
1

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE LECTURE NOTES

Course Name SOFTWARE PROCESS AND PROJECT MANAGEMENT

Course Code AIT512

Programme B.Tech

Semester VI

Course Coordinator Mr. E Sunil Reddy, Assistant Professor

Course Faculty Mr. E Sunil Reddy, Assistant Professor

Lecture Numbers 1-45

Topic Covered All

 COURSE OBJECTIVES:

The course should enable the students to:

I Understand overall software development life cycle and adopt suitable processes.

II Analyze, prioritize, and manage both functional and quality requirements.

III Estimate efforts required, plan, and track the plans.

IV Understand and apply configuration and quality management techniques.

 COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the ability to do the following:

CLO

Code

CLO’s At the end of the course, the student will have the

ability to:

PO’s

Mapped

Strength of

Mapping

AIT512.01 CLO 1 Describe the basic concepts of Software Development

Life Cycle.

PO 1 1

AIT512.02 CLO 2 Summarize the concept of processes. PO 2 2

AIT512.03 CLO 3 Analyze the concepts of Personal Software Process

(PSP), Team Software Process (TSP).

PO 11 3

AIT512.04 CLO 4 Use the concept of agile processes in real-world

problems.

PO 11 3

AIT512.05 CLO 5 Determine the Functional requirements and quality

attributes.

PO 2 2

2

CLO

Code

CLO’s At the end of the course, the student will have the

ability to:

PO’s

Mapped

Strength of

Mapping

AIT512.06 CLO 6 Understand elicitation techniques, Quality Attribute

Workshop (QAW).

PO 2 2

AIT512.07 CLO 7 Determine the analysis, prioritization, and trade off PO 2 2

AIT512.08 CLO 8 Use Architecture Centric Development Method

(ACDM).

PO 2 2

AIT512.09 CLO 9 Illustrate the documentation, and specification.
PO 9 2

AIT512.10 CLO 10 Describe the change management and traceability of

requirements.

PO 9 2

AIT512.11 CLO 11 Explain software risks. PO 2 2

AIT512.12 CLO 12 Understand the concept of function points, COCOMO II,

estimations

PO 2 2

AIT512.13 CLO 13 Understand theWork break down structure, macro and

micro plans

PO 9 2

AIT512.14 CLO 14 Understand theplanning poker ,wideband Delphi PO 1 1

AIT512.15 CLO 15 Summarize the tracking the plan ,Earned Value Method

(EVM)

PO 1 1

AIT512.16 CLO 16 Identifying articrafts to be configured, naming

conventions

PO 1,

PO 2

2

AIT512.17 CLO 17 Understand the version control, configuration control,

quality assurance techniques.

PO 1,

PO 2

2

AIT512.18 CLO 18 Summarize the concept of peer reviews, Fagan

inspection

PO 1,

PO 2

2

AIT512.19 CLO 19 Apply testing of unit, registration, system, and

acceptance, test data and test cases..

PO 11,

PO 9

3

AIT512.20 CLO 20 Understand the bug tracking, casual analysis. PO 11,

PO 9

3

AIT512.21 CLO 21 Use Process elements, process architecture. PO 11 3

AIT512.22 CLO 22 Usage ofProcess relationship between elements, process

modeling.

PO 11 3

AIT512.23 CLO 23 Use of the process definition techniques ETVX, CMMI,

six sigma.

PO 11 3

SYLLABUS

Unit-I DEVELOPMENT LIFE CYCLE PROCESSES

Overview of Software Development Life Cycle, introduction to processes, Personal Software Process(PSP),

Team Software Process(TSP), unified processes, agile processes, choosing the right process.

Unit -II REQUIREMENTS MANAGEMENT

Functional requirements and quality attributes, elicitation techniques, Quality Attribute Workshop (QAW),

analysis, prioritization, and trade off, Architecture Centric Development Method (ACDM), requirements,

documentation, and specification, change management, traceability of requirements.

 Unit -III ESTIMATION, PLANNING, AND TRACKING

Identifying and prioritizing risks, risk mitigation plans, estimation techniques, use case points, function points,

COCOMO II, top down estimation, bottom up estimation. Work break down structure, macro and micro plans,

planning poker, wideband Delphi, documenting the plan, tracking the plan, Earned Value Method (EVM).

 Unit-IV CONFIGURATION AND QUALITY MANAGEMENT

Identifying articrafts to be configured, naming conventions and version control, configuration control, quality

assurance techniques, peer reviews, Fegan inspection, unit, registration, system, and acceptance testing, test

data and test cases, bug tracking, casual analysis

3

 Unit-V SOFTWARE PROCESS DEFINITION AND MANAGEMENT

Process elements, process architecture, relationship between elements, process modeling, process definition

techniques, ETVX (Entry-Task-Validation-exit), process base lining, process assessment and improvement,

CMMI, six sigma.

Text Books:

1. PankajJalote, ―Software Process Management in Practice‖, Pearson, Illustrated, 2002.

2. Walker Royce, ―Software Project Management – A Unified Framework‖, Pearson Education, 1
st
 Edition,

2002.

Reference Books:

1.Watts S.Humphrey, ―PSP: A Self Improvement Process for Software Engineers‖, Addison Wesley,

1
st
 Edition, 2005.

2. Chris F. Kemerer, ―Software Project Management- Readings and Cases‖, McGraw-Hill, Illustrated 2
nd

Edition, 1997.

3. Watts S. Humphrey, ―Introduction to the Team Software Process‖, Addison-Wesley, Illustrated

 Reprint, 2000

4

Module – I

Development Life Cycle Processes

Overview of software development life cycle

There are various software development approaches defined and designed which are used/employed

during development process of software, these approaches are also referred as ―Software

Development Process Models‖ (e.g. Waterfall model, incremental model, V-model, iterative model,

etc.). Each process model follows a particular life cycle in order to ensure success in process of

software development.

Software life cycle models describe phases of the software cycle and the order in which those phases

are executed. Each phase produces deliverables required by the next phase in the life cycle.

Requirements are translated into design. Code is produced according to the design which is called

development phase. After coding and development the testing verifies the deliverable of the

implementation phase against requirements.

There are following six phases in every Software development life cycle model:

1. Requirement gathering and analysis

2. Design

3. Implementation or coding

4. Testing

5. Deployment

6. Maintenance

1. Requirement gathering and analysis: Business requirements are gathered in this phase. This

phase is the main focus of the project managers and stake holders. Meetings with managers, stake

holders and users are held in order to determine the requirements like; Who is going to use the

system? How will they use the system? What data should be input into the system? What data

should be output by the system? These are general questions that get answered during a

requirements gathering phase. After requirement gathering these requirements are analyzed for

their validity and the possibility of incorporating the requirements in the system to be development

is also studied.

2. Finally, a Requirement Specification document is created which serves the purpose of guideline for

the next phase of the model.

3. Design: In this phase the system and software design is prepared from the requirement

specifications which were studied in the first phase. System Design helps in specifying hardware

and system requirements and also helps in defining overall system architecture. The system design

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-iterative-model-advantages-disadvantages-and-when-to-use-it/

5

specifications serve as input for the next phase of the model.

4. Implementation / Coding: On receiving system design documents, the work is divided in

modules/units and actual coding is started. Since, in this phase the code is produced so it is the

main focus for the developer. This is the longest phase of the software development life cycle.

5. Testing: After the code is developed it is tested against the requirements to make sure that the

product is actually solving the needs addressed and gathered during the requirements phase.

During this phase unit testing, integration testing, system testing, acceptance testing are done.

6. Deployment: After successful testing the product is delivered / deployed to the customer for their

use.

7. Maintenance: Once when the customers starts using the developed system then the actual problems

comes up and needs to be solved from time to time. This process where the care is taken for the

developed product is known as maintenance.

Introduction to Process

A software process (also knows as software methodology) is a set of related activities that leads to the

production of the software. These activities may involve the development of the software from the

scratch, or, modifying an existing system.

Any software process must include the following four activities:

Software specification (or requirements engineering): Define the main functionalities of the software

and the constrains around them.

Software design and implementation: The software is to be designed and programmed.

Software verification and validation: The software must conforms to it‘s specification and meets the

customer needs.

Software evolution (software maintenance): The software is being modified to meet customer and

market requirements changes.

In practice, they include sub-activities such as requirements validation, architectural design, unit

testing, …etc.

There are also supporting activities such as configuration and change management, quality assurance,

project management, user experience.

Along with other activities aim to improve the above activities by introducing new techniques, tools,

following the best practice, process standardization (so the diversity of software processes is reduced),

etc.

A process also includes the process description, which includes:

http://istqbexamcertification.com/what-is-a-software-testing/

6

Products: The outcomes of the an activity. For example, the outcome of architectural design maybe a

model for the software architecture.

Roles: The responsibilities of the people involved in the process. For example, the project manager,

programmer, etc.

Pre and post conditions: The conditions that must be true before and after an activity. For example,

the pre condition of the architectural design is the requirements have been approved by the customer,

while the post condition is the diagrams describing the architectural have been reviewed.

Personal software process(PSP)

The PSP aims to provide software engineers with disciplined methods for improving personal

software development processes. The PSP helps software engineers to:

 Improve their estimating and planning skills.

 Make commitments they can keep.

 Manage the quality of their projects.

 Reduce the number of defects in their work.

The goal of the PSP is to help developers produce zero-defect, quality products on schedule. Low-

defect and zero defect products have become the reality for some developers and TSP teams, such as

the Motorola division in Florida that achieved zero defects in over 18 projects through implementing

PSP techniques.

PSP structure

PSP training follows an evolutionary improvement approach: an engineer learning to integrate the

PSP into his or her process begins at the first level - PSP0 - and progresses in process maturity to

thefinal level - PSP2.1. Each Level has detailed scripts, checklists and templates to guide the engineer

through required steps and helps the engineer improve his own personal software process. Humphrey

encourages proficient engineers to customise these scripts and templates as they gain an

understanding of their own strengths and weaknesses.

Process

The input to PSP is the requirements; requirements document is completed and delivered to the

engineer.

PSP0, PSP0.1 (Introduces process discipline and measurement)

PSP0 has 3 phases: planning, development (design, coding, test) and a post mortem. A baseline is

established of current process measuring: time spent on programming, faults injected/removed, size of

a program. In a post mortem, the engineer ensures all data for the projects has been properly recorded

and analysed. PSP0.1 advances the process by adding a coding standard, a size measurement and the

development of a personal process improvement plan (PIP). In the PIP, the engineer records ideas for

improving his own process.

PSP1, PSP1.1 (Introduces estimating and planning)

7

Based upon the baseline data collected in PSP0 and PSP0.1, the engineer estimates how large a new

program will be and prepares a test report (PSP1). Accumulated data from previous projects is used to

estimate the total time. Each new project will record the actual time spent. This information is used

for task and schedule planning and estimation (PSP1.1).

PSP2, PSP2.1 (Introduces quality management and design)

PSP2 adds two new phases: design review and code review. Defect prevention and removal are the

focus at the PSP2. Engineers learn to evaluate and improve their process by measuring how long tasks

take and the number of defects they inject and remove in each phase of development. Engineers

construct and use checklists for design and code reviews. PSP2.1 introduces design specification and

analysis techniques

(PSP3 is a legacy level that has been superseded by TSP.)

One of the core aspects of the PSP is using historical data to analyse and improve process

performance. PSP data collection is supported by four main elements:

 Scripts

 Measures

 Standards

 Forms

The PSP scripts provide expert-level guidance to following the process steps and they provide a

framework for applying the PSP measures. The PSP has four core measures:

 Size – the size measure for a product part, such as lines of code (LOC).

 Effort – the time required to complete a task, usually recorded in minutes.

 Quality – the number of defects in the product.

 Schedule – a measure of project progression, tracked against planned and actual completion dates.

Applying standards to the process can ensure the data is precise and consistent. Data is logged in

forms, normally using a PSP software tool. The SEI has developed a PSP tool and there are also open

source options available, such as Process Dashboard.

The key data collected in the PSP tool are time, defect, and size data – the time spent in each phase;

when and where defects were injected, found, and fixed; and the size of the product parts. Software

developers use many other measures that are derived from these three basic measures to understand

and improve their performance. Derived measures include:

 estimation accuracy (size/time)

 prediction intervals (size/time)

 time in phase distribution

 defect injection distribution

 defect removal distribution

 productivity

 reuse percentage

 cost performance index

8

 planned value

 earned value

 predicted earned value

 defect density

 defect density by phase

 defect removal rate by phase

 defect removal leverage

 review rates

 process yield

 phase yield

 failure cost of quality (COQ)

 appraisal COQ

 appraisal/failure COQ ratio

Planning and tracking

Logging time, defect, and size data is an essential part of planning and tracking PSP projects, as

historical data is used to improve estimating accuracy.

The PSP uses the PROxy-Based Estimation (PROBE) method to improve a developer‘s estimating

skills for more accurate project planning. For project tracking, the PSP uses the earned value method.

The PSP also uses statistical techniques, such as correlation, linear regression, and standard deviation,

to translate data into useful information for improving estimating, planning and quality. These

statistical formulas are calculated by the PSP tool.

Using the PSP

The PSP is intended to help a developer improve their personal process; therefore PSP developers are

expected to continue adapting the process to ensure it meets their personal needs.

Team software process(TSP)

In combination with the Personal Software Process (PSP), the Team Software Process (TSP) provides

a defined operational process framework that is designed to help teams of managers and engineers

organize projects and produce software products that range in size from small projects of several

thousand lines of code (KLOC) to very large projects greater than half a million lines of code.The

TSP is intended to improve the levels of quality and productivity of a team's software development

project, in order to help them better meet the cost and schedule commitments of developing a software

system.

How TSP Works

Before engineers can participate in the TSP, it is required that they have already learned about the

PSP, so that the TSP can work effectively. Training is also required for other team members, the team

lead, and management.

http://en.wikipedia.org/wiki/Proxy-based_estimating
http://en.wikipedia.org/wiki/Earned_value
http://en.wikipedia.org/wiki/Personal_Software_Process

9

The TSP software development cycle begins with a planning process called the launch, led by a coach

who has been specially trained, and is either certified or provisional. The launch is designed to begin

the team building process, and during this time teams and managers establish goals, define team roles,

assess risks, estimate effort, allocate tasks, and produce a team plan. During an execution phase,

developers track planned and actual effort, schedule, and defects, meeting regularly (usually weekly)

to report status and revise plans. A development cycle ends with a Post Mortem to assess

performance, revise planning parameters, and capture lessons learned for process improvement.

The coach role focuses on supporting the team and the individuals on the team as the process expert

while being independent of direct project management responsibility. The team leader role is different

from the coach role in that, team leaders are responsible to management for products and project

outcomes while the coach is responsible for developing individual and team performance.

Unifiedprocess

The Unified Software Development Process or Unified Process is a popular iterative and

incremental software development process framework. The best-known and extensively documented

refinement of the Unified Process is the Rational Unified Process (RUP). Other examples

are OpenUP and Agile Unified Process.

Overview

The Unified Process is not simply a process, but rather an extensible framework which should be

customized for specific organizations or projects. The Rational Unified Process is, similarly, a

customizable framework. As a result it is often impossible to say whether a refinement of the process

was derived from UP or from RUP, and so the names tend to be used interchangeably.

Unified Process Characteristics

Iterative and Incremental

http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/OpenUP
http://en.wikipedia.org/wiki/Agile_Unified_Process

10

Diagram illustrating how the relative emphasis of different disciplines changes over the course of the

projectThe Unified Process is an iterative and incremental development process. The Elaboration,

Construction and Transition phases are divided into a series of timeboxed iterations. (The Inception

phase may also be divided into iterations for a large project.) Each iteration results in an increment,

which is a release of the system that contains added or improved functionality compared with the

previous release.Although most iterations will include work in most of the process disciplines

(e.g.Requirements, Design, Implementation, Testing) the relative effort and emphasis will change

over the course of the project.

Use Case Driven

In the Unified Process, use cases are used to capture the functional requirements and to define the

contents of the iterations. Each iteration takes a set of use cases or scenarios from requirements all the

way through implementation, test and deployment

http://en.wikipedia.org/wiki/Iterative_and_incremental_development

11

Architecture Centric

The Unified Process insists that architecture sit at the heart of the project team's efforts to shape the system.

Since no single model is sufficient to cover all aspects of a system, the Unified Process supports multiple

architectural models and views.

One of the most important deliverables of the process is the executable architecture baseline which is created

during the Elaboration phase. This partial implementation of the system serves to validate the architecture and

act as a foundation for remaining development.

Risk Focused

The Unified Process requires the project team to focus on addressing the most critical risks early in

the project life cycle. The deliverables of each iteration, especially in the Elaboration phase, must be

selected in order to ensure that the greatest risks are addressed first.

Project Lifecycle

The Unified Process divides the project into four phases:

Inception

 Elaboration

 Construction

 Transition

Inception Phase

Inception is the smallest phase in the project, and ideally it should be quite short. If the

Inception Phase is long then it may be an indication of excessive up-front specification,

which is contrary to the spirit of the Unified Process.

The following are typical goals for the Inception phase.

 Establish a justification or business case for the project

 Establish the project scope and boundary conditions

 Outline the use cases and key requirements that will drive the design tradeoffs

 Outline one or more candidate architectures

 Identify risks

 Prepare a preliminary project schedule and cost estimate

The Lifecycle Objective Milestone marks the end of the Inception phase.

Develop an approximate vision of the system, make the business case, define the scope, and produce

rough estimate for cost and schedule.

http://en.wikipedia.org/wiki/Business_case
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Risk#Economic_risk

12

Elaboration Phase

During the Elaboration phase the project team is expected to capture a healthy majority of the system

requirements. However, the primary goals of Elaboration are to address known risk factors and to

establish and validate the system architecture. Common processes undertaken in this phase include the

creation of use case diagrams, conceptual diagrams (class diagrams with only basic notation)

and package diagrams (architectural diagrams).

The architecture is validated primarily through the implementation of an Executable Architecture

Baseline. This is a partial implementation of the system which includes the core, most architecturally

significant, components. It is built in a series of small, time boxed iterations. By the end of the

Elaboration phase the system architecture must have stabilized and the executable architecture

baseline must demonstrate that the architecture will support the key system functionality and exhibit

the right behavior in terms of performance, scalability and cost.

The final Elaboration phase deliverable is a plan (including cost and schedule estimates) for the

Construction phase. At this point the plan should be accurate and credible, since it should be based on

the Elaboration phase experience and since significant risk factors should have been addressed during

the Elaboration phase.

Construction Phase

Construction is the largest phase in the project. In this phase the remainder of the system is built on

the foundation laid in Elaboration. System features are implemented in a series of short, timeboxed

iterations. Each iteration results in an executable release of the software. It is customary to write full

text use cases during the construction phase and each one becomes the start of a new iteration.

Common UML (Unified Modelling Language) diagrams used during this phase include Activity,

Sequence, Collaboration, State (Transition) and Interaction.

Transition Phase

The final project phase is Transition. In this phase the system is deployed to the target users. Feedback

received from an initial release (or initial releases) may result in further refinements to be

incorporated over the course of several Transition phase iterations. The Transition phase also includes

system conversions and user training.

Agile Processes

In software development life cycle, there are two main considerations, one is to emphasize on process

and the other is the quality of the software and process itself. Agile software processes is an iterative

and incremental baseddevelopment, where requirements are changeable according to customer

needs. It helps in adaptive planning, iterative development and time boxing. It is a theoretical

framework that promotes foreseen interactions throughout the development cycle. There are

several SDLC models like spiral, waterfall, RAD which has their own advantages. SDLC is a

http://en.wikipedia.org/wiki/Use_case_diagram
http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Package_diagram
http://en.wikipedia.org/w/index.php?title=Executable_Architecture_Baseline&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Executable_Architecture_Baseline&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Executable_Architecture_Baseline&action=edit&redlink=1

13

framework that describes the activities performed at each stage of a software development

life cycle.The software development activities suchas planning, analysis, design, coding,

testing and maintenance which need to be performed according to the demand of the

customer. It depends on the various applications to choose the specific model. In this paper,

however, we will study the agile processes and its methodologies. Agile process is itself a

software development process.Agile process is an iterative approach in which customer

satisfaction is at highest priority as the customer has direct involvement in evaluating the

software.

The agile process follows the software development life cycle which includes requirements

gathering, analysis, design , coding , testing and delivers partially implemented software and

waits for the customer feedback. In the whole process , customer satisfaction is at highest

priority with faster development time.

Characteristics of agile projects

 Agile process requires less planning and it divides the tasks into small increments. Agile

process is meant for short term projects with an effort of team work that follows the software

development life cycle. Software development life cycle includes the following phases

1.Requirements gathering, 2.Analysis, 3.Design, 4.Coding , 5.Testing, 6.Maintenance. The

involvement of software team management with customers reduces the risks associated with

the software. This agile process is an iterative process in which changes can be made

according to the customer satisfaction. In agile process new features can be added easily by

using multiple iterations.

Iterative

 The main objective of agile software processes is satisfaction of customers, so it focuses on

 single requirement with multiple iterations.

Modularity

 Agile process decomposes the complete system into manageable pieces called

 modules.Modularity plays a major role in software development processes.

Time Boxing

 As agile process is iterative in nature, it requires the time limits on each module with

 respective cycle.

Parsimony

 In agile processes parsimony is required to mitigate risks and achieve the goals by minimal

 number of modules.

14

Incremental

 As the agile process is iterative in nature, it requires the system to be developed in

increments, each increment is independent of others, and at last all increments are integrated into

complete system.

Adaptive

 Due to the iterative nature of agile process new risks may occurs. The adaptive characteristic

 of agile process allows adapting the processes to attack the new risks and allows changes in

 the real time requirements.

Convergent

 All the risks associated with each increment are convergent in agile process by using iterative

 and incremental approach.

Collaborative

 As agile process is modular in nature, it needs a good communication among software

 development team.Different modules need to be integrated at the end of the software

 development process.

PeopleOriented

 In the agile processes customer satisfaction is the first priority over the technology and

 process. A good software development team increases the performance and productivity of

 the software.

ADVANTAGES

1. Adaptive to the changing environment: In agile software development method, software is

developed over several iterations. Each iteration is characterized by analysis, design,

implementation and testing. After each iteration the mini project is delivered to the customer

for their use and feedback. Any changes that upgrade the software are welcome from the

customer at any stage of development and that changes are implemented.

2. Ensures customer satisfaction: This methodology requires active customer involvement

throughout thedevelopment. The deliverables developed after each iteration is given to the

user for use and improvement is done based on the customer feedback only. So at the end

what we get as the final product is of high quality and it ensures the customer satisfaction as

the entire softwareis developed based on the requirements taken from customer.

3. Least documentation: The documentation in agile methodology is shortand to the point

though it depends on the agile team. Generally they don‘t makedocumentation on internal

design of the software. The main things which should be on the documentation are product

features list, duration for each iteration and date. This brief documentation saves time of

15

development and deliver the project in least possible time.

4. Reduces risks of development: As the incremented mini software is delivered to the

customers after every short development cycle and feedbacks are taken from the customers, it

warns developers about the upcoming problems which may occur at the later stages of

development. It also helps to discover errors quickly and they are fixed immediately.

DISADVANTAGES

Customer interaction is the key factor of developing successful software: Agile methodology is

based on customer involvement because the entire project is developed according to the

requirements given by the customers. So if the customer representative is not clear about the

product features, the development process will go out of the track.

Lack of documentation: Though the least documentation saves development time as an advantage

of agile method, on the other hand it is a big disadvantage for developer. Here the internal design

is getting changed again and again depending on user requirements after every iteration, so it is

not possible to maintain the detail documentation of design and implementation because of

project deadline. So because of less available information, it is very difficult for the new

developers who join the development team at thelater stage to understand the actual method

followed to develop the software.

Time consuming and wastage of resources because of constant change of requirements: If the

customers are not satisfied by the partial software developed by certain iteration and they change

their requirements then that incremented part is of no use. So it is the total wastage of time, effort

and resources required to develop that increment.

More helpful for management than developer: The agile methodology helpsmanagement to take

decisions about the software development, set goals for developers and fix the deadline for them.

But it is very difficult for the baseline developers to cope up with the ever changing environment

and every time changing the design, code based on just in time requirements.

16

COMPARISON OF AGILE PROCESS WITH OTHER SDLC MODELS

TABLE I: PRCOESS MODELS

 Different Process Models

Features Agile Process Spiral Model RAD Model

Definition Agile process is the

ability to both

create and respond

tochanging

requirements of

software.

Spiral model is the

software development

model which focuses

on managing

risks.

RAD model is ―high

speed adaptation of

linear sequential

model, in which

component based

construction is

used.

Adaptability y y n

Testing Phase Unit, Integration ,

System testing
Unit, Integration and

System testing

Unit

Quality Factors y y n

Risk Analysis n y n

Off-the- Tools n n y

Failure normally due to Code Code Architecture and

design

Knowledge Required Product and domain Product and domain Domain

Entry & exit Criteria n n y

Mock up y y n

Extendability y y n

Project management

involvement

y n y

Higher Reliability y y n

Time Boxing y n y

Choosing the right process

Software process consists of four fundamental activities:

1. Software specification where engineers or/and customers define what the product should do

and how should it operate.

2. Software development is designing and actual coding.

3. Software validation is generally testing. It is important to check if the system is designed and

implemented correctly.

4. Software evolution is modifying the system according to new needs of customer (s).

17

Different types of software need different development process.

Software process model is a simplified description of a software process that presents one view of a

process. And again, choice of a view depends on the system developing, sometimes it is useful to

apply a workflow model, sometimes, for example – a role/action model.

Most software process models are based on one of three general models or paradigms of software

development.

1. The waterfall approach. In this case the development process and all activities are divided into

phases such as requirement specification, software design, implementation, testing etc.

Development goes phase-by-phase.

2. Iterative development. An initial system is rapidly developed from very abstract

specifications. Of course, it can be reimplemented according to new, probably more detailed

specifications.

3. Component-based software engineering (CBSE). The development process is done assuming

some parts of the system is already exist, so the process focuses on integrating parts together

rather than developing everything from scratch.

Four principal dimensions to system dependability are: Availability, Reliability, Safety and Security.

All of these may be decomposed into another, for example security includes integrity (ensuring that data

is not damaged) and confidentiality. Reliability includes correctness, precision and timeliness. All of

them are interrelated.

18

Module-II

REQUIREMENTS MANAGEMENT

 Functional requirements and Quality attributes

Quality attributes, such as response time, accuracy, security, reliability, are properties that affect the

systems a whole. Most approaches deal with quality attributes separately from the functional

requirements of a system. This means that the integration is difficult to achieve and usually is

accomplished only at the later stages of the software development process. Furthermore, current

approaches fail in dealing with the crosscutting nature of some of those attributes, i.e. it is difficult to

represent clearly how these attributes can affect several requirements simultaneously. Since this

integration is not supported from requirements to the implementation, some of the software

engineering principles, such as abstraction, localization, modularisation, uniformity and reusability,

can be compromised. What we propose is a model to identify and specify quality attributes that

crosscut requirements including their systematic integration into the functional description at an early

stage of the software development process, i.e. at requirements.

A model for early quality attributes

The process model we propose is UML compliant and is composed of three main activities:

identification, specification and integration of requirements. The first activity consists of identifying

all the requirements of system and select from those the quality attributes relevant to the application

domain and stakeholders. The second activity is divided into two main parts: (1)specifying functional

requirements using a use case based approach; (2) describe quality attributes using special templates

and identify those that cut across (i.e. crosscutting) functional requirements. The third activity

proposes a set of models to represent the integration of crosscutting quality attributes and functional

requirements. Figure 1 depicts this model.

19

To identify the crosscutting nature of some of the quality attributes we need to take into account the

information contained in rows Where and Requirements. If a quality attribute cuts across (i.e. is

required by) several requirements and models, then it is crosscutting.

The integration is accomplished by ―weaving‖ the quality attributes with the functional requirements

in three different ways :

Overlap: the quality attribute adds new behaviour to the functional requirements it transverses. In this

case, the quality attribute may be required before those requirements, or, it may be required after

them.

Override: the quality attribute superposes the functional requirements it transverses. In this case, its

behaviour substitutes the functional requirements behaviour.

Wrap: the quality attribute ―encapsulates‖ the requirements it transverses. In this case the behaviour

of the requirements is wrapped by the behaviour of the quality attribute. We weave quality attributes

with functional requirements by using both standard diagrammatic representations (e.g. use case

diagram, interaction diagrams) and by new diagrams.

20

Identify requirements

Requirements of a system can be classified into functional and non-functional (i.e. quality attributes).

Functional requirements are statements of services the system should provide, how the system should

react to particular inputs and how the system should behave in particular situations. Different types of

methods are used to specify functional requirements. Use case driven approaches describe ―the ways

in which a user uses a system‖ that is why use case diagram is often used for capturing functional

requirements. Quality attributes define global properties of a system. Usually these are only dealt with

in the later stages of a software development process, such as design and implementation.

Identify actors and use cases

For the road pricing system, the actors we identified are:

 Vehicle owner: is responsible for registering a vehicle;

 Vehicle driver: comprehends the vehicle, the driver and the gizmo installed on it;

 Bank: represents the entity that holds the vehicle owner‘s account;

 System clock: represents the internal clock of the system that monthly triggers the calculation

of debits.

The following are the use cases required by the actors listed above:

 Register vehicle: is responsible for registering a vehicle and its owner, and communicate with

the bank to guarantee a good account;

 Pass single toll: is responsible for dealing with tolls where vehicles pay a fixed amount. It

reads the vehicle gizmo and checks on whether it is a good one. If the gizmo is ok the light is

turned green, and the amount to be paid is calculated and displayed. If the gizmo is not ok, the

light is turned yellow and a photo is taken.

 Enter motorway: checks the gizmo, turns on the light and registers an entrance. If the gizmo is

invalid a photo is taken and registered in the system.

 Exit motorway: checks the gizmo and if the vehicle has an entrance, turns on the light

accordingly, calculates the amount to be paid (as a function of the distance travelled), displays

it and records this passage. If the gizmo is not ok, or if the vehicle did not enter in a green

lane, the light is turned yellow and a photo is taken.

 Pay bill: sums up all passages for each vehicle, issues a debit to be sent to the bank and a copy

to the vehicle owner.

Identify quality attributes

Quality attributes can be assumptions, constraints or goals of stakeholders. By analysing the initial of

set requirements, the potential quality attributes are identified. For example, if the owner of a vehicle

has to indicate, during registration, his/her bank details so that automatic transfers can be performed

automatically, then security is an issue that the system needs to address. Another fundamental quality

attribute is response time that is a issue when a vehicle passes a toll gate, or when a customer activates

his/her own gizmo in an ATM: the toll gate components have to react in time so that the driver can

21

see the light and the amount being displayed. Other concerns are identified in a similar fashion:

Multiuser System, Compatibility, Legal Issues, Correctness and Availability.

Specify functional requirements and quality attributes

The functional requirements are specified using the UML models, such as use cases, sequence and

class diagrams. The quality attributes are described in templates of the form presented in Figure 2.

Build the use case diagram

The set of all use cases can be represented in a use case diagram, where we can see the existing

relationships between use cases and the ones between use cases and actors. Figure 3 shows the use

case diagram of the road traffic system.

Integrate functional requirements with crosscutting quality attributes

Integration composes the quality attributes with the functional requirements, to obtain the whole

system. We use UML diagrams to show the integration. The two examples given above (for response

time and security) fall into two of the categories already described: overlap and wrapper. We could

extend the UML diagrams to represent some quality attributes. For example, the sequence diagram

shown in Figure 4 can be extended to show how response time affects a scenario

22

 Elicitation techniques

A major goal of Requirements Elicitation is to avoid the confusions between stakeholders and

analysts. This will often involve putting significant sort into requirements elicitation. Unfortunately,

Requirements Engineering is an immature discipline, perhaps not entirely unfairly characterized as a

battlefield occupied by competing commercial methods, firing competing claims at each other, and

leaving the consumers weary and confused.

The goal of this paper is to analyze and compare of the different methods of the requirements

elicitation process, which will be useful to compare the different characteristics and the performance

of the different elicitation methods. Hence, all the requirement elicitation techniques are very handy

for extracting the requirements and different organizations, which can use different requirement

elicitation techniques according to organizational culture and needs.

As requirements elicitation is a process in which intensive interaction between stakeholders and the

analysts, so for finding the interaction between stakeholders and analysts will be easy for improving

the quality of extracted requirements. It is important to distinguish different elicitation methods

according to the four methods of communication.

1. Conversational

2. Observational

3. Analytic

4. Synthetic

Each category presents a specific interaction model between analysts and stakeholders. Understanding

the method category helps engineers understand different elicitation methods and guides them to

select appropriate method for requirements elicitation.

23

Four Methods of Communication

I)Conversational Methods

The conversational method provides a means of verbal communication between stakeholders and

Analysts. As conversation is a natural way of communication and an effective mean of expressing

needs and ideas, and the conversational methods are used massively to understand the problems and

to elicit generic product requirements. The Conversational Methods are also known as verbal

methods, such as Interviews, Questionnaire, and Brainstorming.

a. Interviews: A typical conversational method is interviews. It is most commonly used method in

requirements elicitation. An Interview is generally conducted by an experienced analyst, who has

some generic knowledge about the application domain as well. In an interview, Analyst discusses the

desired product with different stakeholders and develops an understanding of their requirements.

Generally Interviews are divided in two groups.

1. Closed Interview: In this interview the requirements, we have to prepare some predefined

questions and try to get the answers for these questions for the stakeholder.

2. Open-ended Interview: In this interview, we do not need to prepare any predefined questions,

and the information from the stakeholders in open discussions.

b.Questionnaire: Questionnaires are one of the methods of gathering requirements in less cost.

Questionnaires reach a large number of people, not only in less time but also in a lesser cost. The

general factors which affect the usage of the questionnaire are

The available resources to gather the requirements mainly depends on the available resource

Type of Requirements that has to be gathering depends on the level of the respondent‘s knowledge

and background.

Anonymity provided to the respondent

c.Brainstorming: Brainstorming is another conversation method. It has some similarities with

workshops and focus groups as in Brainstorming stakeholders are gather together for a short time

period but in this short time period they develop a large and broad list of ideas. In this meeting ―out -

of-the-box‖ thinking approach is encouraged. The brainstorming involves both idea generation and

idea reduction.

Conversation is one of the most prevalent yet invisible forms of social interaction. People are usually

happy to describe their work and difficulties they face. The verbally expressive demands, needs and

constraints are often called non-tacit requirements. Conversational methods are very commonly used

24

in requirements development. However, they are laborintensive : meeting setup and transcript

producing and analyzing from records of a live interaction take time.

II)Observational Methods:

The observational method provides means to develop a better understanding about domain of

Application. Observation methods work by observing human activities at environment where systemis

expected to be deployed. In addition to state able requirements, some requirements are apparent to

stakeholders, but stakeholders find it very hard to verbalize.

The observation methods come into play where Verbal communication becomes helpless for

collecting tacit requirements. Therefore, observing how people carry out their routine work forms a

means of acquisition of information which are hard to verbalize. The observational methods appear to

be well suited when stakeholders find it difficult to state their needs and when analysts are looking for

a better understanding of the context in which the desired product is expected to be used.

Observational methods is including, Social analysis, Observation, Ethnographic study, and protocol

analysis.

Social analysis, Observation, Ethnographic study: An observer spends some time in a society or

culture for making detailed observation of all their practices. This practice gives the initial

understanding of system, work flow and organizational culture.

Protocol analysis: In protocol analysis a stakeholder is observed when he is engaged in some task, and

concurrently speaks out loud and explains his thought. With the protocol analysis it is easy to identify

Interaction problems in existing systems and it gives better and closer understanding of Work context

and work flow.

For Observational methods, the observer must be accepted by the people being studied and the people

being studied should carry on with their normal activities as if the observer is not there.

In both Conversational and Observation methods, requirement elicitation is done by studying some

individuals but a variety of documentation may prove out to be handy for extracting the requirements

of the desired product. The documentation may include problem analysis, organizational charts,

standards, user manuals of existing systems, survey report of competitive systems in market, and so

on. By studying these documents, engineers capture the information about the application domain, the

workflow, the product features, and map it to the requirements specification.

25

III)Analytic Methods:

Conversational or Observational methods are used to directly extracted requirements from people‘s

behaviour and their verbalized thought. But still there is a lot of knowledge that is not directly

expressed, for example expert‘s knowledge, information about regulation and legacy products are

some examples of such sources. All the stated sources provide engineers rich information in relation

to the product. Analytic methods provide ways to explore the existing documentation or knowledge

and acquire requirements from a series of deductions.it will include Requirement reuse,

documentation studies, laddering, and repertory grid

Requirement reuse: In this technique, glossaries and specification of legacy systems or systems within

the same product family is used to identify requirements of the desired system.

It has been observed that many requirements in a new system are more or less same as they were in a

legacy system‘s requirement. So it is not a bad idea to reuse the details of requirements of an earlier

system in a new system.

Documentation studies: In this technique different available documents (e.g. Organizational policies,

standards, legislation, Market information, Specification of legacy systems) are read and studied to

find the content that can prove out to be relevant useful for the requirements elicitation tasks.

Laddering: This technique can be divided in 3 parts: creation, reviewing and modification. Laddering

method is a form of structured interview that is widely used in the field of knowledge elicitation

activities to elicit stakeholder‘s goals, aims and values Analyst used laddering method to create,

review and modify the hierarchical contents of expert‘s knowledge in the form of tree diagram. It was

first introduced by the clinical psychologists in 1960 to understand the people ―score values and

beliefs . Its success in the fields of psychology allows other researchers in the industries to adapt it in

their fields. Specifically software developers have adapted the laddering techniques for gather the

complex user tacit requirements.

 Repertory grid: Stakeholder is asked for attributes applicable to a set of entities and values for cells in

entity -attribute matrix.

In general, the analytic methods are not vital to requirements elicitation, since requirements are

captured indirectly from other sources, rather than end users and customers. However, they form

complementary ones to improve the efficiency and effectiveness of requirements elicitation,

especially when the information from legacy or related products is reusable.

IV)Synthetic Methods:

So far, we have discussed Conversational, Observational and Analytic methods. It is apparent that No

single method is sufficient enough to develop all the requirement of a system. All these methods are

good and very handy in some certain context and circumstances. It is often a good idea to combine

different elicitation methods for developing requirement. The combination helps the engineer uncover

the basic aspects and gain a generic knowledge of the application domain. Instead of combining

26

different of individual methods, the synthetic method forms a coherent whole by systematically

combining conversation, observation, and analysis into single methods. Analysts and stakeholder

representatives communicate and coordinate in different ways to reach a common understanding of

the desired product. Synthetic methods are known as collaborative methods as they are collaboration

of multiple requirement elicitation methods. Requirement elicitation techniques of Synthetic methods

are including scenarios, passive storyboards, prototyping, interactive storyboards, JAD/RAD sessions,

and Contextual inquiry.

Scenarios, passive storyboards: It is an interaction session. In this session a sequence of actions and

events described for executing some generic task which the system is intended to accomplish. With

the help of this technique, clear requirement related to procedure and data flow can be achieved. With

this technique initial set of requirement can be prepared in lesser cost.

Prototyping, Interactive storyboards: In this technique, a concrete but partial system is discussed with

stakeholders. This concrete but partial system is expected to be delivered at the end of project. The

purpose of showing this system to stakeholders is to elicit and validate functional requirement.

JAD/RAD session: It stands for Joint Application Development/Rapid Application Development and

emphasizes user involvement through group sessions with unbiased facilitator. JAD is conducted in

the same manner as brainstorming, except that the stakeholders and the users are also allowed to

participate and discuss on the design of the proposed system. The discussion with the stakeholders

and the users continues until the final requirements are gathered.

Contextual inquiry: this technique is a combination of open-ended interview, workplace observation,

and prototyping. This method used for interactive systems design where user interface design is

critical.

 All four requirement elicitation methods are commonly used but the selection of requirement

elicitation method entirely depends on the needs and organizational structure. No matter what

development project is, requirements development nearly always takes place in the context of a

human activity system, and problem owners are people .. It is essential for requirements engineers to

study how people perceive, understand, and express the problem domain, how they interact with the

desired product, and how the physical and cultural environments affect their actions.

The conversational methods provide a direct contact channel between engineers and stakeholders, and

the requirements are mainly no tacit. The observational methods provide an indirect channel by

observing user‘s interaction with his work setting and context, and the requirements fall into tacit

knowledge. The analytic methods form one complementary indirect contact channel to extract

requirements proactively. The synthetic methods focus more on collective effort on clarifying the

27

features of desired products, and the communication channel is therefore a mix of direct contact and

indirect contact. Each type of techniques has trade-offs. In reality, of course, the boundary between

different types of method is blurred.

Advantage and Disadvantage of Requirement Elicitation

After the discussion the different of the four group of requirement elicitation method. In order to

understand the each Requirement elicitation Methods and effective use them in the real case ,we have

to focus on the advantages and disadvantages of different requirement elicitation methods:

Conversational, Observational, Analytic and Synthetic one by one.

1) As conversation is a natural and effective way of communication, that‘s why the conversational

methods are used massively. Conversational methods include techniques such as: interviews,

Questionnaire and Brainstorming.

Advantages of Conversational Method: Conversational techniques are really helpful for collection

rich information about the requirements. Along with the requirements, conversational methods

uncover opinions, feelings and goals of different individuals. With the help of conversational methods

it is easy to dig into the details with the help of follow up questions to what the person has told you.

Disadvantages of Conversational Method: Along with the number of advantages there are certain

disadvantages of conversational methods as this skill is very hard to master.

1)Conversational Methods for requirement elicitation depend a lot on the behavior and attitude of

conductor . A Conductor is supposed to be neutral. As a result of conversational method, a collection

of information can be obtained and getting meaningful information from gathered information will be

difficult. In Conversational Methods the contexts of conversation plays a very important role as well.

2) Observational methods are helpful in understanding the application domain by observing human

activities Observational methods are inefficient when the project have very tight schedule at

requirement stages. Method like ethnography and protocol analysis methods falls under this category .

The Observational method involves: Social analysis, Observation, Ethnographic study and Protocol

Analysis.

Advantages of Observational Methods: The observational methods are good choice for uncovering

basic aspects of routine order. Moreover they provide vital information for designing solution.

Observational Methods are very handy when the development team has lack of experience about

product domain.

28

Disadvantages of Observational Methods: Along with the advantages of observational methods there

are certain disadvantages as well. The Biggest disadvantage is that observation methods need a lot of

time and these techniques are not good choice when schedule is tight. Just like conversational

techniques, observational techniques are also hard to master . Moreover observational techniques

require sensitivity and responsiveness to physical environment.

3)Conversational or Observational methods are used to directly extracted requirements from people‘s

behavior and their verbalized thought. But still there is a lot of knowledge that is not directly

expressed. For extracting this kind of knowledge and information analytical skills are used. Analytical

Skills include Requirement Reuse, Documentation Studies, Laddering and Repertory Girds.

Advantages of Analytical Methods: Analytic Methods have numerous advantages as ―People‖ are not

the only source of information in terms of requirements. Experts Knowledge and Opinion plays an

important role in requirement maturity. Moreover, reuse of already available information saves time

and cost. Analytical methods have hierarchical flow of information as well.

Disadvantages of Analytical Methods: Along advantages, Analytical methods have certain

disadvantages as well. The biggest disadvantage is that an analytical method requires some empirical

data, documentation or expert‘s opinions without these it is difficult to elicit proper requirements.

Similarly analytical methods can narrow the vision of product. As analytical methods deal with some

earlier knowledge so possibility of error replication is a serious and constant threat. Analytical

methods are never a good choice when you are going to develop an altogether new system. [12]

Quality Attribute Workshops(QAW)

The Quality Attribute Workshop (QAW) is a facilitated method that engages system stakeholders

early in the life cycle to discover the driving quality attributes of a software-intensive system. The

QAW was developed to complement the Architecture Tradeoffs Analysis Methodism (ATAMSM)

and provides a way to identify important quality attributes and clarify system requirements before the

software architecture has been created.

This is the third edition of a technical report describing the QAW. We have narrowed the scope of a

QAW to the creation of prioritized and refined scenarios. This report describes the newly revised

QAW and describes potential uses of the refined scenarios generated during it.

The Quality Attribute Workshop (QAW) is a facilitated method that engages system stakeholders

early in the system development life cycle to discover the driving quality attributes ofa software-

intensive system. The QAW is system-centric and stakeholder focused; it is used before the software

29

architecture has been created. The QAW provides an opportunity to gather stakeholders together to

provide input about their needs and expectations with respect to key quality attributes that are of

particular concern to them

Both the system and software architectures are key to realizing quality attribute requirements in the

implementation. Although an architecture cannot guarantee that an implementation will meet its

quality attribute goals, the wrong architecture will surely spell disaster. As an example, consider

security. It is difficult, maybe even impossible, to add effective security to a systems an afterthought.

Components as well as communication mechanisms and paths must be designed or selected early in

the life cycle to satisfy security requirements. The critical quality attributes must be well understood

and articulated early in the development of a system, so the architect can design an architecture that

will satisfy them. The QAW is one way to discover, document, and prioritize a system‘s quality

attributes early in its life cycle.

It is important to point out that we do not aim at an absolute measure of quality; rather our purposes to

identify scenarios from the point of view of a diverse group of stakeholders (e.g., architects,

developers, users, sponsors). These scenarios can then be used by the system engineers toanalyze the

system‘s architecture and identify concerns (e.g., inadequate performance, successful denial-of-

service attacks) and possible mitigation strategies (e.g., prototyping, modeling, simulation).

QAW Method

The QAW is a facilitated, early intervention method used to generate, prioritize, and refine quality

attribute scenarios before the software architecture is completed. The QAW is focused on system-

level concerns and specifically the role that software will play in the system. TheQAW is dependent

on the participation of system stakeholders—individuals on whom the systemhas significant impact,

such as end users, installers, administrators (of database management systems [DBMS], networks,

help desks, etc.), trainers, architects, acquirers, system andsoftware engineers, and others. The group

of stakeholders present during any one QAW shouldnumber at least 5 and no more than 30 for a

30

single workshop. In preparation for the workshop,stakeholders receive a ―participants handbook‖

providing example quality attribute taxonomies,questions, and scenarios. If time allows, the handbook

should be customized to the

domain of the system and contain the quality attributes, questions, and scenarios that are appropriate

to the domain and the level of architectural detail available.

The contribution of each stakeholder is essential during a QAW; all participants are expectedto be

fully engaged and present throughout the workshop. Participants are encouraged to comment and ask

questions at any time during the workshop. However, it is important to recognizethat facilitators may

occasionally have to cut discussions short in the interest of time or when itis clear that the discussion

is not focused on the required QAW outcomes. The QAW is an intense and demanding activity. It is

very important that all participants stay focused, are ontime, and limit side discussions throughout the

day.

The QAW involves the following steps:

1. QAW Presentation and Introductions

2. Business/Mission Presentation

3. Architectural Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement

The following sections describe each step of the QAW in detail.

Step 1: QAW Presentation and Introductions

In this step, QAW facilitators describe the motivation for the QAW and explain each step ofthe

method. We recommend using a standard slide presentation that can be customizeddepending on the

needs of the sponsor.

Next, the facilitators introduce themselves and the stakeholders do likewise, briefly statingtheir

background, their role in the organization, and their relationship to the system being built.

Step 2: Business/Mission Presentation

After Step 1, a representative of the stakeholder community presents the business and/or

missiondrivers for the system. The term ―business and/or mission drivers‖ is used carefully here.Some

organizations are clearly motivated by business concerns such as profitability, whileothers, such as

governmental organizations, are motivated by mission concerns and find profitabilitymeaningless.

31

The stakeholder representing the business and/or mission concerns (typicallya manager or

management representative) spends about one hour presenting

• the system‘s business/mission context

• high-level functional requirements, constraints, and quality attribute requirements

During the presentation, the facilitators listen carefully and capture any relevant informationthat may

shed light on the quality attribute drivers. The quality attributes that will be refined inlater steps will

be derived largely from the business/mission needs presented in this step.

Step 3: Architectural Plan Presentation

While a detailed system architecture might not exist, it is possible that high-level systemdescriptions,

context drawings, or other artifacts have been created that describe some of thesystem‘s technical

details. At this point in the workshop, a technical stakeholder will presentthe system architectural

plans as they stand with respect to these early documents. Informationin this presentation may include

 plans and strategies for how key business/mission requirements will be satisfied

 key technical requirements and constraints—such as mandated operating systems, hardware,

 middleware, and standards—that will drive architectural decisions

 presentation of existing context diagrams, high-level system diagrams, and other

writtendescriptions

Step 4: Identification of Architectural Drivers

During steps 2 and 3, the facilitators capture information regarding architectural drivers thatare key to

realizing quality attribute goals in the system. These drivers often include high-levelrequirements,

business/mission concerns, goals and objectives, and various quality attributes.Before undertaking this

step, the facilitators should excuse the group for a 15-minute break,during which they will caucus to

compare and consolidate notes taken during steps 2 and 3.

When the stakeholders reconvene, the facilitators will share their list of key architectural driversand

ask the stakeholders for clarifications, additions, deletions, and corrections. The idea isto reach a

consensus on a distilled list of architectural drivers that include high-level requirements,business

drivers, constraints, and quality attributes. The final list of architectural driverswill help focus the

stakeholders during scenario brainstorming to ensure that theseconcerns are represented by the

scenarios collected.

Step 5: Scenario Brainstorming

After the architectural drivers have been identified, the facilitators initiate the brainstormingprocess in

which stakeholders generate scenarios. The facilitators review the parts of a goodscenario (stimulus,

environment, and response) and ensure that each scenario is well formedduring the workshop.

32

Each stakeholder expresses a scenario representing his or her concerns with respect to the systemin

round-robin fashion. During a nominal QAW, at least two round-robin passes are madeso that each

stakeholder can contribute at least two scenarios. The facilitators ensure that atleast onerepresentative

scenario exists for each architectural driver listed in Step 4.Scenario generation is a key step in the

QAW method and must be carried out with care.

Wesuggest the following guidance to help QAW facilitators during this step:

Facilitators should help stakeholders create well-formed scenarios. It is tempting forstakeholders to

recite requirements such as ―The system shall produce reports for users.‖While this is an important

requirement, facilitators need to ensure that the quality attributeaspects of this requirement are

explored further. For example, the following scenario shedsmore light on the performance aspect of

this requirement: ―A remote user requests a databasereport via the Web during peak usage and

receives the report within five seconds.‖Note that the initial requirement hasn‘t been lost, but the

scenario further explores the performanceaspect of this requirement. Facilitators should note that

quality attribute namesby themselves are not enough. Rather than say ―the system shall be

modifiable,‖ the scenarioshould describe what it means to be modifiable by providing a specific

example of amodification to the system vis-à-vis a scenario.

The vocabulary used to describe quality attributes varies widely. Heated debates oftenrevolve around

to which quality attribute a particular system property belongs. It doesn‘tmatter what we call a

particular quality attribute, as long as there‘s a scenario thatdescribes what it means.

Facilitators need to remember that there are three general types of scenarios and to ensurethat each

type is covered during the QAW:

 use case scenarios - involving anticipated uses of the system

 growth scenarios - involving anticipated changes to the system

 exploratory scenarios - involving unanticipated stresses to the system that can includeuses

and/or changes

 Facilitators should refer to the list of architectural drivers generated in Step 4 from time

totime during scenario brainstorming to ensure that representative scenarios exist for eachone.

Step 6: Scenario Consolidation

After the scenario brainstorming, similar scenarios are consolidated when reasonable. To do that,

facilitators ask stakeholders to identify those scenarios that are very similar in content. Scenarios that

are similar are merged, as long as the people who proposed them agree andfeels that their scenarios

will not be diluted in the process. Consolidation is an important step because it helps to prevent a

―dilution‖ of votes during the prioritization of scenarios (Step 7).Such a dilution occurs when

stakeholders split their votes between two very similar scenarios. As a result, neither scenario rises to

importance and is therefore never refined (Step 8). However, if the two scenarios are similar enough

to be merged into one, the votes might be concentrated, and the merged scenario may then rise to the

33

appropriate level of importance and be refinedfurther. Facilitators should make every attempt to reach

a majority consensus with the stakeholders before merging scenarios. Though stakeholders may be

tempted to merge scenarios with abandon, they should not do so. In actuality, very few scenarios are

merged.

Step 7: Scenario Prioritization

Prioritization of the scenarios is accomplished by allocating each stakeholder a number of votes equal

to 30% of the total number of scenarios generated after consolidation. The actual number of votes

allocated to stakeholders is rounded to an even number of votes at the discretion of the facilitators.

For example, if 30 scenarios were generated, each stakeholder gets 30 x0.3, or 9, votes rounded up to

10. Voting is done in round-robin fashion, in two passes. . Stakeholders can allocate any number

oftheir votes to any scenario or combination of scenarios. The votes are counted, and the scenarios are

prioritized accordingly.

Step 8: Scenario Refinement

After the prioritization, depending on the amount of time remaining, the top four or five scenarios are

refined in more detail. Facilitators further elaborate each one, documenting the following:

Further clarify the scenario by clearly describing the following six things:

1. stimulus - the condition that affects the system

2. response - the activity that results from the stimulus

3. source of stimulus - the entity that generated the stimulus

4. environment - the condition under which the stimulus occurred

5. artefact stimulated - the artefact that was stimulated

6. response measure - the measure by which the system‘s response will be evaluated

 Describe the business/mission goals that are affected by the scenario.

• Describe the relevant quality attributes associated with the scenario.

• Allow the stakeholders to pose questions and raise any issues regarding the scenario. Such questions

should concentrate on the quality attribute aspects of the scenario and any concerns that the

stakeholders might have in achieving the response called for in the scenario. See the example template

for scenario refinement in Appendix A. This step continues until time runs out or the highest priority

scenarios have been refined. Typically, time runs out first.

QAW Benefits

The QAW provides a forum for a wide variety of stakeholders to gather in one room at onetime very

early in the development process. It is often the first time such a meeting takes place and generally

leads to the identification of conflicting assumptions about system requirements. In addition to

clarifying quality attribute requirements, the QAW provides increased stakeholder communication, an

34

informed basis for architectural decisions, improved architectural documentation, and support for

analysis and testing throughout the life of the system.

The results of a QAW include

 a list of architectural drivers

 the raw scenarios

 the prioritized list of raw scenarios

 the refined scenarios

This information can be used to

 update the organization‘s architectural vision

 refine system and software requirements

 guide the development of prototypes

 exercise simulations

 understand and clarify the system‘s architectural drivers

 influence the order in which the architecture is developed

 describe the operation of a system

In short, the architect can use this information to design the architecture. In addition, after the

architecture is created, the scenarios can be used as part of a software architecture evaluation. If the

Architecture Tradeoffs Analysis Methodism (ATAMSM)4 is selected as the software architecture

evaluation method, the scenarios generated during the QAW can be incorporated as seed scenarios in

that evaluation .

The QAW lends itself well to the capture of many architecturally relevant materials. Software

architectural documentation is a collection of view packets plus any documentation that applies to

more than one view [Clements 02b]. Each view packet contains a primary presentation, a catalog of

the view‘s elements (including element behaviour), a context diagram, a variability guide, architecture

background (rationale, analysis results, and assumptions about the environment), and other

information including mapping to requirements.

Several pieces of this information will be gleaned directly from the QAW. For example, scenario

generation can lead to the creation of use case diagrams, context diagrams, or their equivalent.

Refined scenarios can be documented as sequence diagrams or collaboration diagrams. Stakeholders‘

concerns and any other rationale information that is captured should be recorded individually in a

form that can be included in the appropriate view packet or overview documentation. Details that

explain how to transition these artefacts into architectural documentation is the subject of

ongoingresearch. In addition to the more immediate benefits cited above, the scenarios continue to

35

provide benefits during later phases of development. They provide input for analysis throughout the

life of the system and can be used to drive test case development during implementation testing.

Analysis ,prioritization, and trade off

The goal of requirement analysis phase is answer to question:

what software must do (and with what constraints)?

The goal of software analysis phase is answer to question: how system should work?

Software engineering elements that are used during analysis phase: I notations for model record, I

methods of model preparation, I tools for easy use of notations and methods.

Prioritizing requirements helps the project team to understand which requirements are most important

and most urgent. Based on this finding a software engineer can decide what to develop/implement in

the first release and what on the coming releases. Prioritization is also a useful activity for decision

making in other phases of software engineering like development, testing, and implementation. There

are a number of techniques available to prioritize the requirements with their associated strengths and

limitations.

Just as blueprints in the building construction industry guides the construction of a building, the

software architecture serves a blueprint that addresses technical concerns and programmatic issues of

a project. An architectural focus will:

help refine the functional requirements, quality attribute requirements, and constraints

help set and maintain expectations in stakeholders

define the team structure

aid in creating more accurate project estimates

establish the team vocabulary

help identify technical risk early

guide the creation of a more realistic and accurate production schedule and assist in project tracking

and oversight

provide an early vision of the solution/system

A number of methods have been created by the Software Engineering Institute to help practitioners

create better architectures. Some of these methods include: Quality Attribute Workshop (QAW)

,ArchitectureTradeoff Analysis Method (ATAM)], Attribute Driven Design (ADD). These methods

have provided great value to practitioners trying to build better architectures. However, these methods

have two main problems. First, they are intervention oriented. These methods were not designed with

a particular development philosophy (lifecycle or process) in mind. As such, they do not fit neatly into

existing development models or processes without significant tailoring

36

Organizations are constantly bombarded with emerging methods, tools, and techniques and they must:

• figure out if they are useful

• how to use them

• how to make them fit together

• estimate the costs for adoption

• show return on investment

Architecture Centric Development Method (ACDM)

 Software development teams need specific guidance about how to create software architecture in the

context of a product development lifecycle. ACDM brings together some of the best practices into a

lifecycle development model. The key goals of ACDM are to help software development teams:

 Get the information from stakeholders needed to define the architecture as early as possible.

 Create, refine, and update the architecture in an iterative way throughout the lifecycle whether

the lifecycle is waterfall or iterative.

 Validate that the architecture will meet the expectations once implemented.

 Define meaningful roles for team members to guide their efforts.

 Create better estimates and schedules based on the architectural blueprint.

 Provide insight into project performance.

 Establish a lightweight, scalable, tailor able, repeatable process framework.

 The ACDM is geared toward organizations and teams building software intensive systems

and puts the software architecture ―front-and-center‖ during all phases of the project. The

method prescribes creating a notional architecture as soon as the most preliminary

requirements work has been completed. The architecture is developed early and iteratively

refined as a central focus of the project. The architecture is refined until the development

team is confident that a system can be implemented and it will meet the needs of the

stakeholder community. In ACDM, the architecture is the locus for defining all subsequent

processes, planning, activities, and artifacts. Preconditions for beginning ACDM are defining

roles for all of the team members. The method describes several roles and their

responsibilities. The ACDM essentially follows seven prescribed stages briefly described

below.

37

While ACDM emerged from small teams and projects (4 to 6 team members, 1 to 2 year

projects), it is designed to scale up to meet the needs of larger teams and projects as well. In

larger projects, the ACDM is used by a core architecture team to create and refine the overall

system architecture. The output from this ACDM cycle is an initial partitioning of the system

(or system of systems) into sub-elements (or subsystems) and their interactions. Detailed

architecting of the various elements is deferred to smaller teams, each using ACDM to

architect their part of the system (which may be another system). Later integration of the

entire system is undertaken in production stages 6 and 7. The ACDM has been evolved over a

five year period (since 1999) on small projects and is now being further refined for use on

larger projects in industry.

38

ACDM Preconditions

A precondition to beginning step 1 of ACDM is to establish the team roles for project. The

recommended roles and responsibilities for ACDM are listed in the table below:

The ACDM also assumes that the functional requirements and constraints exist but does not discuss in

detail how to get them, document them, and organize them. This may seem somewhat naive but this is

intentional since requirement gathering, documenting, and organization varies widely even in our

small studio projects. While ACDM does not address the gathering of initial requirements and

constraints, it will help refine them, clarify them, as the architecture is designed and matures. The

relative completeness of the functional requirements varies from project to project and may have to be

discovered and refined as a consequence of building the system. Some clients provide a documented

list of functional requirements; others just bring ideas to the team. The initial gathering of functional

requirements is assumed to have occurred prior to beginning step 1 of ACDM. The requirements

engineer will coordinate the gathering and documenting of functional requirements. The term

―constraints‖ as applied in this context can be confusing. A ―constraint‖ is an imposed design decision

or a design decision that the architect is not at liberty to make or change. Example constraints include

being forced to use a particular operating system, use a particular commercial off-the-shelf product,

adhere to a particular standard, or build a system using a prescribed implementation framework.

Requirements documentation and specification

A Software requirements specification (SRS), a requirements specification for a software system, is a

description of the behavior of a system to be developed and may include a set of use cases that

describe interactions the users will have with the software. In addition it also contains non-functional

requirements. Non-functional requirements impose constraints on the design or implementation (such

as performance engineering requirements, quality standards, or design constraints) .

Software requirements specification establishes the basis for agreement between customers and

contractors or suppliers (in market-driven projects, these roles may be played by the marketing and

http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Non-functional_requirements
http://en.wikipedia.org/wiki/Non-functional_requirements
http://en.wikipedia.org/wiki/Performance_engineering
http://en.wikipedia.org/wiki/Quality_(business)

39

development divisions) on what the software product is to do as well as what it is not expected to do.

Software requirements specification permits a rigorous assessment of requirements before design can

begin and reduces later redesign. It should also provide a realistic basis for estimating product costs,

risks, and schedules.

The software requirements specification document enlists enough and necessary requirements that are

required for the project development.To derive the requirements we need to have clear and thorough

understanding of the products to be developed or being developed. This is achieved and refined with

detailed and continuous communications with the project team and customer till the completion of the

software.

Change management

Globalization and the constant innovation of technology result in a constantly evolving business

environment. Phenomena such as social media and mobile adaptability have revolutionized business

and the effect of this is an ever increasing need for change, and therefore changes management. The

growth in technology also has a secondary effect of increasing the availability and therefore

accountability of knowledge. Easily accessible information has resulted in unprecedented scrutiny

from stockholders and the media and pressure on management.

With the business environment experiencing so much change, organizations must then learn to

become comfortable with change as well. Therefore, the ability to manage and adapt to organizational

change is an essential ability required in the workplace today. Yet, major and rapid organizational

change is profoundly difficult because the structure, culture, and routines of organizations often

reflect a persistent and difficult-to-remove "imprint" of past periods, which are resistant to radical

change even as the current environment of the organization changes rapidly.[10]

Due to the growth of technology, modern organizational change is largely motivated by exterior

innovations rather than internal moves. When these developments occur, the organizations that adapt

quickest create a competitive advantage for themselves, while the companies that refuse to change get

left behind. This can result in drastic profit and/or market share losses.

Organizational change directly affects all departments from the entry level employee to senior

management. The entire company must learn how to handle changes to the organization.

Choosing what changes to implement

When determining which of the latest techniques or innovations to adopt, there are four major factors

to be considered:

1. Levels, goals, and strategies

2. Measurement system

3. Sequence of steps

http://en.wikipedia.org/wiki/Social_media
http://en.wikipedia.org/wiki/Change_management#cite_note-Marquis-10

40

4. Implementation and organizational change

Managing the change process

Regardless of the many types of organizational change, the critical aspect is a company‘s ability to

win the buy-in of their organization‘s employees on the change. Effectively managing organizational

change is a four-step process:

1. Recognizing the changes in the broader business environment

2. Developing the necessary adjustments for their company‘s needs

3. Training their employees on the appropriate changes

4. Winning the support of the employees with the persuasiveness of the appropriate adjustments

As a multi-disciplinary practice that has evolved as a result of scholarly research, organizational

change management should begin with a systematic diagnosis of the current situation in order to

determine both the need for change and the capability to change. The objectives, content, and process

of change should all be specified as part of a Change Management plan.

Change management processes should include creative marketing to enable communication between

changing audiences, as well as deep social understanding about leadership‘s styles and group

dynamics. As a visible track on transformation projects, Organizational Change Management aligns

groups‘ expectations, communicates, integrates teams and manages people training. It makes use of

performance metrics, such as financial results, operational efficiency, leadership commitment,

communication effectiveness, and the perceived need for change to design appropriate strategies, in

order to avoid change failures or resolve troubled change projects.

Successful change management is more likely to occur if the following are included:

1. Benefits management and realization to define measurable stakeholder aims, create a business

case for their achievement (which should be continuously updated), and monitor

assumptions, risks, dependencies, costs, return on investment, dis-benefits and cultural issues

affecting the progress of the associated work

2. Effective communication that informs various stakeholders of the reasons for the change

(why?), the benefits of successful implementation (what is in it for us, and you) as well as the

details of the change (when? where? who is involved? how much will it cost? etc.)

3. Devise an effective education, training and/or skills upgrading scheme for the organization

4. Counter resistance from the employees of companies and align them to overall strategic

direction of the organization

5. Provide personal counseling (if required) to alleviate any change-related fears

6. Monitoring of the implementation and fine-tuning as required

41

Examples

 Mission changes

 Strategic changes

 Operational changes (including Structural changes)

 Technological changes

 Changing the attitudes and behaviors of personnel

 Personality Wide Changes

Traceability of requirements

Traceability is the ability to verify the history, location, or application of an item by means of

documented recorded identification.

Other common definitions include to capability (and implementation) of keeping track of a given set

or type of information to a given degree, or the ability to chronologically interrelate uniquely

identifiable entities in a way that is verifiable.

Supply chain

In the supply chain, traceability is more of an ethical or environmental issue. Environmentally

friendly retailers may choose to make information regarding their supply chain freely available to

customers, illustrating the fact that the products they sell are manufactured in factories with safe

working conditions, by workers that earn a fair wage, using methods that do not damage the

environment.

Software development

In software development, the term traceability (or Requirements Traceability) refers to the ability to

link product requirements back to stakeholders' rationales and forward to corresponding design

artifacts, code, and test cases. Traceability supports numerous software engineering activities such as

change impact analysis, compliance verification or trace back of code, regression test selection, and

requirements validation. It is usually accomplished in the form of a matrix created for the verification

and validation of the project. Unfortunately the practice of constructing and maintaining a

requirements trace matrix (RTM) can be very arduous and over time the traces tend to erode into an

inaccurate state unless date/time stamped. Alternate automated approaches for generating traces using

information retrieval methods have been developed.

In transaction processing software, traceability implies use of a unique piece of data (e.g., order

date/time or a serialized sequence number) which can be traced through the entire software flow of all

relevant application programs. Messages and files at any point in the system can then be audited for

correctness and completeness, using the traceability key to find the particular transaction. This is also

sometimes referred to as the transaction footprint

42

Module – III

ESTIMATION, PLANNING, AND TRACKING

Identifying and Prioritizing Risks

 The formal process by which risks factors are systematically identified, assessed, and responded to.

Risk management concentrates on identifying and controlling areas or events that have a potential of

causing unwanted change. (Note that opportunities, also known as positive risk, should also be

managed/exploited. This document is focused on mitigating negative risk, rather than maximizing

positive risk.)

Definitions, Acronyms, and Abbreviations

Risk A potential undesirable and unplanned event or circumstance, anticipated in

advance, which could prevent the project from meeting one or more of its

objectives.

Issue An event or circumstance that has occurred with project impact that needs to

be managed and resolved, with escalation if appropriate.

Task / Action

Item

Work packages from the Work Breakdown Structure (WBS) or work resulting

from project meetings or conversations.

Risk Management Approach

The project team will implement a continuous risk management process which entails two major

processes – risk assessment and risk mitigation.

Risk assessment includes activities to identify risks, analyze and prioritize. Risk mitigation includes

developing risk contingency and mitigation strategies, as well as monitoring the impact of the issue,

action items, strategies and residual risks.

Risk

Identification

Risk Analysis and

Prioritization

Risk Response

Planning

Risk Monitoring

and Control

Communication

43

Risk Tolerance

The company has a very low threshold for risks to:

o The client experience

o The experience of users who directly support the client

o Non-public information (NPI)

o Potential for fraud or loss related to insufficient control or security

Risk Management Tasks

Risk Management activities are documented in the Risk Management workbook. The workbook is

used to identify, prioritize, analyze, and plan a risk response.

Risk Identification: The process of determining which risks may affect the project and documenting

their characteristics.

 Risk Assessment:The Risk Assessement and Mitigation tab in the Risk Management

workbook has a set of questions that need to be answered that help determine the risk

level of the project. Each question has a potential rating of High, Medium, or Low in

terms of potential impact.

 Risk Register:This is located on the project‘s SharePoint site where project specific risks

can be entered. All risks identified through any means should be entered individually in

the Risk Register on SharePoint. Like all company documentation, discretion should be

used in documenting risk: all statements should be fact-based and conclusions should be

reviewed by management (and if appropriate, Legal.) Risks should be stated in a standard

format, to help the team stay focused on risks versus root causes and results: Cause –

Risk – Effect.

o Cause: specific situation that introduces risk

o Risk: uncertain event that can impact the project

o Effect: potential consequences of the risk occurring

Example: A shortage of skilled Business Analysts (cause) could result in many missed

requirements (risk), leading to rework or customer dissatisfaction (effect).

Risk Analysis: The process of analyzing and prioritizing risk. The analyzing and prioritizing of risks

is done in the Risk Management Workbook on the Risk Assessment-Mitigation tab and in the Risk

Register. Risks are prioritized as High, Medium or Low. The prioritization of risks, determines other

steps that may need to happen.

Risk Response Planning: The process of developing options and actions to enhance opportunities and

to reduce threat to project objectives. Mitigating actions are documented on the Risk Assessment and

Mitigation tab in the Risk Management workbook and in the Risk Register. If a risk is prioritized as

High, then mitigating actions must be documented (area is unshaded). If a risk is prioritized as

44

Medium, then mitigating actions are recommended, but not required. If a risk is prioritized as Low,

then mitigating actions are not required.

Risk Mitigation Plans

Mitigating Actions to Consider

o Risk Avoidance -Actions taken to eliminate the source of risk (e.g. change vendor,

lower requirements, change project team member, etc.)

o Risk Mitigation - Actions taken to mitigate the severity and consequences of a risk

(e.g. greater training, delayed deployment, etc.)

o Risk Transfer - The transfer of risk from one group to another (e.g. purchasing

insurance, etc.)

o Risk Monitoring - The monitoring and periodic re-evaluation of a risk for changes to

key risk parameters

o Risk Acceptance - Acknowledging the risk but not taking preventive measures

 Risk-related change to Scope/Time/Cost

The risk response planning process may result in a decision to avoid a risk by changing the

project, or to mitigate a risk by taking action to lesser the probability and/or impact in the

event the risk occurs. Whenever risk response planning results in potential change to the

project, that change must first be requested, analyzed and approved in accordance with the

project‘s Change Management Plan and related processes.

Risk Monitoring and Control: The process of implementing risk response plans, tracking identified

risks, monitoring residual risks, identifying new risk, and evaluating risk process effectiveness

throughout the project.

 Monitoring Risks:Project teams should review project risks and on regular basis to determine

if there are any new project risks and to determine if any actions are needed (if a risk turns to

an issue).

 Escalation:Ifa overall project risk is:

o Low:Project risks are low and therefore no additional review need to occur.

o Medium:Project risks should be reviewed on a monthly basis by the Business Owner,

Technical Owner and core project team.

o High:Project risks should be reviewed on a monthly basis by the Project Sponsor and

Project Steering Committee.

Estimation Techniques

Estimation of software projects can be done by different techniques. The important techniques are:

45

1. Estimation by Expert Judgement

2. Estimation by Analogy

3. Estimation by Available Resources

4. Estimation by Software Price

5. Estimation by Parametric Modeling

Use Case Points

Use Case Points are used as an analysis phase technique for estimating software development.

Assuming the Business Analyst (BA) composes system use cases for describing functional

requirements, the BA can use this technique for estimating the follow-on implementation

effort. This article reviews the process of estimating the follow-on development effort for use

cases. Use Case Points are derived from another software development estimating technique

called ―Function Points.‖ However, Function Points are used by systems analysts as a

development phase technique that requires technical detail for estimating. –

Figure 1. Use Case Points Estimating Process

Functional Points:

Function Points

• Conducted by systems analysts during the development phase

• Can be classified as a class II or I estimate which should be more detailed (4)

• Is based on information contained in a technical specification

• Data Functions using internal and external logical files

• Transaction Functions using external inputs and external outputs, plus external inquiries

FPA Uses and Benefits in Project Planning

Project Scoping

A recommended approach for developing function point counts is to first functionally decompose the

software into its elementary functional components (base functional components). This decomposition

46

may be illustrated graphically on a functional hierarchy. The hierarchy provides a pictorial ‗table of

contents‘ or ‗map‘ of the functionality of the application to be delivered. This approach has the

advantage of being able to easily convey the scope of the application to the user, not only by

illustrating the number of functions delivered by each functional area, but also a comparative size of

each functional area measured in function points.

Assessing Replacement Impact

If the software to be developed is planned to replace existing production applications, it is useful to

asses if the business is going to be delivered more, less or the same functionality. The replacement

system‘s functionality can be mapped against the functionality in the existing system. A quantitative

assessment of the difference can be measured in function points. Note, this comparison can only be

done if the existing applications have already been sized in function points

Assessing Replacement Cost

Multiplying the size of the application to be replaced by an estimate of the dollar cost per function

point to develop, enables project sponsors to develop quick estimates of replacement costs. Industry

derived costs are available and provide a ballpark figure for the likely cost. Industry figures are a

particularly useful reference if the re-development is for a new software or hardware platform not

previously experienced by the organisation. Ideally, organisations should establish their own ‗cost per

function point‘ metrics for their own particular environment, based on project history.

If you are considering implementing a ‗customised off the shelf‘ package solution, then this provides

a quick comparison of the estimated package implementation costs to compare with an in-house build.

Package costs typically need to include the cost of re-engineering the business to adapt the current

business processes to those delivered by the package. These costs are usually not a consideration for

in-house developed software.

Negotiating Scope

Initial project estimates often exceed the sponsor's planned delivery date and budgeted cost. A

reduction in the scope of the functionality to be delivered is often needed so that it is delivered within

a predetermined time or budget constraints. The functional hierarchy provides the ‗sketch-pad‘ to do

scope negotiation. It enables the project manager and the user to work together to identify and flag

(label) those functions which are: mandatoryfor the first release of the application; essential but not

mandatory; or optional and could be held over to a subsequent release.

The scope of the different scenarios can then be quickly determined by measuring the functional size

of the different scenarios. For example, the project size can be objectively measured to determine

what the size (and cost and duration) would be if all functions are implemented, only mandatory

functions are implemented, onlymandatory and essential functions are implemented. This allows the

user to make more informed decisions on which functions will be included in each release of the

application, based on their relative priority compared to what is possible given the time, cost and

resource constraints of the project.

47

Evaluating Requirements

Functionally sizing the requirements for the application quantifies the different types of functionality

delivered by an application. The function point count assigns function points to each of the function

types: External Inputs, Outputs, Enquiries, and Internal and External Files.

Industry figures available from the ISBSG repository for projects measured with IFPUG function

points indicate that ‗complete‘ applications tend to have consistent and predictable ratios of each of

the function types. The profile of functionality delivered by each of the function types in a planned

application can be compared to that of the typical profile from implemented applications, to highlight

areas where the specifications may be incomplete or there may be anomalies.

The following pie chart illustrates the function point count profile for a planned Accounts Receivable

application compared to that from the ISBGS data. The reporting functions (outputs) are lower than

predicted by industry comparisons. Incomplete specification of reporting functions is a common

phenomenon early in a project‘s lifecycle and highlights the potential for substantial growth creep

later in the project as the user identifies all their reporting needs.

Estimating Project Resource Requirements

Once the scope of the project is agreed, the estimates for effort, staff resources, costs and schedules

need to be developed. If productivity rates (hours per function point, $cost per function point) from

previous projects are known, then the project manager can use the function point count to develop the

appropriate estimates. If your organisation has only just begun collecting these metrics and does not

have sufficient data to establish its own productivity rates, then the ISBSG industry data can be used

in the interim.

Allocating Testing Resources

The functional hierarchy developed as part of the function point count during project development can

assist the testing manager to identify high complexity functional areas which may need extra attention

during the testing phase. Dividing the total function points for each functional area by the total

number of functions allocated to that group of functions, enables the assessment of the relative

complexity of each of the functional areas.

The effort to perform acceptance testing and the number of test cases required is related to the number

and complexity of the user functions within a functional area. Quantifying the relative size of each

functional area will enable the project manager to allocate appropriate testing staff and check relative

number of test cases assigned.

Risk Assessment

Many organisations have large legacy software applications that, due to their age, are unable to be

quickly enhanced to changed business needs. Over time, these applications have been patched and

expanded until they have grown to monstrous proportions. Frustrated by long delays in implementing

changes, lack of support for their technical platform and expensive support costs, management will

often decide to redevelop the entire application. For many organisations, this strategy of rebuilding

their super-large applications has proved to be a disaster, resulting in cancellation of the project mid-

48

development. Industry figures show that the risk of project failure rapidly increases with project size.

Projects less than 500 function points have a risk of failure of less than 20% in comparison with

projects over 5,000 function points which have a probability of cancellation close to 40%. This level

of risk is unacceptable for most organisations.

Assessing planned projects for their delivered size in function points enables management to make

informed decisions about the risk involved in developing large, highly integrated applications or

adopting a lower risk phased approach described below.

Phasing Development

If the project manager decides on a phased approach to the project development, then related modules

may be relegated to different releases. This strategy may require temporary interfacing functionality

to be built in the first release, to be later decommissioned when the next module is integrated. The

function point count allows project managers to develop ‗what-if‘ scenarios and quantify the project

scope of each phase as a means of making objective decisions. Questions to which quantitative

answers can be provided are:

how much of the interfacing functionality can be avoided by implementing all of the related modules

in release one?

what is the best combination of potential modules to group within a release to minimise the

development of temporary interfacing functions?

If it is decided to implement the application as a phased development, then the size of each release can

be optimised to that which is known to be manageable. This can be easily done by labelling functions

with the appropriate release and performing ‗what-if‘ scenarios by including and excluding functions

from the scope of the count for the release.

FPA Uses and Benefits in Project Construction

Monitoring Functional Creep

Function point analysis provides project management with an objective tool by which project size can

be monitored for change, over the project‘s lifecycle.

As new functions are identified, functions are removed or changed during the project, the function

point count is updated and the impacted functions appropriately flagged. The project scope can be

easily tracked and reported at each of the major milestones.

If the project size exceeds the limits allowed in the initial estimates, then this will provide an early

warning that new estimates may be necessary or, alternatively, highlight a need to review the

functionality to be delivered by this release.

Assessing and Prioritising Rework

Function Point Analysis allows the project manager to objectively and quantitatively measure the

scope of impact of a change request, and to estimate the resulting impact on project schedule and

costs. This immediate feedback to the user on the impact of the rework allows them to evaluate and

prioritise change requests.

49

The cost of rework is often hidden in the overall project costs, and users and developers have no

means to quantify its impact on the overall project productivity rates. Function point analysis enables

the project manager to measure the functions that have been reworked due to user-initiated change

requests. The results provide valuable feedback to the business on the potential cost savings of

committing user resources early in the project to establish an agreed set of requirements and

minimising change during the project life-cycle.

COCOMO II

COCOMO II MODELING METHODOLOGY

Preparation includes: Parameter definition, how to use parameters to produce effective estimates. The

methodology tries to minimize risk of lost expert time and maximize estimates. Here the question

arises whichparameters are significant (most estimate efficient), in which way and with which rating

scale.

Seven modeling steps

1. analyse existing literature

2. review software cost modelling literature

3. to insight on improved functional forms potentially significant parameters

4. parameter definition issues (e.g. size)

5. identification of potential new parameters Process Maturity and Multisite Development

6. continuation of a number of parameters from COCOMO I

7. dropping of such COCOMO I parameters as turnaround time and modern programming practices

(subsumed by process maturity)

The Bayesian approach was used for COCOMO II and is (will be) reused for COCOTS,

COQUALMO, COPSEMOand CORADMO.

THE ROSETTA STONE

The ROSETTA STONE is a system that updates COCOMO I so that it can be used with COCOMO II

models. TheROSETTA STONE permits users to translate project files from COCOMO 81 to

COCOMO II (backwards compatibility).

EMERGING EXTENSIONS

Because of the rapid changes in software engineering development not all directions of impact could

take

place in the COCOMO II model. So some emerging extensions were required to overcome the

deficiencies. Allof them are complementary to the COCOMO II model and some of them are still

experimental, their calibrationand counting rules aren't robust enough till now. Further research still

has to be done.In the following section they are presented briefly. For further particulars please

contact the list of references.

The discussed extensions are:

 estimating the cost of software COTS integration (COCOTS)

50

 Application Composition Model

 phase distributions of schedule and effort (COPSEMO)

 rapid application development effort and schedule adjustments (CORADMO)

 quality in terms of delivered defect density (COQUALMO)

 effects of applying software productivity strategies /improvement (COPROMO)

 System Engineering (COSYSMO)

Top Down and Bottom Up Estimation

There are two approaches to estimating unit costs: top-down, bottom-up, which can be combined to

form a ‗mixed approach‘. Generally, a bottom-up approach is used to estimate the costs of service

usage whereas top-down costing is more amenable to estimating the society level costs which are

often intangible and where data is scarce.

Top-down unit cost estimation

The top-down approach is based on a simple calculation: divide total expenditure (quantum of

funding available) for a given area or policy by total units of activity (e.g. patients served) to derive a

unit cost. The units of activity are specific to the services that are being costed, for example the cost of

a prison place, GP consultation, or social work assessment. Typically this approach uses aggregate,

budgetary data to estimate a unit cost. The advantages of the top-down approach are:

 Availability of data: the availability of budgetary data means that top-down approaches can be

applied easily;

 Simplicity: the calculation required to estimate unit costs is easy to understand and direct,

providing a simple way to quantify the administrative and overhead costs associated with a range

of public services and

 Low cost: the availability of aggregate cost data means that the time and costs required to estimate

a top-down unit cost are minimal.

There are, however, two main limitations associated with a top-down approach. First, it does not

identify what drives costs and therefore often masks the underlying factors that determine why

unit costs vary within a single yet heterogeneous group of service users - for example, children in

care. Second, top-down costing cannot be used to reliably forecast how costs might rise or fall as a

result of changes in that way that people use services (e.g. the intensity, duration of service usage) or

how costs might change due to improvements in outcomes. Therefore, using top-down unit costs may

incorrectly estimate the savings from SIB interventions.

Bottom-up unit cost estimation

The bottom-up approach provides a greater level of granularity than the top-down method. It involves

identifying all of the resources that are used to provide a service and assigning a value to each of those

resources. These values are summed and linked to a unit of activity to derive a total unit cost – this

provides a basis for assessment of which costs can be avoided as a result of reduced demand.

The advantages of using a bottom-up approach are:

http://data.gov.uk/sib_knowledge_box/glossary#Top-down_unit_cost_estimation
http://data.gov.uk/sib_knowledge_box/glossary#Bottom-up_unit_cost_estimation

51

 Transparency: detailed cost data allows potential errors to be investigated and their impact tested –

this facilitates the quality assurance process;

 Granularity: detailed cost data can highlight variations in cost data, and enable practitioners to

explore the drivers of variation and determine whether, for example, some service users account

for a disproportionate share of costs; and

 Versatility: the methodology enables a practitioner to forecast how costs may change as a result of

a reduction in service usage or demand.

Estimating efficiency savings through a bottom-up approach to unit cost estimation is a more robust

method of estimating benefits to the commissioner,particuarly those related to time savings

and reductions in demand for services. However, the main disadvantage associated with the bottom-

up approach is that it is labour intensive; the cost, time and expertise require to apply it may be

prohibitive for providers.

The strengths and weaknesses of top-down and bottom-up unit cost estimation are summarised in the

table below. In practice, a combined approach may be most practicable for SIB developers due to time

constraints and the availability of cost data. Regardless of which approach is used, the costs avoided

through a SIB should take into account how individuals (or groups of individuals) use a service.

Service users are heterogeneous and their service usage will reflect this - both in intensity and

duration and this will impact on the costs of service provision. Costs should therefore consider the

specific cohort to be targeted by a SIB intervention.

Approach to unit cost

estimation
Bottom-Up

Top-Down

Granularity/Transparency
High Low

Credibility
High Low

Ease of exploring variation in

costs
High Low

Cost of data collection
Medium-High Low

Data requirements
High: requires

detailed, local data

that is often

unavailable

Low: budgetary data

is often available

Level of Approximation

(e.g. assumptions)
Low-Medium Medium-High

Forecasting (changes in cost

following the introduction or

redesign of a service)

Medium-High Low

http://data.gov.uk/sib_knowledge_box/glossary#commissioner
http://data.gov.uk/sib_knowledge_box/glossary#service_provision
http://data.gov.uk/sib_knowledge_box/glossary#cohort
http://data.gov.uk/sib_knowledge_box/glossary#intervention

52

 Work Breakdown Structure

A work breakdown structure (WBS), in project management and systems engineering, is a

deliverable-oriented decomposition of a project into smaller components.

A work breakdown structure element may be a product, data, service, or any combination thereof. A

WBS also provides the necessary framework for detailed cost estimating and control along with

providing guidance for schedule development and control.

Elements of each WBS Element:

1. The scope of the project, "deliverables" of the project.

2. Start and end time of the scope of project.

3. Budget for the scope of the project.

4. Name of the person related to the scope of project.

http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Product_(business)
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Service_(economics)

53

.

Example from MIL-HDBK-881, which illustrates the first three levels of a typical aircraft system.[11]

Defense Materiel Item categories from MIL-STD-881C are:

 Aircraft Systems WBS

 Electronic Systems WBS

 Missile Systems WBS

 Ordnance Systems WBS

 Sea Systems WBS

 Space Systems WBS

 Surface Vehicle Systems WBS

 Unmanned Air Vehicle Systems WBS

 Unmanned Maritime Systems WBS

 Launch Vehicle Systems WBS

 Automated Information Systems WBS

http://en.wikipedia.org/wiki/Work_breakdown_structure#cite_note-SEF01-11

54

Macro and Micro Plans

• The Macro or Top-Down approach can provide a quick but rough estimate

– Done when the time and expense of a detailed estimate are an issue

– Usually occurs during conception stage when a full design and WBS are not available

– Requires experienced personnel to do the estimate

– Can be highly inaccurate

• A Micro or Bottom-Up approach can provide a fairly accurate estimate, but is time

consuming

– Takes into account the project design and a ―roll-up‖ of WBS elements

– May require multiple personnel and time to complete

– If done properly, a bottom-up estimate can yield accurate cost and time estimates

Steps to developing the estimates

• Start with a Macro estimate then refine with a Micro estimate

• Develop the general project definition

• Perform a macro cost and time estimate

• Develop the detailed project definition and WBS

• Roll-up the WBS elements as part of a micro estimate

• Establish the project schedules

• Reconcile differences between the macro and micro estimates

Macro Estimates

• Scaling:Given a cost for a previous project then an estimate for a new project can be scaled

from the known cost. E.g NASA, at times, uses spacecraft weight to estimate total cost.

• Apportion:Given a similar previous project, costs for major subunits of the new project would

be proportional to similar subunits in the previous project.

• Weighted Variables:Certain types of projects can be characterized by specific parameters (e.g.

number of inputs, number of detector channels). Historical costs & times for single units of

these parameters are weighted by the numbers required for the new project.

• Learning Curve:If the same task is repeated a number of times there will be a cost / time

savings relative to the first time the task is done.

Micro Estimates

• Template:Uses historical data to establish detailed costs and schedules for project subunits. A

new project composed of some combination of these subunits can then be quickly estimated.

• Ratio:Similar to the Macro ratio method but applied to specific tasks associated with project

subunits. For example, if it takes 1 day to build & test a particular sensor unit, then an

instrument with 10 sensors would take 2 technicians, 5 days to complete.

WBS Roll-up:Times and costs associated with the lowest level WBS work packages are estimated

and then these are added or rolled-up to yield the costs for higher level units. This method provides

the most accurate estimates at the expense of time devoted to developing the estimate

55

Planning Poker

Planning poker, also called Scrum poker, is a consensus-based technique for estimating, mostly used

to estimate effort or relative size of development goals in software development. In planning poker,

members of the group make estimates by playing numbered cards face-down to the table, instead of

speaking them aloud. The cards are revealed, and the estimates are then discussed. By hiding the

figures in this way, the group can avoid the cognitive bias of anchoring, where the first number

spoken aloud sets a precedent for subsequent estimates.

Planning poker is a variation of the Wideband Delphi method. It is most commonly used in agile

software development, in particular the Scrum and Extreme Programmingmethodologies.

Process

The reason

The reason to use Planning poker is to avoid the influence of the other participants. If a number is

spoken, it can sound like a suggestion and influence the other participants' sizing. Planning poker

should force people to think independently and propose their numbers simultaneously. This is

accomplished by requiring that all participants show their card at the same time.

Equipment

Planning poker is based on a list of features to be delivered, several copies of a deck of cards and

optionally, an egg timer that can be used to limit time spent in discussion of each item.

The feature list, often a list of user stories, describes some software that needs to be developed.

The cards in the deck have numbers on them. A typical deck has cards showing the Fibonacci

sequence including a zero: 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89; other decks use similar progressions.

Planning Poker card deck

The reason for using the Fibonacci sequence is to reflect the inherent uncertainty in estimating larger

items.Several commercially available decks use the sequence: 0, ½, 1, 2, 3, 5, 8, 13, 20, 40, 100, and

optionally a ? (unsure) and a coffee cup (I need a break). Some organizations use standard playing

cards of Ace, 2, 3, 5, 8 and King. Where King means: "this item is too big or too complicated to

estimate." "Throwing a King" ends discussion of the item for the current sprint.

Smartphones allow developers to use apps instead of physical card decks. When teams are not in the

same geographical locations,collaborative software can be used as replacement for physical cards.

http://en.wikipedia.org/wiki/User_stories
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Anchoring
http://en.wikipedia.org/wiki/Wideband_Delphi
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Egg_timer
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/Fibonacci_sequence
http://en.wikipedia.org/wiki/Fibonacci_sequence
http://en.wikipedia.org/wiki/Fibonacci_sequence
http://en.wikipedia.org/wiki/Software_development_effort_estimation#Uncertainty_assessment_approaches
http://en.wikipedia.org/wiki/Mobile_app
http://en.wikipedia.org/wiki/Collaborative_software
http://en.wikipedia.org/wiki/File:CrispPlanningPokerDeck.jpg
http://en.wikipedia.org/wiki/File:CrispPlanningPokerDeck.jpg

56

Procedure

At the estimation meeting, each estimator is given one deck of the cards. All decks have identical sets

of cards in them.

The meeting proceeds as follows:

 A Moderator, who will not play, chairs the meeting.

 The Product Manager provides a short overview. The team is given an opportunity to ask

questions and discuss to clarify assumptions and risks. A summary of the discussion is recorded

by the Project Manager.

 Each individual lays a card face down representing their estimate. Units used vary - they can be

days duration, ideal days or story points. During discussion, numbers must not be mentioned at all

in relation to feature size to avoid anchoring.

 Everyone calls their cards simultaneously by turning them over.

 People with high estimates and low estimates are given a soap box to offer their justification for

their estimate and then discussion continues.

 Repeat the estimation process until a consensus is reached. The developer who was likely to own

the deliverable has a large portion of the "consensus vote", although the Moderator can negotiate

the consensus.

 To ensure that discussion is structured; the Moderator or the Project Manager may at any point

turn over the egg timer and when it runs out all discussion must cease and another round of poker

is played. The structure in the conversation is re-introduced by the soap boxes.

The cards are numbered as they are to account for the fact that the longer an estimate is, the more

uncertainty it contains. Thus, if a developer wants to play a 6 he is forced to reconsider and either

work through that some of the perceived uncertainty does not exist and play a 5, or accept a

conservative estimate accounting for the uncertainty and play an 8.

Planning poker benefits

Planning poker is a tool for estimating software development projects. It is a technique that minimizes

anchoring by asking each team member to play their estimate card such that it cannot be seen by the

other players. After each player has selected a card, all cards are exposed at once.

A study by Moløkken-Østvold and Haugen[6] found that [the] set of control tasks in the same project,

estimated by individual experts, achieved similar estimation accuracy as the planning poker tasks.

However, for both planning poker and the control group, measures of the median estimation bias

indicated that both groups had unbiased estimates, as the typical estimated task was perfectly on

target.

Wideband Delphi

The Wideband Delphi estimation method is a consensus-based technique for estimating effort. It

derives from the Delphi method which was developed in the 1950-1960s at theRAND Corporation as

http://en.wikipedia.org/w/index.php?title=Story_points&action=edit&redlink=1
http://en.wikipedia.org/wiki/Anchoring
http://en.wikipedia.org/wiki/Soapbox
http://en.wikipedia.org/wiki/Planning_poker#cite_note-doi:10.1109.2FASWEC.2007.15-6
http://en.wikipedia.org/wiki/Delphi_method
http://en.wikipedia.org/wiki/RAND_Corporation

57

a forecasting tool. It has since been adapted across many industries to estimate many kinds of tasks,

ranging from statistical data collection results to sales and marketing forecasts.

Wideband Delphi Process

Barry Boehm and John A. Farquhar originated the Wideband variant of the Delphi method in the

1970s. They called it "wideband" because, compared to the existing delphi method, the new method

involved greater interaction and more communication between those participating. The method was

popularized by Boehm's book Software Engineering Economics (1981). Boehm's original steps from

this book were:

 Coordinator presents each expert with a specification and an estimation form.

 Coordinator calls a group meeting in which the experts discuss estimation issues with the

coordinator and each other.

 Experts fill out forms anonymously.

 Coordinator prepares and distributes a summary of the estimates

 Coordinator calls a group meeting, specifically focusing on having the experts discuss points

where their estimates vary widely

 Experts fill out forms, again anonymously, and steps 4 to 6 are iterated for as many rounds as

appropriate.

A variant of Wideband Delphi was developed by Neil Potter and Mary Sakry of The Process Group.

In this process, a project manager selects a moderator and an estimation team with three to seven

members. The Delphi process consists of two meetings run by the moderator. The first meeting is the

kickoff meeting, during which the estimation team creates a work breakdown structure (WBS) and

discusses assumptions. After the meeting, each team member creates an effort estimate for each task.

The second meeting is the estimation session, in which the team revises the estimates as a group and

achieves consensus. After the estimation session, the project manager summarizes the results and

reviews them with the team, at which point they are ready to be used as the basis for planning the

project.

 Choose the team. The project manager selects the estimation team and a moderator. The team

should consist of 3 to 7 project team members. The team should include representatives from

every engineering group that will be involved in the development of the work product being

estimated.

 Kickoff meeting. The moderator prepares the team and leads a discussion to brainstorm

assumptions, generate a WBS and decide on the units of estimation.

http://www.processgroup.com/
http://en.wikipedia.org/wiki/Work_breakdown_structure

58

 Individual preparation. After the kickoff meeting, each team member individually generates the

initial estimates for each task in the WBS, documenting any changes to the WBS and missing

assumptions.

 Estimation session. The moderator leads the team through a series of iterative steps to gain

consensus on the estimates. At the start of the iteration, the moderator charts the estimates on the

whiteboard so the estimators can see the range of estimates. The team resolves issues and revises

estimates without revealing specific numbers. The cycle repeats until either no estimator wants to

change his or her estimate or the estimators agree that the range is acceptable.

 Assemble tasks. The project manager works with the team to collect the estimates from the team

members at the end of the meeting and compiles the final task list, estimates and assumptions.

 Review results. The project manager reviews the final task list with the estimation team.

Documenting the Plan

To foster a successful planning phase, here are seven planning documents

 Project management plan -- This is used as a reference index, encompassing all planning and

project documents.

 High-level project schedule plan -- This document captures high-level project phases and key

milestones. It is the document most project stakeholders will see or want to see.

 Project team planning -- This document provides a "who-is-doing-what" view of the project. This

document fosters efficient project execution and effective project communication.

 Scope plan -- The scope plan documents the project requirements, the agreed scope and the

RequirementsTraceabilityMatrix (RTM) summary.

 Detailed project work plan -- This keeps track of the activities, work packages, resources,

durations, costs, milestones, project's critical path, etc. It will be an essential document and work

guideline for your core project team.

 Quality assurance planning -- This document tracks the quality standards your project

deliverables will have to align to. These may typically include product testing approach and

tools, quality policies, quality checklists, deviations definitions, quality metrics, product defect

severity grades, acceptance criteria, costof poor quality, etc.

 Risk planning -- This document contains the project risks and the related mitigation plans; as well

as the project opportunities and the related exploiting plans. The importance of this document is

one of the most underestimated in project planning. Be prepared to have a contingency plan in case

something goes wrong or to take advantage of opportunities when they arise.

 Start with this checklist when you sit down to plan for your next project-planning phase.

Depending on your project's needs, fine tune the checklist and tailor it by adding and removing

planning assets, determining the planning time frame, the underlying details and rigor.

59

 Revisit this planning exercise, learn from it and enhance it, to continuously improve your project

planning skills.

Tracking the Plan

Project tracking

http://en.wikipedia.org/wiki/File:EVM_Fig1.png
http://en.wikipedia.org/wiki/File:EVM_Fig2.png

60

It is helpful to see an example of project tracking that does not include earned value performance

management. Consider a project that has been planned in detail, including a time-phased spend plan

for all elements of work. Figure 1 shows the cumulative budget (cost) for this project as a function of

time (the blue line, labeled PV). It also shows the cumulative actual cost of the project (red line)

through week 8. To those unfamiliar with EVM, it might appear that this project was over budget

through week 4 and then under budget from week 6 through week 8. However, what is missing from

this chart is any understanding of how much work has been accomplished during the project. If the

project was actually completed at week 8, then the project would actually be well under budget and

well ahead of schedule. If, on the other hand, the project is only 10% complete at week 8, the project

is significantly over budget and behind schedule. A method is needed to measure technical

performance objectively and quantitatively, and that is what EVM accomplishes.

Project tracking with EVM

http://en.wikipedia.org/wiki/File:EVM_Fig3.png
http://en.wikipedia.org/wiki/File:EVM_Fig4.png

61

Earned Value Method (EVM)

Earned value management (EVM), or Earned value project/performance management (EVPM) is

a project management technique for measuring project performance and progress in an objective

manner.

Earned value management is a project management technique for measuring project performance and

progress. It has the ability to combine measurements of:

 Scope

 Schedule, and

 Costs

In a single integrated system, Earned Value Management is able to provide accurate forecasts of

project performance problems, which is an important contribution for project management.

Early EVM research showed that the areas of planning and control are significantly impacted by its

use; and similarly, using the methodology improves both scope definition as well as the analysis of

overall project performance. More recent research studies have shown that the principles of EVM are

positive predictors of project success.[1] Popularity of EVM has grown significantly in recent years

beyond government contracting, in which sector its importance continues to rise[2] (e.g., recent

new DFARS rules), in part because EVM can also surface in and help substantiate contract

disputes.[4]

Essential features of any EVM implementation include

1. a project plan that identifies work to be accomplished,

2. a valuation of planned work, called Planned Value (PV) or Budgeted Cost of Work

Scheduled (BCWS), and

3. pre-defined ―earning rules‖ (also called metrics) to quantify the accomplishment of work,

called Earned Value (EV) or Budgeted Cost of Work Performed (BCWP).

EVM implementations for large or complex projects include many more features, such as indicators

and forecasts of cost performance (over budget or under budget) and schedule performance (behind

schedule or ahead of schedule). However, the most basic requirement of an EVM system is that it

quantifies progress using PV and EV.

As a short illustration of one of the applications of the EVM consider the following example. Project

A has been approved for duration of 1 year and with the budget of X. It was also planned, that after 6

months project will spend 50% of the approved budget. If now 6 months after the start of the project a

Project Manager would report that he has spent 50% of the budget, one can initially think, that the

project is perfectly on plan. However in reality the provided information is not sufficient to come to

such conclusion, as from one side within this time project can spend 50% of the budget, whilst

finishing only 25% of the work (which would mean project is not doing well), similarly a project can

spend 50% of the budget, whilst completing 75% of the work (which would mean, that project is

doing better, than planned). EVM' is meant to address such and similar issues.

http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Earned_value_management#cite_note-1
http://en.wikipedia.org/wiki/Earned_value_management#cite_note-2
http://en.wikipedia.org/wiki/DFARS
http://en.wikipedia.org/wiki/Earned_value_management#cite_note-4
http://en.wikipedia.org/wiki/Project_plan
http://en.wikipedia.org/wiki/Budgeted_cost_of_work_scheduled
http://en.wikipedia.org/wiki/Budgeted_cost_of_work_scheduled
http://en.wikipedia.org/wiki/Budgeted_cost_of_work_scheduled
http://en.wikipedia.org/wiki/Budgeted_cost_of_work_performed

62

Module-IV

CONFIGURATION AND QUALITY MANAGEMENT

Identifying Artifacts to be Configured

Identifying the artifacts that make up an application

The artifacts that make up a typical Endeca application definition include the following:

The AppConfig.xml file

The AppConfig.xml file describes each of the application's provisioning information and is stored in

the EAC Central Server. The Deployment Template control scripts use AppConfig.xml as the

authoritative source for application definition. The Deployment Template stores a copy of

the AppConfig.xml file in the [appdir]/config/script directory.

Although you can modify an application configuration with the Workbench, we recommend that

modifications only be made in the AppConfig.xml file. That way, the application configuration will

be saved on disk, ready for sharing between environments. You can use the Workbench for other

tasks that do not involve modifying the configuration, such as reviewing the configuration, and

starting or stopping individual components.

Note: Some parts of the AppConfig.xml file include settings that are environment specific, such as the

application's name, file system paths, and host addresses in the environment. These settings should be

collected and stored in a custom file. For more information about how to create this file, see the topic

about Creating a custom file for environment-specific settings.

The instance configuration

The instance configuration is a set of files that control the ITL process and the data loaded into the

MDEX Engine servers. The instance configuration files are controlled by the Developer Studio, and

optionally by the Workbench.

These files include configuration data such as dimension definition, search configuration, the Forge

pipeline, and Page Builder landing pages.

Page Builder templates

Page Builder templates are used to drive dynamic landing pages that can be created in Page Builder.

They are defined by xml files stored by the Workbench, and accessed through

the emgr_update command utility.

Command-line scripts

An application deployment typically includes command-line scripts that perform common operations

related to the application's functionality. By convention, these scripts are stored in the Deployment

Template's [appdir]/controldirectory.

The Deployment Template includes scripts such

as baseline_update and set_baseline_data_ready_flag.

63

You can create additional scripts under the [appdir]/control directory. These scripts, together with

their input data and output directories, are a part of the application definition. For example, a

developer might create scripts to crawl web pages in preparation for a baseline update. These scripts

might take as input a seed-list file, and create an output file in a custom directory under [appdir].

These command-line scripts, along with their input data and output directories, should be shared

among the development, staging and production environments.

Library files

Many parts of an application use library files. For example, a Forge pipeline using a Java or Perl

manipulator typically requires access to library files implementing those manipulators. BeanShell

scripts may use application- or Endeca-specific Java classes. By convention, library files are kept

under [appdir]/config/lib.

Forge state files

Forge state files reside in the [appdir]/data/state directory.

In most cases these files do not need to be included as part of an application definition. However,

when an application uses dimension values from auto-generated or external dimensions, then Forge

state files do need to be synchronized across the environments. In this situation, the state files contain

the IDs of these dimension values and ensure that the same dimension value always gets the same ID

no matter how many times Forge is run. These dimension values may be used in a variety of ways,

including dynamic business rules, landing pages, dimension ordering, and precedence rules.

In other words, Forge state files should be identified as part of the application definition if the

application uses auto-generated dimensions or external dimensions, and values from these dimensions

are referenced anywhere in the application configuration (for example, in dynamic business rules,

Page Builder landing pages, explicit dimension ordering, or in precedence rules).

Naming Conventions and Version Control

This process describes the deliverable types, naming conventions and version control mechanisms to

be applied to deliverables produce by the project.

The following table describes the configurable item types used within the IFS project

Configuration

Item Type

Application

Used

Naming Convention Version Control

Document -

Specifications

MS Word Business Area: 5 characters (e.g. HR or

CeDICT)

Project: 4-6 characters (e.g. Tavern,

OHSW)

Deliverable Type :2 or 3 characters

UT = Unit Task Specification

PM = Project Management deliverable

TPR = Test Plan & Result

Manual – via

version

numbering

64

Configuration

Item Type

Application

Used

Naming Convention Version Control

CR = Change Request

PF = Process Flow

OC = Organisation chart

RR = Resource Request

PR = Presentations

PS = Project Standard

MN = Minutes

AD = Architecture Deliverable

AF = Acceptance Form

DR = Deliverable Review Form

DI = Diagram

ST = Strategy document

Description: Brief description of deliverable

Version : character followed by major and

minor numbering,

OR

Date in yymmdd format. This version

format is used for deliverables that are to be

kept at a point in time.

File Type : as per application

Reviews: If deliverable review comments

and changes are provided within the

deliverable itself, i.e. via Track Changes,

the reviewer‘s initials are added to the file

name.

Example:

HR OHSW-PM QualityPlan v0.1.doc

Review Example:

HR OHSW -PM QualityPlan v0.1 PW.doc

Document –

Test Plans

MS Word As above Manual – via

version

numbering

Document –

Test Results

MS Word As above Manual – via

version

numbering

Document – MS Word As above Manual – via

65

Configuration

Item Type

Application

Used

Naming Convention Version Control

Project

Management

version

numbering

Document –

Resource

Request

MS Word As Above Manual – via date

versioning

Document –

Meeting

Minutes

MS Word As Above Manual – via date

versioning

Presentations MS Power

Point

As Above Manual – via

version

numbering

Process

Diagrams

Visio As above Manual – via

version

numbering

Organisation

Charts

Visio As Above Manual – via date

versioning

Logs and

Registers

Excel As Above

Register held within project Status Report

Manual – via date

versioning

Change

Requests

MS Word As Above Manual – via date

versioning

Risks MS Word As Above Manual – via

version

numbering

Issues MS Word As Above Manual – via

version

numbering

Defects TBC

Assignment

Descriptions

MS Word As Above Manual – via date

versioning

Work Schedules MS Project or

Excel

Descriptive name, e.g. HR OHSW -

yyyymmdd

Manual – via date

versioning

66

Manual Version Control

If the deliverable version is controlled by the date in the deliverable file name then for each new

version of the deliverable the current date is used in the file name. If there are multiple version

created for the same deliverable on the same day then an alphabetic character is appended to the date

starting at ‗a‘.

If the deliverable version is controlled by major and minor numbering the following process is

followed:

1. The Original draft of the deliverable is versioned using zero as the major number and 1 as the

minor number, i.e. v0.1

2. For each revision following internal reviews the minor number is incremented, i.e. v0.1 becomes

v0.2 and then v0.3 etc.

3. Once the deliverable has completed internal review and is to be distributed to the business

representatives for review minor number is incremented.

4. For each revision pertaining to business representatives reviews the minor number is incremented.

5. Following business representative review the deliverable is updated and when ready for

acceptance the major number is set to 1 and the minor number set to zero.

6. If the deliverable requires a revision due to changes identified in the acceptance process the major

number remains unchanged and the minor number is incremented.

7. The version numbering for changes to deliverables after acceptance follow the same process

except that the starting number is the deliverable accepted version number. Upon completion of

reviews the major number is incremented by one and the minor number is set to zero, e.g. v1.6

becomes v2.0.

Automated Version Control

Approval Cycle

Role Name Signature Date

Reviewer(s):

Approver(s):

Change History

Version

(State)

Author Change Description Date

0.1 Peter Woolley Original draft 21/61/2013

67

Configuration Control

Configuration control is an important function of the configuration management discipline. Its

purpose is to ensure that all changes to a complex system are performed with the knowledge and

consent of management. The scope creep that results from ineffective or nonexistent configuration

control is a frequent cause of project failure.

Configuration control tasks include initiating, preparing, analysing, evaluating and authorising

proposals for change to a system (often referred to as "the configuration"). Configuration control has

four main processes:

1. Identification and documentation of the need for a change in a change request

2. Analysis and evaluation of a change request and production of a change proposal

3. Approval or disapproval of a change proposal

4. Verification, implementation and release of a change.

The Configuration Control Process

http://www.chambers.com.au/glossary/configuration_management.php
http://www.chambers.com.au/glossary/configuration.php
http://www.chambers.com.au/glossary/change_request.php
http://www.chambers.com.au/glossary/change_proposal.php
http://www.chambers.com.au/glossary/verification_validation.php

68

Why Configuration Control is Important

Configuration control is an essential component of a project's risk management strategy. For example,

uncontrolled changes to software requirements introduce the risk of cost and schedule overruns.

Scenario - Curse of the Feature Creep

A project misses several key milestones and shows no sign of delivering anything.

WHY?

 The customer regularly talks directly to software developers asking them to make 'little

changes' without consulting the project manager.

 The developers are keen to show off the new technology they are using. They slip in the odd

'neat feature' that they know the customer will love.

Solution: Implement configuration control. Document all requests for change and have them

considered by a Configuration Control Board.

Quality Assurance Techniques

SQA

Software Quality Assurance (SQA) consists of a means of monitoring the software engineering

processes and methods used to ensure quality. It does this by means of audits of the quality

management system under which the software system is created. These audits are backed by one or

more standards, usually

ISO 9000.It is distinct from software quality control which includes reviewing requirements

documents, and software testing. SQA encompasses the entire software development process, which

includes processes such as software design, coding, source code control, code reviews, change

management, configuration management, and release management. Whereas software quality control

is a control of

products, software quality assurance is a control of processes.

Software quality assurance is related to the practice of quality assurance inproduct manufacturing.

There are, however, some notable differences between software and a manufactured product. These

differences stem from the fact that the manufactured product is physical and can be seen whereas the

software product is not visible. Therefore its function, benefit and costs are not as easily

measured. What‘s more, when a manufactured product rolls off the assembly line, it is essentially a

complete, finished product, whereas software is never finished.Software lives, grows, evolves, and

metamorphoses, unlike its tangiblecounterparts. Therefore, the processes and methods to manage,

monitor, andmeasure its ongoing quality are as fluid and sometimes elusive as are the defects

http://www.chambers.com.au/video_public/risk_planning_process.php
http://www.chambers.com.au/glossary/configuration_control_board.php

69

that they are meant to keep in check. SQA is also responsible for gathering and presenting software

metrics.

For example the Mean Time between Failure (MTBF) is a common softwaremetric (or measure) that

tracks how often the system is failing. This SoftwareMetric is relevant for the reliability software

characteristic and, by extension theavailability software characteristic.SQA may gather these metrics

from various sources, but note the importantpragmatic point of associating an outcome (or effect) with

a cause. In this waySQA can measure the value or consequence of having a given standard process,

or procedure. Then, in the form of continuous process improvement, feedbackcan be given to the

various process teams (Analysis, Design, Coding etc.) anda process improvement can be initiated.

Overview of methods

Software Quality Assurance takes several forms. A brief list of testing methodsthat should be

considered

Methods:

Black box testing - not based on any knowledge of internal design or code.Tests are based on

requirements and functionality.

White box testing - based on knowledge of the internal logic of an application‘scode. Tests are based

on coverage of code statements, branches,paths, conditions

Unit testing - the most ‘micro‘ scale of testing; to test particular functionsor code modules. Typically

done by the programmer and not by testers,as it requires detailed knowledge of the internal program

design and code.Not always easily done unless the application has a well-designed architecture

with tight code; may require developing test driver modules or testharnesses• Incremental integration

testing - continuous testing of an application asnew functionality is added; requires that various

aspects of an application‘sfunctionality be independent enough to work separately before all parts of

the program are completed, or that test drivers be developed as needed;done by programmers or by

testers

Integration testing - testing of combined parts of an application to determineif they function together

correctly. The ‘parts‘ can be code modules,individual applications, client and server applications on a

network, etc.This type of testing is especially relevant to client/server and distributedsystems

Functional testing - black-box type testing geared to functional requirementsof an application; this

type of testing should be done by testers.This doesn‘t mean that the programmers shouldn‘t check that

their codeworks before releasing it (which of course applies to any stage of testing)

System testing - black-box type testing that is based on overall requirementsspecifications; covers all

combined parts of a system

End-to-end testing - similar to system testing; the ‘macro‘ end of the testscale; involves testing of a

complete application environment in a situationthat mimics real-world use, such as interacting with a

database, usingnetwork communications, or interacting with other hardware, applications,or systems

if appropriate

• User acceptance testing - determining if software is satisfactory to an end user or customer

70

Peer Reviews

• Does not dictate specific techniques, but instead requires that:

– A written policy about peer reviews is required

– Resources, funding, and training must be provided

– Peer reviews must be planned

– The peer review procedures to be used must be documented

SEI-CMMI Checklist for Peer Reviews

• Are peer reviews planned?

• Are actions associated with defects that are identified during peer reviews tracked until they

are resolved?

• Does the project follow a written organizational policy for performing peer reviews?

• Do participants of peer reviews receive the training required to perform their roles?

• Are measurements used to determine the status of peer review activities?

• Are peer review activities and work products subjected to Software Quality Assurance review

and audit?

 Peer review is a traditional organizational function designed to contribute to improving the quality of

care and appropriate utilization of health care resources.

Peer Review

• Reviews performed by peers in the development team

– Can be from Fagan‘s inspections to simple buddy checks

71

– Peer Review Items

– Participants / Roles

– Schedule

Fegan Inspection

Researchers and Influencers

• Fagan

• Johnson

• Ackermann

• Gilb and Graham

• Weinberg

• Weigers

Inspection, Walkthrough or Review?

An inspection is ‗a visual examination of a software product to detect and identify software

anomalies, including errors and deviations from standards and specifications‘

A walkthrough is ‗a static analysis technique in which a designer or programmer leads members of

the development team and other interested parties through a software product, and the participants ask

questions and make comments about possible errors, violation of development standards, and other

problems‘

A review is ‗a process or meeting during which a software product is presented to project personnel,

managers, users, customers, user representatives, or other interested parties for comment or approval‘

Families of Review Methods

Method Family Typical Goals Typical Attributes

Walkthroughs Minimal overhead

Developer training

Quick turnaround

Little/no preparation

Informal process

No measurement

Not FTR!

Technical Reviews Requirements elicitation

Ambiguity resolution

Training

Formal process

Author presentation

Wide range of discussion

72

Inspections Detect and remove all defects efficiently

and effectively

Formal process

Checklists

Measurements

Verify phase

Informal vs. Formal

• Informal

– Spontaneous

– Ad-hoc

– No artifacts produced

• Formal

– Carefully planned and executed

– Reports are produced

In reality, there is also a middle ground between informal and formal techniques

Cost-Benefit Analysis

• Fagan reported that IBM inspections found 90% of all defects for a 9% reduction in average

project cost

• Johnson estimates that rework accounts for 44% of development cost

• Finding defects, finding defects early and reducing rework can impact the overall cost of a

project

Cost of Defects

What is the impact of the annual cost of software defects in the US?

$59 billion

Estimated that $22 billion could be avoided by introducing a best-practice defect detection

infrastructure

• Gilb project with jet manufacturer

• Initial analysis estimated that 41,000 hours of effort would be lost through faulty

requirements

• Manufacturer concurred because:

– 10 people on the project using 2,000 hours/year

– Project is already one year late (20,000 hours)

– Project is estimated to take one more year (another 20,000 hours)

Software Inspections

Why are software inspections not widely used?

• Lack of time

• Not seen as a priority

73

• Not seen as value added (measured by loc)

• Lack of understanding of formalized techniques

• Improper tools used to collect data

• Lack of training of participants

• Pits programmer against reviewers

Twelve Reasons Conventional Reviews are Ineffective

1. The reviewers are swamped with information.

2. Most reviewers are not familiar with the product design goals.

3. There are no clear individual responsibilities.

4. Reviewers can avoid potential embarrassment by saying nothing.

5. The review is a large meeting; detailed discussions are difficult.

6. Presence of managers silences criticism.

7. Presence of uninformed reviewers may turn the review into a tutorial.

8. Specialists are asked general questions.

9. Generalists are expected to know specifics.

10. The review procedure reviews code without respect to structure.

11. Unstated assumptions are not questioned.

12. Inadequate time is allowed.

Fagan‘s Contributions

• Design and code inspections to reduce errors in program development (1976)

• A systematic and efficient approach to improving programming quality

• Continuous improvement: reduce initial errors and follow-up with additional improvements

• Beginnings of formalized software inspections

Fagan‘s Six Major Steps

1. Planning

2. Overview

3. Preparation

4. Examination

5. Rework

6. Follow-up

1. Planning: Form team, assign roles

2. Overview: Inform team about product (optional)

3. Preparation: Independent review of materials

4. Examination: Inspection meeting

5. Rework: Author verify defects and correct

74

6. Follow-up: Moderator checks and verifies corrections

Fagan‘s Team Roles

• Fagan recommends that a good size team consists of four people

• Moderator: the key person, manages team and offers leadership

• Readers, reviewers and authors

– Designer: programmer responsible for producing the program design

– Coder/ Implementer: translates the design to code

– Tester: write, execute test cases

Common Inspection Processes

Unit , Integration , System , and Acceptance Testing

Testing methods

Testing levels

There are generally four recognized levels of tests: unit testing, integration testing, system testing,

and acceptance testing. Tests are frequently grouped by where they are added in the software

development process, or by the level of specificity of the test. The main levels during the

development process as defined by the SWEBOK guide are unit-, integration-, and system testing

that are distinguished by the test target without implying a specific process model.[32] Other test

levels are classified by the testing objective.

Unit testing

Unit testing, also known as component testing, refers to tests that verify the functionality of a

specific section of code, usually at the function level. In an object-oriented environment, this is

usually at the class level, and the minimal unit tests include the constructors and destructors.

http://en.wikipedia.org/wiki/SWEBOK
http://en.wikipedia.org/wiki/Software_testing#cite_note-Computer.org-32

75

These types of tests are usually written by developers as they work on code (white-box style), to

ensure that the specific function is working as expected. One function might have multiple tests,

to catch corner cases or other branches in the code. Unit testing alone cannot verify the

functionality of a piece of software, but rather is used to ensure that the building blocks of the

software work independently from each other.

Unit testing is a software development process that involves synchronized application of a broad

spectrum of defect prevention and detection strategies in order to reduce software development

risks, time, and costs. It is performed by the software developer or engineer during the

construction phase of the software development lifecycle. Rather than replace traditional QA

focuses, it augments it. Unit testing aims to eliminate construction errors before code is promoted

to QA; this strategy is intended to increase the quality of the resulting software as well as the

efficiency of the overall development and QA process.

Depending on the organization's expectations for software development, unit testing might

include static code analysis, data flow analysis, metrics analysis, peer code reviews, code

coverage analysis and other software verification practices.

Integration testing

Integration testing is any type of software testing that seeks to verify the interfaces between

components against a software design. Software components may be integrated in an iterative

way or all together ("big bang"). Normally the former is considered a better practice since it

allows interface issues to be located more quickly and fixed.Integration testing works to expose

defects in the interfaces and interaction between integrated components (modules). Progressively

larger groups of tested software components corresponding to elements of the architectural design

are integrated and tested until the software works as a system.

Acceptance testing

At last the system is delivered to the user for Acceptance testing.

Test Data and Test Cases

Test plan

A test specification is called a test plan. The developers are well aware what test plans will be

executed and this information is made available to management and the developers. The idea

is to make them more cautious when developing their code or making additional changes.

Some companies have a higher-level document called a test strategy.

Traceability matrix

A traceability matrix is a table that correlates requirements or design documents to test

documents. It is used to change tests when related source documents are changed, to select

test cases for execution when planning for regression tests by considering requirement

coverage.

http://en.wikipedia.org/wiki/Corner_case
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Test_plan
http://en.wikipedia.org/wiki/Test_strategy
http://en.wikipedia.org/wiki/Traceability_matrix

76

Test case

A test case normally consists of a unique identifier, requirement references from a design

specification, preconditions, events, a series of steps (also known as actions) to follow, input,

output, expected result, and actual result. Clinically defined a test case is an input and an

expected result.[47] This can be as pragmatic as 'for condition x your derived result is y',

whereas other test cases described in more detail the input scenario and what results might be

expected. It can occasionally be a series of steps (but often steps are contained in a separate

test procedure that can be exercised against multiple test cases, as a matter of economy) but

with one expected result or expected outcome. The optional fields are a test case ID, test step,

or order of execution number, related requirement(s), depth, test category, author, and check

boxes for whether the test is automatable and has been automated. Larger test cases may also

contain prerequisite states or steps, and descriptions. A test case should also contain a place

for the actual result. These steps can be stored in a word processor document, spreadsheet,

database, or other common repository. In a database system, you may also be able to see past

test results, who generated the results, and what system configuration was used to generate

those results. These past results would usually be stored in a separate table.

Test script

A test script is a procedure, or programing code that replicates user actions. Initially the term

was derived from the product of work created by automated regression test tools. Test Case

will be a baseline to create test scripts using a tool or a program.

Test suite

The most common term for a collection of test cases is a test suite. The test suite often also

contains more detailed instructions or goals for each collection of test cases. It definitely

contains a section where the tester identifies the system configuration used during testing. A

group of test cases may also contain prerequisite states or steps, and descriptions of the

following tests.

Test fixture or test data

In most cases, multiple sets of values or data are used to test the same functionality of a

particular feature. All the test values and changeable environmental components are collected

in separate files and stored as test data. It is also useful to provide this data to the client and

with the product or a project.

Test harness

The software, tools, samples of data input and output, and configurations are all referred to

collectively as a test harness.

Bug Tracking

Bug tracking systems as a part of integrated project management systems

http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Software_testing#cite_note-47
http://en.wikipedia.org/wiki/Test_script
http://en.wikipedia.org/wiki/Test_suite
http://en.wikipedia.org/wiki/Test_fixture
http://en.wikipedia.org/wiki/Test_harness

77

Bug and issue tracking systems are often implemented as a part of integrated project management

systems. This approach allows including bug tracking and fixing in a general product development

process, fixing bugs in several product versions, automatic generation of a product knowledge base

and release notes.

Distributed bug tracking

Some bug trackers are designed to be used with distributed revision control software. These

distributed bug trackers allow bug reports to be conveniently read, added to the database or updated

while a developer is offline.[3] Fossil and Veracity both include distributed bug trackers.

Recently, commercial bug tracking systems have also begun to integrate with distributed version

control. FogBugz, for example, enables this functionality via the source-control tool, Kiln.

 Although wikis and bug tracking systems are conventionally viewed as distinct types of software,

ikiwiki can also be used as a distributed bug tracker. It can manage documents and code as well, in

an integrated distributed manner. However, its query functionality is not as advanced or as user-

friendly as some other, non-distributed bug trackers such asBugzilla.[5] Similar statements can be

made about org-mode, although it is not wiki software as such.

Bug tracking and test management

While traditional test management tools such as HP Quality Center and IBM Rational Quality

Manager come with their own bug tracking systems, other tools integrate with popular bug tracking

systems.

Casual Analysis

Causal analysis and resolution improves quality and productivity by preventing the introduction of

defects or problems and by identifying and appropriately incorporating the causes of superior process

performance.

The Causal Analysis and Resolution process area involves the following activities:

• Identifying and analyzing causes of selected outcomes. The selected outcomes can represent defects

and problems that can be prevented from happening in the future or successes that can be

implemented in projects or the organization.

• Taking actions to complete the following:

• Remove causes and prevent the recurrence of those types of defects and problems in the future

78

• Proactively analyze data to identify potential problems and prevent them from occurring

• Incorporate the causes of successes into the process to improve future process performance

Reliance on detecting defects and problems after they have been introduced is not cost effective. It is

more effective to prevent defects and problems by integrating Causal Analysis and Resolution

activities into each phase of the project.Since similar outcomes may have been previously

encountered in other projects or in earlier phases or tasks of the current project, Causal Analysis and

Resolution activities are mechanisms for communicating lessons learned among projects.

Types of outcomes encountered are analyzed to identify trends. Based on an understanding of the

defined process and how it is implemented, root causes of these outcomes and future implications of

them are determined.

Since it is impractical to perform causal analysis on all outcomes, targets are selected by tradeoffs on

estimated investments and estimated returns of quality, productivity, and cycle time.

Measurement and analysis processes should already be in place. Existing defined measures can be

used, though in some instances new measurement definitions, redefinitions, or clarified definitions

may be needed to analyze the effects of a process change.

Refer to the Measurement and Analysis process area for more information about aligning

measurement and analysis activities and providing measurement results.

Causal Analysis and Resolution activities provide a mechanism for projects to evaluate their

processes at the local level and look for improvements that can be implemented.

When improvements are judged to be effective, the information is submitted to the organizational

level for potential deployment in the organizational processes.

The specific practices of this process area apply to a process that is selected for quantitative

management. Use of the specific practices of this process area can add value in other situations, but

the results may not provide the same degree of impact to the organization‘s quality and process

performance objectives.

Module –V

SOFTWARE PROCESS DEFINITION AND MANAGEMENT

 Process Elements

Accountability

http://cmmis.free.fr/cmmi-dev/text/pa-car.php
http://cmmis.free.fr/cmmi-dev/text/pa-car.php
http://cmmis.free.fr/cmmi-dev/text/pa-car.php
http://cmmis.free.fr/cmmi-dev/text/pa-ma.php
http://cmmis.free.fr/cmmi-dev/text/pa-car.php

79

 Each deliverables has an owner and a customer (i.e Requirements is owned by product

manager.

 The lead architect is the customer).

 Each engineer or group of engineer responsible for a set of features or components should

support

 them during Beta and early releases TeamSpirit

 Collaboration and proper diffusion of knowledge and information is key to productivity

 Management should intervene only in case of deviation from standards and baseline

 Performance Metrics

 Overview

 The basic process is to define a baseline for key performance metrics following a clear but

flexible set of procedures.

 Alerts , analysis and corrective/contingency actions should be planed when deviation from the

baseline occurs.

 Quality Coverage

 Each development artifacts (Requirements, Use Cases, Design, Source Code, Test cases,

Unit Black-

 box Test, Build, Release, Usability) must have one or more quality criteria such as %

approved or

 compliance deliverables.

 The overall quality index could be weighted by deliverables with higher weights with early

deliverables which has more impact on the overall acceptance of the product by the customer.

 Functionality Coverage

 Percentage of requirements validated by customers

 Percentage of user scenario validated by customers

 Productivity

 Ratio of failed build, release, test cycle, reworked requirements

 Accuracy of initial estimation

 Defects turnaround time

 Customer escalation turnaround time

 Activity-based Costing

 Average cost to fix a defect

 Average cost of a failed build

 Average cost of failed release

 Average cost of incorrect requirement

 Quality Function Deployment (QFD)

Probes are used to collect statistics on the development process

80

 API or Web services for statistics

 Alerts on deviation

 Review & Traceability

 Here is a sample of procedures for the software development process:

• Creating/updating coding standards

• Creating/updating design guideline

• Creating/updating requirements

• Creating/updating use cases

• Creating/updating build scripts

• Creating/updating test cases

• Creating/updating user documentation

• Creating/updating training guide

• Unit testing

• Black-box testing

• Defect resolution

• Data Integrity tests

• Performance testing

• Functional testing

• Configuration management test lab

• Test automation

• Build automation

• Release automation

• Requirements review

• Code review

• Design review

• Test cases/plan review

• Build

• Release

• Customer escalation

• Update Product Roadmap

• Build vs buy

• Hiring

• Engineering Suggestions

• Reusability of components

• Orientation new engineer

• Hands-on training

• Management by objectives

• Performance appraisal

• Source code management

• Process Management

• Project management

• Selection of offshore teams

• Synchronization development context with offshore teams

Here is a sample list of automation tools that can be used in software engineering

81

• Build environment/portal

• Requirements tracking system

• Defect database

• Test configuration management

• Development environment

• Test harness

• Unit Test generator

• Execution profiler

• Code coverage analyzer

• Black-box automation tool

• Version control

• Collaboration platform

Process Architecture

Process architecture is the structural design of general process systems and applies to fields

such as computers (software, hardware, networks, etc.), business processes (enterprise

architecture, policy and procedures, logistics, project management, etc.), and any other

process system of varying degrees of complexity.
[1]

Processes are defined as having inputs, outputs and the energy required to transform inputs to

outputs. Use of energy during transformation also implies a passage of time: a process

takes real time to perform its associated action. A process also requires space for input/output

objects and transforming objects to exist: a process uses real space.

A process system is a specialized system of processes. Processes are composed of processes.

Complex processes are made up of several processes that are in turn made up of several

processes. This results in an overall structural hierarchy of abstraction. If the process system

is studied hierarchically, it is easier to understand and manage; therefore, process architecture

requires the ability to consider process systems hierarchically. Graphical modeling of process

architectures is considered by Dualistic Petri nets. Mathematical consideration of process

architectures may be found in CCS and the π-calculus.

The structure of a process system, or its architecture, can be viewed as a dualistic relationship

of its infrastructure and suprastructure.[1][2] The infrastructure describes a process system's

component parts and their interactions. The suprastructure considers the super system of

which the process system is a part. (Suprastructure should not be confused

with superstructure, which is actually part of the infrastructure built for (external) support.)

As one traverses the process architecture from one level of abstraction to the next,

infrastructure becomes the basis for suprastructure and vice versa as one looks within a

system or without.

Requirements for a process system are derived at every hierarchical level.[2] Black-box

requirements for a system come from its suprastructure. Customer requirements are black-box

requirements near, if not at, the top of a process architecture's hierarchy. White-box

http://en.wikipedia.org/wiki/Process_architecture#cite_note-parch-1
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Hierarchy
http://en.wikipedia.org/wiki/Abstraction
http://en.wikipedia.org/wiki/Dualistic_Petri_nets
http://en.wikipedia.org/wiki/Calculus_of_communicating_systems
http://en.wikipedia.org/wiki/%CE%A0-calculus
http://en.wikipedia.org/wiki/Infrastructure
http://en.wikipedia.org/wiki/Process_architecture#cite_note-parch-1
http://en.wikipedia.org/wiki/Process_architecture#cite_note-parch-1
http://en.wikipedia.org/wiki/Process_architecture#cite_note-parch-1
http://en.wikipedia.org/wiki/Superstructure
http://en.wikipedia.org/wiki/Process_architecture#cite_note-ss7arch-2

82

requirements, such as engineering rules, programming syntax, etc., come from the process

system's infrastructure.

Process systems are a dualistic phenomenon of change/no-change or form/transform and as

such, are well-suited to being modeled by the bipartite Petri Nets modeling system and in

particular, process-class Dualistic Petri nets where processes can be simulated in real time and

space and studied hierarchically.

 Relationship Between Elements

Process Modeling

The term process model is used in various contexts. For example, in business process modeling the

enterprise process model is often referred to as the business process model.

Process models are processes of the same nature that are classified together into a model. Thus, a

process model is a description of a process at the type level. Since the process model is at the type

level, a process is an instantiation of it. The same process model is used repeatedly for the

development of many applications and thus, has many instantiations. One possible use of a process

model is to prescribe how things must/should/could be done in contrast to the process itself which is

really what happens. A process model is roughly an anticipation of what the process will look like.

What the process shall be will be determined during actual system development.[2]

The goals of a process model are to be:

Descriptive

 Track what actually happens during a process

 Take the point of view of an external observer who looks at the way a process has been

performed and determines the improvements that must be made to make it perform more

effectively or efficiently.

Prescriptive

 Define the desired processes and how they should/could/might be performed.

 Establish rules, guidelines, and behavior patterns which, if followed, would lead to the desired

process performance. They can range from strict enforcement to flexible guidance.

Explanatory

 Provide explanations about the rationale of processes.

 Explore and evaluate the several possible courses of action based on rational arguments.

http://en.wikipedia.org/wiki/Syntax_(programming_languages)
http://en.wikipedia.org/wiki/Petri_Nets
http://en.wikipedia.org/wiki/Dualistic_Petri_nets
http://en.wikipedia.org/wiki/Business_process_modeling
http://en.wiktionary.org/wiki/Process
http://en.wikipedia.org/wiki/Process_modeling#cite_note-Rolland1998-2
http://en.wikipedia.org/wiki/Argument

83

 Establish an explicit link between processes and the requirements that the model needs to fulfill.

 Pre-defines points at which data can be extracted for reporting purposes.

Process Definition Techniques

Software Engineering Process Concepts

Themes

Dowson [35] notes that ―All process work is ultimately directed at ‗software process assessment and

improvement‘‖. This means that the objective is to implement new or better processes in actual

practices, be

they individual, project or organizational practices.

We describe the main topics in the software process engineering (i.e., the meta-level that has been

alluded to

earlier) area in terms of a cycle of process change, based on the commonly known PDCA cycle. This

cycle highlights that individual process engineering topics are part of a larger process to improve

practice, and that process

evaluation and feedback is an important element of process engineering.

Software process engineering consists of four activities as illustrated in the model in Figure 1. The

activities are

sequenced in an iterative cycle allowing for continuous feedback and improvement of the software

process.

The ―Establish Process Infrastructure‖ activity consists of establishing commitment to process

implementation and

change (including obtaining management buy-in), and putting in place an appropriate infrastructure

(resources and

84

responsibilities) to make it happen. The activities ―Planning of Process Implementation and Change‖

and ―Process Implementation and Change‖ are the core ones in process engineering, in that they are

essential for any long-lasting benefit from process engineering to accrue. In the planning activity the

objective is to understand the current business objectives and process needs of the organization1,

identify its strengths and weaknesses, and make a plan for process implementation and change. In

―Process Implementation and Change‖, the objective is to execute the plan, deploy new processes

(which may involve, for example, the deployment of tools and training of staff), and/or change

existing processes. The fourth activity, ―Process Evaluation‖ is concerned with finding out how well

the implementation and change went; whether the expected benefits materialized. This is then used as

input for subsequent cycles. At the centre of the cycle is the ―Process Experience Base‖. This is

intended to capture lessons from past iterations of the cycle (e.g., previous evaluations, process

definitions, and plans). Evaluation lessons can be qualitative or quantitative. No assumptions are

made about the nature or technology of this ―Process Experience Base‖, only that it be a persistent

storage. It is expected that during subsequent iterations of the cycle, previous experiences will be

adapted and reused. It is also important to continuously re-assess the utility of information in the

experience base to ensure that obsolete information does not accumulate. With this cycle as a

framework, it is possible to map the topics in this knowledge area to the specific activities where they

would be most relevant. This mapping is also shown in Figure 1. The bulleted boxes contain the

Knowledge Area topics. It should be noted that this cycle is not intended to imply that software

process engineering is relevant to only large organizations. To the contrary, process-related activities

can, and have been, performed successfully by small organizations, teams, and individuals. The way

the activities defined in the cycle are performed would be different depending on the context. Where

it is relevant, we will present examples of approaches for small organizations.

Figure 1 A model of the software process engineering cycle, and the relationship of its activities to the

KA topics.

The circles are the activities in the process engineering cycle. The square in the middle of the cycle is

a data store.

85

The bulleted boxes are the topics in this Knowledge Area that map to each of the activities in the

cycle. The numbers refer to the topic sections in this chapter. The topics in this KA are as follows:

Process Infrastructure: This is concerned with putting in place an infrastructure for software process

engineering.

Process Measurement: This is concerned with quantitative techniques to diagnose software processes;

to identify strengths and weaknesses. This can be performed to initiate process implementation and

change, and afterwards to evaluate the consequences of process implementation and change.

Process Definition: This is concerned with defining processes in the form of models, plus the

automated support that is available for the modeling task, and for enacting the models during the

software process.

Process Definition

Software engineering processes are defined for a number ofreasons, including: facilitating human

understanding andcommunication, supporting process improvement,supporting process management,

providing automated

process guidance, and providing automated executionsupport .The types of process definitions

required will depend, at least partially, on the reason.It should be noted also that the context of the

project and

organization will determine the type of process definition that is most important. Important variables

to consider

include the nature of the work (e.g., maintenance ordevelopment), the application domain, the

structure of the

delivery process (e.g., waterfall, incremental, evolutionary),and the maturity of the organization.There

are different approaches that can be used to defineand document the process. Under this topic the

approachesthat have been presented in the literature are covered,although at this time there is no data

on the extent to which

these are used in practice.

Etvx (Entry Task Validation Exit)

(E)ntry Criteria

 Business Requirements available for review

(T)asks

 Review Business Requirements

 Log all discrepancies/ questions in Bug Tracker

 Provide High-level Test Estimates

(V)alidation

 All items in the bug tracker are closed with valid comments

 Business Requirements document is updated

(E)xit

 Signed-off Business Requirement Document

86

 High-level Test estimates are accepted by all stake holders

Design Phase

(E)ntry Criteria

 Signed-off Business Requirements

 Functional (FS) & Technical(TS) Specifications available for review

(T)asks

 Review FS & TS

 Raise questions/discrepancies in Bug Tracker to clarify if anything is ambiguous

 Provide detailed Test Estimates

 Review project plan and provide feedback to Program Manager

 Create master test plan & automation test plan and get it reviewed by appropriate stakeholders

 Generate traceability matrix

 Collaborate with all test teams to have complete coverage on integration areas

(V)alidation

 All items in the bug tracker are in closed state

 All review comments of master test plan and automation test plan are closed

(E)xit

 Signed-off TS

 Signed-off FS

 Detailed Test Estimates are accepted by all stake holders and incorporated appropriately in

schedule

 Signed-off project plan

 Signed-off MTP

 Signed-off ATP

Build/Coding Phase

(E)ntry Criteria

 Signed-off TS

 Signed-off FS

 Signed-off MTP

 Signed-off ATP

 Availability of Test Environment details

(T)asks

 Write test cases to cover entire functionality and affected areas both from UI and DB perspective

 Get the test cases reviewed by appropriate stakeholders and get sign off

 Work with Operations /Support team to get test environments

 Validate SQL scripts against test cases in Dev/Unit Test environments

(V)alidation

 Test cases review

87

 Sanity check of test environments

 Sanity check of SQL scripts and UI automation scripts

(E)xit

 Signed-off test cases

 SQA environments are available for build deployment

 Validated SQL scripts against test cases

 Validated UI automation scripts

Stabilization/Testing Phase

(E)ntry Criteria

 Signed-off test cases

 Validated UI automation scripts

 Validated SQL scripts against test cases

 SQA environments are available for build deployment

(T)asks

 Execute test cases both manual and automation

 Publish daily report with test cases execution progress as well updated info on bugs

 Raise bugs in Bug Tracker appropriately

 Track bugs to closure

 Collaborate with all test teams to have complete coverage on integration areas

(V)alidation

 Execution of test cases is completed

 All appropriate bugs are tracked to closure

(E)xit

All the BVTs passed on all the builds/patches

Code Complete Build:

Test should be able to execute 100% of test cases by end of code freeze build and 80% of test

cases should pass

By start of Test final build :

 All failed test cases of Code complete build + other test cases planned should pass.

 All bugs raised during the Code complete build execution should be resolved & closed

 No S1 & S2 bugs should be in proposed/active/resolved state

 Active S3 & S4 bugs count should be within permissible limit like 5% of total bugs or moved

to future releases

 Any known issues with technical constraints or anything should have an agreed resolution

 Test Final Build:

 All planned test cases for final build should pass

88

 No S1 & S2 bugs should be in proposed/active/resolved state

 No S3 & S4 bugs should be in proposed/active/resolved state

Process Baselining

There are many different steps that organizations follow in benchmarking. However, most baselining

processes have these four steps:

 Develop a clearly defined baseline in your organization: This means that all of the attributes

involved in your baseline are defined. In our example of defects per lines of code, clearly

defining what is meant by defect and a line of code would meet the objective of this step.

 Identify the organizations you desire to baseline against: Many factors come into this

decision, such as do you want to benchmark within your industry, do you want to benchmark

what you believe are leading organizations, do you want to benchmark an organization that

uses the same tools that are used in your organization, and do you want to benchmark against

organizations with a similar culture.

 Compare baseline calculations: Compare how your baseline is calculated versus the baseline

calculation in the company you want to benchmark against. Benchmarking is only effective

when you benchmark against an organization who has calculated their baseline using

approximately the same approach that your organization used to calculate the baseline.

 Identify the cause of baseline variance in the organization you benchmarked against: When

you find a variance between the baseline calculation in your company and the baseline

calculation in the organization you are benchmarking against, you need to identify the cause

of variance. For example, if your organization was producing 20 defects per thousand lines of

code, and you benchmarked against an organization that only had 10 defects per thousand

lines of code you would want to identify the cause of the difference. If you cannot identify the

cause of difference, there is little value in benchmarking. Let us assume that the company you

benchmarked against had a different process for requirement definition than your

organization. For example, assume they use JAD (joint application development) and you did

not. Learning this, you may choose to adopt JAD in your organization as a means for

reducing your developmental defect rates.

Process Assessment and Improvement

Software process improvement (SPI) started in the 1990s from the process based approach to

software development. The main problem of product-centred development was the ignoring of

activities that had no visible results and regarding them as unimportant. Process-based approach in

software development puts emphasis on organisation development and the reaching of business goals.

A similar understanding of software processes creates a feeling of unity among the developers in a

89

company and a continuity in the development, that in turn guarantee higher production capability and

quality of the results.

As the first promoter of software process improvement Watts Humphrey said, the main problems in

software development are not caused by insufficient skills, but by unawareness of how to use the best

available methods and inability to efficiently solve detailed problems related to the process and

product. The result of software process improvement will be the following of a detailed description of

activities in every situation of development.

Software process improvement begins with an assessment of software processes. Different process

models and standards have been created for software process assessment. We employ the two most

widely used models CMMI or Capability Maturity Model Integration and ISO/IEC 15504 (SPICE –

Software Process Improvement and Capability Determination). The processes related to development

are assessed on the basis of a benchmark model, i.e. each specific process to be assessed in relation to

the development will be compared to the requirements described in the benchmark model, at the same

time taking into account also the unique character of the development company or a project. Process

assessment is project-based – a recently ended project is chosen and the activities related to its

development will be evaluated.

Assessment starts with a meeting for developers that introduces software process improvement and

assessment and in the course of which the project as well as the processes are chosen that are

considered by developers to be the most important for assessment. Often these tend to be the

processes that the developers consider to have been insufficient in several projects. The detailed

assessment of the chosen project and processes will be done during an interview with the developers

who took part in the project. Software process assessment also ends with a development team

meeting, where the capabilities of the assessed processes are described according to process models,

as well as the shortcomings of the processes and a process improvement plan is put together. Despite

the fact that the processes are assessed in a specific project, the development processes will be

improved in each of the following development projects. It is only constant improvement that leads to

the software productivity growth in a company.

CMMI

A maturity level is a well-defined evolutionary plateau toward achieving a mature software process.

Each maturity level provides a layer in the foundation for continuous process improvement.

In CMMI models with a staged representation, there are five maturity levels designated by the

numbers 1 through 5

1. Initial

2. Managed

90

3. Defined

4. Quantitatively Managed

5. Optimizing

CMMI Staged Represenation- Maturity Levels

Now we will give more detail about each maturity level. Next section will list down all the process

areas related to these maturity levels.

Maturity Level Details:

Maturity levels consist of a predefined set of process areas. The maturity levels are measured by the

achievement of the specific and generic goals that apply to each predefined set of process areas. The

following sections describe the characteristics of each maturity level in detail.

Maturity Level 1 - Initial

At maturity level 1, processes are usually ad hoc and chaotic. The organization usually does not

provide a stable environment. Success in these organizations depends on the competence and heroics

of the people in the organization and not on the use of proven processes.

Maturity level 1 organizations often produce products and services that work; however, they

frequently exceed the budget and schedule of their projects.

Maturity level 1 organizations are characterized by a tendency to over commit, abandon processes in

the time of crisis, and not be able to repeat their past successes.

Maturity Level 2 - Managed

At maturity level 2, an organization has achieved all the specific and generic goals of the maturity

level 2 process areas. In other words, the projects of the organization have ensured that requirements

are managed and that processes are planned, performed, measured, and controlled.

91

The process discipline reflected by maturity level 2 helps to ensure that existing practices are retained

during times of stress. When these practices are in place, projects are performed and managed

according to their documented plans.

At maturity level 2, requirements, processes, work products, and services are managed. The status of

the work products and the delivery of services are visible to management at defined points.

Commitments are established among relevant stakeholders and are revised as needed. Work products

are reviewed with stakeholders and are controlled.

The work products and services satisfy their specified requirements, standards, and objectives.

Maturity Level 3 - Defined

At maturity level 3, an organization has achieved all the specific and generic goals of the process

areas assigned to maturity levels 2 and 3.

At maturity level 3, processes are well characterized and understood, and are described in standards,

procedures, tools, and methods.

A critical distinction between maturity level 2 and maturity level 3 is the scope of standards, process

descriptions, and procedures. At maturity level 2, the standards, process descriptions, and procedures

may be quite different in each specific instance of the process (for example, on a particular project).

At maturity level 3, the standards, process descriptions, and procedures for a project are tailored from

the organization's set of standard processes to suit a particular project or organizational unit. The

organization's set of standard processes includes the processes addressed at maturity level 2 and

maturity level 3. As a result, the processes that are performed across the organization are consistent

except for the differences allowed by the tailoring guidelines.

Another critical distinction is that at maturity level 3, processes are typically described in more detail

and more rigorously than at maturity level 2. At maturity level 3, processes are managed more

proactively using an understanding of the interrelationships of the process activities and detailed

measures of the process, its work products, and its services.

Maturity Level 4 - Quantitatively Managed

At maturity level 4, an organization has achieved all the specific goals of the process areas assigned

to maturity levels 2, 3, and 4 and the generic goals assigned to maturity levels 2 and 3.

At maturity level 4 Subprocesses are selected that significantly contribute to overall process

performance. These selected subprocesses are controlled using statistical and other quantitative

techniques.

Quantitative objectives for quality and process performance are established and used as criteria in

managing processes. Quantitative objectives are based on the needs of the customer, end users,

organization, and process implementers. Quality and process performance is understood in statistical

terms and is managed throughout the life of the processes.

For these processes, detailed measures of process performance are collected and statistically analyzed.

Special causes of process variation are identified and, where appropriate, the sources of special causes

are corrected to prevent future occurrences.

92

Quality and process performance measures are incorporated into the organizations measurement

repository to support fact-based decision making in the future.

A critical distinction between maturity level 3 and maturity level 4 is the predictability of process

performance. At maturity level 4, the performance of processes is controlled using statistical and other

quantitative techniques, and is quantitatively predictable. At maturity level 3, processes are only

qualitatively predictable.

Maturity Level 5 - Optimizing

At maturity level 5, an organization has achieved all the specific goals of the process areas assigned

to maturity levels 2, 3, 4, and 5 and the generic goals assigned to maturity levels 2 and 3.

Processes are continually improved based on a quantitative understanding of the common causes of

variation inherent in processes.

Maturity level 5 focuses on continually improving process performance through both incremental and

innovative technological improvements.

Quantitative process-improvement objectives for the organization are established, continually revised

to reflect changing business objectives, and used as criteria in managing process improvement.

The effects of deployed process improvements are measured and evaluated against the quantitative

process-improvement objectives. Both the defined processes and the organization's set of standard

processes are targets of measurable improvement activities.

Optimizing processes that are agile and innovative depends on the participation of an empowered

workforce aligned with the business values and objectives of the organization. The organization's

ability to rapidly respond to changes and opportunities is enhanced by finding ways to accelerate and

share learning. Improvement of the processes is inherently part of everybody's role, resulting in a

cycle of continual improvement.

A critical distinction between maturity level 4 and maturity level 5 is the type of process variation

addressed. At maturity level 4, processes are concerned with addressing special causes of process

variation and providing statistical predictability of the results. Though processes may produce

predictable results, the results may be insufficient to achieve the established objectives. At maturity

level 5, processes are concerned with addressing common causes of process variation and changing

the process (that is, shifting the mean of the process performance) to improve process performance

(while maintaining statistical predictability) to achieve the established quantitative process-

improvement objectives.

Maturity Levels Should Not be Skipped:

Each maturity level provides a necessary foundation for effective implementation of processes at the

next level.

Higher level processes have less chance of success without the discipline provided by lower levels.

The effect of innovation can be obscured in a noisy process.

Higher maturity level processes may be performed by organizations at lower maturity levels, with the

risk of not being consistently applied in a crisis.

93

Maturity Levels and Process Areas:

Here is a list of all the corresponding process areas defined for a S/W organization. These process

areas may be different for different organization.

This section is just giving names of the related process areas, for more detail about these Process

Areas go through CMMI Process Areas Chapter.

Level Focus Key Process Area Result

5 .Optimizing Continuous Process

Improvement

 Organizational Innovation and

Deployment

 Causal Analysis and Resolution

Highest Quality /

Lowest Risk

4.Quantitatively

Managed

Quantitatively

Managed

 Organizational Process

Performance

 Quantitative Project Management

Higher Quality /

Lower Risk

3.Defined Process

Standardization

Requirements Development

Technical Solution

Product Integration

Verification

Validation

Organizational Process Focus

Organizational Process Definition

Organizational Training

Integrated Project Mgmt (with

IPPD extras)

Risk Management

Decision Analysis and Resolution

Integrated Teaming (IPPD only)

Org. Environment for Integration

(IPPD only)

Integrated Supplier Management

(SS only)

Medium Quality /

Medium Risk

2.Managed Basic Project

Management

Requirements Management

Project Planning

Project Monitoring and Control

Supplier Agreement Management

Measurement and Analysis

Process and Product Quality

Assurance

Low Quality /

High Risk

http://www.tutorialspoint.com/cmmi/cmmi-process-areas.htm

94

Configuration Management

1.Initial Process is informal

and Adhoc

 Lowest Quality /

Highest Risk

Six Sigma

Six Sigma has following two key methodologies:

1. DMAIC: refers to a data-driven quality strategy for improving processes. This methodology is

used to improve an existing business process.

2. DMADV: refers to a data-driven quality strategy for designing products & processes. This

methodology is used to create new product designs or process designs in such a way that it

results in a more predictable, mature and defect free performance.

There is one more methodology called DFSS - Design For Six Sigma. DFSS is a data-driven quality

strategy for designing design or re-design a product or service from the ground up.

Sometimes a DMAIC project may turn into a DFSS project because the process in question requires

complete redesign to bring about the desired degree of improvement.

DMAIC Methodology:

This methodology consists of following five steps.

Define --> Measure --> Analyze --> Improve -->Control

1. Define : Define the Problem or Project Goals that needs to be addressed.

2. Measure: Measure the problem and process from which it was produced.

3. Analyze: Analyze data & process to determine root causes of defects and opportunities.

4. Improve: Improve the process by finding solutions to fix, diminish, and prevent future problems.

5. Control: Implement, Control, and Sustain the improvements solutions to keep the process on the

new course.

6. DMAIC is a data-driven quality strategy used to improve

processes. It is an integral part of a Six Sigma initiative, but in

general can be implemented as a standalone quality

improvement procedure or as part of other process

improvement initiatives such as lean.

7. DMAIC is an acronym for the five phases that make up the

process:

8. Define the problem, improvement activity, opportunity for

improvement, the project goals, and customer (internal and

external) requirements.

95

9. Measure process performance.

10. Analyze the process to determine root causes of variation, poor performance (defects).

11. Improve process performance by addressing and eliminating the root causes.

12. Control the improved process and future process performance.

DMADV Methodology:

This methodology consists of following five steps.

Define --> Measure --> Analyze --> Design -->Verify

1. Define : Define the Problem or Project Goals that needs to be addressed.

2. Measure: Measure and determine customers needs and specifications.

3. Analyze: Analyze the process for meet the customer needs.

4. Design: Design a process that will meet customers needs.

5. Verify: Verify the design performance and ability to meet customer needs.

DFSS Methodology:

DFSS - Design For Six Sigma is a separate and emerging discipline related to Six Sigma quality

processes. This is a systematic methodology utilizing tools, training and measurements to enable

us to design products and processes that meet customer expectations and can be produced at Six

Sigma Quality levels.

This methodology can have following five steps.

Define --> Identify --> Design --> Optimize -->Verify

1. Define : Identify the Customer and project.

2. Identify: Define what the customers want, or what they do not want.

3. Design: Design a process that will meet customers needs.

4. Optimize: Determine process capability & optimize design.

5. Verify: Test, verify, & validate design.

