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INTRODUCTION TO SPACE MECHANICS

< Basic Concepts
< The Solar System

< Reference Frames And
Coordinate Systems

< The Celestial Sphere

< The Ecliptic And Motion
Of Vernal Equinox

< Sidereal Time, Solar Time
< Standard Time

**The Earth’s Atmosphere
**The Many Body Problem
s*Lagrange-Jacobi Identity

*»The Circular Restricted Three-body
Problem

s Liberation Points

s*Relative Motion In The N-body
Problem



UNIT- I

\/

** Equations of motion-General characteristics of motion for
different orbits-Relations between position and time for
different orbits

Expansions in elliptic motion

Orbital Elements

Relation between orbital elements and position and velocity
Launch vehicle ascent trajectories

General aspects of satellite injection

Dependence of orbital parameters on in-plane injection
parameters

» Launch vehicle performances

» Orbit deviations due to injection errors
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UNIT- 1l

Special and general perturbations

Cowell‘s Method

Encke’s method

Method of variations of orbital elements
General perturbations approach
Two-dimensional interplanetary trajectories
Fast interplanetary trajectories

Three dimensional interplanetary trajectories
Launch of interplanetary spacecraft

Trajectory about the target planet



UNIT- IV

&

L)

* The boost phase
» Ballistic phase
» Trajectory geometry
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» Optimal flights

» Time of flight

» Re-entry phase

» The position of the impact point
» Influence coefficients
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** Equations of Motion

+* Constant radial thrust acceleration
¥ Constant tangential thrust (Characteristics of the motion)
s Linearization of the equations of motion

» Performance analysis



UNIT -l
INTRODUCTION TO SPACE
MECHANICS

—



Solar System

What'’s in Our Solar System?

Classify the planets of our solar
system.

Outer plants are

Small rocky planets (Mercury,
Venus, Earth, Mars, and Pluto)

Gas giants (Jupiter, Saturn, Uranus,
and Neptune)

What are the difference between
starts and planets?

*s*Characteristics of Small
Rocky Planets

¢ Characteristics of Gas Giants
s*the Sun

**The natural Satellites (moon)
+*Detail about each planets
**Meteorite vs. Meteoroid
s»Comets

s Kepler’s Law

**Bode’s Law



What’s in Our Solar System?

The Solar System

**Our Solar System consists of a central star (the Sun), the Eight
planets orbiting the sun, moons, asteroids, comets, meteors,
interplanetary gas, dust, and all the “space” in between them.

**The nine planets of the Solar System are named for Greek
and Roman Gods and Goddesses.




Inner and OQuter Planets

< Inner Planets: < Outer Planets
< Mercury <Jupiter
“\enus “*Saturn
< Earth “*Uranus
< Mars “*Neptune

Pluto




Solar System A Pictorial \liew




The Relative Size of the Planets <

The Relative Size of the Planets in Solar System




The Sun

® The sun’s energy comes from nuclear
fusion (where hydrogen is converted
to helium) within its core. This
energy is released from the sun in
the form of heat and light.

® Remember:  Stars produce light.
Planets reflect light.

® A star’s temperature determines its
“color” The coldest stars are red.
The hottest stars are blue.




The 8 Planets of the Solar System

® Planets are categorized according to composition and
size. There are two main categories of planets:

* small rocky planets (Mercury, Venus, Earth, Mars,
and )

* gas giants (Jupiter, Saturn, Uranus, and Neptune)




Characteristics of Small Rocky Planets -

® They are made up mostly of rock and metal.
® They are very heavy.

® They move slowly in space.

® They have no rings and few moons (if any).

® They have a diameter of less than 13,000 km.



Mercury

® Mercury has a revolution period
of 88 days. Mercury has
extreme temperature
fluctuations, ranging from
800°F (daytime) to -270°F
(night time).

® Even though it is the closest
planet to the sun, Scientists
believe there is ICE on Mercury!
The ice is protected from the
sun’s heat by crater shadows.




Venus is the brightest object
in the sky after the sun and
moon because its
atmosphere reflects sunlight
so well. People often mistake
it for a star.

Its maximum surface
temperature may reach
900°F.

Venus has no moons and
takes 225 days to complete
an orbit.




Earth is the only planet known
to support living organisms.

Earth’s surface is composed of
71% water.

Water is necessary for life on
Earth.

The oceans help maintain
Earth’s stable temperatures.

Earth has one moon and an
oxygen rich atmosphere.




Earth’s Moon

® It takes the moon
approximately 29 days to
complete one rotation. The
same side of the moon always
faces us.

® The moon’s surface is covered in
dust and rocky debris from
meteor impacts. It has no water
or atmosphere.

® The moon reflects light from the
sun onto the earth’s surface.



Like Earth, Mars has ice caps
at its poles.

Mars has the largest volcano
in our solar system:

Olympus Mons. Olympus
Mons is approximately 15
miles high.

Mars appears red because of
iron oxide, or rust, in its soil.

Mars has two moons and
takes about two years to
complete an orbit.




Pluto has only one moon and
takes about 249 years to
orbit the sun.

Part of Pluto’s orbit passes
inside that of Neptune, so at
times Neptune is the planet
farthest from the sun.

Pluto was located and named
in 1930, but today Pluto is no
longer considered a

planet.




Characteristics of Gas Giants

® They are made up mostly of gases (primarily
hydrogen & helium).

® They are very light for their size.

® They move quickly in space.

® They have rings and many moons.

® They have a diameter of less than 48,000 km



Jupiter

® Jupiter is the largest and
most massive planet.

® It’s diameteris 11 times
bigger than that of the
Earth’s.

® It takes about 12 years for
Jupiter to orbit the sun.

® Jupiter has 16 known
moons.




Saturn

Saturn is composed almost
entirely of hydrogen and
helium.

Saturn has many rings made of
ice. Saturn’s rings are very
wide. They extend outward to
about 260,000 miles from the
surface but are less than 1 mile
thick.

Saturn has 18 known moons,
some of which orbit inside the
rings!

It takes Saturn about 30 years
to orbit the sun.




Uranus

® Uranus is blue in color
due to methane gas in its
atmosphere.

® Uranus has 11 dark rings
surrounding it.

® Uranus has 21 known
moons and takes 84
years to complete one
orbit.




Neptune

® Neptune has the fastest
winds in the solar system:
up to 2,000 km/hr.

® Neptune is also blue in
color due to methane gas in
its atmosphere.

® Neptune takes 165 years to
orbit the sun and has 8
moons.




COORDINATE SYSTEMS

Origin?

Center of Earth
Sun or a Star
Center of a planetary body

Reference Axes

Axis of rotation or
revolution
Earth spin axis

e Equatorial Plane
Plane of the Earth’s orbit
around the Sun

* Ecliptic Plane
Need to pick two axes and
then 37 one is. determined
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Obliquity of the Ecliptic = 23.44 °
Vernal Equinox vector
- Earth to Sun on March 21st
- Planes intersect @ Equinox

Autumn Equinox

23,5 deg. from (September 22nd/23rd)

plane of ecliptic
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Spring Equinox Summer Solstice
(March 20th/21st) {June 21th/22nd




Inertial Coordinates

Geocentric inertial (celestial) °
system of coordinates -~

8 — declination Vernal equinox 5 . (_90°) — (+90°)
o — right ascension ~ YeCtOT o - (0°)—(360°%

Heliocentric ecliptic
system of coordinates

------

autumnal equinox
Earth on

21-24 September
L . Vernal equinox
B — ecliptic latitude vector B - (-90°)—(+90°)
A — ecliptic longitude A - (0°)—(360°)
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sinf3 =sind cose —coso sing sina,
(cliptic pole) E € (celestial pole) | COS B COSA = €080 cosat
= cosP sinA =sind sine + cosd cosg sino

celestial
equator

sind =sin 3 cose + cosf sing sinA
C0SO COSOL =COS[3 cosA
cosd sino, =—sinf3 sing + cosf} cose sinA

equinox
vector

ecliptic




Orbital Elements

Q - right ascension \ Y = lis aneinaly
of ascending node . Eccentricity vector

Perigee

Vernal
equinox

Line of nodes Ascending node

a - semi-major axis Q -right ascension of ascending node
e - eccentricity ® - argument of perigee
| -inclination v -true anomaly




Properties of Orbits

® a is the semi-major axis;
e b is the semi-minor axis;

® Iyax=fa fmin =T, are the
maximum and minimum radius-

vectors;

Elliptical
orbit

Apoapsis

Line of Apsides

e c is the distance between the
focus and the center of the

ellipse; (9}2 - 1.2
e e =c/a is eccentricity

2p is the latus rectum
(latus = side and rectum =
straight)
p — semi-latus rectum or semi
parameter

e A=ab isthe area of the ellipse

$ = 1+ e coséd




Why do we need all this?

L Launch into desired orbit
=  Launch window, inclination
=  Ground coverage (ground track/swath)
= LEO/GEO
=  Purpose of mission?
O Orbital Manoeuvers
=  Feasible trajectories
=  Minimize propulsion required
= Station keeping
=  Tracking, Prediction
O Interplanetary Transfers
=  Hyperbolic orbits
=  Changing reference frames
=  Orbital insertion
d Rendezvous/Proximity Operations
=  Relative motion
=  Orbital dynamics




The Sky from Here

From the ground, the sky looks like a big dome above us.
Both the “zenith” and horizon are locally defined.

Zenith
\o

. ...Horizon w ~
\ 3 E




The Celestial Sphere

It is impossible to tell how far away anything is, or
whether there is any depth to the “celestial sphere”.

Stars, no matter how distant, are
pictured as being on a single
crystalline sphere

~ Horizon

Model: The celestial sphere The human experience of the celestial sphere



Celestial Equator and Pole

We project the Earth into the sky, and its rotation appears
reflected there. The “diurnal” (daily) motion of the sky is
just due to the spinning Earth.

North celestial pole

North star

‘‘‘‘‘‘‘‘‘‘‘‘‘
‘‘‘‘‘‘‘‘‘

South North

South North

East

South
celestial
pole

" Celestial

equator




Rising and Setting

Some stars never set from a
given latitude (circumpolar).
The size of the circumpolar
region grows as you approach
the poles.

You can never see stars in the
opposite circumpolar
hemisphere.

Stars may rise in the East,
South-East, or North-East (so
might the Sun).

Zenith

North
Celestial equator

North
circumpolar
region

South
circumpolar
region ———> o v

Diurnal circle
South
celestial
pole

Zenith Morth

Celestial
Pole

The celestial sphere for an observer in Seattle,

The angle berween the zenith and the NCP = the
angle between the celesdal equater and the horizon,
Thar angle = 20° — observer' s ladtude

Zenith

3 =N
T

. Horzon
Celsthl Equi o Your view from Seatle Stars rise in the East
Stars motion st Bearle, Starsrotate parslle w half of the sky, reach maxmum alimde when
the Celestial Equator, s they move af an angle crossing the meri dian (due Sovth) snd setin
with resgpect to the horizon here. Altimdes of 1/4, the Westhalf of the sky. The Cel estial Equator
12, and 34 the way up o the zenith sre marked. goes through due East and dne Wea




Path of the Sun

N/

** The altitude of the pole depends on your latitude.

N/

** The Sun may never pass overhead.
** The altitude of the Sun depends on the season.

NORTH
CELESTIAL
POLE

LATITUDE
= 40°

LAﬂquE

SOUTH
CELESTIAL

POLE




Celestial Coordinates

To “map” a given point in the sky, you can specify how high
it is, and in what direction (altitude and azimuth). Or you
can project latitude and longitude into the sky, but since the

Earth rotates, we must use “right ascension” which is fixed
on the stars.

Vernal equinox
Right ascension = Oh Om
p_A40° 4 Lines of right ascension
/_,,__:::s\ 80° Zenith
e ;’\\\\ North celestial pole
i - \

North

Horizon

South .
celestial S
pole

Celestial
equator



The Ecliptic Plane

North Celestial Pole

e 90°
" ?+30°
-+70°
- +60°

North Pole _—

Equator F——
=

Celestial ' 0 2?“ th 23h<§'olh 1Ih 2|h -

Equator | :
e <.)r s, :zf,’\ Vernal

Ecliptic —-30° Equinox

40
—-50°

South Pole -
South Celestial Pole

The projection of the Sun’s path on the celestial
sphere, or equivalently the projection of the plane
of the Earth’s orbit, is called the “ecliptic”. It has a
23.5 degree tilt to the equator.



Chart of the Sky

Note how the Sun appears to go North and South as the
year progresses. The zero point of Right Ascension occurs
at the Spring crossing of the Equator (vernal equinox). The
solstices occur at the maximum N/S excursions.

SC1 CONSTELLATION CHART
" ‘ml'll..oﬂlll “Cﬁ?.‘ - (nc:m




The Seasonal Stars

Constellations along the
ecliptic are called the
“Zodiac”. The visible ones
change through the year
because the Earth orbits the
Sun. The constellations
themselves are arbitrary
groupings of stars in the sky.

The stars up at night in the
summer are up during the
daytime in the winter.




Morning and Evening “Stars”

We see Mercury and
Venus follow the Sun
around in the sky. They
may go down after, or
come up before it. If
they go down after, we

e Venus

e Mercury

e

B s \ Sun below . .
" 47° or less 28° or less western horizon see them N the evening.

Venus Merziity
This is because they have orbits | \470\280 Sir
. Earth‘
inward of ours. That means they can |

only be seen to a certain maximum
angle away from the Sun.



Retrograde Motion

Sun

The outer planets appear to make
strange reversals in their motion
against the stars. This is due to the
fact that the Earth moves around the
Sun faster than they do, causing us
to overtake them periodically, during
which time they appear to move
“backwards” in the sky. This caused
a lot of headaches for those trying to
explain the apparent motion of the
planets. The “S” shape is due to the
fact that the orbital planes aren’t
quite aligned.



Astro Quiz

What is the nightly path of the North Star as seen
from the Earth’s equator?

1) It rises far north of east, and sets far north of
west.

2) It makes a circle around the sky, very low to the
horizon.

3) It sits on the horizon in one place all night (so
would always be hard to see).



The Four Seasons

Is the changing seasons caused by the change in the distance
between the Sun and the Earth?

No. If itis, then

e The northern and southern hemisphere should have the same
season, not opposite season like we have.

» \We should experience real seasonal changes in Hawaii also.




The Effect of the Tilt of Earth’s Rotation Axis
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Summer Solstice: Sunlight falls more directly on the Northern Winter Solstice: The situation is reversed from the summer
Hemisphere, making solar energy more concentrated (notice solstice, with sunlight falling more directly on the Southern
the smaller shadows) and making the Sun’s path longer and Hemisphere than the Northern Hemisphere.

higher through the sky.

sunlight sunlight
= B .\ / < 7 4l
g N\ 3 Spring Equinox d 7
~ b The Sun shines equally on both hemispheres, 2 7 >
N \
b - N /V Y b = - 4
R //// A
Summer Solstice Winter Solstice

Northern Hemisphere
receives its most direct
sunlight of the year;
Southern Hemisphere
receives its least direct
sunlight.

Northern Hemisphere
receives its least direct
sunlight of the year;
Southern Hemisphere
receives its most direct
sunlight.

Not to scale! On the scale the orbit is drawn,
Earth would be too small to see (and the Sun

8
The Sun shines equally on both hemispheres. would be a tiny dot).

Fall Equinox

@ 2005 Pearson Education, Inc., publishing as Addison Wesley



Solstices and Equinoxes

Equinox: An equinox is one of two opposite points on the
celestial sphere where the celestial equator and ecliptic
intersect.

Solstice: A solstice is either of the two times of the year when
the sun is at its greatest distance from the equator.

Ecliptic Plane
e Spring Equinox ~ March 21 Winter Solsi Spring Equinox
e Summer Solstice ~ June 21
e Fall Equinox ~ September 22
* Winter Solstice ~ December 21 Celestial Equator .

The dates of the equinoxes and solstices are only approximate Fall Equinox

dates.
* The actual length of a year is about 365 % days (365 days, Fall Solstice
5 hours, 49 minutes), not exactly 365 days. We have to
add an extra day to a year every four years to keep the
seasons synchronized with the seasons (leap year). Over a
longer period of time, we need to skip a leap year to
compensate the extra minutes we add in every leap year
to keep the calendar in sync.
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What Time Is It?

Before 1884, almost every town in the world kept its own local
time. There were no national or international

conventions which set how time should be measured, or

when the day would begin and end, or what length an hour
might be.

However, with the vast expansion of the railway and
communications networks during the 1850s and 1860s, there
need for a worldwide, international time standard became
imperative.




Local Time

® Meridian (North-South Line Through Zenith)
® Meridian Transit

® Local Noon = Solar Meridian Transit




U.S.A. Time Zones

.
T ——————— . — et — . s o~ S —— S—— —— — —— —

Los Angeles I .
| : paeee
I 11 AM ‘ 12 noon : 1PM I 2PM.
| Pacific |  Mountain | Central | Eastern
| Standard |  Standard | Standard | Standard
1 Time Time : Time i Time
| (PST) | (MST) (CST) | (EST)




World Time Zones

There are 24 time s0e AN\
zones around the world. ‘

1 90°W 8 AM,

They start from Greenwich  wpw 120 Y 120w

6 AM.
. . . 135°E £ W ‘

England (Prime Meridian) ioa. 1o T BOW  pccsles

T ) s it =} AM.
and proceed westward. e

o
March\\‘(‘/
22 21

March March




Astronomical Clocks

@ Earth’s Rotation on its Axis
e Successive meridian transits of the sun

e 1 solar day (clock time)
* 24 hours (86400 seconds)




Astronomical Clocks

® Earth’s Rotation on its Axis
e Successive meridian transits of the sun
e 1 solar day (clock time)
e 24 hours (86400 seconds)

@ Earth’s Orbit Around the Sun

e Sun’s Path on the Sky Returns to the Same
Constellation

e 1 solaryear
e 365.2422 days




Astronomical Clocks

® Earth’s Rotation on its Axis
e Successive meridian transits of the sun
e 1 solar day
e 24 hours (86400 seconds)
® Earth’s Orbit Around the Sun
e Sun’s Path on the Sky Returns to the Same Constellation
e 1 solaryear
e 365.2422 days
® Moon’s Orbit Around the Earth
¢ 1 month (1 moonth)
e 29.5 days




Days of the Week

® The 7 heavenly bodies visible with the
unaided eye are each honored with

In ancient times, the word "planets" was from the Greek for "wanderers"

and referred to objects in the sky that were not fixed like the stars.

Some of these associations are clearer in English, especially if we

compare with names of Norse or 0ld English gods/goddesses, while others

are clearer from comparing French/Spanish with the Roman gods and goddesses.

Sun Moon
Roman Sol Luna
Norse
Greek Apollo  Selene
English Sunday Monday
French dimanche lundi
Spanish domingo lunes
Italian Domenica Lunedi
German Sonntag Montag

Mars Mercury
Mars Mercury
Tiw Woden
Tuesday Wednesday
mardi mercredi
martes niercoles

Martedi Mercoledi
Dienstag Mittwoch

Jupiter Venus Saturn
Jupiter Venus Saturn
Thor Freya

Zeus Aphrodite
Thursday Friday  Saturday
jeudi vendredi samedi
jueves viernes sabado
Giovedi  Venerdi Sabato

Donnerstag Freitag Samstag




Day Length

® Solar Day

® Observe Successive Meridian Transits of the Sun
e 24 hours (86,400 seconds)
® Clock Time
® Sidereal Day
e Observe Successive Meridian Transits of a Star
e 23 hours 56 minutes (86,160 seconds)
e Sky Time




Julian Calendar

® 45 B.C.

® Ten months (Mar, ..., Sept, Oct, Nov, Dec???)
e Add July (Julius Caesar)
e Add August (Augustus Caesar)

® Three Years of 365 days
® One Year with 366 days (Leap Year)

® This simulates a Calendar with 365.25 day years
averaged over four years.




4 Minute Minutes

® Actual Length of Year (365.2422 days)

365.25 - 365.2422 = 0.0078 days (11
minutes/year)

® After 1500 years
11 minutes/year X 1500 = 11 days




Gregorian Reformation

® By 1582 A.D. Pope Gregory had had enough.

® Proclamation
e October 4" would be October 15t
e Century Years Divisible by 400 are NOT Leap Years
e Average Year 265.2425

365.2424 - 365.2422 = 0.00027 days (23 seconds)

Time needed to accumulate 1 day error (3850 years)



Modern Constellations

® On modern star charts, the
entire sky is divided into 88
regions. Each is a
constellation

® Most stars in a constellation

> 4 *
Bellatrix

are nowhere near one ~——_g240ly

another £ [ ORE AN
® They only appear to be close e © .....gl;i;tlzka '

together because they are in L gereat 9T

nearly the same direction as
seen from Earth

LEPUS 775lys !




Annual Motion

Earth’s orbit 0 Porseus
A

® The stars also appear to slowly
shift in position throughout the
year

@ This is due to the orbit of the
earth around the sun

@® If you follow a particular star on
successive evenings, you will find
that it rises approximately 4
minutes earlier each night, or 2
hours earlier each month

U

Earth in November

Light from \

the Sun
Earth in
September

Light from

the Sun Andromeda

Light from

the Sun Orbital motion

of the Earth

" ¥ Earth in July

\
KCygnus




Popular Constellations

Pollux «

CANIS MINOR

Procyon .

MILKY
WAY. .

Sirius: .
CANIS MAJOR

Southern horizon

» Castor _Capella

GEMINI ¢
AURIGA

Betelgeuse TAURUS
® ; .
Aldebaran®- :.

»*7 ORION

* Rigel

Western horizon

Popular Constellations visible in naked Eye



Celestial /

equator

Vernal
equinox

Celestial Equator

Nort
celestial pole

i~

| S
N

|

|

|
|
|
|
|
|
I
|
|

Celestial equator divides
the sky into northern and
southern hemispheres

Celestial poles are where
the Earth’s axis of rotation
would intersect the celestial
sphere

Polaris is less than 1° away
from the north celestial
pole, which is why it is called
the North Star or the Pole
Star.

Point in the sky directly
overhead an observer
anywhere on Earth is called
observer’s zenith.



Two More Types of Angle and Time

® Hour angle (HA) of an object is the angle between the
meridian on which the object is situated and the
(observer’s) celestial meridian.

® Local Sidereal Time (LST) is the Right Ascension of an
observer’s celestial meridian.

® LST=RA+HA




Vernal Equinox

To vernal equinox

Earth moves
about 1° around
its orbit in one
day...

A
|
|
|
!
|
|
|

...s0 Earth must
make a complete
rotation plus 1° to
bring this location
Local solar noon to local solar noon
on March 21 is on March 22.
at this location
on Earth.

Earth on

Earth on March 22

March 21

Occurrence of Vernal Equinox



Calendars

@ Caesar introduced the 365.25 days calendar and thus the
Leap Year (an extra day, February 29, every year divisible

by 4) .
® However, this is 11™ 145 longer than the tropical year.
This accumulates to 3 days in 4 centuries error.

® To correct, October 4 was followed by October 15, in 1562
and the century rule was invoked (Gregorian calendar).




Standard Atmosphere

The "U.S. Standard Atmosphere 1976" is

an atmospheric model of how the pressure,
temperature, density, and viscosity of the
Earth's atmosphere changes with altitude. It is
defined as having a temperature of 288.15 K at
the sea level 0 km geo-potential height and
1013.25 hPa. The atmosphere are divided in.




Standard Atmosphere

Layer Level Name

Geopotential Altitude

above MSL

0 Troposphere -610

1 Tropopause 11,000
2 Stratosphere 20,000
3 Stratosphere 32,000
4 Stratopause 47,000
5 Mesosphere 51,000
6 Mesosphere 71,000
7 Mesopause 34,852



https://en.wikipedia.org/wiki/Stratopause

100

80 ~|
’g [ 165.66 K
=
60
=P}
E
~N 282.66 K
o
~N—
—
Mesosphere
216.66 K Wet adiabatic Laps rate —6.5 Deg./km
20 E Dry Laps rate—9.8 Deg./km
Stratosphere
Troposphere : |
160 200 240 260 280 320

Temperature (K)



Newton’s Two-Body Equations of Motion

Force = Mass x Acceleratiun|

d?
Gmymy Py —1q) m1d21'1 E(mﬁl +myry) =0
— .
,:,.g ! il G(my +my) (vy —1y)
Gmgmy (ry — 1) — d°r, . 2 - Ty (ry —ry)
T2 T 2 dt2

Conservation of Total Linear Momentum

cfzrm def M4y + Ml
=0 r. =cyt+c h r = il 2 2
) = ern 1% T Cy WIELE ern m, +m,
Two-Body Equation of Relative Motion
d? dv— P: r = r2 - I‘i
r
F+1‘£3r:0 or i —Er where r=|r|=|ry, —

p=Gmy +my)




Kepler's Second Law 1609 Conservation of Angular Momentum

rxv)=0 = h=r xv|= Constant

IMotion takes place in a plane and angular momentum is conserved

In polar coordinates

) dr dr . N dd o
r=7r1 —_— =V = —1 T 1 = 0.1 Va1
i i de " i ) ot g a
g0 that the angular momentum of my, with respect to my is
af
Mo T g = Mg TEE = mis i = Constant
¢ Rectilinear Motion: For r||v,then | A =0

As Kepler expressed it, the radius vector sweeps out equal areas In equal time since

dA 1
: g

= {_onstant

230 _ A
& 2

Kepler’s Law iz a direct consequence of radial acceleration!




Equations of Motion

. 4 :
Mean Motion n="2_ /L1 o p=mn%a"| or %:Oomtant




Conservation of Energy

An orbit is a continually changing balance between potential and
Kinetic energy

Mm I
Potential Energy —G — Kinetic Energy Emv

2

Usi . Ug® U Up U

sin = —-— = —

: 2 1y 2 1
v 2 1
u r a

For any Kepler orbit (elliptic, parabolic, hyperbolic or radial), this |
Vis Viva equation
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The Hill stability in the General 3-body problerrﬁ%;

7
¥ ror W

— *
M=m,+m+m,, M*=mm +m,m,+mm,

GM * : L :
= o generalized semimajor axis
MC? : :
P === generalized semi-latus rectum

22 L (mmoe2 s mme2 +momr2
P M MM, 1, + M M5l 4 MyM,

1 1 (nllm2+mlm3+m2m3j

© . mean quadratic distance

vy M * v : mean harmonic distance

r212 r213 r.23

h<0
|4 | 4
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c2h = const.

B t(m,x,.y,)
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Possible triangles of the three body if

L,

.

invariant) = f (m., x,, y,)
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const(m,,c, h)
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The Hill stability in the General 3-body problem *

Critical values (Ejk = (%(Lk)j = f(m,)

a

For the planetary case m,<<m,, m,<<m,

m,m,

" P 413
Condition for 5143 — )4/3+....

Hill stability a my (M, +m,




Hill Stability In 2-planet Systems

, - P _t+u,ls 2
Gladman’s reformulation — = + o)
3 (M"‘ﬂz)B (M?ﬁ ) )
p="01 i212, p=1-ef,  S=+liA

m

A=a,0-e)-a(l+e) (a=1

Minimum separation of elliptic
orbits :

inner planet at apocenter
(distance from m, is d=1)
outer planet at pericenter)

o+t 167

(14 + 11,)° (17, + 17,8 ) >14+3%3 —Fale___y
2

(e + )"

f(a,/a,e,€,, m,1,)>0




The Restricted Three-Body Problem

If two of the bodies in the problem move in circular, coplanar orbits about their
common centre of mass and the mass of the third body is too small to affect the
motion of the other two bodies, the problem of the motion of the third body is
called the circular, restricted, three -body problem.




A)

B)

C)

D)

We consider the motion of a small particle of
negligible mass moving under the two masses

m. and m ' (&2, M2» C2)
1 2 &m. Q) .

We assume that two masses have circular orbit

around their common mass center. Then the
two masses keep the constant distance and
have the same angular velocity.

Consider the geometry in the right-hand
figure.

t
Let the unit of mass be chosen such that i

ml I,'I
u=G(ms+ m,)=1 ‘ 5
e ° ° (&1’ T]l’ Ql)
then in this system of units the two masses

The unit of length is chosen such that the

constant separation of the two masses is unity.
It then follows that the common mean motion,
n, of the two masses is also unity.




Let the coordinates of the particle in the inertial or sidereal
system (S, m, C).
The equation of motion of the particles are

T”zz — (X2 —X)2 + (/72 —/7)2 + (Z2 _2)2 (& M1 C1)

We assume that the circular orbits of two masses, which
imply the distance to these two is kept constant. In this
condition, we can consider that the motion of the particle in a

rotating reference frame in which the locations of the two
masses are also fixed.



Consider a new, rotating coordinate system that has the same origin as the §, 1,
€ system but which is rotating at a uniform rate n in the positive direction.

The direction of the x-axis is chosen such that the two masses always lie along it
with coordinates (x1,y1,z1)=(-u2,0,0) and (x2,y2,z2)=(+u1,0,0). Hence from Eq.
(3.6~7) we have

= (-0 + (A=) +(2-2)

’:‘r22 = (x, —)()2 +(h, - h)2 +(z, —z)2 y
l (x.y,2)
V2= (x+m) + 2+ 22 : ’
: 12 Y2 2, 2 M e
'I\’”zz(x_ml) t)y tz o X
(-1 0, 0) (11, 0, 0)

where (x,y,z) are the coordinates of the
particle with respect to the rotating, or
synodic system.



The coordinates (X,y,z) are related to the coordinates in the sidereal system by
the followmg rotation

___________

i o g

__________

sidereal coordinate &} Aq ol synodic coordinate AFO}
o o— -1 0

If we now differentiate each component in Eq. (3.10) twice we get
Bx0  &-sinnt -cosnt Oﬁaexé ecos nt -sinnt  0Wx0
gh_ nécosnt  —sinnt sinnt  cosnt 0_9 i

S ke 5

gcosnt —sinnt OOHex nyO

:gsinnt cos nt y+nx_

§0 0 1Em§ 0

#x0 #cosnt -sinnt Odaejé—Znyii—nzxjo
gh;zgsinm‘ cosnt O£y+2nxn—n2y_

80 0 N
g [/}

Corioli’ s acceleration




Kepler’s Laws of Planetary Motions

1. Planets move in elliptical orbits

with the sun at one of the foci
SUN

Foci — 2 points that are
equidistant from center
on major axis

PERIGEE APOGEE

&
MAJOR &415 FOCI




Law of Areas

Line from the sun to a planet sweeps with equal
areas in equal time. A planet will move through
equal area of space in an equal amount of time

o2 Perihelion — closest to sun
o3 Ahelion — farthest from sun

a. When a planet is in perihelion its orbital velocity increases

b. When a planet is in aphelion its orbital velocity decreases




UNIT - I
THE TWO BODY PROBLEM

I



Farthest
from sun

Slower
Velocity

Greater
Gravitational

I
Closer to the sun, faster the velocity because oﬂjﬂ\e
gravitational pull.



Law of Periods

Law of Periods - The farther a planet is from the
focus, the longer the period of revolution.

Ex: Earth is closer to the sun than Jupiter, therefore
the Earth has a shorter period of revolution.
(ESRT)




® Newton’s Law of Gravity

The force of attraction between any two
objects depends on their masses and the
distance between them.

O

Thus, the closer the objects, the
greater the gravitational pull

Thus, the bigger the object the greater
the gravitational pull




Sir Issac Newton (1642 - 1727)

Although Kepler discovered
what is now known the
Three Laws of Planetary
Motion, he could not explain
why they were true. That did
not come until years later
from Issac Newton
formulated the laws of
motion that are the basis of
mechanics—that are still
valid today!




Sir Issac Newton

Newton formulated what
is now known as his 2nd
Law of Motion:

F  =ma

net




Sir Issac Newton

This enabled him to
formulate how objects are
influenced (or attracted) in
a gravitational field:

W =mg



Sir Issac Newton

He was also the first to
identify the acceleration
on objects forced to move
in circles as: 12



Sir Issac Newton

And therefore the net force:

&
|l

ma,

2
nmy




Sir Issac Newton

And finally what is
perhaps the greatest
intellectual discovery of
all time—the

F;m = md Law of Universal Gravitation:
W =m
5 GMm
my Fg — >
C = r



F,, =ma
W =mg
2
F;=mv
r

Sir Issac Newton

And finally what is perhaps the

greatest intellectual discovery of all
time—the

Law of Universal Gravitation:

GMm

2
§ r

This simple algebraic expression Mm/r?
says how everything in the universe is

related to everything else—a far-reaching
statement indeed!




Although the orbits of the planets
are ellipses, they are very close to
circles. The gravitational pull of the
sun provides the force that causes
the planet to go in its nearly circular
orbit.

F=F,




The gravitational pull of the Sun provides the

centripetal force of the satellite.

F=F

¢ 8

mv-  GMm




Gravity provides the centripetal force of the

satellite.

F=F,




B 2TTr

. Yy =
Since T
We can square both sides:
, [ 27@r ’
y = —
T
B 4°r’
T2




Equating equivalent expressions for v2:
2.2
GM 4dr'r
- 2
r T




The ratio of two measurable quantities—radius and
period—equals a constant.

r GM

2 471_2

A

e
72
-3

]
x>




The ratio of two measurable quantities—radius
and period—equals a constant.

P B GM
T° 4rx’
=k

Sun

If the distance of the planets to the sun are expressed
in convenient units like astronomical units (1AU = the

distance from the earth to the sun) and the period T is
expressed in earth years, then the constant k equals 1!




But the same analysis for the planets orbiting the sun applies to
moons orbiting Jupiter and can be extended to pairs of stars
orbiting their common center of mass. This is how astronomers
determine the mass of distant planets and stars.

M _47r2 r;m
Sun G T2

Sun

u :47r2[riJ




Geosynchronous Orbits

In 1945, British journalist Arthur C. Clarke who later become one of the most
famous science fiction novelists of all time proposed that the new invention TV
might be someday broadcast from satellites in so-called geosynchronous orbits
(literally meaning earth-synchronized) from outer space—22,300 miles from the
earth’s surface. At this distance the orbital period of a satellite equals the rotational
period—24 hours for us here on earth. Satellites in this position always appear
above the earth in the same point in the sky. Dubbed unfeasible by some and
impossible by others, he was largely ignored because of the great distances
involved.




GEOSYNCHRONOUS
TRAMNSFER
ORBITS

| Despin and Start Solar Panel Deployment {_f.r}‘ Earth Acquisition
Final genstationary orit | Salar Panel Deployment Complete
@ Reflector Deployment @ Sun Acquisition/OMMNI Repositioning



How to find g at a distance greater than the
earth’s surface:




Finding the Tangential Speed of the Satellite:

F

8 C

|
&




At the surface of the earth r is about 6378.137 km

v =/(6,400,000)(9.8)
= 8000 m/s
= 8 km/s

—




Equating Equivalent Expressions for the
Tangential Velocity and Solving for r:

B _27rr
V= I"g—T
2o Ay’

— g_ T2

72 )




Substitute the value of g at the geosynchronous orbit

and solve for r:

r_(GM) T’
r’ A?
GM
3 2
477 (T )

GM
=)

¥




Substituting the known values for the universal
gravitational constant, G, the mass of the
earth, M, and the number of seconds in a year,

T, the distance is:

GM
S

r= 22,300 miles above the earth's surface




The slope of the graph of log of
R vs. T is the functional relationship between the variables

7 =kT?
log(r3):10g(kT2)
3logr=2logT +logk

2 1
logr—glogT+§logk

y=mx+b
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® Orbital perturbations

® Launches and launch vehicles

® Placing a satellite in a geo-stationary
orbit

@ Orbital effects
® Examples

Important note: Slides present summary of the
results. Detailed derivations are given in notes




Sources of orbital perturbations

Orbital perturbation - difference between real orbit and
Keplerian orbit obtained from two body equations of motion

Major sources of orbital perturbations
e Perturbations due to non-ideal Earth
e Third body perturbations

e Atmospheric drag

e Solar radiation and solar wind

Importance of perturbation source depends on the satellite
altitude

Modeling of the real satellite orbit
¢ Find “osculating orbit” at some time

e Assume orbit elements vary linearly with time

e Use measured data to determine rate of
arameters




Effects of non-ideal Earth

@ Earth is not a sphere

e Equatorial radius: ~ 6,378 km

e Polar radius: ~ 6,356 km (about 22km smaller)

e Equatorial radius not constant (small variations ~ 100m)
® Earth mass distribution

e Earth mass distribution not uniform

e Regions of mass concentrations: mascons
® Non-ideal Earth causes non-ideal gravitational field

®

For LEO and MEO satellites this effect is not very significant
® GEO satellites are impacted the most
e GEO satellites drift towards mascons in the “east-west” direction

e Longitudes of two stable equilibrium points: 75°E and 2
108°W)

e Longitudes of two unstable



Third-body perturbation

Motion of the satellite is not a “two-body”
problem

Moon

Satellite experiences gravitational pull from Sun
and Moon as well

The orbital relationship is complex and time
dependent

Graviational

K@éirces on satellite

Gravitational forces from Sun and Moon tend to
move satellite out of the orbit

Under these condition the orbit will precess and
its inclination will change (up to 1°/year)

In practice:

Earth
* Some of these effects are planed Sun

* Most of these effects are corrected using the

on-board fuel Orbital position of a satellite the

* For GEO stationary satellite, the goal is to Earth. the Sun and the Moon

keep its apparent position within 0.05
degree box

Note: Orbital parameters are continuously measured and
published as TLE data



Atmospheric drag

s . Example: Consider ISS. From TLE data
Significant for satellites below 1000km Mean motion: 15.72137770 reviday

® Drag reduces the velocity of the satellite Derivative of MM/2: 0.00011353 rev/day?
* Semi-major axis is reduced

®

* Eccentricity is reduced

®  Approximate equation for change of semi-

major axis CO000000000000000000

, —-2/3

a=a, 1+%(t—to) —~
0

where

ay — semi-major axis at t0

Ny — mean motion (revs/day) Note: change is relatively small and it
n‘, — first derivative of mean motion (rev/day?) is long term. In practice it can be

easily resolved through satellite
maneuvering.

Note: Derivative of mean motion is provided in TLE d



Propagators

©®  Determine position of a satellite over Semi-analytic — combination of analytical
time and numerical methods
©®  Three types: LOP — Long-term Orbital Predictor.
* Analytic Uses same elements as analytic
e Semi-analytic propagators. Accurate over many
months.

*  Numerical

®  Analytic — approximate motion of the SGP4 for non LEO satellites

satellite through closed form equations Numerical — Solve complex sets of

* TwoBody - considers only forces of differential equations. Accuracy is obtained
gravity from Earth, which is at the expense of computational speed
modeled as a point mass Astrogator — used for trajectory and

* J2 Perturbation — models Earths maneuver planning and includes
oblateness, solar and lunar targeting capabilities
gravitational forces HPOP — High Precision Orbital

* J4 Perturbation — second order Propagator. Uses the same orbital
improvements of J2 Perturbation elements as the analytic propagators.

* SGP4 - Simplified General
Perturbations

Note: Propagators are included in commercial software packages



Satellite launch

®  Two categories of satellite launches

Satellite Launch Site Latitude Longitude

. .
EXpandabIe launch vehicles Alcantara, Brazil 2.35 44.4E
Ariane (EU) Cape Canaveral, Florida, USA 28.5N 81.0W
Atlas, Delta (US) Edwards Air Force Base, California, USA 335N 118W
SOVUZ (Russia) Cape Canaveral, Florida, USA 28.5N 81.0w
. Ji , Chi 40.6N 99.9E
e Reusable launch vehicles Hatan, =hins
Kagoshima, Japan 31.2N 131.3E
Space Shuttle (STS) — up to 2011 _
Kourou, French Guiana 5.2N 52.8W
Dragon' Falcon 9 (Space X) Kapustin Yar, Russia 43.4N 45.8E
Buran? Orion? Palmachim Air Force Base, Israel 31.5N 34.5E
®  Launches are usually done in several stages Plesetsk, Russia 62.8N 40.1E
* Launch vehicle is used to place satellite in one of | 3" centre. Srifrikota, India 13.9N 8048
the transfer LEO OI"bitS Svobdny, Russia 51.37N 128.3E
. . - Taiyuan, China 37.5N 112.6E
e Satellite is maneuvered from a transfer orbit into
. . Tanagashima, Japan 30.4N 131.0E
the final orbit
. . . Torrejon, Spain 40.488N 3.457E
@  Due to Earth rotation — the launch is easiest from N e a5 6N ea 4t
equator Wallops Island, Virginia, USA 37.8N 75.5W
* Velocity boost from Earth rotation ~ 0.47km/sec | \yoomers, austraia 31.15 o
e LEO orbits require velocities ~ 7.5km/sec Western Test Range, Vandenberg, California, USA 34.4N 120.35W
* Launching from equator ~ 6% fuel savings SLTETI ST Sienlt 102E

®  Launches from sites that are not on the equator place

satellites in inclined orbits Some of the most frequently used

* If the satellite is to be placed in GEO stationary launch sites
orbit, the correction of the orbit inclination needs

2 he martarmensal



x

Transfer
orbit

Transfer
Low Earth

ellipse
orbit

Case 2: two
transfer orbits

Case 1: single
elliptical orbit

® Case 1: Launch vehicle puts the satellite into an elliptical transfer orbit
e  The orbit has high eccentricity with apogee at the geostationary (or geosynchronous) orbit

*  When the satellite passes through apogee, additional velocity is given to the satellite by Apogee Kick Motor
(AKM) and the satellite changes orbits

¢ If the orbit is not GEO stationary, additional adjustments are required to correct for the orbit inclination
® Case 2: Lunch vehicle put the satellite into circular LEO orbit

°  Two maneuvers are required

°  Perigee maneuver to transform circular orbit into elliptical orbit, and

°  Apogee maneuver to transform elliptical orbit into GEO stationary orbit

Note: other launch approaches are possi



Sntinaso

Example of GEO launches: French Guyana and KS¢<

Egs
&
%Q

)
z
G
7,

Equatorial plane

Launch from French
Guyana

| : Injection into Transfer orbit Il : Satellite orbits in transfer orbit several times

Il : Acquiring circular orbit with an altitude of approx. 36,000 km and inclination of 7°
(Drift orbit)

IV : Attaining equatorial plane orbit

Equatorial plane

Orbit in equatorial
plane

Launch from Cape
Carnival, FL

Drift orbit

I Injection into low Earth orbit (Parking orbit)

Il Acquiring Transfer orbit

Il : Acquiring circular orbit with an altitude of approx.36,000 km and inclination of 28.5°
(Drift orbit)

IV : Attaining equatorial plane orbit




Orbital Effects

® Motion of the satellite has significant
impact on its performance

@ Some of the orbital effects to take into
account

e Doppler shift
* Solar eclipse

® Sun transit outage




Doppler shift

®  Important in case of LEO and MEO satellites
®  Negligible for GEO satellites

®  Caused by relative motion between the satellite
and earth station

®  The magnitude of Doppler shift is given by:

Af =V . lc=V, /A

Where: f; — received frequency, f; — transmit
frequency, V; — velocity between satellite and
Earth station, 4 — wavelength, ¢ — speed of light

Example. Consider LEO satellite in circular polar
orbit with altitude of 2000km. Transmit frequency is
2.65GHz.

The velocity of satellite in orbit

T?=47%(r,+h)’/ 1 — 6306.94sec
v, = 2z(r, +h)/T — 7.350km/sec

Largest component of velocity between satellite and
Earth station occurs when the satellite is coming out
of horizon directly over the station

V. =v_cos(d)=v, ¢ —>6.354km/sec
r,+h

e
Maximum Doppler shift

Af f. /¢ — 56.13kHz

max Vr max

Note: the shift becomes larger with
higher frequencies.

Geometry used for calculation of
maximum velocity



Solar eclipse

@  Eclipse — sunlight fails to reach satellite due to obstruction
from either Earth or Moon

®  More common type of eclipse — eclipse due to satellite
coming in the shadow of the earth

®  For geostationary satellite the solar eclipse occurs for about
82 days every year

®  The eclipse times vary from day to day

®  The longest eclipses are on equinox days (days when the sun

passes through equatorial plane) — Nominally: March 215t and
Geometry of solar eclipse September 23st

- ®  When the satellite passes through eclipse
70

* It loses its source of power (relies on battery power)

- * It may need to shut off some of its transponders

Duration of 50

. * Experiences cooling down in temperature
eclpse [min)

* Transients due to switching of the equipment and
temperature variations may cause equipment failure

10

20 -16 10 -E 0 5 10 18 20
— e —_—

Days befora Days since Note: for non geostationary satellites
equinox last equinox . )
. : orbital study necessary to determine
Duration of solar eclipse of a geo

stationary satellite relative to equinox time - €clipse times



Sun transit outage

e ®  Sun transit outage - occurs when the satellite
Sun passes in front of the Sun

/) »

® Sun is a source of electromagnetic radiation

‘ ® Sun - noise source with equivalent temperature
of 6000K — 11000K

® In most cases this noise overcomes link design
margins
Geometry of sun transit eclipse ®  During sun transit outage — communication lost
® Duration of the outage as much as 10 min/day

® For geo-stationary satellites outages occur 0.02%
of the time

® Duration problematic since it usually occurs in a
traffic intensive part of the day

e : © Satellite providers try to re-route the traffic
through other satellites

400 nm_ 700 mm 1 mm im 1km 103 km
Wavelength ——————————
Shortwave radiation Lomgwawe radiation

Radiation spectrum of the Sun
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BALLISTIC MISSILE

Ballistic Missile

< A ballistic missile is a missile which follows a sub-orbital
flight path to a predetermined target.

< A ballistic missile is a missile that has ballistic trajectory
over most of its flight path.

< A ballistic missile can deliver one or more warheads to
a predetermined target.

< It governed by the laws of orbital mechanics
ballistics (during a part of its entire phas




‘0

*

.0

.0

.0

Ballistic missiles are used for transportation of a payload from
one point on the Earth (launch site) to another point on the
surface of the Earth (impact point or target).

They are accelerated to a high velocity during a relatively short
period.

Then a re-entry vehicle, containing the warhead, is released and
this vehicle then simply coasts in a ballistic or free-fall trajectory
to the final impact point.

To date, ballistic missiles have been propelled by chemical rocket
engines of various types.



Ballistic Missile Components

Impact_.,
Fuse™ -

Warhead

Guidance
Assembly

Fuel Tank —
(e.g., Kerosene)

Oxidizer
Tank —
(IRFNA)

Rocket
Motor

External
Cable Run

Propellant
Pumps

Graphite
Steering
Vanes

Upgrading Minuteman Missiles

The Pentagon is upgrading the guidance system in the Cold War-era
Minuteman Il intercontinental ballistic missile. Here's a look at the
missik in action:

Guidance system keeps missike on correct trajectory for
warheads to be launched. Guidance system points each

bomb to a slightly different target. Once warheads are
releasad, gravity guides tham to ther targets.

Post-boost control system

2. Second stage drops off
about two minutes after

1. First stage

nosecon?

drops off. motor fres and
® Length: 59.9 faet
u Dlameter: 5.5 feat
m \Veight: 79,432
pounds
® Range: 6,000 plus three stages
miles have dropped off,
\ all that's left is the
: gea:z_??:mr:"es postboost control .
: system, consisting of the
ruckar warheads guidance system and
® Launch: from small rocket motors.
underground silos

- Scurces: U.S, Ar Force; Fadaration of
a US. arsenal: 500 American Sciartists: John Pike, GlobalSecurity.orng
B o.ceonched by JULE SHEER / Los Angeies Times




Categorization of Ballistic Missile

United States

Intercontinental Ballistic Missile (ICBM) over 5500 kilometers
Intermediate Range Ballistic Missile (IRBM) 3000 to 5500 kilometers
Medium Range Ballistic Missile (MRBM) 1000 to 3000 kilometers

Short Range Ballistic Missile (SRBM) up to 1000 kilometers

Soviet and Russian Military

Strategic over 1000 kilometers
Operational Strategic 500 to 1000 kilometers
Operational 300 to 500 kilometers

Operational Tactical 50 to 300 kilometers

Tactical up to 50 kilometers




General Category of Ballistic Missile

Classes Range

Tactical Ballistic Missile Between 150 to 300

(a) Battlefield Range Ballistic Missile kms

(BRBM) Less than 200 kms

Theatre Ballistic Missile (TBM) Between 300 to 3500

(a) Short Range Ballistic Missile (SRBM) kms

(b) Medium Range Ballistic Missile 1000 kms or less

(MRBM) Between 1000 to 3500
kms

Intermediate Range Ballistic Missile Between 3500 to 5500

(IRBM) or kms

~ Long Range Ballistic Missile (LRBM) 0

Intercontinental Ballistic Missile (ICBM) More than 5500 kms



Compressed nitrogen
pressurising bottles

Wing

Jet vane

Indian Ballistic Missile

Warhead

- Automatic gyro
control

- Guidebeam and radio
command receivers

Alcohol-water
mixture

Rocket body

Liquid oxygen

—~ Hydrogen peroxide tank

- Hydrogen peroxide
reaction chamber

Propellant turbopump

—— Thrust frame

— Oxygen/alcohol burner caps

Rocket combustion chamber
(outer skin)

Alcohol inlets

Air vane

V-2, the first ballistic missile

India’s Agni-ll MRBM



Ballistic Missile

Trident I, a submarine launched ballistic missile (US N




Ballistic Missile Trajectory

The trajectory of a ballistic missile differs from a satellite
orbit in only one respect — it intersects the surface of the
Earth. Otherwise, it follows a conic orbit during the free-
flight portion of its trajectory.

Ballistic

Re -entry Point Cut-off Point

Impact Point Launch Site



Ballistic Missile Trajectory

> A ballistic missile trajectory is composed of three parts:

(1)

(2)

(3)

the powered flight portion which lasts from launch to thrust
cutoff or burnout (3—-5 minutes, 150-400 km altitude, 7 km/s
burnout speed)

the free-flight portion which constitutes most of the trajectory
(approx. 25 minutes, apogee altitude approx. 1200 km, semi-
major axis between 3186—-6372 km)

the re-entry portion which begins at some ill-defined point
(altitude of 100 km) where atmospheric drag becomes a
significant force in determining the missile's path and lasts until
impact (2 minutes to impact at a speed of up to 4 km/s)




Ballistic Missile Trajectory

> Powered flight
(guidance and _
navigation system) ~A=1+¥+Q

> During free-flight,
trajectory is part of
a conic orbit —almost
always an ellipse

re-entry point

> Re-entry involves
the dissipation of

energy by friction

with the atmosphere




Non-dimensional Parameter

> Here we need to define a non-dimensional parameter Q
as vY Vir
VCS /Ll

> Note that the value of Q is not constant for a satellite but
varies from point to point in the orbit. (Q=1, 2 or > 2)

2
» From the energy equation ¢ _V _H__H wecanprove

2 r 2a

r
a=—— or =2——
2—0Q Q a




Free-flight Range

Free-flight Range Equation

» Objective is to get a simple expression for the free-flight range (V) of a missile in terms of
its burnout conditions.

» Initial assumption that the Earth does not rotate and that the altitude at which re-entry
starts is the same as the burnout altitude (symmetrical free-flight trajectory).

~Since the free-flight trajectory of a missile is a conic section, the general equation of a
conic can be applied to the burnout point.

rb
1+ecosd,,

0o —

» Solving for  CQOS @6% get

cosf,, =



Free-flight Range

Free-flight Range Equation

Since h,,=nh

o » half the
free-flight range angle (Y)
lies on each side of the
major axis, and

b
COS— =—C0S 4,
2
And equation can be written as
Y r —
O
I, €

Equation (6) is an expression for the free-flight range angle in terms

of p, e, and ™.



Free-flight Range

Free-flight Range Equation

~ Since p = hz/épd h =.rv Coge¢an use the definition of parameter Q to obtain
2\ ,2 2
v COS
p= ¢y Qcos® ¢
M
p=a(l-¢e?), =e _1-P
a

» Now, since

»From above equations, we get

e’ =1+Qcos’ ¢(Q—2)




Free-flight Range

Free-flight Range Equation

» Now substituting equations (7) and (9) into equation (6) we have one form of the free-
flight range equation:

N2 1-Q. cos”
COS — = Qbo ¢bo

2 \/1+ Q,o €05° B, (Qpo —2)

> Given a particular launch point and target, the total range angle, A, can be calculated. If
we know how far the missile will travel during powered flight and re-entry, the required
free-flight range angle, ¥, also becomes known.




Flight Path Angle

Flight path Angle Equation

~ If we now specify o and v,_
for the missile, what should
the flight-path angle, ¢, , be
in order that the missile will
hit the target?

> So we have to derive an
expression for ¢~ in terms of

lho V,, and Y.

> So we need to consider a
geometry shown here to
derive an expression for flight-path angle equation.




Flight Path Angle

Flight Path Angle Equation

Let us concentrate on the
triangle formed by F.,F’

and the burnout point. Let us
divide the triangle into two
right triangles by the dashed
line, d, as shown in the right
hand

side diagram.




Flight Path Angle

Flight path Angle Equation

From previous diagram, we can express d as d = o SIN—-

d=r sin {180° —(Zqﬁbo + %H

and also as

Combining the two equations we get

sin(2¢bo +Ej — Io gjn i
2 2

/
rbo




Flight Path Angle Equation

Since r_+r’ =2a andfrom equation we can write the
equation as

r'bo — a(z_Qbo)

Following Equation is called the flight path angle equation.
Low trajectory and High trajectory.




Maximum Range Trajectory
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Maximum Range Trajectory

To derive expressions for the maximum range condition, a simpler
method is to see under what conditions the flight-path angle
equation yields a single solution.

If the right side of equation (14) equals exactly 1, we get only a single
answer for ¢b0. This must, then, be the maximum range condition.

sin(2¢b0 +%)= 2= Qe sin%zl

v . 1 .
=20, +--=90" = ¢ =Z(18O -y

for maximum range conditions-only.



Maximum Range Trajectory

»maximum range angle attainable with a given Q, .

.Y
Sin— = oo

2 2-Q,
for maximum range conditions.

2sin(\/2)
~ Solving for Q,,, weget = 1+sin(\¥/2)

for maximum range conditions.



Time of Free-flight




Time Of Free-flight

> The value of eccentric anomaly can be computed
by taking 6, =180°-¥/2 as

cosE e—cos(¥/2)
' 1-ecos(¥/2)

> And the time of free-flight can be obtained from
a®
ty =2,/— (7 —E,+esinE,)

\




Effect of Launching Errors on Range

> Variations in the speed, position, and launch direction of
the missile at thrust cutoff will produce errors at the impact
point.

»These errors are of two types — errors in the intended
plane which cause either a long or a short hit, and out-of-
plane errors which cause the missile to hit to the right or
left of the target.

> We will refer to errors in the intended plane as "down-
range" errors, and out-of-plane errors as "cross-range"
errors.



Cross-Range and Down-Range Errors e

» There are two possible sources of cross-range

error:
Lateral displacement of the burnout point.
Incorrect Launch Azimuth.

» And the sources of down-range error are:
Down-range displacement of the burnout point.
Errors in burnout flight-path angle.
Incorrect burnout height.
Incorrect speed at burnout.



Effect of Lateral Displacement of Burnout Point:

7,

coSAC =sin° ¥ +cos®* P cosAX =



=i ale)

Cross-range Error due to Incorrect Launch Azimqﬁf%

=
S

S

e

0

> If the actual launch azimuth differs from the intended

launch azimuth by an amount, Ab, a cross-range error, AC,
will result. |

cos AC =cos” ¥ +sin”“ W cos A

AC = Af sin¥




Down-Range Displacement of the Burnout Point '+

Effect of Down-Range Displacement of the
Burnout Point

< An error in down-range position at thrust
»cutoff produces an equal error at impact.

< If the actual burnout point is 1 nm farther down-range
than was intended,
»the missile will overshoot the target by exactly 1 nm.



Burnout Flight-path Angle Errors on Range *

by
)

In the above graph DY will represent a down-range error
causing the missile to undershoot or overshoot the target.
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Burnout Flight-path Angle Errors on Range - *

A good approximate value for DY for very small values of

s given by Ag,,
AV ~ 8_‘1"A¢b0

O

oF is the slope of the curve at the point

where

0Py,

corresponding to the intended trajectory. ... ........_. 4
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Burnout Flight-path Angle Errors on Range *

Effect of burnout flight-path angle errors on range

O
0o

the free-flight range equation.

» The expression for may be obtained by implicit partial differentiation of

> The free-flight range equation can be converted into an alternate form for the
simple differentiation.

» Recall the free-flight range equation

N2 1-Q. cos”
COS — = Qbo ¢bo

2 \/1+ Qo C0S° B, (Qpo —2
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Burnout Flight-path Angle Errors on Range *

2
7
%

Effect of burnout flight-path angle errors on range

> Let us consider the numerator of equation (10) as a and denominator as b.

Y YV
Then cos?=g and cot S = «

1-Q, cos’ ¢
Q,, COSd, \/1— Cos® @,

But \/l— coSs? A, = Sin @, . therefore,

¥ 1-Q,cos’d,
2 Q,,Cosd, SIing,

Substituting for g and b we get COl— =

cot




Burnout Flight-path Angle Errors On Range

Effect of burnout flight-path angle errors on range
» Since SIN 2X = 2 COS X SIN X,we can further

simplify to obtain COtE — icsc 2¢b —C0t¢b
0 o

bo
Now express the above equation in terms of I’bo y Vbo
™ P2

y7i

Cot— =

———CSC2¢,, —Cot g,
Vbo rbo

=i ale)

g IARE §
A
QV'

Now we can differentiate equation (26) implicitly with respect to Vo1 Vo considering

as constants. ¢b
0




Flight-path Angle Errors on Range

Effect of burnout flight-path angle errors on range
0¥  2sin(¥+24,)
= —= :
ol SIn2¢, .

> This partial derivative is called an influence coefficient since it influences the
size of the range error resulting from a particular burnout error.

> Therefore the free-flight range error due to burnout flight-path angle error is
given by

W _ 25|n§\P+2¢DO) 2 |ag
SIn 2¢,,




Incorrect Burnout Height

Down-Range Errors caused by Incorrect Burnout Height

» Again a good approximate value for DY for very small values of A rbois given by

AY za—‘{lArbO

r.bo
» Again differentiating the equation (26) implicitly

with respect to rbband solving forSlP , we get
rbo
sin?
oY 411 2

or,,



Incorrect Speed at Burnout

Down-Range Errors caused by Incorrect Speed at Burnout

> A good approximate value for DY for very small values of

is given by
A~ X py, AV
8Vbo

» Again differentiating the equation (26) implicitly

with respect to V,, and solving for oY , we get
g Moo
sin® —
oV  8u 2

= — :
OV, Vi, I, SIN2



Total Down-Range Error

Total down range-error is given by

oY T oY
A‘{JTOTAL =—A ¢bo f A Vo

8¢bo r-bo aVbo




Effect of Earth Rotation

The Earth rotates once on its axis in 23 hrs 56 min
producing a surface velocity at the equator of approx
0.465 km/sec (or 1524 ft/sec). The rotation is from west
to east.

The free-flight portion of a ballistic missile trajectory is
inertial in character. That is, it remains fixed in the XYZ
inertial frame while the Earth runs under it.

Relative to this inertial XYZ frame, both the launch
point and the target are in motion.

Thus we need to compensate for motion of the launch
site and the motion of the target due to earth rotation.



Initial Velocity of the Missile

vel. of troin
T

V., =1524 cos L, (ft/sec)




Compensating for Initial Velocity of Missile .7~

< The north, east, and up components of the true

velocity v can be obtained as
VvV, =V, COS¢@, COS [,

Ve =V, C0S¢@, SIn B, +V,
V, =V, SINg,

< Now the true velocity, flight-path angle, and
azimuth can then be found from

A 2 2
v_\/v,\I +VE 4V,

sing=v, /v ; tanf=v./v,




Compensating for Movement of the Target - a=e;

gy
7 &
 ron W

Figure: Launch site and aiming point at the
instant of launch




Compensating for Movement of the Target

The angle formed at O is just the difference in longitude
between the launch point and the aiming point, AN + a,t, ,
where AN is the difference in longitude between launch

point and target.

By considering the launch azimuth, b in the spherical

triangle,
= cosA =sinLgsin L, +cosL,cosL, cos(AN +a,t, )

sin L, =sin L, cos A +cos L, sin Acos S
sinL, —sin L, cos A
cos L, si

= COS [ =
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EQUATIONS OF MOTION

_-_-_-_-_--_----_"'--.

l To earth's center

Launch Vehicle Boost Trajectory. I Is The Flight Path A



CONSTANT RADIAL THRUST ACCELERATION %

The normal force is a force perpendicular to the
ground that opposes the downward force of the
weight of the object.

The normal acceleration is an =v2/ (where is the
radius of curvature). It was that for flight over a flat
surface, v/=-dy/dt, in which case the normal
acceleration can be expressed in terms of the flight

path angle as
dy

ER?




Normal Thrust Component

With origin at the earth’s center to show that a
term must be added to this expression, so that it
becomes

dy v

iy = —U — COS5
it " Rpth Y




CONSTANT TANGENTIALTHRUST .,

Characteristics of the Motion

Rocket Body

N\

Nozzle

__________________

m = mass flow rate Exhaust
p = pressure

V = Velocity

A = Area

Thrust= F =m V. + (P.-Py) A,




Equations of Motion

LINEARIZATION OF THE EQUATIONS OF MOTION

In the direction of "u, Newton’s second law
requires
I'-D-mgsiny=ma,

Whereas in the "u, direction
mg cos y =ma,
After combining Equations these
expressions may be written as

dv T D

dt m m gsiny




Downrange Distance and Altitude

dv T D

dt m m gsiny

The equations for downrange distance x and altitude h

dx Rg dh
dt

= vsin ¥

i R+ pUCosy




Thrust and Specific Impulse

PERFORMANCE ANALYSIS

T — _] dm dm T
__#@DE‘ =

ijgtl

If the thrust and specific impulse are constant, then
the integral of this expression over the burn time tis







