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The concepts of Space Curves, surfaces, shell co-ordinates, boundary 
conditions.

The governing equation for a rectangular plate,  Navier solution for 
simply- supported rectangular plate under  various  loadings.

Analyze , understand  axi- symmetric loading, governing differential 
equation in polar co-ordinates.

The cylindrical and conical shells, application to pipes and pressure 
vessels. and understand the membrane theory of cylindrical.



UNIT-I

INTRODUCTION



•

Thin shells as structural elements occupy a leadership
position in engineering and, in particular, in civil,
mechanical, architectural, aeronautical, and marine
engineering.

• Examples of shell structures in civil and architectural
engineering are large-span roofs, liquid-retaining
structures and water tanks, containment shells of nuclear
power plants, and

SHELLS IN ENGINEERING STRUCTURES



• concrete arch domes. In mechanical engineering, shell forms
are used in piping systems, turbine disks, and pressure
vessels technology. Aircrafts, missiles, rockets, ships, and
submarines are examples of the use of shells in aeronautical
and marine engineering.

• Another application of shell engineering is in the field of
biomechanics: shells are found in various biological forms,
such as the eye and the skull, and plant and animal shapes.
This is only a small list of shell forms in engineering and
nature.



• Strategic cost management is understood in different ways in 
literature. Cooper and Slag Mulder argued that strategic cost 
management is “the application of cost management 
techniques so that they simultaneously improve the strategic 
position of a firm and reduce costs”.

• A hospital redesigns its patient admission procedure so it 
becomes more efficient and easier for patients. The hospital 
will become known for its easy admission procedure so more 
people will come to that hospital if the patient has a choice. 

ADVANTAGES



• In addition to these mechanical advantages, shell structures
enjoy the unique position of having extremely high aesthetic
value in various architectural designs.

• Shell structures support applied external forces
efficiently by virtue of their geometrical form, i.e., spatial
curvatures; as a result, shells are much stronger and stiffer
than other structural forms



BUSINESS STRATEGY & STRATEGIC COST MANAGEMENTExamples





We now formulate some definitions and principles in shell

theory. The term shell is applied to bodies bounded by two
curved surfaces, where the distance between the surfaces is
small in comparison with other body dimensions fig shown
below

GENERAL DEFINITIONS AND  FUNDAMENTALS 
OF SHELLS 



The locus of points that lie at equal distances from these two
curved surfaces defines the middle surface of the shell. The
length of the segment, which is perpendicular to the curved
surfaces, is called the thickness of the shell and is denoted by h.

The geometry of a shell is entirely defined by specifying the
form of the middle surface and thickness of the shell at each
point. In this book we consider mainly shells of a constant
thickness. Shells have all the characteristics of plates, along with
an additional one – curvature.

The curvature could be chosen as the primary classifier of a
shell because a shell’s behavior under an applied loading is
primarily governed by curvature .



Depending on the curvature of the surface, shells are
divided into cylindrical (noncircular and circular), conical,
spherical, ellipsoidal, paraboloidal, toroidal, and hyperbolic
paraboloidal shells. Owing to the curvature of the surface,
shells are more complicated than flat plates because their
bending cannot, in general, be separated from their
stretching.

On the other hand, a plate may be considered as a special
limiting case of a shell that has no curvature; consequently,
shells are sometimes referred to as curved plates. This is the
basis for the adoption of methods from the theory of plates,
discussed in Part I, into the theory of shells.



There are two different classes of shells: thick shells and thin
shells. A shell is called thin if the maximum value of the ratio h=R
(where R is the radius of curvature of the middle surface) can be
neglected in comparison with unity. For an engineering accuracy,
a shell may be regarded as thin if [1] the following condition is
satisfied:

Max (h/ R) <or=1/20

Hence, shells for which this inequality is violated are referred
to as thick shells. For a large number of practical applications,
the thickness of shells lies in the range

(1/1000) <or=(h/R)<or=1/20



The most common shell theories are those based on
linear elasticity concepts. Linear shell theories predict
adequately stresses and deformations for shells exhibiting
small elastic deformations; i.e., deformations for which it is
assumed that the equilibrium equation conditions for
deformed shell surfaces are the same as if they were not
deformed, and Hooke’s law applies.

For the purpose of analysis, a shell may be considered
as a three-dimensional body, and the methods of the
theory of linear elasticity may then be applied.

THE LINEAR SHELL THEORIES



However, a calculation based on these methods will
generally be very difficult and complicated. In the theory of
shells, an alternative simplified method is therefore
employed. According to this method and adapting some
hypotheses the 3D problem of shell equilibrium and
straining may be reduced to the analysis of its middle
surface only, i.e. the given shell, as discussed earlier as a thin
plate, may be regarded as some 2D body.

In the development of thin shell theories,
simplification is accomplished by reducing the shell
problems to the study of deformations of the middle
surface.



Shell theories of varying degrees of accuracy were derived,
depending on the degree to which the elasticity equations were
simplified. The approximations necessary for the development of
an adequate theory of shells have been the subject of
considerable discussions among investigators in the field. We
present below a brief outline of elastic shell.

A second class of thin elastic shells, which is commonly
referred to as higher order approximation, has also been
developed. To this grouping it is possible to assign all linear shell
theories in which one or another of the Kirchhoff–Love
hypotheses are suspended. First, we consider some
representative theories in which the thinness assumption is
delayed in derivation while the rest of the postulates are



The membrane stress condition is an ideal state at which a

designer should aim. It should be noted that structural
materials are generally far more efficient in an extensional
rather in a flexural mode because:

1. Strength properties of all materials can be used
completely in tension (or compression), since all fibers over
the cross section are equally strained and load-carrying
capacity may simultaneously reach the limit for the whole
section of the component.

2. The membrane stresses are always less than the
corresponding bending



A surface can be defined as a locus of points whose
position vector, r, directed from the origin 0 of the global
coordinate system, OXYZ, is a function of two independent
parameters α and β

COORDINATE SYSTEM OF THE SURFACE



If the α- and β -coordinate lines are mutually

perpendicular at all points on a surface Ω _ (i.e., the angles
between the tangents to these lines are equal to 90), the
curvilinear coordinates are said to be orthogonal.

The derivatives of the position vector r with respect to the
curvilinear coordinates and are given by the following:

where we have introduced the comma notation to denote
partial derivatives with respect to α and β



Assume that the elastic body shown in Fig. below is supported
in such a way that rigid body displacements (translations and
rotations) are prevented. Thus, this body deforms under the
action of external forces and each of its points has small elastic
displacements. For example, a point M had the coordinates x; y,
and z in initial unreformed state. After deformation, this point
moved into position M0and its coordinates became the following

where u, v, and w are projections of the displacement
vector of point M, vector MM0, on the coordinate axes x, y and
z. In the general case, u, v, and w are functions of x, y, and z.

STRAINS AND DISPLACEMENTS



Again, consider an infinitesimal element in the form of
parallelepiped enclosing point of interest M. Assuming that a
deformation of this parallelepiped is small, we can represent it in
the form of the six simplest deformations shown in Fig. a,b,c,d.
define the elongation (or contraction) of edges of the
parallelepiped in the direction of the coordinate axes and can be
defined as



And they are called the normal or linear strains.

the increments delta dx can be expressed by the second term in 
the Taylor series, i.e.,                                                  thus, we can 
write   



Since we have confined ourselves to the case of very small
deformations, we may omit the quantities in the
denominator of the last expression, as being negligibly small
compared with unity. Finally, we obtain



Similarly, we can obtain _xz and _yz. Thus, the shear

strains are given by

Similar to the stress tensor  at a given point, we can  define a 
strain tensor as

It is evident that the strain tensor is also symmetric because of



Constitutive equations
The constitutive equations relate the stress components to strain
components. For the linear elastic range, these equations
represent the generalized Hooke’s law. In the case of a three-
dimensional isotropic body, the constitutive equations are given
by

where E, and G are the modulus of elasticity, Poisson’s ratio, and
the shear modulus, respectively. The following relationship exists
between E and G:



The stress components introduced previously must satisfy
the following differential equations of equilibrium:

where Fx; Fy; and Fz are the body forces (e.g., gravitational,
magnetic forces). In deriving these equations, the reciprocity of
the shear stresses, Eqs , has been used.

EQUILIBRIUM EQUATIONS



UNIT – II

STATIC ANALYSIS OF PLATES



Let us consider some elementary examples of plate bending

of great importance for understanding how a plate resists the
applied loads in bending. In addition, these elementary
examples enable one to obtain closed-form solutions of the
governing differential equation

Cylindrical bending of a plate 

Consider an infinitely long plate in the y axis direction.
Assume that the plate is subjected to a transverse load which is
a function of the variable x only, i.e., p ¼ pðxÞ

THE ELEMENTARY CASES OF PLATE BENDING



In this case all the strips of a unit width parallel to the x axis and
isolated from the plate will bend identically. The plate as a whole is
found to be bent over the cylindrical surface w ¼ wðxÞ. Setting all
the derivatives with respect to y equal zero in Eq

we obtain the following equation for the deflection:

An integration of Eq. should present no problems. Let, for example,
p ¼ p0xa, then the general solution of Eq. is of the following form:



Then,

A surface described by this equation has a saddle shape and
is called the hyperbolic paraboloid of revolution .

(Horizontals of this surface are hyperbolas, asymptotes

of which are given by the straight lines

As is seen, due to the Poisson effect the plate bends not only
in the plane of the applied bending moment Mx =m1 =m but it
also has an opposite bending in the perpendicular plane



Then

Thus, a part of the plate isolated from the whole plate and
equally inclined to the x and y axes will be loaded along its
boundary by uniform twisting moments of intensity m. Hence,
this part of the plate is subjected to pure twisting



Let us replace the twisting moments by the effective shear
forces Vα rotating these moments through 90. Along the whole
sides of the isolated part we obtain Vα=0, but at the corner
points the concentrated forces S ¼ 2m are applied. Thus, for the
model of Kirchhoff’s plate, an application of self-balanced
concentrated forces at corners of a rectangular plate produces a
deformation of pure torsion because over the whole surface of
the plate



In this case, the solution of the governing differential equation
(2.24), i.e., the expressions of the deflection surface, wðx; yÞ, and
the distributed surface load, pðx; yÞ, have to be sought in the form
of an infinite Fourier series (see Appendix B), as follows:

where wmn and Pmn represent coefficients to be determined. It
can be easily verified that the expression for deflections (3.15a)
automatically satisfies the prescribed boundary conditions (3.14).



Let us consider a general load configuration. To determine the
Fourier coefficients pmn, each side of Eq. (3.15b) is multiplied by
sin l_x a sin k_y b and integrated twice between the limits 0;a and
0;b, as follows (see Appendix B):



It can be shown by direct integration that

The coefficients of the double Fourier expansion are therefore the
following

Since the representation of the deflection (3.15a) satisfies the
boundary conditions (3.14), then the coefficients wmn must satisfy
Eq. (2.24). Substitution of Eqs (3.15) into Eq. (2.24) results in the
following equation.



This equation must apply for all values of x and y.
We conclude therefore that

from which

where pmn is given by Eq. (3.17). It can be shown,
by noting that and

for every x and y and for every m and n, that the series (3.19)
is convergent.



Since the stress resultants and couples are obtained from
the second and third derivatives of the deflection wðx; yÞ, the
convergence of the infinite series expressions of the internal
forces and moments is less rapid, especially in the vicinity of the
plate edges. This slow convergence is also accompanied by
some loss of accuracy in the process of calculation. The accuracy
of solutions and the convergence of series expressions of stress
resultants and couples can be improved by considering more
terms in the expansions and by using a special technique for an
improvement of the convergence of Fourier’s series.



Let us consider a rectangular plate simply supported on all
edges of sides a and b and subjected to concentrated lateral force
P applied at as shown in Fig. 3.7.

Assume first that this force is uniformly distributed over the
contact area of sides u and v (Fig. 3.6) i.e., its load intensity is
defined as

Substituting the above into Eq. (3.22), one obtains

RECTANGULAR PLATES SUBJECTED TO A 
CONCENTRATED LATERAL FORCE  ‘P’



Now we must let the contact area approach zero by permitting
u ! 0 and v ! 0. In order to be able to use the limit approach first,
Eq. (3.24) must be put in a more suitable form. For this purpose,
the right-hand side is multiplied and divided by ab, giving the
following:

The deflected middle surface equation (3.27) in this case becomes

Furthermore, if the plate is square (a ¼ b), the maximum
deflection, which occurs at the center, is obtained from Eq. (3.28),
as follows



Retaining the first nine terms of this series
we obtain

The ‘‘exact’’ value is and the error is thus 1.5% [3].
This very simple Navier’s solution, Eq. (3.28), converges

sufficiently rapidly for calculating the deflections. However, it is
unsuitable for calculating the bending moments and stresses
because the series for the second derivatives and
obtained by differentiating the series (3.28) converge extremely
slowly. These series for bending moment, and consequently for
stresses as well as for the shear forces, diverge directly at a point
of application of a concentrated force, called a singular point.





In the preceding sections it was shown that the calculation of
bending moments and shear forces using Navier’s solution is not
very satisfactory because of slow convergence of the series.

In 1900 Levy developed a method for solving rectangular
plate bending problems with simply supported two opposite
edges and with arbitrary conditions of supports on the two
remaining opposite edges using single Fourier series [8]. This
method is more practical because it is easier to perform numerical
calculations for single series that for double series and it is also
applicable to plates with various boundary conditions.

Levy suggested the solution of Eq. (2.24) be expressed in
terms of complementary , wh ; and particular, wp , parts, each of
which consists of a single Fourier series where unknown functions
are determined from the prescribed boundary conditions. Thus,
the solution is expressed as follows:

LEVY’S SOLUTION (SINGLE SERIES SOLUTION)



Consider a plate with opposite edges, x ¼ 0 and x ¼ a, simply
supported, and two remaining opposite edges, y ¼ 0 and y ¼ b,
which may have arbitrary supports.

The boundary conditions on the simply supported edges are

As mentioned earlier, the second boundary condition can be
reduced to the following form:

The complementary solution is taken to be



where fmðyÞ is a function of y only; wh also satisfies the simply
supported boundary conditions (3.41). Substituting (3.42) into the
following homogeneous differential equation

Gives

which is satisfied when the bracketed term is equal to zero. Thus,

The solution of this ordinary differential equation can be expressed as

Substituting the above into Eq. (3.44), gives the following
characteristic equation



According to the obtained values of the characteristic
exponents, the solution of the homogeneous equation can be
expressed in terms of either exponential functions.

or hyperbolic functions

The second form, Eq. (3.49), is more convenient for calculations.
The complementary solution given by Eq. (3.42) becomes

where the constants Am; Bm;Cm; and Dm are obtained from 
the boundary conditions on the edges y =0 and y =b:



The particular solution, wp, in Eq. (3.40), can also be expressed in a
single Fourier series as

The lateral distributed load pðx; yÞ is taken to be the following (see
Appendix B):

where

Substituting Eqs (3.51) and (3.52) into Eq. (3.44), gives

Solving this equation, we can determine gmðyÞ and, finally,
find the particular solution, wpðx; yÞ.



CONTINUOUS PLATES

When a uniform plate extends over a support and has more
than one span along its length or width, it is termed continuous.
Such plates are of considerable practical interest. Continuous
plates are externally statically indeterminate members (note that a
plate itself is also internally statically indeterminate). So, the well-
known methods developed in structural mechanics can be used for
the analysis of continuous plates.

In this section, we consider the force method which is
commonly used for the analysis of statically indeterminate
systems. According to this method, the continuous plate is
subdivided into individual, simple-span panels between
intermediate supports by removing all redundant restraints. It can
be established, for example, by introducing some fictitious hinges
above the intermediate supports.





As mentioned earlier, we use the polar coordinates r and ’ in
solving the bending problems for circular plates. If the coordinate
transformation technique is used, the following geometrical
relations between the Cartesian and polar coordinates are
applicable

Referring to the above

Inasmuch as the deflection is a function of r and the chain rule
together with the relations (4.2) lead to the following

BASIC RELATIONS IN POLAR COORDINATES



To evaluate the expression

we can repeat the operation (4.3) twice. As a result, we obtain

Similarly,



Adding term by term the relations (4.4a) and (4.4b), yields

After repeating twice the operation

the governing differential equation for the plate deflection (2.26)
in polar coordinates becomes

or in the expended form



Let us set up the relationships between moments and

curvatures. Consider now the state of moment and shear force on an

infinitesimal element of thickness h, described in polar coordinates,

as shown in Fig. 4.1b. Note that, to simplify the derivations, the x

axis is taken in the direction of the radius r, at ’ ¼ 0 (Fig. 4.1b).

Then, the radialMr, tangential Mt, twisting Mrt moments, and the

vertical shear forces Qr;Qt will have the same values as the

moments Mx;My; and Mxy, and shears Qx;Qy at the same point in

the plate. Thus, transforming the expressions for moments (2.13)

and shear forces (2.27) into polar coordinates, we can write the

following:



Similarly, the formulas for the plane stress components



where Mr;Mt and Mtr are determined by Eqs (4.7). Clearly the
maximum stresses take place on the surfaces z ¼ _h=2 of the plate.

Similarly, transforming Eqs (2.38) and (2.39) into polar
coordinates gives the effective transverse shear forces. They may
be written for an edge with outward normal in the r and ’
directions, as follows:



UNIT – IV

STATIC ANALYSIS OF SHELLS: MEMBRANE THEORY OF SHELLS



We define here some of the surfaces that are commonly
used for shell structures in engineering practice. There are
several possible classifications of these surfaces. One such
classification, associated with the Gaussian curvature, was
discussed in Sec. 11.6. Following Ref. [4], we now discuss other
categories of shell surfaces associated with their shape and
geometric develop ability.

Classification based on geometric form
(a) Surfaces of revolution 

(b) Surfaces of translation
(c) Ruled surfaces

CLASSIFICATION OF SHELL SURFACES



(a) Surfaces of revolution (Fig. 11.9)

As mentioned previously, surfaces of revolution are
generated by rotating a plane curve, called the meridian, about an
axis that is not necessarily intersecting the meridian. Circular
cylinders, cones, spherical or elliptical domes, hyperboloids of
revolution, and toroids (see Fig. 11.9) are some examples of
surfaces of revolution. It can be seen that for the circular cylinder
and cone (Fig. 11.9a and b), the meridian is a straight line, and
hence, k1 ¼ 0, which gives _¼ 0. These are shells of zero

Gaussian curvature. For ellipsoids and paraboloids of
revolution and spheres (Fig. 11.9c, d, and e), both the principal
curvatures are in the same direction and, thus, these surfaces have
a positive Gaussian curvature (_ > 0).

Classification based on geometric form



(b) Surfaces of translation (Fig. 11.10)

A surface of translation is defined as the surface generated by
keeping a plane curve parallel to its initial plane as we move it
along another plane curve. The two planes containing the two
curves are at right angles to each other. An elliptic paraboloid is
shown in Fig. 11.10 as an example of such a type of surfaces. It is
obtained by translation of a parabola on another parabola; both
parabolas have their curvatures in the same direction. Therefore,
this shell has a positive Gaussian curvature. For this surface
sections x ¼ constant and y ¼ constant are parabolas, whereas a
section z ¼ constant represents an ellipse: hence its name,
‘‘elliptic paraboloid.’’





(c) Ruled surfaces (Fig. 11.11)

Ruled surfaces are obtained by the translation of straight
lines over two end curves (Fig. 11.11). The straight lines are not
necessarily at right angles to the planes containing the end
curves. The frustum of a cone can thus be considered as a ruled
surface, since it can be generated by translation of a straight line
(the generator) over two curves at its ends. It is also, of course,
a shell of revolution. The hyperboloid of revolution of one sheet,
shown in Fig. 11.11a, represents another example of ruled
surfaces. It can be generated also by the translation of a straight
line over two circles at its ends. Figure 11.11b shows a surface
generated by a translation of a straight line on a circular curve at
one end and on a straight line at the other end. Such surfaces
are referred to as conoids. Both surfaces shown in Fig. 11.11
have negative Gaussian curvatures. 11.7.2 Classification based
on shell curvature



Classification based on shell curvature

These shells have a zero Gaussian curvature. Some shells of
revolution (circular cylinders, cones), shells of translation, or ruled
surfaces (circular or noncircular cylinders and cones) are examples
of singly curved shells.

Distribution Overheads



(b) Doubly curved shells of positive Gaussian curvature

Some shells of revolution (circular domes, ellipsoids and
paraboloids of revolution) and shells of translation and ruled
surfaces (elliptic paraboloids, paraboloids of revolution) can be
assigned to this category of surfaces.

(c) Doubly curved shells of negative Gaussian curvature

This category of surfaces consists of some shells of revolution
(hyperboloids of revolution of one sheet) and shells of translation
or ruled surfaces (paraboloids,conoids, hyperboloids of revolution
of one sheet).It is seen from this classification that the same type
of shell may appear in more than one category.



(a) Developable surfaces

Developable surfaces are defined as surfaces that can be
‘‘developed’’ into a plane form without cutting and/or stretching their
middle surface. All singly curved surfaces are examples of
developable surfaces.

(b) Non-developable surfaces

A non-developable surface is a surface that has to be cut and/or
stretched in order to be developed into a planar form. Surfaces with
double curvature are usually non developable. The classification of
shell surfaces into developable and non-developable has a certain
mechanical meaning. From a physical point of view, shells with non-
developable surfaces require more external energy to be deformed
than do developable shells, i.e., to collapse into a plane form. Hence,
one may conclude that non-developable shells are, in general,
stronger and more stable than the corresponding developable.

CLASSIFICATION BASED ON
GEOMETRICAL DEVELOP ABILITY



It is shown in the next chapter that the governing equations and

relations of the general theory of thin shells are formulated in
terms of the Lame´ parameters A and B as well as of the principal
curvatures _1 ¼ 1=R1 and _2 ¼ 1=R2. In the general case of shells
having an arbitrary geometry of the middle surface, the
coefficients of the first and second quadratic forms and the
principal curvatures are some functions of the curvilinear
coordinates. We determine the Lame´ parameters for some shell
geometries that are commonly encountered in engineering
practice

SPECIALIZATION OF SHELL GEOMETRY



The shells of revolution were discussed in Secs 11.2 and 11.7.
As for the curvilinear coordinate lines and , the meridians and
parallels may be chosen: they are the lines of principal curvatures
and form an orthogonal mesh on the shell middle surface. Figure
11.12a shows a surface of revolution where R1 is the principal
radius of the meridian, R2 is the principal radius of the parallel
circle (as shown in Sec.11.2, R2 is the distance along a normal to
the meridional curve drawn from a point of interest to the axis of
revolution of the surface), and r is the radius of the parallel circle.

Shells of revolution 



CLASSIFICATION BASED ON
GEOMETRICAL  DEVELOPABILITY

There are several possibilities for a choice of the curvilinear
coordinates. The overall goal is to be able to design reinforced
concrete structures that are:

• Safe
• Economical
• Efficient



Reinforced concrete is one of the principal building
materials used in engineered structures because:

• Low cost

• Weathering and fire resistance

• Good compressive strength

• Formability

• Identify the regions where the beam shall be designed as a
flanged and where it will be rectangular in normal slab beam
construction,

• Define the effective and actual widths of flanged beams,

• State the requirements so that the slab part is effectively
coupled with the flanged beam,



• Write the expressions of effective widths of T and L-beams
both for continuous and isolated cases,

• Derive the expressions of C, T and Mu for four different cases
depending on the location of the neutral axis and depth of the
flange.

Roofs and decks are mostly cast monolithic from the bottom
of the beam to the top of the slab. Such rectangular beams
having slab on top are different from others having either no slab
(bracings of elevated tanks, lintels etc.) or having disconnected
slabs as in some pre-cast systems (Figs. 5.10.1 a, b and c). Due to
monolithic casting, beams and a part of the slab act together.
Under the action of positive bending moment, i.e., between the
supports of a continuous beam, the slab, up to a certain length.



Width greater than the width of the beam, forms the top
part of the beam. Such beams having slab on top of the
rectangular rib are designated as the flanged beams - either T or
L type depending on whether the slab is on both sides or on one
side of the beam (Figs. 5.10.2 a to e) . Over the supports of a
continuous beam, the bending moment is negative and the slab,
therefore, is in tension while a part of the rectangular beam (rib)
is in compression.



The governing equations of the membrane theory can be
obtained directly from the equations of the general theory of thin
shells derived in Chapter 12. For this purpose, it is assumed that,
in view of the smallness of the changes of curvature and twist, the

moment terms in the equations of equilibrium for a shell element
are unimportant, although in principle the shell may resist the
external loads in bending. Note that neglecting the moments leads
to neglecting the normal shear forces. Thus, for the membrane
theory of thin shells, we can assume that

M1 = M2 = H = Q1 = Q2 = 0, (13:3)

Introducing Eq. (13.3) into Eqs below

THE FUNDAMENTAL EQUATIONS OF THE MEMBRANE
THEORY OF THIN SHELLS



and taking into account

One arrives at the following system of differential equations:



In this system, the number of unknowns is equal to the
number of equations, so the problem of the membrane theory of
shells is statically determinate (that is true for the equilibrium of
an infinitely small shell element but is not always true for the
equilibrium of the entire shell). This means that if the external
load components, p1; p2; and p3, are known, then the membrane
forces and stresses for such a shell are uniquely determined from
Eqs (13.4).

Having determined the membrane forces, the shell
displacements may be found. Solving the constitutive equations
(12.45) for strains, and substituting them into Eqs (12.23), yields
the following system of the three partial differential equations

for the displacements:



The system of the differential equations (13.4) in the membrane
theory for determining the membrane internal forces (and
stresses) is of the second order. Accordingly, the system (13.5) for
the displacements is also of the second order. However, the stress
resultants (N1;N2; and S) on the right-hand sides of Eqs (13.5) are
themselves solutions of the second-order equations. Hence, the
displacements in the membrane theory must satisfy a fourth-order
system of differential equations. The latter can be obtained by
substituting into Eqs (13.4) for the stress resultants from the
corresponding expressions in terms of the strains.



The mathematical formulation of the theory of membrane
shells is completed by adding appropriate boundary conditions. In
the membrane theory, it follows from the above that only two
boundary conditions may be specified on each edge of the shell. If
the boundary conditions are given in terms of the stress resultants,

then only the membrane (or in-plane) forces (N1;N2; and S) are
specified on edges of the shell. If the boundary conditions are
formulated in terms of displacements, then only displacement
components that are tangent to the middle surface, i.e., u and v,

must be prescribed on the shell boundary. In the membrane
theory it is impossible to specify the edge displacements w and
slopes #, since their assignment may result in the appearance of
the corresponding boundary transverse shear forces and bending

moments. This is in a conflict with the general postulates of the
membrane theory of thin shells introduced above.



Consider a particular case of a shell described by a surface of

revolution (Fig. 11.12).The mid surface of such a shell of revolution,
as mentioned in Sec. 11.8, is generated by rotating a meridian curve
about an axis lying in the plane of this curve (the Z axis).

The geometry of shells of revolution is addressed in Sec. 11.8.
There it is mentioned that meridians and parallel circles can be
chosen as the curvilinear coordinate lines for such a shell because
they are lines of curvature, and form an orthogonal mesh on its mid
surface. Let us locate a point on the middle surface by the spherical
coordinates and ’ (see Sec. 11.8), where is the circumferential
angle characterizing a position of a point along the parallel circle,
whereas the angle ’ is the meridional angle, defining a position of
that point along the meridian. The latter represents the angle
between the normal to the middle surface and the shell axis (Fig.
11.12a).

THE MEMBRANE THEORY OF SHELLS OF REVOLUTION



As before, R1;R2 are the principal radii of curvature of the
meridian and parallel circle, respectively, and r is the radius of the
parallel circle. The Lame´

parameters for shells of revolution in the above-mentioned spherical
coordinate system are given by Eqs (11.39). Notice that, due to the
symmetry of shells of revolution about the Z axis, these parameters
are functions of ’ only and do not depend upon �. Referring to Fig.
11.12a and b, we can obtain by inspection the following relations:



Substituting for A and B from Eqs (11.39) into the system of
differential equations (13.4) and taking into account the relations
(13.6), yields

The last equation in the above system is known as the Laplace 
equation. Note that the membrane forces N1;N2; and S are, in a 
general case of loading, some functions of 



Equations (13.7) can be reduced to one single, second-order
differential equation for some function U: For this purpose, rewrite
the above equations using the relations (13.6), as follows

Solving Eq. (13.8c) for N2 and substituting this into Eqs (13.8a)
and (13.8b), one finds the following



We introduce new variables, U and V instead of N1 and S, as
follows:

Substituting the above into Eqs (13.9), we obtain, after some
simple transformations, the following system of equations:

Differentiating then the first equation (13.11) with respect to ’ 
and the second one with respect to , and subtracting the second 
equation from the first, we obtain the following second-order 
differential equation for U:





The kinematic equations for displacements of shells of
revolution in spherical coordinates are

Now transform the above kinematic equations. Introducing the
functions



and making subsequent transformations associated with an
elimination of deflection w and then , the system of equations

(Eqs., 13.16) may be reduced to one second order differential
equation for the unknown function . In the operator form, this
equation has the

Form

and the operator L is given by Eq. (13.15). Thus, the governing
differential equations for determining the membrane forces, Eq.
(13.14), and displacements, Eq. (13.18), have an identical form.
These equations can be solved by using the well-known method of
separation of variables.



Let us assume that the shell of revolution is subjected to
loading that is symmetrical about the shell axis, i.e., the Z axis. A
self-weight of a shell and a uniformly distributed snow load are
examples of such a type of loading. In this case, the governing
differential equations of the membrane theory of shells of
revolution will be simplified considerably. All the derivatives with
respect to will vanish because a given load, and hence all the
membrane forces and displacements, does not change in the
circumferential direction. The externally applied loads per unit area
of the middle surface are represented at any point by the
components p1 and p3 acting in the directions of the y and z axes of
the local coordinate system at the above point respectively, where
the y axis points in the tangent direction along the meridian and the
z axis is a normal to the middle surface at that point (Fig. 13.1).

SYMMETRICALLY LOADED SHELLS OF REVOLUTION



The load component p2 (acting along the x axis) is assumed to 
be absent. The presence of this component implies that the shell is 
twisted about its axis. If p2 = 0 and edge forces in the circumferential 
direction are also zero, then, as follows from the second Eq. (13.7), in 

the case of axisymmetrical loading,
S = N12 =N21 = 0.                                                                   (13:31)

The nonzero membrane forces are shown in Fig. 13.1.

The first and third equations of the system (13.7) after some 
algebra transformations, eliminating N2, and taking into account

Eqs (13.6), may be reduced to the following equation:



UNIT – V   

SHELLS OF REVOLUTION: WITH BENDING RESISTANCEE



As mentioned, shells of revolution belong to a highly general
class of shells frequently used in engineering. One representative
of this class, cylindrical shells, was considered in Chapter 15, and
we will not dwell on these shells. The shell types analyzed in this
chapter are subclasses of shells of revolution having non-zero
Gaussian curvature. As mentioned in Sec. 11.7, such shells have
non-developable surfaces. Hence, they are stronger, stiffer, and
more stable than shells with zero Gaussian curvature. These shells
are frequently used to cover the roofs of sport halls and large
liquid storage tanks. The containment shield structures of nuclear
power plants also have dome-like roofs. Various pressure vessels
are either completely composed of a single rotational shell or
have shells of revolution at their end caps. Conical shells with zero
Gaussian curvature are also representative of this class of shells:
they are used to cover liquid storage tanks and the nose cones of
missiles and rockets.

INTRODUCTION



In the membrane analysis of shells of revolution considered in
earlier chapters, we saw that the membrane theory alone cannot
accommodate all the loads, support conditions, and geometries in
actual shells. Thus, in a general case, shells of revolution experience
both stretching and bending to resist an applied loading, which
distinguishes significantly the bending of shells from the elementary
behavior of plates.

However, the character of bending deformation may be
different. If a shell of revolution is subjected to a concentrated force
(Fig. 16.1a), bending exerts a crucial effect on its strength, because,
in this case, the bending deformation increases with a growth of the
forces until the load-carrying capacity of the shell structure is
exhausted. In places of junction of a shell with its supports (Fig.
16.1b) or other structural members (shell of another geometry, ring
beam, etc.), or in places of jump change in the radii of curvature (Fig.
16.1c), the bending has another character; here, bending.



propagates only if it is needed to eliminate the discrepancies

between the membrane displacements or to satisfy the
conditions of statics. If a shell material is ductile, the bending
deformations of the latter type are usually decreased and do not
practically influence the load-carrying capacity of shell structures.
If the material of the shell is brittle, the bending deformations
remain proportional to the applied loads until failure and can
result in a significant decrease in the strength of the shell
structure. In this chapter we consider the bending theory of
shells of revolution. It should be noted that the solutions of the
governing differential equations involve many difficulties for a
general shell of revolution, and therefore, we solve these
equations for some particular shell geometries and load
configurations that are frequently used in engineering practice.



Dead loads are those that are constant in magnitude and
fixed in location throughout the lifetime of the structure such
as: floor fill, finish floor, and plastered ceiling for buildings and
wearing surface, sidewalks, and curbing for bridges



Live Loads

Live loads are those that are either fully or partially in place
or not present at all, may also change in location; the minimum
live loads for which the floors and roof of a building should be
designed are usually specified in building code that governs at the
site of construction (see Table1 - “Minimum Design Loads for
Buildings and Other Structure.”)

Environmental Loads

Environmental Loads consist of wind, earthquake, and snow
loads. such as wind, earthquake, and snow loads.

Serviceability

Serviceability requires that

• Deflections be adequately small. • Cracks if any be kept to a
tolerable limits. • Vibrations be minimized



We present below the governing differential equations of
the moment theory of shells of revolution of an arbitrary shape.
As curvilinear coordinates and of a point on the shell middle
surface, it is convenient to take the spherical coordinates,
introducedin Sec. 11.8, and used in the membrane theory of
shells of revolution in Chapters 13and 14. Thus, we take ¼ ’ and
¼ . As before, the angle ’ defines the location ofa point along the
meridian, whereas characterizes the location of a point along
the parallel circle (see Fig. 11.12). Let R1 and R2 be the principal
radii of curvature of the meridian and parallel circle,
respectively. Obviously, R1 and R2 will be functions of ’ only, i.e.,
R1 ¼ R1ð’Þ and R2 ¼ R2ð’Þ. The Lame´ parameters in this case
are determined by the following formulas (see Sec.11.8):

GOVERNING EQUATIONS



The Codazzi and Gauss conditions are given by Eqs (11.41).

Let us consider the kinematic relations of the moment
theory of shells of revolution. Displacement components of the
middle surface along the given coordinate axes are u (in the
meridional direction), v (in the circumferential direction), and w
(in the normal direction to the middle surface). The strain–
displacement relations (12.23) and (12.24) of the general shell
theory – taking into account Eqs (16.1) and (11.41) – take the
following form for shells of revolution:



Network models have three main advantages over linear

programming:

1.They can be solved very quickly. Problems whose linear
program would have 1000 rows and 30,000 columns can be
solved in a matter of seconds. This allows network models to be
used in many applications (such as real-time decision making)
for which linear programming would be inappropriate.

2. They have naturally integer solutions. By recognizing that a
problem can be formulated as a network program, it is possible
to solve special types of integer programs without resorting to
the ineffective and time consuming integer programming
algorithms.

3.They are intuitive. Network models provide a language for
talking about problems that is much more intuitive than the
\variables, objective, and constraints" language of linear and
integer programming.



Quantitative analysis also helps individuals to make informed
product-planning decisions. Let’s say a company is finding it
challenging to estimate the size and location of a new production
facility. Quantitative analysis can be employed to assess different
proposals for costs, timing, and location. With effective product
planning and scheduling, companies will be more able to meet
their customers’ needs while also maximizing their profits.

Production Planning



Cost Slope
Cost slope is the increase in cost per unit of time saved by 

crashing. A linear cost curve is shown in Figure.

Linear Cost Curve

Cost slope=Crash cost Cc– Normal cost Nc/Normal time Ntt

Cost Slope in network analysis



The following Table gives the activities of a construction project
and other data.

Construction Project Data

If the indirect cost is Rs. 20 per day, crash the activities to find
the minimum duration of the project and the project cost
associated.

Example:



Solution: From the data provided in the table, draw the network 
diagram and find the critical path.

Network Diagram

From the diagram, we observe that the critical path is 1-2-5 with 
project duration of 14 days The cost slope for all activities and 
their rank is calculated as shown in table below

Cost slope=Crash cost Cc– Normal cost Nc/Normal time Ntt

Cost Slope for activity 1– 2 = 80 – 50/6 – 4 = 30/2 = 15.



The available paths of the network are listed down in Table
indicating the sequence of crashing.

Sequence of Crashing

Cost Slope and Rank Calculated



Network Diagram Indicating Sequence of Crashing

The sequence of crashing and the total cost involved is given

in the following table
Initial direct cost = sum of all normal costs given = Rs. 490.00



it is not possible to crash more than 10 days, as all the 
activities in the critical path are fully crashed. hence the project 
review techniques

 

Sequence of Crashing & Total Cost



The project review techniques are

In the critical path method, the time estimates are

assumed to be known with certainty. In certain projects like
research and development, new product introductions, it is
difficult to estimate the time of various activities. Hence PERT is
used in such projects with a probabilistic method using three
time estimates for an activity, rather than a single estimate, as
shown in Figure. Minimum project duration is 10 days with the
total cost of Rs. 970.00.

Project review techniques 



Example : A project schedule has the following characteristics 
as shown in the table

Project Schedule

i.  Construct PERT network.
ii. Compute TE and TL for each activity.
iii. Find the critical path.



(i) From the data given in the problem, the activity network is
constructed as shown in the following figure.

Activity Network Diagram

(ii) To determine the critical path, compute the earliest, time T
Network Model E and latest time TL for each of the activity of the
project. The calculations of TE and TL are as follows:

To calculate TE for all activities,

Solution



TE1 = 0
TE2 = TE1 + t1, 2 = 0 + 4 = 4
TE3 = TE1 + t1, 3 = 0 + 1 =1
TE4 = max (TE2 + t2, 4 and TE3 + t3, 4)

= max (4 + 1 and 1 + 1) = max (5, 2)
= 5 days

TE5 = TE3 + t 3, 6 = 1 + 6 = 7
TE6 = TE5 + t 5, 6 = 7 + 4 = 11
TE7 = TE5 + t5, 7 = 7 + 8 = 15
TE8 = max (TE6 + t 6, 8 and TE7 + t7, 8)

= max (11 + 1 and 15 + 2) = max (12, 17)
= 17 days

TE9 = TE4 + t4, 9 = 5 + 5 = 10
TE10 = max (TE9 + t9, 10 and TE8 + t8, 10)

= max (10 + 7 and 17 + 5) = max (17, 22)
= 22 days



TL10 = TE10 = 22
TL9 = TE10– t9,10 = 22 – 7 = 15
TL8 = TE10– t 8, 10 = 22 – 5 = 17
TL7 = TE8– t 7, 8 = 17 – 2 = 15
TL6 = TE8– t 6, 8 = 17 – 1 = 16
TL5 = min (TE6– t5, 6 and TE7– t5, 7)

= min (16 – 4 and 15 –8) = min (12, 7)
= 7 days

TL4 = TL9 – t 4, 9 = 15 – 5 =10
TL3 = min (TL4 – t3, 4 and TL55– t 3, 5)

= min (10 – 1 and 7 – 6) = min (9, 1)
= 1 day

TL2 = TL4– t2, 4 = 10 – 1 = 9
TL1 = Min (TL2– t1, 2 and TL3– t1, 3)

= Min (9 – 4 and 1 – 1) = 0

To calculate TL for all activities



Various Activities and their Floats

(iii) From the table, we observe that the activities 1 – 3, 3 – 5, 5 –
7,7 – 8 and 8 – 10 are critical activities as their floats are zero.



Critical Path of the Project

The critical path is 1-3-5-7-8-10 (shown in double line in the
above figure) with the project duration of 22 days.



PERT is an acronym for Program (Project) Evaluation and
Review Technique, in which planning, scheduling, organizing,
coordinating and controlling uncertain activities take place. The
technique studies and represents the tasks undertaken to
complete a project, to identify the least time for completing a task
and the minimum time required to complete the whole project. It
was developed in the late 1950s. It is aimed to reduce the time
and cost of the project.

PERT uses time as a variable which represents the planned
resource application along with performance specification. In this
technique, first of all, the project is divided into activities and
events. After that proper sequence is ascertained, and a network
is constructed. After that time needed in each activity is calculated
and the critical path (longest path connecting all the events) is
determined.

Pert



CPM

Developed in the late 1950s, Critical Path Method or CPM is
an algorithm used for planning, scheduling, coordination and
control of activities in a project. Here, it is assumed that the
activity duration is fixed and certain. CPM is used to compute
the earliest and latest possible start time for each activity.

The process differentiates the critical and non-critical
activities to reduce the time and avoid the queue generation in
the process. The reason for the identification of critical
activities is that, if any activity is delayed, it will cause the
whole process to suffer. That is why it is named as Critical Path
Method.



1.The most important differences between PERT and CPM are
provided below:

2.PERT is a project management technique, whereby planning,
scheduling, organizing, coordinating and controlling uncertain
activities are done. CPM is a statistical technique of project
management in which planning, scheduling, organizing,
coordination and control of well-defined activities take place.

3.While PERT is evolved as a research and development
project, CPM evolved as a construction project.

4.PERT is set according to events while CPM is aligned towards
activities.

5.A deterministic model is used in CPM. Conversely, PERT uses
a probabilistic model.

Differences between PERT and CPM 



9.PERT is used where the nature of the job is non-repetitive.
In contrast to, CPM involves the job of repetitive nature.

6.There are three times estimates in PERT, i.e. optimistic time
(to), most likely time ™, pessimistic time (tp). On the other hand,
there is only one estimate in CPM.

7.PERT technique is best suited for a high precision time
estimate, whereas CPM is appropriate for a reasonable time
estimate.

8.PERT deals with unpredictable activities, but CPM deals with
predictable activities.

10.There is a demarcation between critical and non-critical
activities in CPM, which is not in the case of PERT.

11.PERT is best for research and development projects, but
CPM is for non-research projects like construction projects.

12.Crashing is a compression technique applied to CPM, to
shorten the project duration, along with the least additional
cost. The crashing concept is not applicable to PERT.




