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Unit-I 

Introduction to Space Mechanics 

1 Introduction to Space Mechanics 
1.1 Basic concepts 

 

Space Mechanics or Orbital mechanics, also called flight mechanics, is the study of the motions of 

artificial satellites and space vehicles moving under the influence of forces such as gravity, 

atmospheric drag, thrust, etc. Orbital mechanics is a modern offshoot of celestial mechanics which 

is the study of the motions of natural celestial bodies such as the moon and planets. The root of orbital 

mechanics can be traced back to the 17th century when mathematician Isaac Newton (1642-1727) 

put forward his laws of motion and formulated his law of universal gravitation. The engineering 

applications of orbital mechanics include ascent trajectories, reentry and landing, rendezvous 

computations, and lunar and interplanetary trajectories. 

 

1.2 The solar system 
The Solar System is the gravitationally bound system of the Sun and the objects that orbit it, either 

directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight planets, with 

the remainder being smaller objects, such as the five dwarf planets and small Solar System bodies. 

Of the objects that orbit the Sun indirectly—the moons—two are larger than the smallest planet, 

Mercury. 

 

What’s in Our Solar System? 

 

Our Solar System consists of a central star (the Sun), the nine planets orbiting the sun, moons, 

asteroids, comets, meteors, interplanetary gas, dust, and all the “space” in between them. 

 

1.2.1 Classify the planets of our solar system. 

They are classified mainly into two groups, viz. Inner and Outer Planets. 

Inner plants are 

i. Mercury 

ii. Venus 

iii. Earth 

iv. Mars  
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Outer plants are 

i. Jupiter 

ii. Saturn 

iii. Uranus 

iv. Neptune 

 

They can be classified based on their size 

a) Small rocky planets (Mercury, Venus, Earth, Mars, and Pluto) 

b) Gas giants (Jupiter, Saturn, Uranus, and Neptune)  

 

 

What are the difference between inner and outer planets? 

 

How the temperature is determined of a start? 

 

 

 

A star's temperature determines its "color."  The coldest stars are red.  The hottest stars are blue.  

What are the difference between starts and planets? 

The difference between star and planets are distinguished based on their various characteristics. 

The differences are listed in table below.  

 

Parameters for  

Comparison Stars Planets 

Meaning Stars are the astronomical objects, that 

emit their own light, produced due to 

thermonuclear fusion, occurring at its 

core. 

Planets refers to the celestial object that has 

a fixed path (orbit), in which it moves 

around the star. 

Light They have their own light. They do not have their own light. 

Position Their position remain unchanged. They change position. 

Size Big Small 

Shape Dot shaped Sphere-shaped 

Temperature High Low 
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Number There is only one star in the solar 

system. 

There are eight planets in our solar system. 

Twinkle Stars twinkle. Planets do not twinkle. 

Matter Hydrogen, Helium and other light 

elements. 

Solid, liquid or gases, or a combination 

thereon. 

 

1.2.2 What are the Characteristics of Small Rocky Planets 
i. They are made up mostly of rock and metal. 

ii. They are very heavy. 

iii. They have no rings and few moons (if any). 

iv. They have a diameter of less than 13,000 km.  

 

1.2.3 What are the Characteristics of Gas Giants 
• They are made up mostly of gases (primarily hydrogen & helium). 

• They are very light for their size. 

• They have rings and many moons. 

• They have a diameter of more than 48,000 km  

 

Write short notes about the Sun 

 

The sun’s energy comes from nuclear fusion (where hydrogen is converted to helium) within 

its core.  This energy is released from the sun in the form of heat and light.  

 

Diameter (km): 1392000 

Rotation period (days): 25.380  

Polar inclination : 7° 15' 

Earth masses: 332946 

Density : 1.409 

Escape velocity: 617.5 ( km/sec) 

Albedo : Luminous 
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Figure 1 Solar Systems 

 

Write short notes about Mercury 

 

Mercury has a revolution period of 88 days. Mercury has extreme temperature fluctuations, 

ranging from 800F (daytime) to -270F (nighttime). Even though it is the closest planet to the 

sun, Scientists believe there is ICE on Mercury! The ice is protected from the sun’s heat by crater 

shadows.  

 

Write short notes about Venus 

 

Venus is the brightest object in the sky after the sun and moon because its atmosphere reflects 

sunlight so well.  People often mistake it for a star. Its maximum surface temperature may reach 

900F. Venus has no moons and takes 225 days to complete an orbit.  

 

 

Name Sun Mercury Venus Earth Moon Mars Jupiter Saturn 

Diameter 

(km) 1392000 4880 12100 12756 3476 6790 142200 119300 

Rotation 

period 

25.380  

Days 

58.65  

days 

243.01 

(Retro) 

23.9345  

hours 

27.322  

days 

24.6229  

hours 

9.841  

hours 

10.233  

hours 

Polar 

inclination 7° 15' 0° -2° 23.45° 1° 21' 23.98° 3.08° 29° 

Earth 

masses 332946 0.055 0.815 1 0.0203 0.1074 317.89 95.17 
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Density 1.409 5.5 5.25 5.517 3.342 3.94 1.33 0.706 

Escape 

velocity 

 ( km/sec) 617.5 4.3 10.36 11.18 2.38 5.03 60.22 36.25 

Albedo Luminous 0.06 0.76 0.36 0.07 0.16 0.73 0.76 

No of 

Satellites 
 

0 0 1 - 2 79 62 

 

 

 

 

 

 

 

 

 

 

Uranus Neptune Pluto 

47100 49500 2300 

15.5 

hrs  

(Retro) 

15.8 

hours 

6.3874  

hours 

97.92° 28.8° ? 

14.54 17.23 0.0017 

1.19 1.66 0.6-1.7? 

21.22 23.6 5.3? 

0.93 0.84 0.14 

27 14 5 

1.2.4 Meteorite vs. Meteoroid 
 

• Meteoroid = while in space a meteorite is called a meteoroid 

• Meteorite = a small rock or rocky grain that strikes Earth’s surface 

 

So the difference is just based on where the rock is when you are describing it 

 

Meteor 

• Sometimes called a “Shooting Star” 
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• When a meteorite enters Earth’s atmosphere, friction causes them to burn up, producing a 

streak of light 

 

Where do they come from? How big are they? 

• Pieces of rock that broke off other objects 

• Sizes range from as small as a pebble or as big as a huge boulder 

 

Are they dangerous? 

• Most meteoroids disintegrate before reaching the earth by burning up in Earth’s atmosphere 

• Some leave a trail that lasts several minutes 

• Meteoroids that reach the earth are called meteorites.  Large ones can cause damage 

• 49,000 years ago 

• Meteorite about 150 feet in diameter  

• Weighed 650 pounds 

• Energy = 2.5 million tons of dynamite 

• 4000 feet wide, 650 feet deep 

• Still visible today 

 

What’s a “Meteor Shower”? 

 

• Usual rate = six meteors per hour 

• During a Meteor Shower = rate may be as high as 60 meteors per hour 

• Occur when Earth passes through the tail or debris of a comet 

• Presides (mid-August) 

• Leonids (mid-November) 

 

1.2.5 Comets 

• Bodies in space made up of ice, dust, small gritty particles 

• Sometimes called “dirty snowballs” 

• When close to the sun, ice vaporizes, producing a spectacular streak of gas, referred to as a 

“tail” 

• Many in a regular orbit around the sun 

 

Where do comets come from? 
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• Many ordinate in a region called the Oort cloud which is located beyond the orbit of the dwarf 

planet Pluto 

• Others originate in the Kuiper Belt beyond the orbit of Neptune 

• This region is filled with billions of comets 

 

Name few Famous Comets 

• Comet Hale-Bopp 

• Halley’s Comet 

• Comet Kohoutek  

 

What do you mean by Asteroids? 

• An irregularly shaped rocky object in space (like a space potato) 

• May be the shattered remains of objects left over from the time when the planets were formed 

 

 

 

 

 

How big are asteroids? 

• Larger than meteoroids  

• (In fact, the main difference between meteoroids and asteroids is their size.) 

• Size ranges from 10 feet across to bigger than a mountain 

• Approx. 150,000 asteroids in the Solar System 

• Most are in a band that orbit the sun between Mars and Jupiter (Asteroid Belt) 

 

 

Q: What is the difference between a meteoroid, meteororite, and a meteor? 

Q: What is the difference between an asteroid and a meteoroid? 

Q: Which is larger, asteroid or meteoroid? 

Q: Why is it important to study smaller bodies in our Solar System such as comets or 

asteroids? 

Q: Why do planets and moons with atmospheres have less impact craters than those without 

atmospheres? 

Q: Discus what could happen if the Earth experienced another large asteroid impact.  How 
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would it affect life on Earth? 

Q: Where is the Asteroid Belt? 

Q: What is the Torino Scale? 

A system used to rate the hazard level of an object moving toward Earth 

 

Bright streaks of light that result when rocky bodies burn up in the atmosphere are called 

___________. 

Frozen bodies made of ice, rock, and dust, sometimes called “dirty snowballs” are called 

_____________. 

Small, rocky bodies that revolve around the sun are called ______________. 

 

 

 

 

 

 

 

 

 

 

 

1.3 Reference frames and coordinate systems 

1.3.1 Introduction 
 

 

To develop an understanding and a basic description of any dynamical system, a physical model of 

that system must be constructed which is consistent with observations. The fundamentals of orbital 

mechanics, as we know them today, have evolved over centuries and have continued to require 

improvements in the dynamical models, coordinate systems and systems of time. The underlying 

theory for planetary motion has evolved from spheres rolling on spheres to precision numerical 

integration of the equations of motion based on general relativity. Time has evolved from using the 

motion of the Sun to describe the fundamental unit of time to the current use of atomic  clocks  to  

define  the second.  As  observational  accuracy  has  increased,  models  have generally increased 

in complexity to describe finer and finer detail. 

 
To apply the laws of motion to a dynamical system or orbital mechanics problem, appropriate 

coordinate and time systems must first be selected. Most practical problems involve numerous 
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reference frames and the transformations between them. For example, the equations of motion of 

a satellite of Mars are normally integrated in a system where the equator of the Earth at the 

beginning of year 2000 is the fundamental plane. But to include the Mars non-spherical 

gravitational forces  requires the satellite position in the current Mars equatorial system. 

Planetary ephemerides are usually referred to the ecliptic, so inclusion of solar or Jovian 

gravitational forces require transformations between the ecliptic and the equator. The correct 

development of these transformations is tedious and a prime candidate for implementation errors. 

 
Likewise, there are usually numerous time systems in a problem. Spacecraft events might be time 

tagged by an on board clock or tagged with the universal time that the telemetry is received at the 

tracking station. In the latter case, tracking station clocks must be synchronized and the time 

required for the telemetry signal to travel from the s/c to the tracking station must be calculated 

using the s/c orbit. Depending on the precision desired, this time difference might require special 

and general relativistic corrections. The independent variable for the equations of motion is called 

ephemeris time or dynamical time which is offset from universal time. By international agreement, 

atomic time is the basis of time and is obtained by averaging and correcting numerous atomic clocks 

around the world. Finally, the location of the zero or prime meridian and the equator are defined 

by averaging observations of specified Earth "fixed" stations. The understanding of these and other 

coordinate systems and time systems is fundamental to practicing orbital mechanics. 

 
 
 
In this chapter only first order effects will be discussed. This note will also limit coverage to the 

classical mechanics approach, i.e. special and general relativistic effects might be mentioned but 

will not be included in any mathematical developments. Calculation for precise orbital mechanics 

and spacecraft tracking must however include many of these neglected effects. The definitive 

reference for precise definitions of models and transformations is the Explanatory Supplement to 

the Astronomical Almanac. 

  

The first issue that must be addressed in any dynamics problem is to define the relevant coordinate 

systems. To specify the complete motion of a spacecraft, a coordinate system fixed in the spacecraft 

at the center of mass is usually selected to specify orientation and a coordinate system fixed in 

some celestial body is used to specify the trajectory of the center of mass of the spacecraft. The 

interest here is primarily in the latter system. 
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Coordinate systems are defined by specifying 

1.   location of the origin, 

2.   orientation of the fundamental plane, and 

3.   orientation of the fundamental direction or line in the fundamental plane. 

 

The origin is the (0,0,0) point in a rectangular coordinate system. The fundamental plane passes 

through the origin and is specified by the orientation of the positive normal vector, usually the z- 

axis. The fundamental direction is a directed line in the fundamental plane, usually specifying 

the +x-axis. The origin, fundamental plane and fundamental line are defined either relative to some 

previously defined coordinate system or in operational terms. The definitions are usually specified 

in a seemingly clear statement like: “The origin is the center of mass of the Earth, the fundamental 

plane (x-y) is the Earth equator and the x-axis points to the vernal equinox.”  Left as details are 

subtle issues like the fact that the center of mass of the Earth “moves” within the Earth, that the 

Earth is not a rigid body and the spin axis moves both in space and in the body, and that the vernal 

equinox is not a fixed direction. Some of these details are handled by specifying the epoch at which 

the orientation is defined, i.e. Earth mean equator of 2000.0 is frequently used. Further, it must be 

recognized that there is no fundamental inertial system to which all motion can be referred. Any 

system fixed in a planet, the Sun, or at the center of mass of the solar system is undergoing 

acceleration due to gravitational attraction from bodies inside and outside the solar system. The 

extent to which these accelerations are included in the dynamical model depends on accuracy 

requirements and is a decision left to the analyst. 

 
 
 
Like many other fields, conventions and definitions are often abused in the literature and this abuse 

will continue in this text. So "the equator" is jargon for the more precise statement "the plane 

through the center of mass with positive normal along the spin axis." Likewise, angles should 

always be defined as an angular rotation about a specified axis or as the angle between two vectors.  

The  angle  between a vector and a plane (e.g. latitude) is to be interpreted as the complement 

of the angle between the vector and the positive normal to the plane. The angle between two planes 

is defined as the angle between the positive normals to each plane. The more precise definitions 

often offer computational convenience. For example, after checking the orthogonality of the 

direction cosines of the positive unit normal (usually +z axis) and the direction cosines of the 

fundamental direction in the plane (usually +x), the direction cosines of the +y axis can be obtained 
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by a vector cross product. Thus, the entire transformation or rotation matrix is defined by 

orthogonal x and z unit vectors. 

 

Common origins for coordinate systems of interest in astrodynamics include: 

 

1.   Topocentric:  at an observer fixed to the surface of a planet, 

2.   Heliocentric, Geocentric, Areocentric, Selenocentric, etc.:  at the center of mass of the 

Sun, Earth, Mars, Moon, etc. 

3.   Barycentric:  at the center of mass of a system of bodies, i.e. the solar system, Earth- 

Moon system, etc. 

Astronomical observations were traditionally referred to topocentric coordinates since the local 

vertical and the direction of the spin axis could be readily measured at the site. For dynamics 

problems, topocentric coordinates might be used for calculating the trajectory of a baseball or a 

launch vehicle. For the former case, the rotation of the Earth and the variation in gravity with 

altitude can be ignored because these effects are small compared the errors introduced by the 

uncertainty in the aerodynamic forces acting on a spinning, rough sphere. For the latter case, these 

effects cannot be ignored; but, gravitational attraction of the Sun and Moon might be ignored for 

approximate launch trajectory calculations. The decision is left to the analyst and is usually base 

on "back of the envelope" calculations of the order of magnitude of the effect compared to the 

desired accuracy. 

 
 
 
 
 
 
 
 
Heliocentric, areocentric, etc. coordinates are traditionally used for calculating and specifying the 

orbits of both natural and artificial satellites when the major gravitational attraction is due to the 

body at the origin. During calculation of lunar or interplanetary trajectories, the origin is shifted 

from one massive body to another as the relative gravitational importance changes; however, the 

fundamental plane is often kept as the Earth equator at some epoch. Often in what follows only 

Earth geocentric systems are discussed, but the definitions and descriptions generally apply to 

planets and moons. Geocentric systems are either terrestrial or celestial. Terrestrial systems are 

fixed to the rotating Earth and can be topocentric, geocentric, or geodetic. Celestial systems have 
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either the equator or the ecliptic as the fundamental plane and the vernal equinox as the 

fundamental direction. 

 

1.3.2 Spherical trigonometry 
 

Transformations of position and velocity vectors between coordinate systems are represented in 

matrix notation and developed by vector outer and inner products as mentioned above. However, 

the understanding of the basic concepts of spherical trigonometry is also a necessity when dealing 

with orbital mechanics. It is convenient to introduce the concept of the celestial sphere. The 

celestial sphere is a spherical surface of infinite radius. The location of the center of the celestial 

sphere is therefore unimportant. For example, one can think of the center as being simultaneously 

at the center of the Earth and Sun and observer. Any unit vector or direction can thus be represented 

as a point on the sphere and vice versa. For example, the Earth to Sun line and Sun to 

 

Earth lines could be represented by two points 180 degrees apart. Two distinct points on the sphere 

can be connected by a great circle formed by the intersection on the sphere of the plane formed 

by the two points and the center of the sphere. If the points are not coincident or 180° apart, the 

great circle is unique. 

 

The distance or length between two points on the surface is the central angle subtended by the 

points, which is also the shorter arc length on the great circle connecting the points. Three points, 

not on the same great circle, form the vertices of a spherical triangle. The three sides are the great 

circle arcs connecting each pair of vertices (0<a,b,c<π in Figure ). The length of a side of a spherical 

triangle is often referred to as simply the “side.” With each vertex is associated       an       “angle” 

( 0 < α, β, γ < π ) that is, the angle between the planes that form the adjacent sides. A spherical 

triangle has the following propertie 
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π < α + β + γ < 3π
 

0 < a + b + c < 2π
 

a + b > c, etc. 
Exercise 1-2. Draw a spherical triangle where both a+b+c is nearly zero and α+β+γ is nearly π. Draw  

a  spherical  triangle  where  both  a+b+c  is  nearly  2π  and  α+β+γ  is  nearly  3π.  Check  using the 

latter triangle. 

 

The solid angle subtended by the triangle is α+β+γ-π steradian, so if the sphere has radius R,  

the area of the spherical triangle is given by  

 

Area =R
2 

( α + β + γ – π ) 

A right spherical triangle has either a side or an angle of 90o and equations  can be reduced to two 

rules and Napier's Circle. Consider the latter case and wolog assume γ =90o. Napier's Circle, 

shown in Figure, is  created by putting the side opposite to the 90° angle at the top and proceeding 

around the triangle in the same direction to fill in the four remaining parts of the circle. The upper 

three parts are subtracted from 90°. Now consider any three parts of the triangle. The three parts 

will either be (1) “adjacent” parts, e.g. b, α and Figure. Napier’s circle.c in which case α would be 

called the “middle” part, or (2) two parts will be opposite the third part, e.g. b, α and β and β 

would be called the “opposite” part. Napier's Rules of Circular Parts are then: 

 
1.   The sine of the middle part equals the product of the tangents of the adjacent parts. 

2.   The sine of the middle part equals the product of the cosines of the opposite parts. 
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As stated above, the first equation is used when the three parts of interest in the triangle are adjacent,  

e.g.  a,  β  and  c  are  related  by  cos(β)=tan(a)cot(c),  which  can  be  verified  using equation. The 

second equation is used when one of the parts is opposite the other two, e.g.with b, α, and β: 

cos(β)=cos(b)sin(α), which can be verified using equation . Note that the quadrant is not always 

determined from the basic equation. Since all parts are less than π, quadrant  can  not  be  determined  

from  sine  but  can  be  determined  from  tangent  or  cosine. Therefore, care must be exercised in 

determining the quadrant. 

 

Fig. Napier's Circle 

1.4 The celestial sphere 

The two conventional celestial coordinate system , projected onto the celestial sphere, are shown 

in Figure below. The two great circles or fundamental planes of interest are the equator of the Earth 

and the ecliptic, i.e. the Earth-Moon barycenter-Sun orbital plane (often called the Earth- Sun 

plane). The line of intersection where the Sun, moving along the ecliptic, passes from the 

southern to the northern hemisphere, as seen by a geocentric observer, is called the first point of 

Aries or the vernal equinox
 
and is denoted γ. The vernal equinox is the fundamental direction

 

forcelestial systems. The positive direction is from the center of the Earth to the center of the Sun 

at the time of the vernal equinox. This convention is one of the few remaining concepts from 

Ptolemy. The angle between the equator and the ecliptic is known as the obliquity (ε). The 

obliquity for the Earth is approximately 23.45o  and changes about 0.013o per century. The two 

intersections of the ecliptic and the equator on the celestial sphere are known as the equinoctial 

points. When the Sun appears to move southward through the node, it is the autumnal equinox. 
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The vernal equinox occurs within a day of March 21 and the autumnal occurs within a day of 

September 21. At either equinox, the length of the day and night are equal at all points on the Earth 

and the Sun rises (sets) due east (west). When the Sun has maximum northerly declination it is 

summer solstice in the northern hemisphere and winter solstice in the southern hemisphere, and 

conversely. At summer solstice in the northern hemisphere, the longest day occurs and the Sun 

rises and sets at maximum northerly azimuth. Nevertheless, due to the eccentricity of the orbit of 

the Earth, neither the earliest sunrise nor latest sunset occurs at summer solstice. A fact that, when 

properly phrased, has won small wagers from non-celestial mechanicians. 

 

 
 

Figure 1-3. Celestial coordinate systems. 

 

It must be recognized that neither the ecliptic nor the equator are fixed planes. Variations in the 

vernal equinox due to the motion of these planes are termed precession and nutation. Precession 

is the secular component that produces a westward change in the direction of γ that is
 

linear with time. Nutation is the quasi-periodic residual that averages to zero over many 

years. The mean equator or ecliptic refers to the position that includes only precession. The true 

equator or ecliptic refers to the position that includes both precession and nutation. The Earth 

equator is not fixed in space primarily due to lunar and solar gravitational torques applied to the 

non-spherical Earth. The luni-solar precession causes the mean pole of the Earth to move about 
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50" of arc per year and luni-solar nutation has an amplitude of about 9" of arc over an 18.6 year
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cycle. The cycle of 18.6 years is how long it takes for the orbital planes of the Earth-Moon and the 

Earth-Sun to return to the same relative configuration. Variations in the ecliptic are primarily due 

to planetary gravitational forces producing changes in the orbit of Earth-Moon barycenter about 

the Sun. If the equator was fixed, the planetary precession of the ecliptic would cause γ to move 

along the equator about 12" of arc per century and the obliquity would decrease by 47" per 

century. To eliminate the need to consider precession and nutation in dynamics problems, the 

coordinate system is usually specified at some epoch, i.e. mean equator and mean equinox of 

2000.0, otherwise, known as J2000. In this case, Earth based observations must be corrected for 

precession  and  nutation.  Transformations  between  the  J2000  coordinates  and  the  true  or 

apparent systems are then required . 

 

Another plane that is use in the celestial system is the invariant plane. The positive normal to the 

invariant plane is along the total angular momentum (i.e. rotational plus orbital) of the solar system. 

In Newtonian mechanics, only gravitational attraction from the distant stars and unmodeled masses 

can cause this plane to change orientation. 

 

Consider   some   point   P   in   the   geocentric 

reference system of Figure . The position of                                         N 

point P is projected onto each fundamental plane.                          ν 

In the equatorial system the angle from γ to this
 

projection is call right ascension ( 0 ≤ α < 2π )                                              P
 

and the angle between the point P and the equator                                                   β 

is called the declination ( –π ⁄   2 ≤ δ ≤ π ⁄   2 ). In                                          δ

 

the ecliptic system the corresponding angles are                                    λ 

the celestial longitude ( 0 ≤ λ < 2π ) and celestial                                  ε 

α 

latitude   ( –π ⁄   2 ≤ β ≤ π ⁄   2 ).   The   “celestial”                     γ

 

qualifier is to assure no confusion with traditional 

terrestrial   longitude   and   latitude.   When   the 

context is clear, the qualifier is often omitted.

“Celestial” is also sometimes replaced with 

“ecliptic.” The rotation matrix from the ecliptic 

system  to  the  equatorial  system  is  a  single 

 Transforming between celestial 

coordinate systems
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rotation about the x axis by the obliquity ε. As the following example illustrates, 

solving spherical   trigonometry problems often involves drawing numerous spherical 

triangle combinations until the proper combination of knowns and unknowns appears. 

 

1.4.1 Terrestrial coordinate systems 

Astrodynamics problems are generally framed in either the ecliptic or equatorial celestial 

coordinate system. The locations of observers, receivers, transmitters, and observation targets 

are usually specified in one of the terrestrial coordinate systems. A terrestrial coordinate 

system is “fixed” in the rotating Earth and is either geocentric or topocentric. Transformations 

between terrestrial and celestial coordinates are an essential part of orbital mechanics problems 

involving  Earth  based  observations.  These  transformations  are  defined  by  the  physical 

ephemeris, that is, the definition of the pole location and the rotational orientation of the 

Earth. Precise definitions must include elastic deviations  in the solid Earth, plate tectonics , 

motion of the spin axis in the Earth, and numerous other effects. The largest of these effects is 

polar motion which produces deviations between the instantaneous and mean spin axis of order 

10 meters. Pole location is determined by numerous observation stations and published by 

international agreement. Irregularities in the rotational rate of the Earth can change the length 

of the day by a few milliseconds over time scales of interest for orbital mechanics  and  

astronomy  problems.  One millisecond ≈ 0.46 meters  in  longitude  at  theequator. Rotational 

variations are also monitored and included in the definition of universal time to be discussed 

later. Specific effect to be included depend on the desired accuracy and the choice is left to the 

analyst. 

 
The fundamental terrestrial coordinate system has the origin at the center of mass and the 

equator as the fundamental plane. The intersection of the reference meridian with the equator 

is the fundamental direction. The origin, the equator, and reference meridian are defined 

operationally by measurements made at a number of “fixed” stations on the surface. In 

the past, the prime meridian was the Greenwich meridian and was defined by the center of a 

plaque at Greenwich. The phrase “reference meridian” is used to clearly distinguish the 

fundamental difference in definitions. Nevertheless, the reference meridian is often referred 

to as the Greenwich meridian, and that practice will be used herein. For remote solid planets, 
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prime meridians are still defined by easily observed sharp surface features. An observer’s 

local meridian is defined by the plane through the observer that also contains the spin axis 

of the Earth. An observer's longitude (λ) is the angle between the reference meridian and the local 

meridian, more precisely referred to as “terrestrial longitude.” Since the spin axis moves in the 

Earth, an observers true longitude deviates from the mean longitude. 

 

Latitude  is specified  as either  geodetic  latitude  (φ) or geocentric  latitude ( φ' ) Geocentric 

latitude, often called latitude, is the angle between the equator and the observer. In the geocentric 

system, the location of a point is specified by the radius from the center of the Earth, 

geocentric latitude and longitude. To satisfy the right hand rule convention for rotations 

about the pole, longitude should be measured east; but, is often measured west. To be safe, 

always specify the convention. For example, 75oW = 285oE longitude. Colatitude is the 

angle between the position vector and the normal to the equator and is unambiguous, but 

latitude is sometimes specified by using a sign convention e.g. -37.5°=37.5°S. Also note that 

geocentric latitude is often denoted by φ, i.e. the “prime” is omitted when the meaning is 

clear. 

Geodetic coordinates are generally limited to points near the surface of the Earth. 

Geodetic latitude is the angle between the local vertical and the equator. The local vertical 

is determined by the local “gravity” force which is the combination of gravity and a 

centrifugal contribution due to rotation. An equipotential surface for the two terms is nearly 

an ellipsoid of revolution. Hence it is convenient to define a reference ellipsoid (spheroid) 

for the mean equipotential surface of the Earth which is approximately the mean sea level. 

This ellipsoid, which is symmetric about  the  equator  and  has  rotational symmetry about 

the pole, is defined by the equatorial radius (a) and the flattening (f). The polar radius 

is given by b =a(1-f). Reference values are a=6378137m and 1/f=298.25722. Figure 

shows a cross section of the reference ellipsoid with greatly exaggerated flattening. For 

the figure, it is assumed that the cross section contains the x-axis, so the equation of the 

elliptical cross-section is 
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f(x,z) =
𝑥2

𝑎2
+

𝑧2

𝑏2
− 1 = 0 

 
1.5 The ecliptic 

 The ecliptic is the mean plane of the apparent path in the Earth's sky that the Sun follows over 

the course of one year; it is the basis of the ecliptic coordinate system. This plane of reference 

is coplanar with Earth's orbit around the Sun (and hence the Sun's apparent path around Earth). 

The ecliptic is not normally noticeable from Earth's surface because the planet's rotation carries 

the observer through the daily cycles of sunrise and sunset, which obscure the Sun's apparent 

motion against the background of stars during the year 

  

1.6 Motion of vernal equinox 

Now that you have your bearings, let's take a look at the position and motion of the 

closest star to us, the Sun. Every day the Sun rises in an easterly direction, reaches 

maximum height when it crosses the meridian at local noon, and sets in a westerly 
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direction and it takes the Sun on average 24 hours to go from noon position to noon 

position the next day. The ``noon position'' is when the Sun is on the meridian on a 

given day. Our clocks are based on this solar day. The exact position on the horizon 

of the rising and setting Sun varies throughout the year (remember though, the 

celestial equator always intercepts the horizon at exactly East and exactly West). 

Also, the time of the sunrise and sunset changes throughout the year, very 

dramatically so if you live near the poles, so the solar day is measured from ``noon 

to noon''. 

The Sun appears to drift eastward with respect to the stars (or lag behind the stars) over a 

year's time. It makes one full circuit of 360 degrees in 365.24 days (very close to 1 degree or 

twice its diameter per day). This drift eastward is now known to be caused by the motion of 

the Earth around the Sun in its orbit. 
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The apparent yearly path of the Sun through the stars is called the ecliptic. This circular path 

is tilted 23.5 degrees with respect to the celestial equator because the Earth's rotation axis is 

tilted by 23.5 degrees with respect to its orbital plane. Be sure to keep distinct in your mind the 

difference between the slow drift of the Sun along the ecliptic during the year and the fast 

motion of the rising and setting Sun during a day. 

 

1.7 Sidereal time 

Sidereal time is a timekeeping system that astronomers use to locate celestial objects. Using 

sidereal time, it is possible to easily point a telescope to the proper coordinates in the night 

sky. Briefly, sidereal time is a "time scale that is based on Earth's rate of rotation measured 

relative to the fixed stars". 
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1.8 Solar Time 
Solar time is a calculation of the passage of time based on the position of the Sun in the sky. 

The fundamental unit of solar time is the day. Two types of solar time are apparent solar 

time (sundial time) and mean solar time (clock time). 

 

1.9 Standard Time 
Standard time is the synchronization of clocks within a geographical area or region to a single 

time standard, rather than using solar time or a locally chosen meridian to establish a local 

mean time standard. 

 

 

1.10 The earth‘s atmosphere 

The atmosphere of Earth is the layer of gases, commonly known as air, that surrounds the 

planet Earth and is retained by Earth's gravity. The atmosphere of Earth protects life on Earth 

by creating pressure allowing for liquid water to exist on the Earth's surface, absorbing 

ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and 

reducing temperature extremes between day and night (the diurnal temperature variation). 
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➢ Exosphere 

➢ Thermosphere 

➢ Mesosphere 

➢ Stratosphere 

➢ Troposphere 

1.11 Greenwich mean sidereal time  
 

(GMST) is the angle between the Greenwich meridian and the mean vernal equinox and 

would be sensitive to the same variations in rotation as UT1. 

 

 

 

1.12 The many body problem 

1.12.1 KEPLER'S LAWS 

1. First Law-The orbit of each planet is an ellipse, with the sun at a focus . 

2. Second Law-The line joining the planet to the sun sweeps out equal areas in equal times. 

3. Third Law-The square of the period o f a planet is proportional to the cube of its mean 

distance from the sun. 
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1.12.2 Newton's Laws of Motion. 

1. First Law-Every body continues in its state of rest or of uniform motion in a straight 

line unless it is compelled to change that state by forces impressed upon it. 

2. Second Law-The rate of change of momentum is proportional to the force impressed 

and is in the same direction as that force. 

3. Third Law-To every action there is always opposed an equal reaction. 

The second law can be expressed mathematically as follows: 

 

Newton's Law of Motion 

 
Relative Motion of Two Bodies 

Newton's Law of Universal Gravitation. Besides enunciating his three laws of motion in the 

Principia, Newton fonnulated the law of gravity by stating that any two bodies attract one 

another with a force proportional to the product of their masses and inversely proportional to 
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the square of the distance between them. We can express this law mathematically in vector 

notation as : 

 
where F 9 is the force on mass m due to mass M and r is the vector from M to m. The universal 

gravitational constant, G, has the value 6.67Ox 1 0-8 dyne cm2 Igm2 • 

 

In this section we shall examine in some detail the motion of a body (i.e., an earth satellite , a 

lunar or interplanetary probe , or a planet). At any given time in its journey, the body is being 

acted upon by several gravitational masses and may even be experiencing other forces such as 

drag, thrust and solar radiation pressure . For this examination we shall assume a "system" of 

nobodies (m}. m2• m3 . . . f'T"h) one of which is the body whose motion we wish to study-call 

it the jth body , m j. The vector sum o f all gravitational forces and other external forces acting 

on m . will be used to determine the equation of motion. To determine the gravitational forces 

we shall apply Newton's law of universal gravitation. In addition, the jth body may be a rocket 

expelling mass (i.e., propellants) to produce thrust; the motion may be in an atmosphere where 

drag effects are present; solar radiation may impart some pressure on the body; etc. All of these 

effects must be considered in the general equation of motion. An important force, not yet 

mentioned is due to the non-spherical shape of the planets. The earth is flattened at the poles 

and bulged at the equator; the moon is elliptical about the poles and about the equator. Newton's 

law of universal gravitation applies only if the bodies are spherical and if the mass is evenly 

distributed in spherical shells. Thus, variations are introduced to the gravitational forces due 

primarily to the shape of the bodies. The magnitude of this force for a near-earth satellite is on 

the order of 1 0-3 g's. Although small, this force is responsible for several important effects not 

predictable from the studies of Kepler and Newton. The first step in our analysis will b e t o 

choose a "suitable" coordinate system in which to express the motion. This is not a simple task 

since any coordinate system we choose has a fair degree of uncertainty as to its inertial 

qualities. Without losing generality let us assume a "suitable" coordinate system ( X, Y, Z) in 

which the positions of the n masses are known r1 r2,  rn' This system is illustrated in Figure 
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The N-Body Problem 

 

1.13 Lagrange-Jacobi identity 
 

1.14 The circular restricted three body problem 
 

 

1.15 Libration points 
A Lagrange point is a location in space where the combined gravitational forces of two large 

bodies, such as Earth and the sun or Earth and the moon, equal the centrifugal force felt by a 

much smaller third body. The interaction of the forces creates a point of equilibrium where a 

spacecraft may be "parked" to make observations. 

 

There are five Lagrange points around major bodies such as a planet or a star. Three of them 

lie along the line connecting the two large bodies. In the Earth-sun system, for example, the 

first point, L1, lies between Earth and the sun at about 1 million miles from Earth. L1 gets an 
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uninterrupted view of the sun, and is currently occupied by the Solar and Heliospheric 

Observatory (SOHO) and the Deep Space Climate Observatory. 

 
L2 also lies a million miles from Earth, but in the opposite direction of the sun. At this point, 

with the Earth, moon and sun behind it, a spacecraft can get a clear view of deep space. NASA's 

Wilkinson Microwave Anisotropy Probe (WMAP) is currently at this spot measuring the 

cosmic background radiation left over from the Big Bang. The James Webb Space Telescope 

will move into this region in 2018. 

 
The third Lagrange point, L3, lies behind the sun, opposite Earth's orbit. For now, science has 

not found a use for this spot, although science fiction has. “NASA is unlikely to find any use 

for the L3 point since it remains hidden behind the sun at all times,” NASA wrote on a web 

page about Lagrange points. “The idea of a hidden 'Planet-X' at the L3 point has been a popular 

topic in science fiction writing. The instability of Planet X's orbit (on a time scale of 150 years) 

didn't stop Hollywood from turning out classics like 'The Man from Planet X.'” 

L1, L2 and L3 are all unstable points with precarious equilibrium. If a spacecraft at L3 drifted 

toward or away from Earth, it would fall irreversibly toward the sun or Earth, "like a barely 

balanced cart atop a steep hill," according to astronomer Neil DeGrasse Tyson. Spacecraft 

must make slight adjustments to maintain their orbits. 

 

Points L4 and L5, however, are stable, "like a ball in a large bowl," according to the European 

Space Agency. These points lie along Earth's orbit at 60 degrees ahead of and behind Earth, 

forming the apex of two equilateral triangles that have the large masses (Earth and the sun, for 

example) as their vertices. 

Because of the stability of these points, dust and asteroids tend to accumulate in these regions. 

Asteroids that surround the L4 and L5 points are called Trojans in honor of the asteroids 

Agamemnon, Achilles and Hector (all characters in the story of the siege of Troy) that are 

between Jupiter and the Sun. NASA states that there have been thousands of these types of 

asteroids found in our solar system, including Earth’s only known Trojan asteroid, 2010 TK7. 
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Diagram of the Lagrange points associated with the sun-Earth system 

 

1.16 Relative Motion in the N-body problem 
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UNIT-II 

 

Two Body Problem 

2 Unit-II Two Body Problem 
In the previous lecture, we discussed a variety of conclusions we could make about the motion 

of an arbitrary collection of particles, subject only to a few restrictions. Today, we will consider 

a much simpler, very well-known problem in physics - an isolated system of two particles 

which interact through a central potential. This model is often referred to simply as the two-

body problem. In the case of only two particles, our equations of motion reduce simply to  

m1¨r1 = F21 ; m2¨r2 = F12 

2.1 Equations of motion 

2.1.1 Newton's Laws of Motion and Universal Gravitation 
Newton's laws of motion describe the relationship between the motion of a particle and the 

forces acting on it. 

The first law states that if no forces are acting, a body at rest will remain at rest, and a body in 

motion will remain in motion in a straight line. Thus, if no forces are acting, the velocity (both 

magnitude and direction) will remain constant. 

The second law tells us that if a force is applied there will be a change in velocity, i.e. an 

acceleration, proportional to the magnitude of the force and in the direction in which the force 

is applied. This law may be summarized by the equation 

F =ma 

Where F is the force, m is the mass of the particle, and a is the acceleration. 

The third law states that if body 1 exerts a force on body 2, then body 2 will exert a force of 

equal strength, but opposite in direction, on body 1. This law is commonly stated, "for every 

action there is an equal and opposite reaction". 

In his law of universal gravitation, Newton states that two particles having masses m1 and m2 

and separated by a distance r are attracted to each other with equal and opposite forces directed 

along the line joining the particles. The common magnitude F of the two forces is 

 

Where G is an universal constant, called the constant of gravitation, and has the value 
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6.67259x10-11 N-m2/kg2 (3.4389x10-8 lb-ft2/slug2). 

Where F is the force, m is the mass of the particle, and a is the acceleration. 

 

Let's now look at the force that the Earth exerts on an object. If the object has a mass m, and 

the Earth has mass M, and the object's distance from the center of the Earth is r, then the force 

that the Earth exerts on the object is GmM /r2 . If we drop the object, the Earth's gravity will 

cause it to accelerate toward the center of the Earth. By Newton's second law (F = ma), this 

acceleration g must equal (GmM /r2)/m, or 

 

At the surface of the Earth this acceleration has the valve 9.80665 m/s2 (32.174 ft/s2). 

Many of the upcoming computations will be somewhat simplified if we express the product 

GM as a constant, which for Earth has the value 3.986005x1014 m3/s2 (1.408x1016 ft3/s2). The 

product GM is often represented by the Greek letter . 

Mathematical Constants 

 

3.141592653589793 

e 2.718281828459045 

Physical Constants 

Speed of light (c) 299,792,458 m/s  

Constant of gravitation (G) 6.67259x10-11 Nm2/kg2  

Universal gas constant (R) 8,314.4621 J/kmol-K  

Stefan-Boltzmann constant () 5.670373x10-8 W/m2-K4  

Acceleration of gravity (g) 9.80665 m/s2  

Standard atmosphere, sea level 101,325 Pa  

Astronomical Constants 
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Astronomical unit (AU) 149,597,870 km  

Light year (ly) 9.460530x1012 km  

Parsec (pc) 3.261633 ly  

Sidereal year 365.256366 days  

Mass of Sun 1.9891x1030 kg  

Radius of Sun 696,000 km  

Mass of Earth 5.9737x1024 kg  

Equatorial radius of Earth 6,378.137 km  

Earth oblateness 1/298.257    

Obliquity of the ecliptic, epoch 2000   23.4392911 degrees  

Mean lunar distance 384,403 km  

Radius of Moon 1,738 km  

Mass of Moon 7.348x1022 kg  

Luminosity of Sun 3.839x1026 W  

Solar constant, at 1 AU 1,366 W/m2  

Solar maxima 1990 + 11n (date)  

Spaceflight Constants 

GM (Sun) 1.32712438x1020 m3/s2  

GM (Earth) 3.986005x1014 m3/s2  

GM (Moon) 4.902794x1012 m3/s2  

GM (Mars) 4.282831x1013 m3/s2  

J2 (Earth) 0.00108263    

J2 (Moon) 0.0002027    

J2 (Mars) 0.00196045    
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2.2 General characteristics of motion for different orbits 

Through a lifelong study of the motions of bodies in the solar system, Johannes Kepler 

(1571-1630) was able to derive three basic laws known as Kepler's laws of planetary motion. 

Using the data compiled by his mentor Tycho Brahe (1546-1601), Kepler found the following 

regularities after years of laborious calculations: 

1. All planets move in elliptical orbits with the sun at one focus. 

2. A line joining any planet to the sun sweeps out equal areas in equal times. 

3. The square of the period of any planet about the sun is proportional to the cube of the planet's 

mean distance from the sun. 

These laws can be deduced from Newton's laws of motion and law of universal gravitation. 

Indeed, Newton used Kepler's work as basic information in the formulation of his 

gravitational theory. 

As Kepler pointed out, all planets move in elliptical orbits, however, we can learn much about 

planetary motion by considering the special case of circular orbits. We shall neglect the forces 

between planets, considering only a planet's interaction with the sun. These considerations 

apply equally well to the motion of a satellite about a planet. 

Let's examine the case of two bodies of masses M and m moving in circular orbits under the 

influence of each other's gravitational attraction. The center of mass of this system of two 

bodies lies along the line joining them at a point C such that mr = MR. The large body of mass 

M moves in an orbit of constant radius R and the small body of mass m in an orbit of constant 

radius r, both having the same angular velocity . For this to happen, the gravitational force 

acting on each body must provide the necessary centripetal acceleration. Since these 

gravitational forces are a simple action-reaction pair, the centripetal forces must be equal but 

opposite in direction. That is, m 2r must equal M 2R. The specific requirement, then, is that 
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the gravitational force acting on either body must equal the centripetal force needed to keep it 

moving in its circular orbit, that is  

 

If one body has a much greater mass than the other, as is the case of the sun and a planet or the 

Earth and a satellite, its distance from the center of mass is much smaller than that of the other 

body. If we assume that m is negligible compared to M, then R is negligible compared to r. 

Thus, equation above then becomes 

 

If we express the angular velocity in terms of the period of revolution,  = 2 /P, we obtain 

 

Where P is the period of revolution. This is a basic equation of planetary and satellite motion. 

It also holds for elliptical orbits if we define r to be the semi-major axis (a) of the orbit. 

A significant consequence of this equation is that it predicts Kepler's third law of planetary 

motion, that is P2~r3. 
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PROBLEM 1.1  

 

A spacecraft's engine ejects mass at a rate of 30 kg/s with an exhaust velocity of 3,100 m/s.  

The pressure at the nozzle exit is 5 kPa and the exit area is 0.7 m2.  What is the thrust of the 

engine in a vacuum? 
 

 

SOLUTION, 

 

   Given:  q = 30 kg/s 

           Ve = 3,100 m/s 

           Ae = 0.7 m2 

           Pe = 5 kPa = 5,000 N/m2 

           Pa = 0 

     

   Equation  

 

      F = q × Ve + (Pe - Pa) × Ae 

      F = 30 × 3,100 + (5,000 - 0) × 0.7 

      F = 96,500 N 

 

In celestial mechanics where we are dealing with planetary or stellar sized bodies, it is often 

the case that the mass of the secondary body is significant in relation to the mass of the primary, 

as with the Moon and Earth. In this case the size of the secondary cannot be ignored. The 
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distance R is no longer negligible compared to r and, therefore, must be carried through the 

derivation. Equation becomes 

 

More commonly the equation is written in the equivalent form 

 

Where a is the semi-major axis. The semi-major axis used in astronomy is always the primary-

to-secondary distance, or the geocentric semi-major axis. For example, the Moon's mean 

geocentric distance from Earth (a) is 384,403 kilometers. On the other hand, the Moon's 

distance from the barycentre (r) is 379,732 km, with Earth's counter-orbit (R) taking up the 

difference of 4,671 km. 

Kepler's second law of planetary motion must, of course, hold true for circular orbits. In such 

orbits both  and r are constant so that equal areas are swept out in equal times by the line 

joining a planet and the sun. For elliptical orbits, however, both  and r will vary with time. 

Let's now consider this case. 

Figure 4.5 shows a particle revolving around C along 

some arbitrary path. The area swept out by the radius 

vector in a short time interval t is shown shaded. This 

area, neglecting the small triangular region at the end, is 

one-half the base times the height or approximately r(r

t)/2. This expression becomes more exact as t 

approaches zero, i.e. the small triangle goes to zero more 

rapidly than the large one. The rate at which area is being 

swept out instantaneously is therefore 

 

For any given body moving under the influence of a central force, the value r2 is constant. 

Let's now consider two points P1 and P2 in an orbit with radii r1 and r2, and 

velocities v1 and v2. Since the velocity is always tangent to the path, it can be seen that if  is 

the angle between r and v, then 
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where vsin  is the transverse component of v. 

Multiplying through by r, we have 

 

or, for two points P1 and P2 on the orbital path 

 

Note that at periapsis and apoapsis,  = 90 degrees. 

Thus, letting P1 and P2 be these two points we get 

 

Let's now look at the energy of the above particle at 

points P1 and P2. Conservation of energy states that the sum of the kinetic energy and the 

potential energy of a particle remains constant. The kinetic energy T of a particle is given 

by mv2/2 while the potential energy of gravity V is calculated by the equation -GMm/r. 

Applying conservation of energy we have 

 

From equations (4.14) and (4.15) we obtain 

 

Rearranging terms we get 

 

The eccentricity e of an orbit is given by 
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If the semi-major axis a and the eccentricity e of an orbit are known, then the periapsis and 

apoapsis distances can be calculated by 

 

 

 

2.3 Relations between position and time for different orbits 
 

2.4 Expansions in elliptic motion 
 

2.5 Orbital Elements 
To mathematically describe an orbit one must define six quantities, called orbital elements. 

They are 

1. Semi-Major Axis, a 

2. Eccentricity, e 

3. Inclination, i 

4. Argument of Periapsis,  

5. Time of Periapsis Passage, T 

6. Longitude of Ascending Node,  

An orbiting satellite follows an oval shaped path 

known as an ellipse with the body being orbited, 

called the primary, located at one of two points 

called foci. An ellipse is defined to be a curve with 

the following property: for each point on an ellipse, 

the sum of its distances from two fixed points, 

called foci, is constant (see Figure 4.2). The longest 

and shortest lines that can be drawn through the 

center of an ellipse are called the major axis and 

minor axis, respectively. The semi-major axis is 

one-half of the major axis and represents a 

satellite's mean distance from its primary. Eccentricity is the distance between the foci divided 
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by the length of the major axis and is a number between zero and one. An eccentricity of zero 

indicates a circle. 

Inclination is the angular distance between a satellite's orbital plane and the equator of its 

primary (or the ecliptic plane in the case of heliocentric, or sun centered, orbits). An inclination 

of zero degrees indicates an orbit about the primary's equator in the same direction as the 

primary's rotation, a direction called prograde (or direct). An inclination of 90 degrees indicates 

a polar orbit. An inclination of 180 degrees indicates a retrograde equatorial orbit. 

A retrograde orbit is one in which a satellite moves in a direction opposite to the rotation of its 

primary. 

Periapsis is the point in an orbit closest to the primary. The opposite of periapsis, the farthest 

point in an orbit, is called apoapsis. Periapsis and apoapsis are usually modified to apply to the 

body being orbited, such as perihelion and aphelion for the Sun, perigee and apogee for Earth, 

perijove and apojove for Jupiter, perilune and apolune for the Moon, etc. The argument of 

periapsis is the angular distance between the ascending node and the point of periapsis (see 

Figure 4.3). The time of periapsis passage is the time in which a satellite moves through its 

point of periapsis. 

Nodes are the points where an orbit crosses a plane, such as a satellite crossing the Earth's 

equatorial plane. If the satellite crosses the plane going from south to north, the node is 

the ascending node; if moving from north to south, it is the descending node. The longitude of 

the ascending node is the node's celestial longitude. Celestial longitude is analogous to 

longitude on Earth and is measured in degrees counter-clockwise from zero with zero longitude 

being in the direction of the vernal equinox. 
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In general, three observations of an object in orbit are required to calculate the six orbital 

elements. Two other quantities often used to describe orbits are period and true 

anomaly. Period, P, is the length of time required for a satellite to complete one orbit. True 

anomaly, , is the angular distance of a point in an orbit past the point of periapsis, measured 

in degrees. 

2.5.1 Types Of Orbits 
For a spacecraft to achieve Earth orbit, it must be launched to an elevation above the Earth's 

atmosphere and accelerated to orbital velocity. The most energy efficient orbit, that is one that 

requires the least amount of propellant, is a direct low inclination orbit. To achieve such an 

orbit, a spacecraft is launched in an eastward direction from a site near the Earth's equator. The 

advantage being that the rotational speed of the Earth contributes to the spacecraft's final orbital 

speed. At the United States' launch site in Cape Canaveral (28.5 degrees north latitude) a due 

east launch results in a "free ride" of 1,471 km/h (914 mph). Launching a spacecraft in a 

direction other than east, or from a site far from the equator, results in an orbit of higher 

inclination. High inclination orbits are less able to take advantage of the initial speed provided 

by the Earth's rotation, thus the launch vehicle must provide a greater part, or all, of the energy 

required to attain orbital velocity. Although high inclination orbits are less energy efficient, 

they do have advantages over equatorial orbits for certain applications. Below we describe 

several types of orbits and the advantages of each: 

➢ Geosynchronous orbits (GEO) are circular orbits around the Earth having a period of 

24 hours. A geosynchronous orbit with an inclination of zero degrees is called 

a geostationary orbit. A spacecraft in a geostationary orbit appears to hang motionless 

above one position on the Earth's equator. For this reason, they are ideal for some 

types of communication and meteorological satellites. A spacecraft in an inclined 

geosynchronous orbit will appear to follow a regular figure-8 pattern in the sky once 

every orbit. To attain geosynchronous orbit, a spacecraft is first launched into an 

elliptical orbit with an apogee of 35,786 km (22,236 miles) called a geosynchronous 

transfer orbit (GTO). The orbit is then circularized by firing the spacecraft's engine at 

apogee. 

➢ Polar orbits (PO) are orbits with an inclination of 90 degrees. Polar orbits are useful 

for satellites that carry out mapping and/or surveillance operations because as the 
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planet rotates the spacecraft has access to virtually every point on the planet's 

surface. 

➢ Walking orbits: An orbiting satellite is subjected to a great many gravitational 

influences. First, planets are not perfectly spherical and they have slightly uneven 

mass distribution. These fluctuations have an effect on a spacecraft's trajectory. Also, 

the sun, moon, and planets contribute a gravitational influence on an orbiting satellite. 

With proper planning it is possible to design an orbit which takes advantage of these 

influences to induce a precession in the satellite's orbital plane. The resulting orbit is 

called a walking orbit, or precessing orbit. 

➢ Sun synchronous orbits (SSO) are walking orbits whose orbital plane precesses with 

the same period as the planet's solar orbit period. In such an orbit, a satellite crosses 

periapsis at about the same local time every orbit. This is useful if a satellite is carrying 

instruments which depend on a certain angle of solar illumination on the planet's 

surface. In order to maintain an exact synchronous timing, it may be necessary to 

conduct occasional propulsive maneuvers to adjust the orbit. 

➢ Molniya orbits are highly eccentric Earth orbits with periods of approximately 12 

hours (2 revolutions per day). The orbital inclination is chosen so the rate of change of 

perigee is zero, thus both apogee and perigee can be maintained over fixed latitudes. 

This condition occurs at inclinations of 63.4 degrees and 116.6 degrees. For these 

orbits the argument of perigee is typically placed in the southern hemisphere, so the 

satellite remains above the northern hemisphere near apogee for approximately 11 

hours per orbit. This orientation can provide good ground coverage at high northern 

latitudes. 
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2.6 Relation between orbital elements and position and velocity 

2.7 Launch vehicle ascent trajectories 

2.7.1 Launch of a Space Vehicle 
The launch of a satellite or space vehicle consists 

of a period of powered flight during which the 

vehicle is lifted above the Earth's atmosphere and 

accelerated to orbital velocity by a rocket, or 

launch vehicle. Powered flight concludes at 

burnout of the rocket's last stage at which time the 

vehicle begins its free flight. During free flight the 

space vehicle is assumed to be subjected only to 

the gravitational pull of the Earth. If the vehicle 

moves far from the Earth, its trajectory may be affected by the gravitational influence of the 

sun, moon, or another planet. 

A space vehicle's orbit may be determined from the position and the velocity of the vehicle at 

the beginning of its free flight. A vehicle's position and velocity can be described by the 

variables r, v, and , where r is the vehicle's distance from the center of the Earth, v is its 

velocity, and  is the angle between the position and the velocity vectors, called the zenith 

angle (see Figure 4.7). If we let  r1, v1, and 1 be the initial (launch) values of  r, v, and , 

then we may consider these as given quantities. If we let point P2 represent the perigee, then 

equation (4.13) becomes 

 

Substituting equation (4.23) into (4.15), we can obtain an equation for the perigee radius Rp. 

 

Multiplying through by -Rp2/(r12v12) and rearranging, we get 

 

Note that this is a simple quadratic equation in the ratio (Rp/r1) and that 2GM /(r1 × v12) is a 

nondimensional parameter of the orbit. 
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Solving for (Rp/r1) gives 

 

Like any quadratic, the above equation yields two answers. The smaller of the two answers 

corresponds to Rp, the periapsis radius. The other root corresponds to the apoapsis radius, Ra. 

Please note that in practice spacecraft launches are usually terminated at either perigee or 

apogee, i.e.  = 90. This condition results in the minimum use of propellant. 

Equation (4.26) gives the values of Rp and Ra from which the eccentricity of the orbit can be 

calculated, however, it may be simpler to calculate the eccentricity e directly from the 

equation 

 

To pin down a satellite's orbit in space, we need to know the angle , the true anomaly, from 

the periapsis point to the launch point. This angle is given by 

 

In most calculations, the complement of the zenith angle 

is used, denoted by . This angle is called the flight-path 

angle, and is positive when the velocity vector is directed 

away from the primary as shown in Figure 4.8. When 

flight-path angle is used, equations (4.26) through (4.28) 

are rewritten as follows: 
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The semi-major axis is, of course, equal to (Rp+Ra)/2, though it may be easier to calculate it 

directly as follows: 

 

If e is solved for directly using equation (4.27) or (4.30), and a is solved for using equation 

(4.32), Rp and Ra can be solved for simply using equations (4.21) and (4.22). 

Orbit Tilt, Rotation and Orientation 

Above we determined the size and shape of the orbit, but to determine the orientation of the 

orbit in space, we must know the latitude and longitude and the heading of the space vehicle 

at burnout. 

 

Figure 4.9 above illustrates the location of a space vehicle at engine burnout, or orbit 

insertion.  is the azimuth heading measured in degrees clockwise from north,  is the 

geocentric latitude (or declination) of the burnout point,  is the angular distance between 

the ascending node and the burnout point measured in the equatorial plane, and  is the 

angular distance between the ascending node and the burnout point measured in the orbital 

plane. 1 and 2 are the geographical longitudes of the ascending node and the burnout point 

at the instant of engine burnout. Figure 4.10 pictures the orbital elements, where i is the 

inclination,  is the longitude at the ascending node,  is the argument of periapsis, and  is 

the true anomaly. 

If , , and 2 are given, the other values can be calculated from the following relationships: 
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In equation (4.36), the value of  is found using equation (4.28) or (4.31). If  is positive, 

periapsis is west of the burnout point (as shown in Figure 4.10); if  is negative, periapsis is 

east of the burnout point. 

The longitude of the ascending node, , is measured in celestial longitude, while 1 is 

geographical longitude. The celestial longitude of the ascending node is equal to the local 

apparent sidereal time, in degrees, at longitude 1 at the time of engine burnout. Sidereal 

time is defined as the hour angle of the vernal equinox at a specific locality and time; it has 

the same value as the right ascension of any celestial body that is crossing the local meridian 

at that same instant. At the moment when the vernal equinox crosses the local meridian, the 

local apparent sidereal time is 00:00.  

 

 

2.8 General aspects of satellite injection 
 

Placing a satellite into geosynchronous orbit requires an enormous amount of 

energy. The launch process can be divided into two phases: the launch phase and the 

orbit injection phase. 

The Launch Phase 

 

During the launch phase, the launch vehicle places the satellite into the transfer orbit-

-an eliptical orbit that has at its farthest point from earth (apogee) the 

geosynchronous elevation of 22,238 miles and at its nearest point (perigee) an 

elevation of usually not less than 100 miles as shown below in Figure. 
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The Orbit Injection Phase 

 

The energy required to move the satellite from the elliptical transfer orbit into the 

geosynchronous orbit is supplied by the satellite’s apogee kick motor (AKM). This 

is known as the orbit injection phase. 

 
Figure 2The Elliptical Transfer Orbit 

2.8.1 Satellite Launch Procedure 

The four orbit stages involved in the satellite launch procedure are as follows: 

1. Circular low earth orbit  

2. Hohmann elliptical transfer orbit  

3. Intermediate drift orbit  

4. Circular Geostationary orbit  
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Figure depicts typical satellite launch procedure followed by space companies such as ISRO. 

Following are the major steps involved in the launch process. 

 

➢ Step-1: The launch vehicle takes the satellite into low earth orbit. The satellite is 

injected into desired 3-axes stabilized mode to achieve gyro condition using commands 

issued by launch vehicle to carry pyro firing. 

➢ Step-2: After satellite reaches apogee AKM is fired for long duration to take satellite to 

intermediate orbit. This intermediate orbit is referred as transfer orbit. AKM is the short 

form of Apogee Kick Motor which contains liquid fuel. 

➢ Step-3: The second apogee motor firing is carried out so that satellite attains needed 

angular velocity and acceleration for Geo-synchronization. This helps satellite to be in 

LOS from central earth stations. If required it is tracked through other countries earth 

stations. 

➢ Step-4: Further stabilization and attitude control is achieved using control of 

momentum/reaction wheels. Antennas and transponders are turned on which brings 

satellite into stabilized geostationary orbit. Examples of geostationary satellites are 

INTELSAT, COMSAT, INSAT etc. 
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Once the satellite is placed in the parking space(i.e. designated orbit), following activities 

need to be performed as part of maintenance. 

❖ Orbit maintenance 

❖ Attitude maintenance 

❖ Thermal management 

❖ Power management 

❖ battery maintenance 

❖ Payload operations 

❖ Software requirement  

Note: Some of these operations are routine in nature whereas some are scheduled as and 

when required. 
 

2.9 Dependence of orbital parameters on in-plane injection parameters 
 

IN-PLANE ORBIT CHANGES 

 

Due to small errors in burnout altitude , speed, and flight-path angle, the exact orbit desired 

may not be achieved. Usually this is not serious, but , if a rendezvous is contemplated or if, for 

some other reason, a very precise orbit is required, it may be necessary to make small 

corrections in the orbit. This may be done by applying small speed changes or ∆𝑣, as they are 

called , at appropriate points in the orbit .  we shall consider both small in-plane corrections to 

an orbit and . large changes from one circular orbit to a new one of different size. 

 

 



Space Mechanics 

By Dr. P K Mohanta 
 

 

Page 53  

 

 

 

 

2.10 Launch vehicle performances 
 

2.11 Orbit deviations due to injection errors 
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UNIT-III 

Perturbed Satellite Orbit 

 

3 Unit-III Perturbed Satellite Orbit 

3.1 Special and general perturbations 

3.1.1 Orbit Perturbations 

The orbital elements discussed at the beginning of this section provide an excellent reference 

for describing orbits, however there are other forces acting on a satellite that perturb it away 

from the nominal orbit. These perturbations, or variations in the orbital elements, can be 

classified based on how they affect the Keplerian elements. Secular variations represent a 

linear variation in the element, short-period variations are periodic in the element with a period 

less than the orbital period, and long-period variations are those with a period greater than the 

orbital period. Because secular variations have long-term effects on orbit prediction (the orbital 

elements affected continue to increase or decrease), they will be discussed here for Earth-

orbiting satellites. Precise orbit determination requires that the periodic variations be included 

as well. 

3.1.2 Third-Body Perturbations 

 

The gravitational forces of the Sun and the Moon cause periodic variations in all of the orbital 

elements, but only the longitude of the ascending node, argument of perigee, and mean anomaly 

experience secular variations. These secular variations arise from a gyroscopic precession of 

the orbit about the ecliptic pole. The secular variation in mean anomaly is much smaller than 

the mean motion and has little effect on the orbit, however the secular variations in longitude 

of the ascending node and argument of perigee are important, especially for high-altitude orbits. 

For nearly circular orbits the equations for the secular rates of change resulting from the Sun 

and Moon are 

Longitude of the ascending node: 

 

Argument of perigee: 
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where i is the orbit inclination, n is the number of orbit revolutions per day, and  and  are 

in degrees per day. These equations are only approximate; they neglect the variation caused by 

the changing orientation of the orbital plane with respect to both the Moon's orbital plane and 

the ecliptic plane. 

3.1.3 Perturbations due to Non-spherical Earth 
When developing the two-body equations of motion, we assumed the Earth was a spherically 

symmetrical, homogeneous mass. In fact, the Earth is neither homogeneous nor spherical. The 

most dominant features are a bulge at the equator, a slight pear shape, and flattening at the 

poles. For a potential function of the Earth, we can find a satellite's acceleration by taking the 

gradient of the potential function. The most widely used form of the geopotential function 

depends on latitude and geopotential coefficients, Jn, called the zonal coefficients. 

 

The potential generated by the non-spherical Earth causes periodic variations in all the orbital 

elements. The dominant effects, however, are secular variations in longitude of the ascending 

node and argument of perigee because of the Earth's oblateness, represented by the J2 term in 

the geopotential expansion. The rates of change of  and  due to J2 are 

 

 

 

where n is the mean motion in degrees/day, J2 has the value 0.00108263, RE is the Earth's 

equatorial radius, a is the semi-major axis in kilometers, i is the inclination, e is the 

eccentricity, and and  are in degrees/day. For satellites in GEO and below, the 

J2 perturbations dominate; for satellites above GEO the Sun and Moon perturbations dominate. 

 

Molniya orbits are designed so that the perturbations in argument of perigee are zero. This 

conditions occurs when the term 4-5sin2i is equal to zero or, that is, when the inclination is 
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either 63.4 or 116.6 degrees. 

Perturbations from Atmospheric Drag 

 

Drag is the resistance offered by a gas or liquid to a body moving through it. A spacecraft is 

subjected to drag forces when moving through a planet's atmosphere. This drag is greatest 

during launch and reentry, however, even a space vehicle in low Earth orbit experiences some 

drag as it moves through the Earth's thin upper atmosphere. In time, the action of drag on a 

space vehicle will cause it to spiral back into the atmosphere, eventually to disintegrate or burn 

up. If a space vehicle comes within 120 to 160 km of the Earth's surface, atmospheric drag will 

bring it down in a few days, with final disintegration occurring at an altitude of about 80 km. 

Above approximately 600 km, on the other hand, drag is so weak that orbits usually last more 

than 10 years - beyond a satellite's operational lifetime. The deterioration of a spacecraft's orbit 

due to drag is called decay. 

 

The drag force FD on a body acts in the opposite direction of the velocity vector and is given 

by the equation 

 

 

where CD is the drag coefficient,  is the air density, v is the body's velocity, and A is the area 

of the body normal to the flow. The drag coefficient is dependent on the geometric form of the 

body and is generally determined by experiment. Earth orbiting satellites typically have very 

high drag coefficients in the range of about 2 to 4. Air density is given by the 

appendix Atmosphere Properties. 

 

The region above 90 km is the Earth's thermosphere where the absorption of extreme 

ultraviolet radiation from the Sun results in a very rapid increase in temperature with altitude. 

At approximately 200-250 km this temperature approaches a limiting value, the average value 

of which ranges between about 700 and 1,400 K over a typical solar cycle. Solar activity also 

has a significant affect on atmospheric density, with high solar activity resulting in high 

density. Below about 150 km the density is not strongly affected by solar activity; however, at 

satellite altitudes in the range of 500 to 800 km, the density variations between solar maximum 
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and solar minimum are approximately two orders of magnitude. The large variations imply that 

satellites will decay more rapidly during periods of solar maxima and much more slowly during 

solar minima. 

 

For circular orbits we can approximate the changes in semi-major axis, period, and velocity 

per revolution using the following equations: 

 

 

 

where a is the semi-major axis, P is the orbit period, and V, A and m are the satellite's velocity, 

area, and mass respectively. The term m/(CDA), called the ballistic coefficient, is given as a 

constant for most satellites. Drag effects are strongest for satellites with low ballistic 

coefficients, this is, light vehicles with large frontal areas. 

 

A rough estimate of a satellite's lifetime, L, due to drag can be computed from 

 

 

 

Where H is the atmospheric density scale height. A substantially more accurate estimate 

(although still very approximate) can be obtained by integrating equation (4.53), taking into 

account the changes in atmospheric density with both altitude and solar activity. 

 

Perturbations from Solar Radiation 

 

Solar radiation pressure causes periodic variations in all of the orbital elements. The magnitude 

of the acceleration in m/s2 arising from solar radiation pressure is 
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where A is the cross-sectional area of the satellite exposed to the Sun and m is the mass of the 

satellite in kilograms. For satellites below 800 km altitude, acceleration from atmospheric drag 

is greater than that from solar radiation pressure; above 800 km, acceleration from solar 

radiation pressure is greater. 

 

3.2 Cowell‘s Method 
 

Cowell's method is perhaps the simplest of the special perturbation methods; mathematically, 

for mutually interacting bodies, Newtonian forces on body from the other bodies are simply 

summed thus, 

 

 

 
 

with all vectors being referred to the barycenter of the system.  This equation is resolved into 

components in , , and these are integrated numerically to form the new velocity and position 

vectors as the simulation moves forward in time. The advantage of Cowell's method is ease of 

application and programming. A disadvantage is that when perturbations become large in 

magnitude (as when an object makes a close approach to another) the errors of the method also 

become large. Another disadvantage is that in systems with a dominant central body, such as 

the Sun, it is necessary to carry many significant digits in the arithmetic because of the large 

difference in the forces of the central body and the perturbing bodies. 
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Figure 3Cowell's method 

Cowell's method. Forces from all perturbing bodies (black and gray) are summed to form the 

total force on body I (red), and this is numerically integrated starting from the initial position 

(the epoch of osculation). 
 

3.3 Encke‘s method 
 

Encke's method begins with the osculating orbit as a reference and integrates numerically to 

solve for the variation from the reference as a function of time. Its advantages are that 

perturbations are generally small in magnitude, so the integration can proceed in larger steps 

(with resulting lesser errors), and the method is much less affected by extreme perturbations 

than Cowell's method. Its disadvantage is complexity; it cannot be used indefinitely without 

occasionally updating the osculating orbit and continuing from there, a process known as 

rectification. 

 

Lettingbe the radius vector of the osculating orbit, the radius vector of the perturbed orbit, and 

𝛿𝑟 the variation from the osculating orbit. 

https://en.wikipedia.org/wiki/File:Cowells_method.png
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Where is the gravitational parameter with and the masses of the central body and the perturbed 

body, is the perturbing acceleration, and and are the magnitudes of and 

 
which, in theory, could be integrated twice to find 𝛿𝑟. Since the osculating orbit is easily calculated 

by two-body methods, and 𝛿𝑟 are accounted for and  can be solved. In practice, the quantity in the 

brackets,   is the difference of two nearly equal vectors, and further manipulation is 

necessary to avoid the need for extra significant digits. 

 

 
Figure 4Encke's method 

 

Encke's method. Greatly exaggerated here, the small difference δr (blue) between the 

osculating, unperturbed orbit (black) and the perturbed orbit (red), is numerically integrated 

starting from the initial position (the epoch of osculation). 
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3.4 Method of variations of orbital elements 
 

Due to perturbative forces acting on a near earth satellite, the associated classical Keplerian 

orbital elements vary with time. These variations are divided into secular, short period and long 

period. The mathematical equations expressing these variations are presented without 

derivation along with numerical examples. A discussion of the practical applications of these 

variations to trajectory generation and orbit determination is included. 

 

 

1. Third-Body Perturbations 

2. Perturbations due to Non-spherical Earth 

3. Perturbations from Atmospheric Drag 

4. Perturbations from Solar Radiation 

 

3.5 General perturbations approach 
 

In methods of general perturbations, general differential equations, either of motion or of 

change in the orbital elements, are solved analytically, usually by series expansions. The result 

is usually expressed in terms of algebraic and trigonometric functions of the orbital elements 

of the body in question and the perturbing bodies. This can be applied generally to many 

different sets of conditions, and is not specific to any particular set of gravitating objects. 

Historically, general perturbations were investigated first. The classical methods are known as 

variation of the elements, variation of parameters or variation of the constants of integration. 

In these methods, it is considered that the body is always moving in a conic section, however 

the conic section is constantly changing due to the perturbations. If all perturbations were to 

cease at any particular instant, the body would continue in this (now unchanging) conic section 

indefinitely; this conic is known as the osculating orbit and its orbital elements at any particular 

time are what are sought by the methods of general perturbations. 

General perturbations takes advantage of the fact that in many problems of celestial mechanics, 

the two-body orbit changes rather slowly due to the perturbations; the two-body orbit is a good 

first approximation. General perturbations is applicable only if the perturbing forces are about 

one order of magnitude smaller, or less, than the gravitational force of the primary body. In the 
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Solar System, this is usually the case; Jupiter, the second largest body, has a mass of about 

1/1000 that of the Sun. 

General perturbation methods are preferred for some types of problems, as the source of certain 

observed motions are readily found. This is not necessarily so for special perturbations; the 

motions would be predicted with similar accuracy, but no information on the configurations of 

the perturbing bodies (for instance, an orbital resonance) which caused them would be 

available. 

 

3.6 Two-dimensional interplanetary trajectories 

3.7 Fast interplanetary trajectories 

3.8 Three dimensional interplanetary trajectories 

3.9 Launch of interplanetary spacecraft 

3.10 Trajectory about the target planet 
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Unit-IV 

Ballistic Missile Trajectories 

 

4 Unit-IV Ballistic Missile Trajectories 
 

A ballistic missile trajectory is composed of three parts-the powered flight portion which lasts 

from launch to thrust cutoff or burnout, the free-flight portion which constitutes most of the 

trajectory, and the re-entry portion which begins at some ill-defined point where atmospheric 

drag becomes a significant force in determining the missile's path and lasts until impact. 

 

Since energy is continuously being added to the missile during powered flight , we cannot use 

2-body mechanics to determine its path from launch to burnout . The path of the missile during 

this critical part of the flight is determined by the guidance and navigation system. This is the 

topic of an entire course and will not be covered here; During free-flight the trajectory is part 

of a conic orbit-almost always an ellipse. 

 

Re-entry involves the dissipation of energy by friction with the atmosphere. It will not be 

discussed in this text. We will begin by assuming that the Earth does not rotate and that the 

altitude at which re-entry starts is the same as the burnout altitude. This latter assumption 

insures that the free-flight trajectory is symmetrical and will allow us to derive a fairly simple 

expression for the free-flight range of a missile in terms of its burnout conditions. We will then 

answer a more practical question-"given rbo'vbo' and a desired free-flight range , what flight-

path angle at burnout is required? " 

 

4.1 The boost phase 

4.1.1 Terminology 
 

The terminology of orbital mechanics, such terms as "height at burnout," "height of apogee," 

"flight-path angle at burnout," etc., need not be redefined. There are , however, a few new 

and unfamiliar terms which you must learn before we embark on any derivations. 
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r - powered flight range angle    R p - ground range of powered flight 

Rff - ground range of freeflight    Rre 􀋂 ground range of re-en try 

Rt - total ground range     'It - free-flight range angle 

n - re-entry range angle    A - total range angle 

 

 

4.2 The ballistic phase 
 

The Free-Flight Range Equation. Since the free-flight trajectory of a missile is a conic 

section , the general equation of a conic can be applied to the burnout point. 

   Solving for cos vbo' we get 
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Figure 5Symmetrical traj ectory 

Since the free-flight trajectory is assumed to be symmetrical (hbo = 

hre), half the free-flight range angle , 'l', lies on each side of the major 

axis, and 

 

above can, therefore, be written as  

 
We now have an expression for the free-flight range angle in terms of p, e, and rbo' Since p = 

h2 /11 and. h = rv cos cp, we can use the definition 

of Q to obtain 

 

Now, since p = a( 1 - e2 ) , 
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If we now substitute equations, we have one form of the free-flight range equation: 

 
From this equation we can calculate the free-flight range angle resulting frbm any given 

combination of burnout conditions, rbo' vbo and CPbO"  

 

While this will prove to be a very valuable equation, it is not particularly useful in solving the 

typical ballistic missile problem which can be stated thus: Given a particular launch point and 

target, the total range angle, A, can be calculated as we shall see later in this chapter. If we 

know how far the missile will travel during powered flight and re-entry, the required free-flight 

range angle, 'l1, also becomes known. If we now specify rbo and vbo for the missile, what 

should the flight-path 

angle, ¢ro, be in order that the missile will hit the target? 

4.3 Trajectory geometry 

 

The Flight-Path Angle Equation. In Figure 6 . 2- 3 we have drawn the local horizontal at the 

burnout point and also the tangent and normal at the burnout point . The line from the burnout 

point to the secondary focus, F', is called rbo. The angle between the local horizontal and the 

tangent (direction of voo') is the flight-path angle , ¢bo. Since rbo is perpendicular to the local 

horizontal, and the normal is perpendicular to the tangent , the angle between rbo and the 

normal is also ¢bo. Now, it can be proven (although we won't do it) that the angle between rOO 

and rbo is bisected by the normal. This fact gives rise to  many interesting applications for the 

ellipse . It means, for example, that, if the ellipse represented the surface of a mirror , light 

emanating from one focu s would be reflected to the other focus since the angle of reflection 

equals the angle of incidence. If the ceiling of a room were made in the shape of an ellipsoid, 

a person standing at a particular point in the room corresponding to one focus could be heard 

clearly by a person standing at the other focus even though he were whispering. This is, in fact, 
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the basis for the so-called "whispering gallery." What all this means for our derivation is simply 

that the angle 

between roo and rbo is 2¢bo' 

Let us concentrate on the triangle formed by F, F' and the burnout point. We know two of the 

angles in this triangle and the third can be determined from the fact that the angles of a triangle 

sum to 1 800. If we divide the triangle into two right triangles by the dashed line , d, shown in 

Figure 6.2-4, we can express d as 

 
and also as 

 
 

Combining these two equations and noting that sin (1 800 - x) = sin 

x, we get 

 

Since rbo = a(2 - 000) from equation (6.2-3) and r60 + rbo = 2a , 

 
This is called the flight-path angle equation and it points out some interesting and important 

facts about ballistic missile trajectories. 
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Figure 6Ellipse geometry 

Suppose we want a missile to travel a free-flight range of 900 and it 

has Qbo= .9. Substituting these values into equation (6 .2- 1 6) gives us 

 
But there are two angles whose sine equals .866, so  

 
 

There are two trajectories to the target which result from the same values of rbo and vbo· The 

trajectory corresponding to the larger value of flight-path angle is called the high trajectory ; 

the trajectory associated with the smaller flight-path angle is the low trajectory . The fact that 

there are two trajectories to the target should not surprise you since even very short-range 

ballistic trajectories exhibit this property . A familiar illustration of this result is the behavior 

of water discharged from a garden hose . With constant water pressure and nozzle setting, the 

speed of the water leaving the nozzle is fixed . If a target well within the maximum range of 

the hose is selected, the target can be hit by a flat or lofted trajectory. The nature of the high 

and low trajectory depends primarily on the value of Qbo. If Qbo is less than · 1 there will be 

a limit to how large 'l' may be in order that the value of the right side of equation (6 . 2- 1 6) 

does not excee d 1 . This implies that there is a maximum range for a missile with Qbo less 
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than 1 . This maximum range will always be less than 1 800 for Qbo less than 1 . Provide d 

that 'l' is attainable , there will be both a high and a low trajectory to the target. If Qbo is exactly 

1 , one of the trajectorie s to the target will be the circular orbit connecting the burnout and re-

entry points . This would not be a very practical missile trajectory, but it does represent the 

borderline case where ranges of 1 8 00 and more are just attainable . If Qbo is greater than 1 , 

equation (6 . 2- 1 6) will always yield one positive and one negative value for ¢bo' regardless 

of range . A negative ¢bo is not practical since the trajectory would penetrate the earth, so only 

the high trajectory can be realized for Qbo greater than 1 .  

 

The real significance of Qbo greater than 1 is that ranges in excess of 1 800 are possible.  An 

illustration of such a trajectory would be a missile directed at the North American continent 

from Asia via the south pole . While such a trajectory would avoid detection by our northern 

radar "fences ," it would be costly in terms of payload delivered and accuracy attainable . 

Nevertheless, the shock value of such a surprise attack in terms of what it might do towards 

creating chaos among our defensive forces should not be overlooked by military planners. 

Since both the high and low traj ectories result from the same rbo and vbo' they both have the 

same energy. Becau se a = - P/2&, the maj or axis of the high and low traj ectories are the same 

length. Table 6.2-1 shows which trajectories are possible for various combinations of Qbo and 

'l'. Figure 6.2-5 should be helpful in visualizing each case. 
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Figure 7Example ballistic missile traj e ctories 

Significance of 0bo 
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4.4 Optimal flights 
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Figure 8Optimal Flight Geometry 
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The Maximum Range Trajectory . Suppose we plot the free-flight range angle , 'IT, versus the flight-path angle , 

<Pbo' for a fixed value of Qbo less than 1 . We get a curve like that shown in F igure 6 . 2-6. As the 

flight-path angle is varied from 0° to 90° the range first increases then reaches a maximum and decrease s 

to zero again . Notice 
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Figure 9Range versus <Pbo 

that for every range except the maximum there are two values of <Pbo 

corresponding to a high and a low trajectory. At rruximum range there is only one path to the 

targe t. 

There are at least two ways that we could derive expressions for the maximllm range condition. 

One way is to derive an expre ssion for a'l' / a<p and set it equal to zero. A simpler method is 

to see under what conditions the flight- path angle equation yields a single solution . If the right 

side of equation (6.2-16) equals exactly 1, we get only a single answer for <Pbo' This must , 

then, be the maximum range condition. 

 

 
for maximum range conditions only. We can easily Cind the maximum range angle attainable 

with a given Q boo From equation (6.2-1 7),  
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for maximum range conditions. If we solve this equation for Qbo' we get  

 
for maximum range conditions. This latter form of the equation is useful for determining the 

lowest value of Qbo that will attain a given range angle 

4.5 Time of flight 
 

Time of Free-Flight. The time-of-flight methods developed in Chapter 4 are applicable to the 

free-flight portion of a ballistic missile traj e ctory , but , due to the symmetry of the case where 

hre = hbo' the equations are considerably simplified. From the symmetry of Figure 6.2-7 you 

can see that the time-of-flight from burnout to re-entry is just twice the time-of-flight from 

burnout (point 1 ) to apogee (point 2). By inspection, the eccentric anomaly of p oint 2 is 1T 

radians or 1 800. The value of El can be computed from equation (4.2-8), noting that 

VI = 1 800 - 'JI12 . 

 
If we now substitute into equation (4.2-9) on page 1 86 we get the time of free-flight 

 

 
Figure 10Time of free-flight 
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The semi-maj or axis, a, and the eccentricity, e, can be obtained from equations (6 . 2-3) and 

(6. 2- 1 1). Figure 6 . 2-9 is an excellent chart for making rapid time-of-flight calculations for 

the ballistic missile . In fact , since five variables have been plotted on the figure, most ballistic 

missile problems can be solved completely using just this chart. The free-flight time is read 

from the chart as the ratio tff!IP cs ' where Wcs is the period of a fictitious circular satellite 

orbiting at the burnout altitude . Values for TI'cs may be calculated from 

 
or they may be read directly from Figure 6 . 2-8. 

 

EXAMPLE PROBLEM. A ballistic missile was ob served to have a burnout speed and 

altitude of 24,300 ft/sec and 2 5 8 nm respectively. What must be the maximum free-flight 

range capability of this missile? 

 
 

Figure 11Circular satellite period vs altitude 

In canonical units 
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EXAMPLE PROBLEM. It is desired to maximize the payload of a new ballistic missile for a 

free-flight range of 8 ,000 nm. The design burnout altitude has been fixed at 3 44 nm. What 

should b e the design burnout speed? 

 
Figure 12Free - flight range 'I' in degrees 

 

For a given amount of propellant, range may b e sacrificed to increase payload and vice-versa. 

For a fixed burnout altitude , payload may be maximized by minimizing the burnout speed 

(minimum QbJ. 
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4.6 Re-entry phase 

need to cmplte 

4.7 The position of the impact point 
 

4.8 Influence coefficients 
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Unit-V 

Low Thrust Trajectories 

 

5 Unit-V Low Thrust Trajectories 

5.1 Equations of Motion 

The Tsiolkovsky rocket equation, classical rocket equation, or ideal rocket equation is a 

mathematical equation that describes the motion of vehicles that follow the basic principle of 

a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass 

with high velocity can thereby move due to the conservation of momentum. 

The equation relates the delta-v (the maximum change of velocity of the rocket if no other 

external forces act) to the effective exhaust velocity and the initial and final mass of a rocket, 

or other reaction engine. 

For any such maneuver (or journey involving a sequence of such maneuvers): 

 

where: 

∆v is delta-v – the maximum change of velocity of the vehicle (with no external 

forces acting). 

is the initial total mass, including propellant, also known as wet mass. 

is the final total mass without propellant, also known as dry mass. 

is the effective exhaust velocity, where: 

  is the specific impulse in dimension of time. 

is standard gravity. 
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5.2 Constant radial thrust acceleration 

5.3 Constant tangential thrust (Characteristics of the motion) 

5.4 Linearization of the equations of motion 

5.5 Performance analysis 
  

For satellite mission analyses, we have to know the performances of available launch 

vehicles. For preliminary studies, we mostly make us performance diagrams in which the 

payload capability of a launch vebic plotted versus the so-called launch vehick 

characiertstic velocity, Va.„17.5). To explain how to use these diagrams, we first recall 

that all exii rocket stages are high-thrust chemical. systems. Once in a parking orbit can 

assume for orbit transfer maneuvers that the thrust acts for so sbc time that during motor 

operation only the vehicle's velocity vector is altered, but not its position vector. We thus 

use the concept of an impuisive shot (Section 1123) and consider an orbit transfer 

maneuver as a sequence of instantaneous velocity changes. The mass of propellant 

required for each velocity change can be computed from Tsioikousky's equation, Eq. (11.2-

4). We define a mission characteristic velocity, V:1 , as the arithmetic sum of all velocity 

changes required to perform a specified mission, starting from a 185 km circular parking 

orbit, plus the velocity in this parking orbit relative to a non-rotating geocentric reference 

frame (V. = 7.797 km/s). This mission characteristic velocity thus is a measure of the energy 

required to fly a given mission. With the theory of-orbital maneuvers, we can compute this 

mission characteristic velocity for each final orbit and each transfer trajectory. As this 

subject is not treated in this book, we will only discuss some results on the basis of Fig. 

17.4. For a full treatment be referred to the standard work of Ehricke [21, and to Gobietz 

and Doll Pa 

 

The dashed line in Fig. 17.4 shows the initial incremental velocity required at the 

parking orbit altitude to perform a coplanar Hohmann transfer to an apogee 

altitude corresponding to a desired final orbit altitude. Also indicated is the transfer 

time to execute this Hohmann transfer. To circularize the orbit at the *pore of the 

transfer trajectory, an incremental velocity A V2 has to be applied. The sum of lift 

and A.V2 is also shown in Fig. 17.4. We  note  that for increasing final orbit 

altitudes, , first increases, until from an altitude of about 96,000 km upwards 
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it decreases again. One can prove that V:„, for this type of transfer trajectories 

takes a maximum  value at r2/ri im 15.58, where r1 is the radius of the circular 

parking orbit and r2 is the radius of the final circular orbit. For r2/ri >331, we find 

that is larger than the escape velocity in the parking orbit.  

 

 
 


