
EMBEDDED SYSTEMS DESIGN AND
PROGRAMMING

Course code:AEC024

IV. B.Tech II semester
Regulation: IARE R-16

BY
M. SUGUNA SRI

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500 043 1

CO’s Course outcomes

CO1 Understand the basic concepts of embedded system and
various applications and characteristics, formalisms for system
design of embedded system design

CO2 Discuss the concepts of C and develop the C programming
examples with Keil IDE, and understand the concepts of
interfacing modules using embedded C.

CO3 Understand the basic embedded programming concepts in C
and assembly language.

2

COs Course Outcome

CO4 Understand the fundamentals of RTOS and its
programming and Task communication, Task
synchronization with its issues and techniques. Develop
examples using embedded software and understand the
debugging techniques.

CO5 Discuss the concepts of advanced processors like ARM
and SHARC and protocols of I2C and CAN bus.

3

2

UNIT-I

EMBEDDED COMPUTING

CLOs Course Learning Outcome

CLO1 Understand basic concept of embedded systems.

CLO2 Analyze the applications in various domains of
embedded system.

CLO3 Develop the embedded system and Design process
and tools with examples.

CLO4 Understand characteristics and quality attributes of
embedded systems, formalisms for system
design.

5

Definition

6

 It is an Electronic/Electro-mechanical system designed to

perform a specific function and is a combination of both

hardware & software.

OR

 A combination of hardware and software which together form a

component of a larger machine.

Embedding a computer

CPU

mem

input

output analog

7

analog

embedded

computer

Example

 An example of an embedded system is a microprocessor that
controls an automobile engine.

 An embedded system is designed to run on its own without
human intervention, and may be required to respond to events
in real time.

8

Early history

9

 Late 1940’s: MIT Whirlwind computer was designed for real-time

operations.

Originally designed to control an aircraft simulator.

implement a

 First microprocessor was Intel 4004 in early 1970’s.

HP-35 calculator used several chips to

microprocessor in 1972.

Early history, cont’d.

10

Automobiles used microprocessor-based engine controllers

starting in 1970’s.

Control fuel/air mixture, engine timing, etc.

Multiple modes of operation: warm-up, cruise, hill climbing, etc.

Provides lower emissions, better fuel efficiency.

Automotive embedded systems

11

 Today’s high-end automobile may have 100 microprocessors:

 4-bit microcontroller checks seat belt;

microcontrollers run dashboard devices;

 16/32-bit microprocessor controls engine.

BMW 850i brake and stability control system

12

 Anti-lock brake system (ABS): pumps brakes to reduce skidding.

 Automatic stability control (ASC+T): controls engine to improve

stability.

 ABS and ASC+T communicate.

 ABS was introduced first---needed to interface to existing ABS

module.

Embedded Systems Vs General-Purpose Systems

 Embedded System is a special-
purpose computer system
designed to perform one or a
few dedicated functions --
Wikipedia

 In general, it does not provide
programmability to users, as
opposed to general purpose
computer systems like PC

 Embedded systems are virtually
everywhere in your daily life

13

Embedded Systems (Contd)

 Even though embedded systems cover a wide range of special-

purpose systems, there are common characteristics

 Low cost

○ Should be cheap to be competitive

 Memory is typically very small compared to a general

purpose computer system

 Lightweight processors are used in embedded

systems

 Low power

○ Should consume low power especially in case of

portable devices

○ Low-power processors are used in embedded systems

14

Embedded Systems (Contd)

 High performance

○ Should meet the computing requirementsof

applications

 should be in sync with video

 Gaming Users want to watch video on

portable devices

 Real-time property

• Job should be done within a time limit

• Aerospace applications, Car control systems,

• Medical gadgets are critical in terms of time

15

General-purpose processors

DatapathController

Program

memory

Assembly

code for:

total = 0

for i =1 to …

Register

file

General

ALU

Data

memory

Control

logic and

State

register

IR PC

16

 Programmable device used in a
variety of applications

Also known as “microprocessor”

 Features

Program memory

General data path with large
register file and general ALU

 User benefits

Low time-to-market and NRE costs

High flexibility

Application-specific processors

Register

s

Custom

ALU

DatapathController

Program

memory

Assembly

code for:

total = 0

for i =1 to

…

Data

memory

Control

logic and

State

register

IR PC

17

 Programmable processor optimized for a
particular class of applications having
common characteristics. Compromise
between general-purpose and single-purpose
processors

 Features

Program memory

Optimized datapath

Special functional units

 Benefits

Some flexibility, good performance, size
and power

General Computer Purpose VS Embedded system

18

Criteria General Computer

Purpose

Embedded system

Contents It is combination of generic

hardware and a general

purpose OS for executing a

variety of applications.

It is combination of special purpose

hardware and embedded OS for

executing specific set of

applications

Operating

System

It contains general purpose

operating system

It may or may not contain operating

system.

Alterations Applications are alterable by

the user.

Applications are non-alterable by

the user.

Key factor Performance” factor is

key

Application specific

requirements are key factors.

Power

Consumption

More Less

Response Time Not Critical Critical applications for some

Classification of Embedded Systems

TYPES OFEMBEDDED

SYSTEM

BASED ON PERFORMANCE OF

MICROCONTROLLER

BASED ON PERFORMANCEAND

FUNCTIONALREQUIREMENTS

MEDIUM

SCALE
MOBILE

SOPHISTICATED

SMALL

SCALE

NETWORKED

REAL

TIME

STAND

ALONE

19

BASED ON PERFORMANCE AND FUNCTIONAL
REQUIREMENT

Real-time embedded systems are defined as those systems in which
the correctness of the system depends not only on the logical result
of computation, but also on the time at which the results are
produced.

 Hard real-time systems (e.g., Avionic control).

 Firm real-time systems (e.g., Banking).

 Soft real-time systems (e.g., Video on demand).

1.REAL TIME EMBEDDED SYSTEM

20

2.STAND ALONE EMBEDDED SYSTEM

 A standalone device is able to function independently of other
hardware. This means it is not integrated into another device.
It takes the input from the input ports either analog or digital and
processes, calculates and converts the data and gives the resulting
data through the connected device-Which either controls, drives and
displays the connected devices.
 For example, a TiVo box that can record television programs , mp3
players are standalone devices

21

3.NETWORKED EMBEDDED SYSTEM

These types of embedded systems are related to a network to
access the resources.

The connected network can be LAN, WAN or the internet. The
connection can be any wired or wireless. This type of embedded
system is the fastest growing area in embedded system
applications. .

22

Mobile embedded systems are used in portable embedded
devices like cell phones, mobiles, digital cameras, mp3 players
and personal digital assistants,etc.

The basic limitation of these devices is the other resources and
limitation of memory.

4.MOBILE EMBEDDED SYSTEMS

23

Major Application Areas Of Embedded Systems

24

1. Consumer Electronics

 Camcorders, Cameras, etc…

2. Household Appliances

 Television, DVD Player, Washing machine, fridge, microwave oven, etc.

3. Home automation and security system
 Air conditioners, Sprinkler, intruder detection alarms, fire alarms, closed

circuit television cameras, etc

4. Automotive industry

 Anti-lock breaking system (ABS), engine control, ignition control, automatic
navigation system, etc..

5. Telecommunication

 Cellular telephones, telephone switches, Router, etc…

Major Application Areas Of Embedded Systems

25

6. Computer peripherals

 Printers, scanners, fax machines, etc…

7. Computer Networking systems
 Network routers, switches, hubs, firewalls, etc…

8. Health care

 CT scanner, ECG , EEG , EMG ,MRI, Glucose monitor, blood pressure
monitor, medical diagnostic device, etc.

9. Measurement & Instrumentation

 Digital multi meters, digital CROs, logic analyzers PLC systems, etc…

10. Banking & Retail
 Automatic Teller Machine (ATM) and Currency counters, smart vendor

machine, cash register ,Share market, etc..

11. Card Readers

 Barcode, smart card readers, hand held devices, etc…

Application Areas

26

Application Areas

27

Single-purpose processors

DatapathController

Control
logic

State
register

Data
memory

index

28

total

+

 Digital circuit designed to execute
exactly one program

a.k.a. coprocessor, accelerator or
peripheral

 Features

Contains only the components

needed to execute a single program

No program memory

 Benefits

Fast

Low power

Small size

HW/SW Stack of Embedded Systems

 Identical to the general-computer

systems

OS / Device Drivers

Hardware

Application Software

29

Components of Embedded Systems

 Hardware
 It is mainly composed of processor (1 or more), memory,

I/O devices including network devices, timers, sensors etc.

30

Components of Embedded Systems

31

 Software

 System software

 Operating systems

 Many times, a multitasking (multithreaded) OS is required, as embedded
applications become complicated

 Networking, GUI, Audio, Video

 Processor is context-switched to process multiple jobs

 Operating system footprint should be small enough to fit into memory of an
embedded system

 In the past and even now, real-time operating systems (RTOS) such as VxWorks
or uC/OS-II have been used because they are light-weighted in terms of
memory requirement

 Nowadays, little heavy-weighted OSs such as Windows-CE or embedded Linux
(uClinux) are used, as embedded processors support computing power and
advanced capabilities such as MMU (Memory Management Unit)

Components of Embedded Systems
(Cont)

32

 Software (cont.)

 Device drivers for I/O devices

 Application software

○ Run on top of operating system

○ Execute tasks that users wish to perform

 Web surfing, Audio, Video playback

Real-Time System

33

 Real-time operating system (RTOS)
 Multitasking operating system intended for real-time applications

 RTOS facilitates the creation of real-time systems

 RTOS does not necessarily have a high throughput

 RTOS is valued more for how quickly and/or predictably it can respond to a

particular event

○ Hard real-time systems are required to complete a critical task within a
guaranteed amount of time

○ Soft real-time systems are less restrictive

 Implementing real-time system requires a careful design of scheduler

○ System must have the priority-based scheduling

 Real-time processes must have the highest priority

 Priority inheritance (next slide)

- Solve the priority inversion problem

○ Process dispatch latency must be small

Determine the requirements
Design the

system

architecture

Select the OS

Choose

the

Processor

and peripherals

Choose the

Development

platform

Code the

application

And optimize

Verify the

software On the

host system

Verify the

software On the

target system

34

EMBEDDED SYSTEM DESIGN PROCESS

Functional and non-functional.

35

Multi function or Multi mode system.
Size, cost, Weight etc.

Selecting the H/W components.

•Application specific H/W. External interfaces.

•Input devices. Output devices.

REQUIREMENTS

System architecture depends on,

•Whether the system is real time.

•Whether OS needs to be embedded.

•Size, Cost, Power consumption etc.

36

DESIGN SYSTEM ARCHITECTURE

If OS needed we can select,

• Real time OS (such as RTLinux,Vx Works, VRTX, pSOS,

QNX etc.).

• Non-real time OS (such as Windows CE, embedded

Windows XP etc).

37

Choose operating system

We can select any one of the following,

•Microprocessor8085,8086,Pentium

•Microcontroller

•MCS-51,PIC,AVR,MSP430

•Digital Signal Processor

•dsPIC,Blackfin,Sharc,TigerSharc

38

Choose processor



39

The hardware
platform.

 The operating system.

 The programming language.

 The development tools.

Development platform

 Choice of
language.

s
 Assembly.

C language.


•
Object Oriented Language (C++, Java etc.).

Optimizing the code

40

Coding the Application

Compile and
assemble
the source code

into object file.

Use a simulator to
simulate the workingo
the system.

41

Verifying the software on the host system

 Download the

program using a

programmer device.

 Use an EMULATOR or
on chip debugging tools
to verify the software.

42

Verifying the software on the target system



Due to the developments in Micro electronics

availabilit of processors increased.

 Reduces cost.

 Increased speed.

 Reduce Size

 Reduce Power.

43

Recent Trends

Processor
ADC

Temp
Sensor

Seven Segment Display

Relay-1

Relay-2

44

Automatic temperature monitoring and control
system

START

INITIALIZE
LCD, ADC

READ
TEMPERATURE

IS
TEMP

>40

FAN ONFAN OFF

45

MODULES AND INDUSTRIAL STANDARD SENSORS USED IN
PROJECTS

Pressure Sensors Flow

Sensors Ultrasonic

Seansors RF Tx / Rx

Zigbee Modules EM

Locks

Vacuum sensors Digital

Compass

CAN IC

Fire Sensor

TemperatureSensor

Speed sensors

Level sensors

Industrial proximity sensor

Vibration sensor

Water Identifier Sensors

Acceleration Sensor - 3 Axis

Glass braking sensor

Force Sensor

46

Design goals

47

 Performance.

 Overall speed, deadlines.

 Functionality and user interface.

 Manufacturing cost.

 Power consumption.

 Other requirements (physical size, etc.)

Levels of abstraction

requirements

specification

architecture

component

design

system

integration

48

Top-down vs. bottom-up

49

 Top-down design:

 start from most abstract description;

 work to most detailed.

 Bottom-up design:

 work from small components to big system.

 Real design uses both techniques.

Stepwise refinement

50

 At each level of abstraction, we must:

 analyze the design to determine characteristics of

the current state of the design;

 refine the design to add detail.

Requirements

51

 Plain language description of what the user wants

and expects to get.

 May be developed in several ways:

 talking directly to customers;

 talking to marketing representatives;

 providing prototypes to users for comment.

Functional vs. non-functional requirements

52

 Functional requirements:

 output as a function of input.

 Non-functional requirements:

 time required to compute output;

 size, weight, etc.;

 power consumption;

 reliability;

 etc.

Our requirements

53

name

purpose

inputs

outputs

functions

performance

manufacturing cost

power

physical size/weight

Example:
GPS moving map requirements

 Moving map

obtains position

from GPS, paints

map from local

database.

lat: 40 13 lon: 32 19

I-78

S
c
o
tc

h
R

o
a
d

54

GPS moving map needs

55

 Functionality: For automotive use. Show major roadsand
landmarks.

 User interface: At least 400 x 600 pixel screen. Three buttons
max. Pop-up menu.

 Performance: Map should scroll smoothly. No more than 1 sec
power-up. Lock onto GPS within 15 seconds.

 Cost: $120 street price = approx. $30 cost of goodssold.

 Physical size/weight: Should fit in hand.

 Power consumption: Should run for 8 hours on fourAA
batteries.

Specification

56

 A more precise description of the system:

 should not imply a particular architecture;

 provides input to the architecture design process.

 May include functional and non-functional elements.

 May be executable or may be in mathematical form for
proofs.

GPS specification

57

 Should include:

 What is received from GPS;

 map data;

 user interface;

 operations required to satisfy user requests;

 background operations needed to keep the system running.

Architecture design

58

 What major components go satisfying the
specification?

 Hardware components:

 CPUs, peripherals, etc.

 Software components:

 major programs and their operations.

 Must take into account functional and non-functional

specifications.

GPS moving map block diagram

GPS

receiver

search

engine
renderer

user

interfacedatabase

display

59

GPS moving map hardware
architecture

GPS

receiver

CPU

panel I/O

display frame

buffer

memory

60

GPS moving map software architecture

database

search
renderer

timer
user

interface

61

Designing hardware and software components

62

 Must spend time architecting the system before you start
coding.

 Some components are ready-made, some can be modified from
existing designs, others must be designed from scratch.

QUALITY ATTRIBUTES OF EMBEDDED SYSTEM

63

factor about These are the attributes that together form the deciding

the quality of an embedded system.

 There are two types of quality attributes are:-

• Operational Quality Attributes.
1. These are attributes related to operation or functioning of an embedded

system. The way an embedded system operates affects its overall quality.

• Non-Operational Quality Attributes.
1. These are attributes not related to operation or functioning of an embedded

system. The way an embedded system operates affects its overall quality.

2. These are the attributes that are associated with the embedded system

before it can be put in operation.

Operational Attributes

64

 a) Response

• Response is a measure of quickness of thesystem.

• It gives you an idea about how fast your system is tracking the input variables.

• Most of the embedded system demand fast response which should be real-

time.

 b) Throughput

• Throughput deals with the efficiency of system.

• It can be defined as rate of production or process of a defined process over a

stated period of time.

• In case of card reader like the ones used in buses, throughput means how

much transaction the reader can perform in a minute or hour orday.

Operational Attributes

65

 Reliability

 Reliability is a measure of how much percentage you rely upon theproper

functioning of the system .

 Mean Time between failures and Mean Time To Repair are terms used in

defining system reliability.

 Mean Time between failures can be defined as the average time the system

is functioning before a failure occurs.

 Mean time to repair can be defined as the average time the system has

spent in repairs.

 Maintainability

 Maintainability deals with support and maintenance to the end user or a

client in case of technical issues and product failures or on the basis of a

routine system checkup

 It can be classified into two types

I. Scheduled or Periodic Maintenance

II. Maintenance to unexpected failure

Operational Attributes

66

 Security
• Confidentiality, Integrity and Availability are three corner stones of

information security.

• Confidentiality deals with protection data from unauthorized disclosure.

• Integrity gives protection from unauthorized modification.

• Availability gives protection from unauthorized user

• Certain Embedded systems have to make sure they conform to the security

measures.

• Ex. An Electronic Safety Deposit Locker can be used only with a pin number

like a password.

 Safety

 Safety deals with the possible damage that can happen to the operating

person and environment due to the breakdown of an embedded system or

due to the emission of hazardous materials from the embedded products.

Non Operational Attributes

67

 Testability and Debug-ability
• It deals with how easily one can test his/her design, application and

by which mean he/she can test it.

• In hardware testing the peripherals and total hardware function in

designed manner

• Firmware testing is functioning in expected way

• Debug-ability is means of debugging the product as such for figuring

out the probable sources that create unexpected behavior in the

total system

 Evolvability

 For embedded system, the qualitative attribute “Evolvability” refer to

ease with which the embedded product can be modified to take

advantage of new firmware or hardware technology.

Non Operational Attributes

68

 Portability

• Portability is measured of “system Independence”.

• An embedded product can be called portable if it is capable of

performing its operation as it is intended to do in various

environments irrespective of different processor and or controller

and embedded operating systems.

 Time to prototype and market

• Time to Market is the time elapsed between the conceptualization of

a product and time at which the product is ready for selling or use

• Product prototyping help in reducing time to market.

• Prototyping is an informal kind of rapid product development in

which important feature of the under consider are develop.

• In order to shorten the time to prototype, make use of all possible

option like use of reuse, off the self component etc.



Non Operational Attributes

69

 Per unit and total cost

•Cost is an important factor which needs to be carefully
monitored. Proper market study and cost benefit analysis
should be carried out before taking decision on the per
unit cost of the embedded product.

•When the product is introduced in the market, for the
initial period the sales and revenue will be low

•There won’t be much competition when the product
sales and revenue increase.

System integration

70

 Put together the components.

 Many bugs appear only at this stage.

 Have a plan for integrating components to uncover bugs
quickly, test as much functionality as early as possible.

System modeling

71

 Need languages to describe systems:

 useful across several levels of abstraction;

 understandable within and between organizations.

 Block diagrams are a start, but don’t cover everything.

Object-oriented design

72

 Object-oriented (OO) design: A generalization of
object-oriented programming.

 Object = state + methods.

 State provides each object with its own identity.

 Methods provide an abstract interface to the object.

Objects and classes

73

 Class: object type.

 Class defines the object’s state elements but state
values may change over time.

 Class defines the methods used to interact with all
objects of that type.

 Each object has its own state.

Relationships between objects and classes

74

 Association: objects communicate but one does not own
the other.

 Aggregation: a complex object is made of several smaller
objects.

 Composition: aggregation in which owner does not allow
access to its components.

 Generalization: define one class in terms of another.

UML object

d1: Display

pixels: array[] of pixels

elements

menu_items

pixels is a

2-D array

comment

object name

class name

attributes

75

UML class

Display

pixels

elements

menu_items

mouse_click()

draw_box
operations

class name

76

The class interface

77

 The operations provide the abstract interface between the class’s
implementation and other classes.

 Operations may have arguments, return values.

 An operation can examine and/or modify the object’s state.

Choose your interface properly

78

 If the interface is too small/specialized:

 object is hard to use for even one application;

 even harder to reuse.

 If the interface is too large:

 class becomes too cumbersome for designers to understand;

 implementation may be too slow;

 spec and implementation are probably buggy.

Class derivation

 May want to define one class in terms of

another.

 Derived class inherits attributes, operations of base

class.

Derived_class

Base_class

UML

generalization

79

Class derivation example

Display

pixels

elements

menu_items

pixel()

set_pixel()

mouse_click()

draw_box

BW_display Color_map_display

base

class

80

derived class

Multiple inheritance

Speaker Display

Multimedia_display

base classes

derived class

81

Links and associations

82

 Link: describes relationships between

objects.

 Association: describes relationship between

classes.

Link example

 Link defines the contains relationship:

message

msg = msg1

length = 1102

message

msg = msg2

length = 2114

message set

count = 2

83

Association example

message

msg:ADPCM_stream

length : integer

message set

count : integer

0..* 1

contains

contained messages # containing message sets

84

Stereotypes

85

 Stereotype: recurring combination of

elements in an object or class.

 Example:

 <<foo>>

Behavioral description

86

 Several ways to describe behavior:

 internal view;

 external view.

State machines

a b

state state name

transition

87

Event-driven state machines

88

 Behavioral descriptions are written as event-driven
state machines.

 Machine changes state when receiving an input.

 An event may come from inside or outside of the

system.

Types of events

89

 Signal: asynchronous event.

 Call: synchronized communication.

 Timer: activated by time.

Signal event

<<signal>>

mouse_click

leftorright: button

x, y: position

declaration

a

b

mouse_click(x,y,button)

90

event description

Call event

c d

draw_box(10,5,3,2,blue)

91

Timer event

e f

tm(time-value)

92

Example state machine

region

found

got menu

item

called

menu item

found

object

object

highlighted

start

finish

mouse_click(x,y,button)/

find_region(region)

input/output

region = menu/

which_menu(i) call_menu(I)

highlight(objid)

93

Introduction

 Example: model train controller.

94

Purposes of example

95

several levels of Follow a design through
abstraction.

 Gain experience with UML.

Model train setup

console

power

supply

ECC command address header

Mess

age

96

Requirements

97

 Console can control 8 trains on 1 track.

 Throttle has at least 63 levels.

 Inertia control adjusts responsiveness with at least 8 levels.

 Emergency stop button.

 Error detection scheme on messages.

Requirements form

98

name
purpose

inputs

outputs
functions

performance

manufacturing

model train controller
control speed of <= 8 model
trains

throttle, inertia, emergency
stop, train #
train control signals
set engine speed w. inertia;
emergency stop
can update train speed at least
10 times/sec

$50

Digital Command Control

99

 DCC created by model railroad hobbyists, picked up

by industry.

 Defines way in which model trains, controllers

communicate.

 Leaves many system design aspects open, allowing

competition.

 This is a simple example of a big trend:

 Cell phones, digital TV rely on standards.

DCC documents

10
0

 Standard S-9.1, DCC Electrical Standard.

 Defines how bits are encoded on the rails.

 Standard S-9.2, DCC Communication Standard.

 Defines packet format and semantics.

98

UNIT-II

INTRODUCTION TO EMBEDDED C AND

APPLICATIONS

CLOs Course Learning Outcome

CLO5 Understand the basic programming of c and its
looping structure.

CLO6 Analyze the embedded C programming in Keil IDE,
and compiling and building the hardware.

CLO7 Understand different concepts of display and
keyboard interfacing using embedded C.

CLO8 Understand different concepts of serial
communication using embedded C and user
interfacing

102

103

What is an embedded system?

An embedded system is an application that contains at least one
programmable computer (typically in the form of a microcontroller, a
microprocessor or digital signal processor chip) and which is used by
individuals who are, in the main, unaware that the system is computer-
based.

Typical examples of embedded applications include:
Mobile phone systems (including both customer handsets and base
stations).
Automotive applications (including braking systems, traction control,
airbag release systems, engine-management units, steer-by-wire systems
and cruise control applications).
Domestic appliances (including dishwashers, televisions, washing
machines, microwave ovens, video recorders, security systems, garage
door controllers).

104

Contd..

Aerospace applications (including flight control systems, engine
controllers, autopilots and passenger in-flight entertainment systems).
Medical equipment (including anaesthesia monitoring systems, ECG
monitors, drug delivery systems and MRI scanners).
Defence systems (including radar systems, fighter aircraft flight control
systems, radio systems and missile guidance systems).

105

Which processor should you use?

The 8051 device is very different. It is a well-tested design, introduced in
its original form by Intel in 1980 (Figure 1.1). The development costs of
this device have now been fully recovered, and prices of modern 8051
devices now start at less than US $1.00. At this price, you get a
performance of around 1 million instructions per second, and 256 bytes
(not megabytes!) of on-chip RAM. You also get 32 port pins and a serial
interface.
The 8051’s profile (price, performance, available memory, serial interface)
match the needs of many embedded systems very well. As a result, it is
now produced in more than 400 different forms by a diverse range of
companies including Philips, Infineon, Atmel and Dallas. Sales of this vast
family are estimated to have the largest share (around 60%) of the
microcontroller market as a whole, and to make up more than 50% of the
8-bit microcontroller market. Versions of the 8051 are currently used in a
long list of embedded products, from children’s toys to automotive
systems.

106

Contd..

Below figure shows the circuit diagram for a complete 8051- based
application.

107

Contd..

In this example, the microcontroller is intended to flash an LED connected to
Pin 6. In addition to this LED, only a simple ‘reset’ circuit is required (the
capacitor and resistor connected to Pin 9), plus an external oscillator (in this
case, a 3-pin ceramic resonator)

108

Contd..

Overall, the low cost, huge range, easy availability and widespread use of
the 8051 architecture makes it an excellent platform for developing
embedded systems: these same factors also make it an ideal platform for
learning about embedded systems.
Whether you will subsequently use 8-, 16- or 32-bit embedded processors,
learning to work within the performance and memory limits of devices
such as the 8051 is a crucial requirement in the cost-conscious embedded
market.

109

Which programming language should you use?

Having decided to use an 8051 processor as the basis of your embedded
system, the next key decision that needs to be made is the choice of
programming language. In order to identify a suitable language for
embedded systems, we might begin by making the following observations:
• Computers (such as microcontroller, microprocessor or DSP chips) only

accept instructions in ‘machine code’ (‘object code’). Machine code is, by
definition, in the language of the computer, rather than that of the
programmer. Interpretation of the code by the programmer is difficult
and error prone.

• All software, whether in assembly, C, C++, Java or Ada must ultimately
be translated into machine code in order to be executed by the
computer.

• There is no point in creating ‘perfect’ source code, if we then make use
of a poor translator program (such as an assembler or compiler) and
thereby generate executable code that does not operate as we intended.

110

Contd..

• Embedded processors – like the 8051 – have limited processor power
and very limited memory available: the language used must be efficient.

• To program embedded systems, we need low-level access to the
hardware: this means, at least, being able to read from and write to
particular memory locations (using ‘pointers’ or an equivalent
mechanism).

From one point of view, only machine code is safe, since every other
language involves a translator, and any code you create is only as safe as the
code written by the manufacturers of the translator. On the other hand, real
code needs to be maintained and re-used in new projects, possibly on
different hardware: few people would argue that machine code is easy to
understand, debug or to port. Inevitably, therefore, we need to make
compromises; there is no perfect solution. All we can really say is that we
require a language that is efficient, high-level, gives low-level access to
hardware, and is well defined. In addition – of course – the language must
be available for the platforms we wish to use. Against all of these points, C
scores well.

111

Contd..

We can summarize C’s features as follows:
• It is ‘mid-level’, with ‘high-level’ features (such as support for functions

and modules), and ‘low-level’ features (such as good access to hardware
via pointers).

• It is very efficient.
• It is popular and well understood.
• Even desktop developers who have used only Java or C++ can soon

understand C syntax.
• Good, well-proven compilers are available for every embedded

processor (8-bit to 32-bit or more).
• Experienced staff are available.
• Books, training courses, code samples and WWW sites discussing the

use of the language are all widely available.
• Overall, C’s strengths for embedded system development greatly

outweigh its weaknesses. It may not be an ideal language for developing
embedded systems, but it is unlikely that a ‘perfect’ language will ever
be created.

112

Which operating system should you use?

Having opted to create our 8051-based applications using C, we can now
begin to consider how this language can be used. In doing so, we will begin
to probe some of the differences between software development for
desktop and embedded systems.
In the desktop environment, the program the user requires (such as a word
processor program) is usually loaded from disk on demand, along with any
required data (such as a word processor file). Figure 1.5 shows a typical
operating environment for such a word processor. Here the system is well
insulated from the underlying hardware. For example, when the user
wishes to save his or her latest novel on disk, the word processor delegates
most of the necessary work to the operating system, which in turn may
delegate many of the hardware-specific commands to the BIOS (basic
input/output system).

113

Contd..

The desktop PC does not require an operating system (or BIOS). However,
for most users, the main advantage of a personal computer is its
flexibility: that is, that the same piece of equipment has the potential to
run many thousands of different programs.

If the PC had no operating system, each of these programs would need to
be able to carry out all the low-level functions for itself. This would be
very inefficient and would tend to make systems more expensive. It
would also be likely to lead to errors, as many simple functions would
have to be duplicated in even the smallest of programs. One way of
viewing this is that a desktop PC is used to run multiple programs, and
the operating system provides the ‘common code’ (for printing, file
storage, graphics, and so forth) that is required by this set of programs

114

Contd..

A schematic representation of the BIOS/OS sandwich
from a desk-bound computer system running some
word processor software

115

Contd..

There are two fundamental differences between the embedded systems
and desktop computer systems:
1 The vast majority of embedded systems are required to run only one

program: this program will start running when the microcontroller is
powered up, and will stop running when the power is removed.

2 Many of the facilities provided by the modern desktop OS – such as the
ability to display high-resolution graphics, printing facilities and efficient
disk access – are of little value in embedded systems, where
sophisticated graphics screens, printers and disks are generally
unavailable.

As a consequence, the simplest architecture in an embedded system is
typically a form of ‘Super Loop’

116

Contd..

It is important to appreciate that there is no operating system in use here. When power is
applied to the system, the function main() will be called: having performed the
initializations, the function X() will be called, repeatedly, until the system is disconnected
from the power supply (or a serious error occurs).

117

Contd..
It is important to appreciate that there is no operating system in use
here. When power is applied to the system, the function main() will be
called: having performed the initializations, the function X() will be
called, repeatedly, until the system is disconnected from the power
supply (or a serious error occurs).
For example, suppose we wish to develop a microcontroller-based
control system to be used as part of the central-heating system in a
building. The simplest version of this system might consist of a gas-fired
boiler (which we wish to control), a sensor (measuring room
temperature), a temperature dial (through which the desired
temperature is specified) and the controller itself
We assume that the boiler, temperature sensor and temperature dial are
connected to the system via appropriate ports.
Here, precise timing is not required, and a Super Loop framework similar

to that shown in Listing may be appropriate.

118

Contd..

119

Contd..

It should be noted that the Super Loop architecture employed in this
central heating system is not appropriate for all embedded applications.

120

How do you develop embedded software?

The process of compiling, linking and executing the program on a desktop
PC is straightforward. In this environment, the executable code we create
will, in almost all cases, be intended to run on a desktop computer similar
to the one on which the code development is carried out. In the
embedded environment this is rarely the case. For example, the 8051
devices we will use throughout this book do not have sufficient memory
resources to allow them to be used for compiling programs, and they will
not support a keyboard or graphics display. As a result, the code will be
‘cross-compiled’ on a desktop PC, generating machine code that is
compatible with the 8051 family

121

Contd..

Having created the required executable code, we need to test it and refine
it. To do this, we need to do the following:
1 Build the hardware for the embedded system.
2 Transfer the executable code to the embedded hardware and test the
system.

For programmers without experience of electronics, the process of
building embedded hardware is a daunting one. A typical approach used
to prototype small embedded applications is the ‘breadboard’. This allows
the microcontroller and associated components to be connected together,
without soldering, in order to test and refine the hardware and software
design.

122

Contd..

1 Create the executable code for the embedded system on a desktop PC
using an appropriate cross-compiler and related tools.
2 Use a software simulator (running on the desktop PC) to test the code.
3 Repeat Step 1 and Step 2, as necessary, until the software operates as
required.
We will use such a simulator, produced by Keil Software. This provides you
with a very flexible ‘hardware’ platform, on which you can gain experience
of embedded software without simultaneously having to learn how to
solder.
An example of the simulator in use is given in Figure.

123

Contd..

124

Installing the Keil software and loading the project

When you have copied the files onto your hard disk, please run the Keil
μVision application, and use the ‘Open Project’ option (from the ‘Project’
menu) to load the ‘Hello’ example.

125

Configuring the simulator

Having loaded the ‘Hello’ project in the Keil μVision environment, we will
begin by exploring the project settings. First, using the Project menu, we
will look at the 8051 device which we are intending to use for this
application.

126

Contd..

In this case, we will use a generic ‘8052’ driver. The next thing we need to
check is the oscillator frequency. The choice of oscillator frequency has a
large impact on 8051-based applications. In most examples in this book,
we will assume that the oscillator frequency is 12 MHz. Figure shows how
to inspect and if required alter this frequency.

127

Contd..

Note: one of the key reasons for setting the oscillator frequency in the
simulator is that any attempting at ‘profiling’ the application (for example,
measuring function durations) will only be successful if the oscillator
frequency in the simulator matches the frequency that will be used in the
real system hardware.

128

Building the target

We next need to build the ‘target’, as illustrated in Figure. Building the
target (compiling and linking your source files) in the Keil environment.

129

Running the simulation

Having successfully built the target, we are now ready to start the debug
session and run the simulator. First, start a debug session. The ‘flashing
LED’ we will view will be connected to Port 1. We therefore want to
observe the activity on this port.

130

Contd..

By default, to speed up the simulation, updates to the various
components are carried out only on demand. For our purposes, we want
to ensure that the simulator regularly updates the screen: we do this by
ticking the ‘Periodic Window. Update’ option in the ‘View’ menu.

131

Contd..

Finally, we are ready to start running our ‘Hello, Embedded World’ program
in the simulator. As the program runs, observe that Pin 1.5 flashes ‘on’ and
‘off’, as required.

132

Building the hardware

You should base your design around an 8051 device with flash memory: for
example, the Atmel AT89C52 is widely available, at low cost.
The required hardware schematic is taken. This may be assembled on a
breadboard of the type. You will also require a suitable programmer with
which to program your chosen microcontroller. Various companies produce
suitable devices. Alternatively, if you have some experience in electronic
construction, you will find an Application Note from Atmel which describes
how to construct a suitable programmer.

133

The Project Header (Main.H)

The ‘Project Header’ is simply a header file, included in all projects, that
groups the key information about the 8051 device you have used, along
with other key parameters – such as the oscillator frequency – in one file.
As such, it is a practical implementation of a standard software design
guideline: ‘Do not duplicate information in numerous files; place the
information in one place, and refer to it where necessary. We use a Project
Header file. This is always called Main.H.

134

Contd..

An example of a typical project header file (Main.H)

135

Contd..

We consider the various components of this file in the sub-sections
below

136

The device header

The first entry in the project header is the link to the appropriate ‘device
header’ file. These files will, in most cases, have been produced by your
compiler manufacturer, and will include the addresses of the special
function registers (SFRs) used for port access, plus similar details for other
on-chip components such as analog-to-digital converters.
For example, Listing shows part of the device header for an Extended 8051,
the Infineon C515C. This device has eight ports, a watchdog unit, analog-to-
digital converter and other components, all made accessible through the
device header.

137

Contd..

138

Contd..

139

Oscillator frequency and oscillations per instruction

If you create an application using a particular 8051 device operating at a
particular oscillator frequency, with a particular number of oscillations per
instruction, this information will be required when compiling many of the
different source files in your project. For example – in many cases – we can
create code for generating delays (and similar purposes) if we store
information about the oscillator frequency and number of oscillations-per-
instruction in an appropriate form. This is done in the Main.H file as follows:

140

Common data types
The next part of the Project Header file in Listing 5.3 includes three typedef
statements:
typedef unsigned char tByte;
typedef unsigned int tWord;
typedef unsigned long tLong;
In C, the typedef keyword allows us to provide aliases for data types: we
can then use these aliases in place of the original types. Thus, in the
projects you will see code like this:
tWord Temperature;
Rather than:
unsigned int Temperature;
The main reason for using these typedef statements is to simplify – and
promote – the use of unsigned data types. This is a good idea for two main
reasons:

141

Contd..

•The 8051 does not support signed arithmetic and extra code is required to
manipulate signed data: this reduces your program speed and increases
the program size. Wherever possible, it makes sense to use unsigned data,
and these typedef statements make this easier.
• Use of bitwise operators generally makes sense only with unsigned data
types: use of ‘typedef’ variables reduces the likelihood that programmers
will inadvertently apply these operators to signed data.

Finally, as in desktop programming, use of the typedef keyword in this way
can make it easier to adapt your code for use on a different processor (for
example, when you move your 8051 code to a 32-bit environment). In many
circumstances, you will simply be able to change the typedef statements in
Main.H, rather than editing every source file in your project.

142

Interrupts

As we noted in Chapter 2, interrupts are a key component of most
embedded systems.
The following lines in the Project Header are intended to make it easier for
you to use (timer-based) interrupts in your projects:
#define INTERRUPT_Timer_0_Overflow 1
#define INTERRUPT_Timer_1_Overflow 3
#define INTERRUPT_Timer_2_Overflow 5

Use of Project Header can help to make your code more readable, not least
because anyone using your projects knows where to find key information,
such as the model of microcontroller and the oscillator frequency required to
execute the software. The use of a Project Header can help to make your
code more easily portable, by placing some of the key microcontroller-
dependent data in one place: if you change the processor or the oscillator
used then – in many cases – you will need to make changes only to the
Project Header.

143

The Port Header (Port.H)

In a typical embedded project, you may have a user interface created using
an LCD, a keypad, and one or more single LEDs. There may be a serial (RS-
485) link to another microcontroller board. There may be one or more high-
power devices (say 3-phase industrial motors) to be controlled. Each of these
(software) components in your application will require exclusive access to
one or more port pins.

How do you ensure that changes to port access in one component does not
impact on another? How do you ensure that it is easy to adapt the
application to an environment where different port pins must be used?
These issues are addressed through the use of a simple Port Header file.
Using a Port Header, you pull together the different port access features for
the whole project into a single (header) file. Use of this technique can ease
project development, maintenance and porting.

144

Contd..

The Port Header file is simple to understand and easy to apply. Consider,
for example, that we have three C files in a project (A, B, C), each of
which require access to one or more port pins, or to a complete port.

145

Contd..

File A may include the following:
// File A
sbit Pin_A = P3^2;
. . .
File B may include the following:
// File B
#define Port_B P0
. . .
File C may include the following:
// File C
sbit Pin_C = P2^7;
. . .
In this version of the code, all of the port access requirements are spread
over multiple files.

146

Contd..

Instead of this, there are many advantages obtained by integrating all
port access in a single Port.H header file:
// ----- Port.H -----
// Port access for File B
#define Port_B P0
// Port access for File A
sbit Pin_A = P3^2;
// Port access for File C
sbit Pin_C = P2^7;
…
Each of the remaining project files will then ‘#include’ the file ‘Port.H’.
Listing shows a complete example of a Port.H file from a real application.

147

Contd..

Listing : An example of a real Port Header file (Port.H) from a project using
an interface consisting of a keypad and liquid crystal display
/*--*-
Port.H (v1.00)
-*--*/
#ifndef _PORT_H
#define _PORT_H
#include ‘Main.H’
// ------ Menu_A.C --
// Uses whole of Port 1 and Port 2 for data acquisition
#define Data_Port1 P1
#define Data_Port2 P2
// ------ PC_IO.C ---
// Pins 3.0 and 3.1 used for RS-232 interface
#endif
/*--*-
---- END OF FILE --*/

148

Contd..

Despite its simplicity, use of a Port Header file can improve reliability and
safety, because it avoids potential conflicts between port pins, particularly
during the maintenance phase of the project when developers (who may
not have been involved in the original design) are required to make code
changes.

A Port Header is itself portable: it can be used with any microcontroller,
and is not linked to the 8051 family. Use of a Port Header also improves
portability, by making accessible, in one location, all of the port access
requirements of the application.

149

Restructuring the Hello, Embedded World example

Part of the ‘Hello, Embedded World’ example (restructured version)
/*--*-
Main.H (v1.00)

'Project Header'
-*--*/
#ifndef _MAIN_H
#define _MAIN_H
//--
// WILL NEED TO EDIT THIS SECTION FOR EVERY PROJECT
//--
// Must include the appropriate microcontroller header file here
#include <reg52.h>
// Oscillator / resonator frequency (in Hz) e.g. (11059200UL)
#define OSC_FREQ (12000000UL)
// Number of oscillations per instruction (12, etc)
// 12 – Original 8051 / 8052 and numerous modern versions

150

Contd..
// 6 – Various Infineon and Philips devices, etc.
// 4 – Dallas 320, 520 etc.
// 1 – Dallas 420, etc.
#define OSC_PER_INST (12)
//--
// SHOULD NOT NEED TO EDIT THE SECTIONS BELOW

//--
// Typedefs
typedef unsigned char tByte;
typedef unsigned int tWord;
typedef unsigned long tLong;
// Interrupts (see Chap 7)
#define INTERRUPT_Timer_0_Overflow 1
#define INTERRUPT_Timer_1_Overflow 3
#define INTERRUPT_Timer_2_Overflow 5
#endif
/*--*-
---- END OF FILE --*/

151

Contd..

The Port Header file is simple to understand and easy to apply. Consider,
for example, that we have three C files in a project (A, B, C), each of
which require access to one or more port pins, or to a complete port.

152

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
Port.H (v1.00)

'Port Header' for project HELLO2 (see Chap 5)
-*--*/
#ifndef _PORT_H
#define _PORT_H
// ------ LED_Flash.C ---
// Connect LED to this pin, via appropriate resistor
sbit LED_pin = P1^5;
#endif
/*--*-
---- END OF FILE --
-*--*/

153

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
Main.C (v1.00)

A "Hello Embedded World" test program for 8051. (Re-structured version
– multiple source files)
-*--*/
#include "Main.H"
#include "Port.H"
#include "Delay_Loop.h"
#include "LED_Flash.h"
void main(void)
{
LED_FLASH_Init();
while(1)
{
// Change the LED state (OFF to ON, or vice versa)
LED_FLASH_Change_State();

154

Contd..

// Delay for *approx* 1000 ms
DELAY_LOOP_Wait(1000);
}
}
/*--*-
---- END OF FILE --
-*--*/
Part of the ‘Hello, Embedded World’ example (restructured version)
/*--*-
Main.C (v1.00)

A "Hello Embedded World" test program for 8051. (Re-structured version –
multiple source files)
-*--*/
#include "Main.H"
#include "Port.H")

155

Contd..

#include "Delay_Loop.h"
#include "LED_Flash.h"
void main(void)
{
LED_FLASH_Init();
while(1)
{
// Change the LED state (OFF to ON, or vice versa)
LED_FLASH_Change_State();
// Delay for *approx* 1000 ms
DELAY_LOOP_Wait(1000);
}
}
/*--*-
---- END OF FILE --
-*--*/

156

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
LED_flash.H (v1.00)

– See LED_flash.C for details.
-*--*/
#ifndef _LED_FLASH_H
#define _LED_FLASH_H
// ------ Public function prototypes --------------------------
void LED_FLASH_Init(void);
void LED_FLASH_Change_State(void);
#endif
/*--*-
---- END OF FILE --
-*--*/

157

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
LED_flash.C (v1.00)
Simple 'Flash LED' test function.
-*--*/
#include "Main.H"
#include "Port.H"
#include "LED_flash.H"
// ------ Private variable definitions ------------------------
static bit LED_state_G;
/*--*-
LED_FLASH_Init()
Prepare for LED_Change_State() function – see below.
-*--*/
void LED_FLASH_Init(void)
{
LED_state_G = 0;
}
/*--*-

158

Contd..

LED_FLASH_Change_State()
Changes the state of an LED (or pulses a buzzer, etc) on a specified port
pin. Must call at twice the required flash rate: thus, for 1 Hz flash (on for
0.5 seconds, off for 0.5 seconds) must call every 0.5 seconds.
-*--*/
void LED_FLASH_Change_State(void)
{
// Change the LED from OFF to ON (or vice versa)
if (LED_state_G == 1)
{
LED_state_G = 0;
LED_pin = 0;
}

159

Contd..

else
{
LED_state_G = 1;
LED_pin = 1;
}
}
/*--*-
---- END OF FILE ---
-*--*/

160

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
Delay_Loop.H (v1.00)

– See Delay_Loop.C for details.
-*--*/
#ifndef _DELAY_LOOP_H
#define _DELAY_LOOP_H
// ------ Public function prototype ---------------------------
void DELAY_LOOP_Wait(const tWord);
#endif
/*--*-
---- END OF FILE --
-*--*/

161

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
Delay_Loop.C (v1.00)

Create a simple software delay using a loop.
-*--*/
#include "Main.H"
#include "Port.H"
#include "Delay_loop.h"
/*--*-
DELAY_LOOP_Wait()
Delay duration varies with parameter.
Parameter is, *ROUGHLY*, the delay, in milliseconds,
on 12MHz 8051 (12 osc cycles).
You need to adjust the timing for your application!
-*--*/

162

Contd..

void DELAY_LOOP_Wait(const tWord DELAY_MS)
{
tWord x, y;
for (x = 0; x <= DELAY_MS; x++)
{
for (y = 0; y <= 120; y++);
}
}
/*--*-
---- END OF FILE --
-*--*/

UNIT-III
EMBEDDED C APPLICATIONS

CLOs Course Learning Outcome

CLO9 Analyse the programming on switches

CLO10 Understanding the programming language tools.

CLO11 Understand different concepts of display and
keyboard interfacing using embedded C.

CLO12 Understand different concepts of stepper motor
interfacing.

164

165

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
Port.H (v1.00)

'Port Header' for project HELLO2 (see Chap 5)
-*--*/
#ifndef _PORT_H
#define _PORT_H
// ------ LED_Flash.C ---
// Connect LED to this pin, via appropriate resistor
sbit LED_pin = P1^5;
#endif
/*--*-
---- END OF FILE --
-*--*/

166

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
Main.C (v1.00)

A "Hello Embedded World" test program for 8051. (Re-structured version
– multiple source files)
-*--*/
#include "Main.H"
#include "Port.H"
#include "Delay_Loop.h"
#include "LED_Flash.h"
void main(void)
{
LED_FLASH_Init();
while(1)
{
// Change the LED state (OFF to ON, or vice versa)
LED_FLASH_Change_State();

167

Contd..

// Delay for *approx* 1000 ms
DELAY_LOOP_Wait(1000);
}
}
/*--*-
---- END OF FILE --
-*--*/
Part of the ‘Hello, Embedded World’ example (restructured version)
/*--*-
Main.C (v1.00)

A "Hello Embedded World" test program for 8051. (Re-structured version –
multiple source files)
-*--*/
#include "Main.H"
#include "Port.H")

168

Contd..

#include "Delay_Loop.h"
#include "LED_Flash.h"
void main(void)
{
LED_FLASH_Init();
while(1)
{
// Change the LED state (OFF to ON, or vice versa)
LED_FLASH_Change_State();
// Delay for *approx* 1000 ms
DELAY_LOOP_Wait(1000);
}
}
/*--*-
---- END OF FILE --
-*--*/

169

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
LED_flash.H (v1.00)

– See LED_flash.C for details.
-*--*/
#ifndef _LED_FLASH_H
#define _LED_FLASH_H
// ------ Public function prototypes --------------------------
void LED_FLASH_Init(void);
void LED_FLASH_Change_State(void);
#endif
/*--*-
---- END OF FILE --
-*--*/

170

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
LED_flash.C (v1.00)
Simple 'Flash LED' test function.
-*--*/
#include "Main.H"
#include "Port.H"
#include "LED_flash.H"
// ------ Private variable definitions ------------------------
static bit LED_state_G;
/*--*-
LED_FLASH_Init()
Prepare for LED_Change_State() function – see below.
-*--*/
void LED_FLASH_Init(void)
{
LED_state_G = 0;
}
/*--*-

171

Contd..

LED_FLASH_Change_State()
Changes the state of an LED (or pulses a buzzer, etc) on a specified port
pin. Must call at twice the required flash rate: thus, for 1 Hz flash (on for
0.5 seconds, off for 0.5 seconds) must call every 0.5 seconds.
-*--*/
void LED_FLASH_Change_State(void)
{
// Change the LED from OFF to ON (or vice versa)
if (LED_state_G == 1)
{
LED_state_G = 0;
LED_pin = 0;
}

172

Contd..

else
{
LED_state_G = 1;
LED_pin = 1;
}
}
/*--*-
---- END OF FILE ---
-*--*/

173

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
Delay_Loop.H (v1.00)

– See Delay_Loop.C for details.
-*--*/
#ifndef _DELAY_LOOP_H
#define _DELAY_LOOP_H
// ------ Public function prototype ---------------------------
void DELAY_LOOP_Wait(const tWord);
#endif
/*--*-
---- END OF FILE --
-*--*/

174

Part of the ‘Hello, Embedded World’ example
(restructured version)

/*--*-
Delay_Loop.C (v1.00)

Create a simple software delay using a loop.
-*--*/
#include "Main.H"
#include "Port.H"
#include "Delay_loop.h"
/*--*-
DELAY_LOOP_Wait()
Delay duration varies with parameter.
Parameter is, *ROUGHLY*, the delay, in milliseconds,
on 12MHz 8051 (12 osc cycles).
You need to adjust the timing for your application!
-*--*/

175

Contd..

void DELAY_LOOP_Wait(const tWord DELAY_MS)
{
tWord x, y;
for (x = 0; x <= DELAY_MS; x++)
{
for (y = 0; y <= 120; y++);
}
}
/*--*-
---- END OF FILE --
-*--*/

176

Basic techniques for reading from port pins

Control of the 8051 ports is carried out using 8-bit latches (SFRs). We can
send some data to Port 1 as follows:
sfr P1 = 0x90; // Usually in header file
P1 = 0x0F; // Write 00001111 to Port 1
In exactly the same way, we can read from Port 1 as follows:
unsigned char Port_data;
P1 = 0xFF; // Set the port to 'read mode'
Port_data = P1; // Read from the port
After the 8051 microcontroller is reset, the port latches all have the value
0xFF(11111111 in binary): that is, all the port-pin latches are set to values of
‘1’. It is tempting to assume that writing data to the port is therefore
unnecessary, and that we can get away with the following version:
unsigned char Port_data;
// Assume nothing written to port since reset
// – DANGEROUS!!!
Port_data = P1;

177

Contd..

The problem with this code is that, in simple test programs it works: this
can Pull the developer into a false sense of security. If, at a later date,
someone modifies the program to include a routine for writing to all or
part of the same port, this code will not generally work as required:
unsigned char Port_data;
P1 = 0x00;
. . .
// Assumes nothing written to port since reset
// – WON’T WORK
Port_data = P1;

In most cases, initialization functions are used to set the port pins to a
known state at the start of the program. Where this is not possible, it is
safer to always write ‘1’ to any port pin before reading from it.

178

Reading and writing bytes

Listing is a simple example which illustrates how we can read from one
port on an 8051 microcontroller and ‘echo’ the result on another port.
Figure shows the output from one such simulation.

179

Contd..

180

Contd..

181

Reading and writing bits (simple version)

However, suppose we have a switch connected to Pin 1.0 and an LED
connected to Pin 1.1. We might also have input and output devices
connected to the other pins on Port 1. These pins may be used by totally
different parts of the same system, and the code to access them may be
produced by other team members, or other companies. It is therefore
essential that we are able to read-from or write-to individual port pins
without altering the values of other pins on the same port.
Listing 4.2 goes one step further and illustrates how we can read from Pin
1.0, and write to Pin 1.1, without disrupting any other pins on this (or any
other) port.
Reading and writing bits (simple version)
/*--*-
Bits1.C (v1.00)

Reading and writing individual port pins.
NOTE: Both pins on the same port
-*--*/

182

Contd..

183

Contd..

Please note these lines:
sbit Switch_pin = P1^0;
sbit LED_pin = P1^1;
Here we gain access to two port pins through the use of an sbit variable
declaration. The symbol ‘^’ is used, but the XOR bitwise operator is NOT
involved.

184

Contd..

185

Contd..

186

Contd..

Threads

A process or task is characterized by a collection of resources that

are utilized to execute a program. The smallest subset of these

resources (a copy of the CPU registers including the PC and a stack)

that is necessary for the execution of the program is called a thread.

A thread is a unit of computation with code and context, but no

private data.

187

Multitasking

A multitasking environment allows applications to be constructed as

a set of independent tasks, each with a separate thread of execution

and its own set of system resources. The inter-task communication

facilities allow these tasks to synchronize and coordinate their

activity. Multitasking provides the fundamental mechanism for an

application to control and react to multiple, discrete real-world

events and is therefore essential for many real-timeapplications.

188

Multitasking….

Multitasking creates the appearance of many threads of execution

running concurrently when, in fact, the kernel interleaves their

execution on the basis of a scheduling algorithm. This also leads to

efficient utilization of the CPU time and is essential for many

embedded applications where processors are limited in computing

speed due to cost, power, silicon area and other constraints. In a

multi-tasking operating system it is assumed that the various tasks

are to cooperate to serve the requirements of the overallsystem.

189

Multitasking….

Co-operation will require that the tasks communicate with each

other and share common data in an orderly an disciplined manner,

without creating undue contention and deadlocks. The way in which

tasks communicate and share data is to be regulated such that

communication or shared data access error is prevented and data,

which is private to a task, is protected. Further, tasks may be

dynamically created and terminated by other tasks, as and when

needed.

190

Semaphores

A semaphore is nothing but a value or variable or data which can control

the allocation of a resource among different tasks in a parallel

programming environment. So, Semaphores are a useful tool in the

prevention of race conditions and deadlocks; however, their use is by no

means a guarantee that a program is free from these problems.

Semaphores which allow an arbitrary resource count are called counting

semaphores, whilst semaphores which are restricted to the values 0 and 1

(or locked/unlocked, unavailable/available) are called binarysemaphores.

191

162

UNIT-IV

EMBEDDED SOFTWARE
DEVELOPMENT TOOLS

CLOs Course Learning Outcome

CLO13 Understand and analyze the RTOS concepts for
firmware development.

CLO14 Remember how to choose an RTOS, task scheduling,
semaphores and queues, hard real-time scheduling
considerations.

CLO15 Understand the task communication, its
programming and Task synchronization with its
issues and techniques.

CLO16 Develop host and target machines for linking to
embedded software.

CLO17 Develop debugging techniques for testing on host
machine with examples.

193

Semaphores…

194

Semaphores…

Types of Semaphores: There are three types of semaphores

Binary Semaphores,

Counting Semaphores and

Mutexes.

195

Message Queues

The Message Queues, are used to send one or more messages to a task

i.e. the message queues are used to establish the Inter task

communication. Basically Queue is an array of mailboxes. Tasks and ISRs

can send and receive messages to the Queue through services provided by

the kernel. Extraction of messages from a queue follow FIFO or LIFO

structure.

196

Message Queues…

Applications of message queue are

 Taking the input from a keyboard

To display output

Reading voltages from sensors or transducers

Data packet transmission in a network

In each of these applications, a task or an ISR deposits the message in the

message queue. Other tasks can take the messages. Based on our

application, the highest priority task or the first task waiting in the queue

can take the message. At the time of creating a queue, the queue is given

a name or ID, queue length, sending task waiting list and receiving task

waiting list.
197

Saving Memory and Power

Saving memory:

Embedded systems often have limited memory.

RTOS: each task needs memory space for its stack.

The first method for determining how much stack space a task needs is to

examine your code

The second method is experimental. Fill each stack with some

recognizable data pattern at startup, run the system for a period of time

198

Saving Memory and Power…

Program Memory:

Limit the number of functions used

Check the automatic inclusions by your linker: mayconsider

writing own functions.

Include only needed functions in RTOS

Consider using assembly language for large routines

199

Saving Memory and Power…

Data Memory

Consider using more static variables instead of stackvariables

On 8-bit processors, use char instead of int when possible.

200

Saving Memory and Power…

Saving power:

The primary method for preserving battery power is to turn off parts or all

of the system whenever possible.

Most embedded-system microprocessors have at least one power-saving

mode.

The modes have names such as sleep mode, low-power mode, idle mode,

standby mode, and so on.

A very common power-saving mode is one in which the microprocessor

stops executing instructions, stops any built-in peripherals, and stops its

clock circuit.

201

Saving Memory and Power…

Shared memory:

In this model stored information in a

processed, possibly

shared region of memory is

under the

control of a supervisor process.

An example might be a single node

with multiple cores.

share a global memory space

cores can efficiently exchange/share

data.

202

Message Passing

In this model, data is shared by sending and receiving messages between

co-operating processes, using system calls. Message Passing is particularly

useful in a distributed environment where the communicating processes

may reside on different, network connected, systems. Message passing

architectures are usually easier to implement but are also usually slower

than shared memory architectures.

203

Remote Procedure Call (RPC)

RPC allows programs to call procedures located on other machines.

When a process on machine A calls' a procedure on machine B, the

calling process on A is suspended, and execution of the called

procedure takes place on B. Information can be transported from the

caller to the callee in the parameters and can come back in the

procedure result. No message passing at all is visible to the

programmer. This method is known as Remote Procedure Call, or

often just RPC.

204

Remote Procedure Call (RPC)…

It can be said as the special case of message-passing model. It has

become widely accepted because of the following features: Simple

call syntax and similarity to local procedure calls. Its ease of use,

efficiency and generality. It can be used as an IPC mechanism

between processes on different machines and also between

different processes on the same machine.

205

Sockets

Sockets (Berkley sockets) are one of the most widely used communication

APIs. A socket is an object from which messages and are sent and received.

A socket is a network communication endpoint.

In connection-based communication such as TCP, a server application binds

a socket to a specific port number. This has the effect of registering the

server with the system to receive all data destined for that port. A client

can then rendezvous with the server at the server's port, as illustrated

here: Data transfer operations on sockets work just like read and write

operations on files. A socket is closed, just like a file, when communications

is finished.

206

Sockets…

Network communications are conducted through a pair of cooperating

sockets, each known as the peer of the other.

Processes connected by sockets can be on different computers (known as a

heterogeneous environment) that may use different data representations.

Data is serialized into a sequence of bytes by the local sender and

deserialized into a local data format at the receiving end.

207

Task Synchronization

All the tasks in the multitasking operating systems work together to solve a

larger problem and to synchronize their activities, they occasionally

communicate with one another.

For example, in the printer sharing device the printer task doesn’t have any

work to do until new data is supplied to it by one of the computer tasks. So

the printer and the computer tasks must communicate with one another to

coordinate their access to common data buffers. One way to do this is to

use a data structure called a mutex. Mutexes are mechanisms provided by

many operating systems to assist with task synchronization.

208

Task Synchronization…

A mutex is a multitasking-aware binary flag. It is because the processes of

setting and clearing the binary flag are atomic (i.e. these operations cannot

be interrupted). When this binary flag is set, the shared data buffer is

assumed to be in use by one of the tasks. All other tasks must wait until

that flag is cleared before reading or writing any of the data within that

buffer. The atomicity of the mutex set and clear operations is enforced by

the operating system, which disables interrupts before reading or

modifying the state of the binary flag.

209

Device drivers

Simplify the access to devices – Hide device specific details as much as

possible – Provide a consistent way to access different devices.

A device driver USER only needs to know (standard) interface functions

without knowledge of physical properties of the device .

A device driver DEVELOPER needs to know physical details and provides

the interface functions as specified.

210

HOST AND TARGET MACHINES

Host:

Where the embedded software is developed, compiled, tested,

debugged, optimized, and prior to its translation into target device.

(Because the host has keyboards, editors, monitors, printers, more

memory, etc. for development, while the target may have not of these

capabilities for developing the software.)

Target:

After development, the code is cross-compiled, translated –

cross-assembled, linked (into target processor instruction set) and located

into the target

211

HOST AND TARGET MACHINES

 Cross-Compilers :

 Native tools are good for host, but to port/locate embedded code to target,

the host must have a tool-chain that includes a cross-compiler, one which

runs on the host but produces code for the target processor

 Cross-compiling doesn’t guarantee correct target code due to (e.g.,

differences in word sizes, instruction sizes, variable declarations, library

functions)

212

HOST AND TARGET MACHINES

 Cross-Assemblers and Tool Chain:

 Host uses cross-assembler to assemble code in target’s instruction syntax

for the target

 Tool chain is a collection of compatible, translation tools, which are

‘pipelined’ to produce a complete binary/machine code that can be linked

and located into the target processor

213

HOST AND TARGET MACHINES

214

LINKERS AND LOCATORS

perform

215

Linker/Locators for Embedded Software:

 Native linkers are different from cross-linkers (or locators) that

additional tasks to locate embedded binary code into target processors

 Address Resolution –

 Native Linker: produces host machine code on the hard-drive (in a named

file), which the loader loads into RAM, and then schedules (under the OS

control) the program to go to the CPU.

LINKERS AND LOCATORS

Linker/Locators for Embedded Software:

 Function calls, are ordered or organized by the linker. The loader then maps

the logical addresses into physical addresses a process called address

resolution. The loader then loads the code accordingly into RAM . In the

process the loader also resolves the addresses for calls to the native OS

routines

 Locator: produces target machine code (which the locator glues into the

RTOS) and the combined code (called map) gets copied into the target

ROM. The locator doesn’t stay in the target environment, hence all

addresses are resolved, guided by locating-tools and directives, prior to

running the code.

216

LINKERS AND LOCATORS

217

HOST AND TARGET MACHINES

218

LINKERS AND LOCATORS

 Locating Program Components – Segments

 Unchanging embedded program (binary code) and constants must be

kept in ROM to be remembered even on power-off

 Changing program segments (e.g., variables) must be kept in RAM

 Chain tools separate program parts using segments concept

 Chain tools (for embedded systems) also require a ‘start-up’ code to be

in a separate segment and ‘located’ at a microprocessor-defined

location where the program starts execution

 Some cross-compilers have default or allow programmer to specify

segments for program parts, but cross-assemblers have no default

behavior and programmer must specify segments for program parts

219

HOST AND TARGET MACHINES

220

GETTING EMBEDDED SOFTWARE INTO TARGET SYSTEM

Getting Embedded Software into Target System

 Moving maps into ROM or PROM, is to create a ROM using hardware tools

or a PROM programmer (for small and changeable software, during

debugging)

 If PROM programmer is used (for changing or debugging software), place

PROM in a socket (which makes it erasable – for EPROM, or

removable/replaceable) rather than ‘burnt’ into circuitry

 PROM’s can be pushed into sockets by hand, and pulled using a chip puller

 The PROM programmer must be compatible with the format

(syntax/semantics) of the Map

221

GETTING EMBEDDED SOFTWARE INTO TARGET SYSTEM

222

GETTING EMBEDDED SOFTWARE INTO TARGET SYSTE

Getting Embedded Software into Target System – 1

 ROM Emulators – Another approach is using a ROM emulator (hardware)

which emulates the target system, has all the ROM circuitry, and a serial or

network interface to the host system. The locator loads the Map into the

emulator, especially, for debugging purposes.

 Software on the host that loads the Map file into the emulator must

understand (be compatible with) the Map’s syntax/semantics

223

DEBUGGING TECHNIQUES

• Getting Embedded Software into Target System – 1

 Using Flash Memory

 For debugging, a flash memory can be loaded with target Map code

using a software on the host over a serial port or network connection (just

like using an EPROM)

224

DEBUGGING TECHNIQUES

225

DEBUGGING TECHNIQUES

the flash (unlike PROM) for debugging different

226

Advantages:

 No need to pull

embedded code

 Transferring code into flash (over a network) is faster and hassle-free

 Modifying and/or debugging the flash programming software requires

moving it into RAM, modify/debug, and reloading it into target flash

memory using above methods

DEBUGGING TOOLS

Advantages:

New versions of embedded software (supplied by vendor) can

be loaded into flash memory by customers over a network - Requires a)

protecting the flash programmer, saving it in RAM and executing from

there, and reloading into flash after new version is written and b) the

ability to complete loading new version even if there are crashes and

protecting the startup code as in (a)

227

DEBUGGING TECHNIQUES

the flash (unlike PROM) for debugging different

228

Advantages:

 No need to pull

embedded code

 Transferring code into flash (over a network) is faster and hassle-free

 Modifying and/or debugging the flash programming software requires

moving it into RAM, modify/debug, and reloading it into target flash

memory using above methods

SIMPLE VOLT/OHM METER

Simple volt-ohm meter can be used to test the target hardware.

 It has two leds red and black

One end is connected to meter and other is connected to point

between which the voltage or resistance is to be measured

The meter is set for volt for checking the power supply voltage at

sorce and voltage level at chips and port pins.

The meter is set for ohm for checking thebroken

connections,improper ground connections,burn out resistance and

diods.

229

SIMPLE LED TESTS AND LOGIC PROBE

 A logic probe is a hand-held test probe used for analyzing and

troubleshooting the logical states (boolean 0 or 1) of a digital circuit.

Most modern logic probes typically have one or more LEDs on the body of

the probe:

an LED to indicate a high (1) logic state.

an LED to indicate a low (0) logic state.

an LED to indicate changing back and forth between low and high

states.

230

OSCILLOSCOPE

 An 'oscilloscope', previously called an 'oscillograph', and informally known

as a scope or o-scope, CRO (for cathode-ray oscilloscope), or DSO (for the

more modern digital storage oscilloscope), is a type of electronic test

instrument that graphically displays varying signal voltage, usually as a

two-dimensional plot of one or more signals as a function of time. Other

signals (such as sound or vibration) can be converted to voltages and

displayed.

 Oscilloscopes display the change of an electrical signal over time, with

voltage and time as the Y- and X-axes, respectively, on a calibrated scale.

231

OSCILLOSCOPE

The waveform can then be analyzed for properties such as

amplitute, f requency, rise time , time interval, distortion, and

others.

The oscilloscope can be adjusted so that repetitive signals can be

observed as a continuous shape on the screen.

A storage oscilloscope can capture a single event and display it

continuously, so the user can observe events that would otherwise

appear too briefly to see directly.

Oscilloscopes are used in the sciences, medicine, engineer

232

BIT RATE METER

In telecommunications and computng , bit rate (bit rate or as a

variable R) is the number of bits that are conveyed or processed per

unit of time.

The bit rate is quantified using the bits per second unit (symbol:

"bit/s"), often in conjunction with an SI prefix such as "kilo" (1 kbit/s

= 1,000 bit/s), "mega" (1 Mbit/s = 1,000 kbit/s), "giga" (1 Gbit/s =

1,000 Mbit/s) or "tera" (1 Tbit/s = 1000 Gbit/s). The non-standard

abbreviation "bps" is often used to replace the standard symbol

"bit/s", so that, for example, "1 Mbps" is used to mean one million

bits per second.

233

BIT RATE METER

The bit rate is calculated using the formula:

1.Frequency × bit depth × channels = bit rate.

2.44,100 samples per second × 16 bits per sample × 2 channels =

1,411,200 bits per second (or 1,411.2 kbps)

3.14,411,200 × 240 = 338,688,000 bits (or 40.37 megabytes)

234

LOGIC ANALYZER

A logic analyzer is an electronic instrument that captures and

displays multiple signals from a digital system or digital circuit.

235

A logic analyzer may convert the captured data into timing

diagrams, protocol decodes, state machine traces, assembly

language, or may correlate assembly with source-level software.

Logic analyzers have advanced triggering capabilities, and are

useful when a user needs to see the timing relationships between

many signals in a digital system

IN-CIRCUIT EMULATOR

An In-circuit emulator (ICE) is a debugging tool that allows you to

access a target MCU for in-depth debugging.

In-circuit emulation (ICE) is the use of a hardware device or in-

circuit emulator used to debug the software of an embedde system.

It operates by using a processor with the additional ability to

support debugging operations, as well as to carry out the main

function of the system.

236

IN-CIRCUIT EMULATOR

237

IN-CIRCUIT EMULATOR

ICE consists of a hardware board with accompanying software for the

host computer. The ICE is physically connected between the host

computer and the target MCU.

The debugger on the host establishes a connection to the MCU via

the ICE. ICE allows a developer to see data and signals that are internal

to the MCU, and to step through the source code (e.g., C/C++ on the

host) or set breakpoints; the immediate ramifications of executed

software are observed during run time.

Since the debugging is done via hardware, not software, the MCU’s

performance is left intact for the most part, and ICE does not

compromise MCU resources.

238

MONITOR

Monitor is a debugging tool for actual target microprocessor or

microcontroller in ICE ROM emulator or in target development board.

It also lets host system debugging interface just like as an ICE.

Monitor means a ROM resident program at the target board or ROM

emulator connected to ICE.It monitors the device applications ,the

runs for different hardware architecture and is used for debugging.

239

192

UNIT-V
INTRODUCTION TO

ADVANCED ARCHITECTURES

CLOs Course Learning Outcome

CLO18 Remember the advanced processors such as ARM
and SHARC.

CLO19 Understand the bus protocols such as I2C and CAN
bus.

CLO20 Design an application based on advanced
technological changes.

241

ARM instruction set

 ARM versions.

 ARM assembly language.

 ARM programming model.

 ARM memory organization.

 ARM data operations.

 ARM flow of control

242

ARM versions

ARM architecture has been extended over several versions.

We will concentrate on ARM7.

243

ARM assembly language

Fairly standard assembly language:

LDR r0,[r8] ; a comment

label ADD r4,r0,r1

244

ARM programming model

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

CPSR

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

CPSR

31 0

N Z C V

245

Endianness

 Relationship between bit and byte/word ordering defines
endianness:

byte 3 byte 2 byte 1 byte 0

bit 31 bit 0 bit 0 bit 31

byte 0 byte 1 byte 2 byte 3

little-endian big-endian

ARM data types

 Word is 32 bits long.

 Word can be divided into four 8-bit bytes.

 ARM addresses can be 32 bits long.

 Address refers to byte.

 Address 4 starts at byte 4.

 Can be configured at power-up as either little- or bit-endian mode.

247

ARM status bits

 Every arithmetic, logical, or shifting operation sets CPSR bits:

N (negative), Z (zero), C (carry), V (overflow).

 Examples:

-1 + 1 = 0: NZCV = 0110.

231-1+1 = -231: NZCV = 1001.

248

ARM data instructions

 Basic format:

ADD r0,r1,r2

-Computes r1+r2, storesin r0.

 Immediate operand:

ADD r0,r1,#2

-Computes r1+2, stores in r0.

249

ARM data instructions

 ADD, ADC : add (w. carry)

 SUB, SBC : subtract (w. carry)

 RSB, RSC : reverse subtract (w.
carry)

 MUL, MLA : multiply (and
accumulate)

250

 AND, ORR, EOR

 BIC : bit clear

 LSL, LSR : logical shift left/right

 ASL, ASR : arithmetic shift
left/right

 ROR : rotate right

 RRX : rotate right extended with
C

Data operation varieties

 Logical shift:

-fills with zeroes.

 Arithmetic shift:

-fills with ones.

 RRX performs 33-bit rotate, including C bit from CPSR above sign bit.

251

ARM comparison instructions

 CMP : compare

 CMN : negated compare

 TST : bit-wise AND

 TEQ : bit-wise XOR

 These instructions set only the NZCV bits of CPSR.

252

ARM move instructions

 MOV, MVN : move (negated)

MOV r0, r1 ; sets r0 to r1

253

NUMBER BASE CONVERSION

 LDR, LDRH, LDRB : load (half-word, byte)

 STR, STRH, STRB : store (half-word, byte)

 Addressing modes:

-register indirect : LDR r0,[r1]

-with second register : LDR r0,[r1,-r2]

-with constant : LDR r0,[r1,#4]

254

ARM ADR pseudo-op

 Cannot refer to an address directly in an instruction.

 Generate value by performing arithmetic on PC.

 ADR pseudo-op generates instruction required to calculate address:

ADR r1,FOO

255

Example: C assignments

 C:

256

x = (a + b) - c;

 Assembler:

ADR r4,a ; get address for a

LDR r0,[r4]

ADR r4,b

; get value of a

; get address for b, reusing r4

LDR r1,[r4] ; get value of b

ADD r3,r0,r1 ; compute a+b

ADR r4,c ; get address for c

LDR r2,[r4] ; get value of c

C assignment, cont’d.

SUB r3,r3,r2
ADR r4,x
STR r3,[r4]

257

; complete computation of x
; get address for x
; store value of x

Example: C assignment

 C:
y = a*(b+c);

 Assembler:
ADR r4,b ; get address for b
LDR r0,[r4] ; get value of b
ADR r4,c ; get address for c
LDR r1,[r4] ; get value of c
ADD r2,r0,r1 ; compute partial result
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a

258

C assignment, cont’d.

MUL r2,r2,r0 ; compute final value for y

259

ADR r4,y
STR r2,[r4]

; get address for y
; store y

Example: C assignment

 C:
z = (a << 2) | (b & 15);

 Assembler:
ADR r4,a ; get address for a
LDR r0,[r4] ; get value of a
MOV r0,r0,LSL 2 ; perform shift
ADR r4,b ; get address for b
LDR r1,[r4] ; get value of b
AND r1,r1,#15 ; perform AND
ORR r1,r0,r1 ; perform OR

260

C assignment, cont’d.

ADR r4,z ; get address for z

STR r1,[r4] ; store value for z

261

Additional addressing modes

 Base-plus-offset addressing:
LDR r0,[r1,#16]

Loads from location r1+16
 Auto-indexing increments base register:

LDR r0,[r1,#16]!
 Post-indexing fetches, then does offset:

LDR r0,[r1],#16
Loads r0 from r1, then adds 16 to r1.

262

ARM flow of control

 All operations can be performed conditionally, testing CPSR:
EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT,LE

 Branch operation:
B #100
Can be performed conditionally

263

Example: if statement

 C:

if (a > b) { x = 5; y = c + d; } else x = c - d;

 Assembler:

; compute and test condition

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b

LDR r1,[r4] ; get value for b

CMP r0,r1 ; compare a < b

BLE fblock ; if a ><= b, branch to false block

264

If statement, cont’d.

; true block
MOV r0,#5 ; generate value for x
ADR r4,x ; get address for x
STR r0,[r4] ; store x
ADR r4,c ; get address for c
LDR r0,[r4] ; get value of c
ADR r4,d ; get address for d
LDR r1,[r4] ; get value of d
ADD r0,r0,r1 ; compute y
ADR r4,y ; get address for y
STR r0,[r4] ; store y
B after ; branch around false block

265

If statement, cont’d.

; false block
fblock ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c
ADR r4,d ; get addressfor d
LDR r1,[r4] ; get value ford

SUB r0,r0,r1 ; computea-b
ADR r4,x ; get address for x

STR r0,[r4] ; store value of x
after ...

266

Example: switch statement

 C:
switch (test) { case 0: … break; case 1: … }

 Assembler:
ADR r2,test ; get address for test

LDR r0,[r2] ; load value fortest

ADR r1,switchtab ; load address for switch table
LDR r1,[r1,r0,LSL #2] ; index switch table
switchtab DCD case0

DCD case1

...

267

Example: FIR filter

 C:

for (i=0, f=0; i<N; i++)
f = f + c[i]*x[i];

 Assembler
; loop initiation code
MOV r0,#0 ; use r0 for I

MOV r8,#0 ; use separate index for arrays
ADR r2,N ; get address for N

LDR r1,[r2] ; get value of N
MOV r2,#0 ; use r2 for f

268

FIR filter, cont’.d

ADR r3,c ; load r3 with base of c

ADR r5,x ; load r5 with base of x

; loop body

loop LDR r4,[r3,r8] ; get c[i]

LDR r6,[r5,r8] ; get x[i]

MUL r4,r4,r6 ; compute c[i]*x[i]

ADD r2,r2,r4 ; add into running sum

ADD r8,r8,#4 ; add one word offset to array index

ADD r0,r0,#1 ; add 1 to i

CMP r0,r1 ; exit?

BLT loop ; if i < N, continue

269

ARM subroutine linkage

 Branch and link instruction:

BL foo

Copies current PC to r14.

To return from subroutine:

MOV r15,r14

270

Nested subroutine calls

 Nesting/recursion requires coding convention:

f1 LDR r0,[r13] ; load arg into r0 from stack

; call f2()

STR r14,*r13+! ; store f1’s return adrs

STR r0,[r13]! ; store arg to f2 on stack

BL f2 ; branch and link to f2

; return from f1()

SUB r13,#4 ; pop f2’s arg off stack

LDR r13!,r15 ; restore register and return

271

SHARC instruction set

 SHARC programming model.
 SHARC assembly language.
 SHARC memory organization.
 SHARC data operations.
 SHARC flow of control

272

SHARC programming model

 Register files:

R0-R15 (aliased as F0-F15 for floatingpoint)

 Status registers.

 Loop registers.

 Data address generator registers.

 Interrupt registers.

273

SHARC assembly language

Algebraic notation terminated by semicolon:

R1=DM(M0,I0), R2=PM(M8,I8); ! comment
label: R3=R1+R2;

data memory access program memory access

274

SHARC MEMORY SPACE

275

SHARC DATATYPES

 32-bit IEEE single-precision floating-point.

 40-bit IEEE extended-precision floating-point.

 32-bit integers.

 Memory organized internally as 32-bit words.

276

SHARC MICRO ARCHITECTURE

 Modified Harvard architecture.

 Program memory can be used to store some data.

 Register file connects to:

 multiplier

 shifter;

 ALU.

277

SHARC MODE REGISTERS

 Most important:

 ASTAT: arithmetic status.

 STKY: sticky.

 MODE 1: mode 1.

278

ROUNDING AND SATURATION

 Floating-point can be:

 rounded toward zero;

 rounded toward nearest.

 ALU supports saturation arithmetic (ALUSAT bit in MODE1).

 Overflow results in max value, not rollover.

279

MULTIPLIER

 Fixed-point operations can accumulate into local MR registers or be

written to register file. Fixed-point result is 80 bits.

 Floating-point results always go to register file.

 Status bits: negative, under/overflow, invalid, fixed-point underflow,

floating-point underflow, floating-point invalid.

280

ALU/SHIFTER STATUS FLAGS

ALU:

– zero, overflow, negative, fixed-point carry, input sign, floating-

point invalid, last op was floating-point, compare accumulation

registers, floating-point under/oveflow, fixed-point overflow,

floating-point invalid

Shifter:

– zero, overflow, sign

281

FLAG OPERATIONS

 All ALU operations set AZ (zero), AN (negative), AV (overflow), AC

(fixed-point carry), AI (floating-point invalid) bits in ASTAT.

 STKY is sticky version of some ASTAT bits.

282

SHARC load/store

 Load/store architecture: no memory-direct operations.

 Two data address generators (DAGs):

 program memory;

 data memory.

 Must set up DAG registers to control loads/stores.

283

SHARC program sequencer

Features:

– instruction cache;

– PC stack;

– status registers;

– loop logic;

– data address generator;

284

Networking for Embedded Systems

• Why we use networks.

• Network abstractions.

• Example networks.

285

Network elements

Distributed computing platform:

PEs may be CPUs or ASICs.

286

Networks in embedded systems

287

Why distributed?

 Higher performance at lower cost.

 Physically distributed activities---time constants may not allow

transmission to central site.

 Improved debugging---use one CPU in network to debug others.

 May buy subsystems that have embedded processors.

288

Network abstractions

 International Standards Organization (ISO) developed the Open

Systems Interconnection (OSI) model to describe networks:

7-layer model.

 Provides a standard way to classify network components and

operations.

289

OSI model

290

OSI layers

 Physical: connectors, bit formats, etc.

 Data link: error detection and control across a single link (single

hop).

291

network

 Network: end-to-end multi-hop data communication.

 Transport: provides connections; may optimize

resources.

 Session: services for end-user applications: data grouping, check

pointing, etc.

 Presentation: data formats, transformation services.

 Application: interface between network and end-user programs.

Bus networks

 Common physical connection:

292

Bus arbitration

 Fixed: Same order of resolution every time.

 Fair: every PE has same access over long periods.

 Round-robin: rotate top priority among Pes.

293

Crossbar

Crossbar characteristics:

Non-blocking.

Can handle arbitrary multi-cast combinations.

Size proportional to n2.

294

I2C bus

 Designed for low-cost, medium data rate applications.

 Characteristics:

 serial;

 multiple-master;

 fixed-priority arbitration.

 Several microcontrollers come with built-in I2C controllers.

295

I2C physical layer

296

I2C data format

297

I2C signaling

 Sender pulls down bus for 0.

 Sender listens to bus---if it tried to send a 1 and heard a 0,

someone else is simultaneously transmitting.

 Transmissions occur in 8-bit bytes.

I2C data link layer

 Every device has an address (7 bits in standard, 10 bits in

extension).Bit 8 of address signals read or write.

 General call address allows broadcast.

298

I2C bus arbitration

Sender listens while sending address.

When sender hears a conflict, if its address is higher, it stops

signaling.

Low-priority senders relinquish control early enough in clock

cycle to allow bit to be transmitted reliably.

299

I2C transmissions

300

CAN BUS

 CAN (Controller Area Network) is

301

a serial

embedded 8-bit and

bus system used to

16-bitcommunicate between several

microcontrollers.

 It was originally designed for use in the automotive industry but is

used today in many other systems (e.g. home appliances and industrial

machines).

CAN Controller Diagram

302

Data Format

 Each message has an ID, Data and overhead.

 Data –8 bytes max

 Overhead – start, end, CRC, ACK

303

Internet –EnAnalyzed systems

using

and

304

 Embedded systems are internet enabled by

TCP/IP protocols for networking to internet

assigning IP addresses to each systems.

 Internet provides a standard way for embedded systems

to act in concert with other devices and with users.eg.

1.High end laser printers use internet protocols to receive

print jobs from host machines.

2.PDA can display web pages ,read email and synchronous

calendar information with remote computer.

ELEVATOR CONTROLLER

An elevator system is a vertical transport vehicle that efficiently moves

people or goods between floors of a building. They are generally

powered by electric motors.

The most popular elevator is the rope elevator. In the rope elevator,

the car is raised and lowered by transaction with steel rope.

Elevators also have electromagnetic brakes that engage, when the car

comes to a stop. The electromagnetic actually keeps the brakes in the

open position. Instead of closing them with the design, the brakes will

automatically clamp shut if the elevator loses power.

Elevators also have automatic braking systems near the top and the

bottom of the elevator shaft.

305

ELEVATOR CONTROLLER

ELEVATOR SYSTEM OVERVIEW

306

