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❖ Basic Concepts

❖ The Solar System

❖ Reference Frames And 
Coordinate Systems

❖ The Celestial Sphere

❖ The Ecliptic And Motion 
Of Vernal Equinox

❖ Sidereal Time, Solar Time

❖ Standard Time
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INTRODUCTION TO SPACE MECHANICS

❖The Earth‘s Atmosphere

❖The Many Body Problem

❖Lagrange-Jacobi Identity

❖The Circular Restricted Three-body 
Problem

❖Liberation Points

❖Relative Motion In The N-body 
Problem

UNIT- I



THE TWO BODY PROBLEM

❖ Equations of motion-General characteristics of motion for 
different orbits-Relations between position and time for 
different orbits 

❖ Expansions in elliptic motion  

❖ Orbital Elements  

❖ Relation between orbital elements and position and velocity

❖ Launch vehicle ascent trajectories  

❖ General aspects of satellite injection

❖ Dependence of orbital parameters on in-plane injection 
parameters

❖ Launch vehicle performances  

❖ Orbit deviations due to injection errors 

UNIT- II

3



PERTURBED SATELLITE ORBIT

❖ Special and general perturbations

❖ Cowell‘s Method

❖ Encke‘s method 

❖ Method of variations of orbital elements

❖ General perturbations approach  

❖ Two-dimensional interplanetary trajectories

❖ Fast interplanetary trajectories  

❖ Three dimensional interplanetary trajectories

❖ Launch of interplanetary spacecraft

❖ Trajectory about the target planet 

UNIT- III
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❖ BALLISTIC MISSILE TRAJECTORIES

❖ The boost phase

❖ Ballistic phase

❖ Trajectory geometry

❖ Optimal flights

❖ Time of flight

❖ Re-entry phase

❖ The position of the impact point

❖ Influence coefficients 

UNIT- IV
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LOW-THRUST TRAJECTORIES

❖ Equations of Motion

❖ Constant radial thrust acceleration

❖ Constant tangential thrust (Characteristics of the motion)

❖ Linearization of the equations of motion

❖ Performance analysis 

UNIT- V
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UNIT –I
INTRODUCTION TO SPACE 

MECHANICS



❖ What’s in Our Solar System?

❖ Classify the planets of our solar 
system.

❖ Outer plants are

❖ Small rocky planets (Mercury, 
Venus, Earth, Mars, and Pluto)

❖ Gas giants (Jupiter, Saturn, Uranus, 
and Neptune) 

❖ What are the difference between 
starts and planets?
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❖Characteristics of Small 
Rocky Planets

❖Characteristics of Gas Giants

❖the Sun

❖The natural Satellites (moon)

❖Detail about each planets

❖Meteorite vs. Meteoroid

❖Comets

❖Kepler’s Law

❖Bode’s Law

Solar System
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The Solar System

What’s in Our Solar System?

❖Our Solar System consists of a central star (the Sun), the Eight
planets orbiting the sun, moons, asteroids, comets, meteors,
interplanetary gas, dust, and all the “space” in between them.

❖The nine planets of the Solar System are named for Greek
and Roman Gods and Goddesses.



❖ Inner Planets:

❖Mercury

❖Venus

❖Earth

❖Mars

❖ Outer Planets

❖Jupiter

❖Saturn

❖Uranus

❖Neptune

❖Pluto
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Inner and Outer Planets
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Solar System A Pictorial View



The Relative Size of the Planets
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The Relative Size of the Planets in Solar System



 The sun’s energy comes from nuclear
fusion (where hydrogen is converted
to helium) within its core. This
energy is released from the sun in
the form of heat and light.

 Remember: Stars produce light.
Planets reflect light.

 A star’s temperature determines its 
“color.”  The coldest stars are red.  
The hottest stars are blue.
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The Sun



 Planets are categorized according to composition and 
size.  There are two main categories of planets:

 small rocky planets (Mercury, Venus, Earth, Mars, 
and Pluto)

 gas giants (Jupiter, Saturn, Uranus, and Neptune)
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The 8 Planets of the Solar System



 They are made up mostly of rock and metal.

 They are very heavy.

 They move slowly in space.

 They have no rings and few moons (if any).

 They have a diameter of less than 13,000 km. 
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Characteristics of Small Rocky Planets



 Mercury has a revolution period 
of 88 days. Mercury has 
extreme temperature 
fluctuations, ranging from 
800F (daytime) to -270F 
(night time).

 Even though it is the closest 
planet to the sun, Scientists 
believe there is ICE on Mercury! 
The ice is protected from the 
sun’s heat by crater shadows.
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Mercury



 Venus is the brightest object 
in the sky after the sun and 
moon because its 
atmosphere reflects sunlight 
so well.  People often mistake 
it for a star.

 Its maximum surface 
temperature may reach 
900F.

 Venus has no moons and 
takes 225 days to complete 
an orbit.
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Venus



 Earth is the only planet known 
to support living organisms.

 Earth’s surface is composed of 
71% water.

 Water is necessary for life on 
Earth.

 The oceans help maintain 
Earth’s stable temperatures.

 Earth has one moon and an 
oxygen rich atmosphere.
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Earth



 It takes the moon
approximately 29 days to
complete one rotation. The
same side of the moon always
faces us.

 The moon’s surface is covered in
dust and rocky debris from
meteor impacts. It has no water
or atmosphere.

 The moon reflects light from the
sun onto the earth’s surface.
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Earth’s Moon



 Like Earth, Mars has ice caps 
at its poles. 

 Mars has the largest volcano 
in our solar system:  
Olympus Mons.  Olympus 
Mons is approximately 15 
miles high.  

 Mars appears red because of 
iron oxide, or rust, in its soil.

 Mars has two moons and 
takes about two years to 
complete an orbit.
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Mars



 Pluto has only one moon and 
takes about 249 years to 
orbit the sun. 

 Part of Pluto’s orbit passes 
inside that of Neptune, so at 
times Neptune is the planet 
farthest from the sun.

 Pluto was located and named 
in 1930, but today Pluto is no 
longer considered a 

planet. 
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Pluto



 They are made up mostly of gases (primarily 
hydrogen & helium).

 They are very light for their size.

 They move quickly in space.

 They have rings and many moons.

 They have a diameter of less than 48,000 km 
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Characteristics of Gas Giants



 Jupiter is the largest and 
most massive planet.  

 It’s diameter is 11 times 
bigger than that of the 
Earth’s. 

 It takes about 12 years for 
Jupiter to orbit the sun.

 Jupiter has 16 known 
moons. 
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Jupiter



 Saturn is composed almost 
entirely of hydrogen and 
helium. 

 Saturn has many rings made of 
ice.  Saturn’s rings are very 
wide.  They extend outward to 
about 260,000 miles from the 
surface but are less than 1 mile 
thick.

 Saturn has 18 known moons, 
some of which orbit inside the 
rings! 

 It takes Saturn about 30 years 
to orbit the sun. 24

Saturn



 Uranus is blue in color 
due to methane gas in its 
atmosphere.

 Uranus has 11 dark rings 
surrounding it.  

 Uranus has 21 known 
moons and takes 84 
years to complete one 
orbit.
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Uranus



 Neptune has the fastest 
winds in the solar system:  
up to 2,000 km/hr.

 Neptune is also blue in 
color due to methane gas in 
its atmosphere.

 Neptune takes 165 years to 
orbit the sun and has 8 
moons.
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Neptune



COORDINATE SYSTEMS

(X,Y,Z)

(R,q,l)

(R,j,l)

Origin?
▪ Center of Earth
▪ Sun or a Star
▪ Center of a planetary body

Reference Axes
▪ Axis of rotation or 

revolution
▪ Earth spin axis

• Equatorial Plane
▪ Plane of the Earth’s orbit 

around the Sun
• Ecliptic Plane

▪ Need to pick two axes and 
then 3rd one is determined
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Ecliptic and Equatorial Planes

Obliquity of the Ecliptic = 23.44 °
Vernal Equinox vector

- Earth to Sun on March 21st
- Planes intersect @ Equinox
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Inertial Coordinates
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Relationship between Coordinate Frames
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a  - semi-major axis   Ω - right ascension of ascending node 

e  - eccentricity           - argument of perigee

i - inclination             - true anomaly

Orbital Elements
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• a is the semi-major axis;

• b is the semi-minor axis;

• rMAX = ra,  rMIN = rp are the 
maximum and minimum radius-
vectors;

• c is the distance between the 
focus and the center of the 
ellipse;

• e = c/a is eccentricity

2p is the latus rectum
(latus = side and rectum = 
straight)
p — semi-latus rectum or semi 
parameter

• A = ab is the area of the ellipse

 
  =  1 + e cos  

p

r
q

 2

2  =  1 - e  
b

a

 
 
 

Properties of Orbits

32



Why do we need all this?

❑ Launch into desired orbit
▪ Launch window, inclination
▪ Ground coverage (ground track/swath)
▪ LEO/GEO
▪ Purpose of mission?

❑ Orbital Manoeuvers
▪ Feasible trajectories
▪ Minimize propulsion required
▪ Station keeping
▪ Tracking, Prediction

❑ Interplanetary Transfers
▪ Hyperbolic orbits
▪ Changing reference frames
▪ Orbital insertion

❑ Rendezvous/Proximity Operations
▪ Relative motion
▪ Orbital dynamics
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The Sky from Here
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From the ground, the sky looks like a big dome above us.
Both the “zenith” and horizon are locally defined.



The Celestial Sphere
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It is impossible to tell how far away anything is,        or 
whether there is any depth to the “celestial sphere”.



Celestial Equator and Pole
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We project the Earth into the sky, and its rotation appears
reflected there. The “diurnal” (daily) motion of the sky is
just due to the spinning Earth.



Rising and Setting
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Some stars never set from a
given latitude (circumpolar).
The size of the circumpolar
region grows as you approach
the poles.
You can never see stars in the
opposite circumpolar
hemisphere.
Stars may rise in the East,
South-East, or North-East (so
might the Sun).



Path of the Sun
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❖ The altitude of the pole depends on your latitude.
❖ The Sun may never pass overhead.
❖ The altitude of the Sun depends on the season.



Celestial Coordinates
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To “map” a given point in the sky, you can specify how high 
it is, and in what direction (altitude and azimuth). Or you 
can project latitude and longitude into the sky, but since the 
Earth rotates, we must use “right ascension” which is fixed 
on the stars. 



The projection of the Sun’s path on the celestial
sphere, or equivalently the projection of the plane
of the Earth’s orbit, is called the “ecliptic”. It has a
23.5 degree tilt to the equator.

The Ecliptic Plane
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Chart of the Sky
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Note how the Sun appears to go North and South as the
year progresses. The zero point of Right Ascension occurs
at the Spring crossing of the Equator (vernal equinox). The
solstices occur at the maximum N/S excursions.



The Seasonal Stars
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Constellations along the 
ecliptic are called the 
“Zodiac”. The visible ones 
change through the year 
because the Earth orbits the 
Sun. The constellations 
themselves are arbitrary 
groupings of stars in the sky. 

The stars up at night in the 
summer are up during the 
daytime in the winter.



Morning and Evening “Stars”
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We see Mercury and 
Venus follow the Sun 
around in the sky. They 
may go down after, or 
come up before it. If 
they go down after, we 
see them in the evening.

This is because they have orbits 
inward of ours. That means they can 
only be seen to a certain maximum 
angle away from the Sun.



Retrograde Motion
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The outer planets appear to make
strange reversals in their motion
against the stars. This is due to the
fact that the Earth moves around the
Sun faster than they do, causing us
to overtake them periodically, during
which time they appear to move
“backwards” in the sky. This caused
a lot of headaches for those trying to
explain the apparent motion of the
planets. The “S” shape is due to the
fact that the orbital planes aren’t
quite aligned.



Astro Quiz
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What is the nightly path of the North Star as seen 
from the Earth’s equator?

1) It  rises far north of east, and sets far north of 
west.

2) It makes a circle around the sky, very low to the 
horizon.

3) It sits on the horizon in one place all night (so 
would always be hard to see).



Is the changing seasons caused by the change in the distance 
between the Sun and the Earth?

No. If it is, then 

 The northern and southern hemisphere should have the same 
season, not opposite season like we have.  

 We should experience real seasonal changes in Hawaii also.
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The Four Seasons



The Effect of the Tilt of Earth’s Rotation Axis
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 Equinox: An equinox is one of two opposite points on the 
celestial sphere where the celestial equator and ecliptic 
intersect. 

 Solstice: A solstice is either of the two times of the year when 
the sun is at its greatest distance from the equator.

 Spring Equinox ~ March 21
 Summer Solstice ~ June 21
 Fall Equinox ~ September 22
 Winter Solstice ~ December 21

 The dates of the equinoxes and solstices are only approximate 
dates.
 The actual length of a year is about 365 ¼ days (365 days, 

5 hours, 49  minutes), not exactly 365 days. We have to 
add an extra day to a year every four years to keep the 
seasons synchronized with the seasons (leap year). Over a 
longer period of time, we need to skip a leap year to 
compensate the extra minutes we add in every leap year 
to keep the calendar in sync.
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Solstices and Equinoxes

Celestial Equator

Ecliptic Plane

Spring Equinox

Fall Equinox

Winter Solstice

Fall Solstice



 What Time Is It?

 Before 1884, almost every town in the world kept its own local
time. There were no national or international

 conventions which set how time should be measured, or 
when the day would begin and end, or what length an hour 
might be.

 However, with the vast expansion of the railway and
communications networks during the 1850s and 1860s, there
need for a worldwide, international time standard became
imperative.
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Time



 Meridian (North-South Line Through Zenith)

 Meridian Transit

 Local Noon = Solar Meridian Transit

50

Local Time

N S

W

NCP

Zenith
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U.S.A. Time Zones



There are 24 time

zones around the world.

They start from Greenwich

England (Prime Meridian)

and proceed westward.
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World Time Zones



 Earth’s Rotation on its Axis

 Successive meridian transits of the sun

 1 solar day (clock time)

 24 hours (86400 seconds)
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Astronomical Clocks



 Earth’s Rotation on its Axis

 Successive meridian transits of the sun

 1 solar day (clock time)

 24 hours (86400 seconds)

 Earth’s Orbit Around the Sun

 Sun’s Path on the Sky Returns to the Same 
Constellation

 1 solar year

 365.2422 days

54

Astronomical Clocks



 Earth’s Rotation on its Axis

 Successive meridian transits of the sun

 1 solar day

 24 hours (86400 seconds)

 Earth’s Orbit Around the Sun

 Sun’s Path on the Sky Returns to the Same Constellation

 1 solar year

 365.2422 days

 Moon’s Orbit Around the Earth

 1 month (1 moonth)

 29.5 days
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Astronomical Clocks



 The 7 heavenly bodies visible with the 
unaided eye are each honored with 
their own “day.”
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Days of the Week



 Solar Day

 Observe Successive Meridian Transits of the Sun

 24 hours (86,400 seconds)

 Clock Time

 Sidereal Day

 Observe Successive Meridian Transits of a Star

 23 hours 56 minutes (86,160 seconds)

 Sky Time
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Day Length



 45 B.C.

 Ten months (Mar, …, Sept, Oct, Nov, Dec???) 

 Add July (Julius Caesar)

 Add August (Augustus Caesar)

 Three Years of 365 days

 One Year with 366 days (Leap Year)

 This simulates a Calendar with 365.25 day years 
averaged over four years.
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Julian Calendar



 Actual Length of Year (365.2422 days)

365.25 - 365.2422  =  0.0078 days (11 
minutes/year)

 After 1500 years

11 minutes/year X 1500  =  11 days

59

4 Minute Minutes



 By 1582 A.D. Pope Gregory had had enough.

 Proclamation

 October 4th would be October 15th

 Century Years Divisible by 400 are NOT Leap Years

 Average Year 265.2425

365.2424 - 365.2422 = 0.00027 days (23 seconds)

Time needed to accumulate 1 day error (3850 years)
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Gregorian Reformation



Modern Constellations

 On modern star charts, the 
entire sky is divided into 88 
regions.  Each is a 
constellation

 Most stars in a constellation 
are nowhere near one 
another

 They only appear to be close 
together because they are in 
nearly the same direction as 
seen from Earth  
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Annual Motion

 The stars also appear to slowly 
shift in position throughout the 
year

 This is due to the orbit of the 
earth around the sun

 If you follow a particular star on 
successive evenings, you will find 
that it rises approximately 4 
minutes earlier each night, or 2 
hours earlier each month 
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Popular Constellations

Popular Constellations visible in naked Eye
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Celestial equator divides 
the sky into northern and 
southern hemispheres
Celestial poles are where 
the Earth’s axis of rotation 
would intersect the celestial 
sphere 
Polaris is less than 1° away 
from the north celestial 
pole, which is why it is called 
the North Star or the Pole 
Star.
Point in the sky directly 
overhead an observer 
anywhere on Earth is called 
observer’s zenith.

64

RA

dec

Celestial Equator



 Hour angle (HA) of an object is the angle between the 
meridian on which the object is situated and the 
(observer’s) celestial meridian.

 Local Sidereal Time (LST) is the Right Ascension of an 
observer’s celestial meridian.

 LST = RA + HA
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Two More Types of Angle and Time



Vernal Equinox

Occurrence of Vernal Equinox

66



 Caesar introduced the 365.25 days calendar and thus the 
Leap Year (an extra day, February 29, every year divisible 
by 4) .

 However, this is 11m 14s longer than the tropical year.    
This accumulates to 3 days in 4 centuries error.

 To correct, October 4 was followed by October 15, in 1562 
and the century rule was invoked (Gregorian calendar).
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Calendars
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The "U.S. Standard Atmosphere 1976" is 
an atmospheric model of how the pressure, 
temperature, density, and viscosity of the 
Earth's atmosphere changes with altitude. It is 
defined as having a temperature of 288.15 K at 
the sea level 0 km geo-potential height and 
1013.25 hPa. The atmosphere are divided in.

Standard Atmosphere
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Layer Level Name
Geopotential Altitude 

above MSL
0 Troposphere -610

1 Tropopause 11,000

2 Stratosphere 20,000

3 Stratosphere 32,000

4 Stratopause 47,000

5 Mesosphere 51,000

6 Mesosphere 71,000

7 Mesopause 84,852

Standard Atmosphere

https://en.wikipedia.org/wiki/Stratopause
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Standard Atmosphere



Equations of Motion
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Equations of Motion 
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Equations of Motion

Since

or 

Conservation of Energy
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An orbit is a continually changing balance between potential and 

kinetic energy

Potential Energy                              Kinetic Energy

Using

For any Kepler orbit (elliptic, parabolic, hyperbolic or radial), this is the

Vis Viva equation

Conservation of Energy
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The Hill stability in the General 3-body problem 
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The Hill stability in the General 3-body problem 

Critical values   ( ) ( )k i
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Hill Stability In 2-planet Systems
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Gladman’s reformulation (1993)  →
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The Restricted Three-Body Problem

If two of the bodies in the problem move in circular, coplanar orbits about their 
common centre of mass and the mass of the third body is too small to affect the 
motion of the other two bodies, the problem of the motion of the third body is 
called the circular, restricted, three -body problem.



A) We consider the motion of a small particle of 
negligible mass moving under the two masses 
m1 and m2.

B) We assume that two masses have circular orbit 
around their common mass center. Then the 
two masses keep the constant distance and 
have the same angular velocity.

C) Consider the geometry in the right-hand 
figure.

D) Let the unit of mass be chosen such that
=G(m1+ m2)=1

then in this system of units the two masses 

The unit of length is chosen such that the 
constant separation of the two masses is unity. 
It then follows that the common mean motion, 
n, of the two masses is also unity.
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Let the coordinates of the particle in the inertial or sidereal 
system (, , ).

The equation of motion of the particles are

where

We assume that the circular orbits of two masses, which
imply the distance to these two is kept constant. In this
condition, we can consider that the motion of the particle in a
rotating reference frame in which the locations of the two
masses are also fixed.
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Consider a new, rotating coordinate system that has the same origin as the , ,
 system but which is rotating at a uniform rate n in the positive direction.

The direction of the x-axis is chosen such that the two masses always lie along it
with coordinates (x1,y1,z1)=(-2,0,0) and (x2,y2,z2)=(+1,0,0). Hence from Eq.
(3.6~7) we have

(-, 0, 0) (+, 0, 0)

xO

y

   

r1
2 = x1 -x( )

2
+ h1 -h( )

2
+ z1 -z( )

2

r2

2 = x2 -x( )
2

+ h2 -h( )
2

+ z 2 -z( )
2

ì 
í 
î 

   

r1
2 = x + m2( )

2
+ y 2 + z2

r2

2 = x - m1( )
2

+ y 2 + z2

ì 
í 
î 

(x,y,z)

r1 r2

where (x,y,z) are the coordinates of the
particle with respect to the rotating, or
synodic system.

m1 m2
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The coordinates (x,y,z) are related to the coordinates in the sidereal system by
the following rotation
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If we now differentiate each component in Eq. (3.10) twice we get

Centrifugal acceleration

Corioli’s acceleration

sidereal coordinate synodic coordinate

-----(skip)-----

항성의 삭망
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1.  Planets move in elliptical orbits 
with the sun at one of the foci

84

Kepler’s Laws of Planetary Motions

SUN

Foci – 2 points that are 

equidistant from center

on major axis

circle ellipse



Line from the sun to a planet sweeps with equal 
areas in equal time. A planet will move through 
equal area of space in an equal amount of time

❖ Perihelion – closest to sun

❖ Ahelion – farthest from sun
a. When a planet is in perihelion its orbital velocity increases

b. When a planet is in aphelion its orbital velocity decreases
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Law of Areas
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UNIT - II
THE TWO BODY PROBLEM



Closer to the sun, faster the velocity because of the 
gravitational pull.
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Faster 

Velocity

Slower

Velocity

Closest

to sun

Farthest

from sun

Greater

Gravitational

Pull



Law of Periods - The farther a planet is from the 
focus, the longer the period of revolution.

Ex: Earth is closer to the sun than Jupiter, therefore 
the Earth has a shorter period of revolution. 
(ESRT)
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Law of Periods 



 Newton’s Law of Gravity
○ The force of attraction between any two 

objects depends on their masses and the 
distance between them.

○ Thus, the closer the objects, the 
______________ the gravitational pull

○ Thus, the bigger the object the __________ 
the gravitational pull

89

greater

greater



Although Kepler discovered 
what is now known the 
Three Laws of Planetary 
Motion, he could not explain 
why they were true. That did 
not come until years later 
from Issac Newton 
formulated the laws of 
motion that are the basis of 
mechanics—that are still 
valid today!
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Sir Issac Newton (1642 – 1727)



Newton formulated what 
is now known as his 2nd

Law of Motion:
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Sir Issac Newton



This enabled him to 
formulate how objects are 
influenced (or attracted) in 
a gravitational field:
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Sir Issac Newton



He was also the first to 
identify the acceleration 
on objects forced to move 
in circles as: 
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Sir Issac Newton
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Sir Issac Newton

And therefore the net force:



And finally what is 
perhaps the greatest 
intellectual discovery of 
all time—the 
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Sir Issac Newton

Law of Universal Gravitation:



And finally what is perhaps the 
greatest intellectual discovery of all 
time—the 
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Sir Issac Newton

Law of Universal Gravitation:

This simple algebraic expression Mm/r 

says how everything in the universe is 

related to everything else—a far-reaching 

statement indeed!

2
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Although the orbits of the planets 
are ellipses, they are very close to 
circles. The gravitational pull of the 
sun provides the force that causes 
the planet to go in its nearly circular 
orbit.
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The gravitational pull of the Sun provides the 

centripetal force of the satellite.
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Gravity provides the centripetal force of the 

satellite.



We can square both sides:

Since
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Equating equivalent expressions for v2:
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102

The ratio of two measurable quantities—radius and
period—equals a constant.
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The ratio of two measurable quantities—radius 
and period—equals a constant.

If the distance of the planets to the sun are expressed 
in convenient units like astronomical units (1AU = the 
distance from the earth to the sun) and the period T is 
expressed in earth years, then the constant k equals 1! 



But the same analysis for the planets orbiting the sun applies to 
moons orbiting Jupiter and can be extended to pairs of stars 
orbiting their common center of mass. This is how astronomers 
determine the mass of distant planets and stars.
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Geosynchronous Orbits
In 1945, British journalist Arthur C. Clarke who later become one of the most
famous science fiction novelists of all time proposed that the new invention TV
might be someday broadcast from satellites in so-called geosynchronous orbits
(literally meaning earth-synchronized) from outer space—22,300 miles from the
earth’s surface. At this distance the orbital period of a satellite equals the rotational
period—24 hours for us here on earth. Satellites in this position always appear
above the earth in the same point in the sky. Dubbed unfeasible by some and
impossible by others, he was largely ignored because of the great distances
involved.



106

Inserting Satellites in Geosynchronous Orbits
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How to find g at a distance greater than the 
earth’s surface:
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Finding the Tangential Speed of the Satellite:
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At the surface of the earth r is about 6378.137 km
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Equating Equivalent Expressions for the 
Tangential Velocity and Solving for r:
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Substitute the value of g at the geosynchronous orbit 
and solve for r:



Substituting the known values for the universal 
gravitational constant, G, the mass of the 
earth, M, and the number of seconds in a year, 
T, the distance is:
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The slope of the graph of log of 

R vs. T is the functional relationship between the variables
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UNIT -III
PERTURBED SATELLITE ORBIT



 Orbital perturbations

 Launches and launch vehicles

 Placing a satellite in a geo-stationary 
orbit

 Orbital effects

 Examples

Page 115

Important note: Slides present summary of the 
results.  Detailed derivations are given in notes.
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 Orbital perturbation – difference between real orbit and
Keplerian orbit obtained from two body equations of motion

 Major sources of orbital perturbations

 Perturbations due to non-ideal Earth

 Third body perturbations

 Atmospheric drag

 Solar radiation and solar wind

 Importance of perturbation source depends on the satellite
altitude

 Modeling of the real satellite orbit

 Find “osculating orbit” at some time

 Assume orbit elements vary linearly with time

 Use measured data to determine rate of change for orbital
parameters

Page 116

Sources of orbital perturbations

116



 Earth is not a sphere

 Equatorial radius: ~ 6,378 km

 Polar radius: ~ 6,356 km (about 22km smaller)

 Equatorial radius not constant (small variations ~ 100m)

 Earth mass distribution

 Earth mass distribution not uniform

 Regions of mass concentrations: mascons

 Non-ideal Earth causes non-ideal gravitational field

 For LEO and MEO satellites this effect is not very significant

 GEO satellites are impacted the most

 GEO satellites drift towards mascons in the “east-west” direction

 Longitudes of two stable equilibrium points: 75°E and 252°E (or
108°W)

 Longitudes of two unstable equilibrium points: 162°E and 348°E (or
12°W)
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Effects of non-ideal Earth
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 Motion of the satellite is not a “two-body” 
problem

 Satellite experiences gravitational pull from Sun 
and Moon as well

 The orbital relationship is complex and time 
dependent

 Gravitational forces from Sun and Moon tend to 
move satellite out of the orbit

 Under these condition the orbit will precess and 
its inclination will change (up to 1°/year)

 In practice:

 Some of these effects are planed

 Most of these effects are corrected using the 
on-board fuel

 For GEO stationary satellite, the goal is to 
keep its apparent position within 0.05 
degree box
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Third-body perturbation

Orbital position of a satellite the 
Earth, the Sun and the Moon

Note: Orbital parameters are continuously measured and 
published as TLE data
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 Significant for satellites below 1000km

 Drag reduces the velocity of the satellite 

 Semi-major axis is reduced

 Eccentricity is reduced

 Approximate equation for change of semi-
major axis
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Atmospheric drag
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a0 – semi-major axis at t0

n0 – mean motion (revs/day)

n‘0 – first derivative of mean motion (rev/day2) 

Example: Consider ISS.  From TLE data

Mean motion: 15.72137770 rev/day

Derivative of MM/2: 0.00011353 rev/day2
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Note: change is relatively small and it 

is long term.  In practice it can be 

easily resolved through satellite 

maneuvering.

Note: Derivative of mean motion is provided in TLE data
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 Determine position of a satellite over 
time

 Three types:

 Analytic 

 Semi-analytic

 Numerical

 Analytic – approximate motion of the 
satellite through closed form equations

 TwoBody – considers only forces of 
gravity from Earth, which is 
modeled as a point mass

 J2 Perturbation – models Earths 
oblateness, solar and lunar 
gravitational forces 

 J4 Perturbation – second order 
improvements of J2 Perturbation

 SGP4 - Simplified General 
Perturbations
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Propagators

Note: Propagators are included in commercial software packages 

➢ Semi-analytic – combination of analytical 
and numerical methods

o LOP – Long-term Orbital Predictor.  
Uses same elements as analytic 
propagators.  Accurate over many 
months.   

o SGP4 for non LEO satellites

➢ Numerical – Solve complex sets of 
differential equations.  Accuracy is obtained 
at the expense of computational speed

o Astrogator – used for trajectory and 
maneuver planning and includes 
targeting capabilities

o HPOP – High Precision Orbital 
Propagator.  Uses the same orbital 
elements as the analytic propagators. 
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 Two categories of satellite launches

 Expandable launch vehicles

○ Ariane (EU)

○ Atlas, Delta (US)

○ Soyuz (Russia) 

 Reusable launch vehicles

○ Space Shuttle (STS) – up to 2011

○ Dragon, Falcon 9 (Space X)

○ Buran? Orion?

 Launches are usually done in several stages 

 Launch vehicle is used to place satellite in one of 
the transfer LEO orbits

 Satellite is maneuvered from a transfer orbit into 
the final orbit

 Due to Earth rotation – the launch is easiest from 
equator

 Velocity boost from Earth rotation ~ 0.47km/sec

 LEO orbits require velocities ~ 7.5km/sec

 Launching from equator ~ 6% fuel savings

 Launches from sites that are not on the equator place 
satellites in inclined orbits

 If the satellite is to be placed in GEO stationary 
orbit, the correction of the orbit inclination needs 
to be performed

Page 121

Satellite launch

Some of the most frequently used 

launch sites
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 Case 1: Launch vehicle puts the satellite into an elliptical transfer orbit

 The orbit has high eccentricity with apogee at the geostationary (or geosynchronous) orbit

 When the satellite passes through apogee, additional velocity is given to the satellite by Apogee Kick Motor 
(AKM) and the satellite changes orbits

 If the orbit is not GEO stationary, additional adjustments are required to correct for the orbit inclination

 Case 2: Lunch vehicle put the satellite into circular LEO orbit

 Two maneuvers are required

 Perigee maneuver to transform circular orbit into elliptical orbit, and

 Apogee maneuver to transform elliptical orbit into GEO stationary orbit
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Two typical GEO satellite launch approaches 

Case 1: single 

elliptical orbit

Case 2: two 

transfer orbits

Note: other launch approaches are possible
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Example of GEO launches: French Guyana and KSC

Launch from French 

Guyana

Launch from Cape 

Carnival, FL
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 Motion of the satellite has significant 
impact on its performance

 Some of the orbital effects to take into 
account

 Doppler shift

 Solar eclipse

 Sun transit outage

Page 124

Orbital Effects
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 Important in case of LEO and MEO satellites

 Negligible for GEO satellites

 Caused by relative motion between the satellite 
and earth station

 The magnitude of Doppler shift is given by:
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Doppler shift
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Example. Consider LEO satellite in circular polar 

orbit with altitude of 1000km.  Transmit frequency is 

2.65GHz.

The velocity of satellite in orbit
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higher frequencies.

125



 Eclipse – sunlight fails to reach satellite due to obstruction 
from either Earth or Moon

 More common type of eclipse – eclipse due to satellite 
coming in the shadow of the earth

 For geostationary satellite the solar eclipse occurs for about 
82 days every year

 The eclipse times vary from day to day

 The longest eclipses are on equinox days (days when the sun 
passes through equatorial plane) – Nominally: March 21st and 
September 23st

 When the satellite passes through eclipse

 It loses its source of power (relies on battery power)

 It may need to shut off some of its transponders

 Experiences cooling down in temperature 

 Transients due to switching of the equipment and 
temperature variations may cause equipment failure
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Solar eclipse

Geometry of solar eclipse

Duration of solar eclipse of a geo 

stationary satellite relative to equinox time

Note: for non geostationary satellites 

orbital study necessary to determine 

eclipse times
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 Sun transit outage - occurs when the satellite 
passes in front of the Sun

 Sun is a source of electromagnetic radiation

 Sun – noise source with equivalent temperature 
of 6000K – 11000K

 In most cases this noise overcomes link design 
margins

 During sun transit outage – communication lost

 Duration of the outage as much as 10 min/day

 For geo-stationary satellites outages occur 0.02% 
of the time

 Duration problematic since it usually occurs in a 
traffic intensive part of the day

 Satellite providers try to re-route the traffic 
through other satellites

Page 127

Sun transit outage

Radiation spectrum of the Sun

Geometry of sun transit eclipse
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UNIT –IV
BALLISTIC MISSILE



Ballistic Missile
❖ A ballistic missile is a missile which follows a sub-orbital

flight path to a predetermined target.

❖ A ballistic missile is a missile that has ballistic trajectory
over most of its flight path.

❖ A ballistic missile can deliver one or more warheads to
a predetermined target.

❖ It governed by the laws of orbital mechanics and
ballistics (during a part of its entire phase).
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BALLISTIC MISSILE



❖ Ballistic missiles are used for transportation of a payload from
one point on the Earth (launch site) to another point on the
surface of the Earth (impact point or target).

❖ They are accelerated to a high velocity during a relatively short
period.

❖ Then a re-entry vehicle, containing the warhead, is released and
this vehicle then simply coasts in a ballistic or free-fall trajectory
to the final impact point.

❖ To date, ballistic missiles have been propelled by chemical rocket
engines of various types.
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Ballistic Missile Components
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Categorization of Ballistic Missile

United States

Soviet and Russian Military
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Classes Range

Intercontinental Ballistic Missile (ICBM) over 5500 kilometers

Intermediate Range Ballistic Missile (IRBM) 3000 to 5500 kilometers

Medium Range Ballistic Missile (MRBM) 1000 to 3000 kilometers

Short Range Ballistic Missile (SRBM) up to 1000 kilometers

Classes Range

Strategic over 1000 kilometers

Operational Strategic 500 to 1000 kilometers

Operational 300 to 500 kilometers

Operational Tactical 50 to 300 kilometers

Tactical up to 50 kilometers



General Category of Ballistic Missile

Also,Ballistic Missile (SLBM) – ICBM range
➢ Quasi Ballistic Missile (Russians Iskander, India’s Shaurya) – also

called semi ballistic missile.
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Classes Range

Tactical Ballistic Missile
(a) Battlefield Range Ballistic Missile 
(BRBM)

Between 150 to 300 
kms
Less than 200 kms

Theatre Ballistic Missile (TBM)
(a) Short Range Ballistic Missile (SRBM)
(b) Medium Range Ballistic Missile 
(MRBM)

Between 300 to 3500 
kms
1000 kms or less
Between 1000 to 3500 
kms

Intermediate Range Ballistic Missile 
(IRBM) or
Long Range Ballistic Missile (LRBM)

Between 3500 to 5500 
kms

Intercontinental Ballistic Missile (ICBM) More than 5500 kms



Indian Ballistic Missile

V-2, the first ballistic missile India’s Agni-II MRBM
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Ballistic Missile

Trident II, a submarine launched ballistic missile (US Navy)
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Ballistic Missile Trajectory

The trajectory of a ballistic missile differs from a satellite
orbit in only one respect – it intersects the surface of the
Earth. Otherwise, it follows a conic orbit during the free-
flight portion of its trajectory.
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Ballistic Missile Trajectory

➢ A ballistic missile trajectory is composed of three parts:
(1) the powered flight portion which lasts from launch to thrust

cutoff or burnout (3–5 minutes, 150–400 km altitude, 7 km/s
burnout speed)

(2) the free-flight portion which constitutes most of the trajectory
(approx. 25 minutes, apogee altitude approx. 1200 km, semi-
major axis between 3186–6372 km)

(3) the re-entry portion which begins at some ill-defined point
(altitude of 100 km) where atmospheric drag becomes a
significant force in determining the missile's path and lasts until
impact (2 minutes to impact at a speed of up to 4 km/s)
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Ballistic Missile Trajectory

➢ Powered flight
(guidance and
navigation system)

➢ During free-flight,
trajectory is part of
a conic orbit – almost
always an ellipse

➢ Re-entry involves
the dissipation of
energy by friction
with the atmosphere
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➢ Here we need to define a non-dimensional parameter Q
as

➢ Note that the value of Q is not constant for a satellite but
varies from point to point in the orbit. (Q = 1, 2 or > 2)

➢ From the energy equation we can prove
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Free-flight Range Equation

➢ Objective is to get a simple expression for the free-flight range () of a missile in terms of
its burnout conditions.

➢ Initial assumption that the Earth does not rotate and that the altitude at which re-entry
starts is the same as the burnout altitude (symmetrical free-flight trajectory).

➢Since the free-flight trajectory of a missile is a conic section, the general equation of a
conic can be applied to the burnout point.

➢ Solving for , we get
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Free-flight Range Equation

Since                      , half the                         
free-flight range angle (Y)  
lies on each side of the   
major axis, and

And equation can be written as 

(6)

Equation (6) is an expression for the free-flight range angle in terms
of p, e, and .
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Free-flight Range Equation

➢ Since                 and                   ,               we can use the definition of parameter Q to obtain

➢ Now, since

➢From above equations, we get
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Free-flight Range Equation

➢ Now substituting equations (7) and (9) into equation (6) we have one form of the free-
flight range equation:

➢ Given a particular launch point and target, the total range angle, , can be calculated. If
we know how far the missile will travel during powered flight and re-entry, the required
free-flight range angle, , also becomes known.
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Flight path Angle Equation

➢ If we now specify and
for the missile, what should
the flight-path angle, , be
in order that the missile will
hit the target?
➢ So we have to derive an

expression for in terms of
, and Y.

➢ So we need to consider a
geometry shown here to
derive an expression for flight-path angle equation.
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Flight Path Angle Equation

Let us concentrate on the 
triangle formed by       
and the burnout  point. Let us 
divide the triangle into two     
right triangles by the  dashed 
line, d, as shown     in the right 
hand

side diagram.
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Flight path Angle Equation

From previous diagram, we can express d as

and also as

Combining the two equations we get
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Since                             and from equation  we can write the 
equation  as 

Following Equation is called the flight path angle equation.
Low trajectory and High trajectory.
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Range vs flight-path angle
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Maximum Range Trajectory



To derive expressions for the maximum range condition, a simpler
method is to see under what conditions the flight-path angle
equation yields a single solution.

If the right side of equation (14) equals exactly 1, we get only a single
answer for . This must, then, be the maximum range condition.

for maximum range conditions only.
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Maximum Range Trajectory

➢maximum range angle attainable with a given .

for maximum range conditions.

➢ Solving for , we get

for maximum range conditions.
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Time of Free-flight
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Ballistic Missile Free Flight Path



Time Of Free-flight

➢ The value of eccentric anomaly can be computed
by taking as

➢ And the time of free-flight can be obtained from
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Effect of Launching Errors on Range

➢ Variations in the speed, position, and launch direction of
the missile at thrust cutoff will produce errors at the impact
point.

➢These errors are of two types – errors in the intended
plane which cause either a long or a short hit, and out-of-
plane errors which cause the missile to hit to the right or
left of the target.

➢ We will refer to errors in the intended plane as "down-
range" errors, and out-of-plane errors as "cross-range"
errors.
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Cross-Range and Down-Range Errors

➢ There are two possible sources of cross-range
error:

❖ Lateral displacement of the burnout point.
❖ Incorrect Launch Azimuth.

➢ And the sources of down-range error are:
❖ Down-range displacement of the burnout point.
❖ Errors in burnout flight-path angle.
❖ Incorrect burnout height.
❖ Incorrect speed at burnout.
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Effect of Lateral Displacement of Burnout Point

arc length DC = cross-
range error
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Cross-range Error due to Incorrect Launch Azimuth

➢ If the actual launch azimuth differs from the intended
launch azimuth by an amount, ∆b, a cross-range error, ∆C,
will result.
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Down-Range Displacement of the Burnout Point

❖ An error in down-range position at thrust
➢cutoff produces an equal error at impact.

❖ If the actual burnout point is 1 nm farther down-range
than was intended,
➢the missile will overshoot the target by exactly 1 nm.

157

Effect of Down-Range Displacement of the 
Burnout Point



Burnout Flight-path Angle Errors on Range

In the above graph DY will represent a down-range error 
causing the missile to undershoot or overshoot the target.
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Burnout Flight-path Angle Errors on Range

A good approximate value for DY for very small values of
is given by

where is the slope of the curve at the point

corresponding to the intended trajectory.
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Effect of burnout flight-path angle errors on range

➢ The expression for may be obtained by implicit partial differentiation of

the free-flight range equation.

➢ The free-flight range equation can be converted into an alternate form for the
simple differentiation.

➢ Recall the free-flight range equation
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Effect of burnout flight-path angle errors on range

➢ Let us consider the numerator of equation (10) as a and denominator as b.

Then .

Substituting for a and b we get

But , therefore,
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Effect of burnout flight-path angle errors on range

➢ Since we can further

simplify to obtain

Now express the above equation in terms of
and ,

Now we can differentiate equation (26) implicitly with respect to considering
as constants.
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Effect of burnout flight-path angle errors on range

➢ This partial derivative is called an influence coefficient since it influences the
size of the range error resulting from a particular burnout error.

➢ Therefore the free-flight range error due to burnout flight-path angle error is
given by
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Down-Range Errors caused by Incorrect Burnout Height

➢ Again a good approximate value for DY for very small values of         is given by

➢ Again differentiating the equation (26) implicitly

with respect to       , and solving for        , we get
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Down-Range Errors caused by Incorrect Speed at Burnout

➢ A good approximate value for DY for very small values of
is given by

➢ Again differentiating the equation (26) implicitly

with respect to , and solving for , we get
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Total down range-error is given by
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❖ The Earth rotates once on its axis in 23 hrs 56 min
producing a surface velocity at the equator of approx
0.465 km/sec (or 1524 ft/sec). The rotation is from west
to east.

❖ The free-flight portion of a ballistic missile trajectory is
inertial in character. That is, it remains fixed in the XYZ
inertial frame while the Earth runs under it.

❖ Relative to this inertial XYZ frame, both the launch
point and the target are in motion.

❖ Thus we need to compensate for motion of the launch
site and the motion of the target due to earth rotation.
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Vo = 1524 cos L0 (ft/sec)

Initial Velocity of the Missile
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❖ The north, east, and up components of the true
velocity v can be obtained as

❖ Now the true velocity, flight-path angle, and
azimuth can then be found from
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Compensating for Movement of the Target

Figure: Launch site and aiming point at the 
instant of launch
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The angle formed at O is just the difference in longitude
between the launch point and the aiming point, ,
where ∆N is the difference in longitude between launch
point and target.

By considering the launch azimuth, b in the spherical
triangle,
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UNIT –V
LOW-THRUST TRAJECTORIES
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LOW-THRUST TRAJECTORIES

❖ EQUATIONS OF MOTION

❖ CONSTANT RADIAL THRUST ACCELERATION

❖ CONSTANT TANGENTIAL THRUST 

(Characteristics of the motion)

❖ LINEARIZATION OF THE EQUATIONS OF MOTION

❖ PERFORMANCE ANALYSIS 

UNIT- V
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EQUATIONS OF MOTION

Launch Vehicle Boost Trajectory. Γ Is The Flight Path Angle
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CONSTANT RADIAL THRUST ACCELERATION

The normal force is a force perpendicular to the
ground that opposes the downward force of the
weight of the object.

The normal acceleration is an =v2/ (where is the
radius of curvature). It was that for flight over a flat
surface, v/=−dγ/dt, in which case the normal
acceleration can be expressed in terms of the flight
path angle as
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With origin at the earth’s center to show that a 
term must be added to this expression, so that it 
becomes

Normal Thrust Component
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Characteristics of the Motion

CONSTANT TANGENTIAL THRUST 
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LINEARIZATION OF THE EQUATIONS OF MOTION

Equations of Motion

In the direction of ˆut Newton’s second law 
requires 
T − D − mg sin γ = mat

Whereas in the ˆun direction
mg cos γ = man

After combining Equations these 
expressions may be written as 
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Downrange Distance and Altitude 

The equations for downrange distance x and altitude h
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PERFORMANCE ANALYSIS 

Thrust and Specific Impulse

If the thrust and specific impulse are constant, then 
the integral of this expression over the burn time t is
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