=-1, both have fundamental frequency equal to w,and are
collectively

referred to as the fundamental components or the first harmonic components.
k=+2andk =-2, the components are referred to as the second harmonic
components. k=+ N and k = - N, the components are referred to as the Nth
harmonic components.



Periodic Signals

Linear Combinations of harmonically Related
Complex Exponentials

Jfx (t)isreal thatis, x (t)=x*(t)

X(t) =x*(t) = Za*k o
k =0

Replacing k by — k in the summation, we
have 128

+0 |
Xt)=)a*, e
k =0



Periodic Signals

Linear Combinations of harmonically Related
Complex Exponentials

By comparison with first equation

. * —_
a,=a*__,orequivalenty @ = a

To derive the alternative forms of the Fourier series,
we rewrite the summation

]kwo —jk(2m /T)t
+z[ rae

129



Periodic Signals

Linear Combinations of harmonically Related
Complex Exponentials

Substituting a *  for a _,, we have

(2n/T) ]

x(t) =q, ++Z.O

k=l

koot %,k
ae ~+av e

Since the two terms inside the summation are complex
conjugate of each other, this can be expressed as 130

x(t) =a, + Z2Re[akejk(”°t]
k=l



Periodic Signals

Linear Combinations of harmonically Related
Complex Exponentials

If &, IS expressed in polar from as

— P

131

x(t) =a, + Z2Re{Akej(kw°”e")]
k=l



Periodic Signals

Linear Combinations of harmonically Related
Complex Exponentials

x(t) =a, + 2ZA;< cos(kw,t +6,)
k=l

It is one commonly encountered form for the Fourier series of
real periodic signals in continuous time. 132



Periodic Signals

Linear Combinations of harmonically Related
Complex Exponentials

Another form is obtained by writing a, in rectangular form
as

a, =B, +jC,

x(t) =a, +2 Z[Bk coskm t —C, sin kot
k=

133



Periodic Signals

Linear Combinations of harmonically Related Complex Exponentials

For real periodic functions, the Fourier series in terms of complex
exponential has the following three equivalent forms:

$00 $00

) |

X(t) = > e = > @,
k =0 k =

X(t) =a, +2) A, cos(ko ¢ +0,) 134
k=1

X(t) =a, +2 Z[Bk cos kot =C, sin kmgt]
k=1




Periodic Signals
Convergence of Fourier Series — Dirichlet Conditions

The Dirichlet conditions for the periodic signal x are as follows:

1)Over a single period, x is absolutely integrable(i.e.,jlx (t)]dt <e0)
T
2)Over a single period, x has a finite number of maxima and

minima (i.e., x is of bounded variation ).

3)Over any finite interval, x has a finite number of discontinuities
each of which is finite .

135



Periodic Signals
Convergence of Fourier Series — Dirichlet Conditions

If a periodic signal x satisfies the Dirichlet conditions ,
then:

1.The Fourier series converges pointwise everywhere to
X , except at the points of discontinuity of x .

2.At each point t =t _of discontinuity of x , the Fourier
series X converges to

where x(t, ) and x(t, J;X-)‘ zﬁgote the dir 1[2 ﬂ;— the signal
x on the left- and —rig d S|dgs r%q ) réspectively.
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Periodic Signals

Convergence of Fourier Series — Dirichlet
Conditions

- Since most signals tend to satisfy the Dirichlet conditions and
the

above convergence result specifies the value of the Fourier
series

at every point, this result is often very useful in practice.
137



Periodic Signals
Convergence of Fourier Series — Dirichlet Conditions

- Since most signals tend to satisfy the Dirichlet conditions and
the

above convergence result specifies the value of the Fourier
series

at every point, this result is often very useful in practice.
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Fourier series Representation — CT Periodic Signals

Examples of Functions Violating
Conditions

Dirichlet

—

-~ e
2 IARE s
A &

139



Periodic Signals

Gibbs Phenomenon

- In practice, we frequently encounter signals with
discontinuities.

. When a signal x has discontinuities, the Fourier series

representation of does not converge uniformly (i.e., at the same

rate everywhere).

140
. The rate of convergence is much slower at points in the vicinity

of a discontinuity.



Periodic Signals
Gibbs Phenomenon

Furthermore, in the vicinity of a discontinuity, the truncated
Fourier series x, exhibits ripples, where the peak amplitude of
the ripples does not seem to decrease with increasing N .

As It turns out, as N Iincreases, the ripples get compressed
towards discontinuity, but, for any finite N , the peak amplitude
of the ripples remains approximately constant.

141



Periodic Signals
Gibbs Phenomenon

- This behavior is known as Gibbs
phenomenon.

. The above behavior is one of the weaknesses of Fourier series
(i.e., Fourier series converge very slowly near discontinuities).

142
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Periodic Signals

Determination of the Fourier Series Representation
of a Continuous-Time Periodic Signal

Multiply both side = jlogt _i
of X(t) —Zake y o~ nu!

+oo
X(I)E—jnmut - Zﬂkejkmute—jnmut

k=

Integrating both sides fromQOQtoT=21T/w ,, we o

have
+o0
fejk(l)ote-jnwutdt] — Z ak [ej(kﬂ)(t)gtdt]
k=—x

fx(t)e —jn(.llotdt — Z ak
k=—w




Periodic Signals

Determination of the Fourier Series Representation
of a Continuous-Time Periodic Signal

‘(E’“H]m”tdt =4T, k =n
0, k#n

For

k=n

145

— 1 — Nt
a o Ix(t)e dt



Periodic Signals

Determination of the Fourier Series Representation
of a Continuous-Time Periodic Signal

+00 +00
= jkogt — Jk(2m /T)t
X(t) =5 Zake B Zake Synthesi
k=00 k=0 —P
Equation
1 146
—ik =
a, =— I x(t)e " dt = Ix Rl |
T AnaIyS|s

quaﬂon



Periodic Signals

Determination of the Fourier Series Representation
of a Continuous-Time Periodic Signal

. The set of coefficient { a , } are often called the
Fourier series coefficients (or) the spectral
coefficients of x(t).

. The coefficient a is the dc or constant component and
IS given with k=0, that is

1

a =?Ix(t)dt

147



Periodic Signals

Determination of the Fourier Series Representation
of a Continuous-Time Periodic Signal

Example: consider the signal x(t ) = sin w,t .

- ]- j0) ]- = jo
sino,t =—e’"" —e ",
2j 2]
Comparing the right-hand side of this equation
with synthesis equation 148
; 1 1
:—j (1 :__*
L2 T

, =0, k#+1 or -1



Periodic Signals

Determination of the Fourier Series Representation of a
Continuous-Time Periodic Signal

Example: The periodic square wave, sketched in the figure
below and define over one period is

The signal has a fundamental period T and fundamental
frequency w, =2/ T.
L <

o o T <<

x(t) 149

4 4 19 | | |

i -T  T-T T



Periodic Signals

Determination of the Fourier Series Representation
of a Continuous-Time Periodic Signal

- To determine the Fourier series coefficients for x(t ) , we use analysis
equation.

- Because of the symmetry of x(t ) aboutt =0, we choose - T/2<t<T/
2 as the interval over which the integration is performed, although any
other interval of length T is valid the thus lead to the same result.

150

] T
For 2, = f X(O)dt = Jf dt==1
T rh T



Periodic Signals

Determination of the Fourier Series Representation
of a Continuous-Time Periodic Signal

Fork #0, we ol T

a, = ‘fre_jm”tdt = : g !
I Jko T

pi Eﬂ{muﬂ _ E—ﬂmuﬂ

o, T| 2] ~

_2sin(ko, ;) sin(ko,T))
kw, T kn




< 0 O o

Fourier series Representation — CT Periodic Signals AR

Determination of the Fourier Series Representation
of a Continuous-Time Periodic Signal

) 152
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Periodic Signals
Convergence of the Fourier Series

If a periodic signal x (t) is approximated by a linear
combination of finite number of harmonically related complex

exponentials

N
X, (6)= ) a e .
k=—N

Let e (t ) denote the approximation error 153

The criterion used to measure guantitatively the
approximation error is the energy In the error over one

period:



Periodic Signals

Convergence of the Fourier
Series

Ey = [ley(0) dt.

The particular choice for the coefficients that minimize
the energy in the error is

" :% Xt 4dt

The limit of E,as N -> « |s
Zero.



Periodic Signals
Convergence of the Fourier Series

One class of periodic signals that are representable
through Fourier series is those signals which have finite
energy over a period,

j_' ‘x(t)‘zdt <o,

When this condition is satisfied, we can guarantee that 155
the coefficients obtained from are finite. We define

then

o) =10 - Y™ [l =0



Periodic Signals
Convergence of the Fourier Series

- The convergence guaranteed when x(t) has finite energy
over a period is very useful.

- In this case, we may say that x(t) and its Fourier
series representation are indistinguishable.
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FOURIE TRANSFORM:

A periodic signal can be represented as linear
combination of complex exponentials which are
harmonically related.

eAn aperiodic signal can be represented as linear
combination of complex exponentials, which are
infinitesimally close in frequency. So the representation
take the form of an integral rather than a sum

e[n the Fourier series representation, as the period
increases the fundamental frequency decreases and the
harmonically related components become closer in
frequency. As the period becomes infinite, the frequency
components form a continuum and the Fourier series
becomes an integral.



FOURIE TRANSFORM:

»The main drawback of Fourier series is, it is only applicable
to periodic signals. There are some naturally produced
signals such as nonperiodic or aperiodic, which we cannot
represent using Fourier series.

»To overcome this shortcoming, Fourier developed a
mathematical model to transform signals between time or
spatial domain to frequency domain & vice versa, which is
called 'Fourier transform.

»Fourier transform has many applications in physics and
engineering such as analysis of LTI systems, RADAR,
astronomy, signal processing etc.



Deriving FOURIE TRANSFORM from FOURIER SERIES:

Consider a periodic signal ft with period T. The complex Fourier
series representation of ft is given as

f(t) = i e’ !

k=—00

_ i ad B (1)

k=—0c0



Deriving FOURIE TRANSFORM from FOURIER SERIES:

1
LW = Af, then equation 1 becomes
i

Zi[f) Wz TRAfT ............ (2]

R"——c:c-

L ®

but you know that

a :_11" ). A e TRt gy

Substitute in equation 2.

2:},.11;) E;l,_ ; fﬁTﬁf) koot Jy J2kAST




Deriving FOURIE TRANSFORM from FOURIER SERIES:

Let fp = 1“2

zk— . [,l _T ﬁf)e jZHkﬂﬁdi] é;Zﬁrkﬂﬁ ’é}'f

aaaaaaaaaaaaaaaaaaaaa

and summation becumesmtegrahun

T

) = limr-e {27 [} i) ) PR A gy

2

—I [I " AT o

— D




Deriving FOURIE TRANSFORM from FOURIER SERIES:

O

fAN=1 Floledo

— D

WhereFlo] = [} © f(1)e?*" di]

Fourier transform of a signal

J1) = Flo| = [f_ S1)e72l di]

Inverse Fourier Transform is

AN = Flolédo

— 0




FOURIE TRANSFORM :

FT of Impulse Function

FTle(r)] =1 = o(r)e 7= drl

—evr |7 =0




FOURIE TRANSFORM :

FT of Unit Step Function:
U(w) = no(w) + 1ljw

FT of Exponmnentials

F.T

e () = 1L/ (a + je2)
F.T

e () «<—> 1L/ (o + jeo2)

e lsl <> 2=

A< Ao

Foan W ol WO & F'T —
«<—> oo — coa)
FT of Sigmumm Functionm

F. =

sorr(r) <— __




FOURIE TRANSFORM :

Conditions for Existence of Fourier Transform

Any function ft can be represented by using Fourier transform
only when the function satisfies Dirichlet’s conditions. i.e.

» The function ft has finite number of maxima and minima.
» There must be finite number of discontinuities in the signal
ft,in the given interval of time.

» |t must be absolutely integrable in the given interval of time
l.e.

J'oo
—oo f(t)] dt <



The discrete-time Fourier transform DTFT or the Fourier
transform of a discrete—time sequence

Xx[n] is a representation of the sequence in terms of the
complex exponential sequence ejwn .

The DTFT sequence x[n] is given by
X(w) =Z2 _,x(m)e??” ...... (1)

Here, Xw is a complex function of real frequency variable w
and it can be written as
X(@) = X, () + X,y (@)



Inverse Discrete-Time Fourier Transform

IDTFT:

x(n) = ﬁ ] _E Xw)e™ day......... (2)

Convergence Condition.
The infinite series in equation 1 may be converges or may not. xn is absolutely summable

when > | x(n)| < oo

Fl=—00



Where Xrew, Ximgw are real and imaginary parts of Xw
respectively.

X(0) = [ X(o)| cos 0()
Xine (0) = | X[@)] sin 0(w)
A@)]|? = | Xel@)|* + | Xp(@)]?
\nd X can also be represented as X[w) = | X{w)]e®)

Where (@) = argX(o)
| X(@)|, 0(e) are called magnitude and phase spectrums of Xa.



Linearity Property

If o(t) —— X(w)

F.T
& y(t) +—— ¥ (w)
Then ineanty property states that

az(t) + by(t) —— aX(w) + bY (w)

169



. X(t) o X (jo)

F ,
x(t—t,) e’ X (jo)

Then

Proof x(t) =3, LD X(jo)e"do

Now replacing t by t-to Y(t—1,) =L oo X(jo)e™ de
L[ 7 X (jo)fdo

Recognising this as

Fix(t—t,)}=e’™ X (jw)

A signal which is shifted in time does not have its Fourier transform magnitude altered, only a shift
in phase.



Frequency Shifting Property

If 2(t) «— X(w)

Then frequency shifting property states that

Bt 2(4) £y X(w — wp)

171



Time Reversal Property

F. T
If z(t) — X(w)
Then Time reversal property states that

z(—t) 4 X(—w)

172



Time Scaling Property

F. T
If z(t) +— X(w)
Then Time scaling property states that

z(at) — X=

la |

173



If () s X(w)

T hen Differentiation property states that

dr(t) F.T
iﬁ ]

> Jor. X ()

d”x(t) F.T .
— - = Fea)™ . X ()

and ntegration property states that

S () de < L X (cw)

e

M- - fa(e) dt < 1 X ()

174



Multiplication and Convolution Properties

If z(2) < X(w)

F.T
&z y(t) +—— Y (w)
Then muliphcation property states that
F. T
(). y(t) —s X(w) * Y(w)
and convolution property states that

z(t) * y(t) +— L X(w). ¥(w)

175



Differentiation in frequency domain

cod .
Flx(t)] = §5—X(Gw)
d : d = — Jia! = d — i
E}f(jm] : E[f—m z(t)e™ ileift] = h/:m Il::thEE tdt
/ T 2(8)(—je)e It
Fl—gtx ()] = X (o)
=Gy = [ tx(e)etar = Flea(e))

ll,__FE'?I_-!-
™

Flex(£)] = 57— X (Gew)
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i Floft)] = X(), then Fle'(t] = X'(-ju)

Proof: Taking the complex conjugate of the mverse Fourter transform, we get

Replacmg W by ' e get the destred result:

= [ Xe= P

- s



[ e ] ot lﬂ [ = Tolomgr

Syl =X ()
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if Flx(t)] = X(jw), then F[X(t)] = 27 z(—Fw)

if Flz(#)] = X(f), then F[X(#)] = =(—F)

2(t) = FHXGw)] = o= [ X(jew)ertd

1 oo | s
z(—#) = ﬂimx(;mje ot g
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- Signal transmission through Linear system

180



Linear system , it satisfies principle superposition.

The response of linear system to weighted sum of input signals is
equal to the same weighted sum of output signals.

x;(t) > y;(t) = T[x;(t) ]
N

x(t) = Z a;x;(t) where a; is any arbitary constant
i=1
181

N N
y(©) = T[x(®) | = T[Z aixi(t)] = > aTlx (0]
i=1 i=1

N

y(t) = 2 a;y; (t)

i=1



Lumped and distributed systems

Time invariant and variant systems

182



systems

Lumped systems:
Consisting of Lumped elements which are connected particular way.

The energy in the system considered to be as stored of dissipated in distinct
isolated elements.

Disturbance initiated at any point propagated instantaneously at every point in
the system.

Dimensions of elements is very small compare to signal wave length.

Obeys ohm law and Kirchhoff laws only and system are expressed by ordinary
differential equations. 183



Elements are distributed over a long distances.

Dimensions of the circuits are small compared to the wave length of signals to be
transmitted.

system takes finite amount of time for disturbance at one point to be
propagated to the other point.

Expressed with partial differential equations.

Example are transmission lines , optical fiber , wave guides, antennas,

semiconductor devices , beams etc.,
184



LTI system , it satisfies linear and time invariant properties.

A system is Time invariant , if a time shift of input signal leads to
an identical time shift in the output signal.

y(t) = T[x(t)]
if input delated or advanced by t, seconds
y1(t) = T [x(t +to)] 185

yi(t) =y (t+1t)
= y(t, ty) time invariant other wise variant



Let us consider an arbitrary signal

x(t)isan approxximationof x(t) and
it can be expressed as linearcombination of shifted impulses

X() = -+t 2(=28)8, (t + 28) + x(=A)8, (t + A) + x(0)8, (¢)
+ ()8, (t = A) + x(28)8, (t = 20) + -+ ...

x(t) = x(kA)8, (t — kA) A
kZoo A 186
x(t) = limx(t)

A-0

As A— 0,6, (t) - 8(t), summation becomes integration kA - t,A - drt



1
0A(t) = n 0<t<A otherwise(

x(t) = foox(r)5(t —1)dt

A continuous time signal can be expressed as integral of weighted shifted
impulses.

? x(1)

_A |0 A 2A ’



y@)=T[x(t)=T L

y(t) is a reponse of x(t)

x(t) = JOO x(1)8(t — 1)dt

y@)=T

[ x(t)]
rOO

x(1)6(t — T)dT]

—00

y(t) = f x(DT[6(t —7)]dT

3(1)

i

—

x(1)

LTI

h(t)

system .

(1) =x(t) * h(r)

188



h(t —t) = T [§(t — t)this satisfies time invariat property

h(t) = T [6(t)] this shows impuse response of LTI system
Impulse response of LTI system due to impulse input applies at t=0
is h(t).

This is known as convolution integral and it gives relationship
among input signal, output signal and impulse response of
system.LTI system completely characterized by impulse response

Input LTISYSTEM Output
X h[“ >

() "l =t "N}



Consider LTI system with impulse response h(t)

y(t) = foo x(Dh(t — 1)dr

y(t)<Fourier transform>Y(a))

x(t)Fourier trans f orm X (w)

h(t)?'ourier transf orm H (w)

Y(w) = fooy(t)e_j“’t dt

190

Y (w) = foo foox(r)h(t—r)e_f“’tdrdt



t—1=Adt=dA

Y(w) = [Oo x(r)e‘jmdrfoo h( e 0t d 2

Y(w) = Hw)X(w)
|H(w)| = magnetude response of LTI sytem and it symmetric

LH(w) = phase response of LTI system and it is anti symmetric o



If input to the system is an exponential function

x(t) = ot

y(t) = [ ’ h(t)x(t —1)dr

y(t) = f h(t)e/ =gz

192

y(t) = &/ H(w) = x(t) H(w)

Output 1s a complex exponential of the same frequency as input
multiplied by the complex constant H(w).



Commutative Property
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Associate Property : cascading of two or more LTI system will results to
single system with impulse response equal to the convolution of the
Impulse response of the cascading systems

xy Vit
N N A Y T A
ul N D

194

x(t) * hy ()} % hy(t) = x(t) * {hy(t) * hy(t))
h(t) = hy(t) = hy(t)



Distributive Property: This property gives that addition of two or more LTI
system subjected to same input will results single system with impulse
response equal to the sum of impulse response of two or more individual

systems.

x(6) * Lhy () + hp(t)} = x(8)  hy (t) + x(8) * ha(t)

195



Static and Dynamic system:

A system is static or memory less if its output at any time depends only on
the value of its input at that instant of time

For LTI systems, this property can hold if its impulse response is itself an
impulse.

convolution property, the output depends on the previous samples of the
input, therefore an LTI system has memory and hence it is dynamic system

196



Causality :A continuous time LTI system is said to causal if and only if

~ (nonzero for t >0
h(t) = 0 fort<0

197



Stability: continuous time system is BIBO stable if and only if the
impulse response is absolutely Integrable.

Consider LTI system with impulse response h(t) . the output y(t) is

00)

y(t) = J h(t)x(t —1)dt

If the input x(t) is bounded that is |x(t)| < M, < oo
198

y(0) | = f A(@x(t - )dr

0 0)

y(6) | = f h@|lx(t - )lde



For bounded output, the impulse response is absolutely Intergrable

thatis [ |h(z)|dr < o0

The above equation gives necessary and sufficient condition for BIBO
stability.

199



Inverse systems :A system T said to be invertible if and only if there exits
an inverse system T for such that T T is an identical system

200



Transfer function of LTI system defined as the ratio of Fourier transform of the
output signal to Fourier transform of the input signal.

Input LTI SYSTEM Output
> h[t:‘ >
(t) y(t) =x(t) * hit)
Vw
) = ( )

n(t) = IFT of H(w). 201



Input and output relationship of continuous time causal LTI system described
by linear constant coefficient differential equations with zero initial

conditions is given by

N M

d*y(t) d*x(t)
zak dtk :zb dtk

k=0 k=0

where a; andb, any arbitary constants and N >M .

N refer to highest derivative of y(t)



N M
Z d*y(t) Zb dx(t)
h,——— = —
gtk © gtk
k=0 k=0
Apply Fourier Transform to above equation

N

M
) 4 (0) ¥@) = ) b () X(0)
k=0

k=0
203

_ V() _ Ticobi (o) _
(w) = X()  Y_,q o)k



System
Distortion less transmission through the LTI system requires that the response be
exact replica of input signal.

The replica may have different magnetude and delayed in time.

any arbitary input x(t),if output y(t) = k x(t — ty)
Y(w) = kX(w) e/ @to
H(w) = k e/ ®@to
|H(w)| = k, <H(w) = nmt — wt, 204

Magnetude response of system |H( w )| must be constant over
entire frequency range.

Phase response of the system 2H( w ) must be linear with
frequency



Signal Band Width

Signal Band width:

It is the range of significant frequency components present in the

signal.
For any practical signals, the energy content decreases with

frequency, only some of frequency components of signals have
significant amplitude within a certain frequency band; outside this

1

band have negligible amplitude.

The amplitude of significant frequency components within the

times of maximum signal amplitude. o



The band width of system is defined as the interval of frequencies over
which the magnitude spectrum of remains within times (3dB) its value

at the mid band.

I

= lower 3dB frequency = lower cutof f frequency =

lowerfrequency at which magnetude of H( w ) \/—15

Times of 1ts value at the mid band.

w, = upper cutoff frequency = Upper 3dB frequency 206

1
= highest frequency at which magnetude of H( w ) — times its mid band value

V2
System band width = Upper 3dB frequency — lower 3dB frequency



For distortion less transmission, a system should have infinite bandwidth.
But due to physical limitations it is impossible to design an ideal filters
having infinite bandwidth.

For satisfactory distortion less transmission, an LTI system should have high
bandwidth compared to the signal bandwidth

207



LTI system acts as filter depending on the transfer function of system.

The system modifies the spectral density function of input signal according to
transfer function.

system act as some kind of filter to various frequency components.

Some frequency components are boosted in strength, some are attenuated,
and some may remain unaffected.

each frequency component suffers a different amount of phase shift in the
process of transmission.

208



LTI system may be classified into five types of filter

Low pass filter
High pass filter
Band pass filter
Band reject filter

All pass filter.

209



Pass Band : Passes all frequency components in its pass band without distortion

Stop Band : completely blocks frequency components outside of pass band.
There is discontinuity between pass band and stop band in frequency spectrum.

Transition band : For Practical filters, The range of frequencies over which
there is a gradual Transition between pass band and stop band.

210



An ideal low pass filter transmits all frequency components below the certain
frequency w, rad /sec called cutoff frequency, without distortion. The signal
above these frequencies is filtered completely.

Transfer function of Ideal LPF

o) 0ot for lw|<W

~ 1o for |w|> W

211
|H(w)| A LH(0)=~jo

-
—




An ideal high pass filter transmits all frequency components above the certain
frequency W rad/sec called cutoff frequency, without distortion. The signal
below these frequencies is filtered completely.

—j Wi
Ho) = e T for |w| >W
0 for|w|<W

[Hiw)
| 1 s
212
sasmen -
¥ 0 W o




An ideal band pass filter transmits all frequency components within certain
frequency band W to W, rad /sec, without distortion. The signal with frequency
outside this band is stopped completely.

e_j(‘)tO for Wi<|w|<W 2

H(w) = {

0 other wise

|H(w)|

—

ZHw) =

W, -w (0 W, W, o 0 o 213

(a) (b)



Filter

An ideal band reject filter rejects all frequency components within certain
frequency band W, to rad W,/sec. The signal outside this band is transmitted
without distortion.

0 forW; < |w| < W,
e 0% other wise

H(w) = {

A

|H(w)|

_ \ LH( ) = ~j0 214

, > W W Z ()
AT A

(&) (b )



Wiener

For physically realizable systems, that cannot have response before the input

signal applied. Crltenon

In time domain approach the impulse response of physically realizable systems
must be causal.

Frequency domain, The necessary and sufficient condition for magnetude
response to be physically realizable is known as the Paley — Wiener criterion

215

< 00

‘nIH Hdw
fm 1+ w?



This condition known as the Paley — Wiener criterion %;.'AR;;;

To satisfy the the Paley — Wiener criterion, the function H (w ) must be square
integral .

All causal system satisfy the Paley —Wiener criterion.

Ideal filters are not physically realizable. But it possible to construct physically
realizable filters close to the filter characteristics.

Where ¢ an arbitrary small value |
 (e719% for |w| <W e

Hw) = e for|w| >W



Band width and Rise time

The Rise time (t,) of output response is defined as the time the response
take to reach from 10 % to 90% of the final value of signal.

dy(t)] 1

dt

Lo t?”

System band Width can be derived from output response

e_jwtO for |w| < a)C 217

Consider LPF with transfer function H(w):{ 0 for |w] >
or |w| > W,



Rise time and Band width

1 (" .
ht) = — [ H(w)e " dw
i),

| [ U Jol-t) 1 sinw, (£ - t)
"

T T (-t

w,Sinca, (t = ty)

n 218




Rise time and band width

dy(t) _ o . ]
il sincw, (t-to)
dy(t)] o, 1
dt | ot
0 219
t T
r (I)C

Band width of LPFis  w,rad/sec



The convolution integral

The process of expressing the output signal in terns of the
superposition of weighted and shifted impulse responses is
called convolution.

The mathematical tool for evaluating the convolution of
continuous time signal is called convolution integral. For

discrete time signal is called convolution sum.

Characterizing input — output relationship of LTI systems.
220

Play important role in time and frequency domain analysis.



The convolution integral

Let x4(t) and x,(t) be two continuous time signals. Then
convolution  of x4(t) and x,(t) can be expressed as

| 1@yt - 1) dr
where 1 is dummy variable

The output of any continuous time LTI system is the convolution of the
Input X(t) with impulse response h(t) of the system. 221



The convolution Integral

Case 1

non zerovalue t >0

If the input signal is causal x(t) :{ 0 forother wise

y(t) = fo Oox(r)h(t —7)dt

Case 2

non zerovalue t >0

If LTI system is causal h(t) ={ 0 forother wise

222

y(t) = jt x(Dh(t = 1)dt



The convolution Integral

Case 3

If both input signal and system are causal

y(t) = fo Oox(’r)h(t —7)dt

223



Properties of convolution integral :

Commutative Property:

let x1(t)and x,(t)are the continuous time signals

11 (8) * x%p(t) = x5(t) % x(t)

fooxl(r)xz(t—r) dt

Xy (t) * x(t)

t—1= 1 224

w(0)* H) = j (D)%t - 1) dh = x,(0) * 1,0



Properties of convolution integral :

Distributive Property:

x1(8) * [ x2(8) + x3(6)] = 21 () * x,(8) + x1(€) * x3(t)

Associate Property:

x1(8) * [ x2() * 23 ()] = [o01(8) * 22 ()] * x3(8)

= x1(t) * x,(t) * x3(t)
Shifting property:
x1 (t) * xq (t —tg) = x(t — ty)
x; (E—t)* x; (t—t) =x(t—t; — t3) 225



Properties of convolution integral

Convolution with impulse function

x(t)* 0(t) = x(t)
x(t) x 6(t— ty) = x(t—tp)

Convolution with unit step function

u(t) = Jt 6(1) dt 226



Properties of convolution integral

Width Property:

Let wus consider finite duration of two signals
x1(t) and x,(t) are Ti and T2 respectively then
duration of y(t) = x1(t) * x»(t) is equal to the sum of
duration of x4 (t) and x5 (t).

Area under finite signals x4 (t) and x,(t) are Ai and A>

respectively then the area under y (t) is product of both
areas.

A = area under y (t) = area under x; (¢) and area undegy
X (t) = A1 Az



Convolution property of Fourier Transform

1(t) & X(w)y(t) & V(o)
Fourier Transform of x(t) * y(t) = X(0)Y (o)
Convolution in Frequency Domain

Fourier Transform of X(w) * Y(w) = 2nx(t)y(t)]

228



Method of Graphical Convolution

Increase the time t along positive axis . Multiply the signals and
Integrate over the period of two signals to obtain convolution at t.

Increase the time shift step by step and obtain convolution using step
4.

2R e HRMVAHEIRR X LA IR Y AL 65, AP AR UL SIERS A3 &S
tidnGiHeR t9hbtain convolution at t.

Increase the time shift step by step and obtain convolution using step 4.

Draw the convolution x (t) with the values obtained in steps 4 and 5 as function of t.

229
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LAPLACE TRANSFORM:

» A Laplace transform of function f (t) in a time domain,
where t is the real number greater than or equal to zero, is

given as F(s), where there

F(s) = [ f(De =tdt

It is the complex number in frequency domain .i.e. s = o+jw
The above equation is considered as unilateral Laplace

transform equation
When the limits are extended to the entire real axis then the

Bilateral Laplace transform can be defined as

F(s)=J " f(Detdt



LAPLACE TRANSFORM:

The techniques of Laplace transform are not only used in
circuit analysis, but also in

» Proportional-Integral-Derivative (PID) controllers

»DC motor speed control systems

»DC motor position control systems

»Second order systems of differential equations (under
damped, over damped and critically damped)



LAPLACE TRANSFORM:

TRANSFORMASI LAPLACE

tambahkan dari buku dspguide

=

Inverse

|
:
1
:
1
:
l
:
1
:
|
:
1
:
1
:
l
:
1
:
1

Lap;lace
’ Laplace

Y(s)

- joo = Complex Frequency

Trahsform

3s of s-Domain Circuits
ind Without Initial Conditions

Amplitude




LAPLACE TRANSFORM:

Definition
From L{f(t)} = F(s), thevalue f(t) iscalled the inverse Laplace transform of
F(s). In symbol,

L {F(s)} = f(t)

where £ ! iscalled the inverse Laplace transform operator.

To find the inverse transform, express F(s) into partial fractions which will, then,
be recognizable as one of the following standard forms.

1 il

f(t) = L7{F(s)}(t) = o am o e" F(s) ds,



REGION OF CONVERGENCE OF LAPLACE TRANSFORM: . %asc

Conditions For Applicability of Laplace Transform

Laplace transforms are called integral transforms so there are
necessary conditions for convergence of these transforms.

F(s) = j;mf[r)e‘“dt < oo;

i.e. f must be locally integral for the interval [0, o=) and
depending on whether o is positive or negative, e”(-ot) may
be decaying or growing. For bilateral Laplace transforms
rather than a single value the integral converges over a
certain range of values known as Region of Convergence.



PROPERTIES OF LAPLACE TRANSFORM:

1.LINEARITY:

L.T.

f,(t) — F,(s) with ROC = R,
L.T.

£ (t) = F,(s) withROC= R,

af,(£) + bf,(t) = aF,(s) + bF,(s): ROC= R, N R,

E{ﬂ-f(t)+b-y(t)}=f(ﬂ-f(mb-y(t))*e 2"
:a/mf(t):ke ”dt+b/mg[t)$e *dt

- L .

"f

H(s) Cls)



PROPERTIES OF LAPLACE TRANSFORM:

First Derivative Property :

The first derivative in time is used in deriving the Laplace
transform for capacitor and inductor impedance. The
general formula

=510

Transformed to the Laplace domain using (777)

o0 o0
d ¢ df(t)  d(2)
E{E_f[t]}:£ e " —— dtzﬂ e " ——dt=

Recall integration by parts, based on the product rule, from your favorite calculus class

b

r b
f u(t) v (t) dt = [u(t) v(t)]® —f u'(t) v(t) dt

a

u(t) = f fr)dr = o' (8) = £(2)

V(t)=e *F = v(t)=—L1e




PROPERTIES OF LAPLACE TRANSFORM:

Second Derivative Property :

The second derivative in time is found using the Laplace
transform for the first derivative. The general formula

J2
u(t) = 2 £(2)

introduce g(t) = 4 £(t
u(t) = o)



PROPERTIES OF LAPLACE TRANSFORM:

Integration Property:

Determine the Laplace transform of the integral

£
ue) = [ rrar
0
Apply the Laplace transform definition

o[ rer [ ([ o)z

- (E)
u(t)

e [1orh = [Tuw v a
[i]

b b
f u(t) v/ (t) dt = [w(t) v(t)], — 1: w (t) v(t) dit

u(t) = f F(r)dr = () = £(2)

v(t)=e * = u(t) = —L1e ™




PROPERTIES OF LAPLACE TRANSFORM:

Time Scaling:

tlal) &= =X (-) {0 )H—X(ﬂ)

Proof,

t) - | o= [ s = | st ()



PROPERTIES OF LAPLACE TRANSFORM:

Time shift:

Calt-to)ult =)} = X(s)e™

Lle(t-t)ult-b)}= [lwm(l—ln)r'“di: /ﬂmz[*r] bl - ﬁ W afr)e™"dr=¢Xs)



PROPERTIES OF LAPLACE TRANSFORM:

Frequency shift:

L{e(t-)u(t- o)} = X(g)e™
Proof.

X

Celt-1)u(i-1) - [

]

1t~ el = ] afr)e "y = ¢ / gfr)e "dr =X s)
I 0



PROPERTIES OF LAPLACE TRANSFORM:

Differentiation in the s-domain:

L{e(t-)u(t- o)} = X(g)e™
Proof.

X

Celt-1)u(i-1) - [

]

1t~ el = ] afr)e "y = ¢ / gfr)e "dr =X s)
I 0



PROPERTIES OF LAPLACE TRANSFORM:

Initial value theorem:

z(0) = lm s X(s)
i

3 s X (8) — a(0)

f‘-"-‘“ dm{”ﬁ_“fﬂ = sX(s) — =(0)

Froof. Consider

el
Take lim on both side,

&P

lim f Mc:"‘”’dt lim s X (s) — (0]
i

E—rm i j 5—00
0
z(0) = limsX{(s)
"'-l-."'.l-ll'I f i .
t-domain e

s-clomain



PROPERTIES OF LAPLACE TRANSFORM:

Final value theorem:

(o) = liuﬁﬁﬁ{s]

Proof. Take lm on both side,

4]

éﬂ i dﬂiﬂ}ﬁ‘ﬂdt alﬂ.l:}u sX(s) = 2(0)

&

T

= da(t)t—s({oc)—e(0)

z(00) = ,lifﬂfx{'ﬂ

—END—



2 00O

Relation between FOURIER and LAPLACE TRANSFORM: %

The (unilateral) Laplace transform of a function g:

(£ g}(s) = fﬂ T e dg(t).

The function g is assumed to be of bounded variation. If g is the
ant derivative of f:

g(x) = f £(t) dt



Z-transform

»The Z-transform converts a discrete-time signal, which is
a sequence of real or complex numbers, into a complex

frequency-domain representation.
»The Z-transform can be defined as either a one-sided or

two-sided transform.

Bilateral Z-transform

The bilateral or two-sided Z-transform of a discrete-time signal
X [ n]is the formal power series X ( z) defined as

o

X(2) = Za[nl} = Y z[n)s"

M=—=00



Z-TRANSFORM

Unilateral Z-transform

Alternatively, in cases where x [ n ] is defined only forn>0 ,
the single-sided or unilateral Z-transform is defined as

X(z) = Z{x[n|} = i x(n|z"".

In signal processing, this definition can be used to evaluate
the Z-transform of the unit impulse response of a discrete-
time causal system.



Z-TRANSFORM:

Inverse Z-transform

zln| = Z7H{X(2)} = Ei:'lrj §CI(E}Eﬂ_ldE

where Cis a counterclockwise closed path encircling the
origin and entirely in the region of convergence (ROC).

This contour can be used when the ROC includes the unit

circle, which is always guaranteed when X ( z )hen all the
poles are inside the unit circle.



Z-TRANSFORM:

Region of convergence:

The region of convergence (ROC) is the set of points in the
complex plane for which the Z-transform summation

converges.
; m}

a0

> aln)z

T=—o

ROC = {3:



Z-TRANSFORM:

PROPERTIES OF ROC:

»ROC of z-transform is indicated with circle in z-plane.

»ROC does not contain any poles.

»If x(n) is a finite duration causal sequence or right sided sequence, then the ROC is
entire z-plane except at z = 0.

»If x(n) is a finite duration anti-causal sequence or left sided sequence, then the ROC is
entire z-plane except at z = oo,

»If x(n) is a infinite duration causal sequence, ROC is exterior of the circle with radius a.
i.e. [z] > a.

»If x(n) is a infinite duration anti-causal sequence, ROC is interior of the circle with radius
a.i.e. |z] <a.

»If x(n) is a finite duration two sided sequence, then the ROC is entire z-plane except at z
=0&z=00,



PROPERTIES OF Z-TRANSFORM:

LINEARITY:

a2y [Tr] + azaa 7]

g X g ':E'::I- - 412}!:'.'2{:}

X

X(z) = Z (a1z1(n) + ageq(n))z ™

n=—0o0

o 20
=y Z z1(n)z " + ay Z zy(n)z "
n=—00

n=—0x

=X {z] +as X, {E}




PROPERTIES OF Z-TRANSFORM:

TIME EXPANSION:

xlr|l, n = Kr
xx[m] = {l:u,[ : n & K7
X (%)
Xr(z) = Z rr(n)z""
— Z r(r)z" "8
= > =z(r)(z*) T

= X (")



PROPERTIES OF Z-TRANSFORM:

TIME SHIFTING:
Zlz[n — nol] = 2 "X (=),

e

Zlzln—nol] = ) z[n—nglz™"
Define m=mn-—"ny
we have and mE M
b
Z rlm|z" 2T = 27X 2)

Y zm]a e = 27 X(2)

m=—0o0



PROPERTIES OF Z-TRANSFORM:

CONVOLUTION:

Zlx[r] * ylr]] = X(=)¥ (=),

The ROC of the convolution could be larger than the intersection
of and , due to the possible pole-zero cancellation caused by
the convolution



PROPERTIES OF Z-TRANSFORM:

Time Reversal :

Zlr[—n]] = X(1/2) ROC =1/R,

Zlel-n] = Y al-nz= Y alml(0) " = X(1/2)

n—=—32C M=—0C



PROPERTIES OF Z-TRANSFORM:

Differentiation in z-Domain :

1
Z[naln]] = -2 —X(z), ROC =R
d - il . 20 o )
—X(2) —nzxr[n]a(f: ):n;x(_njz[n]z - =Y naln
Conjugation

Zlz*[n]] = X*(z*), ROC = R,

o al

—[Z rlnlz = ), 2nl(z")

n=—0o0



PROPERTIES OF Z-TRANSFORM:

Time reversal:

Zlz[—n]] = X(1/z) ROC =1/R,

i [ 4

Zlal-nll = Y al-nls = Y alml(2) " = X(1/2)

=00 TR—=



PROPERTIES OF Z-TRANSFORM:

Time reversal:

Zlz[—n]] = X(1/z) ROC =1/R,

i [ 4

Zlal-nll = Y al-nls = Y alml(2) " = X(1/2)

=00 TR—=



MODULE-V



Graphical and analytical proof for Band Limited Signals: S

m =
2 IARE S
) N

Sampling theorem: A continuous time signal can be represented
in its samples and can be recovered back when sampling
frequency f, is greater than or equal to the twice the highest
frequency component of message signal. i. e. fs>2fm

Proof: Consider a continuous time signal x(t). The spectrum
of x(t) is a band limited to f_ Hz i.e. the spectrum of x(t) is zero
for |w|>w_.Sampling of input signal x(t) can be obtained by
multiplying x(t) with an impulse train 6(t) of period T.. The
output of multiplier is a discrete signal called sampled signal
which is represented with y(t) in the following diagrams:



2 00O

Graphical and analytical proof for Band Limited Signals:

L =
S IAREg
G S

2 Q
y \3
N por W

REC
| t multiplier —
auf t 5() | y(t)
3 R

LTLLTIL il

-2Ts -Ts Ts 2Ts t ¥ l l l lq,

1 Y(w)
X(w)
2 /\/ \M
s 0 Ws 2w .
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Graphical and analytical proof for Band Limited Signals: &

m =
5 IARE §
(3}

%

Here, you can observe that the sampled signal takes the period of impulse. The process of
sampling can be explained by the following mathematical expression

Sampled signal y(t) = =(t). 6(t) ... ... (1)
The trigonometric Fourier series representation of & (t) is given by

d(t) = ap + B2, (@, cosnw,t + by, sinnw,t) ... ... (2)

T
Where ag = 7 [ 3 8(t)dt = 248(0) = -
I

2

a, = Tif; 3(t) cos nw, dt = %E(Eijcmnw,l] =z

by = 7 f% §(t) sinnw,t dt = £-6(0) sinnw,0 = 0
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Graphical and analytical proof for Band Limited Signals: %

% IARE ¢

2 Q~
7, \2
Oy FOR \‘\Q

Substitute above values in equation 2.

- o0(t) = % + E:‘:':l{% cos nw,t + 0)

Substitute &(t) in equation 1.

5 y(t) = =(t). 5(t)

= m[t}[T +Em1[T cos nuw,t)|

= 1 [m{t] + 282 | (cos nuw,t)z(t)]

Take Founer transform on both sides.
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Graphical and analytical proof for Band Limited Signals: S

™ =

¢ IARE ¢

< \3
2 Q&

Y(w) = %[X(w] + X(w — wy) + X(w + wy) + X(w — 2w;) + X(w + 2ws)+. .. ]

s Y(w) = %Ef=_mX[w — nuwy) where n =0,+1,42,. ..

To reconstruct x(t), you must recover input signal spectrum X(w)

from sampled signal spectrum Y(w), which is possible when there
is no overlapping between the cycles of Y(w).

There are three types of sampling techniques:
="Impulse sampling.
=Natural sampling.
=Flat Top sampling.



2 00O

Graphical and analytical proof for Band Limited Signals: S

% IARE
(3}

=
)
-
2 o

Impulse Sampling
Impulse sampling can be performed by multiplying input signal x(t) with impulse train of period
'T'. Here, the amplitude of impulse changes with respect to amplitude of input signal x(t). The

output of sampler is given by

1 R

) xm mr il

T
A n o +llll+?

y(t) = z(t)x impulse train
= () x B2 4(t —nT)

y(t) = ys(t) = B2 pz(nt)s(t —nT)......1
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Graphical and analytical proof for Band Limited Signals: S

™ =

2 IARE §

< \3
2 Q&

To get the spectrum of sampled signal, consider Fourier
transform of equation 1 on both sides

Y(w} — %E:‘;_WX({U - ﬂwS)

This is called ideal sampling or impulse sampling. You cannot use
this practically because pulse width cannot be zero and the
generation of impulse train is not possible practically.

Natural Sampling:

Natural sampling is similar to impulse sampling, except the
impulse train is replaced by pulse train of period T. i.e. you
multiply input signal x(t) to pulse train
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Graphical and analytical proof for Band Limited Signals: S

" =
3 IARE §
< A3

2 o
7, \2
Oy FOR \_\Q

Substitute p(t) in equation 1

y(t) = z(t) x p(t)
= z(t) x $52_ P(nw,) et

y(t] = %E;-;—II}P[WS:I E(f} edst

To get the spectrum of sampled signal, consider the Fourier transform on both sides.

F.T[y(t)| = F.T[2E2  P(nw,)z(t) el

= 15 P(uw,) F.T2(t) ™)

According to frequency shifting property

F.T[z(t) e™t] = X[w — nw;]

s Yw] = %Eﬂ";_mP(nws} X|w — nuws]
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Graphical and analytical proof for Band Limited Signals: S

™ =
2 IARE §
& \3

, Q
7, \2
¥ ror W

Flat Top Sampling: During transmission, noise is introduced at top of the transmission pulse
which can be easily removed if the pulse is in the form of flat top. Here, the top of the samples
are flat i.e. they have constant amplitude. Hence, it is called as flat top sampling or practical
sampling. Flat top sampling makes use of sample and hold circuit.

X(1)

o p——

>




Graphical and analytical proof for Band Limited Signals:

e, y(t) =p(t) x ys(t)... ... (1)

1 p(t) y(1) + y(1)

ettt ol
T2 T72 "’llll* U”I:Iﬂ[r

To get the sampled spectrum, consider Fourier transform on both sides for equation 1

Y[w] = F.T[P(¢) x ys(?)

By the knowledge of convolution property,

Y[w] = P(w) Yi(w)

Here Plw) = TS(I(M—;:I = 2sinwT fw

2 00O

™ =

3 IARElg
< 3

» <
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Graphical and analytical proof for Band Limited Signals: S

o =

5 IARE

% ¥
A o

Nyquist Rate:

It is the minimum sampling rate at which signal can be
converted into samples and can be recovered back without
distortion.

Nyquist rate f = 2f  hz

Nyquist interval = 1/f,, = 1/2fm seconds.



Reconstruction of signal from its samples:

Assume that the Nyquist requirement w0 > 2wm is satisfied.
We consider two reconstruction schemes:

e ideal reconstruction (with ideal band limited
interpolation),

e reconstruction with zero-order hold.
|deal Reconstruction: Shannon interpolation formula

1 1 1
Xp(t) = ...+ X (w + wo) + X (w) + X (w — wo) +..




Reconstruction of signal from its samples:

Our ideal reconstruction filter has the frequency response:

and. consequently, the impulse response
h(t) = si !
(t) = B-m::[_]—,]_

Now, the reconstructed signal is

e Hog t—nT
x(t) = xp(t) * hit) = x(nT) 8t —nT)+xh(t) = x(n T) sinc
“—i‘:«-f:—" rtzm - ’ nEm ( T )
impulse-sampled signal h(t —nT), see (3)

which is the Shannon interpolation (reconstruction) formula. The actual reconstruction system
mixes continuous and discrete time.

' i : Contin -Th
Discrete-Time Sinc Pulse e

x [ =x(O ... Generator x,[t}:“z:x ["HI_"T]:__E_,I [ﬂ]s-.m[l—;?']




Reconstruction of signal from its samples:

The reconstructed signal xr(t) is a train of sinc pulses scaled by
the samples x[n]. ® This system is difficult to implement because

each sinc pulse extends over a long (theoretically infinite) time
interval.

X(0)sinc( F )

—
b ™
5 ’
& ot
. ¢ t-T
W X(T )sinc\ =5
, : T
A}
)’ 3
\ -
/ . .
’ . -
’ \ e mud
’ T
LR Y DRIl AN A -~
\Sear? .\ P N\ ety -
. v . ’ . .



Reconstruction of signal from its samples:

A general reconstruction filter
For the development of the theory, it is handy to consider the

impulse-sampled signal xP(t) and its CTFT.

xR w)

[
| T
=
ml?“

Figure : Reconstruction in the frequency domain is low pass filtering

Here, the reconstructed signal is x,(t), with CTFT

sampling th. 1 = 2mk
XF (@) = Hiy(@) Xp(w) =07 Hw) 5 b X (w2 ).
ko e e

kg



Effect of under sampling — Aliasing :

Possibility of sampled frequency spectrum with different conditions
is given by the following diagrams

1 Y(w)
fs e Efm
/\ / \ /\ /\cuer sampling
-(s 0 Ws 2ws ’
T Y(w)
fs = 2fm
perfect sampling
-Ws 0 ws 2Ws i
1 Y(w)

fs < Efm
/y W\ under sampling

=Ws 0 Ws 2ws




Aliasing Effect:

The overlapped region in case of under sampling represents aliasing
effect, which can be removed by

econsidering f. >2f

eBy using anti aliasing filters .

Samplings of Band Pass Signals:

In case of band pass signals, the spectrum of band pass signal X[w] =
O for the frequencies outside the range f, < f < f,. The frequency f, is
always greater than zero. Plus, there is no aliasing effect when f, >
2f,. But it has two disadvantages:



Samplings of Band Pass Signals:

The sampling rate is large in proportion with f,. This has
practical limitations.

The sampled sighal spectrum has spectral gaps.

To overcome this, the band pass theorem states that the input
signal x(t) can be converted into its samples and can be
recovered back without distortion when sampling frequency

f, < 2f,.

Also,



Samplings of Band Pass Signals:

Where m is the largest integer < ‘f—;

and B is the bandwidth of the signal. If f,=KB, then

For band pass signals of bandwidth 2, and the minimum sampling rate f,= 2 B = 4i,,

the spectrum of sampled signal is given by ¥ w| = %Eﬁ";_m X|w—2nB]



Samplings of Band Pass Signals:

The output of sampler is
y(t) = x=(t) x pulse train
= x(t) < p(t)

= ax(t) = B2 Pt —mIT)... ... (1)

The exponential Fourier sernes representation of p(t) can be given as

p(t) = XE2° Fhefmwt . .(2)

F——

— 3ge  F,el?miE

FE— — O

. .
Where FL, — % f_?r p{t)e_m‘*tdt

=S T—:}P(nw_g}

Substitute F_, value in equation 2

() = DR P(nw.) el

— FEE o P(nws)edmert
1



Correlation:

Cross Correlation and Auto Correlation of Functions:

Correlation

Correlation is a measure of similarity between two signals. The
general formula for correlation is

f mzl(t)mg[t— T)dt

o0

There are two types of correlation:
*Auto correlation
*Cross correlation



Auto Correlation Function:

It is defined as correlation of a signal with itself. Auto correlation
function is a measure of similarity between a signal & its time
delayed version. It is represented with R(t).

Consider a signals x(t). The auto correlation function of x(t) with its
time delayed version is given by

Ry (1) =R(1) = /m z(t)e(t —7)dt  [+ve shift]

— 00

— f_m z(t)z(t + 7)dt  [-ve shift]

oo



Auto Correlation Function:

Where 1 = searching or scanning or delay parameter.
If the signal is complex then auto correlation function is given by

Ry () =R(7) = [m z(t)z * (t — 7)dt [+ve shift]

— 0

— j:m z(t + 7)z * (t)dt [-ve shift]



Cross Correlation Function:

Cross correlation is the measure of similarity between two
different signals.
Consider two signals x,(t) and x,(t). The cross correlation of
these two signals R12(t)R12(t) is given by

Rio (T] = j: " T [t}:l:g {t — T) dt [-HTE S]:Llfl;]

— ]:m xq(t + 7)o (t) dt [-ve shift]



Cross Correlation Function:

signals are complex then

Rpp(r) = / N z1(t)zy(t — 1) dt [+ve shift]
= /_m z1(t + 7)a3(t)dt  [-ve shift]
Ry (1) = f_ N zo(t)z; (t — 7)dt [+ve shift]

o0

X

- /_ zo(t +7)a;(t)dt  [-veshift]

oo




Properties of Cross Correlation Function:

Auto correlation exhibits conjugate symmetry i.e. R (t) = R*(-t

)

Proof:  The autocorrelation of an energy signal x(1) is given by

R(t) = j x()x (1 - 7)dt

Taking the complex conjugate, we have

oo

R (1) = j (1) x(t - 1) dr

R*(~7)= j x (1) x(t+7)dt=R(1)



Properties of Cross Correlation Function:

Auto correlation function of energy signal at origini.e. at t=0is
equal to total energy of that signal, which is given as:

-——

Proof: We have

R(r)= j x(r)x*(: - T) di

-

Putting 7 = () gives

R(0) = T XOx' O dt= [ |x(o) de=E



Properties of Cross Correlation Function:

Auto correlation function is maximum att=0i.e |[R(t) | <R(0) VT

Proof:  Consider the functions x(r) and x(t + 1), [x(1) 4 x(t + 7] is always greater
than or equal to zero since it is squared, e,

)+ 0+ 0200 K 4720

or )+ X+ 1) 24200 2 + 1)
Integrating both the sides, we get

- L LY

1w do [ [xte o dr22 [ 20004 1)

- - -y

E+E22R(t) [If x(r) is real valued function)
E2 R(1)
o RO) 2 [R(7)|  (Since R(0) = E)



Properties of Cross Correlation Function:

Auto correlation function and energy spectral densities are Fourier
transform pairs. i.e.
F.TIR(1)]=S,(w)
Syw(w)=JR(T)e¥"dt where -oo < T<o0

R(t)=x(t)*x(-T)



Properties of Cross Correlation Function

*Auto correlation exhibits conjugate symmetry i.e. R,,(1)=R*,,(-7).
eCross correlation is not commutative like convolution i.e.
R,,(T)%R,,(-T)
oIf R,,(0) = 0 means, if [x,(t)x*,(t)dt=0 over interval(-oo,o°), then
the two signals are said to be orthogonal.
eCross correlation function corresponds to the multiplication of
spectrums of one signal to the complex conjugate of spectrum of
another signal. i.e.
R,(T0) &> X, (w)X*,(w)
This also called as correlation theorem



Energy Density Spectrum:

Energy spectral density describes how the energy of a signal or
a time series is distributed with frequency. Here, the
term energy is used in the generalized sense of signal processing;
Energy density spectrum can be calculated using the formula:

E— f_ |=(F) [2df

Properties of ESD: The following are the properties of ESD.

1 The total area under the energy density spectrum is equal to the total energy of the
signal.

oo o0

1
i E=— (w)dw = (f)df
ie. 2}{]#’ ) ij

2. 1If x(2) is the input to an LTI system with impulse response h(t), then the input and
output ESD functions are related as:

v, (@) =|Ho) v, (o)
or v, (N =[H vl

3. The autocorrelation function R(7) and ESD y(@) form a Fourier transform pair, 1.€.
R(7) «— (@)

or R(7) «— y(f)



Power Density Spectrum:

The above definition of energy spectral density is suitable for
transients (pulse-like signals) whose energy is concentrated around
one time window; then the Fourier transforms of the signals generally
exist. For continuous signals over all time, such as stationary processes,
one must rather define the power spectral density (PSD); this describes
how power of a signal or time series is distributed over frequency, as in
the simple example given previously. Here, power can be the actual
physical power, or more often, for convenience with abstract signals, is
simply identified with the squared value of the signal.

Power density spectrum can be calculated by using the formula:

P=32__|CS



Power Density Spectrum:

The spectrum of a real valued process (or even a complex process
using the above definition) is real and an even function of frequency:

Sﬂ'--"‘- {—W} = S.T!:I" (W:]

If the process is continuous and purely in deterministic, the auto
covariance function can be reconstructed by using the Inverse
Fourier transform

eThe PSD can be used to compute the variance (net power) of a
process by integrating over frequency:

Var(X,,) = % fﬂ 8, (w) duo.



Relation between Autocorrelation Function and

Energy/Power Spectral Density Function:

Rc.ation between Autocorrelation Function and Energy Spectral
Density Function

The autocorrelation function R(7) and energy spectral density function wi{w) form a Fourier
transform pair, i.e.

R(7T) «—— w(a)
Proof: The autocorrelation of a function x(#) is given as:

R(r)= [ x(2) x" (¢t — ) dr
Replacing x"(r — 7) by its inverse transform, we have
=

o - . o - _ 7
R(T) = J.x(t)[% I X () e’V "dm] dt = —— J'.t(n[ J' X" (w) e o "d(o} di
T =T

-

— oo — o=

Interchanging the order of integration. we have

= g »*_ T -~ jax jwT
R(t)—-?:)r—rj X ta))[] x{1)e dz}c daw

= 1 - + jeor = T S 2 s

. _[X (@) X(w) e d(:)—; jl‘\(a))l e da
L g : -

= — I wia) e’ dw [since | X(@)|" = wi(w)]
2x

= F ')

wiw) = FIR(D)]

This proves that R(7) and ywi{mw) form a Fourier transform pair.

R(7T)«—— w(w)



Relation between Autocorrelation Function and

Energy/Power Spectral Density Function:

Relation between Autocorrelation Function and Power Spectral
Density Function

The autocorrclation function R(t) and the power spectral density (PSD), S(w) of a power
signal form a Fourier transform pair, i.e.

R(T) «—— S(w)

Proof: The autocorrelation function of a power (periodic) signal x(r) in terms of Fourier
series coefficients is given as:

R()= Y C,C_,e’™™*

n=—s=

where C,, and C_, are the exponential Fourier series coefficients.

R(D) =135 |Gy etnewe

n=—on

Taking Fourier transform on both sides. we have

FIR(DI= | ( i IGT cf""'*"]e'f“" dr

n=—oo

Interchanging the order of integration and summation, we get

FIR(D)] = z lCn|2 J‘e—;’fmp ") e

=2x 3, |C.F S@—nwy)= 3 |C.| 6¢f —nfy)

N - —

The RHS is the PSD S(w) or S(f) of the periodic function x(r).
FIR(D]=S(w) [or S(f)]

and F'[S(@)] (or F'[S(f)]} = R(D)

-e. R(T) e S(w) [or S(f)]



Relation between Autocorrelation Function and

Energy/Power Spectral Density Function:

Relation between Convolution and Correlation:

- ——— - WWwWOW T WwWE wWmw —IU-IJ - J WEAF BWIEENRT YY W

The LOn\rOIUUOH of r.(r) and x,( 1) is given by

X, (1)* Xy (~1) = _|' x,(7) X, (7 — 1) d7

Replacing the dummy variable 7 in the above integral by another variable n, we have

() * X (-0 = [ x,(n) xy(n~1) dn

Changing the variable from 7 to 7, we get

() *x,(-7)= I X (n) x;(n—=7)dn=R,(7)

=00

Hence R (D)=x,(n* xz(")L-,

Similarly, Ry () =x,(0)* (1),



