
SOFTWARE PROCESS AND PROJECT

MANAGEMENT
Course code: AIT512

III. B.Tech II semester
Regulation: IARE (R-16)

BY
MR. E SUNIL REDDY

Asst.Professor

DEPARTMENT OF INFORMATION TECHNOLOGY

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

DUNDIGAL, HYDERABAD - 500 043

Course Outcomes

The course should enable the students to:

CO 1 Describe the concept of Software Development Life

Cycle and analyze the concepts of processes, TSP, PSP.

CO 2 Determine the functional requirements, elicitation
techniques and Quality Attribute workshop, ACDM,
documentation, and specification, change
management and traceability of requirements

CO 3 Understand Estimation, Planning, And Tracking
CO 4 Explore the concept of Configuration And Quality

Management.
CO 5 Use of Software Process Definition And Management.

3

UNIT-I
Overview of Software Development Life Cycle, introduction

to processes, Personal Software Process(PSP), Team Software

Process(TSP), unified processes, agile processes, choosing the

right process

Course Learning Outcomes

The course will enable the students to:

CLO1 Describe the basic concepts of Software

Development Life Cycle.

CLO 2
Summarize the concept of processes.

CLO 3 Analyze the concepts of Personal Software Process

(PSP), Team Software Process (TSP).

CLO 4 Use the concept of agile processes in real-world

problems.

Contents

• Overview of Software Development Life Cycle

• Introduction to processes

• Personal Software Process(PSP)

• Team Software Process(TSP)

• Unified processes

• Agile processes

• Choosing the right process.

5

Overview of Software Development Life Cycle

Software Development Life Cycle(SDLC) is a well-defined,
structured sequence of stages in software engineering to develop
the intended software product.
There are following six phases in every Software development life
cycle model:
1. Requirement gathering and analysis
2. Design
3. Implementation or coding
4. Testing
5. Deployment
6. Maintenance

6

Introduction to Processes

A software process (also knows as software methodology) is a set
of related activities that leads to the production of the software.
These activities may involve the development of the software
from the scratch, or, modifying an existing system.
Any software process must include the following four activities:
1. Software specification (or requirements engineering): Define

the main functionalities of the software and the constrains
around them.

2. Software design and implementation: The software is to be
designed and programmed.

3. Software verification and validation: The software must
conforms to it’s specification and meets the customer needs.

4. Software evolution (software maintenance): The software is
being modified to meet customer and market requirements
changes.

7

Introduction to Processes

•In practice, they include sub-activities such as requirements
validation, architectural design, unit testing, …etc.

•There are also supporting activities such as configuration and
change management, quality assurance, project management,
user experience.

•Along with other activities aim to improve the above activities by
introducing new techniques, tools, following the best practice,
process standardization (so the diversity of software processes
is reduced), etc.

8

Introduction to Processes

A process also includes the process description, which includes:
Products: The outcomes of the an activity. For example, the
outcome of architectural design maybe a model for the software
architecture.
Roles: The responsibilities of the people involved in the process.
For example, the project manager, programmer, etc.
Pre and post conditions: The conditions that must be true before
and after an activity. For example, the pre condition of the
architectural design is the requirements have been approved by
the customer, while the post condition is the diagrams describing
the architectural have been reviewed.

9

Personal Software Process(PSP)

Every developer uses some process to build computer software. The
Personal Software Process (PSP) emphasizes personal measurement
of both the work product that is produced and the resultant quality
of the work product. In addition PSP makes the practitioner
responsible for project planning (e.g., estimating and scheduling)
and empowers the practitioner to control the quality of all software
work products that are developed. The PSP model defines five
framework
Planning. This activity isolates requirements and develops both size
and resource estimates. In addition, a defect estimate is made. All
metrics are recorded on worksheets or templates. Finally,
development tasks are identified and a project schedule is created.
High-level design. External specifications for each component to be
constructed are developed and a component design is created.
Prototypes are built when uncertainty exists. All issues are recorded
and tracked.

10

Personal Software Process(PSP)

High-level design review. Formal verification methods are
applied to uncover errors in the design. Metrics are maintained
for all important tasks and work results.
Development. The component-level design is refined and
reviewed. Code is generated, reviewed, compiled, and tested.
Metrics are maintained for all important tasks and work results.
Postmortem. Using the measures and metrics collected, the
effectiveness of the process is determined. Measures and
metrics should provide guidance for modifying the process to
improve its effectiveness.
PSP emphasizes the need to record and analyze the types of
errors you make, so that you can develop strategies to eliminate
them.

1
1

Team Software Process(TSP)

The Team Software Process (TSP) provides a defined operational
Because many industry-grade software projects are addressed by
a team of practitioners, The goal of TSP is to build a “self-
directed” project team that organizes itself to produce high-
quality software. Humphrey defines the following objectives for
TSP:

• Build self-directed teams that plan and track their work, establish
goals, and own their processes and plans. These can be pure
software teams or integrated product teams (IPTs) of 3 to about
20 engineers.

• Show managers how to coach and motivate their teams and how
to help them sustain peak performance.

• Accelerate software process improvement by making CMM Level
5 behavior normal and expected.

• Provide improvement guidance to high-maturity organizations.
• Facilitate university teaching of industrial-grade team skills. 12

Team Software Process(TSP)

A self-directed team has a consistent understanding of its overall
goals and objectives; defines roles and responsibilities for each
team member; tracks quantitative project data identifies a team
process that is appropriate for the project and a strategy for
implementing the process; defines local standards that are
applicable to the team’s software engineering work; continually
assesses risk and reacts to it; and tracks, manages, and reports
project status.

TSP defines the following framework activities: project launch, high-
level design, implementation, integration and test, and
postmortem.

13

Team Software Process(TSP)

TSP makes use of a wide variety of scripts, forms, and standards that
serve to guide team members in their work. TSP recognizes that
the best software teams are selfdirected. Team members set
project objectives, adapt the process to meet their needs, control
the project schedule, and through measurement and analysis of
the metrics collected, work continually to improve the team’s
approach to software engineering.

14

Team Software Process(TSP)

A self-directed team has a consistent understanding of its overall
goals and objectives; defines roles and responsibilities for each
team member; tracks quantitative project data identifies a team
process that is appropriate for the project and a strategy for
implementing the process; defines local standards that are
applicable to the team’s software engineering work; continually
assesses risk and reacts to it; and tracks, manages, and reports
project status.

TSP defines the following framework activities: project launch, high-
level design, implementation, integration and test, and
postmortem.

15

Unified Process

• The Unified Software Development Process or Unified Process is
a popular iterative and incremental software development
process framework. The best-known and extensively
documented refinement of the Unified Process is the Rational
Unified Process (RUP). Other examples are Open UP and Agile
Unified Process

• The Unified Process divides the project into four phases:

•Inception: Establish the business case. Identify external
entities (actors, systems).[both customer communication
and planning activities.]

•Elaboration: Understand problem domain. Establish
architecture, and consider design tradeoffs. Identify project
risks. Estimate and schedule project. [communication and
modeling activities]

16

Unified Process

•Construction: Design, program and test. Components are

bought and integrated.]construction activity]

•Transition: release a mature version and deploy in real
world. [(delivery and feedback) activity]

17

Unified Process

18

Unified Process

19

Unified Process

20

Agile Process

• Agile software processes is an iterative and incremental based
development, where requirements are changeable according
to customer needs. It helps in adaptive planning, iterative
development and time boxing

• The agile process follows the software development life cycle
which includes requirements gathering, analysis, design ,
coding , testing and delivers partially implemented software
and waits for the customer feedback. In the whole process ,
customer satisfaction is at highest priority with faster
development time.

21

Agile Process

The Agile Alliance defines 12 agility principles for those who want
to achieve agility:

1. Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

2. Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competitive
advantage.

3. Deliver working software frequently, from a couple of weeks to
a couple of months,with a preference to the shorter timescale.

4. Business people and developers must work together daily
throughout the project.

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

22

Agile Process

6. The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

9. Continuous attention to technical excellence and good design
enhances agility.

10. Simplicity—the art of maximizing the amount of work not
done—is essential.

11. The best architectures, requirements, and designs emerge
from self– organizing teams.

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly. 23

Choosing The Right Process

How to select the right SDLC
Selecting the right SDLC is a process in itself that the organization
can implement internally or consult for. There are some steps to
get the right selection.
STEP 1: Learn the about SDLC Models
SDLCs are the same in their usage. In order to select the right
SDLC, you should have enough experience and be familiar with the
SDLCs that will be chosen and understand them correctly.
STEP 2: Assess the needs of Stakeholders
We must study the business domain, stakeholders concerns and
requirements, business priorities, our technical capability and
ability, and technology constraints to be able to choose the right
SDLC against their selection criteria.

24

Choosing The Right Process

STEP 3: Define the criteria
Some of the selection criteria or arguments that you may use to
select an SDLC are:
Is the SDLC suitable for the size of our team and their skills?
Is the SDLC suitable for the selected technology we use for
implementing the solution?
Is the SDLC suitable for client and stakeholders concerns and
priorities?
Is the SDLC suitable for the geographical situation (distributed team)?
Is the SDLC suitable for the size and complexity of our software?
Is the SDLC suitable for the type of projects we do?
Is the SDLC suitable for our software engineering capability?
Is the SDLC suitable for the project risk and quality insurance?

25

Choosing The Right Process

STEP 4: Decide
When you define the criteria and the arguments you need to
discuss with the team, you will need to have a decision matrix and
give each criterion a defined weight and score for each option. After
analyzing the results, you should document this decision in the
project artifacts and share it with the related stakeholders.
STEP 5: Optimize
You can always optimize the SDLC during the project execution, you
may notice upcoming changes do not fit with the selected SDLC, it is
okay to align and cope with the changes. You can even make your
own SDLC model which optimum for your organization or the type
of projects you are involved in.

26

27

UNIT-II

Functional requirements and quality attributes, elicitation

techniques, Quality Attribute Workshop (QAW), analysis,

prioritization, and trade off, Architecture Centric

Development Method (ACDM), requirements,

documentation, and specification, change management,

traceability of requirements.

Course Learning Outcomes

The course will enable the students to:

CLO1 Determine the Functional requirements and quality attributes,

CLO 2 Understand elicitation techniques, Quality Attribute Workshop

(QAW).

CLO 3
Determine the analysis, prioritization, and trade off

CLO 4 Use Architecture Centric Development Method (ACDM).

CLO 5
Illustrate the documentation, and specification.

CLO 6 Describe the change management and traceability of

requirements.

Contents

• Functional Requirements and Quality Attributes

• Elicitation Techniques

• Quality Attribute Workshop(QAW)

• Analysis , Prioritization and Trade off

• Architecture Centric Development Method (ACDM)

• Requirements, Documentation and Specification

• Change Management.

• Traceability of Requirements.

29

Functional Requirements and Quality Attributes

• Requirements of a system can be classified into functional and
non functional (i.e. quality attributes). Functional requirements
are statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

•Different types of methods are used to specify functional
requirements. Use case driven approaches describe “the ways
in which a user uses a system” that is why use case diagram is
often used for capturing functional requirements.

30

Functional Requirements and Quality Attributes

Identify actors and use cases.
For the road pricing system, the actors we identified are:

Vehicle owner
Vehicle driver
Bank
System clock

The following are the use cases required by the actors listed
above:

Register vehicle
Pass single toll
Enter motorway
Exit motorway
Pay bill

31

Functional Requirements and Quality Attributes

Quality attributes define global properties of a system. Usually
these are only dealt with in the later stages of a software
development process, such as design and implementation

Identify quality attributes.
Quality attributes can be assumptions, constraints or goals of
stakeholders. By analysing the initial of set requirements, the
potential quality attributes are identified.
For example
fundamental quality attribute are Security issue, response time
Other concerns are identified in a similar fashion: Multiuser
System, Compatibility, Legal Issues, Correctness and Availability

Integrate functional requirements with crosscutting quality
attributes

32

Elicitation Techniques

A major goal of Requirements Elicitation is to avoid the
confusions between stakeholders and analysts

It is important to distinguish different elicitation methods
according to the four methods of communication.

1. Conversational
•Interviews
•Questionnaire
•Brainstorming

2. Observational
3. Analytic

•Laddering
•Repertory grid

4. Synthetic

33

Quality Attribute Workshop(QAW)

The Quality Attribute Workshop (QAW) is a facilitated method
that engages system stakeholders early in the life cycle to
discover the driving quality attributes of a software-intensive
system

The QAW involves the following steps:
1. QAW Presentation and Introductions.
2. Business/Mission Presentation.
3. Architectural Plan Presentation.
4. Identification of Architectural Drivers.
5. Scenario Brainstorming.
6. Scenario Consolidation.
7. Scenario Prioritization.
8. Scenario Refinement.

34

Analysis , Prioritization and Trade off

The goal of requirement analysis phase is answer to question:
what software must do (and with what constraints)?
The goal of software analysis phase is answer to question: how
system should work?
•Software engineering elements that are used during analysis
phase: notations for model record, methods of model preparation
tools for easy use of notations and methods.

•Prioritizing requirements helps the project team to understand
which requirements are most important and most urgent.
Based on this finding a software engineer can decide what to
develop/implement in the first release and what on the coming
releases. Prioritization is also a useful activity for decision
making in other phases of software engineering like development
testing, and implementation. There are a number of techniques
available to prioritize the requirements with their associated
strengths and limitations. 35

Analysis , Prioritization and Trade off

ATAM(Architecture Tradeoff Analysis Method) STEPS
Step 0 - Planning/Information exchange
Step 1 - Scenario brainstorming
Step 2 - Architecture presentation
Step 3 - Scenario coverage checking
Step 4 - Scenario grouping and prioritization
Step 5 - Map high priority scenarios onto architecture
Step 6 - Perform quality attribute-specific analysis

36

Architecture Centric Development Method (ACDM)

37

Requirements, Documentation and Specification

•Software requirements specification establishes the basis for
agreement between customers and contractors or suppliers (in
market-driven projects, these roles may be played by the
marketing and development divisions) on what the software
product is to do as well as what it is not expected to do.
Software requirements specification permits a rigorous
assessment of requirements before design can begin and
reduces later redesign. It should also provide a realistic basis for
estimating product costs, risks, and schedules.
•The software requirements specification document enlists
enough and necessary requirements that are required for the
project development. To derive the requirements we need to
have clear and thorough understanding of the products to be
developed or being developed

38

Change Management

Effectively managing organizational change is a four-step
process:
1. Recognizing the changes in the broader business

environment
2. Developing the necessary adjustments for their company’s

needs
3. Training their employees on the appropriate changes
4. Winning the support of the employees with the

persuasiveness of the appropriate adjustments

39

Change Management

Successful change management is more likely to occur if
the following are included
1. Benefits management and realization
2. Effective communication
3. Devise an effective education, training and/or skills
4. Counter resistance from the employees of companies and

align them to overall strategic direction of the organization
5. Provide personal counselling (if required) to alleviate any

change-related fears
6. Monitoring of the implementation and fine-tuning as

required

40

Traceability of Requirements

Traceability is the ability to verify the history, location, or
application of an item by means of documented recorded
identification
Measurement
Logistics:

traceability refers to the capability for tracing goods along the
distribution chain on a batch number or series number basis

Materials:
associate a finished part with results of a test performed on a
sample from the same melt identified by the unique lot
number of the material

Supply chain:
Environmentally friendly retailers may choose to make
information regarding their supply chain freely available
to customers

41

Traceability of Requirements

Software development:
refers to the recording through means of barcodes or RFID
tags & other tracking media

Food processing:
refers to the recording through means of barcodes or
RFID tags & other tracking media

Forest products:
a new tool to verify claims and assure buyers about the
source of their materials

42

43

UNIT-III

Identifying and prioritizing risks, risk mitigation plans, estimation

techniques, use case points, function points, COCOMO II, top

down estimation, bottom up estimation. Work break down

structure, macro and micro plans, planning poker, wideband

Delphi, documenting the plan, tracking the plan, Earned Value

Method (EVM).

Course Learning Outcomes

The course will enable the students to:

CLO1
Explain software risks.

CLO 2 Understand the concept of function points, COCOMO

II, estimations

CLO 3 Understand the Work break down structure, macro and

micro plans

CLO 4
Understand the planning poker ,wideband Delphi

CLO 5 Summarize the tracking the plan ,Earned Value Method

(EVM)

Contents

• Identifying and Prioritizing risks.

• Risk Mitigation Plans.

• Estimation Techniques.

• Use case Points, Function Points

• COCOMO II.

• Top down Estimation, Bottom up Estimation.

• Work Break Down Structure.

• Macro and Micro plans.

• Planning Poker

• Wideband Delphi.

• Documenting the plan, Tracking the Plan.

• Earned Value Method (EVM).
45

Identifying and Prioritizing risks

The process of determining which risks may affect the project and
documenting their characteristics.

Risk Assessment:

The Risk Assessment and Mitigation tab in the Risk
Management workbook has a set of questions that need to be
answered that help determine the risk level of the project.

Risk Register:
This is located on the project’s SharePoint site where project
specific risks can be entered

Risk Analysis:
The process of analyzing and prioritizing risk. The analyzing
and prioritizing of risks is done in the Risk Management
Workbook on the Risk Assessment-Mitigation tab and in the
Risk Register. Risks are prioritized as High, Medium or Low.
The prioritization of risks, determines other steps that may
need to happen. 46

Risk Mitigation Plans

Mitigating Actions to Consider
Risk Avoidance –
Actions taken to eliminate the source of risk (e.g. change
vendor, lower requirements, change project team member,
etc.)
Risk Mitigation –
Actions taken to mitigate the severity and consequences of a
risk (e.g. greater training, delayed deployment, etc.)
Risk Transfer –
The transfer of risk from one group to another (e.g.
purchasing insurance, etc.)
Risk Monitoring - The monitoring and periodic re-evaluation
of a risk for changes to key risk parameters
Risk Acceptance - Acknowledging the risk but not taking
preventive measures

47

Estimation Techniques

There is no simple way to make accurate estimates of the
effort required – Initially, not much detail is given –
Technologies and people may be unknown
Project cost estimates may be self-fulfilling – Estimate defines
budget, project adjusted to meet budget

Estimation of software projects can be done by different
techniques.
The important techniques are:

Estimation by Expert Judgement
Estimation by Analogy
Estimation by Available Resources
Estimation by Software Price
Estimation by Algorithmic cost Modelling-Model is built based
on historical cost information-Generally based on the size of
the software

48

Estimation Techniques

Estimation by Expert Judgement
Several experts in software development and the application
domain are consulted
Process iterates until some consensus is reached
Advantages: Relatively cheap estimation method. Can be
accurate if experts have direct experience of similar systems
Disadvantages: Very inaccurate if there are no experts!
Estimation by analogy
The project is compared to a similar project in the same
application domain
Advantages: Accurate if project data available
Disadvantages: Impossible if no comparable project has been
tackled

49

Estimation Techniques

Pricing to win
The project costs whatever the customer has to spend on it
Advantages: You get the contract
Disadvantages: The probability that the customer gets the system
he or she wants is small. Often, costs do not accurately reflect
the work required

50

Use case Points

Use Case Points are used as an analysis phase technique for

estimating software development. Use Case Points are derived
from another software development estimating technique called
“Function Points.” However, Function Points are used by systems
analysts as a development phase technique that requires
technical detail for estimating.

Use Case Points
Conducted by business analysts during the analysis phase of a
project Can be classified as a class IV or III estimate (4)
Is based on information contained in a business requirement
document Functional requirements as modelled via system use
cases, actors, and scenarios Non functional requirements
Assumptions on developmental risks

51

Use case Points

Figure 1. Use Case Points Estimating Process

52

Function Points

Function Points
•Conducted by systems analysts during the development phase
•Can be classified as a class II or I estimate which should be more

detailed (4)
•Is based on information contained in a technical specification
•Data Functions using internal and external logical files
•Transaction Functions using external inputs and external
outputs, plus

external inquiries
FPA Uses and Benefits in Project Planning
FPA Uses and Benefits in Project Construction
FPA Uses and Benefits after Software Implementation

53

COCOMO II

COCOMO 2 levels
■ Early prototyping model–Estimates based on OP and a simple
formula
■ Early design model – Estimates based on FP that are translated to

LOC
■ Reuse model–Estimates effort to integrate reused and generated

code
■ Post-architecture level – Estimates based on lines of source code

Effort = A × (Size)B × M
Effort in terms of person-months
•A: 2.45 in 1998
•Size: Estimated Size in KLOC
•B: combined process factors
•M: combined effort factors

54

Top down Estimation, Bottom up Estimation

Top-down:
Starts at the system level and assess system functionality and its
delivery through subsystems
– Usable without much knowledge
– Factors in integration
– configuration and documentation costs
–Can underestimate low-level problems

Bottom-up:
Start at component level and aggregate to obtain system effort
-Usable when architecture of the system is known
–May underestimate system-level activities such as integration

55

Work Break Down Structure

Overall work has to be decomposed into manageable units
Complex tasks are broken down into subtasks and further refined
called Work Breakdown Structures (WBS).
WBS Contains a list of activities, derived from:
– Previous experience
– Expert brainstorming
WBS helps in
– identifying the main activities
– break each main activity down into sub activities which can
further be

broken down into lower level sub-activities
Creating WBS
■ Phase based approach
■ Product based approach
■ Hybrid approach

56

Work Break Down Structure

Advantage
– Activity list likely
complete and non
overlapping
Disadvantage
– May miss some
activities related to final
product

■ Phase based approach

57

Work Break Down Structure

■ Product based approach

58

Work Break Down Structure

■ Hybrid based
approach-
A mix of the phase-
based and product
based approaches
(most commonly
used)
■ The WBS consists
of
– a list of the
products of the
project
– a list of phases for
each product

59

Macro and Micro plans

The Macro or Top-Down approach can provide a quick but rough
estimate

•Done when the time and expense of a detailed estimate are an
issue

•Usually occurs during conception stage when a full design and
WBS are not available

•Requires experienced personnel to do the estimate
•Can be highly inaccurate

A Micro or Bottom-Up approach can provide a fairly accurate
estimate, but is time consuming

•Takes into account the project design and a “roll-up” of WBS
elements

•May require multiple personnel and time to complete
•If done properly, a bottom-up estimate can yield accurate cost
and time estimates

60

Planning Poker

o Planning Poker is a consensus-based technique for estimating,
mostly used to estimate effort or relative size of user stories in
Scrum.

o Planning Poker combines three estimation techniques − Wideband
Delphi Technique, Analogous Estimation, and Estimation using
WBS.

o Planning Poker was first defined and named by James Grenning in
2002 and later popularized by Mike Cohn in his book "Agile
Estimating and Planning”, whose company trade marked the term.

61

Planning Poker

In Planning Poker Estimation Technique, estimates for the user
stories are derived by playing planning poker. The entire Scrum team
is involved and it results in quick but reliable estimates.

Planning Poker is played with a deck of cards. As Fibonacci sequence
is used, the cards have numbers - 1, 2, 3, 5, 8, 13, 21, 34, etc.

These numbers represent the “Story Points”. Each estimator has a
deck of cards. The numbers on the cards should be large enough to
be visible to all the team members, when one of the team members
holds up a card.

62

Planning Poker

•One of the team members is selected as the Moderator. The
moderator reads the description of the user story for which
estimation is being made. If the estimators have any questions,
product owner answers them.

•Each estimator privately selects a card representing his or her
estimate. Cards are not shown until all the estimators have made a
selection. At that time, all cards are simultaneously turned over
and held up so that all team members can see each estimate.

• In the first round, it is very likely that the estimations vary. The high
and low estimators explain the reason for their estimates. Care
should be taken that all the discussions are meant for
understanding only and nothing is to be taken personally. The
moderator has to ensure the same.

63

Planning Poker

•The team can discuss the story and their estimates for a few more
minutes.

•The moderator can take notes on the discussion that will be helpful
when the specific story is developed. After the discussion, each
estimator re-estimates by again selecting a card. Cards are once
again kept private until everyone has estimated, at which point
they are turned over at the same time

64

Wideband Delphi

Wideband Delphi Technique – Steps
Step 1 − Choose the Estimation team and a moderator.
Step 2 − The moderator conducts the kickoff meeting
Step 3 − Each Estimation team member then individually generates a

detailed WBS, estimates each task in the WBS, and
documents the assumptions made

Step 4 − The moderator calls the Estimation team for the Estimation
meeting.

Step 5 − The entire Estimation team assembles for the estimation
meeting.

Step 6 − The Project Manager then assembles the results from the

Estimation meeting.

65

Wideband Delphi

Advantages
Wideband Delphi Technique is a consensus-based estimation
technique for estimating effort.
Useful when estimating time to do a task.
Participation of experienced people and they individually estimating
would lead to reliable results.
People who would do the work are making estimates thus making
valid estimates.
Anonymity maintained throughout makes it possible for everyone to
express their results confidently.
A very simple technique.
Assumptions are documented, discussed and agreed.
Disadvantages
Management support is required.
The estimation results may not be what the management wants to
hear. 66

Documenting the plan, Tracking the Plan

seven planning documents.
1.Project management plan
2. High-level project schedule plan
3. Project team planning
4. Scope plan
5. Detailed project work plan
6. Quality assurance planning
7. Risk planning

67

Earned Value Method (EVM)

Earned value management (EVM), or Earned value
project/performance management (EVPM) is a Project Management
technique for measuring project performance and progress in an
objective manner.
It has the ability to combine measurements of:
•Scope
•Schedule, and
•Costs
Essential features of any EVM implementation include
1.a project plan that identifies work to be accomplished,
2.a valuation of planned work, called Planned Value (PV)

or Budgeted cost of Work Scheduled (BCWS), and
3.pre-defined “earning rules” (also called metrics) to quantify the

accomplishment of work, called Earned Value (EV) or Budgeted
cost of Work Scheduled (BCWP).

68

69

UNIT-IV

Identifying articrafts to be configured, naming

conventions and version control, configuration control,

quality assurance techniques, peer reviews, Fagan

inspection, unit, registration, system, and acceptance

testing, test data and test cases, bug tracking, casual
analysis

Course Learning Outcomes

The course will enable the students to:

CLO1 Identifying articrafts to be configured, naming

conventions

CLO 2 Understand the version control, configuration control,

quality assurance techniques.

CLO 3 Summarize the concept of peer reviews, Fagan

inspection

CLO 4 Apply testing of unit, registration, system, and

acceptance, test data and test cases..

CLO 5
Understand the bug tracking, casual analysis.

Contents

• Identifying Articrafts to be Configured.

• Naming Conventions and Version Control.

• Configuration Control.

• Quality Assurance Techniques

• Peer Reviews.

• Fegan Inspection.

• Unit, Registration, System, and Acceptance Testing

• Test data and Test cases

• Bug Tracking

• Casual Analysis

71

Identifying Articrafts to be Configured

The artifacts that make up a typical Endeca application definition
include the following:
The AppConfig.xml file

The AppConfig.xml file describes each of the application's
provisioning information and is stored in the EAC Central Server. The
Deployment Template control scripts use AppConfig.xml as the
authoritative source for application definition. The Deployment
Template stores a copy of the AppConfig.xml file in
the [appdir]/config/script directory.
The instance configuration

The instance configuration is a set of files that control the ITL process
and the data loaded into the MDEX Engine servers. The instance
configuration files are controlled by the Developer Studio, and
optionally by the Workbench.
These files include configuration data such as dimension definition,
search configuration, the Forge pipeline, and Page Builder landing
pages. 72

Identifying Articrafts to be Configured

Page Builder templates

Page Builder templates are used to drive dynamic landing pages that
can be created in Page Builder. They are defined by xml files stored by
the Workbench, and accessed through the emgr_update command
utility.
Command-line scripts

An application deployment typically includes command-line scripts
that perform common operations related to the application's
functionality. By convention, these scripts are stored in the
Deployment Template's [appdir]/control directory.
Library files

Many parts of an application use library files. For example BeanShell
scripts may use application- or Endeca-specific Java classes. By
convention, library files are kept under [appdir]/config/lib.
Forge state files

Forge state files reside in the [appdir]/data/state directory.

73

Naming Conventions and Version Control

•This process describes the deliverable types, naming conventions
and version control mechanisms to be applied to deliverables
produce by the project.

•The following table describes the configurable item types used
within the IFS project

74

Naming Conventions and Version Control

Business Area: 5 characters (e.g. HR or
CeDICT)
Project: 4-6 characters (e.g. Tavern,
OHSW)
Deliverable Type :2 or 3 characters
UT = Unit Task Specification
PM = Project Management deliverable
TPR = Test Plan & Result
CR = Change Request
PF = Process Flow
OC = Organisation chart
RR = Resource Request
PR = Presentations
PS = Project Standard
MN = Minutes
AD = Architecture Deliverable

AF = Acceptance Form
DR = Deliverable Review Form
DI = Diagram
ST = Strategy document
Description: Brief description of
deliverable
Version : character followed by
major and minor numbering,
OR
Date in yymmdd format. This
version format is used for
deliverables that are to be kept
at a point in time.
File Type : as per application

75

Naming Conventions and Version Control

Manual Version Control
If the deliverable version is controlled by the date in the
deliverable file name then for each new version of the
deliverable the current date is used in the file name. If there are
multiple version created for the same deliverable on the same
day then an alphabetic character is appended to the date starting
at ‘a’.

76

Configuration Control

•Configuration control is an important function of
the configuration management discipline. Its purpose is to
ensure that all changes to a complex system are performed with
the knowledge and consent of management. The scope creep
that results from ineffective or nonexistent configuration control
is a frequent cause of project failure.

•Configuration control tasks include initiating, preparing,
analysing, evaluating and authorising proposals for change to a
system (often referred to as " the configuration ").

77

Configuration Control

Configuration control has four main processes:
1. Identification and documentation of the need for a change in

a change request
2. Analysis and evaluation of a change request and production of

a change proposal
3. Approval or disapproval of a change proposal
4. Verification, implementation and release of a change.

78

Configuration Control

The Configuration Control Process

79

Quality Assurance Techniques

Various SQA Techniques include:
Auditing: Auditing involves inspection of the work products and
its related information to determine if the set of standard
processes were followed or not.
Reviewing: A meeting in which the software product is examined
by both the internal and external stakeholders to seek their
comments and approval.
Code Inspection: It is the most formal kind of review that does
static testing to find bugs and avoid defect growth in the later
stages. It is done by a trained mediator/peer and is based on
rules, checklist, entry and exit criteria. The reviewer should not be
the author of the code.
Design Inspection:

80

Quality Assurance Techniques

Design inspection is done using a checklist that inspects the
below areas of software design:

General requirements and design
Functional and Interface specifications
Conventions
Requirement traceability
Structures and interfaces
Logic
Performance
Error handling and recovery
Testability, extensibility
Coupling and cohesion

81

Quality Assurance Techniques

Simulation: Simulation is a tool that models the real-life situation
in order to virtually examine the behavior of the system under
study.
Functional Testing: It is a QA technique which verifies what the
system does without considering how it does. This type of black
box testing mainly focuses on testing the system specifications or
features.
Standardization: Standardization plays a crucial role in quality
assurance. It decreases the ambiguity and guesswork, thus
ensuring quality.
Static Analysis: It is a software analysis that is done by an
automated tool without actually executing the program. This
technique is highly used for quality assurance in medical, nuclear
and aviation software. Software metrics and reverse engineering
are some popular forms of static analysis. 82

Quality Assurance Techniques

Walkthroughs: Software walkthrough or code walkthrough is a
kind of peer review where the developer guides the members of
the development team to go through the product and raise
queries, suggest alternatives, make comments regarding possible
errors, standard violations or any other issues.
Path Testing: It is a white box technique where the complete
branch coverage is ensured by executing each independent path
at least once.
Stress Testing: This type of testing is done to check how robust a
system is by testing it under heavy load i.e. beyond normal
conditions.
Six Sigma: Six Sigma is a quality assurance approach that aims at
nearly perfect products or services. It is widely applied in many
fields including software. The main objective of six sigma is
process improvement so that the produced software is 99.76 %
defect free. 83

Peer Reviews

What is Peer Review?
A peer review, a review technique, which is a static white-box
testing which are conducted to spot the defects early in the
life cycle that cannot be detected by black box testing
techniques.

Peer Review - Static Testing

84

Peer Reviews

Peer Review Characteristics:
•Peer Reviews are documented and uses a defect detection process
that has peers and technical specialist as part of the review
process.

•The Review process doesn't involve management participation.
•It is usually led by trained moderator who is NOT the author.
•The report is prepared with the list of issues that needs to be

addressed.
Types of Software Reviews
There are various types of review based on the degree of formality:
Buddy checking: consist of having a person other than the author
informally review a document or work. In general this doesn’t
involve the use of checklists to guide the process and as such is not
repeatable.

85

Peer Reviews

Walkthrough: involve the author of an artifact presenting it to an
audience of their peers, and receiving comments and feedbacks.
Usually, such process involves limited documentation of the
process and the issues uncovered, which makes defect tracking
difficult.

86

Peer Reviews

Review by circulation: consist of circulating an artifact among
peers for comments; operates like a walkthrough but without
holding a meeting. Not holding a meeting avoids potential
arguments over issues, but also the benefits of discussion.

Inspection: formal and managed peer review process with the
following characteristics:
-The process is carried out by a review team with clearly defined
roles.

-The process follows an unambiguous set of criteria for each type
of artifacts.

-Specific data are collected during the process.
-The process is driven by quantitative goals such as process and
quality improvements

87

Fegan inspection

Review Process Types

88

Fegan inspection

89

Fagan inspection

Fagan’s Six Major Steps
1. Planning
2. Overview
3. Preparation
4. Examination
5. Rework
6. Follow-up

1. Planning: Form team, assign roles
2. Overview: Inform team about product (optional)
3. Preparation: Independent review of materials
4. Examination: Inspection meeting
5. Rework: Author verify defects and correct
6. Follow-up: Moderator checks and verifies corrections

90

Unit , Integration , System , and Acceptance Testing
Unit testing,

It is also known as component testing, refers to tests that verify
the functionality of a specific section of code, usually at the
function level

Integration testing
It is any type of software testing that seeks to verify theinterfaces
between components against a software design.

System testing,
end-to-end testing, tests a completely integratedsystem to verify
that it meets its requirements. for example, a system testmight
involve testing a logon interface, then creating and editing
anentry, plus sending or printing results, followed by summary
processingor deletion (or archiving) of entries, then logoff

Acceptance testing
At last the system is delivered to the user for Acceptance testing.

91

Test data and Test cases

Test plan
A test specification is called a test plan. The developers are well
aware what test plans will be executed and this information is
made available to management and the developers.
Test case
A test case normally consists of a unique identifier, requirement
references from a design specification, preconditions, events, a
series of steps (also known as actions) to follow, input, output,
expected result, and actual result. Clinically defined a test case is an
input and an expected result

92

Test data and Test cases

Test script
A test script is a procedure, or programming code that replicates
user actions. Test Case will be a baseline to create test scripts using
a tool or a program.
Test suite
The most common term for a collection of test cases is a test suite.
The test suite often also contains more detailed instructions or
goals for each collection of test cases
Test data
In most cases, multiple sets of values or data are used to test the
same functionality of a particular feature. All the test values and
changeable environmental components are collected in separate
files and stored as test data. It is also useful to provide this data to
the client and with the product or a project.

93

Bug Tracking

•Bug tracking systems as a part of integrated project management
system Bug and issue tracking systems are often implemented as a
part of integrated project management systems. This approach
allows including bug tracking and fixing in a general product
development process, fixing bugs in several product versions,
automatic generation of a product knowledge base and release
notes.

Bug tracking and test management
While traditional test management tools such as HP Quality
Centre and IBM Rational Quality Manager come with their own bug
tracking systems, other tools integrate with popular bug tracking
systems.

94

Casual Analysis

Causal analysis and resolution improves quality and productivity by
preventing the introduction of defects or problems and by
identifying and appropriately incorporating the causes of superior
process performance.
The Causal analysis Resolution process area involves the
following activities:
Identifying and analyzing causes of selected outcomes. The
selected outcomes can represent defects and problems that can be
prevented from happening in the future or successes that can be
implemented in projects or the organization.
1. Remove causes and prevent the recurrence of those types of

defects and problems in the future
2. Proactively analyze data to identify potential problems and

prevent them from occurring
3. Incorporate the causes of successes into the process to improve

future process performance 95

96

UNIT-V

Process elements, process architecture, relationship

between elements, process modeling, process definition

techniques, ETVX (Entry-Task-Validation-exit), process

base lining, process assessment and improvement, CMMI,

six sigma

Course Learning Outcomes

The course will enable the students to:

CLO1
Use Process elements, process architecture.

CLO 2 Usage of Process relationship between elements,

process modeling.

CLO 3 Use of the process definition techniques ETVX,

CMMI, six sigma.

Contents

• Process elements.

• Process architecture.

• Relationship between elements.

• Process modeling

• Process definition techniques.

• ETVX (Entry-Task-Validation-exit).

• Process baselining

• Process assessment and improvement

• CMMI

• Six sigma

98

Process Elements, Relationship between elements

• Process Element (PE) is a group of project activities, and/or
other process elements related by logical dependencies, which
when executed (or enacted) provides value to the project”.

•Process Elements, like software components, have input and
output interfaces, defined by pre-conditions and post conditions.
Within a process element, the project activities and sub-process
elements are classified as variants and invariants.

•Additionally, PE’s incorporate feedback from a knowledge base
that has information on past project plans.

99

Process Elements, Relationship between elements

Figure 1 shows the overall PE interactions.

100

Process Elements, Relationship between elements

Pre-Conditions The pre-conditions of a PE include its
dependencies, i.e. artifacts and information that it will need for
execution and the project effort, schedule and/or resource
estimates. The dependencies of a PE usually include the results
provided by predecessing PEs. The effort, schedule and resource
estimates are used to determine the effort and resources of the
activities and sub-process elements within the PE.
Post-Conditions The post-conditions define the results obtained
from executing a PE. These may be in the form of abstract models,
information and analysis, or simply risk reduction. Results from one
PE usually form the input or dependencies of another PE.

101

Process Elements, Relationship between elements

Experience Base Process elements should take into consideration
the implications of past projects from both within and outside the
organization. Incorporating past project schedule, effort, and
relationship information within the process elements will produce
empirically proven project plans. Additionally, they should also
include organizational and industry best practices. The past effort
information for the process element can be used to determine the
percent of overall project effort and resources required to
implement the process element.

102

Process Elements, Relationship between elements

•Process Element the process element consists of a set of
activities and/or sub process elements. Both activities and sub
process elements are classified as variant or invariant.

•Unlike software components, which are usually treated as a
black box, process elements will most likely undergo some sort
of customization to meet the objectives of the project at hand.

•Variant activities are those that can be modified, and if required
even removed from the process element, without significantly
impacting the results produced by the PE.

•Invariant activities on the other hand, may be tweaked but
cannot be extensively modified, since upon such modification
the PE can no longer guarantee to produce the initially
promised results.

103

Process Architecture

A conceptual framework for consistently incorporating, relating,
and tailoring process elements into enactable processes. A process
architecture is often needed when a process must relate to other
existing or future processes

Or
Process architecture ensures that processes to be redesigned or
newly developed are meeting the organizations objectives and fit
within the organization strategy

10
4

Process Architecture

105

Process Architecture

Business Architecture is composed of organizational
architecture, business model, business objective and
strategies, process improvement models, life-cycle models,
tailoring guidelines and SPA. This SPA is divided in five views:
1) Conceptual view defines the structure of a process element
like a set of activities (variants and invariants), pre-conditions
(artifacts and information to execute process elements),
postconditions (results obtained from executing process
elements) 2) Reference view determines the process
improvement models that will be used and which best
practices. 3) Operational view defines the standard software
processes. 4) knowledge base to share information of past
projects and others process assets. 5) Software project is a set
of processes tailored to a specific project. The elements of this
architecture are related with the elements of application
architecture.

106

Process Architecture

Application architecture is composed of two parts: 1)
Applications landscape is supporting the automation of
business processes. 2) Data Repository landscape is the
physical storage of all relevant company data. The elements of
this architecture are related with the elements of
infrastructure architecture.
Infrastructure architecture is referred to as technology
architecture, comprises the software, hardware and network
infrastructure required for operations of all applications.

107

Process Modeling

•Process modeling is the act of process model development.
With a process model defined as: A process model is an abstract,
formal representation of the real- world process.

•The purpose of a model is to reduce the complexity of
understanding or interacting with a phenomenon by eliminating

the detail that does not influence its relevant behavior”. Thus
process models are abstractions, removing unwanted complexity.
We also require process models to be formal, and process models
are therefore built from a limited set of concepts, using certain
rules

108

Process Modeling

109

Process Modeling

Five basic uses of process models
Facilitate human understanding and communication. Process
models can be used to increase the knowledge about processes in
the organization Support process change. Models can be used to
manage change of the process
Support process management: Process models can be used to
manage the process. The models are a basis for measurements,
and can be used to compare actual performance with plans and
ideal model
Automate process guidance: This is an extension of the previous
activity. The models are used to guide the process execution,
including some sort of computer-aided guidance. This approach
includes some prescriptive elements
Automate execution support: This approach relies on process
models to automate the menial tasks of the organization. Must be
combined with human guidance to be generally useful. 110

Process Definition Techniques

A software process (also knows as software methodology) is a set
of related activities that leads to the production of the software.
These activities may involve the development of the software
from the scratch, or, modifying an existing system.
Any software process must include the following four activities:
Software specification (or requirements engineering):
Define the main functionalities of the software and the constrains
around them
Software design and implementation:
The software is to be designed and programmed.

111

Process Definition Techniques

A software process (also knows as software methodology) is
a set of related activities that leads to the production of the
software. These activities may involve the development of
the software from the scratch, or, modifying an existing
system.
Any software process must include the following four
activities:
Software specification (or requirements engineering):
Define the main functionalities of the software and the
constrains around them
Software design and implementation:
The software is to be designed and programmed.

112

Process Definition Techniques

Software verification and validation: The software must
conforms to it’s specification and meets the customer needs.
Software evolution (software maintenance): The software is
being modified to meet customer and market requirements
changes.
In practice, they include sub-activities such as requirements
validation, architectural design, unit testing, …etc.
There are also supporting activities such as configuration and
change management, quality assurance, project management,
user experience.

113

Process Definition Techniques

•Along with other activities aim to improve the above activities
by introducing new techniques, tools, following the best
practice, process standardization (so the diversity of software
processes is reduced), etc.

•When we talk about a process, we usually talk about the
activities in it. However, a process also includes the process
description, which includes:

11
4

Process Definition Techniques

Products:
The outcomes of the an activity. For example, the outcome of
architectural design maybe a model for the software
architecture.
Roles:
The responsibilities of the people involved in the process. For
example, the project manager, programmer, etc.
Pre and post conditions:
The conditions that must be true before and after an activity.
For example, the pre condition of the architectural design is the
requirements have been approved by the customer, while the
post condition is the diagrams describing the architectural have
been reviewed.

11
5

ETVX

ETVX approach to specify a phase
Entry criteria: what conditions must be satisfied for initiating
this phase
Task: what is to be done in this phase
Verification: the checks done on the outputs of this phase
eXit criteria: when can this phase be considered done
successfully

A phase also produces info for mgmt

ETVX approach

116

ETVX

ETVX Example: Change management

117

Process base lining

•A baseline is a reference point in the software development life
cycle marked by the completion and formal approval of a set of
predefined work products.

•The objective of a baseline is to reduce a project's vulnerability to
uncontrolled change by fixing and formally change controlling
various key deliverables (configuration items) at critical points in
the development life cycle.

•Baselines are also used to identify the aggregate of software and
hardware components that make up a specific release of a system.

11
8

Process base lining

11
9

Process assessment and improvement

A number of different approaches to software process assessment and
improvement have been proposed.
Standard CMMI Assessment Method for Process Improvement (SCAMPI)

provides a five-step process assessment model that incorporates five phases:
initiating, diagnosing, establishing, acting, and learning. The SCAMPI method
uses the SEI CMMI as the basis for assessment.
CMM-Based Appraisal for Internal Process Improvement (CBA IPI)

provides a diagnostic technique for assessing the relative maturity of a software
organization; uses the SEI CMM as the basis for the assessment.
SPICE (ISO/IEC15504)

a standard that defines a set of requirements for software process assessment.
The intent of the standard is to assist organizations in developing an objective
evaluation of the efficacy of any defined software process.
ISO 9001:2000 for Software

a generic standard that applies to any organization that wants to improve the
overall quality of the products, systems, or services that it provides. Therefore,

the standard is directly applicable to software organizations and companies.

120

CMMI
CMMI Staged Representation
•Process areas are organized by maturity levels.
•Improvement is measured using maturity levels. Maturity levels
measure the maturity of a set of processes across an
organization: it ranges from 1 through 5.

•There is only one type of specific practice. The concepts of base
and advanced practices are not used. All specific practices
appear in the staged representation except when a related base-
advanced pair of practices appears in the continuous
representation, in which case only the advanced practice appears
in the staged representation.

•Common features are used to organize generic practices.
•Only the level 2 and level 3 generic practices are included.
•There is no need for an equivalence mechanism to back the
continuous representation because each organization can choose
what to improve and how much to improve using the staged
representation.

121

CMMI

CMMI Continuous Representation
•Process areas are organized by process area categories.
•Improvement is measured using capability levels. Capability levels
measure the maturity of a particular process across an
organization; it ranges from 0 through 5.

•There are two types of specific practices: base and advanced. All
specific practices appear in the continuous representation.

•Capability levels are used to organize the generic practices.
•All generic practices are included in each process area.
•Equivalent staging allows determination of a maturity level from
an organization's achievement profile.

122

CMMI

123

CMMI

In CMMI models with a

continuous representation,

there are six capability levels

designated by the numbers 0

through 5.

0 − Incomplete

1 − Performed

2 − Managed

3 − Defined

4 − Quantitatively Managed

5 − Optimizing

124

Six sigma

•The purpose of Six Sigma is to improve processes to do things
better, faster, and at lower cost.

•It can be used to improve every facet of business, from
production, to human resources, to order entry, to technical
support.

•Six Sigma can be used for any activity that is concerned with cost,
timeliness, and quality of results.

Sub-methodologies: DMAIC and DMADV.
• The Six Sigma DMAIC process (defines, measure, analyze,
improve, control) is an improvement system for existing
processes failing below specification and looking for incremental
improvement.

•The Six Sigma DMADV process (define, measure, analyze, design,
verify) is an improvement system used to develop new processes
or products at Six Sigma quality levels.

125

Six sigma

DMADV Methodology:
Define --> Measure --> Analyze --> Design -->Verify

Define : Define the Problem or Project Goals that needs
to be addressed.
Measure: Measure and determine customers needs and
specifications.
Analyze: Analyze the process for meet the customer
needs.
Design: Design a process that will meet customers needs.
Verify: Verify the design performance and ability to meet
customer needs

126

Six sigma

DFSS Methodology
Define --> Identify --> Design --> Optimize -->Verify

Define :
Identify the Customer and project.
Identify:
Define what the customers want, or what they do not
want.
Design:
Design a process that will meet customers needs.
Optimize:
Determine process capability & optimize design.
Verify:
Test, verify, & validate design.

127

THANK YOU

128

