

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	STRE	STRENGTH OF MATERIALS					
Course Code	ACEB	07					
Programme	B.Tech	1					
Semester	IV	IV CE					
Course Type	Core	Core					
Regulation	IARE	IARE - R18					
	Theory				Practical		
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits	
	3		1	4	2	1	
Chief Coordinator	Mr. G Venkateswarlu, Assistant Professor, MECH						
Course Faculty	Mr. G.	Venk	ateswarlu, Assist	ant Professor, 1	MECH		

I. COURSEOVERVIEW:

The primary objective of Strength of Materials is concerned with establishing an understanding of the behavior of structure basic structural components such as beams, columns, frames, plates and shells, when subjected to different loads or other actions which have the effect of changing the state of stress and deformation of the structure.

II. COURSEPRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AMEB03	III	Engineering Mechanics	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Strength of Materials	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
>	LCD / PPT	>	Seminars	×	Mini Project	>	Videos
×	Open Ended Expe	erimen	ts				

V. EVALUATIONMETHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in aquestion.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Manla		
Type of Assessment	CIE Exam	Quiz	AAT	i otai wiarks
CIA Marks	20	05	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz – Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quizzes for everycourse.

Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the class room into effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in engineering) five minutes video and MOOCs etc.

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Seminars
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Quiz
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Videos
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in thebroadest context of technological change	3	Assignments

VI. HOW PROGRAM OUTCOMES AREASSESSED:

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	3	LCD/PPT
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problemsof components to complete the challenge of airworthiness for flight vehicles.	2	Assignments
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	3	Assignments

3 = High; 2 = Medium; 1 = Low

VIII. COURSEOBJECTIVES:

The cour	se should enable the students to:
Ι	Describe the concepts and principles, understand the theory of elasticity including
	strain/displacement and Hooke's law relationships; and perform calculations, relative
	to the strength and stability of structures and mechanical components;
	Define the characteristics and calculate the magnitude of combined stresses in
II	individual members and complete structures; analyze solid mechanics problems using
	classical methods and energy methods;
III	Analyze various situations involving structural members subjected to combined
	stresses by application of Mohr's circle of stress; locate the shear center of thin wall
	beams; and
IV	Calculate the deflection at any point on a beam subjected to a combination of loads;
	solve for stresses and deflections of beams under unsymmetrical loading; apply various
	failure criteria for general stress states at points; solve torsion problems in bars and thin
	walled members;

IX. COURSE OUTCOMES(COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understand the basics of material	CLO 1	Calculate the stress strain relations in conjunction with elasticity and material properties
	properties, stress and	CLO 2	Describe the resistance and deformation in members
	strain.		which are subjected to axial, flexural and torsion loads.
		CLO 3	Discuss thermal explanations in solid bars and
			induced thermal stresses
CO 2	Apply knowledge of	CLO 4	Solve for bending and shear parameters of beams
	various kinds of		under loading conditions
	beams for engineering	CLO 5	Explain for deflections of beams under loading with
	applications.		various approaches.
		CLO 6	Determine the deflections of different beams under
			different loading conditions.
CO 3	Gain the knowledge	CLO 7	Compute the bending stresses developed in various
	to identify, formulate,		sections of beams of real field problems.
	and solve engineering	CLO 8	Apply the bending equation on various sections
	ℜ life problems.	CLO 9	Determine the shear stresses developed in various
			sections of beams
CO 4	Design and conduct	CLO 10	Calculate the stability of structural elements and
	experiments, as well	GT 0 11	determine buckling loads.
	as to analyze and	CLO 11	Discuss critical buckling load for column with
	interpret data	GT 0 10	various loading and end conditions
		CLO 12	Apply theories and to predict the performance of
		CL 0 12	bars under axial loading including buckling.
		CLO 13	Understand the theory of beam column & determine
CO 5	I adamstand ta daalam	CLO 14	buckling loads on it.
005	Understand to design	CLO 14	solve the principal stress problems by graphical
	desired needs within	CLO 15	Evaluation the starse transformation and concent of
	realistic constraints of	CLO 15	principle plane and principle stresses
	safety	CLO 16	Evaluate principal strasses strains and apply the
	survey.	CLO 10	concept of failure theories for design
		CL 0 17	Acquire knowledge to solve real time problems in
			Aircraft structure subjected loading conditions
			Amerant structure subjected loading conditions

X. COURSE LEARNING OUTCOMES(CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
ACEB07.01	CLO 1	Calculate the stress strain relations in conjunction with elasticity and material properties	PO1	3
		Describe the resistance and deformation in		2
ACEB07.02	CLO 2	members which are subjected to axial, flexural	PO1	
		and		
		torsion loads.		
A CED 07 02	CT O 2	Discuss thermal explanations in solid bars and	DOA	3
ACEB07.03	CLO 3	induced thermal stresses	PO2	
	<i>a</i>	Solve for bending and shear parameters of beams	202	3
ACEB07.04	CLO 4	under loading conditions	PO2	
	a a	Explain for deflections of beams under loading	DOI	2
ACEB07.05	CLO 5	with various approaches.	POI	
	ar o c	Determine the deflections of different beams under	D010	1
ACEB0/.06	CLO 6	different loading conditions.	PO12	
		Compute the bending stresses developed in various		2
ACEB07.07	CLO 7	sections of beams of real field problems.	PO3	
ACEB07.08	CLO 8	Apply the bending equation on various sections	PO2	2
	at a a	Determine the shear stresses developed in various	DO (1
ACEB07.09	CLO 9	sections of beams	PO4	
	GT 0 10	Calculate the stability of structural elements and	201	3
ACEB07.10	CLO 10	determine buckling loads.	PO4	
	GL 0.11	Discuss critical buckling load for column with	DO 1	3
ACEB07.11	CLO II	various loading and end conditions	POI	
A CED 07 12	GL 0.12	Apply theories and to predict the performance of	DOA	2
ACEB07.12	CLO 12	bars under axial loading including buckling.	PO3	
A CED 07 12	GT 0 10	Understand the theory of beam column &	DO 1	1
ACEB07.13	CLO 13	determine buckling loads on it.	POI	
	GT 0 14	Solve the principal stress problems by graphical	DO 4	3
ACEB07.14	CLO 14	methods.	PO4	
A CED 07 15	GT 0 15	Explain the stress transformation and concept of	DO 1	1
ACEB07.15	CLO 15	principle plane and principle stresses	POI	
		Evaluate principal stresses, strains and apply the	DC (2
ACEB07.16	CLO 16	concept of failure theories for design	PO1	
	Acquire knowledge to solve real time problems in			2
ACEB07.17	CLO 17	Aircraft structure subjected loading conditions	PO12	

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course		Pr	ogram Outcomes (POs)			Progran	n Specific O	utcomes
(COs)	PO 1	PO 2	PO 3	PO 4	PO 12	PSO1	PSO2	PSO3
CO 1	3	3				2	1	
CO 2	2	3				1	2	
CO 3	2	3			1	2	1	
CO 4	2	2		1	1	2	2	2
CO 5	2		3	3	2	2		3

3 = High; 2 = Medium; 1 = Low

Course Learning				I	Progra	m Ou	tcom	es (Po	Os)				Pr Ou	ogram itcomes	Specific (PSOs)
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3													2	
CLO 2	2														1
CLO 3		3												2	
CLO 4		3												3	
CLO 5	2												1		
CLO 6												1		2	
CLO 7			2												1
CLO 8		2											1		
CLO 9				1										2	
CLO 10				3										2	
CLO 11	3												2		
CLO 12			2												2
CLO 13	1												2		
CLO 14				3										2	
CLO 15	1												1		
CLO 16	2														3
CLO 17												2	2		

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENTMETHODOLOGIES-DIRECT

CIE Exams	PO 1, PO2, PO3, PO4,PO12,PSO1, PSO2,PSO3	SEE Exams	PO 1, PO2, PO3, PO4,PO12, PSO1, PSO2,PSO3	Assignments	PO 3, PO 12, PSO2, PSO3	Seminars	PO 1
Laboratory Practices	PO4	Student Viva	PO12	Mini Project	-	Certification	-
Term Paper	-						

XIV. ASSESSMENTMETHODOLOGIES-INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Course Code	Category	Ho	ours / V	Veek	Credits	M	aximum 🛛	Marks
ACER07	Core	L	Т	P	C	CIA	SEE	Tota
ACEDU/	Core	3	1	-	4	30	70	100
Contact	Tutorial	P	ractica	l Classes	s: Nil	Т	otal Clas	ses: 60
Classes: 45	Classes: 15							
 I. Describe strain/disp strength ar II. Define the members a and energy III. Analyze v application IV. Calculate a stresses an 	the concepts and lacement and Hool ad stability ofstructure characteristics are and complete structure (methods; arious situations in a of Mohr's circle of the deflection at an d deflections of bea	tures and nd calc tures; a nvolvin f stress; y point ams unc	ciples, w relat l mecha ulate t nalyze g struc locate on a b ler unsi	understa ionships; inicalcon he magn solid me tural me the shear weam sub	and the the and perform ponents; itude of con- echanics prol- embers subjection r center of the jected to a c	eory of n calcula mbined s blems usi cted to c in wall be ombinatio	elasticity tions, rel tresses ir ng classic ombined ams;and on of load	y includin ative to the n individu cal methor stresses he ds; solve f
general str MODULE –I Concept of stress types ofstresses a safety, Lateralst between them; Resilience, Grad stress at a point stress and their a	s and strain, St. Ver and strains, Hooke's rain, Poisson's rat Bars ofvarying se ual, sudden, impact on a plane, princi pplications. Two-d	solve to STRA nant"s p s law st io and ection, t andsho pal stre imensio	volum compo compo cock loa sses ar conal str	e, stress a train diag etric stra site bars dings, sin adprincip ess-strain	and strain dia gram for mile in – Elastic s, temperatu nple applicat al planes, M	ngram, Ela d steel wo e moduli re stress tions, two ohr circle cipal stra	dmember dasticity an orking stree and the es. Strain o-dimension e of stress ins and pr	Classes: 12 nd plasticit ess, factor relationsh n Energy onal system s, ellipse rincipal ax
general str MODULE –I Concept of stress types ofstresses a safety, Lateralst between them; Resilience, Grad stress at a point stress and their a of strain, circle o MODULE –II	s and strain, St. Ver and strains, Hooke's rain, Poisson's rat. Bars ofvarying se ual, sudden, impact on a plane, princi pplications. Two-d f strain and ellipse BENDING MON	Solve to STRA nant"s p s law st io and ection, t andsho pal stre imension of strain	vins vins vins volum compo ock loa ock loa ock loa ock loa ock loa sses ar onal str n. Relat	e, stress a train diag etric stra site bars dings, sin dprincip ess-strair ionship b	and strain dia gram for mile and strain dia gram for mile ain – Elastic s, temperatu mple applicat al planes, M msystem, prin betweenelastic	agram, Ela d steel wo e moduli re stress tions, two ohr circle cipal stra constar	asticity an orking stree and the es. Strair ordimension e of stres ins and pro-	Classes: 12 nd plasticit ess, factor relationsh n Energy onal system s, ellipse rincipal ax Classes: 0
general str MODULE –I Concept of stress types ofstresses a safety, Lateralst between them; Resilience, Grad stress at a point stress and their a of strain, circle o MODULE –II Bending Momen supported with o flexure under co combination of o loads, applicatio method, Macaula beams.	states at points; STRESSES ANI and strain, St. Ver and strains, Hooke's rain, Poisson's rat. Bars ofvarying se ual, sudden, impact on a plane, princi- applications. Two-d f strain and ellipse BENDING MON t (BM) and Shear I or without overhang ncentrated loads, u concentrated loads, u concentrated loads, u ay's method. Useof	solve to STRA nant"s p s law st io and ection, t andsho pal stre imension of strain MENT Force (S gs. Calo iniform (two or lationsh f these	vinsion j vinsion j vinsion j vinsion j vinsion j vinsion j volum compo ock loa sses ar onal str n. Relat AND S SF) dia culatior ly disti three) nip bety method	e, stress a train diag etric stra site bars dings, sin dprincip ess-strair ionship b HEAR I grams. B a of max ibuted lo and unif ween mo ls to calc	and strain dia gram for mile and strain dia gram for mile and strain dia gram for mile and strain dia gram for mile s, temperatu mple applicat al planes, M mystem, prin betweenelasti FORCE DIA BM and SF d imum BM a bads over the formly distribute ponent, slope culate slope a	hin walle hin walle gram, Ela d steel wo c moduli re stress tions, two ohr circle cipal stra ic constar GRAMS iagrams f nd SF an e whole a buted load and defle	dmember dmember asticity an orking stree and the es. Strair o-dimension e of stress ins and pro- tts. for cantile d the poi span or p ls, uniform ection, M ction for	Classes: 1 classes: 1 classes: 1 classes: 1 classes: 1 classes: 1 classes: 1 classes: 1 classes: 0 classes: 0 evers simp nt of cont part of spa mly varyin foment ar-
general str MODULE –I Concept of stress types ofstresses a safety, Lateralst between them; Resilience, Grad stress at a point stress and their a of strain, circle o MODULE –II Bending Momen supported with o flexure under co combination of o loads, applicatio method, Macaula beams. MODULE –III	s and strain, St. Ver and strains, Hooke's rain, Poisson's rat Bars ofvarying se ual, sudden, impact on a plane, princi pplications. Two-d f strain and ellipse BENDING MON t (BM) and Shear I or without overhang ncentrated loads, u concentrated loads (n of moments. Re ay's method. Useof	solve to STRA nant"s p s law st io and ection, t andsho pal stre imensic of strain IENT Force (S gs. Calc uniform (two or lationsh f these	vinsion j vinsion j vinsion j vinsion j vinsion j volum compo ock loa sses ar onal str n. Relation AND S SF) dia culation ly distri three) nip bety method	e, stress a train diag etric stra site bars dings, sin adprincip ess-strair ionship b HEAR H grams. B of max ibuted lo and unif ween mo ls to calc TORSIC	and strain dia gram for mile gram for mile ain – Elastic s, temperatu mple applicat al planes, M system, prin betweenelastic FORCE DIA BM and SF d imum BM a bads over the formly distributed cormly distributed and slope a	hin walle hin walle d steel wo e moduli re stress tions, two tohr circle cipal stra ic constar GRAMS iagrams f nd SF an e whole so buted load and defle	dmember dmember asticity an orking stree and the es. Strair ordimension e of stres ins and pro- tits. For cantile d the poi span or p ls, uniform ection, M ction for	Classes: 0 Classes: 12 nd plasticit ess, factor relationsh n Energy onal system s, ellipse rincipal ax Classes: 0 evers simp nt of cont part of spa mly varyin foment ar determina

MO	DULE –IV	TORSION	Classes: 08
Der circ max heli	ivation of tor ular shafts, to kimum shear s calsprings.	sion equation and its assumptions. Applications of the equation of the horsional rigidity, Combined torsion and bending of circular shafts, princ stresses under combined loading of bending and torsion. Analysis of clo	ollow and solid ipal stress and ose-coiled-
MO	DDULE –V	THIN CYLINDERS AND SPHERES	Classes: 09
Der subj	ivation of for jectedto inter	mulae and calculations of hoop stress, longitudinal stress in a cylinder, nal pressures.	and sphere
Text	Books:		
1. 2. 3. 4.	Timoshenko Kazmi, S. M Hibbeler, R Crandall, S. NewYork, N	 b, S. and Young, D. H., "Elements of Strength of Materials", DVNC, N A. A., "Solid Mechanics" TMH, Delhi, India. C. Mechanics of Materials. 6th ed. East Rutherford, NJ: Pearson Prent H., N. C. Dahl, and T. J. Lardner. An Introduction to the Mechanics of NY: McGraw Hill, 1979. 	ew York, USA. tice Hall, 2004. Solids. 2nd ed.
Refe	rence Books	:	
1. 2.	Mechanics of Strength of	of Materials - Ferdinand P. Beer, E. Russel Jhonston Jr., John T. DEwol Materials by R. Subramanian, Oxford University Press, New Delhi.	f-TMH2002.
Web	References:		
1. 2. 3.	http://www. http://ocw.n 2004/lecture https://www	nptelvideos.in/2012/11/strength-of-materials- prof.html nit.edu/courses/civil-and-environmental-engineering/1-050-solid-mecha e-notes/ /.youtube.com/watch?v=coRgpxG2pyY&list=PLLbvVfERDon3oDfCY	nics-fall- (xkwRct106Ye
	Ozi9g		
E-Te	ext Books:	for a single start of March 1 D 1 1	
1.	http://www.	Ireeengineeringbooks.com/Civil/Strength-of-Material-Books.php	hangal html
2. 3	https://book	neonanicalouzz.ologspol.nl/2015/04/suengin-of-matemais-dook-dy-r-k- s google oo in/books?id=I8gg004004C & printsec=frontsover&da=STE	ENGTH OF
5.	+MATERIA AB#v=onep	ALS&hl=en&sa=X&ved=0ahUKEwjpveCD44HgAhWBad4KHacUAg bage&q=STRENGTH%200F%20MATERIALS&f=false	YQ6AEIMD

XVI. COURSEPLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-3	Mechanical properties of engineering materials, Hooke's law, derivation of relation between three elastic constants	CLO 1	T1:1.1-1.6
4	Derivation of Bars of varying cross-section, explaining the concept factor of safety applied to various problems	CLO 1	T1:1.10
5	Explanation of Concept of thermal stresses, problems on thermal stresses	CLO 2	T1:1.14
6	Derivation of Torsion in shafts. Different Problems on torsion of shafts	CLO 2	T1:1.14
7	Explanation of strain energy concept for different structures and derivation of strain energy equation.	CLO 2	T1:4.1-4.6

Lecture No	Topics to be covered		Reference
		(CLOs)	
8-9	Problems on design of bars, problems on three elastic constants	CLO 3	T1:1.17
10	Explaining different type of beams under various loads and also the	CLO 3	T1:6.1-6.5
11	concept of shear force and bending moment.	CT O 1	R1:4.1-4.10
11	beams subjected to point load, udl, uvl.	CLO 4	T1:6.6-6.9 R1:5.1-5.6
12	Problems on shear force and bending moment diagram of SSB beams subjected to point load, udl, uvl.	CLO 4	T1:6.10-6.12
13	Problems on shear force and bending moment diagram of SSB beams subjected to point load, udl, uvl.	CLO 5	T1:6.10-6.12
14	Problems on shear force and bending moment diagram of overhanging beams subjected to point load, udl, uvl.	CLO 5	T1:7.1-7.3
15-16	Assumptions of pure bending, derivation of deflection of beams. Problems on deflection on beams by double integration method.	CLO 6	T1:7.1-7.3 R1:8.2-8.9
17-18	Problems on double integration method for various beams like cantilever, simply supported beam under various loading conditions	CLO 6	T1:12.1-12.3
19	Problems on moment area method for various beams like cantilever, simply supported beam under various loading conditions	CLO 7	T1:13.1-13.5
20-22	Concept of principal of superposition and application on various problems.	CLO 8	T1:7.4-7.5
23-24	Explanation of pure bending and derivation of equation of bending stresses	CLO 8	T1:7.4-7.5 R3:8.5-8.10
24-26	Concept of shear stresses and its variation on beams of symmetric sections.	CLO 8	T1:8.1-8.3
27	Shear stresses variations on unsymmetrical sections.	CLO 9	T1:8.1-8.3
28-30	Problems on shear stresses and for symmetrical and unsymmetrical sections	CLO 9	T1:8.1-8.3
30	Derivation of beam of uniform strength and problems on it.	CLO 9	T1:7.1-7.3
31-32	Concept of flexural stress and derivation of bending equation.	CLO 9	T1:19.1-19.3
33-35	Calculation of bending stresses for different cross sections.	CLO 10	T1:19.1-19.3
36	Explaining about different types of columns and their applications	CLO 11	T1:19.3
37-39	Assumptions for Euler's formula of instability of columns	CLO 11	T1:19.3
40-41	Derivation of Euler's formula for buckling of column	CLO 12	T1:19.4-19.6
42-44	Problems on Euler's formula of buckling for long and intermediate	CLO 12	T1:19.6-19.9 R2:9.1-9.10
45-47	Explanation of short columns and their applications.	CLO 13	T1:19.11 R2: 10 1-10 5
48-50	Derivation of Rankine's short column formula for short column crushing load	CLO 13	T1:19.11 R3: 5 5-5 12
50	Derivation of Jonson's short column formula for short column crushing load	CLO 14	T1:19.13- 19.15
51-52	Concept of analysis of beam-column and its applications. Problems on beam columns.	CLO 14	T1:19.8
53-54	Explaining the stresses acting on a 3dimensional elastic body and deriving the stress equations.	CLO 15	T3:1.1-1.6
55	Derivation of compatibility equations for 3dimensional elastic body	CLO 15	T3:1.10-
56	Problems on equilibrium and compatibility equations	CLO 16	T3:1.16
57-58	Concept of Airy's stress function for 3Dimensional elastic body and application on problems	CLO 16	T3:2.1-2.2
59	Explanation of plane stresses and plane strains by analytical methods and graphical methods	CLO 17	T3:1.14
60	Problems on principal stresses and strains using various methods.	CLO 17	T3:1.16

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSIONREQUIREMENTS:

S. No	Description	Proposedactions	Relevance withPOs	Relevance with PSO's
1	Shear force and Bending moment for inclined loading conditions on various beams.	Guest Lecture/Seminar	PO1,PO2,PO4	PSO 2
2	Deflection of beams by using conjugate beam method.	Seminars	PO 5	PSO 2, PSO 3
3	Concept of combined bending and torsion on shafts.	Seminars	PO 3	PSO 1, PSO 3

Prepared by: G.Venkateswarlu

HOD, CE