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UNIT-I 

PRINCIPLES OF QUANTUM MECHANICS 

 

Introduction 

 
At the end of nineteenth century, physicists had every reason to regard the Newtonian 

laws governing the motion of material bodies and Maxwell‟s laws of electromagnetism, as 

fundamental laws of physics. They believed that there should be some limitation on the validity 

of these laws which constitute classical mechanics. To understand the submicroscopic world of 

the atom and its constituents, it become necessary to introduce new ideas and concepts which led 

to which led to the mathematical formulation of quantum mechanics. That had an immediate and 

spectacular success in the explanation of the experimental observations. 

Quantum mechanics is the science of the submicroscopic. It explains the behavior of 

matter and its interactions with energy on the scale of atoms and its constituents.  

Light behaves in some aspects like particles and in other aspects like waves.  Quantum 

mechanics shows that light, along with all other forms of electromagnetic radiation, comes in 

discrete units, called photons, and predicts its energies, colors, and spectral intensities. A single 

photon is a quantum, or smallest observable amount, of the electromagnetic field because a 

partial photon has never been observed. 

  Considering the above facts, it appears difficult to accept the conflicting ideas that 

radiation has a dual nature, i.e., radiation is a wave which is spread out over space and also a 

particle which is localized at a point in space. However, this acceptance is essential because 

radiation sometimes behaves as a wave and at other times as a particle as explained below: 

(1)   Radiations including visible light, infra-red, ultraviolet, X-rays, etc. behave as waves in 

experiments based on interference, diffraction, etc. This is due to the fact that these phenomena 

require the presence of two waves at the same position at the same time. Obviously, it is difficult 

for the two particles to occupy the same position at the same time. Thus, we conclude that 

radiations behave like wave.. 

(2)  Planck‟s quantum theory was successful in explaining black body radiation, the photo 

electric effect, the Compton Effect, etc. and had clearly established that the radiant energy, in its 

interaction with matter, behaves as though it consists of corpuscles. Here radiation interacts with 

matter in the form of photon or quanta.  Thus, we conclude that radiations behave like particle. 

 

 Black body radiation 
 A body that completely absorbs all waves lengths of radiation incident on it at low 

temperatures or emits different wave lengths of radiation at higher temperatures is known as a 

black body.  
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Figure 1 Black body 

An approximate realization of a black surface is a hole in the wall of a large enclosure. 

Any light entering the hole is reflected within the internal surface of the body indefinitely or 

absorbed within the body and is unlikely to re-emerge, making the hole a nearly perfect absorber. 

The radiation confined in such an enclosure may or may not be in thermal equilibrium, 

depending upon the nature of the walls and the other contents of the enclosure. 

 

Figure 2 Black body radiation distribution 

 Plank’s law 

 

Plank assumed that the walls of the black body consist of largre number of electrical 

oscillators, vibrating with their own natural frequencies. An oscillator possesses an energy equal 

to hu. Where h is Planks constant and v is the frequency of oscillator. 

An oscillator may lose or gain energy by emitting or by absorbing photons respectively. 

Plank derived an equation for the energy per unit volume of black body in the entire spectrum of 

black body radiation. The spectral radiance of a body, Bν, describes the amount of energy it gives 
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off as radiation of different frequencies. It is measured in terms of the power emitted per unit 

area of the body, per unit solid angle that the radiation is measured over, per unit frequency. 

Planck showed that the spectral radiance of a body for frequency ν at absolute temperature T is 

given by 

 

E(λ, T) =
2𝑕𝑐2

𝜆5
∗

1

𝑒𝑥𝑝  
𝑕𝑐

𝜆𝐾 𝑇
 −1

     ---------------------(1) 

 

Where kis the Boltzmann constant, h is the Planck constant, and c is the speed of light in 

the medium, whether material or vacuum. The spectral radiance can also be expressed per unit 

wavelength λ instead of per unit frequency.  

 

 Photoelectric effect 
 

 

Figure 3 Photoelectric effect 

 

 

 

The photoelectric effect is the emission of electrons or other free carriers when light 

shines on a material. Electrons emitted in this manner can be called photo electrons. This 

phenomenon is commonly studied in electronic physics, as well as in fields of chemistry, such as 

quantum chemistry or electrochemistry. 
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Figure 4 Black diagram of Photo electric effect 

 

Einstein assumed that a photon would penetrate the material and transfer its energy to an 

electron. As the electron moved through the metal at high speed and finally emerged from the 

material, its kinetic energy would diminish by an amount ϕ called the work function (similar to 

the electronic work function), which represents the energy required for the electron to escape the 

metal. By conservation of energy, this reasoning led Einstein to the photoelectric equation Ek = 

hf − ϕ, where Ek is the maximum kinetic energy of the ejected electron. 

 

 

 Compton Effect 
The scattering of a photon by a charged particle like an electron. It results in a decrease in 

energy of the photon called the Compton Effect. Part of the energy of the photon is transferred to 

the recoiling electron. 

 

The interaction between an electron and a photon results in the electron being given part 

of the energy (making it recoil), and a photon of the remaining energy being emitted in a 

different direction from the original, so that the overall momentum of the system is also 

conserved. If the scattered photon still has enough energy, the process may be repeated. In this 

scenario, the electron is treated as free or loosely bound. 

Compton derived the mathematical relationship between the shift in wavelength and the 

scattering angle of the X-rays by assuming that each scattered X-ray photon interacted with only 

one electron. His paper concludes by reporting on experiments which verified his derived 

relation: 

(𝜆1 − 𝜆) =
𝑕

𝑚𝑜𝑐
(1 − cos Ɵ)------------(2) 
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Figure 5 Compton Effect 

 

 

 

de- Broglie Hypothesis 

In quantum mechanics, matter is believed to behave both like a particle and a wave at the 

sub-microscopic level. The particle behavior of matter is obvious. When you look at a table, you 

think of it like a solid, stationary piece of matter with a fixed location. At this macroscopic scale, 

this holds true. But when we zoom into the subatomic level, things begin to get more 

complicated, and matter doesn't always exhibit the particle behavior that we expect.  

This non-particle behavior of matter was first proposed in 1923, by Louis de Broglie, a 

French physicist. In his PhD thesis, he proposed that particles also have wave-like properties. 

Although he did not have the ability to test this hypothesis at the time, he derived an equation to 

prove it using Einstein's famous mass-energy relation and the Planck equation. These waves 

associated with particles are named de- Broglie waves or matter waves. 

Expression for de- Broglie wavelength 

The expression of the wavelength associated with a material particle can be derived on the 

analogy of radiation as follows: 

          Considering the plank‟s theory of radiation, the energy of photon (quantum) is   

                             E   =   h𝜐    =  
𝑕𝑐

𝜆
       → (3) 

               Where c is the velocity of light in vacuum and 𝜆 is its wave length. 
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   According to Einstein energy – mass relation  

                                E   =   mc
2
      → (4) 

𝜆 =   
𝑕

𝑚𝑐
         =   

𝑕

𝑝
      → (5) 

                      Where mc = p is momentum associated with photon. 

     If we consider the case of material particle of mass m and moving with a velocity v , i.e 

momentum  mv, then the wave length associated with this particle ( in analogy to wave length 

associated  with photon ) is given by    

𝜆 =   
𝑕

𝑚𝑣
         =   

𝑕

𝑝
     → (6) 

Different expressions for de-Broglie wavelength 

(a)  If E is the kinetic energy of the material particle then 

               E =  
1

2
 mv

2
   =   

1

2

𝑚2𝑣2

𝑚
    =   

𝑝2

2𝑚
 

⟹     p
2
   = 2mE or     p =   2𝑚𝐸 

         Therefore de- Broglie wave length    𝜆 =  
𝑕

 2𝑚𝐸
   → (7) 

 

(b)  When a charged particle carrying a charge  „q‟ is accelerated by potential difference v, then 

its kinetic energy K .E is given by  

           E    =    qV 

      Hence the de-Broglie wavelength associated with this particle is 

𝜆 =   
𝑕

 2𝑚𝑞𝑉
       → (8)   

    For an electron   q = 1.602×10
-19 

Mass m = 9.1 X 10
-31 

kg 

∴ 𝜆 =     
6.626 × 10−34

 2 × 9.1 × 10−31 × 1.602 × 10−19𝑉
 

                 =   
150

𝑉
       =   

12.26

 𝑉
  A

0
      → (9) 

Properties of Matter Waves 

     Following are the properties of matter waves: 

(a) Lighter is the particle, greater is the wavelength associated with it. 

(b) Smaller is the velocity of the particle, greater is the wavelength associated with it. 

(c) When v = 0, then 𝜆  =  ∞ , i.e. wave becomes indeterminate and if v =  ∞  then  

𝜆  = 0. This shows that matter waves are generated only when material particles are in 

motion.  

(d)  Matter waves are produced whether the particles are charged particles or not 

 (𝜆  = 
𝑕

𝑚𝑣
  is independent of charge). i.e., matter waves are not electromagnetic waves but 

they are a new kind of waves . 
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(e) It can be shown that the matter waves can travel faster than light i.e. the velocity of 

matter waves can be greater than the velocity of light. 

(f) No single phenomenon exhibits both particle nature and wave nature simultaneously. 

 Distinction between matter waves and electromagnetic waves 

S.No Matter Waves Electromagnetic Waves 
1 

 

 

 

2 

 

 

 

 

3 

 

 

 

 

4. 

 

 

5. 

 Matter waves are associated with moving 

particles (charged or uncharged)  

                                                        

Wavelength depends on the mass of the 

particle and its velocity, 

𝜆 =   
𝑕

𝑚𝑣
 

 

Matter waves can travel with a velocity 

greater than the velocity of light. 

 

 

Matter wave is not electromagnetic wave. 

 

Matter wave require medium for 

propagation, i.e, they cannot travel through 

vacuum.    

  Electromagnetic waves are produced only by 

accelerated charged particles. 

 

 

 Wavelength depends on the energy of photon 

 

 

 

Travel with velocity of light  

c=  3×10
8
 m/s 

 

 

 

 Electric field and magnetic field oscillate 

perpendicular to each other. 

 

 Electromagnetic waves do not require any 

medium for propagation, i.e., they can pass 

through vacuum. 

 

 

Davisson and Germer’s Experiment 

      The first experimental evidence of matter waves was given by two American physicists, 

Davisson and Germer in 1927. The experimental arrangement is shown in figure 3.1(a). 

      The apparatus consists of an electron gun G where the electrons are produced. When the 

filament of electron gun is heated to dull red electrons are emitted due to thermionic emissions. 

Now, the electrons are accelerated in the electric field of known potential difference. These 

electrons are collimated by suitable slits to obtain a fine beam which is then directed to fall on a 

large single crystal of nickel, known as target T which is rotated about an angle along the 

direction of the beam is detected by an electron detector (Faraday cylinder) which is connected 

to a galvanometer. The Faraday cylinder „c‟ can move on a circular graduated scale s between 

29
0
c to 90

0
c to receive the scattered electrons. 
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Figure 6Davisson and Germer’s experimental arrangement for verification of matter waves 

 
  

First of all, the accelerating potential V is given a low value and the crystal is set at any 

orbital azimuth (θ). Now the Faraday cylinder is moved to various positions on the scale‟s‟ and 

galvanometer current is measured for each position. A graph is plotted between galvanometer 

current against angle θ between incident beam and beam entering the cylinder [Figure3.1(b)]. 

The observations are repeated for different acceleration potentials. 

 

 

Figure 7Variation of Galvanometer current with variation of angle θ between incident beam and beam 

entering the cylinder 

 

 

It is observed that a „bump‟ begins to appear in the curve for 44 volts. Following points are 

observed. 

(a)  With increasing potential, the bump moves upwards. 

(b)   The bump becomes most prominent in the curve for 54 volts at θ = 50
0
. 

(c)    At higher potentials, the bumps gradually disappear. 



11 
 

The bump in its most prominent state verifies the existence of electron waves. According to 

de- Broglie, the wavelength associated with electron accelerated through a potential V is given 

by                        

 𝜆 =   
12.26

 𝑉
     A

0
. 

         Hence, the wavelength associated with an electron accelerated through 54 volt is 

𝜆 =   
12.26

 54
    = 1.67 A

0
 

         From X-ray analysis, it is known that a nickel crystal acts as a plane diffraction grating 

with space d = 0.91 A
0
 [see Figure 3.1(c)]. According to experiment, we have diffracted electron 

beam at θ = 50
0
. The corresponding angle of incidence relative to the family of Bragg plane  

                    θ
1
 = 

180−50

54
    = 65

0 

Using Bragg‟s equation (taking n=1), we have    

𝜆  =      2dsinθ
 

=     2(0.91A
0
) sin 650

 

This is in good agreement with the wavelength computed from de-Broglie hypothesis. 

 

     

Figure 8 Bragg planes in Nickel crystal 

    

As the two values are in good agreement, hence, confirms the de-Broglie concept of 

matter waves. 

 

 

Schrodinger's time independent wave equation 

  Schrodinger developed a differential equation whose solutions yield the possible wave 

functions that can be associated with a particle in a given situation. This equation is popularly 

known as Schrodinger equation. The equation tells us how the wave function changes as a result 

of forces acting on the particle. One of its forms can be derived by simply incorporating the de-

Broglie wavelength expression into the classical wave equation. 

 If a particle of mass „m‟ moving with velocity v is associated with a group of waves, let 

𝜓 be the wave function of the particle. Also let us consider a simple form of progressing wave 

represented by the equation  

 

𝜓 = 𝜓0sin(𝜔t − kx)   ------------(1) 
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Where     𝜓   =   𝜓 (x, t) 

𝜓0   is amplitude 

Differentiating eq (1)  partially   with respect to „x‟, we get 
𝜕𝜓

𝜕𝑥
    =   -K 𝜓0cos(𝜔t − kx) 

Again differentiating equation (1) with respect to „x‟ 

𝜕2𝜓

𝜕𝑥2
    =   −K

2 𝜓0 sin (𝜔t-kx) 

𝜕2𝜓

𝜕𝑥2     =    −k
2𝜓 

𝜕2𝜓

 𝜕𝑥2  + k
2𝜓    = 0  ----------------------------------------- (2) 

Since k =  
2𝜋

𝜆 
 ,      

𝜕2𝜓

𝜕𝑥2
  +

4𝜋2

𝜆2
𝜓  = 0  ---------------------------(3) 

Eq (2) or Eq (3) is the differential form of the classical wave equation. Now, incorporating de- 

Broglie wavelength expression  𝜆 =
𝑕

𝑚𝑣
 in to eq (3), we get 

𝜕2𝜓

𝜕𝑥2   +
4𝜋2𝑚2𝑣2

𝑕2 𝜓  = 0       → (4) 

 The total energy E of the particle is the sum of its kinetic energy k and potential energy V  

i.e., E = K + V 

But K    =  
1

2
 mv

2
 

 ∴    E   =    
1

2
 mv

2
 + V 

 
1

2
 mv

2
    = E – V 

m
2
v

2     
 =   2m (E - V)        → (5) 

Substituting eq (5)   in eq (4), we get  

 
𝜕2𝜓

𝜕𝑥2   +
8𝜋2m(E  −  V)  

𝑕2 𝜓  = 0      → (6) 

In quantum mechanics, the value 
𝑕

2𝜋
  occurs most frequently. Hence we denote ђ = 

𝑕

2𝜋
   

using this notation, we have  

  
𝜕2𝜓

𝜕𝑥2   +      
2m(E  −  V)  

ђ2 𝜓   = 0     → (7) 

For simplicity, we have considered only one dimensional wave extending eq(7) for a                     

3 – dimensional wave 

 
𝜕2𝜓

𝜕𝑥2
  +      

𝜕2𝜓

𝜕𝑦2
  +      

𝜕2𝜓

𝜕𝑧2
  +     

2m(E  −  V)  

ђ2
𝜓   = 0     → (8) 

   Where   𝜓  (x, y, z); here, we have considered only stationary states of 𝜓after separating the 

time dependence of 𝜓 

     The Laplacian operator is defined as 

 ∇2
   =     

𝜕2

𝜕𝑥2  +      
𝜕2

𝜕𝑦2  +      
𝜕2

𝜕𝑧2     → (9) 

  Hence eq (10) can be written as  

  ∇2𝜓  +  
2m(E  −  V)  

ђ2 𝜓   = 0       → (10) 
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 This is Schrodinger wave equation. Since time factor doesn‟t appear, eq(8) or eq(10) is called 

„time independent Schrodinger wave equation‟ in three dimensions. 

 

Physical significance of wave function  𝝍 

(1) The wave function 𝜓has no direct physical meaning. It is a complex quantity representing 

the variation of matter wave. 

(2)   It connects the practical nature and its associated wave nature statically. 

(3) | 𝜓 |
2
 (or  𝜓𝜓 * if function is complex) at a point is proportional to the probability of 

finding the particle at that point at any given time. The probability density at any point is 

represented by | 𝜓|
2
. 

(4) If the particle is present in a volume  dxdydz, then | 𝜓 |
2
dxdydz =1 

If a particle is present somewhere in space  

 𝜓2  dx dy dz = 1

∞

−∞ 

 

Or   𝜓𝜓 ∗  dx dy dz = 1

∞

−∞ 

 

The wave function satisfying the above condition is said to be normalized. 

 

Particle in Infinite square potential well 

 A free electron trapped in a metal or charge carriers trapped by barriers trapped by the 

potential barriers of a double hetero junction can be approximated by an electron in an infinitely 

deep one- dimensional potential well. 

Consider one – dimensional potential well of width L as shown in fig. Let the potential  

V = 0 inside well and V = ∞ outside the well. 

 

          Fig.4.4 Square potential well infinite height 

 

 The time independent Schrödinger wave equation in one dimensional case  

  
𝑑2𝜓

𝑑𝑥2
  +      

2m(E  −  V)  

 ђ 
𝜓   = 0      → (1) 
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   For a particle present inside the well where V=0 and  𝜓 = 𝜓(𝑥) 

   
𝑑2𝜓

𝑑𝑥2   +      
2mE     

ђ2 𝜓   = 0     → (2) 

 Let the general solution of eq (2) be 

  𝜓(𝑥)   = A sin 𝑘𝑥 + B sin 𝑘𝑥    → (3) 

  Where A and B are constants which can be determined from boundary conditions 

𝜓(𝑥)   = 0 at        x = 0 

         And          𝜓(𝑥)  = 0       at   x   = L     → (4) 

  Since      𝜓(𝑥)   = 0 at        x = 0 

0= A sin 𝑘(0) + B cos 𝑘(0) 

⟹  B = 0          → (5) 

Since  𝜓(𝑥)   = 0                     at     x = L 

                          0 = A sin 𝑘𝐿 

 Which means A =0 or  sin 𝑘𝐿  = 0 since both A and B cannot be zero, A≠ 0.  If  

A = 0, then  𝜓 = 0 everywhere. This means that the particle is not in the well.   The only 

meaningful way to satisfy the condition is    

  sin 𝑘𝐿  = 0, 

or  kL = nπ  ;   n = 1,2,3,… 

 ∴    k   =   
 nπ 

𝐿
       → (6) 

Thus, eq (3) simplifies to  

𝜓(𝑥)   =    A sin
 nπ 

𝐿
x             → (7) 

Differentiating   𝜓  in eq (7)   

 
𝑑𝜓

𝑑𝑥
= A  

 nπ 

𝐿
cos

 nπ 

𝐿
 x 

 Again Differentiating, we get 

  
𝑑2𝜓

𝑑𝑥2
=  −   A  

n2π2

𝐿2 sin
 nπ 

𝐿
 x  

 
𝑑2𝜓

𝑑𝑥2
    =    −

n2π2

𝐿2
𝜓      =   0   

 
𝑑2𝜓

𝑑𝑥2
    +  

n2π2

𝐿2 𝜓      = 0       → (8) 

Comparing eq (2) and eq (8), we get 

  2mE     

ђ2
   =  

n2π2

𝐿2
   = k

2 

       E   =   
n2 π2 ђ2

2𝑚𝐿2
 

n is called the quantum number. Thus we obtain an important result. The particle cannot possess 

any value of energy as assumed in classical case, but it possesses only discrete set of energy 

values. 

        The energy of the n
th

 quantum level, 
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En =     
n2 π2 ђ2

2𝑚𝐿2
      =    

n2 h2

8𝑚𝐿2
            (since  ђ   =  

𝑕

2𝜋
  )   → (9) 

The wave functions and the corresponding energy levels of the particles are as suggested in 

Figure 3.5  

 

Fig.4.5 Ground state and first two excited states of an electron in a potential well: a) the electron wave functions and 

b) the corresponding probability density functions. The energies of these three states are shown on the right. 

 

We are still left with an arbitrary constant „A‟ in eq (7).  It can be obtained by applying 

normalization condition i.e.; the probability of finding the particle inside the box is unity. 

  𝜓 𝑥 2 𝑑𝑥   =    1

𝐿

0

 

     𝐴2𝑠𝑖𝑛2 𝑛𝜋𝑥

𝐿
𝑑𝑥

𝐿

0
     =    1 

A
2
 

1

2

𝐿

0
 1 − 𝑐𝑜𝑠

2𝑛𝜋

𝑙
𝑥 𝑑𝑥 =   1 

𝐴2

2
 [x − 

𝐿

2𝜋𝑛
   𝑠𝑖𝑛

2𝜋𝑛𝑥

𝐿
  ]

L 
0      = 1 

  ⟹    
𝐴2

2
  𝐿 − 0 −  0 − 0   =   1 

𝐴2𝐿

2
   =    1 or   A =   

2

𝐿
    → 10) 

 ∴The normalized wave function is  

  𝜓n    =     
2

𝐿
  sin

𝑛𝜋𝑥

𝐿
      → (11) 

Notice that the number of nodes (places where the particle has zero probability of being located) 

increases with increasing energy n. Also note that as the 
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energy of the particle becomes greater, the quantum mechanical model breaks down as the 

energy levels get closer together and overlap, forming a continuum. 

This continuum means the particle is free and can have any energy value. At such high energies, 

the classical mechanical model is applied as the particle behavesmore like a continuous wave. 

Therefore, the particle in a box problem is an example of Wave-Particle Duality. 
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UNIT-II 

INTRODUCTION TO SOLIDS AND SEMICONDUCTORS 

 
Bloch′s theorem 

Crystalline solid consists of a lattice which is composed of a large number of ionic cores 

at regular intervals and the conduction electrons move throughout the lattice. 

Let us consider the picture of the lattice in only one dimension, i.e., only an array of ionic 

cores along x-axis. If we plot the potential energy of a conduction electron as a position in the 

lattice, the variation of potential energy is as shown in figure. The potential is minimum at the 

positive ion sites and maximum between the two ions. 

 

    

 
 
periodic positive ion cores inside metallic crystals. b) One dimensional periodic potential in crystal. 

 

The one dimension Schrodinger equation corresponding to this can be written as 
𝑑²𝜓

𝑑𝑥²
 + 

8𝜋²𝑚

𝑕²
[E-V(x)] ψ = 0       → (1) 

The periodic potential V(x) may be defined by means of the lattice constant „a‟ as  

V(x) = V(x+a)         → (2) 

Bloch considered the solution as  

ψK (x) =𝑒𝑥𝑝(ikx)Uk(x)        →  (3) 

Eqn (2) is known as Bloch function. Uk (x) is periodic with the periodicity of the crystal 

lattice. The free electron wave is modulated by periodic function Uĸ(x) is periodic with the 

periodicity of the crystal lattice. The free electron wave is modulated by periodic function U k(x).  

For a linear chain of atoms of length „L‟ in one dimensional case with „N‟ (= even) number of 

atoms in the chain,  

Uĸ(x) = Uĸ (x+Na)         → (4)    

From eqn (3) and eqn (4) 

    Ψĸ(x +na)  = Uĸ(x+Na) 𝑒[𝑖𝑘(𝑥+𝑁𝑎] 

   = 𝑒(𝑖𝑘𝑁𝑎 ) Uĸ(x) 𝑒(𝑖𝑘𝑥 ) 

     = ψĸ(x) 𝑒(𝑖𝑘𝑁𝑎 )      → (5) 

This is referred to as Bloch condition. 
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Now, 

 ψĸ(x+Na)ψĸ*(x+Na) = ψĸ(x)𝑒(ikNa).
ψĸ*(x) e

(-ikNa)
 

            = ψĸ(x) ψĸ*(x) e
(0)

 

Ψĸ(x+Na) Ψĸ*(x+na) = Ψĸ(x) Ψĸ*(x)      → (6) 

This means that the electron is not located around any particular atom and the probability of 

finding the electron is same throughout the crystal. 

 

The Kronig-Penny Model 
The periodic potential assumed by Kronig and Penny is shown in Figure. i.e., a series of 

rectangular wells of width „a‟ and are placed at a separation of b. in the regions where 0<x<a, the 

potential energy is zero and in regions such as –b < x < 0, the potential energy is V₀. 

 
 

One dimensional periodic potential assumed by Kronig and Penny 

 

The main features of the model and its predictions can be explained qualitatively 

 

 Main features of the model 
A. Schrodinger equation: 
The dynamical behavior of electrons in the Kronig-Penny model is represented by the following 

Schrodinger equation, 
𝑑²𝜓

𝑑𝑥 ²
+[

2𝑚

𝑕²
] Eψ=0                for 0 < x < a 

And 
𝑑2𝜓

𝑑𝑥2
+ [

2𝑚

𝑕2
] 𝐸 − 𝑉0 𝜓 = 0                      𝑓𝑜𝑟 − 𝑏 < 𝑥 < 0                                             → (1) 

Let us assume that total energy „E‟ of the electron under consideration is less than V₀. 

Further, let us substitute  α²=
2𝑚𝐸

𝑕²
    and         β² = 

2𝑚

𝑕²
(V₀-E)       → (2) 

Where α and β are real quantities. 

Now  Eq(1) becomes 
𝑑²𝜓

𝑑𝑥 ²
+ α²ψ=0,                                                 for 0<x<a 

And 
𝑑²𝜓

𝑑𝑥 ²
– β²ψ=0,                  for –b < x < 0                         → (3) 

These equations can be solved with the help of block theorem. The final solution of eq (3) is 

given in the form of the following condition. 
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P
𝑠𝑖𝑛𝛼𝑎

𝛼𝑎
+ cosαa =coska         → (4) 

Where P =
𝑚𝑏

𝑕²
V₀a is scattering power of the potential barrier and V₀ is barrier strength. That 

means, eq (3) will have a solution only when the condition (4) is satisfied. 

 Graph of αa versus 
𝑷𝒔𝒊𝒏𝜶𝒂

𝜶𝒂
 + cosαa 

For the best understanding of the meaning of eq(4), let us consider the plot of the 

condition(4) i.e. L.H.S versus αa. Since the values of coska on R.H.s of eq (4) lie between +1 and 

-1, αa (which is a measure of energy) can take only those values for which the total left hand side 

(L.H.S) value lies between -1 and +1. Other values are not allowed. This means that energy E is 

restricted to lie within certain ranges which form the allowed energy bands or zones. 

 
Plot of the left hand side of eq (4) as a function of αa for p =

3𝜋

2
. The solid and broken lines on the abscissa (αa- axis) 

correspond to allowed and forbidden energy regions of the energy spectrum respectively that are plotted in fig.  

 

Conclusions of the graph 
1. The energy spectrum consists of alternative regions of allowed and vacant bands. 

Forbidden band implies that the energy levels that lie in this region are not occupied by 

the electrons. 

2. The allowed (shaded) bands are narrowest for low values of energy and become broader 

as energy increases, the unallowed (forbidden) bands becoming narrower. 

3. a) For P=0 (i.e. on the extreme left), the whole energy spectrum is quasi-continuous. That 

is all allowed bands are joined together forming an almost continuum. 

b) However, the width of a particular allowed band decreases with increase in the value 

of P. As P→ ∞, the allowed energy bands compress into simple energy levels and thus 

result in a line spectrum. 

 

Origin of Energy band formation in solids 
In an isolated atom, the electrons are tightly bound and have discrete, sharp energy levels 

[Figure]. When two identical atoms are brought closer, the outermost orbits of these atoms 

overlap and interact. 

 When the wave functions of the electrons of the different atoms begin to overlap considerably, 

the energy levels split into two  
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. Splitting of energy levels due to interatomic interaction 

 

If more atoms are bought together, more levels are formed and for a solid of N atoms, each of the 

energy levels of an atom splits into N levels of energy [Figure]. 

The levels are so close together that they form an almost continuous band. The width of 

this band depends on the degree of overlap of the electrons of adjacent atoms and is largest for 

the outermost atomic electrons.  

In a solid, many atoms are brought together that the split energy levels form a set of 

energy bands of very closely spaced levels with forbidden energy gaps between them. 

Overlapping of these atoms occurs for smaller equilibrium spacing ro. 

 
. With decrease of interatomic spacing overlapping of energy bands take place 

 

The band corresponding to outermost orbit is called conduction band and the next band is called 

valence band. The gap between these two allowed bands is called forbidden energy gap or band 

gap. According to the width of the gap between the bands and band occupation by electrons all 

solids can be classified broadly into three groups namely, conductors, semiconductors and 

insulators 

 

  

Classification of materials into conductors, semiconductors and insulators   

On the basis of band theory, solids can be broadly classified into three categories, viz, insulators, 

semiconductors and conductors. Their band structures can be as shown in figure. 
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Insulators 

1. In case of insulators, the forbidden gap is very wide. Due to this fact electrons cannot jump 

from valence band to conduction band. 

2. They have completely filled valence band and completely empty conduction band. 

3. The resistivity of insulators is very high. 

4. Insulators are bad conductors of electricity. 

 
.Valence and conduction bands of insulator separated by large band gap 

 

Semiconductors 
1. In semiconductors, the band gap is very small (0.7 eV for germanium and 1.1 eV for silicon). 

2. At 0k, these are no electrons in the conduction band and the valence band is completely filled. 

As the temperature increases, electrons from the valence band jump into conduction band 

3. . 3. The resistivity varies from 10 -14 to 107Ω meter. 

4. They have electrical properties between those of insulators and conductors.   
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. Valence and conduction bands of semiconductor separated by small band gap 

 

Conductors 
1. In case of conductors, there is no forbidden gap and the valence band conduction band     

overlaps each other. 

2. Plenty of free electrons are available for electrical conduction. 

3. They posses very low resistivity and very high conductivity values. 

4. Metals c like copper, iron etc. are best examples of conductors. 

 

 
. Metals having (a) partially filled valence band and (b) overlap of completely filled valence band 
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Intrinsic Semiconductor 
Pure germanium or silicon called an intrinsic semiconductor. Each atom possesses four valence 

electrons in outer most orbits. At T = 0K a 2-D representation of the crystal of silicon & band 

diagram is shown in the figure . 

 

 
Intrinsic silicon crystal at T =0K (a) 2-D representation of silicon crystal 

(c) Energy band diagram of intrinsic semiconductor 

 

Explanation: At 0K, all the valence electrons of silicon atoms are in covalent bonds and their 

energies constitute a band of energies called valance band (VB). So at 0K, VB is completely 

filled & conduction band (CB) is empty.  

          If we rise temperature (T>0K), some of the electrons which are in covalent bonds break 

the bonds become free and move from VB to CB. The energy required should be greater than the 

energy gap of a semiconductor (E>Eg). The electron vacancy or deficiency created in VB is 

called holes. This is shown in the figure 3 below. 

 

 
Silicon crystal at temperature above 0K (a) Due to thermal energy breaking of 

Covalent bonds take place (b) Energy band representation 
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Electron concentration in intrinsic semiconductor in conduction band (n) 
Definition: The no. of free electrons per unit volume of the conduction band of a given intrinsic 

semiconductor is called electron concentration, represented by „n‟. 

 
 (a) Energy band diagram of silicon at T = 0K 

(b) Energy band diagram of silicon at T > 0K 

 

Derivation: Let the no. of free electrons per unit volume of the semiconductor having energies E 

and E + dE in CB is represented by n (E) dE. It is obtained by multiplying the density of energy 

states ZC (E) d (E). [No. of energy states per unit volume] and Fermi – Dirac distribution 

function for the Probability of occupation of electrons FC (E) 

Therefore                  n (E) dE = [ZC (E) d (E)] [FC (E)] → (1) 

 Where Z v (E) d (E) = Density of energy states 

           F h (E) = Probability of occupation of electrons given by Fermi – Dirac function                                          

The total no. of electrons in CB per unit volume between the energies EC to E ct is given by 

integrating equation (1) with limits EC to E ct 

                                             n =  𝑛 𝐸 𝑑𝐸
𝐸𝑐𝑡

𝐸𝐶
 → (2) 

But equation (2) can be written as  

                                             n =  𝑛 𝐸 𝑑𝐸
∞

𝐸𝐶
+   𝑛 𝐸 𝑑𝐸

𝐸𝑐𝑡

∞
 → (3) 

 

                                             n =  𝑛 𝐸 𝑑𝐸
∞

𝐸𝐶
−  𝑛 𝐸 𝑑𝐸

∞

𝐸𝑐𝑡
 →(4) 

 

In equation (4) the second term vanishes (disappears).  

Since, above E c t electrons do not present. Hence equation (4) becomes  

                                             n =  𝑛 𝐸 𝑑𝐸
∞

𝐸𝐶
 

                                             n =  [
∞

𝐸𝑐
𝑍𝐶 𝐸 𝑑𝐸] ×  𝐹𝐶 𝐸   →(5)  

{Since from equation (1)} 

But  𝐹𝐶 𝐸   is Fermi – Dirac distribution function;  

𝐹𝐶 𝐸  =
1

1+𝑒

𝐸−𝐸𝐹
𝐾𝐵𝑇

 →(6) 

Here          E > EF, 𝑖. 𝑒.      𝑒
𝐸−𝐸𝐹
𝐾𝐵𝑇 >> 1 
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Hence „1‟ can be neglected in equation (6)  

𝐹𝐶 𝐸  =
1

𝑒
𝐸−𝐸𝐹
𝐾𝐵𝑇

 

𝐹𝐶 𝐸 =  𝑒
𝐸𝐹−𝐸

𝐾𝐵𝑇 → (7) 

Also the density of electrons  

                            ZC (E) d (E) = 
𝜋

2
[

8𝑚𝑒
∗

𝑕2
]

3

2  (𝐸)
1

2 dE → (8) 

Here E > EC .Since EC is the minimum energy state in CB. Hence equation (8) becomes 

                            ZC (E) d (E) = 
𝜋

2
[

8𝑚𝑒
∗

𝑕2 ]
3

2  (𝐸 − 𝐸𝐶)
1

2 dE → (9) 

Substituting equations (7) & (9) in equation (5) we get 

                                              n =  
𝜋

2
[

8𝑚𝑒
∗

𝑕2
]

3

2  (𝐸 − 𝐸𝐶)
1

2
∞

𝐸𝐶
𝑒

𝐸𝐹−𝐸

𝐾𝐵𝑇   dE  

                                             n = 
𝜋

2
[

8𝑚𝑒
∗

𝑕2 ]
3

2   (𝐸 − 𝐸𝐶)
1

2
∞

𝐸𝐶
𝑒

𝐸𝐹−𝐸

𝐾𝐵𝑇   dE → (10) 

Let 𝜀 = 𝐸 − 𝐸𝐶  

                d𝜀 = 𝑑𝐸  { 𝐸𝐶is constant} . The limits are 𝜀 = 0 to 𝜀= ∞ 

Hence equation (10) can be written as 

                                         n = 
𝜋

2
[

8𝑚𝑒
∗

𝑕2 ]
3

2   (𝜀)
1

2
∞

𝜀=0
𝑒

𝐸𝐹− 𝜀+𝐸𝐶 

𝐾𝐵𝑇 𝑑𝜀 

 

                                       n = 
𝜋

2
[

8𝑚𝑒
∗

𝑕2 ]
3

2 𝑒
(𝐸𝐹−𝐸𝐶)

𝐾𝐵𝑇   (𝜀)
1

2
∞

𝜀=0
𝑒

−𝜀

𝐾𝐵𝑇𝑑𝜀 → (11) 

In equation (11) But   (𝜀)
1

2
∞

𝜀=0
𝑒

−𝜀

𝐾𝐵𝑇𝑑𝜀 = 
 𝜋

2
(𝑘𝐵𝑇)

3

2 → (12) 

Substituting (12) in (11) we get 

                                       n = 
𝜋

2
[

8𝑚𝑒
∗

𝑕2 ]
3

2 𝑒
(𝐸𝐹−𝐸𝐶)

𝐾𝐵𝑇
 𝜋

2
(𝑘𝐵𝑇)

3

2 

                                      n = 
1

4
[

8𝜋𝑚 𝑒
∗𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
(𝐸𝐹−𝐸𝐶)

𝐾𝐵𝑇   

                                      n = 
8

4
[

2𝜋𝑚 𝑒
∗𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
(𝐸𝐹−𝐸𝐶)

𝐾𝐵𝑇  

                                      n = 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2
]

3

2 𝑒
−(𝐸𝐶−𝐸𝐹)

𝐾𝐵𝑇  → (13)     

  {Here NC =2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3

2 } Therefore   n = 𝑁𝐶𝑒
−(𝐸𝐶−𝐸𝐹)

𝐾𝐵𝑇  

 

Hole concentration in the valance band of intrinsic semiconductor(p) 

 
Definition: The number  of holes per unit volume of the valance band of a given intrinsic 

semiconductor is called hole concentration, represented by „p‟. 

 

Derivation: Let the number of holes per unit volume of the semiconductor having energies E, E 

+ dE in VB is represented by p (E) dE. It is obtained by multiplying the density of energy states 

ZV (E) d (E) [No. of energy states per unit volume] and Fermi – Dirac distribution function for 

the Probability of occupation of holes F h (E). 
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                                               (a) Energy band diagram of silicon at T = 0K 

                                              (b) Energy band diagram of silicon at T > 0K 

 

 

Therefore                   p (E) dE = [Z v (E) d (E)] [F h (E)] → (1) 

Where                 Z v (E) d (E) = Density of energy states. 

                                      F h (E) = Hole probability given by Fermi – Dirac function 

The total no. of holes in VB per unit volume between the energies E v b to E v is given by 

integrating equation (1) with limits E v b to E v  

                                            p =  𝑝 𝐸 𝑑𝐸
𝐸𝑣

𝐸𝑣𝑏
 →(2) 

But equation (2) can be written as  

                                             p =  𝑝 𝐸 𝑑𝐸
−∞

𝐸𝑣𝑏
+  𝑝 𝐸 𝑑𝐸

𝐸𝑣

−∞
 → (3) 

                                             p = − 𝑝 𝐸 𝑑𝐸
𝐸𝑣𝑏

−∞
+   𝑝 𝐸 𝑑𝐸

𝐸𝑣

−∞
→ (4) 

In equation (4) the first term vanishes (disappears).  

 Since, below E v b holes do not present. Hence equation (4) becomes  

                                             p =  𝑝 𝐸 𝑑𝐸
𝐸𝑣

−∞
 

                                             p =   Zv E dE × Fh(E)
𝐸𝑣

−∞
→ (5)  

{Since from equation (1)} 

But  𝐹𝑕 𝐸   is Fermi – Dirac distribution function;  
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𝐹𝑕 𝐸  = 1 − 𝐹𝐶 𝐸  →(6) 

                                               = 1 −
1

1+𝑒

𝐸−𝐸𝐹
𝐾𝐵𝑇

 

  Simplifying;                𝐹𝑕 𝐸    = 
𝑒

𝐸−𝐸𝐹
𝐾𝐵𝑇

1+𝑒

𝐸−𝐸𝐹
𝐾𝐵𝑇

 

Divide by    𝑒
𝐸−𝐸𝐹
𝐾𝐵𝑇     we get 

𝐹𝑕 𝐸    = 
1

1+
1

𝑒

𝐸−𝐸𝐹
𝐾𝐵𝑇

 

𝐹𝑕 𝐸    = 
1 

1+𝑒

𝐸𝐹−𝐸
𝐾𝐵𝑇

 → (6) 

Here          EF > E, 𝑖. 𝑒.  𝑒
𝐸𝐹−𝐸

𝐾𝐵𝑇 >> 1 

 

Hence „1‟ can be neglected in equation (6)  

𝐹𝑕 𝐸  =
1

𝑒
𝐸𝐹−𝐸

𝐾𝐵𝑇

 

𝐹𝑕 𝐸 =  𝑒
𝐸−𝐸𝐹
𝐾𝐵𝑇 → (7) 

Also the density of holes  

                              Z v (E) d (E) = 
𝜋

2
[

8𝑚𝑝
∗

𝑕2 ]
3

2  (𝐸)
1

2 dE → (8) 

Here E < E v .Since E v is the maximum energy state in VB. Hence equation (8) becomes 

                              Z v (E) d (E) = 
𝜋

2
[

8𝑚𝑝
∗

𝑕2 ]
3

2  (𝐸𝑉 − 𝐸)
1

2 dE → (9) 

Substituting equations (7) & (9) in equation (5) we get 

                                               p =  
𝜋

2
[

8𝑚𝑝
∗

𝑕2 ]
3

2  (𝐸𝑉 − 𝐸)
1

2
𝐸𝑣

−∞
𝑒

𝐸−𝐸𝐹
𝐾𝐵𝑇  dE  

                                               p = 
𝜋

2
[

8𝑚𝑝
∗

𝑕2 ]
3

2  (𝐸𝑉 − 𝐸)
1

2
𝐸𝑣

−∞
𝑒

𝐸−𝐸𝐹
𝐾𝐵𝑇  dE →(10) 

Let 𝜀 = 𝐸𝑉 − 𝐸 

                d𝜀 = −𝑑𝐸  { 𝐸𝑉 is constant} . The limits are 𝜀= ∞𝑡𝑜𝜀 = 0  

Hence equation (10) can be written as 

                                             p = 
𝜋

2
[

8𝑚𝑝
∗

𝑕2 ]
3

2   (𝜀)
1

2
0

𝜀=∞
𝑒

(𝐸𝑉−𝜀)−𝐸𝐹
𝐾𝐵𝑇 𝑑𝜀 

                                             p = 
𝜋

2
[

8𝑚𝑝
∗

𝑕2 ]
3

2 𝑒
(𝐸𝑉−𝐸𝐹)

𝐾𝐵𝑇   (𝜀)
1

2
∞

𝜀=0
𝑒

−𝜀

𝐾𝐵𝑇𝑑𝜀 → (11) 

In equation (11) But   (𝜀)
1

2
∞

𝜀=0
𝑒

−𝜀

𝐾𝐵𝑇𝑑𝜀 = 
 𝜋

2
(𝑘𝐵𝑇)

3

2 → (12) 

Substituting (12) in (11) we get 

                                             p = 
𝜋

2
[

8𝑚𝑝
∗

𝑕2 ]
3

2 𝑒
(𝐸𝑉−𝐸𝐹)

𝐾𝐵𝑇
 𝜋

2
(𝑘𝐵𝑇)

3

2 

                                             p = 
1

4
[

8𝜋𝑚 𝑝
∗ 𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
(𝐸𝑉−𝐸𝐹)

𝐾𝐵𝑇  

                                             p = 
8

4
[

2𝜋𝑚 𝑝
∗ 𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
(𝐸𝑉−𝐸𝐹)

𝐾𝐵𝑇      
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                                             p = 2[
2𝜋𝑚 𝑝

∗ 𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
−(𝐸𝐹−𝐸𝑉)

𝐾𝐵𝑇  → (13)      

                                           {Here NV =2[
2𝜋𝑚 𝑝

∗ 𝐾𝐵𝑇

𝑕2
]

3

2 } 

                                             p = 𝑁𝑉𝑒
−(𝐸𝐹−𝐸𝑉 )

𝐾𝐵𝑇  

 

 

Fermi energy level in intrinsic semiconductor 
At temperature T k , the electron concentration „n‟ is equal to hole concentration „p‟ in intrinsic 

semiconductor. 

i.e.                                                        n = p  

                          2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
− 𝐸𝐶−𝐸𝐹 

𝐾𝐵𝑇 =  2[
2𝜋𝑚 𝑝

∗ 𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
−(𝐸𝐹−𝐸𝑉 )

𝐾𝐵𝑇  

On simplifying we get                          

( 𝑚𝑒
∗)

3

2𝑒
−(𝐸𝐶−𝐸𝐹)

𝐾𝐵𝑇  =  ( 𝑚𝑝
∗ )

3

2𝑒
−(𝐸𝐹−𝐸𝑉 )

𝐾𝐵𝑇  

𝑒
− 𝐸𝐶−𝐸𝐹 

𝐾𝐵𝑇

𝑒
− 𝐸𝐹−𝐸𝑉 

𝐾𝐵𝑇

=
 ( 𝑚𝑝

∗ )
3

2

 ( 𝑚𝑒
∗)

3

2

 

𝑒
𝐸𝐶+𝐸𝐹+𝐸𝐹−𝐸𝑉

𝐾𝐵𝑇  = [
𝑚𝑝

∗

𝑚𝑒
∗]

3

2 

 𝑒
2𝐸𝐹
𝐾𝐵𝑇

−
(𝐸𝐶−𝐸𝑉)

𝐾𝐵𝑇 = [
𝑚𝑝

∗

𝑚𝑒
∗ ]

3

2 

Taking logarithms on both sides we get 
2𝐸𝐹

𝐾𝐵𝑇
−

(𝐸𝐶−𝐸𝑉 )

𝐾𝐵𝑇
 = 

3

2
𝑙𝑛[

𝑚𝑝
∗

𝑚𝑒
∗] 

  
2𝐸𝐹

𝐾𝐵𝑇
=

(𝐸𝐶−𝐸𝑉 )

𝐾𝐵𝑇
 + 

3

2
𝑙𝑛[

𝑚𝑝
∗

𝑚𝑒
∗] 

𝐸𝐹 =  
(𝐸𝐶+𝐸𝑉 )

2
 +

3

4
𝐾𝐵𝑇𝑙𝑛[

𝑚𝑝
∗

𝑚𝑒
∗]            {At T > 0K} 

  Let T = 0K 𝐸𝐹 =  
(𝐸𝐶+𝐸𝑉 )

2
 

This means EF lies in the middle between (𝐸𝐶&𝐸𝑉) of the energy gap „E g‟ 

 

As the temperature increases the electrons move from VB to CB. Also the Fermi level slightly 

rises upwards towards CB. Hence 𝐸𝐹 =  
(𝐸𝐶+𝐸𝑉 )

2
 +

3

4
𝐾𝐵𝑇𝑙𝑛[

𝑚𝑝
∗

𝑚𝑒
∗]. It is shown in the figure 6 

below. 
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 (a) Fermi level 𝐸𝐹  at T = 0K (b) Upward shift of 𝐸𝐹  near EC at T> 0k 

 

Intrinsic carrier concentration (ni) 
Definition: The no. of free electrons and holes per unit volume of the intrinsic semiconductor is 

called intrinsic carrier concentration (n i) remains constant.  

      i .e.                 n = p = ni 

                                                n p = (ni) (ni) 

   𝑛𝑖
2  = (n p) → (1) 

   𝑛𝑖   = (𝑛𝑝)
1

2→ (2) 

Consider equation (1)              𝑛𝑖
2  = (n p) 

    𝑛𝑖
2 =  2[

2𝜋𝑚 𝑒
∗𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
− 𝐸𝐶−𝐸𝐹 

𝐾𝐵𝑇 × 2[
2𝜋𝑚 𝑝

∗ 𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
−(𝐸𝐹−𝐸𝑉 )

𝐾𝐵𝑇  

           = 4 
2𝜋𝐾𝐵𝑇

𝑕2  
3  

(𝑚𝑒
∗𝑚𝑝

∗ )
3

2𝑒
−𝐸𝐶+𝐸𝐹−𝐸𝐹+𝐸𝑉

𝐾𝐵𝑇  

𝑛𝑖
2 =  4 

2𝜋𝐾𝐵𝑇

𝑕2  
3  

(𝑚𝑒
∗𝑚𝑝

∗ )
3

2𝑒
−𝐸𝑔

𝐾𝐵𝑇  {Since 𝐸𝐶 − 𝐸𝑉  = Eg} 

𝑛𝑖 = 2 
2𝜋𝐾𝐵𝑇

𝑕2  

3

2
(𝑚𝑒

∗𝑚𝑝
∗ )

3

4𝑒
−𝐸𝑔

2𝐾𝐵𝑇  

If 𝑚𝑒
∗  =  𝑚𝑝

∗ = 𝑚∗ , the above equation becomes  

   𝑛𝑖 = 2 
2𝜋𝐾𝐵𝑇

𝑕2  

3

2
(𝑚∗)

3

2𝑒
−𝐸𝑔

2𝐾𝐵𝑇  

 

𝑛𝑖 = 2 
2𝜋𝑚∗𝐾𝐵𝑇

𝑕2
 

3

2
𝑒

−𝐸𝑔

2𝐾𝐵𝑇  

     Let             2 
2𝜋𝑚∗𝐾𝐵𝑇

𝑕2  

3

2
= C. 

Then    𝑛𝑖 = 𝐶 𝑇 
3

2𝑒
−𝐸𝑔

2𝐾𝐵𝑇  

 

 Extrinsic (or) Impure semiconductor 

 
Introduction: The conductivity of an intrinsic semiconductor can be increased by adding small 

amounts of impurity atoms, such as III 
rd

 or V
th 

group atoms. The conductivity of silica is increased 

by 1000 times on adding 10 parts of boron per million part of silicon. The process of adding 

impurities is called doping and the impurity added is called dopant. 
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N – Type semiconductor 
In a pure (intrinsic) semiconductor, when pentavalent an impurity like Phosphorous atom 

consisting of five valance electrons is doped, and then concentration of electrons increases than 

holes. Hence the given semiconductor formed is called N – type semiconductor. This is shown in 

the figure 7a below. By adding donor impurities, the free electrons generated or donated, form an 

energy level called as “Donor energy level” i.e. ED is shown in the figure  below. 

 
 (a) Representation of n- type silicon at T = 0K (b) Energy band diagram at T = 0K 

 

In the figure (b) EF is Fermi energy level is in between EC & ED at T = 0K. 

Hence EF =  
EC +ED

2 
 . The donor level„𝐸𝐷‟ is near to EF consisting of free electrons. But CB is 

empty. 

 

 

 

 

Variation of Fermi level EF with respect to temperature in N -type 

As temperature increases the electrons in the Donor level ′𝐸𝐷 ′moves into CB leaving holes. Also 

The Fermi level slightly shifts upwards towards CB. If further increase of temperature is done, 

the hole concentration also increases with respect to electron concentration. Hence it reaches 

again the concentration of n = p i.e. an intrinsic semiconductor. At lasts the Fermi level drops in 

the middle of the energy gap (or) Forbidden band gap, indicating a pure semiconductor that is 

towards „Ei‟. This happens only for very high temperatures as shown in the figure 8 below. 
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Fig.8 Variation of Fermi level wrt temperature in n- type semiconductor 

 

Variation of EF with respect to donor concentration 

As the donor concentration increases the Fermi level decreases (lowers) as in case of intrinsic 

semiconductor „Ei. This is shown in the figure below 

 
Variation of Fermi level with temperature for different donor concentrations in an n-type semiconductor 

 

 

 

Carrier concentration in N – type semiconductor & Density of electrons in CB 

Let ND is the donor concentration (no. of donor atoms per unit volume). Let it be written as  

Or written as                                  = 𝑁𝐷exp [
− 𝐸𝐹−𝐸𝐷  

𝐾𝐵𝑇
]  

                                                       = 𝑁𝐷𝑒
−(𝐸𝐹−𝐸𝐷 )

𝐾𝐵𝑇 →(1) 

The density of electrons in CB in pure semiconductor is given by  

            = 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
−(𝐸𝐶−𝐸𝐹)

𝐾𝐵𝑇  → (2) 

 At very low temperatures the no. of electrons in CB must be equal to the no. of donor atoms per 

unit volume. Hence equating equations (1) & (2) we get 
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                   2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
−(𝐸𝐶−𝐸𝐹)

𝐾𝐵𝑇  = 𝑁𝐷𝑒
−(𝐸𝐹−𝐸𝐷 )

𝐾𝐵𝑇  

𝑒

−(𝐸𝐶+𝐸𝐹)
𝐾𝐵𝑇

𝑒

−(𝐸𝐹+𝐸𝐷 )
𝐾𝐵𝑇

 = 
𝑁𝐷

 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3
2 

 

𝑒
−𝐸𝐶+𝐸𝐹+𝐸𝐹−𝐸𝐷

𝐾𝐵𝑇  = 
𝑁𝐷

 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3
2 

 

𝑒
2𝐸𝐹−(𝐸𝐶+𝐸𝐷 )

𝐾𝐵𝑇  = 
𝑁𝐷

 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3
2 

 

Taking logarithms on both sides we get 

  
2𝐸𝐹−(𝐸𝐶+𝐸𝐷 )

𝐾𝐵𝑇
   = log⁡[

𝑁𝐷

 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3
2 

] 

 2𝐸𝐹−(𝐸𝐶 + 𝐸𝐷) = 𝐾𝐵𝑇log⁡[
𝑁𝐷

 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3

2 

] 

𝐸𝐹 =
(𝐸𝐶+𝐸𝐷 )

2
+

𝐾𝐵𝑇

2
log⁡[

𝑁𝐷

 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3
2 

] {At T>0K}→(3) 

Case I: At T= 0K 

 𝐸𝐹 =
(𝐸𝐶+𝐸𝐷 )

2
 . That is EF lies between𝐸𝐶&𝐸𝐷 

Case II: At T>0K. As temperature increases the Fermi level slightly shifts upwards towards CB, 

hence                𝐸𝐹 =
(𝐸𝐶+𝐸𝐷 )

2
+

𝐾𝐵𝑇

2
log⁡[

𝑁𝐷

 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3
2 

] 

 

Density of electrons in CB in extrinsic semiconductor: 

Here consider equation (2). That is 

    =  2[
2𝜋𝑚𝑒

∗𝐾𝐵𝑇

𝑕2
]

3

2 𝑒
−(𝐸𝐶−𝐸𝐹)

𝐾𝐵𝑇  

                                           OR 

 =  2[
2𝜋𝑚𝑒

∗𝐾𝐵𝑇

𝑕2
]

3

2 𝑒
(𝐸𝐹−𝐸𝐶)

𝐾𝐵𝑇  

Substitute the value of EF from equation (3) in equation (2), it becomes 𝑛(𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑁 −𝑡𝑦𝑝𝑒 ) 

𝑛(𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑁 −𝑡𝑦𝑝𝑒 )  = 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3

2 exp⁡{ 

(𝐸𝐶+𝐸𝐷)

2
+

𝐾𝐵𝑇

2
log  

𝑁𝐷

 2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3
2 

 −𝐸𝐶

𝐾𝐵𝑇
 }  

On simplifying 

We know that exp (a + b) = exp (a) × exp (b)  

        Also         exp (log x) = x 

           =  2[
2𝜋𝑚 𝑒

∗𝐾𝐵𝑇

𝑕2 ]
3

2 exp  
(𝐸𝐷−𝐸𝐶)

2𝐾𝐵𝑇
 {

(𝑁𝐷 )
1
2

(2)
1
2

[2𝜋𝑚 𝑒
∗𝐾𝐵𝑇

𝑕2 ]
3
4 

} 

𝑛(𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑁 −𝑡𝑦𝑝𝑒 ) = (2𝑁𝐷)
1

2 [
2𝜋𝑚𝑒

∗𝐾𝐵𝑇

𝑕2
]

3

4  exp  
−(𝐸𝐶 − 𝐸𝐷)

2𝐾𝐵𝑇
  

      OR 
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𝑛(𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑁 −𝑡𝑦𝑝𝑒 ) = (2𝑁𝐷)
1

2 [
2𝜋𝑚𝑒

∗𝐾𝐵𝑇

𝑕2
]

3

4  𝑒
 
−(𝐸𝐶−𝐸𝐷 )

2𝐾𝐵𝑇
 
 

 

P- type semiconductor 

 
P – Type semiconductor is formed by doping with trivalent impurity atoms (acceptor) like III 

rd 

group atoms i.e. Aluminum, Gallium, and Indium etc to a pure semiconductor like Ge or Si. As 

the acceptor trivalent atoms has only three valance electrons & Germanium , Silicon has four 

valence electrons; holes or vacancy is created for each acceptor dopant atom. Hence holes are 

majority and electrons are minority. It is shown in the figure a below. Also an acceptor energy 

level „EA‟ is formed near VB consisting of holes, as shown in the figure  below. 

 
 

 (a) Representation of p- type silicon at T = 0K (b) Energy band diagram at T =0K 

 

 As temperature increases (T>0K) the electrons in VB which are in covalent bonds break the 

bonds become free and move from VB to acceptor energy level E A. 

 

Variation of Fermi level EF with respect to temperature in P- type semiconductor 

 

As temperature increases the Fermi level EF slightly drops towards VB. For further increase of 

high temperatures the electron concentration also increases with respect to hole concentration. 

Hence a condition is reached such that „n = p‟ i.e. it becomes an intrinsic or pure semiconductor. 

Hence the Fermi level increases and reaches to intrinsic level Ei as in case of pure 

semiconductor. This is shown in the figure  below  
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Variation of Fermi level wrt temperature in p- type 

 

Variation of Fermi level with respect to acceptor concentration: 

Also as the acceptor concentration increases we find that Fermi level EF reaches (increases) 

towards intrinsic level Ei as in case of pure or intrinsic semiconductor. This is shown in the figure  

below. 

 
Variation of Fermi level with temperature for different acceptor concentrations in a p-type 

 

 

 

 

Carrier concentration of P- type semiconductor & Density of holes in VB 

Let N A is the acceptor concentration (no. of acceptor atoms per unit volume). Let it be written as  

                                                       = 𝑁𝐴exp [
− 𝐸𝐴−𝐸𝐹 

𝐾𝐵𝑇
]  

Or written as                                  

                                                      = 𝑁𝐴𝑒
(𝐸𝐹−𝐸𝐴)

𝐾𝐵𝑇 → (1) 

The density of holes in VB in pure semiconductor is given by  

            = 2[
2𝜋𝑚 𝑃

∗ 𝐾𝐵𝑇

𝑕2 ]
3

2 𝑒
−(𝐸𝐹−𝐸𝑉 )

𝐾𝐵𝑇  →(2) 
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 At very low temperatures the no. of holes in VB must be equal to the no. of acceptor atoms per 

unit volume. Hence equating equations (1) & (2) we get 

                   2[
2𝜋𝑚 𝑝

∗ 𝐾𝐵𝑇

𝑕2
]

3

2 𝑒
(−𝐸𝐹+𝐸𝑉 )

𝐾𝐵𝑇  = 𝑁𝐴𝑒
(𝐸𝐹−𝐸𝐴 )

𝐾𝐵𝑇  

𝑒

(−𝐸𝐹+𝐸𝑉 )
𝐾𝐵𝑇

𝑒

(𝐸𝐹−𝐸𝐴)
𝐾𝐵𝑇

 = 
𝑁𝐴

 2[
2𝜋𝑚 𝑃

∗ 𝐾𝐵𝑇

𝑕2 ]
3
2 

 

 

 

𝑒
−𝐸𝐹+𝐸𝑉−𝐸𝐹+𝐸𝐴

𝐾𝐵𝑇  = 
𝑁𝐴

 2[
2𝜋𝑚 𝑃

∗ 𝐾𝐵𝑇

𝑕2 ]
3
2 

 

𝑒
−2𝐸𝐹+(𝐸𝑉 +𝐸𝐴 )

𝐾𝐵𝑇  = 
𝑁𝐴

 2[
2𝜋𝑚 𝑃

∗ 𝐾𝐵𝑇

𝑕2 ]
3
2 

 

Taking logarithms on both sides we get 

  
−2𝐸𝐹+(𝐸𝑉 +𝐸𝐴 )

𝐾𝐵𝑇
   = log⁡[

𝑁𝐴

 2[
2𝜋𝑚 𝑃

∗ 𝐾𝐵𝑇

𝑕2 ]
3
2 

] 

−2𝐸𝐹+(𝐸𝑉 + 𝐸𝐴) = 𝐾𝐵𝑇log⁡[
𝑁𝐴

 2[
2𝜋𝑚 𝑃

∗ 𝐾𝐵𝑇

𝑕2 ]
3

2 

] 

𝐸𝐹 =
(𝐸𝑉+𝐸𝐴 )

2
−

𝐾𝐵𝑇

2
log⁡[

𝑁𝐴

 2[
2𝜋𝑚 𝑃

∗ 𝐾𝐵𝑇

𝑕2 ]
3
2 

] {At T>0K} → (3) 

Case I: At T= 0K 

 𝐸𝐹 =
(𝐸𝑉+𝐸𝐴 )

2
 .That is EF lies between𝐸𝑉&𝐸𝐴 

Case II: At T>0K.  As temperature increases the Fermi level slightly drops towards VB, hence 

𝐸𝐹 =
(𝐸𝑉 + 𝐸𝐴)

2
−

𝐾𝐵𝑇

2
log⁡[

𝑁𝐴

 2[
2𝜋𝑚 𝑝

∗ 𝐾𝐵𝑇

𝑕2 ]
3

2 

] 

Density of electrons in CB in extrinsic semiconductor 

Here consider equation (2). That is 

    =  2[
2𝜋𝑚𝑝

∗𝐾𝐵𝑇

𝑕2
]

3

2 𝑒
−(𝐸𝐹−𝐸𝑉)

𝐾𝐵𝑇  

                                           OR 

 =  2[
2𝜋𝑚𝑝

∗𝐾𝐵𝑇

𝑕2
]

3

2 𝑒
(−𝐸𝐹+𝐸𝑉)

𝐾𝐵𝑇  

Substitute the value of EF from equation (3) in equation (2), it becomes 𝑛(𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑃 −𝑡𝑦𝑝𝑒 ) 

𝑛(𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑃 −𝑡𝑦𝑝𝑒 )  = 2[
2𝜋𝑚 𝑝

∗ 𝐾𝐵𝑇

𝑕2 ]
3

2 exp⁡{ 

[
−(𝐸𝑉 +𝐸𝐴 )

2
+

𝐾𝐵𝑇

2
log ⁡[

𝑁𝐴

 2[
2𝜋𝑚 𝑝

∗ 𝐾𝐵𝑇

𝑕2 ]
3
2 

]+𝐸𝑉

𝐾𝐵𝑇
 }  

On simplifying 

We know that exp (a + b) = exp (a) × exp (b)  

        Also         exp (log x) = x 

 

           =  2[
2𝜋𝑚 𝑝

∗ 𝐾𝐵𝑇

𝑕2 ]
3

2 exp  
(𝐸𝑉−𝐸𝐴 )

2𝐾𝐵𝑇
 {

(𝑁𝐴 )
1
2

(2)
1
2

[2𝜋𝑚 𝑝
∗ 𝐾𝐵𝑇

𝑕2 ]
3
4 

} 
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𝑛(𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑃 −𝑡𝑦𝑝𝑒 ) = (2𝑁𝐴)
1

2  [
2𝜋𝑚𝑝

∗𝐾𝐵𝑇

𝑕2
]

3

4  exp  
−(𝐸𝐴 − 𝐸𝑉)

2𝐾𝐵𝑇
  

                                                                OR 

  𝑛(𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐𝑃 −𝑡𝑦𝑝𝑒 ) = (2𝑁𝐴)
1

2  [
2𝜋𝑚 𝑝

∗ 𝐾𝐵𝑇

𝑕2
]

3

4  𝑒
 
−(𝐸𝐴−𝐸𝑉 )

2𝐾𝐵𝑇
 
 

 
Energy band diagrams of (a) Intrinsic semiconductor (b) N- type & (c) P- type   semiconductors 

 

Hall Effect 

 
Determination of Hall coefficient RH, Hall voltage VH& Applications of Hall Effect 

Definition: 

If a piece of semiconductor carrying a current „I‟ is placed in a transverse or perpendicular 

magnetic field, then an Electric field „EH‟ is generated in perpendicular to both „I‟ and „B‟. 

Hence production of Hall electric field „EH‟ and generation of Hall voltage VH by applying 

current „I‟ & „B‟ in perpendicular directions is called Hall Effect. 

 

Derivation of RH, VH, &EH: 

Assume an N – type semiconductor. Let „I‟ be the current passed along X- axis. Let „B‟ the 

magnetic field applied along „Z‟ axis. Due to current „I‟, due to the flow of electrons, the force 

acting on electrons is in opposite direction to the direction of conventional current. 

       Due to the magnetic field „B‟ there is a down ward force act on each electron given by Bev. 

This makes the electrons deviated in a down ward direction along Z – axis. This causes a 

negative charge to accumulate on the bottom face. 

  Hence         FB = Bev  

Where „e‟ = charge of electron, v = velocity of electron 
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A semiconductor applied to current and magnetic field perpendicularly in Hall Effect 

 

A potential difference is formed from top to bottom of the specimen. The potential difference 

causes a field EH to flow along negative Y- axis. Due to EH along negative Y- direction a force of 

eEH acts in upward direction along positive Y- axis. 

Hence     FE = e EH 

Under equilibrium condition  

Upward force due to EH = Downward force due to B. 

    FB = FE 

                                              e EH = Bev 

                  v = 
𝐸𝐻

𝐵
 → (1)  

If J is the current density then J = nev  

               v = 
𝐽

𝑛𝑒
 →(2) 

Equating (1) & (2) we get           
𝐸𝐻

𝐵
 = 

𝐽

𝑛𝑒
 

                   EH = 
𝐽𝐵

𝑛𝑒
 

    EH =[
−1

𝑛𝑒
] B J 

    Let Hall coefficient  RH = 
−1

𝑛𝑒
     for electrons 

    RH = 
−1

𝑝𝑒
     for holes 

                            Hence               EH = RH B J → (4) 

 

 

    RH =  
𝐸𝐻

B J
 →(5) 

Where n= electron density, P = hole density, EH = Hall electric field, RH = Hall coefficient 

            B = magnetic field, J = current density 

 

Experimental determination of RH 

 Consider equation (5)  

                  RH =  
𝐸𝐻

B J
 

 Let VH is the Hall voltage across the sample of thickness„t‟  

 Generally                                   V = Ed 

 In Hall effect        VH = EH × t 

    EH = 
𝑉𝐻

𝑡
 →(6) 

If „b‟ is the width of the sample semiconductor, Area „A‟, thickness„t‟  

                                                Area = breadth × thickness 

                                                     A = b × t 

We know that current density       J = 
𝐼

𝐴
 

      J = 
𝐼

𝑏𝑡
 → (7) 

Substituting equations (6) & (7) in (5) we get  

    RH   =  
[
𝑉𝐻
𝑡

]

𝐵[
𝐼

𝑏𝑡
]
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Hall coefficient                        RH   =  
VH × b

𝐵×𝐼
 → (8) 

Where VH = Hall voltage, b = breadth of a semiconductor, B = magnetic field 

             I = current due to flow of electron 

                                                 VH = 
𝑅𝐻𝐵𝐼

𝑏
 → (9) 

Applications of Hall Effect 

1. For determination of type of given semiconductor. 

For N-type, Hall coefficient RH = negative; For P-type, Hall coefficient RH = Positive 

 

2. To determine carrier concentration „n‟ and „p‟ ; that is n = p= 
1

𝑅𝐻𝑒
 

3. Determination of mobility of charge carriers (𝜇) 

𝜎 = 𝑛𝑒𝜇 

𝜇 =  
1

𝑛𝑒
 𝜎 = 𝑅𝐻𝜎 

𝜇 = [
𝑉𝐻𝑏

𝐵𝐼
]𝜎 ,       Where 𝜎 = electrical conductivity 

4. For measurement of magnetic flux density „B‟ & Hall voltage. 

5. To determine the sign of charge carriers, whether the conductivity is due to electrons or 

holes. 
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UNIT-III 

LASERS AND FIBER OPTICS 

 

 Introduction 
LASER stands for light amplification by stimulated emission of radiation. It is different 

from conventional light (such as tube light or electric bulb), there is no coordination among 

different atoms emitting radiation. Laser is a device that emits light (electromagnetic radiation) 

through a process is called stimulated emission. 

 

Spontaneous and stimulated emission 
In lasers, the interaction between matter and light is of three different types. They are: 

absorption, spontaneous emission and stimulates emission.Let E1 and E2 be ground and 

excited states of an atom. The dot represents an atom. Transition between these states 

involves absorption and emission of a photon of energy E2-E1=hν12. Where „h‟ is Planck‟s 

constant. 

(a) Absorption: As shown in fig8.1(a), if a photon of energy hν12(E2-E1) collides with an 

atom present in the ground state of energy E1 then the atom completely absorbs the 

incident photon and makes transition to excited state E2. 

(b) Spontaneous emission:As shown in fig8. 1. (b), an atom initially present in the excited 

state makes transition voluntarily on its own. Without any aid of external stimulus or an  

agency to the ground. State and emits a photon of energy hν12(=E2-E1).this is called 

spontaneous emission.  These are incoherent.  

(c) Stimulated emission:As shown in fig8.1.(c), a photon having energy hν12(E2-

E1)impinges on an atom present in the excited state and the atom is stimulated to make 

transition to the ground state and gives off a photon of energy hν12. The emitted photon is 

in phase with the incident photon. These are coherent. This type of emission is known as 

stimulated emission. 
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Fig.2.1 (a) Absorption ;(b) Spontaneous emission;(c) Stimulated emission 

 

Differences between Spontaneous emission and stimulated emission of 

radiation 

 
Spontaneous emission                 Stimulated emission 

1. Polychromatic radiation 

2. Less intensity 

3. Less directionality, more angular 

spread during propagation 

4. Spatially and temporally in 

coherent radiation 

5. Spontaneous emission takes place 

when excited atoms make a 

transition to lower energy level 

voluntarily without any external 

stimulation. 

1. Monochromatic radiation 

2. High intensity 

3. High directionality, so less angular 

spread during propagation. 

4. Specially and temporally coherent 

radiation. 

5. Stimulated emission takes place 

when a photon of energy equal to   

h ν12(=E2-E1)stimulates an excited 

atom to make transition to lower 

energy level. 

 

 Characteristics of Laser Light 

 
(i).Coherence:Coherence is one of the unique properties of laser light. It arises from the 

stimulated emission process. Since a common stimulus triggers the emission events which 

provide the amplified light, the emitted photons are in step and have a definite phase relation to 

each other. This coherence is described interms of temporal and spatial coherence. 

(ii). Monochromaticity:A laser beam is more or less in single wave length. I.e. the line width of 

laser beams is extremely narrow. The wavelengths spread of conventional light sources is usually 

1 in 10
6
, where as in case of laser light it will be 1 in 10

5
.I.e. if the frequency of radiation is 

10
15

Hz., then the width of line will be 1 Hz. So, laser radiation is said to be highly 

monochromatic. The degree of non-monochromaticity has been expressed as 

  ξ =(dλ/λ) =dν/ν, where dλ or dν is the variation in wavelength or variation in 

frequency of radiation. 

(iii) Directionality:Laser beam is highly directional because laser emits light only in one 

direction. It can travel very long distances without divergence. The directionality of a laser beam 

has been expressed interms of divergence. Suppose r1 and r2 are the radii of laser beam at 

distances D1 and D2 from a laser, and then we have. 

Then the  divergence, ∆θ= (r1 - r2)/ D2-D1 

The divergence for a laser beam is 0.01mille radian where as incase of search light it is 0.5 

radian. 

(iv)High intensity:In a laser beam lot of energy is concentrated in a small region. This 

concentration of energy exists both spatially and spectrally, hence there is enormous intensity for 

laser beam. The power range of laser is about 10
-13

w for gas laser and is about 10
9
 w for pulsed 

solid state laser and the diameter of the laser beam is about 1 mm. then the number of photons 

coming out from a laser per second per unit area is given by 

   Nl=P/ hνπr
2
≈1022to1034photons/m

-2
-sec 

By assuminghν=10
-19 

Joule,Power  P=10
-3

to10
9
watt           r=0.5×10

-3
meter 
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Based on Planck‟s black body radiation, the number of photons emitted per second per unit area 

by a body with temperature T is given by 

Nth= (2hπC/ λ
4
)(1/e

(
hν/kT

)
-1) dλ≈10

16
photons/m

2
.sec 

By assuming T=1000k, λ=6000A
0 

This comparison shows that laser is a highly intensive beam.
 

 
Population inversion 

Usually in a system the number of atoms (N1) present in the ground state (E1) is larger than the 

number of atoms(N2) present in the higher energy state. The process of making N2>N1 called 

population inversion. Conditions for population inversion are: 

a) The system should posses at least a pair of energy levels(E2>E1), separated by an energy 

of equal to the energy of a photon (hν). 

b) There should be a continuous supply of energy to the system such that the atoms must be 

raised continuously to the excited state. 

Population inversion can be achieved by a number of ways. Some of them are (i) optical 

pumping (ii) electrical discharge (iii) inelastic collision of atoms (iv) chemical reaction and 

(v) direct conversion 

 

Helium-Neongas laser 
Helium-Neon gas laser is a continuous four level gas laser. It consists of a long, narrow 

cylindrical tube made up of fused quartz. The diameter of the tube will vary from 2 to 8 mm and 

length will vary from 10 to 100 cm. The tube is filled with helium and neon gases in the ratio of 

10:1. The partial pressure of helium gas is 1mm of Hg and neon gas is 0.1mm of Hg so that the 

pressure of the mixture of gases inside the tube is nearly 1 mm of Hg. 

Laser action is due to the neon atoms.Helium is used for selective pumping of neon atoms 

to upper energy levels. Two electrodes are fixed near the ends of the tube to pass electric 

discharge through the gas. Two optically plane mirrors are fixed at the two ends of the tube at 

Brewster angle normal to its axis. One of the mirrors is fully silvered so that nearly 

100%reflection takes place and the other is partially silvered so that 1%of the light incident on it 

will be transmitted. Optical resources column is formed between these mirrors. 

.  
Fig.2.3 Helium-Neon gas laser 

Working 

When a discharge is passed through the gaseous mixture, electrons are accelerated down 

the tube. These accelerated electrons collide with the helium atoms and excite them to higher 

energy levels. The different energy levels of Helium atoms and Neon atoms is shown in 

fig.2.3 the helium atoms are excited to the levels F2 and F3 these levels happen to be meta 

stable energy states. 
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Energy levels and hence Helium atoms exited levels spend sufficiently large amount of 

time before getting de excited. As shown in the fig 2.5(a), some of the excited states of neon 

can correspond approximately to the same energy of excited levels F2 and F3. Thus, when 

Helium atoms in level F2 and F3 collide with Neon atoms in the ground level E1, an energy 

exchange takes place. This results in the excitation of Neon atoms to the levels E4 and E6and 

de excitation of Helium atoms to the ground level (F1). Because of long life times of the 

atoms in levels F2 and F3, this process of energy transfer has a high probability. Thus the 

discharge through the gas mixture continuously populates the neon atoms in the excited 

energy levels E4 and E6. This helps to create a state of population inversion between the 

levels E4 (E6) to the lower energy level (E3 and E5). The various transitions E6→E5, E4→E3, 

E6→E3 leads to the emission of wave lengths 3.39mm, 1.15 um and 6328 A
0
. Specific 

frequency selection may be obtained by employing mirrors  

The excited Neon atoms drop down from the level E3 to the E2 by spontaneously emitting 

a photon around wavelength 6000A
0
. The pressures of the two gases in the mixture are so 

chosen that there is an effective transfer of energy from the Helium to the Neon atoms. Since 

the level E2 is a meta stable state, there is a finite probability of the excitation of Neon, atoms 

from E2 to E3 leading to population  inversion, when a narrow tube is used, the neon atoms in 

the level E2 collide with the walls of the tube and get excited to the level E1. The transition 

from E5 to E3 may be non radioactive. The typical power outputs of He-Ne laser lie between 

1 and 50 mw of continuous wave for inputs of 5-10W. 

 

 
 

             Fig.2.4. Energy level diagram of He-Ne atoms. 

 

Ruby Laser 

 
Ruby Laser is a solid state pulsed, three level lasers. It consists of a cylindrical shaped 

ruby crystal rod of length varying from 2 to 20cms and diameter varying 0.1 to 2cms. This end 

faces of the rod are highly flat and parallel. One of the faces is highly silvered and the other face 

is partially silvered so that it transmits 10 to 25% of incident light and reflects the rest so as to 

make the rod-resonant cavity. Basically, ruby crystal is aluminum oxide [Al 2O3] doped with 

0.05 to 0.5% of chromium atom. These chromium atoms serve as activators. Due to presence of 

0.05% of chromium, the ruby crystal appears in pink color. The ruby crystal is placed along the 

axis of a helical xenon or krypton flash lamp of high intensity. 
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Fig.2.5 Ruby laser 

 

 

 

 
 
                        Fig.2.6 Energy level diagram of chromium ions in a ruby crystal 

Construction: 
Ruby (Al2O3+Cr2O3) is a crystal of Aluminum oxide in which some of Al

+3
 ions are 

replaced by Cr 
+3 

ions.When the doping concentration of Cr
+3

 is about 0.05%, the color of the 

rod becomes pink. The active medium in ruby rod is Cr
+3

ions. In ruby laser a rod of 4cm long 

and 5mm diameter is used and the ends of the rod are highly polished. Both ends are silvered 

such that one end is fully reflecting and the other end is partially reflecting. 

The ruby rod is surrounded by helical xenon flash lamp tube which provides the optical 

pumping to raise the Chromium ions to upper energy level (rather energy band). The xenon 

flash lamp tube which emits intense pulses lasts only few milliseconds and the tube 

consumes several thousands of joules of energy. Only a part of this energy is used in 

pumping Chromium ions while the rest goes as heat to the apparatus which should be cooled 

with cooling arrangements as shown in fig.2.5.  The energy level diagram of ruby laser is 

shown in fig.2.6 

 

Working: 
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Ruby crystal is made up of aluminum oxide as host lattice with small percentage of 

Chromium ions replacing aluminum ions in the crystal chromium acts as do pant. A do pant 

actually produces lasing action while the host material sustains this action. The pumping 

source for ruby material is xenon flash lamp which will be operated by some external power 

supply. Chromium ions will respond to this flash light having wavelength of 5600A
0
. When 

the Cr 
+3

ions are excited to energy level E3 from E1 the population in E3 increases. Chromium 

ions stay here for a very short time of the order of 10-8 seconds then they drop to the level E2 

which is mat stable state of life time 10
-3

s. Here the level E3is rather a band, which helps the 

pumping to be more effective. The transitions from E3toE2 are non-radioactive in nature. 

During this process heat is given to crystal lattice. Hence cooling the rod is an essential 

feature in this method. The life time in mete stable state is 10 
5
times greater than the lifetime 

in E3. As the life of the state E2 is much longer, the number of ions in this state goes on 

increasing while ions. In this state goes on increasing while in the ground state (E1)goes on 

decreasing. By this process population inversion is achieved between the exited Meta stable 

state E2 and the ground state E1. When an excited ion passes spontaneously from the 

metastable state E2 to the ground state E1, it emits a photon of wave length 6943A
0
. This 

photon travels through the rod and if it is moving parallel to the axis of the crystal, is 

reflected back and forth by the silvered ends until it stimulates an excited ion in E2 and 

causes it to emit fresh photon in phase with the earlier photon. This stimulated transition 

triggers the laser transition. This process is repeated again and again because the photons 

repeatedly move along the crystal being reflected from its ends. The photons thus get 

multiplied. When thephoton beam becomes  sufficiently intense, such that part of it emerges 

through the partially silvered end of the crystal. 

 

Drawbacks of ruby laser: 

1. The laser requires high pumping power to achieve population inversion.   

2. It is a pulsed laser. 

 
. Fig.2.7 the output pulses with time. 

 

Applications of Lasers 
Lasers find applications in various fields. They are described below. 

 

a) In Communications :   

Lasers are used in optical fiber communications. In optical fiber communications, lasers are used as 

light source to transmit audio, video signals and data to long distances without attention and 

distortion. 
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b) The narrow angular spread of laser beam can be used for communication between earth and 

moon or to satellites. 

c) As laser radiation is not absorbed by water, so laser beam can be used in under water (inside 

sea) communication networks. 

 

2.Industrial Applications 

a) Lasers are used in metal cutting, welding, surface treatment and hole drilling. Using  lasers 

cutting can be obtained to any desired shape and the curved surface is very smooth. 

b) Welding has been carried by using laser beam.  

c) Dissimilar metals can be welded and micro welding is done with great case. 

d) Lasers beam is used in selective heat treatment for tempering the desired parts in 

automobile industry 

e) Lasers are widely used in electronic industry in trimming the components of ICs 

 

3. Medical Applications 
1. Lasers are used in medicine to improve precision work like surgery. Brain surgery is an 

example of precision surgery Birthmarks, warts and discoloring of the skin can easily be 

removed with an unfocussed laser. The operations are quick and heal quickly and, best of all, 

they are less painful than ordinary surgery performed with a scalpel. 

2. Cosmetic surgery (removing tattoos, scars, stretch marks, sunspots,wrinkles,birthmarks and 

hairs)  see lasers hair removal.  

3.Laser types used in dermatology include ruby(694nm),alexandrite(755nm),pulsed diode 

array(810nm), Nd:YAG(1064nm), HO:YAG(2090nm), and Er:YAG(2940nm) 

4. Eye surgery and refracting surgery. 

5. Soft tissue surgery: Co2 Er:YAGlaser. 

6.  Laser scalpel (general surgery, gynecological, urology, laparoscopic). 

7.   Dental procedures. 

8. Photo bio modulation (i.e. laser therapy) 

9.  “No-touch” removal of tumors, especially of the brain and spinal cord. 

10.  In dentistry for caries removal, endodontic/periodontic, procedures, tooth whitening, and 

oral surgery. 

 

4. Military Applications  

The various military applications are: 

a) Death rays:By focusing high energetic laser beam for few seconds to aircraft, missile, etc 

can be destroyed. So, these rays are called death rays or war weapons. 

b) Laser gun:The vital part of energy body can be evaporated at short range by focusing 

highly convergent beam from a laser gun. 

c) LIDAR (Light detecting and ranging):In place of RADAR, we can use LIDAR to 

estimate the size and shape of distant objects or war weapons.  The differences between 

RADAR and LIDAR are that, in case of RADAR, Radio waves are used where as incase of 

LIDAR light is used. 

 

5.In Computers:By using lasers a large amount of information or data can be stored in CD-

ROM or their storage capacity can be increased. Lasers are also used in computer printers. 
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6.In Thermonuclear fusion:Toinitiate nuclear fusion reaction, very high temperature and 

pressure is required. This can be created by concentrating large amount of laser energy in a small 

volume.  In the fusion of deuterium and tritium, irradiation with a high energy laser beam pulse 

of 1 nano second duration develops a temperature of 10
170

c, this temperature is sufficient to 

initiate nuclear fusion reaction. 

7.In Scientific Research:In scientific, lasers are used in many ways including 

a) A wide variety of interferometrie techniques. 

b) Raman spectroscopy. 

c) Laser induced breakdown spectroscopy. 

d) Atmospheric remote sensing. 

e) Investigating non linear optics phenomena 

f) Holographic techniques employing lasers also contribute to a number of measurement 

techniques. 

g) Laser (LADAR) technology has application in geology, seismology, remote sensing and 

atmospheric physics. 

h) Lasers have been used abroad spacecraft such as in the cassini-huygens mission. 

i) In astronomy lasers have been used to create artificial laser guide stars, used as reference 

objects for adaptive optics telescope. 

FIBER OPTICS 

 
 Introduction 
1. An optical fiber (or fiber) is a glass or plastic fiber that carries light along its length.  

2. Fiber optics is the overlap of applied science and engineering concerned with the design and 

application of optical fibers. 

3. Optical fibers are widely used in fiber-optic communications, which permits transmission over 

long distances and at higher band widths (data rates) than other forms of communications.  

 4. Specially designed fibers are used for a variety of other applications, including sensors and 

fiber lasers. Fiber optics, though used extensively in the modern world, is a fairly simple and old 

technology. 

 Principle of Optical Fiber 
Optical fiber is a cylinder of transparent dielectric medium and designed to guide visible 

and infrared light over long distances. Optical fibers work on the principle of total 

internalreflection.  

Optical fiber is very thin and flexible medium having a cylindrical shape consisting of three 

sections 

1) The core material 

2) The cladding material 

3) The outer jacket 

The structure of an optical is shown in figure. The fiber has a core surrounded by a cladding 

material whose reflective index is slightly less than that of the core material to satisfy the 

condition for total internal reflection. To protect the fiber material and also to give mechanical 

support there is a protective cover called outer jacket. In order to avoid damages there will be 

some cushion between cladding protective cover. 
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Fig..Structure of an optical fiber 

 

When a ray of light passes from an optically denser medium into an optically rarer 

medium the refracted ray bends away from the normal. When the angle of incidence is increased 

angle of refraction also increases and a stage is reached when the refracted ray just grazes the 

surface of separation of core and cladding. At this position the angle of refraction is 90 degrees. 

This angle of incidence in the denser medium is called the critical angle (θc) of the denser 

medium with respect to the rarer medium and is shown in the fig. If the angle of incidence is 

further increased then the totally reflected. This is called total internal reflection. Let the 

reflective indices of core and cladding materials be n1 and n2 respectively. 

 

 
Fig. Total internal reflection. 

 

When a light ray, travelling from an optically denser medium into an optically rarer 

medium is incident at angle greater than the critical angle for the two media. The ray is totally 

reflected back into the medium by obeying the loss of reflection. This phenomenon is known as 

totally internal reflection. 

According to law of refraction, 

                                      n1 sinθ1= n 2 sinθ2 

             Here θ1=θc, θ2=90  

 n 1 sinθc=n2 sin 90 
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Sinθc = 
𝑛2

𝑛1
 

 

 θc = sinˉ¹(
𝑛2

𝑛1
)                                                              →(1) 

 

Equation (1) is the expression for condition for total internal reflection. In case of total 

internal reflection, there is absolutely no absorption of light energy at the reflecting surface. 

Since the entire incident light energy is returned along the reflected light it is called total internal 

reflection. As there is no loss of light energy during reflection, hence optical fibers are designed 

to guide light wave over very long distances. 

 

 Acceptance Angle and Acceptance Cone 
Acceptance angle:Itis the angle at which we have to launch the beam at its end to enable the 

entire light to propagate through the core. Fig.8.12 shows longitudinal cross section of the launch 

of a fiber with a ray entering it. The light is entered from a medium of refractive index n0 (for air 

n0=1) into the core of refractive index n1. The ray (OA) enters with an angle of incidence to the 

fiber end face i.e. the incident ray makes angle  with the fiber axis which is nothing but the 

normal to the end face of the core. Let a right ray OA enters the fiber at an angle to the axis of 

the fiber. The end at which light enter the fiber is called the launching pad. 

 

 
 

Fig. Path of atypical light ray launched into fiber. 

 

Let the refractive index of the core be n1 and the refractive index of cladding be n2. Here n1>n2. 

The light ray reflects at an angle   and strikes the core cladding interface at angle θ. If the angleθ 

is greater than its critical angle θc, the light ray undergoes total internal reflection at the 

interface. 

According to Snell‟s law 

n0sinαi=n1sinαr→ (2) 

From the right angled triangle ABC 

αr+θ=90
0
 

 

αr=90
0
 –θ                                                                → (3) 

Substituting (3) in (2), we get 

n0sinαi =n1sin (90
0
 –θ) = n1cos θ 
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sinαi=(
𝑛1

𝑛0
) cos θ                                                         →(4) 

When θ= θc, αi= αm=maximum α value 

sinαm=(
𝑛1

𝑛0
) cos θc→(5) 

From equation (1) Sinθc = 
𝑛2

𝑛1
 

cos θc= 1 − 𝑠𝑖𝑛2θc = 1 − (
𝑛2

𝑛1
)2  =

 𝑛1
2−𝑛2

2

𝑛1
         →(6) 

 

Substitute equation (6) in equation (5) 

 

sinαm=(
𝑛1

𝑛0
)
 𝑛1

2−𝑛2
2

𝑛1
   = 

 𝑛1
2−𝑛2

2

𝑛0
                               →(7) 

 

 

If the medium surrounding fiber is air, then n0=1 

sinαm= 𝑛1
2 − 𝑛2

2                                                     →(8) 

 

This maximum angle is called the acceptance angle or the acceptance cone half angle of the 

fiber.  

The acceptance angle may be defined as the maximum angle that a light ray can have with the 

axis of the fiber and propagate through the fiber. Rotating the acceptance angle about the fiber 

axis (fig.) describes the acceptance cone of the fiber. Light launched at the fiber end within this 

acceptance cone alone will be accepted and propagated to the other end of the fiber by total 

internal reflection. Larger acceptance angles make launching easier. Light gathering capacity of 

the fiber is expressed in terms of maximum acceptance angle and is termed as “Numerical 

Aperture”. 

 

 

 
Fig. Acceptance cone 

 Numerical Aperture 
Numerical Aperture of a fiber is measure of its light gathering power. The numerical 

aperture (NA) is defined as the sign of the maximum acceptance angle. 

Numerical aperture (NA)= sinαm= 𝑛1
2 − 𝑛2

2     →(9) 

 

=  (𝑛1 − 𝑛2) (𝑛1 + 𝑛2) 

                                                                    =  ((𝑛1 +  𝑛2) 𝑛1∆)                       → (10) 
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Where   ∆=  
(𝑛1−𝑛2)

𝑛1
called as fractional differences in refractive indices 𝑛 and 𝑛2are the 

refractive indices of core and cladding material respectively. 

As n1≈ n2, we can take n1+ n2= 2n1 

 Then numerical aperture= (2n1
2
∆)

 1/2
= n1 (2∆)

 1/2
→ (11) 

Numerical aperture is a measure of amount of light that can be accepted by a fiber. From 

equation (9) it is seen that numerical aperture depends only on the refractive indices of core and 

cladding materials and it is independent on the fiber dimensions. Its value ranges from 0.1 to 0.5. 

A large NA means that the fiber will accept large amount of light from the source. 

Proof: 
We shall show that the light emitted by a small defuse source situated on the fiber axis near to 

one end face, only a fractionNA
2
 can be collected by the fiber and propagated along the fiber. 

Consider a small defuse light source such as the isotropic radiator in which the power radiated 

per unit solid angle in a direction θ to the normal to the surface  

 

is given by  

                           Fig. Diffuse light source 

   I(θ) =I0Cos θ→ (12) 

The total power φ0 emitted such source is obtained by integrating I (θ) over all forward directions 

 

 

φ0 =  𝐼0
П/2

0
 Cosθd θ                                               → (13) 

Where dΩ=small element of solid angle=2πSinθ dθ                                     → (14) 

φ0 =  𝐼0
П/2

0
 Cosθ2πSinθ d θ 

   =     𝜋𝐼0𝑆𝑖𝑛2θdθ
П/2

0
=πI0→ (15) 

But the power from such source that can be   collected by an adjacent fiber whose core diameter 

is greater than the diameter of the source is given by φ, where 

   Φ= 𝐼0
𝛼𝑚

0
 Cosθ2ПSinθ dθ 

=П𝐼0sin2αm 

(Φ /φ0)= (sinαm)
 2

= (NA)
 2

=2n1
2
∆                                          → (16) 

Where ∆= 
(𝑛1−𝑛2)

𝑛1
 

Equation (16) represents the light gathering power of the fiber. In order to collect as much light 

as possible it is necessary to make n1 and ∆ large. 

In some cases it is customary to use ∆n which can be defined as ∆n = n1- n2 

But ∆= 
(𝑛1−𝑛2)

𝑛1
=

∆n

𝑛1
 

(Φ /φ0)= (sinαm)
2
=(NA)

2
=2n1∆n→(17) 

NA= (2n1∆n) → (18) 

 

Step index fibers and graded index fiber -transmission of signals in them: 
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Based on the variation of refractive index of core, optical fibers are divided into: (1) step index 

and (2) graded index fibers. Again based on the mode of propagation, all these fibers are divided 

into: (1) single mode and (2) multimode fibers. In all optical fibers, the refractive index of 

cladding material is uniform. Now, we will see the construction, refractive index of core and 

cladding with radial distance of fiber, ray propagation and applications of above optical fibers. 

i. Step index fiber: The refractive index is uniform throughout the core of this fiber. As 

we go radially in this fiber, the refractive index undergoes a step change at the core-

cladding interface. Based on the mode of propagation of light rays, step index fibers are 

of 2 types: a) single mode step index fiber & b) multimode step index fibers. Mode 

means, the number of paths available for light propagation of fiber. We describes the 

different types of fiber below  

a) Single mode step index fiber: The core diameter of this fiber is about 8 to 

10µm and outer diameter of cladding is 60 to 70 µm. There is only one path for ray 

propagation. So, it is called single mode fiber. The cross sectional view, refractive 

index profile and ray propagation are shown in fig. (i). In this fiber, the 

transmission of light is by successive total internal reflections i.e. it is a reflective 

type fiber. Nearly 80% of the fibers manufactured today in the world are single 

mode fibers. So, they are extensively used.  

 
 

Fig (i).Single mode step index fiber ;( a) Cross sectional view and refractive index 

profile ;( b) Ray propagation 

Multimode step index fiber: The construction of multimode step index fiber is 

similar to single mode step index fiber except that its core and cladding diameters are 

much larger to have many paths for light propagation. The core diameter of this fiber 

varies from 50 to 200 µm and the outer diameter of cladding varies from 100 to 250 

µm. The cross-sectional view, refractive index profile and ray propagations are 
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shown in fig 2. Light propagation in this fiber is by multiple total internal reflections 

i.e it is a reflective type fiber.  

b) Transmission of signal in step index fiber: Generally the signal is 

transmitted through the fiber in digital form i.e. in the form of 1‟s and 0‟s. The 

propagation of pulses through the multimode fiber is shown in fig (i)(b). The pulse 

which travels along path 1(straight) will reach first at the other end of fiber. Next 

the pulse that travels along with path 2(zig-zag) reaches the other end. Hence, the 

pulsed signal received at the other end is broadened. This is known as intermodal 

dispersion. This imposes limitation on the separation between pulses and reduces 

the transmission rate and capacity. To overcome this problem, graded index fibers 

are used. 

2) Graded index fiber: In this fiber, the refractive index decreases continuously from center 

radially to the surface of the core. The refractive index is maximum at the center and minimum at 

the surface of core. This fiber can be single mode or multimode fiber. The cross sectional view, 

refractive index profile and ray propagation of multimode graded index fiber are shown in fig 

.(ii)(a). The diameter of core varies from 50 to 200µm and outer diameter of cladding varies 

from 100 to 250 µm. 

The refractive index profile is circularly symmetric. As refractive index changes continuously 

radially in core, light rays suffer continuous refraction in core. The propagation of light ray is not 

due to total internal reflection but by refraction as shown in fig. (ii)(b). in graded index fiber, 

light rays travel at different speed in different paths of the fiber. Near the surface of the core, the 

refractive index is lower, so rays near the outer surface travel faster than the rays travel at the 

center. Because of this, all the rays arrive at the receiving end of the fiber approximately at the 

same time. This fiber is costly. . 

Transmission of signal graded index fiber: In multimode graded index fiber, large 

number of paths is available for light ray propagation. To discuss about inter modal dispersion, 

we consider ray path 1 along the axis of fiber. 
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Fig. (ii).Multimode step index fibre(a)Cross sectional view and refractive index profle(b)Ray 

propagation 

As shown in fig. (ii)(b) and another ray path 2. Along with the axis of fiber, the refractive index 

of core is maximum, so the speed of ray along path 1 is less. Path 2 is sinusoidal and it is longer, 

along this path refractive index varies. The ray mostly travels in low refractive region, so the ray 

2 moves slightly faster. Hence, the pulses of signals that travel along path 1 and path 2 reach 

other end of fiber simultaneously. Thus, the problem of intermodal dispersion can be reduced to 

a large extent using graded index fibers. 

 

 

 Differences between step index fiber and graded index fibers: 

Step index fiber Graded index fiber 

 
1.The refractive index of core 

Is uniform and step or abrupt 

Change in refractive index  

Takes place at the interface of core  

and cladding in step index fibers 

 

1.The refractive index of core is non uniform, the 

refractive index of core decreases Para- 

Felicity from the axis of the fiber to its surface. 

2. The light rays propagate in zigzag manner inside 

the core. The rays travel in the fiber as meridional 

rays they cross the fiber axis for every reflection.  

 

2. Light rays propagate in the form of skew rays or 

helical rays. They will not cross the fiber axis 

 

 Difference between single mode fibers and multi mode fibers: 

Single mode fiber Multimode fiber 
1. In single mode fiber there is only one 

path for ray propagation 

1. In multimode fiber, large number of 

paths is available for light ray 

propagation. 

2. A single mode step index fiber has less 

core diameter (< 10 µm) and the 

difference between the reflective 

indices of core and cladding is very 

small.  

2. Multi mode fibers, large number of    

paths are available for light ray 

propagation. 
 

3. In single mode fibers, there is no 

dispersion. 

3. There is signal distortion and dispersion 

takes place in multimode fibers. 
 

4. The band width is about 50 MHz for 

multimode step index fiber where as it 

is more than 1000 MHz km in case of 

single mode step index fiber. 

4. The band width of the fiber lies in 

between 200 MHz km to 600 MHz km 

even though theoretically it has an 

infinite bandwidth. 

5. NA of multimode step index fiber is 

more where as in single mode step 

index fibers, it is very less. 

5. NA of graded index fibers is less. 

6. Launching of light into single mode 6. Launching of light into multimode 
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fibers is difficult. fibers is easy. 

7. Fabrication cost is very high. 7. Fabrication cost is less 

 

 

Fiber optic communication system : 
Fiber oppticsessentially deals  of with the communication(including voice signals,video signals 

or digital data) by transmission of light through  optical fibers. Optical fiber communication 

system essentially consists of three parts:(a)transmitter (b) optical fiber and (c) receiver.The 

transmitter includes modulator, encoder, light source, drive circuits and couplers. The receiver 

includes amplifier and decoder,binary electrical signal and light decoder. 

 

 
 

Fig. Block diagram represents optical fibre communication system 
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UNIT-IV 

LIGHT AND OPTICS 

 
INTERFERENCE AND DIFFRACTION 

 

Interference-Introduction 

Wave Theory of light attempts to understand the various optical phenomena exhibited by 

light waves. Interference constituted the first proof of the wave nature of light. Thomas Young 

first experimentally demonstrated interference in light waves. The superposition principle forms 

the conceptual basis for the explanation of interference. To produce interference, the light waves 

should be coherent, i.e., the light waves should have constant phase difference and same 

frequencies. 

 

Interference 

When two or more light waves superimpose in the medium then according to 

superposition principle, the resultant displacement at any point is equal to the algebraic sum of 

the displacements due to individual waves. The variation of resultant displacement influences 

amplitude variation, which causes intensity variations. This modification in the distribution of 

intensity in the region of superposition is known as interference. When the resultant amplitude is 

the sum of the amplitudes due to two light waves, the interference is constructive interference. If 

the resultant amplitude is equal to the difference of two amplitudes, the interference becomes 

destructive interference. The intensity variations are studied as interference fringes or patterns. 

 

Conditions for Interference 

1. The two light sources emitting light waves should be coherent. 

2. The two sources must emit continuous light waves of same wavelengths and frequency. 

3. The separation between the two sources should be small. 

4. The distance between the two sources and the screen should be large. 

5. To view interference fringes, the background should be dark. 

6. The amplitudes of the light waves should be equal or nearly equal. 

7. The sources should be narrow, i.e., they must be small. 

8. The sources should be monochromatic. 

 

Young's Double Slit Experiment 

This is a classic example of interference effects in light waves. Two light rays pass through two 

slits, separated by a distance d and strike a screen a distance, L , from the slits, as in Fig. 22.10.  

   

 

 

http://theory.uwinnipeg.ca/physics/light/node9.html#fig22-8
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Figure 22.10: Double slit diffraction 

 

If d<<L then the difference in path length r1 - r2 travelled by the two rays is approximately:  

r1 - r2 dsin  

where θis approximately equal to the angle that the rays make relative to a perpendicular line 

joining the slits to the screen.  

If the rays were in phase when they passed through the slits, then the condition for constructive 

interference at the screen is:  

dsinθ= m  ,m = 1, 2,...  

whereas the condition for destructive interference at the screen is:  

dsinθ= (m + )  ,m = 1, 2,...  

The points of constructive interference will appear as bright bands on the screen and the points of 

destructive interference will appear as dark bands. These dark and bright spots are called 

interference fringes. Note:  

 In the case that y , the distance from the interference fringe to the point of the screen 

opposite the center of the slits (see Fig.22.10) is much less than L ( y<<L ), one can use 

the approximate formula:  

sin y/L 

http://theory.uwinnipeg.ca/physics/light/node9.html#fig22-8
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so that the formulas specifying the y - coordinates of the bright and dark spots, 

respectively are:  

y
 B

m = bright spots 

y
 D

m = dark spots 

The spacing between the dark spots is  

y=  

 If d<<L then the spacing between the interference can be large even when the wavelength 

of the light is very small (as in the case of visible light). This give a method for 

(indirectly) measuring the wavelength of light. (See Ex.6 at the end of this Chapter.)  

 The above formulas assume that the slit width is very small compared to the wavelength 

of light, so that the slits behave essentially like point sources of light.  

Conditions for Interference 

 

Observable interference can take place if the following conditions are fulfilled: 

(a) The two sources should emit, continuously, waves of some wave-length or frequency. While 

driving conditions for maxima and minima, we have taken „I‟ for both the waves to be same.  

(b) The amplitudes of the two waves should be either or nearly equal. A good contrast between a 

maxima and minima can only be obtained if the amplitudes of two waves are equal or nearly 

equal. 

https://files.askiitians.com/cdn1/images/20171213-134633985-8342-conditions-for-interference.png
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(c) The two sources should be narrow. A broader source can be supposed to be a combination of 

a number of narrow sources assembled side-by-side. Interference patterns due to these narrow 

sources may overlap each other. 

(d) The sources should be close to each other. The fringe width varies inversely as distance „d‟ 

between the two sources. So, interference pattern will be more clear and distant if „d‟ is small. 

(e) The two sources should be coherent one. 
 

Young’s Double Slit Experiment 

The phenomenon of interference was first observed and demonstrated by Thomas Young in 

1801. The experimental set up is shown in figure. 

Light from a narrow slit S, illuminated by a monochromatic source, is allowed to fall on two 

narrow slits A and B placed very close to each other. The width of each slit isabout 0.03 mm and 

they are about 0.3 mm apart. Since A and B are equidistant from S, light waves from S reach A 

and B in phase. So A and Bacts as coherent sources. 

 

 

 

 

 

 

Accordingto Huygen‟s principle, wavelets from A and B spread out and overlappingtakes place 

to the right side of AB. When a screen XY is placed at a distance of about 1 meter from the slits, 

equally spaced alternate bright and dark fringes appear on the screen. These are called 

interference fringes or bands. Using an eyepiece, the fringes can be seendirectly. At P on the 

screen, waves from A and B travel equal distancesand arrive in phase. These two waves 

constructively interfere and bright fringe is observed at P. This is called central bright fringe. 

When one of the slits is covered, the fringes disappear and there is uniform illumination on the 

screen. This shows clearly that the bands are due to interference. 

Let d be the distance between two coherent sources A and B of wavelength λ. A screen XY is 

placed parallelto AB at a distance D from the coherent sources. C is the midpoint of AB. O is a 

point on the screen equidistant from A and B. P is a point at a distance x from O, as shown in Fig 
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5.17. Waves from A and B meet at P in phase or out of phase depending upon the path difference 

between two waves draw AM perpendicular to BP. 

The path difference δ = BP – AP 

AP = MP 

δ = BP – AP = BP – MP = BM 

 

In right angled? ABM, BM = d sin θ If θ is small, 

sin θ = θ 

The path difference δ = θ.d  

In right angled triangle COP, tan θ = OP/CO = x/D 

For small values of θ, tan θ = θ 

Thus, the path difference δ = xd/D 

 

Bright Fringes 

By the principle of interference, condition for constructive interference is the path difference = 

nλ 

xd/D = nλ 

Here, n = 0,1,2.....indicate the order of bright fringes 

So, x = (D/d) nλ 

This equation gives the distance of the n
th

 bright fringe from the point O. 

https://files.askiitians.com/cdn1/images/20171213-13474203-48-interference-band-width.png
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Dark Fringes 

 

By the principle of interference, condition for destructive interference is the 

 path difference = (2n-1)λ/2 

Here, n = 1,2,3 … indicate the order of the dark fringes. 

So, x = (D/d) [(2n – 1) λ/2] 

This equation gives the distance of the n
th

 dark fringe from the point O. Thus, on the screen 

alternate dark and bright bands are seen on either side of the central bright band. 

Band Width (β) 

The distance between any two consecutive bright or dark bands is called bandwidth. 

The distance between (n+1)
th

 and n
th

 order consecutive bright fringes from O is given by, 

xn+1 – xn = [(D/d) [(n+1) λ] – (D/d) [(n)λ]] = (D/d) λ 

Bandwidth, β = (D/d) λ 

Similarly, it can be proved that the distance between two consecutive dark bands are also equal 

to (D/d) λ. Since bright and dark fringes are of same width, they are equispaced on either side of 

central maximum. 

 

Condition for Obtaining Clear and Broad Interference Bands 

https://files.askiitians.com/cdn1/images/20171213-134642813-8049-dark-fringes.gif
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The screen should be as far away from the source as possible. 

The wavelength of light used must be larger. 

The two coherent sources must be as close as possible. 

 

Interference in Thin Film by Reflection 

When light is incident on a plane parallel thin film, some portion gets reflected from the 

upper surface and the remaining portion is transmitted into the film. Again, some portion of the 

transmitted light is reflected back into the film by the lower surface and emerges through the 

upper surface. These reflected light beams superimpose with each other, producing interference 

and forming interference patterns. 

 
 

Fig Interference in thin film 

 

Consider a transparent plane parallel thin film of thickness „t „ with refractive index 𝜇. 

Let a monochromatic light ray AB be incident at an angle of incidence of „i‟ on the upper surface 

of the film. BE and BC are the reflected and transmitted light rays. Let the angle of refraction is 

„r‟. The ray BC will be reflected into the film and emerge through the film in the form of light 

ray DF. These two light rays superimpose and depending upon the path difference between them, 

they produce interference patterns. 

To know the path difference, draw the normal DG to BE. From the points D and G onwards, the 

light rays travel equal distances. By the time the light ray travels from B to G, the transmitted 

light ray has to travel from B to C and C to D. 

The path difference between light rays (1) and (2) is, 

 

Path difference= 𝜇(BC+CD) in film – BG in air               →(1) 

Consider the ∆BCH, cos r = 
𝐻𝐶

𝐵𝐶
 

BC = 
𝐻𝐶

cos 𝑟
 =

𝑡

cos 𝑟
 

Similarly, from ∆DCH, CD= 
𝑡

cos 𝑟
 

                                                                BC = CD = 
𝑡

cos 𝑟
                                                 →(2) 
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To calculate BG, first BD which is equal to (BH+HD) has to be obtained. 

From ∆BHC                                              tan r = 
𝐵𝐻

𝐶𝐻
 = 

𝐵𝐻

𝑡
 

                                                                      BH = t tan r 

Similarly,                                                    HD = t tan r 

                                            BD = BH+ HD = 2t tan r (∵BH = HD)                              →(3) 

From ∆ BGD,                                             sin i = 
𝐵𝐺

𝐵𝐷
 

                                                          BG=BD sin i = 2t tan r sini                                  

From Snell‟s law,   sin i = 𝜇 sin r 

                                                                     BG= 2 𝜇t tan r sin r                                   →(4)                   

Substituting the above values in Eq. (1) 

                                            Path difference= 
2𝜇𝑡

cos 𝑟
 - 2 𝜇t tanr sinr 

                                                                     = 
2𝜇𝑡

cos 𝑟
 - 

2𝜇𝑡 𝑠𝑖𝑛2 𝑟

cos 𝑟
 

                                                                     = 
2𝜇𝑡

cos 𝑟
(1-𝑠𝑖𝑛2 𝑟)=

2𝜇𝑡

cos 𝑟
𝑐𝑜𝑠2r 

                                                                     = 2𝜇t cos r                                                 →(5)    

At the point B, reflection occurs from the upper surface of the thin film (denser medium). Light 

ray (1) undergoes an additional phase change of 𝜋 or an additional path difference of
𝜆

2
 

                                                  Total path difference = 2𝜇t cos r + 
𝜆

2
 

When the path difference is equal to integral multiple of 𝜆 then the rays (1) and (2) meet in phase 

and undergo constructive interference. 

The condition for bright fringe is 

                                                                2𝜇t cos r + 
𝜆

2
 = n 𝜆 

                                                2𝜇t cos r = (2n-1) 
𝜆

2
         where n= 0,1,2,3…              →(6)                     

When the path difference is equal to half integral multiple of 𝜆 then the rays (1) and (2) meet in 

out of phase and undergo destructive interference. 

The condition for dark fringe is 

                                                              2𝜇t cos r + 
𝜆

2
= (2n-1) 

𝜆

2
 

                                                   2𝜇t cos r =n 𝜆        where n=0, 1, 2, 3…                 →(7)                     

Depending on the above conditions, the interference pattern consists of bright and dark fringes. 

 

Newton’s Rings 

Newton‟s rings are one of the best examples for the interference in a nonuniform thin 

film. When a Plano-convex lens with its convex surface is placed on a plane glass plate, an air 

film of increasing thickness is formed between the two. The thickness of the film at the point of 

contact is zero. If monochromatic light is allowed to fall normally and the film is viewed in the 

reflected light, alternate dark and bright rings concentric around the point of contact between the 

lens and glass plate are seen. These circular rings were discovered by Newton and are called 

Newton‟s rings. 
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Experimental Arrangement 

 

 

                                                  Fig Newton’s rings (Experimental set up) 

 

The experimental arrangement is as shown in fig. The Plano-convex lens (L) of large 

radius of curvature is placed with its convex surface on a plane glass plate P). The lens makes the 

contact with the plate at „O‟. The monochromatic light falls on a glass plate G held at an angle of 

45° with the vertical. The glass plate G reflects normally a part of the incident light towards the 

air film enclosed by the lens L and the glass plate P. A part of the light is reflected by the curved 

surface of the lens L and a part is transmitted which is reflected back from the plane surface of 

the plate. These reflected rays interfere and give rise to an interference pattern in the form of 

circular rings. These rings are seen near the upper surface of the air film through the microscope. 

 

Explanation of Newton’s Rings 

 
                                            Fig. Formation of Newton’s rings 

 

Newton‟s rings are formed due to interference between the light rays reflected from the 

top and bottom surfaces of air film between the plate and the lens. The formation of Newton‟s 

rings can be explained with the help of Fig. A part of the incident monochromatic light AB is 

reflected at B (glass-air boundary) in the form of the ray (1) with any additional phase (or path) 

change. The other part of light is refracted along BC. Then at C (air-glass boundary), it is again 

reflected in the form of the ray (2) with additional phase change of 𝜋 or path change of
𝜆

2
. 

As the rings are observed in the reflected light, the path difference between them is 2𝜇t cos r +
𝜆

2
. 

For air film𝜇 =1 and for normal incidence r=0, path difference is 2t +
𝜆

2
. 
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At the point of contact t=0, path difference is 
𝜆

2
, i.e., the reflected light at the point of contact 

suffers phase change of 𝜋. Then the incident and reflected lights are out of phase and interfere 

destructively. Hence the central spot is dark. 

The condition for bright ring is 2t + 
𝜆

2
 = n 𝜆 

                                                2t= (2n-1)
𝜆

2
         where n=1, 2, 3… 

The condition for dark ring is  

                                                            2t + 
𝜆

2
= (2n+1)

𝜆

2
 

                                                       2t = n 𝜆 where n= 0,1,2,3… 

For monochromatic light, the bright and dark rings depend on thickness of the air film. For a 

Newton‟s rings system, the focus of points having same thickness lie on a circle having its centre 

at the point of contact. Thus, we get bright and dark circular rings with the point of contact as the 

centre. 

 

Theory of Newton’s Rings 

 
 

                                                                Fig.  Theory of Newton’s rings 

 

To find the diameters of dark and bright rings, let „L‟ be a lens placed on a glass plate P. 

The convex surface of the lens is the part of spherical surface (Fig.) with center at „C‟. Let R be 

the radius of curvature and r be the radius of Newton‟s ring corresponding to the film thickness 

„t‟. 

From the property of a circle, NA x NB = NO x ND 

Substituting the values, r x r = t x (2R-t) 

                                                                              𝑟2= 2Rt-𝑡2 

As„t‟ is small, 𝑡2 will be negligible 

                                                                              𝑟2= 2Rt 

                                                                      t=
𝑟2

2𝑅
 

For bright ring, the condition is 

                                                                  2t= (2n-1)
𝜆

2
 

                                                               2
𝑟2

2𝑅
 = (2n-1)

𝜆

2
 

𝑟2= 
(2n−1)𝜆𝑅 

2
 

Replacing r by
𝐷

2
, the diameter of n

th
 bright ring will be 
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𝐷2

4 
 = 

(2n−1)𝜆𝑅

2
 

                                                               D = 2𝑛 − 1 2𝜆𝑅 

                                                               D α 2𝑛 − 1 

                                                               D 𝑜𝑑𝑑 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 

 

Thus, the diameters of the bright rings are proportional to the square root of odd natural numbers.  

 
 

Fig: Newton’s ring pattern 

For dark ring, the condition is 

 

2t = n 𝜆 

2
𝑟2

2𝑅
 = n 𝜆 

                                         𝑟2= n 𝜆R 

D2= 4 n 𝜆R 

D=2 𝑛 𝜆𝑅 

                                    D∝  𝑛 

                                          D∝  𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 

 

Thus, the diameters of dark rings are proportional to the square root of natural numbers. 

With the increase in the order (n), the rings get closer and the fringe width decreases and are 

shown in Fig 7.5. 

 

Determination of Wavelength of a Light Source 

Let R be the radius of curvature of a Plano-convex lens, λ be the wavelength of light 

used. Let 𝐷𝑚  and 𝐷𝑛  are the diameters of m
th 

and n
th

 dark rings respectively. Then 

𝐷𝑚
2 =4m𝜆R 

 

And 𝐷𝑛
2=4(n) 𝜆R 

 

𝐷𝑛
2−𝐷𝑚

2 =4(m-n)  𝜆R 

 

𝜆=
𝐷𝑛

2−𝐷𝑚
2

4(m−n)R
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                                                      Fig Plot of D
2
 with respect to number of rings 

 

Newton‟s rings are formed with suitable experimental setup. With the help of travelling 

microscope, the readings for different orders of dark rings were noted from one edge of the rings 

to the other edge. The diameters of different orders of the rings can be known. A plot between 

𝐷2 and the number of rings gives a straight line as shown in the fig. 

From the graph, 
𝐷𝑛

2−𝐷𝑚
2

(m−n)
 = 

𝐴𝐵

𝐶𝐷
 

 

The radius R of the Plano-convex lens can be obtained with the help of a Spectrometer. 

Substituting these values in the formula, 𝜆 can be calculated. 

 

Determination of Refractive Index of a Liquid 

The experiment is performed when there is an air film between glass plate and the Plano-

convex lens. The diameters of m
th 

and n
th

 dark rings are determined with the help of travelling 

microscope. We have 

                                                      𝐷𝑛
2−𝐷𝑚

2 = 4(m-n) 𝜆R                                                →(8)   

 

The system is placed into the container which consists of the liquid whose refractive index (𝜇) is 

to be determined. Now, the air film is replaced by the liquid film. Again, the diameters of the 

same m
th

 and n
th

dark rings are to be obtained. Then we have 

    𝐷𝑛
′2−𝐷𝑚

′2=
4(m−n) 𝜆R

𝜇
     →(9)                                                      

μ = 
𝐷𝑛

2−𝐷𝑚
2

𝐷𝑛
′ 2−𝐷𝑚

′ 2       

      →(10) 

Using the above formula, „μ‟ can be calculated. 

 

Michelson Interferometer: 
In Michelson interferometer the two coherent sources are derived from the principle of division of 

amplitude. The parallel light rays from a monochromatic source are incident on beams splitter (glass 

plate) G1 which is semi silvered on its back surface and mounted at 45° to the axis. Light ray incident „O' 

is refracted into the glass plate and reaches point A , where where it is partially reflected (ray 1) and 

partially transmitted ray 2. These rays then fall normally on mirrors M1 (movable) and M2 (fixed) and are 

reflected back. These reflected rays reunite at point A again and follow path AT. Since these two rays are 

derived from same source(at A) and are therefore coherent, can interfere and form interference pattern. 
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In this geometry, the reflected ray 1, travels an extra optical path, a compensating plate G2 of 

same thickness as plate G1 ) is inserted in the path of ray 2 such that G2 is parallel to G1 . This introduces 

the same optical path in glass medium for ray 2 as ray 1 travels in plate G1 (therefore is called a 

compensating plate). Any optical path difference between the ray 1 and ray 2 is now equal to actual path 

difference between them. 

 

To understand, how the fringes are formed, refer to fig. An observer at 'T' will see the images of 

mirror M2 and source S ( M'2 and S' respectively) through beam splitter along with the 

mirror M1. S1 and S2 are the images of source in mirrors M1 and M2 respectively. The position of these 

elements in figure depends upon their relative distances from point A.        
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Fig. Michelson Inferometer (Experimental Set-up) 

 

 

 

 

 

 

 

                                                                Fig.  Formation of Fringes 
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Light from a point (say P) from extended source appears to come from corresponding coherent 

points P1 and P2 on S1 and S2 . 

                

Fig. 

If „d ' is the separation between mirrors M1 and M2' then „2d' is the separation between virtual 

sources S1 and S2 The path difference between the two parallel rays coming from 

point P1 and P2 respectively and reaching the eyepiece is equal to 2d Cosθ 

                                            2d Cosθ = nλ (Bright) 

                                           2d Cosθ = (2n +1) 
λ

2
 (dark) 

These fringes are concentric rings or straight line depending upon the mutual inclination of 

mirrors M1 and M2 (M2’). If mirrors M1 and M2 are parallel to each other the case similar to the air film 

between two parallel plate and fringes formed are concentric rings. 

Michelson interferometer is used to determine the wavelength of monochromatic source, the difference 

between two wavelengths, determination of thickness/refractive index of thin transparent sheet.  

Introduction to Diffraction  

 

The wave nature of light is further confirmed by the optical phenomenon of diffraction. The 

word „diffraction‟ is derived from the Latin word diffractus which means to break to pieces. It is 

common experience that waves bend around obstacles placed in their path. When light waves 

encounter an obstacle, they bend round the edges of the obstacle. This bending is predominant 

when the size of the obstacle is comparable to the wavelength of light. The bending of light 

waves around the edge of an obstacle is diffraction. It was first observed by Gremaldy. 

DIFFRACTION 
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                                                                        Fig Diffraction 

 

As shown in fig., when light falls on an obstacle, the corresponding geometrical shadow 

on the screen should be completely dark. In practice, the geometrical shadow consists of bright 

and dark fringes. These fringes are due to the superimposition of bended light waves around the 

corners of an obstacle. The amount of bending depends upon the size of the obstacle and 

wavelength of light. 

When the light falls on an obstacle whose size is comparable with the wavelength of 

light, then the light bends around the edges or corners of the obstacle and enters into the 

geometrical shadow. This bending of light is known as diffraction. The bright and dark fringes in 

the shadow form a diffraction pattern. 

The diffraction phenomena are broadly classified into two types: 

 

Fresnel diffraction 

To study diffraction, there should be a light source, obstacle and screen. In this class of 

diffraction, the source and screen are placed at finite distances from the obstacle. To study this 

diffraction, lenses are not necessary as the source and screen are at a finite distance. This 

diffraction can be studied in the direction of propagation of light. The incident wave fronts are 

either spherical or cylindrical. 

 

Fraunhofer diffraction 

In this class of diffraction, the source and screen are placed at infinite distances from the 

obstacle. Due to the above fact, lenses are needed to study the diffraction. This diffraction can be 

studied in any direction. In this case, the incident wave front is plane. 
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Fraunhofer Diffraction at Single Slit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Fraunhofer diffraction at single slit 

Consider the width of the slit AB is equal to “e”. Let a plane wave front WWʹ of monochromatic 

light of wavelength λ propagating normally towards the slit is incident on the slit AB. The 

diffracted light through the slit is focused by means of a convex lens on a screen placed in the 

focal plane of the lens. Every point on the wave front in the slit will act as a source of secondary 

wavelets. The secondary wavelets travelling in the direction of OPo are brought to focus at Po on 

the screen SSʹ by using a converging lens L. The secondary wavelets from AB which are brought 

to focus at Po have no path difference. Hence the intensity at Po is high and it isknown as central 

maximum. The secondary wavelets in the slit AB which make an angle „θ‟ with OPo direction are 

brought to a point P1 on the screen. 

  

 Intensity at point P1 depends on the path difference between the wavelets at A and at B 

reaching to point P1. To find the path difference, a perpendicular AC is drawn to BR form A. 

Now the path difference between the secondary wavelets from A and B in the direction of OP1 is 

BC. 
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 Path difference = BC = AB sin = e sinθ  

           corresponding phase difference = 
2𝜋

𝜆
 x path difference = 

2𝜋

𝜆
 xe sinθ 

Let the width of the slit be divided into „n‟ equal parts and the amplitude of the wave from each 

part is „a‟. The phase difference between any two successive waves from these parts would be  

1

𝑛
   [total phase]  =    

1

𝑛
 [ 

2𝜋

𝜆
 e sinθ] = d (say)  

Using the method of vector addition of amplitudes, the resultant amplitude R is given by  

                                                               R = 
𝑎 sin 𝑛𝑑 /2

sin 𝑑/2
 

                                                                  =  
𝑎𝑠𝑖𝑛 (𝜋𝑒 sin

𝜃

𝜆
)

𝑆𝑖𝑛 (𝜋𝑒 sin
𝜃

𝑛𝜆

 

                                                                  =  a 
sin 𝛼

sin 𝛼/𝑛
 

                                                                  =  na 
sin 𝛼

𝛼
         (i.e. na = A) 

R   =  A  
sin 𝛼 

𝛼
 

                                                  Intensity = I = R= A
2
 (

sin 𝛼

𝛼
)
2     

………………… (1)
 

 

Principal maximum: 

The resultant amplitude R can be written in ascending powers of α as 

                        R = A[ α -  
α2

3!
+

α4

5!
− 

α6

7!
 + …] 

I will be maximum, when the value of R is maximum. For maximum value of R, the negative 

terms must vanish, i.e., α = 0  

𝜋𝑒 sin 𝜃

𝜆
= 0 

                                                                         sin θ = 0 

                                                                              θ = 0                       ………………… (2) 

                                                                   Then, R = A 

                                                                  Imax = R
2
 = A

2
                     ………………… (3) 

 

The condition θ = 0 means that the maximum intensity is formed at Po and is known as principal 

maximum. 
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Minimum Intensity 

I will be minimum, when sin α = 0 

α = ± π, ± 2π, ± 3π 

α = ± mπ 
𝜋𝑒 sin 𝜃

𝜆
= ± mπ 

                               e sinθ = ± mλ…………… (4) 

where m = 1, 2, 3, … 

Thus, we obtain the points of minimum intensity on either side of the principal maximum. For m 

= 0, sinθ = 0, which corresponds to principal maximum. 

Secondary maxima: 

In between the minima, we get secondary maxima. The positions can be obtained by 

differentiating the expression of I w.r.t. α and equating to zero. We get                    

𝑑𝐼

𝑑𝛼
=  

𝑑

𝑑𝛼
 [ A

2
 (

sin 𝛼

𝛼
)
2
] = 0 

                                                      A
2
[

2sin 𝛼

𝛼
. 
αcos α −𝑠𝑖𝑛𝛼

α2
 ] = 0 

                                      Either sin α = 0 or αcos α – sin α = 0 

                                                sin α = 0 gives positions of minima. 

 Hence the positions of secondary maxima are given by α cos α – sin α = 0 

                       α = tan α              ………………… (5) 

The values of α satisfying the above equation are obtained graphically by plotting the curves y = 

α and y = tan α on the same graph. The points of intersection of the two curves gives the values 

of α which satisfy the above equation. The plots of y = α and y = tan α are shown in Fig. 2 
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Fig. 2 Plots of y = α and y = tan α 

 The points of intersections are  α = 0, ± 
3𝜋

2
 , ± 

5𝜋

2
, ….. 

substituting the above values in equation (1), we get the intensities in various maxima. 

 

                                              α = 0,  Io = A
2                                                          

(Principal maximum) 

                                              α = 
3𝜋

2
,  Io = A

2 
[

sin 3𝜋/2

3𝜋/2
 ]

2
 ≈ 

A2

22
(1

st
 secondary maximum) 

                                              α = 
5𝜋

2
,  Io = A

2 
[  ] ≈ 

A2

62
(2

nd
 secondary maximum) 

 

 

Fig. 3 Intensity distribution of diffraction due to single slit 

 

Fraunhofer Diffraction at Double Slit 

Let S1 and S2 be double slits of equal widths e and separated by a distance d. The distance 

between the middle points of the two slits is (e +d). A monochromatic light of wave length λ is 

incident normally on the two slits. The light diffracted from these slits is focused by a lens on the 

screen placed in the focal plane of the lens. The diffraction at two slits is the combination of 

diffraction as well as interference, i.e., the pattern on the screen is the diffraction pattern due to a 

single slit on which a system of interference fringes is superimposed. When a plane wave front is 

incident normally on two slits, the secondary wavelets from the slits travel uniformly in all 

directions. The wavelets travelling in the direction of incident light come to a focus at 𝑃0 while 

the wavelets travelling in a direction making an angle𝜃, come to focus at 𝑃1. 

 

 
 

Fraunhofer diffraction-double slit 
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From the study of diffraction due to single slit, the resultant amplitude = 
𝐴 sin 𝛼

𝛼
 

Where,  

     𝛼 = 
𝜋𝑒  𝑠𝑖𝑛𝜃

𝜆
. 

Since a double slit is used, from each slit a wavelet of amplitude 
𝐴 sin 𝛼

𝛼
 in a 

directionθ is obtained. These two wavelets interfere and meet at a point 𝑃1 on the screen. To 

calculate the path difference between the wavelets, draw a normal 𝑆1𝐾 to the wavelet through𝑆2. 

 

                                                   Path difference = 𝑆2𝐾 

          =  𝑒 + 𝑑  sin 𝜃 

          Phase difference 𝛿 = 
2𝜋

𝜆
 𝑒 + 𝑑  sin 𝜃 →(6) 

 

 
                                                              Vector addition method 

 

To find the resultant amplitude at 𝑃1vector addition method is used. (Fig. 7.12) in which the two 

sides of a triangle are represented by the amplitudes through 𝑆1 and 𝑆2.  The third side gives the 

resultant amplitude. 

From the figure, 

 

 𝑂𝐻 2 =  𝑂𝐺 2 +  𝐺𝐻 2 + 2  𝑂𝐺  𝐺𝐻 𝑐𝑜𝑠𝛿 

                       𝑅2  =  
𝐴 sin 𝛼

𝛼
 

2

 +  
𝐴 sin 𝛼

𝛼
 

2

 + 2  
𝐴𝑠𝑖𝑛  𝛼

𝛼
  

𝐴𝑠𝑖𝑛  𝛼

𝛼
 𝑐𝑜𝑠𝛿 

                                                     = 𝐴2 𝑠𝑖𝑛2𝛼

𝛼
[2+2𝑐𝑜𝑠𝛿] 

                                                     = 2 
𝐴𝑠𝑖𝑛𝛼

𝛼
 

2
 1 + 𝑐𝑜𝑠𝛿  

         = 2 
𝐴𝑠𝑖𝑛𝛼

𝛼
 

2
 1 + 2𝑐𝑜𝑠2    𝛿 2 − 1   

                                                     = 4 
𝐴𝑠𝑖𝑛𝛼

𝛼
 

2

𝑐𝑜𝑠2 𝛿 2  

𝑅2 = 4𝐴2  
𝑠𝑖𝑛𝛼

𝛼
 

2

𝑐𝑜𝑠2  
𝜋 𝑒+𝑑 𝑠𝑖𝑛𝜃

𝜆
  

                                           Let 𝛽 = 
𝜋 𝑒+𝑑 𝑠𝑖𝑛𝜃

𝜆
 

𝑅2 = 4𝐴2  
𝑠𝑖𝑛𝛼

𝛼
 

2

𝑐𝑜𝑠2𝛽 

The resultant intensity              I = 𝑅2  = 4𝐴2  
𝑠𝑖𝑛𝛼

𝛼
 

2

𝑐𝑜𝑠2𝛽 → (7) 
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From the above expression, it is clear that the resultant intensity is the product of two factors, i.e, 

 

1. 𝐴2  
𝑠𝑖𝑛𝛼

𝛼
 

2

 which represents the diffraction pattern due to a single slit 

2. 𝑐𝑜𝑠2𝛽, which gives the interference pattern due to wavelets from double slits. The resultant 

intensity is due to both diffraction and interference effects. 

 

Diffraction Effect 

The diffraction term 𝐴2  
𝑠𝑖𝑛𝛼

𝛼
 

2

 gives the principal maximum as the centre of the 

screen with alternate minima and secondary maxima of decreasing intensity. We get 

principal maximum for 𝜃 = 0. We get minima for 𝑠𝑖𝑛𝛼 = 0 

 

  𝛼 =±𝑚𝜋, where m = 1, 2, 3… 

 
𝜋𝑒  𝑠𝑖𝑛𝜃

𝜆
 = ±𝑚𝜋 

𝑒 𝑠𝑖𝑛𝛳 = ±𝑚𝜆 

 

The positions of secondary maxima occur for  

 

    𝛼 =
±3𝜋

2
 ,

±5𝜋

2
 ,

±7𝜋

2
 ….. 

Interference Effect 

 

The interference term cos
2
β gives the equidistant bright and dark fringes. 

The maxima will occur for cos
2
β = 1 

β =±𝑛𝜋,     where n = 0, 1, 2, 3… 

β = 0, ± π, ± 2π, ± 3π………… 

 
𝜋 𝑒+𝑑 𝑠𝑖𝑛𝛳

𝜆
 = ±nπ 

 𝑒 + 𝑑 𝑠𝑖𝑛𝛳 = ±𝑛𝜆 

 

The minima will occur for cos
2
β =0 

 

                                       β =±  2𝑛 + 1 
𝜋

2
           𝑤𝑕𝑒𝑟𝑒 𝑛 =0, 1, 2, 3… 

 

 

                      (e+d) sin𝛳 = ±(2𝑛 + 1)
𝜆

2
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Intensity Distribution 

 

Figure 7.13 (a) and (b) represents the intensity variations due to diffractions as well as 

interference effect individually. When both effects are combined then the resultant intensity 

variation is obtained. From the figure it is clear that the resultant minima are not equal to zero, 

still they have some minimum intensity due to interference effect. 

 
(a) Diffraction effect (b) Interference effect (c) Resultant intensity 

4. Discuss the Fraunhofer diffraction due to a N-slits and obtain the intensity distribution 

and positions of maxima and minima. 

                                                               (or) 

Give the construction and theory of a plane diffraction grating of the transmission type and 

explain the formation of spectra by it. 

Ans. 

Construction: 

An arrangement which consists of a large number of parallel slits of the same width and 

separated by equal opaque spaces is known as diffraction grating. Fraunhofer used the first 

grating consisting of a large number of parallel wires placed side by side very closely side by 

side at regular intervals. The diameters of the wires were of the order of 0.05 mm diameter and 

their spacing, varied from 0.0533 mm to 0.687 mm. Now gratings are constructed by ruling 

equidistant parallel lines on a transparent material such as glass, with a fine diamond point. 

Usually 15,000 lines are drawn on one-inch width of the grating. The ruled lines are opaque to 

light while the space between any two lines is transparent to light and acts as a slit. This is 

known as plane transmission grating. 
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Theory: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 1 Diffraction grating  

 

Fig. 1, represents the section of a plane transmission grating placed perpendicular to the 

plane of the paper. Let „e‟ be the width of each slit and these slits are separated by equal opaque 

regions part of each width „d‟. Then (e +d) is known as grating element.  XY is the screen placed 

perpendicular to the plane of a paper. Suppose a parallel beam of monochromatic light of 

wavelength λ be incident normally on the grating. By Huygen‟s principle, each of the slit sends 

secondary wavelets in all directions. The secondary wavelets travelling in the same direction of 

incident light will come to a focus at a point P1 of the screen as the screen is placed at the focal 

plane of the convex lens. The point Po will be a central maximum. Now consider the secondary 

waves travelling in a direction inclined at an angle θ with the direction of the incident light. 

These waves reach point P1 on passing through the convex lens in different phases. As a result, 

dark and bright bands on both sides of central maximum are obtained. 

 The intensity at point P1 may be considered by applying the theory of Fraunhofer 

diffraction at a single slit. The resultant amplitude due to diffraction at single slit is 
𝐴 sin 𝛼 

𝛼
 , 

which is now at the middle point of each slit where, α = πe sinθ/λ. Let us assume that there are N 

slits on the grating. The path difference between the corresponding points is (e + d) sin θ and in 

terms of phase difference it is 
2𝜋

𝜆
(e + b) sinθ = 2β. The resultant of N amplitudes, each of

𝐴 sin 𝛼 

𝛼
 

with common phase difference (2β) between consecutive diffracted amplitudes can be obtained 

by the vector addition method. The resultant amplitude (R) of the N amplitudes each of  
𝐴 sin 𝛼 

𝛼
 is 

                                                       R = 
𝐴 sin 𝛼 

𝛼
 .

sin 𝑁𝛽 

sin 𝛽 
                         (1) 

 

            and intensity                       I = R
2
 =  

𝐴 sin 𝛼 

𝛼
 2(

sin 𝑁𝛽 

sin 𝛽 
)
 2              

(2) 
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The value  
𝐴 sin 𝛼 

𝛼
 2 

shows the intensity distribution due to single slit diffraction and sin
2
Nβ/sin

2
β 

shows the combined intensity distribution due interference at all the N slits. 

Discussion of intensity distribution: 

Principal maxima:  

From equation (2), we know that the intensity would be maximum when sin β = 0, where β = 0, 

π, 2π, 3π, …. = nπ and n = 0,1,2, 3, ... 

                                                            Then 
sin 𝑁𝛽  

sin 𝛽 
 = 

0

0
 

The above factor is indeterminate; To find its value, the numerator and denominator are 

differentiated separately.  i.e., by applying the Hospital‟s rule. Thus 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 
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Fig. 3(a) the variation of intensity due to the factor sin
2
 α/α

2
 is represented; (b) the variation of 

intensity due to the factor sin
2
 Nβ/sin

2
β is represented and (c) the resultant variation of intensity 

is represented. 

 

Diffraction Grating 

An arrangement which consists of a large number of parallel slits of the same width and 

separated by equal opaque spaces is known as diffraction grating. Fraunhofer used the first 

grating consisting of a large number of parallel wires placed side by side very closely at regular 

intervals. Now gratings are constructed by ruling equidistant parallel lines on a transparent 

material such as glass with a fine diamond point. The ruled lines are opaque to light while the 

space between any two lines is transparent to light and acts as a slit. 

Commercial gratings are produced by taking the cast of an actual grating on a transparent film 

like that of cellulose acetate. Solution of cellulose acetate is poured on the ruled surface and 

allowed to dry to form a thin film, detachable from the surface. These impressions of a grating 

are preserved by mounting the film between two glass sheets. 

 

 
                                                            Fig7.17 Diffraction Grating 

 

Let „e‟ be the width of the line and „d‟ be the width of the slit. Then (e+d) is known as grating 

element. If „N‟ is the number of lines per inch on the grating, then 

 

N (e+d) =1” =2.54 cm 

e+d= 
2.54

𝑁
 cm 

 

There will be nearly 30,000 lines per inch of a grating. Due to the above fact, the width of the 

slit is very narrow and is comparable to the wavelength of light. When light falls on the grating, 

the light gets diffracted through each slit. As a result, both diffraction and interference of 

diffracted light gets enhanced and forms a diffraction pattern. This pattern is known as 

diffraction spectrum. 

 

Grating Spectrum 

The condition to form the principal maxima in a grating is given by 

(e+d) sin Ѳ = nλ 

Where (e+d) is the grating element and the above equation is known as grating equation. 
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From the grating equation, the following is clear. 

1. For a particular wavelength λ, the angle of diffraction Ѳ is different for principal maxima 

of different orders. 

2. As the number of lines in the grating is large, maxima appear as sharp, bright parallel 

lines and are termed as spectral lines. 

3. For white light and for a particular order of n, the light of different wavelengths will be 

diffracted in different directions. 

4. At the center, Ѳ=0 gives the maxima of all wavelengths which coincides to form the 

central image of the same color as that of the light source. This forms zero order. 

(Fig.2.9) 

5. The principal maxima of all wavelengths forms the first, second, order spectra for n=1,2, 

… 

6. The longer the wavelength, greater is the angle of diffraction. Thus, the spectrum consists 

of violet being in the innermost position and red being in the outermost positions. 

 
                                                                    Fig7.18 Grating Spectrum 

 

7. Most of the intensity goes to zero order and the rest is distributed among other orders. 

8. Spectra of different orders are situated symmetrically on both sides of zero order. 

9. The maximum number of orders available with the grating is nmax=
 𝑒+𝑑 

𝜆
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UNIT-V 

HARMONIC OSCILLATIONS AND WAVES IN ONE DIMENSION 

 

Waves: 

A wave is a disturbance of a medium which transfers energy from one place to 

another place without transport of matter. The medium for ocean waves is water, for 

example.  When a string, fixed at both ends, is given a vertical hit by a stick, a dent 

appears in it that travels along the string.  When it reaches an end point, it reflects and 

inverts and travels toward the other end.  Fig.1 shows the motion of a single 

disturbance. 

 

Figure 1 

If you hold end A of the string (Fig. 2) and try to give it a continuous up-and-down 

motion, with a little adjustment of the pace of oscillations, you can make at least the 

following waveforms: 
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Figure 2 

Each  wave travels from A to B and reflects at B.  When each reflected wave reaches 

point A, it reflects again and the process repeats.  Of course, the up and down motion 

of hand keeps putting energy into the system by constantly generating waves that are 

in phase with the returned waves creating the above waveforms.  Although the waves 

appear to be standing as they are called "standing waves,"  they are actually traveling 

back-and-forth along the string.  The subject of waves is lengthy, complicated, and 

mathematically very involved.  The above is enough to give you an idea. 

Types of Waves: 

There are two classifications: one classification of waves 

is: mechanical and electromagnetic.  

Mechanical waves require matter for their transmission.  Sound waves, ocean waves, 

and waves on a guitar string are examples.  Air, water, and metal string are their 

media (matter), respectively. 

Electromagnetic waves travel both in vacuum and matter.  If light (an 

electromagnetic wave itself) could not travel in vacuum, we would not see the Sun.  

Radio waves, ultraviolet waves, and infrared waves are all electromagnetic waves and 

travel in vacuum. 

Waves are also classified as transverse and longitudinal (See Fig. 3). 

For a transverse wave the disturbance direction is perpendicular to 

the propagation direction.  Water waves are transverse.  Waves on guitar strings are 

also transverse. 
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For a longitudinal wave the disturbance direction is parallel to 

the propagation direction.  Waves on a slinky as well as sound waves are 

longitudinal. 

 

Figure 3 

Frequency ( f  ): 

The frequency f  of a wave is the number of full waveforms generated per second.  

This is the same as the number of repetitions per second or the number of oscillations 

per second.  The SI unit for frequency is (1/s), or (s
-1), called "Hertz (Hz)." 

Period ( T ): 

Period T is the number of seconds per waveform, or the number of seconds per 

oscillation.  It is clear that frequency and period are reciprocals. 

T = 1/f 

Also, recall the useful relation between frequency  f  and the angular speed  ω :     

ω = 2π f.    
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ω is the number of radians per second, but f is the number of turns or oscillations 

per second.  Each turn is 2π radians. 

  

Wavelength ( λ ): 

Wavelength  λ  is the distance between two successive points on a wave that are in the 

same state of oscillation.  Points A and B in Fig. 4 are the nearest or successive points 

that are both the same amount passed the maximum and therefore in the same state of 

oscillation. 

 

Figure 4 

Wavelength may also be defined as the distance between a peak to the next, or the 

distance between a trough to the next, as shown above.  

Also pay attention to Fig. 5.  It shows that the distance between any node and the 

anti-node next to it is λ/4. 

 

Figure 5 
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Wave Speed ( v ): 

The wave speed is the distance a wave travels per second.  A wave source with 

frequency f generates f wavelengths per second and since each wavelength is λ units 

long; therefore, the wave speed formula is: 

 v = f λ. 

Example 1:  The speed of sound waves at STP condition is 331m/s.  Calculate 

the wavelength of a sound wave with a frequency of 1324Hz at STP. 

Solution:  v = f λ ;    λ = v/f    ;    λ = (331m/s)/(1324/s) = 0.250m. 

  

The Vibrating String 

     A stretched string fixed at 

both ends and brought into 

oscillation forms a "vibrating 

string."  An example is a violin 

string on which waves keep 

traveling back-and-forth between 

its ends.  If a violin string is 

observed closely or by a 

magnifying glass, at times it 

appears as shown on the right. 

     The higher the pitch of the 

note it plays, the higher the 

frequency of oscillations and the 

shorter the wavelength or the 

sine-waves that appear along its 

length.  The waveforms appear 

to be stationary, but in reality 

they are not.  They are 

called "standing waves." 

 

Figure 6 

 Nodes are points of zero 

oscillation  and antinodes are points 

of maximum oscillation as shown in Fig. 

6. 
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Now, look at the following example: 

 Example 2:  In a 60.0-cm long violin 

string, three antinodes are observed.  Find 

the wavelength of the waves on it. 

 Solution:  Each loop has a length of  

60.0cm /3  = 20.0cm. 

    Each wavelength (a full sine wave) 

contains two of such loops; therefore,  

 

Fig. 7 

λ = 40.0cm. 

Speed of Waves in a Stretched String: 

 The speed of waves in a stretched 

string depends on the tension F in 

the string as well as the mass per 

unit length μ of the string as 

explained below: 

The more a string is stretched, the 

faster waves travel in it.  

The formula that relates tension F in 

the string and the waves speed v is: 

 

Proof:  

If we model the peak of a wave as it passes through the medium (the string) at 

speed v  as shown in Fig. 8, we may think that the peak segment is under a tensile 

force F that pulls it in opposite directions.The hump can be looked at as a portion of a 

circle from A to B with its center at C.   The hump is being pulled down by a force 

of magnitude 2Fsin .   This pulling down force passes through the center and 

therefore acts as a centripetal force for the segment that is equal 

to Mv2/R ; therefore,  2Fsin  = Mv2/R.   For small angles and in 

radians, sin  =  .   The formula becomes: 

2F  = Mv2/R       (1)     where  M = the mass of the string segment. 
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   If we calculate mass M of the 

hump, it results  

in  M = 2μRθ.   

This is because the length of the 

hump is 2Rθ  and μ is the mass 

per unit length of the string.  In 

other words,  

 μ= mass /length.  Eqn. 

(1) takes the form: 

2F  = 2μRθ v2/R     (2) 

 Solving for v results in: 

  

 

 

Figure 8 

  

Example : A 120-cm guitar string is under a tension of 400N.  The mass of the 

string is 0.480 grams.  Calculate (a) the mass per unit length of the string and (b) the 

speed of waves in it.   (c) In a diagram show the number of (1/2)λ's that appear in this 

string if it is oscillating at a frequency of 2083Hz. 

Solution: (a)  μ = M/L ;   μ = 0.480x10
-3kg/1.20m = 4.00x10

-4 kg/m. 

              (b)   v = (F/μ)1/2 ;  v = [400N/4.00x10
-4kg/m]1/2 = 1000 m/s. 

              (c)   v = f λ ;    λ = v/f ;   λ = (1000m/s)/(2083/s) = 0.480m. 

                    (1/2)λ = 0.480m/2 = 0.240m. 

              The number of (λ/2)'s that fit in this string length of 120cm is 

                        1.20m/0.240m = 5.00, as shown in Fig. 8. 
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Figure 9 

  

Traveling Harmonic Waves: 

We are interested in finding a formula that calculates the y-value at any point in a one 

dimensional medium as harmonic waves travel in it at speed v.  This means that at 

any point x and at any instant t, we want y(x,t).  For harmonic waves, such equation 

has the general form: 

y(x,t) = A sin(kx - ωt + φ) 

  

k is called the wave number and its unit in SI is m
-1.  The above equation is for one 

dimensional harmonic waves traveling along the +x axis.  If the waves are moving 

along the -x axis, the appropriate equation is: 

y(x,t) = A sin(kx + ωt + φ). 

If  y = 0 at t = 0 and x = 0,  then  φ = 0.  It is important to distinguish between the 

wave propagation velocity v (along the x-axis) and the medium's particles 

velocity vy (along the y-axis) as transverse waves pass by the particles of the 

medium.  The wave propagation velocity is V = f λ , but the particles velocity in the 

y-direction is  vy = ∂y/∂t.   The symbol "∂ " denotes "partial derivative." 
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Example : The equation of certain traveling waves is 

  y(x,t) = 0.0450 sin(25.12x - 37.68t - 0.523)  

where x and y are in meters, and t in seconds.  Determine the following: (a) 

Amplitude, (b) wave number, (c) wavelength, (d) angular frequency, (e) frequency, (f) 

phase angle, (g) the wave propagation speed, (h) the expression for the medium's 

particles velocity as the waves pass by them, and (i) the velocity of a particle that is 

at x = 3.50m from the origin at t = 21.0s. 

Solution: Comparing this equation with the general form, results in 

(a) A = 0.0450m ;     (b) k = 25.12m-1 ;    (c) λ = (2π/k) = 0.250m  

(d) ω = 37.68rd/s ;     (e) f = ω/(2π) = 6.00Hz ;    (f)  φ = -0.523 rd ;   

(g) v = f λ =1.50m/s;  (h) vy = ∂y/∂t = 0.045(-37.68) cos (25.12x - 37.68t - 0.523) 

(i) vy(3.5m, 21s) = 0.045(-37.68) cos (25.12*3.5-37.68*21-0.523) = -1.67m/s. 

Standing Harmonic Waves: 

When  two harmonic waves of equal frequency and amplitude travel through a 

medium in opposite directions, they combine and the result can form standing waves. 

If the equation of the wave going to the right is  y1 = A sin(kx - ωt) and that of the one 

going to the left is y2 = A sin(kx + ωt), we may add the two to obtain the equation of 

the combination wave as 

y(x,t) = Asin(kx - ωt) + A sin(kx + ωt) 

Using the trigonometric identity: sin a + sin b = 2sin[(a + b)/2] cos [(a - b)/2], 

 we get:                   y(x,t) = 2Acos(ωt) ∙ sin(kx). 

In this equation, sin(kx) determines the shape of the standing wave and 

2Acos(ωt) determines how its amplitude varies with time. 
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If at t = 0, the red wave that is going 

to the right is in phase with the blue 

wave that is going to the left, they 

add up constructively and 

the amplitude of the sum (the 

gray) is twice each amplitude as 

shown at t = 0. 

At t = T/4 the become completely out 

of phase and cancel each others effect 

to a sum of zero. This is only for a 

very brief instant (the gray becomes a 

straight line). 

At t = T/2, the opposite of t = 0 

occurs.  The two humps become 

troughs and the single trough 

becomes s hump. 

In another half a period the shape of 

the gray (or the sum) become like the 

one at t = 0. 

Confirm the above explanation by 

looking at the different figures shown 

on the right (Fig. 10). 

I 
 

Figure 10 

Resonant Standing Waves in A String: 

In a medium with limited boundary such as a string fixed at both ends, standing waves 

can only be formed for a set of discrete frequencies or wavelengths.  

If you hold one end of a rope, say 19ft long,  and tie the other end of it to a wall 16ft 

away from you, there will be a slack of 3ft in it allowing you to swing it up and down 

and make waves.  By adjusting the frequency of the oscillatory motion you give to the 
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end you are holding, you can generate a sequence of waves in the rope that will have 

an integer number of loops in it.  For a frequency f, there is a corresponding 

wavelength λ such that V = f λ .  

   It is very clear from this equation that, since 

the waves speed, V , in a given medium is 

constant, the product f λ is also constant. 

   This means that if you increase  frequency f, 

the wavelength λ of the waves in the rope has 

to decrease.  

 Of course, for resonance,  the values of such 

frequencies, as was mentioned, are discrete, 

and so are their corresponding wavelengths.  

All you need to do is to adjust your hand's 

oscillations for each case to observe a full 

number of loops in the rope between you and 

the wall.  It is also clear from  Example 

2 that each loop is one half of the 

wavelength in each case.  When the entire 

length of the rope accommodates one loop 

only, it is called the fundamental 

frequency and that is the lowest possible 

frequency. 

   The subsequent 2-loop, 3-loop, 4-loop, and 

... cases are called the 2nd, 3rd, 4th, and .... 

harmonics of that fundamental frequency as 

shown on the right (Fig. 11). 
 

Figure 11 
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 From the above figures, at resonance, the length L of the string is related to the 

number of loops or λ/2 as follows: 

 

  

Example :  Find the frequency of the 4th harmonic waves on a violin string that is 

48.0cm long with a mass of 0.300grams and is under a tension of 4.00N. 

Solution:  Using the above formula,   

f4 = (4/0.96m) ∙ [4.00N/(0.000300kg/0.480m)]1/2  = 333Hz  (Verify). 

The Wave Equation: 

The one-dimensional wave equation for mechanical waves applied to traveling waves 

has the following form: 

 

 where v is the speed of 

waves in the medium such 

that v= ω/k. 

The solution to this equation is  y(x,t) = A sin( kx - ωt + φ) .  
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 Example :   Show that the equation   y(x,t) = A sin(kx - ωt + φ) satisfies the wave 

equation. 

Solution: Take the appropriate partial derivatives and verify by substitution. 

  

Energy Transport on a String: 

As a wave travels along a string, it transports energy by being flexed point by point, 

or dx by dx.   By dx , we mean differential length.  It is easy to calculate 

the K.E. and P.E. of a differential element as shown in Fig. 12.   Let dl be a 

differential segment of the string.  Corresponding to this dl , there is a dx and a dy as 

shown. 

Note that dl  is a stretched dx but has the same mass as dx. 
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The conclusion is that the power transmission by a wave on a string is proportional 

to the squares of angular speed and amplitude and linearly proportional to the wave 

speed V in the string. 

Example : A 1.00m-long string has a mass of 2.5 grams and is forced to oscillate 

at 400Hz while under a tensile force of 49N.  If the maximum displacement of the 

string in the direction perpendicular to the waves propagation is 8.00mm, find its 

average power transmission. 

Solution: We need to apply the formula Pavg = 0.5μ(ωA)2v.   

First μ = M/L,  ω = 2πf,  A, and V = (F/μ)0.5 must be calculated. 

μ = 2.5x10
-3 kg/m,   ω = 2512 rd/s,  V = 140. m/s,   A = 4.00x10

-3m ,    and 

finally,   Pavg = 17.7 watts.   Verify all calculations. 

 


