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Module – I  
Signal 

Analysis
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Analogy between Vectors and Signals

● There is a perfect analogy between vectors and signals 
which  gives better understanding of signal analysis.

● A vector contains magnitude and

direction.
● We shall denote all vectors by boldface type and 

their  magnitudes by lightface type.

● For example, A is a certain vector with magnitude

A.
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Analogy between Vectors and Signals

●

●

●

Consider two vectors V
1
and V

2
as shown in Figure. Let

the component of V
1
along V

2
be given by C

12
V

2
.

Geometrically the component of a vector V
1

along the

vector V
2
is obtained by drawing a perpendicular from the

end of V
1

on the vector V
1
.

● V
1
=C

12
V

2
+V

e

C
12

V
2

V
2

V
1

V
e
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Analogy between Vectors and Signals

V
1

V
e

C
12

V
2

V
2
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1

V
e1

V
2

V
1

V
e2

C
2
V

2
V

2
C

1
V

2

V
1
=C

1
V

2
+V

e1 V
1
=C

2
V

2
+V

e2

Minimum

errorof V is

present
e

when it is  
dropped  
perpendi
cular  on 
V

2
.
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Analogy between Vectors and Signals

● If C
12 

is zero, then the vector has no component along the 

other  vector and hence the two vectors are mutually 

perpendicular.
● Such vectors are known as orthogonal

vectors.
● Orthogonal vectors are thus independent

vectors.
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Analogy between Vectors and Signals

● A.B = AB cosθ

● A.B = B.A

● Component of A along B = Acosθ=

● Component of B along A = B cosθ=

● Component of V
1 
along V

2
=

A .B

B
A . 
B

AV 1 .V 2

V
2

= . C12 V2
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Analogy between Vectors and Signals

2
V 2

C
12

=. V 1 .V 2 .=
V 1 .V 2

V 2 .V 2

● If V
1 
and V

2 
are orthogonal then V

1
.V

2
=0 and

C
12

=0
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Analogy between Vectors and Signals

● The concept of vector comparison and orthogonality can 
be  extended to signals.

●

●

●

Let us consider two signals, f
1
(t) and f

2
(t) and approximate  

f
1
(t) in terms of f

2
(t) over a certain interval (t

1
<t<t

2
)

f
1
(t) ~=C

12 
f

2
(t) for (t

1
<t<t

2
)

If a error function is defined between actual and 
approximated  function is minimum over the interval (t

1
<t<t

2
)

● f
e
(t)=f

1
(t) - C

12

f
2
(t)
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Analogy between Vectors and Signals

● Possible criterion for minimizing the error f
e
(t) over the 

taken  interval is to minimize the average value of f
e
(t) 

over this,to  minimize

t −t
∫

2 1 t1

t2

1

1
[ f (t )−C 12 f 2(t )]dt

● This criterion is inadequate because there can be large
positive and negative errors present that may cancel one
another in this process of averaging and error becomes
zero.
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Analogy between Vectors and Signals

● This can be corrected if we choose square of the error 
instead  of error itself.

ε=
t2−t1 t1

t 2

1

1∫[ f (t )−C
12 2

f (t )]2 dt

ε=
t2−t1

∫
t 1

t 2

1

e

2[f (t )] dt
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Analogy between Vectors and Signals

● To find value of C
12 

which will minimize ε, we must 

have

d ε 
=0

dC12

That is
[

dC12 t 2−t 1 t1

t 2

d

1

1∫[ f (t )−C
12 2

f (t )]2 dt ]=0
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Analogy between Vectors and Signals

● Changing the order of integration and differentiation, we

get

1

t2−t1

t1

[

∫
t2

d

dC
12

1

2 ∫
t1

t2

f (t )dt −2 f
1 2
(t ) f (t )dt +2C

12∫
t1

t2

2

2f (t )dt ]=0

12
C =

t1

The first integral is obviously zero and 

hence
t2

∫ f 1 (t ) f 2 (t )dt
t1

∫
t1

2

2f (t )dt

13



Analogy between Vectors and Signals

● By analogy with vectors, f
1
(t) has a component of waveform 

f
2
(t)  and this component has a magnitude C

12
.

● If C
12

disappears, then the signal f
1
(t) contains no 

component  of signal f
2
(t), so the two functions are 

orthogonal over the  interval(t
1
,t

2
).

● Condition for orthogonality
t 2

∫ f 1 (t ) f 2 (t ) dt =0
t 1
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Analogy between Vectors and Signals

● It can be shown that the functions sin nω
0
t and sin mω

0
t

are orthogonal over any interval (t
0
,t

0
+ 2π/ω

0
) for integral

values of ‘m’ and ‘n’.

●

I= ∫
t0

Consider Integral I:

t0 +2 π /ω 0

sin n ω 0 t sin mω 0 t 

dt

I=

t0 +2 π /ω 

0

∫
t0

1

2 
[cos (n−m)ω 0 t−cos (n+m)ω 0 t ] dt
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Analogy between Vectors and Signals

● Since ‘n’ and ‘m’ are integers, (n-m) and (n+m) are also

integers

● In that case the integral I is zero.

● Hence, the two functions are orthogonal.
● Similarly, it can be shown that sin nω

0
t and cos mω

0
t are  

orthogonal functions and cos nω
0
t , cos mω

0
t are also 

mutually  orthogonal.
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Analogy between Vectors and Signals

Graphical Evaluation of a Component of one Function in the

other
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Analogy between Vectors and Signals

●

Orthogonal Vector Space

Analogy can be extended further to 3-dimensional space.

z
0

z

y
0

y
x

0

x

A(x
0
,y

0
,z

0
)
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Analogy between Vectors and Signals

Orthogonal Vector Space

●

●

●

Component of A along the x axis = A.ax

Component of A along the y axis = A.ay

Component of A along the z axis = A.a
z

A= x0ax+y0ay+z0az

a
x
.a

y
=a

y
.a

z
=a

z
.a

x
=0 a

x
.a

x
=a

y
.a

y
=a

z
.a

z
=1
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Analogy between Vectors and Signals

Orthogonal Vector Space

a
m
.a

n
= 0 m≠n

= 1 m=n

Considering n mutually perpendicular 

coordinates

A = C
1
x

1
+C

2
x

2
+C

3
x

3
+.....+C

n
x

n

x
m
.x

n
= 0 m≠n

= 1 m=n 20



Analogy between Vectors and Signals

Orthogonal Vector Space

Component Cr=A.xr  For an 

orthogonal vector space,

A.x
r 
= C

r
x

r
.x

r
= C

r
k

r

rC =
A .x r

kr

x
m
.x

n
= 0 m≠n

= k
m

m=n
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Analogy between Vectors and Signals

Orthogonal Vector Space

If vector space is complete, any vector F can be expressed as

F = C
1
x

1
+C

2
x

2
+C

3
x

3
+.....+C

r
x

r
+.....

rC = r

k
= .

F . x F .x r

x . xr r r
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Analogy between Vectors and Signals

Orthogonal Signal Space

Let us consider a set of n functions 

g
1
(t),g

2
(t),....,g

n
(t) which are  Orthogonal to one 

another over an interval t
1 
to t

2

t2 ∫ g j (t ) gk (t )dt 

=0
t1

j≠

k

And let

t 2

∫
t 1

j

2g (t )dt=K
j
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Analogy between Vectors and Signals

Orthogonal Signal Space

Let an arbitrary function f(t) be approximated 
over an interval  (t

1
,t

2
) by a linear combination of 

these n mutually orthogonal

Functions.

f(t)≈C
1
g

1
(t)+C

2
g

2
(t)+.......+C

k
g

k
(t)+......C

n
g

n
(t)

n

f (t )=∑ Cr gr (t )
r=1
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Analogy between Vectors and Signals

Orthogonal Signal 

Space

n

f e (t )=f (t )−∑ Cr gr (t )
r=1

ε=
1

t −t
∫

2 1 t 1

t2

[ f (t )−

n

∑
r =1

r r

2
C g (t )] dt

δε = δε =..= δε =....= δε =0
δ C1 δ C2 δ C j δ Cn
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Analogy between Vectors and Signals

Orthogonal Signal 

Space

δε =0
δ C j

δ 
C

t1

t2

j r=1

n

r r
δ [∫[ f (t )−∑ C g (t )]

2

dt ]=0

δ 
δ C 

j

t2

∫
t1

2[f (t )]dt= δ 
δ C 

j

t2

∫
t1

r

2

r

2[C (t ) g (t )]dt= δ 
δ C 

j

t 2

∫
t 1

[Cr f (t ) gr (t )]dt=0
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Analogy between Vectors and Signals

Orthogonal Signal Space

This leaves only two non zero terms

δ 
δε

t1

t2

∫ j j j j

2 2[−2 C f (t ) g (t )+C g (t )] dt =0

Changing the order of integration and differentiation

∫
t1

2 f (t ) g (t )dt =2 C
j j∫

t1

t2 t2

j

2g (t ) dt
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Analogy between Vectors and Signals

Orthogonal Signal

Space

Therefore,

j
C =

t1

t2

∫ f (t ) g j (t ) 

dt
t 2

∫
t 1

j

2g (t )dt
K j t1

t2

j
=

1 ∫ f (t ) g (t ) dt

28



Analogy between Vectors and Signals

Orthogonal Signal Space

●Given a set of n functions g
1
(t),g

2
(t),.......g

n
(t) 

mutually orthogonal  over the interval (t
1
,t

2
),it 

is possible to approximate an arbitrary  

function f(t) over the interval by a linear 

combination of these

n functions.

f(t)≈C
1
g

1
(t)+C

2
g

2
(t)+.......+C

k
g

k
(t)+......C

n
g

n
(t)

n

f (t )=∑ Cr gr (t )
r =1
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Analogy between Vectors and Signals

Orthogonal Signal Space

For best approximation we have to 

choose C
1
,C

2
,......C

n  
such that it will 

minimize Mean of the square of the 

error

over the interval
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Analogy between Vectors and Signals

Evaluation of Mean Square

Error
● Let it be to consider to find the value of ‘ε’ when

optimumvalues of coefficients C
1
,C

2
,....,C

n 
are chosen as to

give
ε=

1

t −t
∫

2 1 t1

t2

[ f (t )−

n

∑
r=1

r r

2
C g (t )] dt

ε=
1

t −t
2 1

∫
t2

2[ f (t )+
t 1

C 2

r

n t1

∑

∫
r=1 t2

r

2g (t ) dt−2
r

n

∑

∫
r =1 t1

t2

r
C f (t ) g (t ) dt ]
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Analogy between Vectors and Signals

Evaluation of Mean Square Error

● But from previous

approximation,t2

∫
t1

r
f (t ) g (t )dt =C

r∫
t1

t2

2g (t ) dt= C K
r r r

● Substituting this in above

equation

ε=
1

t −t
2 1

∫
t2

2[ f (t ) dt+
t 1

n

∑
r =1

2

r r
C K −2

n

∑
r =1

2C K
r r

]
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Analogy between Vectors and Signals

ε=
1

t2−t1

∫
t1

t2

2[ f (t ) dt 

−
∑
r

=1

n
2

r r
C K ]

This implies mean square error can be evaluated

by

ε=
1

t2−t1

∫
t1

t2

2 2

1 1

2

2 2

2

n n
[ f (t ) dt −(C K +C K +....+C K )]

Evaluation of Mean Square Error

So, the error ε
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Analogy between Vectors and Signals

Representation of a Function by a Complete 
Set  of Mutually Orthogonal Signals

● From above equation it is evident that if we increase
n, if we approximate f(t) by a larger number of
orthogonal functions, the error will be smaller.

● But by its very definition, ε is a positive quantity; 
i.e.,  in the limit as the number of terms is made 
infinity, the

su

m

n

∑
r=1

2
C K

r r
may converge to

integral

t2

∫ f 2 (t ) 

dt

t1

34



Analogy between Vectors and Signals

Representation of a Function by a Complete 
Set  of Mutually Orthogonal Signals

When integral and summation converge then ‘ε’  
vanishes.

t 2

∫
t 1

2f (t )dt= ∑
r

=1

n
2C K
r r

Under these conditions f(t) is represented by the infinite 

series:

f (t )=C1 g1 (t )+C2 g2 (t )+.... Cr gr (t )+.. .
35



Analogy between Vectors and Signals

Representation of a Function by a Complete 
Set  of Mutually Orthogonal Signals

● The infinite series on the right-hand side of above 
equation  converges to f(t) such that the mean square of 
the error is  zero.

● The series is said to converge in the

mean.

● Note that f(t) is now

exact.

● And should there be no other x(t) having orthogonality 
with  any g

r
(t).
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Analogy between Vectors and Signals

Representation of a Function by a Complete 
Set  of Mutually Orthogonal Signals

●

t1

Let us now summarize the results. For a set {g
r
(t)},  

(r=1,2,....) mutually orthogonal over the interval 

(t
1
,t

2
),

t 2
∫ gm (t ) gn (t ) 

dt

= 0 if m ≠ n
=K

m 
if m=n
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Analogy between Vectors and Signals

Representation of a Function by a Complete 
Set  of Mutually Orthogonal Signals

● If this function set is complete, then any 
function  f(t), can be expressed as

f (t )=C1 g1 (t )+C2 g2 (t )+.... Cr gr (t )+.. .

wher

e
r

C =
t1

r∫ f (t ) g (t ) 

dt
Kr

t1

=

t2 t2

r∫ f (t ) g (t ) 

dt
t2

∫
t1

r

2g (t )dt
38



Analogy between Vectors and Signals

Representation of a Function by a Complete Set  
of Mutually Orthogonal Signals

●This draws an analogy between vectors and 

signals.
● Any vector can be expressed as a sum of its 

components  along ‘n’ mutually orthogonal vectors, 
provided these  vectors form a complete set.

● Similarly, any function f(t) can be expressed as a sum 
of  its components along mutually orthogonal 
functions,  provided these functions form a closed or 
complete set.
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Analogy between Vectors and Signals

A⋅B
t2

~ ∫ f A (t ) f B (t ) 

dt
t1

A⋅A = A2 ~
t 2

∫
t 1

A

2f (t )dt

If a vector is expressed in terms of its mutually
orthogonal Components, the square of the length is
given by the sum of the squares of the lengths of the
component vectors.
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Analogy between Vectors and Signals

●Representation of f(t) by a set of  
infinite mutually orthogonal  
functions is called generalized  
Fourier Series Representation of  
f(t).
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Analogy between Vectors and Signals

Orthogonality in Complex Functions

●

12
C =

t 1

Let us consider two signals, f
1
(t) and f

2
(t) as complex 

functions  of real variable t, over a certain interval (t
1
<t<t

2
)

f
1
(t) ~=C

12 
f

2
(t) for (t

1
<t<t

2
)

t 2

∫ f 1 (t ) f 2∗(t ) dt

t 1

∫ f 2 (t ) f 2∗(t ) 

dt

t 1

42



Analogy between Vectors and Signals

Orthogonality in Complex Functions

Condition for orthogonality

t2 t2

∫ f 1 (t )f 2∗(t ) dt =∫ f 1∗(t ) f 2(t )dt =0
t1 t1
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Analogy between Vectors and Signals

Orthogonality in Complex Functions

For a set of complete functions {g
r
(t)}, (r=1,2,...) 

mutually  orthogonal over the interval (t
1
,t

2
):

t 2

∫ gm (t ) gn∗(t )dt =0
t 1

m≠

n

t2

∫ gm (t ) gn∗(t )dt = 

Km

t1

m=

n

44



Analogy between Vectors and Signals

Orthogonality in Complex Functions

If this set of functions is complete, then any 
function f(t) can  be expressed as

f(t)≈C
1
g

1
(t)+C

2
g

2
(t)+.......+C

r
g

r
(t)+.....

r t1

t2

1 
Cr = 

K
∫ f (t ) gr∗(t )dt
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Analogy between Vectors and Signals

Orthogonality in Complex Functions

● If this set of functions is real, then g
r
*(t)=g(t) and all the 

results

for complex functions reduce to those obtained for real 
functions  as shown the analysis of real functions.
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Analogy between Vectors and Signals

Summary

2
V 2

C
12

=. V 1 .V 2 .=
V 1 .V 2

V 2 .V 2

V
1
.V

2
=0 and

C
12

=0

i) With two functions

12
C =

t 1

t 2

∫ f 1(t ) f 2 (t ) 

dt t1

∫
t1

2

2f (t )dt
t1

t2

1 2∫ f (t ) f (t ) dt 

=0
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Analogy between Vectors and Signals

Summary

ii) With n dimensional functions

A =

C
1
x

1
+C

2
x

2
+C

3
x

3
+.....+C

n
x

n

rC =
A .x r

kr

f(t)≈C
1
g

1
(t)+C

2
g

2
(t)+.....C

n
g

n
(t)

r

=1

n

r r
f (t )=∑ C g (t )

jC =
t

1

t2

j∫ f ( t )g (t ) 

dt
t2

∫
t1

j

2
g (t )dt

K
j t1

t2

j
=

1 ∫ f (t )g ( t )dt
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Analogy between Vectors and Signals

Summary

iii) For a complete set of mutually orthogonal functions

F =

C
1
x

1
+C

2
x

2
+C

3
x

3
+.....+C

r
x

r
+.....

rC = r

k r

= .
F . x F .x r

x . xr r

f (t )=C1 g1 (t )+C2 g2 (t )+....Cr gr (t )+.. .
r

C =
t 1

t2

∫ f (t ) gr (t )dt

K
r

t1

=

t 2

∫ f (t ) gr (t ) 

dt t 2

∫
t 1

r

2
g (t ) dt

49



Analogy between Vectors and Signals

Summary

iv) For Complex functions

12
C =

t 1

t 2

∫ f 1 (t ) f 2∗(t 

)dtt 1

∫ f 2 (t ) f 2∗(t 

)dt
t 1

f(t)≈C
1
g

1
(t)+C

2
g

2
(t)+.......+C

r
g

r
(t)+.....

Cr=
1

Kr t
1

t2

∫ f (t ) gr∗(t )dt

50



Classification of Signals and Systems

Signals

● A signal is a function representing a physical quantity or 
variable,  and typically it contains information about the behavior 
or nature
of the phenomenon.

● Signals are represented by real- or complex-valued functions of 
one  or more independent variables.

● They may be one-dimensional, that is, functions of only 
one  independent variable, or multidimensional.

51



Classification of Signals and Systems

Classification of Signals

Signals can be classified into:

1. Continuous-time and Discrete-time

signals

2. Analog and Digital Signals

3. Real and Complex Signals

4. Deterministic and Random Signals

5. Even and Odd signals

6. Periodic and Non-periodic signals

7. Energy and Power signals
52



Classification of Signals and Systems

Continuous-time and Discrete-time signals

● A signal x(t) is a continuous-time signal if t is a 
continuous  variable.

● If t is a discrete variable-that is, x(t) is defined at discrete 
times- then x(t) is a discrete-time signal.

● Since a discrete-time signal is defined at discrete times, 
a  discrete-time signal is often identified as a sequence of  

numbers, denoted by {x
n
} or x[n], where n = integer.

53



Classification of Signals and Systems

Continuous-time and Discrete-time signals

Continuous Time Signal Discrete Time Signal
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Classification of Signals and Systems

Continuous-time and Discrete-time signals

Representation of discrete signals

55



Classification of Signals and Systems

Analog and Digital Signals

● If a continuous-time signal x(t) can take on any value in the  
continuous interval (a, b), where a may be -∞ and b may be 
+∞ ,  then the continuous-time signal x(t) is called an analog 
signal.

● If a discrete-time signal x[n] can take on only a finite number 
of  distinct values, then we call this signal a digital signal.
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Classification of Signals and Systems

Analog and Digital Signals
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Classification of Signals and Systems

Real and Complex Signals

A signal x(t) is a real signal if its value is a real number, 
and  a signal x(t) is a complex signal if its value is a 
complex  number.

A general complex signal x(t) is a function of the form

x (t )=x1 (t )+ jx2 (t )
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Classification of Signals and Systems

Deterministic and Random Signals

● Deterministic signals are those signals whose values are
completely specified for any given time. Thus, a deterministic
signal can be modeled by a known function of time t.

● Random signals are those signals that take random values at  
any given time and must be characterized statistically.
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Classification of Signals and Systems

Even and Odd Signals

x (−t )= x (t 

)
x (−t )=−x (t )

x [−n]=x [ n]
x [−n]=− x [n]

Even Signal
Odd Signal

60



Classification of Signals and Systems

Even and Odd Signals

61



Classification of Signals and Systems

● x(t) = xe(t) + xo(t)

x[n] = xe[n] + xo[n]

●

Even and Odd Signals

Any signal can be split into even and odd

parts

62



Classification of Signals and Systems

Even and Odd Signals

●

●

x
o
(t) = 1/2 {x(t) - x(- t)} odd part of x(t)

x
o
[n] = 1/2 {x[n] - x[- n]} odd part of

x[n]

●

●

x
e
(t) = 1/2 {x(t) + x(- t)} even part of x(t)

x
e
[n] = 1/2 {x[n] + x[- n]} even part of

x[n]

63



Classification of Signals and Systems

Periodic and Non-Periodic Signals

● A continuous-time signal x(t) is said to be periodic with 
period T  if there is a positive nonzero value of T for which

x(t + T) = x(t) all t

x(t + mT) = x(t) for m an integer

●

●

●

The fundamental period T
0 
of x(t) is the smallest positive value of 

T.

This definition does not work for a constant signal x(t) (known as 
a  dc signal).
a constant signal x(t) the fundamental period is undefined  since 
x(t) is periodic for any choice of T. 64



Classification of Signals and Systems

Periodic and Non-Periodic Signals

Continuous Periodic Signal

● Any continuous-time signal which is not periodic is 
called a
nonperiodic signal. 65



Classification of Signals and Systems

Periodic and Non-Periodic Signals

For a discrete-time signal,

x[n + N] = x[n] all n

x[n +m N] = x[n] for m an integer

The fundamental period N0 of x[n] is the smallest positive integer N.
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Classification of Signals and Systems

Periodic and Non-Periodic Signals

Periodic

Sequence
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Classification of Signals and Systems

Periodic and Non-Periodic Signals

● Note that a sequence obtained by uniform sampling of a 
periodic  continuous-time signal may not be periodic.

● Note also that the sum of two continuous-time periodic 
signals  may not be periodic but that the sum of two periodic 
sequences  is always periodic.
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Classification of Signals and Systems

Energy and Power Signals

Consider v(t) to be the voltage across a resistor R producing a current i(t).  
The instantaneous power p(t) per ohm is defined as

p(t )=
v (t )i (t )

=i2 (t )

Total energy is

R

∞

E=∫ i2 (t ) dt
−∞

Average power is

P= lim
1

T →∞ T −T / 2

T/ 

2∫ i2(t )dt
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Classification of Signals and Systems

Energy and Power Signals

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t)  
is defined as

∞

E=∫|x (t )|2 dt
−∞

Normalized Average power is

P= lim
1

T →∞ T −T / 2

T/ 

2∫ |x (t )|2 dt
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Classification of Signals and Systems

Energy and Power Signals

● Similarly, for a discrete-time signal x[n], the normalized energy content E  
of x[n] is defined as

n=∞

E= ∑ |x [n]|2

n=−∞

●The normalized average power P of x[n] is defined as

N 

→∞

1

n=−N

n=

NP= lim 
2 N +1

∑ |x [ n]|2
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Classification of Signals and Systems

Energy and Power Signals

● Similarly, for a discrete-time signal x[n], the normalized energy content E  
of x[n] is defined as

n=∞

E= ∑ |x [n]|2

n=−∞

●The normalized average power P of x[n] is defined as

N 

→∞

1

n=−N

n=

NP= lim 
2 N +1

∑ |x [ n]|2
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Classification of Signals and Systems

Energy and Power Signals

● A signal with finite energy has zero power. (ENERGY SIGNAL)

● A signal with finite power has infinite energy. (POWER SIGNAL)

● A signal cannot both be an energy signal and a power signal.

● There are signals, that are neither energy nor power signals.

● A periodic signal is a power signal if its energy content per period is finite,
and then the average power of this signal need only be calculated over a
period. Not all periodic signals are power signals.
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Operations on Signals

1

• Sometime a given mathematical function 

may  completely describe a signal .

• Different operations are required for 

different  purposes of arbitrary signals.

• The operations on signals can be  Time 

Shifting

Time Scaling

Time Inversion or Time Folding
74



Time Shifting

x(t ± t0) is time shifted version of the signal 

x(t).  x (t + t0) → negative shift

x (t - t0) → positive shift

2

Operations on Signals

75



Time Scaling

x(At) is time scaled version of the

signal x(t). where A is  always positive.

|A| > 1 → Compression of the signal

|A| < 1 → Expansion

3

Operations on Signals
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Time Scaling

Example: Given x(t) and we are to find y(t) = x(2t)

4

The period of x(t) is 2 and the period of y(t) is 1,

Operations on Signals
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Time Scaling

•Given y(t),

find w(t) = y(3t)

and v(t) = y(t/3

5

Operations on Signals

78



6

Time Reversal (Or) Time Folding

•Time reversal is also called time folding

•In Time reversal signal is reversed with respect 
to  time i.e.

y(t) = x(-t) is obtained for the givenfunction

Operations on Signals
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Time Reversal (Or) Time
Folding

7

Operations on Signals
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Amplitude Scaling

C x(t) is a amplitude scaled version 
of x(t) whose  amplitude is scaled 
by a factor C.

8

Operations on Signals
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Addition

9

Operations on Signals
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Subraction

10

Operations on Signals
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Multiplication
Here multiplication of amplitude of two or more
signals at each instance of time or any other
independent variables is done which are common
between the signals.

Operations on Signals
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Time Shifting for discrete sequences

Time shifting n  n  n0 , n0 an integer

12

Operations on Signals
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Scaling for discrete sequences

n Kn K an integer >

1

13

Operations on Signals
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Classification of Signals and Systems

Systems and Classification

●

●

A system is a mathematical model of a physical process that 

relates  the input (or excitation) signal to the output(or response) 

signal.

Let x and y be the input and output signals, respectively, of a 

system.

Then the system is viewed as a transformation (or mapping) of  x 

into y.

y=Tx
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Classification of Signals and Systems

Deterministic and Stochastic Systems

● If the input and output signals x and y are deterministic 
signals,  then the system is called a deterministic system.

● If the input and output signals x and y are random 
signals,  then the system is called a stochastic system.
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Classification of Signals and Systems

Continuous-Time and Discrete-Time Systems

● A continuous time system is characterized
by
differential equation.

● A discrete time system is often expressed
by
difference equation
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Classification of Signals and Systems

Systems with Memory and without Memory

● A system is said to be memoryless if the output at any 
time  depends on only the input at that same time.

● Otherwise, the system is said to have

memory.
● An example of a memoryless system is a resistor R with 

the  input x(t) taken as the current and the voltage taken 
as the  output y(t).

y =R x (t )

90



Classification of Signals and Systems

Systems with Memory and without Memory

● An example of a system with memory is a capacitor C with
the current as the input x(t) and the voltage as the output y(t);
then

C 
−∞

t

y =
1 ∫ x ( τ) d 

τ
n

y [ n]= ∑ x [ k 

]
k=−∞ 91



Classification of Signals and Systems

Causal and Non-Causal Sytems

● A system is called causal if its output at the present time  
depends on only the present and/or past values of the 
input.

● Thus, in a causal system, it is not possible to obtain 
an  output before an input is applied to the system.

● A system is called noncausal (or anticipative) if its output at 
the  present time depends on future values of the input.
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Classification of Signals and Systems

● Note that all memoryless systems are causal, but not vice

versa.

Causal and Non-Causal Sytems

Examples of non-causal Systems

y (t )=x (t +1)

y [ n]= x [−n ]
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Classification of Signals and Systems

Linear Systems and Nonlinear Systems

● A system is said to be linear if it possesses additivity 
and  homogenity.

●

●

T{x
1
+x

2
} = y

1
+y

2
(Additivity)

T{ax} = ay (Homogeneity or Scaling)

● T{a
1
x

1
+a

2
x

2
} = a

1
y

1
+a

2
y

2

(Superposition)
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Classification of Signals and Systems

Linear Systems and Nonlinear Systems

● Consequence of homogeneity is that for a linear system
that
zero input yields zero output.

Examples of non linear

systems

y=x2 y=cos x
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Classification of Signals and Systems

Time In-Variant and Time Varying Systems

● A system is called time-invariant if a time shift (delay or 
advance)  in the input signal causes the same time shift in the 

output signal.

T{x(t -τ )} = y(t - τ)

T{x[n - k]} = y[n - k]

● To check a system for time-invariance, we can compare the 
shifted  output with the output produced by the shifted input.
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Classification of Signals and Systems

Linear Time-Invariant Systems

●If the system is linear and also time-
invariant,  then it is called a linear time-
invariant (LTI) system.
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Classification of Signals and Systems

Stable Systems

●

A system is bounded-input/bounded-output (BIBO)

stable
if for any bounded input ‘x’ defined by

|x|⩽k1

the corresponding output y is also bounded defined

by |y|⩽k2

where k
1 
and k

2 
are finite real 

constants

An unstable system is one in which 
not all bounded  inputs lead to 
bounded output.
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Standard Signals

Unit Step

Signal
● The unit step function u(t), also known as the Heaviside 

unit  function, is defined as

Note that it is discontinuous at t = 0 and that the value at t = 0 is undefined.
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Standard Signals

Unit Step Signal

● Time shifted version of unit step

signal

100



Standard Signals

Unit Impulse Function

● The unit impulse function, δ(t), also known as the Dirac 
delta  function, is defined as:

101



Standard Signals

Unit Impulse Function

102



Standard Signals

Unit Impulse

Function
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Standard Signals

Unit Impulse

Function

104



Standard Signals

●

Unit Impulse Function

The area under an impulse is called its strength or
weight. It is represented graphically by a vertical arrow.
An impulse with a strength of one is called a unit
impulse.
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

 gt t  t0 dt  gt0



Standard Signals

Unit Impulse Function

The Sampling Property

0 0
a

a tt  1  
 tt 



The Scaling Property
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Standard Signals

Unit Impulse Function

107



Standard Signals

Uses of Impulse Function

Modeling of electrical, mechanical, physical

phenomenon:

– point charge,

– impulsive force,

– point mass

– point light
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Standard Signals

Signum Function

 1 , t  0

sgn t  0 ,  t  0


 2u t1 
1 , t  0 
 

Precise Graph Commonly-Used Graph

The signum function, is closely related to the unit-step  

function.
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Standard Signals

Rectangular Pulse or Gate Function

Rectangular pulse,
a

t  a /

2
 t 

1/a ,


0 , t  a /

2

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Standard Signals

Unit Triangular function

111



Standard Signals

Sinc function
sint

 t
sinct

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Standard Signals

Discrete unit Step function

un  
1 , n  0

0 , n  0

113



Standard Signals

Discrete unit impulse function

 n 1 , n  0


0 , n  0
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Module – II

FOURIER SERIES

115



Introduction to Fourier Series

● Fourier Series is a representation of signals as a linear  
combination of a set of basic signals(sinusoidal or 
exponential).

● Representation of continuous-time and discrete-time 
periodic  signals is referred as Fourier Series.

● Representation of aperiodic, finite energy signals is done 
through  Fourier Transform.

● Used for analyzing, designing and understanding signals and
LTI
systems
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Introduction to Fourier

Series

Linear

Circui t
I /P O /

P

S i n u s o i d a l

I n p u t s

O K

N o n s i n u s o i d a l

I n p u t s

N o n s i n u s o i d a l

I n p u t s

S i n u s o i d a l

I n p u t s
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Introduction to Fourier Series

Perception of Fourier Series

● Trigonometric sums – Babylonians - predict Astronomical

events

● Year 1748 – L Euler – examined motion of string –
normal  modes – discarded trigonometric series

● Year 1753 – D Bernoulli – linear combinations of normal

modes.

● Year 1759 – J. L Lagrange – criticized use of 
trigonometric  series for vibrating strings.
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Introduction to Fourier Series

Perception of Fourier Series

● After a half century later Fourier developed his ideas 
on  Trigonometric series.

Joseph 
Fourier  1768 
to 1830 119



Introduction to Fourier Series

Perception of Fourier Series

● Year 1807 – Fourier represented a series for 
temperature  distribution through a body.

● Any periodic signal could be represented by such a

series.

● For aperiodic signals weighted integrals of sinusoids that

are

not at all harmonically related.

● Lagrange rejected this trigonometric series saying 
discontinuities  can never be represented in sinusoidal.
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Introduction to Fourier Series

Perception of Fourier Series

● Year 1807 – Fourier represented a series for 
temperature  distribution through a body.

● Any periodic signal could be represented by such a

series.

● For aperiodic signals weighted integrals of sinusoids that

are

not at all harmonically related.

● Lagrange rejected this trigonometric series saying 
discontinuities  can never be represented in sinusoidal.
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Introduction to Fourier Series

Application areas of Fourier Series

● In Theory of Integration, point-set topology and eigen 
function  expansion.

● Sinusoidal signals arise naturally in describing the motion 
of  the planets and periodic behaviour of the earth’s 
climate.

● Alternating current sources generate voltages and 
currents  used for describing LTI systems.
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Introduction to Fourier Series

Application areas of Fourier Series

● Waves in ocean – linear combination of sinusoidal waves of 
diff.  wavelengths (or) periods.
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Introduction to Fourier Series

Application areas of Fourier Series

● Radio signals are sinusoidal in

nature.

● Discrete-time concepts and methods – numerical

analysis.

● Predicting motion of a heavenly body, given a sequence 
of  observations.

● Mid 1960s – FFT was introduced – reduced the time of

computation

● With this tool many interesting but previously impractical ideas
with discrete time Fourier series and transform have come
practical.
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Fourier series Representation – CT 

Periodic Signals
Linear Combinations of harmonically Related 
Complex  Exponentials

●A periodic signal with period of T ,  x(t ) = x(t + T ) for all 
t ,

Both these signals are periodic with fundamental frequency 

ω
0  

and fundamental period T = 2 π / ω
0 
.
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Fourier series Representation – CT 

Periodic Signals
Linear Combinations of harmonically Related 
Complex  Exponentials

●The set of harmonically related complex exponentials

● Each of these signals is periodic with period of

T
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Fourier series Representation – CT 

Periodic Signals
Linear Combinations of harmonically Related 
Complex  Exponentials

●Thus, a linear combination of harmonically related 
complex  exponentials of the form

is also periodic with period of T
k = 0 , x (t ) is a constant.
k = + 1 and k = − 1 , both have fundamental frequency equal to ω

0 
and are 

collectively

referred to as the fundamental components or the first harmonic components.
k = + 2 and k = − 2 , the components are referred to as the second harmonic 
components.  k = + N and k = − N , the components are referred to as the Nth 
harmonic components.
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Fourier series Representation – CT 

Periodic Signals
Linear Combinations of harmonically Related 
Complex  Exponentials

●If x (t ) is real, that is, x ( t ) = x * ( t )

Replacing k by − k in the summation, we

have 128



Fourier series Representation – CT 

Periodic Signals
Linear Combinations of harmonically Related 
Complex  Exponentials

By comparison with first equation

a 
k 
= a * 

− k 
, or equivalently a * 

k 
= a 

− k

To derive the alternative forms of the Fourier series, 
we  rewrite the summation 129



Fourier series Representation – CT 

Periodic Signals
Linear Combinations of harmonically Related 
Complex  Exponentials

Substituting a * 
k 
for a 

− k 
, we have

Since the two terms inside the summation are complex 
conjugate of  each other, this can be expressed as 130



Fourier series Representation – CT 

Periodic Signals
Linear Combinations of harmonically Related 
Complex  Exponentials

If a 
k 
is expressed in polar from as

131



Fourier series Representation – CT 

Periodic Signals
Linear Combinations of harmonically Related 
Complex  Exponentials

It is one commonly encountered form for the Fourier series of  
real periodic signals in continuous time. 132



Fourier series Representation – CT 

Periodic Signals
Linear Combinations of harmonically Related 
Complex  Exponentials

Another form is obtained by writing a
k 
in rectangular form 

as
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Fourier series Representation – CT 

Periodic Signals

Linear Combinations of harmonically Related Complex  Exponentials

For real periodic functions, the Fourier series in terms of complex  

exponential has the following three equivalent forms:
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Fourier series Representation – CT 

Periodic Signals
Convergence of Fourier Series – Dirichlet Conditions

●

The Dirichlet conditions for the periodic signal x are as follows:

1)Over a single period, x is absolutely integrable(i.e.,∫|x (t )|dt <∞)
T

2)Over a single period, x has a finite number of maxima and  

minima (i.e., x is of bounded variation ).

3)Over any finite interval, x has a finite number of discontinuities

each of which is finite .
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Fourier series Representation – CT 

Periodic Signals
Convergence of Fourier Series – Dirichlet Conditions

If a periodic signal x satisfies the Dirichlet conditions , 

then:

1.The Fourier series converges pointwise everywhere to 
x ,  except at the points of discontinuity of x .

2.At each point t = t 
a 
of discontinuity of x , the Fourier 

series x  converges to

where x(t
a  

) and x(t
a  

+ ) denote  the values of the signal

x on the left- and −right-hand sides of the discontinuity,  respectively.
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Fourier series Representation – CT 

Periodic Signals
Convergence of Fourier Series – Dirichlet

Conditions

● Since most signals tend to satisfy the Dirichlet conditions and

the

above convergence result specifies the value of the Fourier

series

at every point, this result is often very useful in practice.
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Fourier series Representation – CT 

Periodic Signals
Convergence of Fourier Series – Dirichlet Conditions

● Since most signals tend to satisfy the Dirichlet conditions and

the

above convergence result specifies the value of the Fourier

series

at every point, this result is often very useful in practice.
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Fourier series Representation – CT Periodic Signals

Examples of Functions Violating Dirichlet

Conditions
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Fourier series Representation – CT 

Periodic Signals

Gibbs Phenomenon

● In practice, we frequently encounter signals with

discontinuities.

● When a signal x has discontinuities, the Fourier series 

representation  of does not converge uniformly (i.e., at the same 

rate everywhere).

● The rate of convergence is much slower at points in the vicinity 

of a  discontinuity.
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Fourier series Representation – CT 

Periodic Signals

●

Gibbs Phenomenon

Furthermore, in the vicinity of a discontinuity, the truncated 

Fourier  series x
N
exhibits ripples, where the peak amplitude of 

the ripples does  not seem to decrease with increasing N .

●

As it turns out, as N increases, the ripples get compressed

towards discontinuity, but, for any finite N , the peak amplitude

of the ripples remains approximately constant.
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Fourier series Representation – CT 

Periodic Signals
Gibbs Phenomenon

● This behavior is known as Gibbs

phenomenon.

● The above behavior is one of the weaknesses of Fourier series 

(i.e.,  Fourier series converge very slowly near discontinuities).
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Fourier series Representation – CT Periodic Signals

Gibbs Phenomenon

143



Fourier series Representation – CT 

Periodic Signals
Determination of the Fourier Series Representation 
of a  Continuous-Time Periodic Signal

Multiply both side

of
by

Integrating both sides from 0 to T = 2 π / ω 
0 
, we

have
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Fourier series Representation – CT 

Periodic Signals
Determination of the Fourier Series Representation 
of a  Continuous-Time Periodic Signal

For

k=n
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Fourier series Representation – CT 

Periodic Signals
Determination of the Fourier Series Representation 
of a  Continuous-Time Periodic Signal

Synthesi
s  
Equation

Analysis  
Equation
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Fourier series Representation – CT 

Periodic Signals
Determination of the Fourier Series Representation 
of a  Continuous-Time Periodic Signal

● The set of coefficient { a 
k 
} are often called the 

Fourier  series coefficients (or) the spectral 

coefficients of x(t).

● The coefficient a 
0 
is the dc or constant component and 

is  given with k = 0 , that is

147



Fourier series Representation – CT 

Periodic Signals

Comparing the right-hand side of this equation 
with  synthesis equation

Determination of the Fourier Series Representation 
of a  Continuous-Time Periodic Signal

Example: consider the signal x(t ) = sin ω
0
t .
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Fourier series Representation – CT 

Periodic Signals
Determination of the Fourier Series Representation of a  
Continuous-Time Periodic Signal

Example: The periodic square wave, sketched in the figure 
below and  define over one period is

The signal has a fundamental period T  and fundamental 
frequency ω

0 
= 2 π / T .
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Fourier series Representation – CT 

Periodic Signals
Determination of the Fourier Series Representation 
of a  Continuous-Time Periodic Signal

● To determine the Fourier series coefficients for x(t ) , we use analysis  
equation.

● Because of the symmetry of x(t ) about t = 0 , we choose − T / 2 ≤ t ≤ T /
2 as the interval over which the integration is performed, although any
other interval of length T is valid the thus lead to the same result.

For

k=0
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Fourier series Representation – CT 

Periodic Signals
Determination of the Fourier Series Representation 
of a  Continuous-Time Periodic Signal

For k ≠ 0 ,  we obtain
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Fourier series Representation – CT Periodic Signals

Determination of the Fourier Series Representation 
of a  Continuous-Time Periodic Signal
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Fourier series Representation – CT 

Periodic Signals
Convergence of the Fourier Series

If a periodic signal x (t ) is approximated by a linear 
combination of  finite number of harmonically related complex 
exponentials

Let e
N
(t ) denote the approximation error

The criterion used to measure quantitatively the 
approximation  error is the energy in the error over one 
period:
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Fourier series Representation – CT 

Periodic Signals
Convergence of the Fourier

Series

The particular choice for the coefficients that minimize 
the  energy in the error is

The limit of E
N 
as N -> ∞ is

zero.
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Fourier series Representation – CT 

Periodic Signals
Convergence of the Fourier Series

One class of periodic signals that are representable 
through  Fourier series is those signals which have finite 
energy over a  period,

When this condition is satisfied, we can guarantee that 
the  coefficients obtained from are finite. We define

then
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Fourier series Representation – CT 

Periodic Signals
Convergence of the Fourier Series

● The convergence guaranteed when x(t) has finite energy 
over a  period is very useful.

● In this case, we may say that x(t) and its Fourier 
series  representation are indistinguishable.
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FOURIE TRANSFORM:

1

•A periodic signal can be represented as linear
combination of complex exponentials which are
harmonically related.
•An aperiodic signal can be represented as linear
combination of complex exponentials, which are
infinitesimally close in frequency. So the representation
take the form of an integral rather than a sum
•In the Fourier series representation, as the period
increases the fundamental frequency decreases and the
harmonically related components become closer in
frequency. As the period becomes infinite, the frequency
components form a continuum and the Fourier series
becomes an integral.



FOURIE TRANSFORM:

1

The main drawback of Fourier series is, it is only applicable
to periodic signals. There are some naturally produced
signals such as nonperiodic or aperiodic, which we cannot
represent using Fourier series.
To overcome this shortcoming, Fourier developed a
mathematical model to transform signals between time or
spatial domain to frequency domain & vice versa, which is
called 'Fourier transform.
Fourier transform has many applications in physics and
engineering such as analysis of LTI systems, RADAR,
astronomy, signal processing etc.



Deriving FOURIE TRANSFORM from FOURIER SERIES:

1

Consider a periodic signal ft with period T. The complex Fourier 
series representation of ft is given as



Deriving FOURIE TRANSFORM from FOURIER SERIES:

1



Deriving FOURIE TRANSFORM from FOURIER SERIES:

1



Deriving FOURIE TRANSFORM from FOURIER SERIES:

1



FOURIE TRANSFORM :

1



FOURIE TRANSFORM :

1

FT of Unit Step Function:

U(ω) = πδ(ω) + 1/jω



FOURIE TRANSFORM :

1

Conditions for Existence of Fourier Transform

Any function ft can be represented by using Fourier transform 
only when the function satisfies Dirichlet’s conditions. i.e.

The function ft has finite number of maxima and minima.
There must be finite number of discontinuities in the signal   
ft,in the given interval of time. 
It must be absolutely integrable in the given interval of time 
i.e.
∫∞
−∞| f(t)| dt < ∞ 



DTFT:

1

The discrete-time Fourier transform DTFT or the Fourier
transform of a discrete–time sequence
x[n] is a representation of the sequence in terms of the
complex exponential sequence ejωn .

The DTFT sequence x[n] is given by

Here, Xω is a complex function of real frequency variable ω 
and it can be written as
X(ω) = Xre(ω) + jXimg (ω)



Inverse Discrete-Time Fourier Transform
IDTFT:

1

Convergence Condition:

The infinite series in equation 1 may be converges or may not. xn is absolutely summable



DTFT:

1

Where Xreω, Ximgω are real and imaginary parts of Xω
respectively.



Linearity Property
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Time Shifting 
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Frequency Shifting Property
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Time Reversal Property

172



Time Scaling Property
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Differentiation and Integration Properties
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Multiplication and Convolution Properties
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Differentiation in frequency domain
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Complex Conjugation
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Parseval's equation
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Symmetry (or Duality)



Module - 3

● Signal transmission through Linear system

180



Linear System

Linear system , it satisfies principle superposition.

The response of linear system to weighted sum of input signals is

equal to the same weighted sum of output signals.

𝑥𝑖 𝑡 → 𝑦𝑖 𝑡 =  𝑇[ 𝑥𝑖 𝑡  ] 

𝑥 𝑡 =   𝑎𝑖𝑥𝑖 𝑡 

𝑁

𝑖=1

 𝑤𝑕𝑒𝑟𝑒 𝑎𝑖  𝑖𝑠 𝑎𝑛𝑦 𝑎𝑟𝑏𝑖𝑡𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑦 𝑡 =  𝑇 𝑥 𝑡   =  𝑇   𝑎𝑖𝑥𝑖 𝑡 

𝑁

𝑖=1

 =   𝑎𝑖𝑇[𝑥𝑖 𝑡 

𝑁

𝑖=1

] 

𝑦 𝑡 =  𝑎𝑖𝑦𝑖 𝑡 

𝑁

𝑖=1
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Classification of Linear systems 

Lumped and distributed systems

Time invariant and variant systems
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Classification of Linear systems : Lumped 
systems

Lumped systems:
Consisting of Lumped elements which are connected particular way.

The energy in the system considered to be as stored of dissipated in distinct 
isolated elements.

Disturbance initiated at any point propagated instantaneously at every point in 
the system.

Dimensions of elements is very small compare to signal wave length.

Obeys ohm law and Kirchhoff laws only and system are expressed by ordinary 
differential equations. 183



Classification of Linear systems : Distributed systems 

Elements are distributed over a long distances.

Dimensions of the circuits are small compared to the wave length of signals to be 
transmitted.

system takes finite amount of time for disturbance at one point to be 
propagated to the other point.

Expressed with partial differential equations.

Example are transmission lines , optical fiber , wave guides, antennas, 
semiconductor devices , beams etc.,
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Classification of Linear systems : Linear time invariant 

system and variant system

LTI system , it satisfies linear and time invariant properties.

A system is Time invariant , if a time shift of input signal leads to 

an identical time shift in the output signal. 

𝑦 𝑡 =  𝑇   𝑥 𝑡   

𝑖𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑒𝑙𝑎𝑡𝑒𝑑 𝑜𝑟 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑 𝑏𝑦 𝑡0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝑦1 𝑡 =  𝑇   𝑥 𝑡 ∓ 𝑡0   

𝑦1 𝑡 = 𝑦  𝑡 ∓ 𝑡0 

= 𝑦 𝑡, 𝑡0   𝑡𝑖𝑚𝑒 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑜𝑡𝑕𝑒𝑟 𝑤𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡   
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Representation of Arbitrary signal

Let us consider an arbitrary signal 

𝑥 𝑡  𝑖𝑠𝑎𝑛 𝑎𝑝𝑝𝑟𝑜𝑥𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 𝑡  𝑎𝑛𝑑  

𝑖𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑠 𝑙𝑖𝑛𝑒𝑎𝑟𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑕𝑖𝑓𝑡𝑒𝑑 𝑖𝑚𝑝𝑢𝑙𝑠𝑒𝑠 

𝑥 𝑡  = ⋯ … + 𝑥 −2Δ 𝛿Δ 𝑡 + 2Δ + 𝑥 −Δ 𝛿Δ 𝑡 + Δ +  𝑥 0 𝛿Δ 𝑡 

+ 𝑥 Δ 𝛿Δ 𝑡 − Δ + 𝑥 2Δ 𝛿Δ 𝑡 − 2Δ + ⋯… .. 

𝑥 𝑡  =  𝑥 kΔ 𝛿Δ 𝑡 − 𝑘Δ 

∞

𝑘=−∞

∆  

𝑥 𝑡 =  lim
∆→0

𝑥 𝑡   

As Δ→ 0, 𝛿Δ 𝑡 → δ t , summation becomes integration kΔ → τ, Δ → dτ 
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Representation of Arbitrary signal

𝛿∆ 𝑡 =
1

∆
  0 < 𝑡 < ∆  𝑜𝑡𝑕𝑒𝑟 𝑤𝑖𝑠𝑒 0 

𝑥 𝑡 =  𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏
∞

−∞

 

A continuous time signal can be expressed as integral of weighted shifted 

impulses. 
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Impulse response of LTI system 

𝑦 𝑡  𝑖𝑠 𝑎 𝑟𝑒𝑝𝑜𝑛𝑠𝑒 𝑜𝑓 𝑥(𝑡) 

𝑥 𝑡 =  𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏
∞

−∞

 

𝑦 𝑡 =  𝑇 [ 𝑥 𝑡 ] 

𝑦 𝑡 =  𝑇 [ 𝑥 𝑡 = 𝑇   𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏
∞

−∞

  

𝑦 𝑡 =  𝑥 𝜏 𝑇 𝛿 𝑡 − 𝜏  𝑑𝜏
∞

−∞
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Impulse response of LTI system 

𝑕 𝑡 − 𝜏 =  𝑇 [ 𝛿 𝑡 − 𝜏 𝑡𝑕𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡𝑖𝑚𝑒 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

𝑕 𝑡 =  𝑇   𝛿 𝑡   𝑡𝑕𝑖𝑠 𝑠𝑕𝑜𝑤𝑠 𝑖𝑚𝑝𝑢𝑠𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑓 𝐿𝑇𝐼 𝑠𝑦𝑠𝑡𝑒𝑚   

Impulse response of LTI system due to impulse input applies at t=o 

is h(t). 

This is known as convolution integral and it gives relationship 

among input signal, output signal and impulse response of 

system.LTI system completely characterized by impulse response 
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Frequency response of LTI System 

Consider LTI system with impulse response h(t) 

𝑦 𝑡 =   𝑥 𝜏 𝑕 𝑡 − 𝜏 𝑑𝜏
∞

−∞

 

𝑦 𝑡 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚                                             𝑌(𝜔) 

𝑥 𝑡 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚                                             𝑋(𝜔) 

𝑕 𝑡 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚                                             𝐻(𝜔) 

𝑌 𝜔 =   𝑦 𝑡 𝑒−𝑗𝜔𝑡
∞

−∞

𝑑𝑡 

𝑌 𝜔 =    𝑥 𝜏 𝑕 𝑡 − 𝜏 𝑒−𝑗𝜔𝑡𝑑𝜏
∞

−∞

∞

−∞

𝑑𝑡 

 

 

190



Frequency response of LTI System 

 

𝑡 − 𝜏 =  𝜆, 𝑑𝑡 = 𝑑𝜆 

𝑌 𝜔 =   𝑥 𝜏 𝑒−𝑗𝜔𝜏 𝑑𝜏  𝑕  𝜆 𝑒−𝑗𝜔𝜆  𝑑
∞

−∞

∞

−∞

𝜆 

𝑌 𝜔 = 𝐻 𝜔 𝑋 𝜔  

 𝐻 𝜔  = 𝑚𝑎𝑔𝑛𝑒𝑡𝑢𝑑𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑓 𝐿𝑇𝐼 𝑠𝑦𝑡𝑒𝑚 and it symmetric  

∠𝐻 𝜔 = 𝑝𝑕𝑎𝑠𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑓 𝐿𝑇𝐼 𝑠𝑦𝑠𝑡𝑒𝑚 and it is anti symmetric 
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Response to Eigen functions

If input to the system is an exponential function 

𝑥 𝑡 =  𝑒𝑗𝜔𝑡  

𝑦 𝑡 =   𝑕 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏
∞

−∞

 

𝑦 𝑡 =   𝑕 𝜏 𝑒𝑗𝜔(𝑡−𝜏)𝑑𝜏
∞

−∞

 

𝑦 𝑡 = 𝑒𝑗𝜔𝑡  𝐻 𝜔 =  𝑥 𝑡  𝐻 𝜔  

Output is a complex exponential of the same frequency as input 

multiplied by the complex constant 𝐻 𝜔 . 
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Properties of LTI System

Commutative Property 

𝑦 𝑡 =  𝑥 𝑡 ∗ 𝑕 𝑡 = 𝑕 𝑡 ∗  𝑥 𝑡  

𝑦 𝑡 =   𝑥 𝜏 𝑕 𝑡 − 𝜏 𝑑𝜏 =   𝑕 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏
∞

−∞

∞

−∞
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Properties of LTI System

Associate Property : cascading of two or more LTI system will results to

single system with impulse response equal to the convolution of the

impulse response of the cascading systems

 𝑥 𝑡 ∗  𝑕1 𝑡  ∗ 𝑕2 𝑡 = 𝑥 𝑡 ∗  {𝑕2 𝑡 ∗ 𝑕1 𝑡 } 

𝑕 𝑡 =  𝑕2 𝑡 ∗ 𝑕1 𝑡  
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Properties of LTI System

Distributive Property: This property gives that addition of two or more LTI
system subjected to same input will results single system with impulse
response equal to the sum of impulse response of two or more individual
systems.

𝑥 𝑡 ∗   𝑕1 𝑡 + 𝑕2 𝑡  = 𝑥 𝑡 ∗ 𝑕1 𝑡 +  𝑥 𝑡 ∗ 𝑕2 𝑡   
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Properties of LTI System

Static and Dynamic system:

A system is static or memory less if its output at any time depends only on 
the value of its input at that instant of time

For LTI systems, this property can hold if its impulse response is itself an 
impulse.

convolution property, the output depends on the previous samples of the 
input, therefore an LTI system has memory and hence it is dynamic system
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Properties of LTI System

Causality :A continuous time LTI system is said to causal if and only if

𝑕 𝑡 =   
𝑛𝑜𝑛 𝑧𝑒𝑟𝑜   𝑓𝑜𝑟  𝑡 ≥ 0

0             𝑓𝑜𝑟 𝑡 < 0
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Properties of LTI System

Stability:  continuous time system is BIBO stable if and only if the 
impulse response is absolutely Integrable. 

Consider LTI system with impulse response h(t) . the output y(t) is 

𝑦 𝑡 =   𝑕 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏
∞

−∞

 

If the input 𝑥 𝑡  is bounded that is  𝑥 𝑡   ≤ 𝑀𝑥 <  ∞ 

 𝑦 𝑡   =    𝑕 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏
∞

−∞

  

 𝑦 𝑡   =   𝑕 𝜏   𝑥 𝑡 − 𝜏  𝑑𝜏
∞

−∞
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Properties of LTI System

 𝑦 𝑡   = 𝑀𝑥   𝑕 𝜏  𝑑𝜏
∞

−∞

 

For bounded output, the impulse response is absolutely Intergrable 

that is    𝑕 𝜏  𝑑𝜏
∞

−∞
<  ∞ 

The above equation gives necessary and sufficient condition for BIBO 

stability. 
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Properties of LTI System

Inverse systems :A system T said to be invertible if and only if there exits
an inverse system T-1 for such that T T-1 is an identical system
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Transfer function of LTI system

Transfer function of LTI system defined as the ratio of Fourier transform of the 
output signal  to Fourier transform of the input signal.

 

𝐻 𝜔 =
𝑌(𝜔)

𝑋(𝜔)
 

 h(t) = IFT of 𝐻 𝜔 . 
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Transfer function of LTI system

Input and output relationship of continuous time causal LTI system described 
by linear constant coefficient differential equations with zero initial 
conditions is given by

 𝑎𝑘

𝑁

𝑘=0

𝑑𝑘𝑦 𝑡 

𝑑𝑡𝑘
   =   𝑏𝑘

𝑀

𝑘=0

𝑑𝑘𝑥 𝑡 

𝑑𝑡𝑘
  

𝑤𝑕𝑒𝑟𝑒 𝑎𝑘   and𝑏𝑘  any arbitary constants   and N >M 

N refer to highest derivative of y(t)  
202



Transfer function of LTI system

Apply Fourier Transform to above equation

 𝑎𝑘  (𝑗𝜔

𝑁

𝑘=0

)𝑘  𝑌 𝜔 =  𝑏𝑘  (𝑗𝜔

𝑀

𝑘=0

)𝑘  𝑋 𝜔   

𝐻 𝜔 =  
𝑌(𝜔)

𝑋(𝜔)
=  

 𝑏𝑘  (𝑗𝜔𝑀
𝑘=0 )𝑘  

 𝑎𝑘  (𝑗𝜔𝑁
𝑘=0 )𝑘  

 =  
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Distortion less Transmission Through LTI 

System
Distortion less transmission through the LTI system requires that the response be 
exact replica of input signal. 

The replica may have different magnetude and delayed in time.

𝑎𝑛𝑦  𝑎𝑟𝑏𝑖𝑡𝑎𝑟𝑦 𝑖𝑛𝑝𝑢𝑡 𝑥 𝑡 , 𝑖𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑦 𝑡 =  𝑘 𝑥(𝑡 − 𝑡0) 

𝑌 𝜔 =  𝑘𝑋(𝜔) 𝑒−𝑗𝜔𝑡0  

𝐻 𝜔 = 𝑘 𝑒−𝑗𝜔𝑡0   

 𝐻 𝜔  = 𝑘, ∠𝐻 𝜔 = 𝑛𝜋 − 𝜔𝑡0  

Magnetude response of system  𝐻  𝜔    must be constant over 

entire frequency range. 

Phase response of the system ∠𝐻  𝜔    must be linear with 

frequency 
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Signal Band width:

It is the range of significant frequency components present in the 
signal.
For any practical signals, the energy content decreases with 
frequency, only some of frequency components of signals have 
significant amplitude within a certain frequency band; outside this 
band have negligible amplitude.

The amplitude of significant frequency components within the 
times of maximum  signal amplitude.

Signal Band Width
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System Band Width

The band width of system is defined as the interval of frequencies over 

which the magnitude spectrum of  remains within   times (3dB) its value 

at the mid band.
1

 2
 

𝜔1 = 𝑙𝑜𝑤𝑒𝑟 3𝑑𝐵 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑙𝑜𝑤𝑒𝑟 𝑐𝑢𝑡𝑜𝑓𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =

𝑙𝑜𝑤𝑒𝑟𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑎𝑡 𝑤𝑕𝑖𝑐𝑕 𝑚𝑎𝑔𝑛𝑒𝑡𝑢𝑑𝑒 𝑜𝑓𝐻  𝜔   
1

 2
   

Times of  its value at the mid band. 

 

𝜔2 = 𝑢𝑝𝑝𝑒𝑟 𝑐𝑢𝑡𝑜𝑓𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑈𝑝𝑝𝑒𝑟 3𝑑𝐵 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

= 𝑕𝑖𝑔𝑕𝑒𝑠𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑎𝑡 𝑤𝑕𝑖𝑐𝑕 𝑚𝑎𝑔𝑛𝑒𝑡𝑢𝑑𝑒 𝑜𝑓𝐻  𝜔   
1

 2
 𝑡𝑖𝑚𝑒𝑠 𝑖𝑡𝑠 𝑚𝑖𝑑 𝑏𝑎𝑛𝑑  𝑣𝑎𝑙𝑢𝑒 

System band width = 𝑈𝑝𝑝𝑒𝑟 3𝑑𝐵 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 𝑙𝑜𝑤𝑒𝑟 3𝑑𝐵 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  
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System Band Width 

For distortion less transmission, a system should have infinite bandwidth.
But due to physical limitations it is impossible to design an ideal filters
having infinite bandwidth.

For satisfactory distortion less transmission, an LTI system should have high
bandwidth compared to the signal bandwidth
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Filter characteristics of linear system

LTI system acts as filter depending on the transfer function of system.

The system modifies the spectral density function of input signal according to
transfer function.

system act as some kind of filter to various frequency components.

Some frequency components are boosted in strength, some are attenuated,
and some may remain unaffected.

each frequency component suffers a different amount of phase shift in the
process of transmission.
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Types of filters 

LTI system may be classified into five types of filter

Low pass filter

High pass filter

Band pass filter

Band reject filter

All pass filter.
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Types of Ideal filters 

Pass Band :  Passes all frequency components in its pass band without distortion 
.
Stop Band :  completely blocks frequency components outside of pass band. 
There is discontinuity between pass band and stop band in frequency spectrum.

Transition band : For Practical filters, The range of frequencies over which 
there is a gradual Transition between pass band and stop band.
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Types of Ideal filters : Ideal Low Pass Filter

An ideal low pass filter transmits all frequency components below the certain
frequency ωc rad /sec called cutoff frequency, without distortion. The signal
above these frequencies is filtered completely.

Transfer function of Ideal LPF 

𝐻 𝜔 =   
𝑒−𝑗𝜔0𝑡     𝑓𝑜𝑟   𝜔 < 𝑊

0    𝑓𝑜𝑟   𝜔 >  𝑊  
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Types of Ideal filters : Ideal High Pass Filter

An ideal high pass filter transmits all frequency components above the certain
frequency W rad/sec called cutoff frequency, without distortion. The signal
below these frequencies is filtered completely.

𝐻 𝜔 =  
 𝑒−𝑗𝜔𝑡0 𝑓𝑜𝑟    𝜔 > 𝑊 

0      𝑓𝑜𝑟  𝜔 < 𝑊
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Types of Ideal filters : Ideal Band Pass Filter

An ideal band pass filter transmits all frequency components within certain
frequency band W1to W2 rad /sec, without distortion. The signal with frequency
outside this band is stopped completely.

𝐻 𝜔 =   𝑒
−𝑗𝜔𝑡0  𝑓𝑜𝑟  𝑊1< 𝜔  <𝑊 2

 0        𝑜𝑡𝑕𝑒𝑟 𝑤𝑖𝑠𝑒
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Types of Ideal filters : Ideal Band Reject 

Filter
An ideal band reject filter rejects all frequency components within certain
frequency band W1 to rad W2/sec. The signal outside this band is transmitted
without distortion.

𝐻 𝜔 =   
0  𝑓𝑜𝑟𝑊1 <   𝜔 < 𝑊2

𝑒−𝑗𝜔𝑡0   𝑜𝑡𝑕𝑒𝑟 𝑤𝑖𝑠𝑒
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Causality and Physical Reliability: Paley 

Wiener

criterion 
For physically realizable systems, that cannot have response before the input
signal applied.

In time domain approach the impulse response of physically realizable systems
must be causal.

Frequency domain, The necessary and sufficient condition for magnetude
response to be physically realizable is known as the Paley – Wiener criterion

 
 𝑙𝑛 𝐻(𝜔)   𝑑𝜔

1 + 𝜔2

∞

−∞

<  ∞ 
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This condition known as the Paley – Wiener criterion

To satisfy the the Paley – Wiener criterion, the function H (ω ) must  be square 
integral .

All causal system satisfy the Paley –Wiener criterion.

Ideal filters are not physically realizable. But it possible to construct  physically 
realizable filters close to the filter characteristics.

Where   ε an arbitrary small value

𝐻 𝜔 =   
𝑒−𝑗𝜔𝑡0  𝑓𝑜𝑟  𝜔 < 𝑊

𝜀     𝑓𝑜𝑟  𝜔 > 𝑊
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Band width and Rise time 

The Rise time (tr) of output response is defined as the time the response 

take to reach from 10 % to 90% of the final value of signal. 

 𝑑𝑦(𝑡)

𝑑𝑡
 
𝑡0

=  
1

𝑡𝑟
 

System band Width can be derived from output response  

Consider LPF with transfer function  𝐻(𝜔) =  
𝑒−𝑗𝜔 𝑡𝑜  𝑓𝑜𝑟   𝜔 <  𝜔𝑐

0 𝑓𝑜𝑟  𝜔 >  𝜔𝑐
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Rise time and Band width

𝑕 𝑡 =  
1

2𝜋
 𝐻 𝜔 𝑒𝑗𝜔𝑡𝑑𝜔

∞

−∞

 

𝑕 𝑡 =  
1

2𝜋
 𝑒𝑗𝜔(𝑡−𝑡0)𝑑𝜔

𝜔𝑐

−𝜔𝑐

=  
1

𝜋

𝑠𝑖𝑛𝜔𝑐(𝑡 − 𝑡0)

(𝑡 − 𝑡0)
 

𝑕 𝑡 =   
𝜔𝑐𝑠𝑖𝑛𝑐𝜔𝑐(𝑡 − 𝑡0)

𝜋
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Rise time and band width

 𝑦 𝑡 = 𝑕 𝑡 ∗  𝛿 𝑡 =   𝑕 𝜏 𝑑𝜏
∞

−∞

 

𝑑𝑦  𝑡 

𝑑𝑡
=  

𝜔𝑐

𝜋
𝑠𝑖𝑛𝑐𝜔𝑐 (t-t0)  

 𝑑𝑦 𝑡 

𝑑𝑡
 
𝑡0

=
𝜔𝑐

𝜋
=

1

𝑡𝑟
  

𝑡𝑟 =  
𝜋

𝜔𝑐
 

Band width of LPF is  𝜔𝑐rad/sec 
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The convolution integral 

The process of expressing the output signal in terns of the
superposition of weighted and shifted impulse responses is
called convolution.

The mathematical tool for evaluating the convolution of
continuous time signal is called convolution integral. For
discrete time signal is called convolution sum.

Characterizing input – output relationship of LTI systems.

Play important role in time and frequency domain analysis.

220



The convolution integral 

Let 𝒙𝟏 𝒕  𝒂𝒏𝒅 𝒙𝟐 𝒕  𝒃𝒆 𝒕𝒘𝒐  continuous time signals. Then 

convolution 𝒐𝒇 𝒙𝟏 𝒕  𝒂𝒏𝒅 𝒙𝟐 𝒕   can be expressed as 

 𝒙𝟏 𝝉 𝒙𝟐 𝒕 − 𝝉 
∞

−∞
𝒅𝝉 

𝒘𝒉𝒆𝒓𝒆 𝜏 𝒊𝒔 𝒅𝒖𝒎𝒎𝒚 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆   

The output of any continuous time LTI system is the convolution of the 

input x(t) with impulse response h(t) of the system. 
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The convolution Integral 

Case 1 

If the input signal is causal 𝑥 𝑡 =  
𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑣𝑎𝑙𝑢𝑒   𝑡 ≥ 0

0      𝑓𝑜𝑟 𝑜𝑡𝑕𝑒𝑟 𝑤𝑖𝑠𝑒 
  

𝑦 𝑡 =   𝑥 𝜏 𝑕 𝑡 − 𝜏 𝑑𝜏
∞

0

 

Case 2 

If LTI system is causal 𝑕 𝑡 =  
𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑣𝑎𝑙𝑢𝑒   𝑡 ≥ 0

0      𝑓𝑜𝑟 𝑜𝑡𝑕𝑒𝑟 𝑤𝑖𝑠𝑒 
  

𝑦 𝑡 =   𝑥 𝜏 𝑕 𝑡 − 𝜏 𝑑𝜏
𝑡

−∞
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The convolution Integral

Case 3  

If both input signal and system are causal 

𝑦 𝑡 =   𝑥 𝜏 𝑕 𝑡 − 𝜏 𝑑𝜏
∞

0
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Properties of convolution integral :

Commutative Property:  

𝑙𝑒𝑡 𝑥1 𝑡 𝑎𝑛𝑑 𝑥2 𝑡 𝑎𝑟𝑒 𝑡𝑕𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑡𝑖𝑚𝑒 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 

𝑥1 𝑡 ∗  𝑥2 𝑡 =  𝑥2 𝑡 ∗ 𝑥1 𝑡   

𝑥1 𝑡 ∗  𝑥2 𝑡  =   𝑥1 𝜏 
∞

−∞

𝑥2 𝑡 − 𝜏  𝑑𝜏 

𝑡 − 𝜏 =  𝜆 

𝑥1 𝑡 ∗  𝑥2 𝑡 =  𝑥2 𝜆 
∞

−∞

𝑥2 𝑡 − 𝜆  𝑑𝜆 = 𝑥2 𝑡 ∗ 𝑥1 𝑡    
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Distributive Property: 

Properties of convolution integral :

𝑥1 𝑡 ∗   𝑥2 𝑡 + 𝑥3 𝑡  = 𝑥1 𝑡 ∗  𝑥2 𝑡 + 𝑥1 𝑡 ∗  𝑥3 𝑡  

Associate Property: 

𝑥1 𝑡 ∗   𝑥2 𝑡 ∗ 𝑥3 𝑡  = [𝑥1 𝑡 ∗  𝑥2 𝑡 ] ∗  𝑥3 𝑡 

=  𝑥1 𝑡 ∗  𝑥2 𝑡 ∗  𝑥3 𝑡  

Shifting property: 

𝑥1  𝑡 ∗  𝑥1  𝑡 − 𝑡0 = 𝑥(𝑡 − 𝑡0) 

𝑥1  𝑡 − 𝑡1 ∗  𝑥1  𝑡 − 𝑡2 = 𝑥(𝑡 − 𝑡1 − 𝑡2) 
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Properties of convolution integral

Convolution with impulse function 

𝑥 𝑡 ∗  𝛿 𝑡 =  𝑥 𝑡  

𝑥 𝑡 ∗  𝛿 𝑡 − 𝑡0 =  𝑥 𝑡 − 𝑡0  

Convolution with unit step function 

𝑢 𝑡 =   𝛿 𝜏 
𝑡

−∞

 𝑑𝜏 

𝑥 𝑡 ∗  𝑢 𝑡 =   𝑥 𝜏 ∗ 𝛿 𝜏 
𝑡

−∞
 𝑑𝜏 =  𝑥 𝜏 

𝑡

−∞
 𝑑𝜏 
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Properties of convolution integral

Width Property: 

Let us consider finite duration of two signals  

𝑥1 𝑡  𝑎𝑛𝑑 𝑥2 𝑡  are T1 and T2 respectively then 

duration of y(t) = 𝑥1 𝑡 ∗  𝑥2 𝑡  is equal to the sum of 

duration of 𝑥1 𝑡  𝑎𝑛𝑑 𝑥2 𝑡 . 

Area under finite signals  𝑥1 𝑡   𝑎𝑛𝑑  𝑥2 𝑡    are A1 and A2 

respectively then the area under y (t) is product of both 

areas. 

 

 A = area under y (t) = area under 𝑥1 𝑡  and area under 

𝑥2 𝑡  = A1   A2  
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Convolution property of Fourier Transform

𝑥 𝑡 ↔ 𝑋 𝜔 , 𝑦 𝑡 ↔ 𝑌 𝜔  

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑥 𝑡 ∗  𝑦 𝑡 =  𝑋 𝜔 𝑌(𝜔) 

Convolution in Frequency Domain  

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑋 𝜔 ∗  𝑌 𝜔 =  2𝜋[ 𝑥 𝑡 𝑦 𝑡 ] 
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Method of Graphical Convolution

Increase the time t along positive axis . Multiply the signals and

integrate over the period of two signals to obtain convolution at t.

Increase the time shift step by step and obtain convolution using step

4.

Draw the convolution x (t) with the values obtained in steps 4 and 5 as

function of t.
Increase the time t along positive axis . Multiply the signals and integrate over the period of
two signals to obtain convolution at t.

Increase the time shift step by step and obtain convolution using step 4.

Draw the convolution x (t) with the values obtained in steps 4 and 5 as function of t.
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LAPLACE TRANSFORM:

1

A Laplace transform of function f (t) in a time domain, 
where t is the real number greater than or equal to zero, is 
given as F(s), where there

It is the complex number in frequency domain .i.e. s = σ+jω
The above equation is considered as unilateral Laplace 
transform equation
When the limits are extended to the entire real axis then the 
Bilateral Laplace transform can be defined as



LAPLACE TRANSFORM:

1

The techniques of Laplace transform are not only used in
circuit analysis, but also in
Proportional-Integral-Derivative (PID) controllers
DC motor speed control systems
DC motor position control systems
Second order systems of differential equations (under
damped, over damped and critically damped)



LAPLACE TRANSFORM:



LAPLACE TRANSFORM:



REGION OF CONVERGENCE OF LAPLACE TRANSFORM:

Conditions For Applicability of Laplace Transform

Laplace transforms are called integral transforms so there are 
necessary conditions for convergence of these transforms.

i.e. f must be locally integral for the interval [0, ∞) and
depending on whether σ is positive or negative, e^(-σt) may
be decaying or growing. For bilateral Laplace transforms
rather than a single value the integral converges over a
certain range of values known as Region of Convergence.



PROPERTIES OF LAPLACE TRANSFORM:

1.LINEARITY:



PROPERTIES OF LAPLACE TRANSFORM:

First Derivative Property :

The first derivative in time is used in deriving the Laplace
transform for capacitor and inductor impedance. The
general formula



PROPERTIES OF LAPLACE TRANSFORM:

Second  Derivative Property :

The second derivative in time is found using the Laplace
transform for the first derivative. The general formula



PROPERTIES OF LAPLACE TRANSFORM:

Integration Property:

Determine the Laplace transform of the integral

Apply the Laplace transform definition



PROPERTIES OF LAPLACE TRANSFORM:

Time Scaling:



PROPERTIES OF LAPLACE TRANSFORM:

Time shift:



PROPERTIES OF LAPLACE TRANSFORM:

Frequency shift:



PROPERTIES OF LAPLACE TRANSFORM:

Differentiation in the s-domain:



PROPERTIES OF LAPLACE TRANSFORM:

Initial value theorem:



PROPERTIES OF LAPLACE TRANSFORM:

Final value theorem:



Relation between FOURIER  and  LAPLACE TRANSFORM:

The (unilateral) Laplace  transform of a function g:

The function g is assumed to be of bounded variation. If g is the 
ant derivative of f: 



Z-transform

The Z-transform converts a discrete-time signal, which is
a sequence of real or complex numbers, into a complex
frequency-domain representation.
The Z-transform can be defined as either a one-sided or
two-sided transform.

Bilateral Z-transform

The bilateral or two-sided Z-transform of a discrete-time signal 
x [ n ] is the formal power series X ( z )  defined as 



Z-TRANSFORM

Unilateral Z-transform

as 

Alternatively, in cases where x * n + is defined only for n ≥ 0  , 
the single-sided or unilateral Z-transform is defined as

In signal processing, this definition can be used to evaluate 
the Z-transform of the unit impulse response of a discrete-
time causal system.



Z-TRANSFORM:

Inverse Z-transform

where C is a counterclockwise closed path encircling the 
origin and entirely in the region of convergence (ROC).

This contour can be used when the ROC includes the unit
circle, which is always guaranteed when X ( z )hen all the
poles are inside the unit circle.



Z-TRANSFORM:

Region of convergence:

The region of convergence (ROC) is the set of points in the
complex plane for which the Z-transform summation
converges.



Z-TRANSFORM:

PROPERTIES OF ROC:

ROC of z-transform is indicated with circle in z-plane.
ROC does not contain any poles.
If x(n) is a finite duration causal sequence or right sided sequence, then the ROC is 
entire z-plane except at z = 0.
If x(n) is a finite duration anti-causal sequence or left sided sequence, then the ROC is 
entire z-plane except at z = ∞.
If x(n) is a infinite duration causal sequence, ROC is exterior of the circle with radius a. 
i.e. |z| > a.
If x(n) is a infinite duration anti-causal sequence, ROC is interior of the circle with radius 
a. i.e. |z| < a.
If x(n) is a finite duration two sided sequence, then the ROC is entire z-plane except at z 
= 0 & z = ∞.



PROPERTIES OF Z-TRANSFORM:

LINEARITY:



PROPERTIES OF Z-TRANSFORM:

TIME EXPANSION:



PROPERTIES OF Z-TRANSFORM:

TIME SHIFTING:

Define

we have and 



PROPERTIES OF Z-TRANSFORM:

CONVOLUTION:

. 

The ROC of the convolution could be larger than the intersection 
of and , due to the possible pole-zero cancellation caused by 
the convolution



PROPERTIES OF Z-TRANSFORM:

Time Reversal :

. 



PROPERTIES OF Z-TRANSFORM:

Differentiation in z-Domain :

. 

Conjugation



PROPERTIES OF Z-TRANSFORM:

. 

Time reversal:



PROPERTIES OF Z-TRANSFORM:

. 

Time reversal:
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Graphical and analytical proof for Band Limited Signals:

1

Sampling theorem: A continuous time signal can be represented
in its samples and can be recovered back when sampling
frequency fs is greater than or equal to the twice the highest
frequency component of message signal. i. e. fs≥2fm

Proof: Consider a continuous time signal x(t). The spectrum
of x(t) is a band limited to fm Hz i.e. the spectrum of x(t) is zero
for |ω|>ωm.Sampling of input signal x(t) can be obtained by
multiplying x(t) with an impulse train δ(t) of period Ts. The
output of multiplier is a discrete signal called sampled signal
which is represented with y(t) in the following diagrams:



Graphical and analytical proof for Band Limited Signals:

1



Graphical and analytical proof for Band Limited Signals:

1

Here, you can observe that the sampled signal takes the period of impulse. The process of 

sampling can be explained by the following mathematical expression



Graphical and analytical proof for Band Limited Signals:

1



Graphical and analytical proof for Band Limited Signals:

1

To reconstruct x(t), you must recover input signal spectrum X(ω)
from sampled signal spectrum Y(ω), which is possible when there
is no overlapping between the cycles of Y(ω).

There are three types of sampling techniques:
Impulse sampling.
Natural sampling.
Flat Top sampling.



Graphical and analytical proof for Band Limited Signals:

1

Impulse Sampling
Impulse sampling can be performed by multiplying input signal x(t) with impulse train of period
'T'. Here, the amplitude of impulse changes with respect to amplitude of input signal x(t). The
output of sampler is given by



Graphical and analytical proof for Band Limited Signals:

1

To get the spectrum of sampled signal, consider Fourier 
transform of equation 1 on both sides

This is called ideal sampling or impulse sampling. You cannot use 
this practically because pulse width cannot be zero and the 
generation of impulse train is not possible practically.

Natural Sampling:
Natural sampling is similar to impulse sampling, except the 
impulse train is replaced by pulse train of period T. i.e. you 
multiply input signal x(t) to pulse train



Graphical and analytical proof for Band Limited Signals:

1



Graphical and analytical proof for Band Limited Signals:

1

Flat Top Sampling: During transmission, noise is introduced at top of the transmission pulse 
which can be easily removed if the pulse is in the form of flat top. Here, the top of the samples 
are flat i.e. they have constant amplitude. Hence, it is called as flat top sampling or practical 
sampling. Flat top sampling makes use of sample and hold circuit.



Graphical and analytical proof for Band Limited Signals:

1



Graphical and analytical proof for Band Limited Signals:

1

Nyquist Rate:
It is the minimum sampling rate at which signal can be 
converted into samples and can be recovered back without 
distortion.
Nyquist rate fN = 2fm hz
Nyquist interval = 1/fN = 1/2fm seconds.



Reconstruction of signal from its samples:

1

Assume that the Nyquist requirement ω0 > 2ωm is satisfied. 
We consider two reconstruction schemes:
• ideal reconstruction (with ideal band limited 
interpolation), 
• reconstruction with zero-order hold.
Ideal Reconstruction: Shannon interpolation formula



Reconstruction of signal from its samples:

1

Our ideal reconstruction filter has the frequency response:



Reconstruction of signal from its samples:

1

The reconstructed signal xr(t) is a train of sinc pulses scaled by 
the samples x*n+. • This system is difficult to implement because 
each sinc pulse extends over a long (theoretically infinite) time 
interval.



Reconstruction of signal from its samples:

1

A general reconstruction filter
For the development of the theory, it is handy to consider the
impulse-sampled signal xP(t) and its CTFT.

Figure : Reconstruction in the frequency domain is low pass filtering



Effect of under sampling – Aliasing :

1

Possibility of sampled frequency spectrum with different conditions 
is given by the following diagrams



Aliasing Effect:

1

The overlapped region in case of under sampling represents aliasing 
effect, which can be removed by
•considering fs >2fm

•By using anti aliasing filters .

Samplings of Band Pass Signals:
In case of band pass signals, the spectrum of band pass signal X*ω+ =
0 for the frequencies outside the range f1 ≤ f ≤ f2. The frequency f1 is
always greater than zero. Plus, there is no aliasing effect when fs >
2f2. But it has two disadvantages:



Samplings of Band Pass Signals:

1

The sampling rate is large in proportion with f2. This has
practical limitations.
The sampled signal spectrum has spectral gaps.
To overcome this, the band pass theorem states that the input
signal x(t) can be converted into its samples and can be
recovered back without distortion when sampling frequency
fs < 2f2.
Also,



Samplings of Band Pass Signals:

1



Samplings of Band Pass Signals:

1



Correlation:

1

Cross Correlation and Auto Correlation of Functions:

Correlation
Correlation is a measure of similarity between two signals. The
general formula for correlation is

There are two types of correlation:

•Auto correlation

•Cross correlation



Auto Correlation Function:

1

It is defined as correlation of a signal with itself. Auto correlation
function is a measure of similarity between a signal & its time
delayed version. It is represented with R(τ).
Consider a signals x(t). The auto correlation function of x(t) with its
time delayed version is given by



Auto Correlation Function:

Where τ = searching or scanning or delay parameter.
If the signal is complex then auto correlation function is given by



Cross Correlation Function:

Cross correlation is the measure of similarity between two
different signals.
Consider two signals x1(t) and x2(t). The cross correlation of
these two signals R12(τ)R12(τ) is given by



Cross Correlation Function:



Properties of Cross Correlation Function:

Auto correlation exhibits conjugate symmetry i.e. R (τ ) = R*(-τ
)



Properties of Cross Correlation Function:

Auto correlation function of energy signal at origin i.e. at τ =0 is 
equal to total energy of that signal, which is given as:



Properties of Cross Correlation Function:

Auto correlation function is maximum at τ =0 i.e |R (τ ) | ≤ R (0) ∀ τ



Properties of Cross Correlation Function:

Auto correlation function and energy spectral densities are Fourier 
transform pairs. i.e.

F.T[R(τ)]=SXX(ω) 
SXX(ω)= ∫R(τ)e−jωτdτ where -∞ < τ<∞

R(τ)=x(τ)∗x(−τ)



Properties of Cross Correlation Function 
:

•Auto correlation exhibits conjugate symmetry i.e. R12(τ)=R∗
21(−τ).

•Cross correlation is not commutative like convolution i.e.
R12(τ)≠R21(−τ)

•If R12(0) = 0 means, if ∫x1(t)x∗
2(t)dt=0 over interval(-∞,∞), then 

the two signals are said to be orthogonal.
•Cross correlation function corresponds to the multiplication of 
spectrums of one signal to the complex conjugate of spectrum of 
another signal. i.e.

R12(τ)←→X1(ω)X∗
2(ω)

This also called as correlation theorem



Energy Density Spectrum:

Energy spectral density describes how the energy of a signal or
a time series is distributed with frequency. Here, the
term energy is used in the generalized sense of signal processing;
Energy density spectrum can be calculated using the formula:



Power Density Spectrum:

The above definition of energy spectral density is suitable for
transients (pulse-like signals) whose energy is concentrated around
one time window; then the Fourier transforms of the signals generally
exist. For continuous signals over all time, such as stationary processes,
one must rather define the power spectral density (PSD); this describes
how power of a signal or time series is distributed over frequency, as in
the simple example given previously. Here, power can be the actual
physical power, or more often, for convenience with abstract signals, is
simply identified with the squared value of the signal.
Power density spectrum can be calculated by using the formula:



Power Density Spectrum:

The spectrum of a real valued process (or even a complex process
using the above definition) is real and an even function of frequency:

If the process is continuous and purely in deterministic, the auto
covariance function can be reconstructed by using the Inverse
Fourier transform
•The PSD can be used to compute the variance (net power) of a
process by integrating over frequency:



Relation between Autocorrelation Function and Energy Spectral 
Density Function

Relation between Autocorrelation Function and
Energy/Power Spectral Density Function:



Relation between Autocorrelation Function and
Energy/Power Spectral Density Function:

Relation between Autocorrelation Function and Power Spectral
Density Function



Relation between Autocorrelation Function and
Energy/Power Spectral Density Function:

Relation between Convolution and Correlation:


