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CLO’s Course Learning outcomes

CLO1 Understand the key concepts of Image Processing.

CLO2 Identify the origins of the Digital image processing

CLO3 Demonstrate the scope of the digital image  processing in multiple fields

CLO4 Explore on overview of the components contained in the general purpose image 
processing system and its use in real  time applications

CLO5 Describe the concept of elements of visual perception.

Course learning outcomes



What is digital Imageprocessing?

Image–A two-dimensional signalthat canbe observedby

human  visualsystem

Digital image – Representation of images by sampling in  

time andspace.

Digitalimageprocessing– Perform digital signalprocessing

operations on digitalimages



What is digital imageprocessing?(contd..)

•An image may be defined as a two- dimensional function, f(x,y) where x

and y are spatial (plane) coordinates, and the amplitude off at any pair of

coordinates (x, y) is called the intensity or gray level of the image at that

point

•When x, y,and the amplitude valuesof f areall finite,discrete  

quantities, we call the imageadigitalimage.



What is digital imageprocessing?(contd..)

•Adigital imageiscomposedof afinite number of elements, eachof  

which hasaparticular location andvalue

•These elements are referred to as picture elements, image

elements andpixels.

•Pixelis the term most widely usedto denote the elements of  

adigital image.



Origins of digital imageprocessing

• One of the first applications of digital images was in the newspaper

industry, when pictures were first sent by submarine cable between

London andNewYork.

printing equipment coded pictures for cable  

and then reconstructed them at the receiving

• Specialized  

transmission  

end.

• Image was transmitted in this way and reproduced on a telegraph  

printer fitted with typefacessimulating ahalftone pattern.



Origins ofdigital image processing(contd..)

• The printing technique based on photographic reproduction made

terminal fromfrom tapes perforated at the telegraph receiving  

1921.

• Theimprovements are tonal quality andinresolution.

• Theearly Bartlane systems were capableof coding images in five  

distinct levelsofgray.

• This capability wasincreasedto 15levelsin1929.



Examplesof fieldsthat use DIP

• Gamma rayimaging

• X-rayImaging(oldest sourceof EMradiation)

• Imagingin the visible andinfraredbands

• Imaging in themicrowaveband

• Imaging in the radioband

• Other Imaging Modalities Acoustic images, electron  

microscopyandsynthetic (computer – generatedimages)



Fundamental stepsin DIP

There are some fundamental steps but as they are fundamental, all these

steps may have sub-steps. The fundamental steps are described below

with aneatdiagram.



Fundamentalsteps in DIP(Contd..)

1. Image Acquisition:
This is the first step or process of the fundamental steps of

digital image processing. Image acquisition could be as simple as
being given an image that is already in digital form. Generally, the
image acquisition stage involves pre- processing, such as scaling
etc.

2.Image Enhancement:

Image enhancement is among the simplest and most appealing
areas of digital image processing. Basically, the idea behind
enhancement techniques is to bring out detail that is obscured, or
simply to highlight certain features of interest in an image. Suchas,
changing brightness & contrast etc.

3.ImageRestoration:

Image restoration is an area that also deals with improving the
appearance of an image. However, unlike enhancement, which is
subjective, image restoration is objective, in the sense that
restoration techniques tend to be based on mathematical or
probabilistic models of image degradation.



Fundamental stepsin DIP(Contd..)

4. Color ImageProcessing:Color image processing is an area that has been

gaining its importance because of the significant increase in the use of

digital images over the Internet. This may include color modeling and

processingin adigital domainetc.

5. Wavelets and Multi-ResolutionProcessing:Wavelets are the foundation

for representing images in various degrees of resolution. Images

subdivision successively into smaller regions for data compression and for

pyramidalrepresentation.

6. Compression:Compression deals with techniques for reducing the storage

required to save an image or the bandwidth to transmit it. Particularly in

the uses of internet it is very much necessary to compressdata.

7.Morphological Processing: Morphological processing deals with tools

forextracting image components that are useful in the representation and

description of shape.



Fundamental stepsin DIP(Contd..)

8. Segmentation:Segmentation procedures partition an image into its

constituent parts or objects. In general, autonomous segmentation is one of

the most difficult tasks in digital imageprocessing.

9. Representation and Description:Representation and description almost

always follow the output of a segmentation stage, which usually is raw

pixel data, constituting either the boundary of a region or all the points in

the region itself. Choosing a representation is only part of the solution for

transforming raw data into a form suitable for subsequent

computerprocessing.

10. Object recognition:Recognition is the process that assigns a label, such as,

“vehicle” to an object basedon its descriptors.

11. Knowledge Base:Knowledge may be as simple as detailing regions of an

image where the information of interest is known to be located, thus

limiting the search that has to be conducted in seekingthat information.



Components ofimage processing system

processingFigure shows different components of image  

system.



Components ofimage processing 

systemimageprocessing
1.In sensing, two elements are required to acquire digital images. The

first is physical device that is sensitive to the energy radiated by

the object we wish to image. The second called adigitizer, is

adevice for converting the output of the physical sensing device

into digital form.

2. Specialized image processing hardware usually consists of the

digitizer plus hardware that performs other primitive operations

such as arithmetic and logical operations(ALU).

3. The computer is an image processing system is a

general purpose to supercomputer

4. Software which include image processing specialized modules

thatperform specific tasks.



Components ofimage processing 

5. Massstoragecapability isamust in imageprocessing applications.

6. Imagedisplaysin usetoday are mainly color tv monitors.

7. hardcopy devices for recording images include laser printers, film
cameras, inkjet units and cdrom

8.Networking forcommunication



Elements of visualperception

Structure ofhuman eye:



Elements ofvisualperception(Contd..)

The eye is nearly a sphere, with an average diameter of
approximately 20mm.

Threemembranesenclosethe eye:

1.Cornea:The cornea is a tough, transparent tissue that covers
the anterior surfaceof theeye.

2.Sclera: sclera is an opaque membrane that encloses the
remainder of the opticglobe.

3.Choroid:The choroid lies directly below the sclera. This membrane
contains a net- work of blood vessels that serve as the major source
of nutrition to the eye. The choroid coat is heavily pigmented and
hence helps to reduce the amount of extraneous light entering the
eye and the backscatter within the optical globe.



Elements ofvisualperception(Contd..)

• The lens is made up of concentric layers of fibrous cells and is
suspended by fibers that attach to the ciliary body. It contains 60
to 70% water, about 6% fat, and more protein than any other
tissue in the eye.

• The innermost membrane of the eye is the retina, which lines the
Inside of all entire posterior portion.

• When the eye is properly focused, light from an object outside the
eye is imaged on the retina. Pattern vision is afforded by the
distribution of discrete light receptors over the surface of the
retina.

Thereare two classesof receptors: conesandrods.
• Theconesin eacheyenumber between 6 and7 million
• They are located primarily in the central portion of the retina,

called the fovea, andarehighlysensitive tocolor.



Elements ofvisualperception(Contd..)

• Muscles controlling the eye rotate the eyeball until the image of an
objectof interest fallson the fovea.

• Conevisioniscalledphotopicorbright-light  vision.

• Thenumberof rodsismuchlarger:Some75 to  150 million are 
distributed over the retinal  surface.



Elements of visual perception(Contd..)

Imageformationintheeye:

• Theprincipal difference between the lensof the eyeand
an  ordinary optical lensisthatthe former is flexible.

• The shape of the lens is controlled by tension in the fibers of
the  ciliarybody.

• Tofocuson distant objects, the controlling musclescause
the  lens to berelatively flattened.

• Similarly, these muscles allow the lens to becomethicker in order
to  focuson objectsnearthe eye.

• The distance between the center of the lens and the retina called
the focal length varies from approximately 17 mm to about 14
mm, as the refractive power of the lens increases from its
minimum to its maximum.



Elements of visualperception(Contd..)

• When the eye focuses on an object farther away the
lens exhibits its lowestrefractive power.

• Whenthe eyefocuseson a near by object, the lensismost strongly
refractive.

• For example, the observer is looking at a tree 15 m high at a
distance of 100m.

• If h isthe height in mm of that object in the retinal image,

the geometry of Fig.yields15/100 =h/17 orh=2.55mm.



Simple image formation model

• Imagesare represented by two-dimensional functions of the

form f(x,y).
• Thevalueor amplitude of f at spatialcoordinates (x,y)gives

the intensity (brightness) of the imageat that point.
• Aslight isaform of energy,f(x,y) must benonzeroandfinite.

The function f(x,y) may be characterized by twocomponents:

1.The amountof sourceillumination incidenton the scenebeing
viewed

2.The amount of illumination reflected by the objects in
the scene.

Thesearecalledthe illuminationand reflectancecomponents and are
denotedbyi(x,y)andr(x,y),respectively.



Simple imageformation model(Contd..)

• The two functions combine asa product to

formf(x,y):f(x,y)=i(x,y)r(x,y)

r(x,y)=0 --- totalabsorption

1 --- total reflection

• The intensity of a monochrome image f at any coordinates(x,y)
the gray level(l)oftheimageat that point.

• Thatis,l=f(x0,y0)Lliesintherange

Lmin≤l≤ LmaxwhereLmin=lminrminand Lmax=lmax rmax



Sampling and quantization

• To create an image which is digital, we need to convert  
continuousdatainto digital form. Therearetwo stepsin whichit is  
done.

1.Sampling

2.Quantization

• Since an image is continuous not just in its co-ordinates (x axis), but
also in its amplitude (y axis), so the part that deals with the digitizing
of co-ordinates is known as sampling. and the part that deals with
digitizing the amplitude isknownasquantization.



Representingdigitalimages

Adigitalimagecanberepresentedinmatrixform:



Representing digital Images(Contd..)

The number of gray levels is chosen to be a power of 2 for practical
reasons: L=2n, which generates gray values ranging from lmin=0 to l
max=2n-1

Weassumethat the discrete levelsareequally spacedandthat they
are  integersin the interval [0, L-1].

Sometimesthe rangeof values spannedbythe grayscaleiscalled
the  dynamic rangeof an

•Thenumber of samplingpoints N,Mis setby the sensorarray.
•Thenumber,b, of bits required to store adigitized imageis b=N*M*n



Spatial andGray-levelResolution

Spatial resolution is the smallest level of detail discernable in an image
Numberof line pairsper millimeter,say100line pairsper millimeter.

Gray-level resolution is the smallest discernable change in gray level.
Very subjective.



Spatial andGray-levelResolution(Contd..)



Spatial andGray-levelResolution(Contd..)



Zoomingand ShrinkingDigital Images

Zooming:-It may be viewed as oversampling. Increasing no-of pixels
in an imageso that imageappearslarger.

It requires twosteps:

• Creationof new pixels

• Assignmentof graylevelto those new locations.



Zooming andShrinking Digital
Images(Contd..)

ZoomingMethods

• Nearest neighborinterpolation

• Bilinearinterpolation

• K-timeszooming

Shrinking:-Itmaybeviewedasundersampling.
It is performed byrow-columndeletion



Basic relationshipsbetweenpixels

• Neighborhood

• Adjacency

• Connectivity

• Paths

• Regions andboundaries



Basic relationshipsbetween
pixels(Contd..)

Neighboursofpixel

• Any pixel p(x, y) has two vertical and two horizontal neighbors, given
by (x+1,y), (x-1, y),(x, y+1), (x,y-1)

• Thisset of pixels are called the 4-neighbors of P, and is denoted by
N4(P).

• Eachof them areat aunit distancefromP.



Basic relationshipsbetween
pixels(Contd..)

• The four diagonal neighbors of p(x,y) are given by, (x+1,y+1), (x+1,y-1),
(x-1,y+1),(x-1,y-1)

• Thissetisdenoted byND(P).

• The points ND(P) and N4(P) are together known as 8-neighbors of the
point P,denotedbyN8(P).

• Some of the points in the N4, ND and N8 may fall outside image

whenPlieson the border of image.



Basic relationshipsbetweenpixels(Contd..)

• Twopixelsare connected if they are neighborsand their gray  levels
satisfysomespecifiedcriterion ofsimilarity.

• Forexample,in abinary imagetwo pixelsareconnected if they  are4-
neighborsandhavesamevalue(0/1).

LetVbesetof graylevelsvaluesusedto defineadjacency.

4-adjacency: Two pixels p and q with values from Vare 4- adjacent ifq is in
the setN4(p).

8-adjacency: Two pixels p and q with values from Vare 8- adjacent ifq is in
the setN8(p).

m-adjacency: Two pixels p and q with values from V are m- adjacent if, – q
is in N 4(P). – q is in N D(p) and the set [ ] is empty (has no pixels whose
valuesarefromV).



Basic relationshipsbetween
pixels(Contd..)

Connectivity:

Let V be the set of gray-level values used to define connectivity; then
Twopixels p, q that have values from the setVare:

a. 4-connected,ifq isin the setN4(p)

b. 8-connected,if q isin the setN8(p)

c. m-connected,iff

i. q isin N4(p)or

ii. q is in ND(p) and the set N4 (p)∩N4(q) is empty.



Basic relationshipsbetween
pixels(Contd..)

Paths

• Apath from pixel p with coordinates (x, y) to pixel q with coordinates
(s, t) is a sequenceof distinct pixels with coordinates: (x0, y 0), (x1, y 1),
(x2,y2) …(x n, y n), where (x 0, y 0)=(x, y) and (x n,y n)=(s, t); (x i, y i ) is
adjacentto (xi-1,yi-1),1≤i≤n.

• Heren isthe length of the path.

• Wecandefine 4-,8-,andm-pathsbasedon type of adjacencyused.



Basic relationshipsbetween
pixels(Contd..)

RegionsandBoundaries

• A subset R of pixels in an image is called a Region of the
image if Risaconnectedset.

• Theboundary of the region Ris the set of pixels in the region
tha

t  haveoneor more neighborsthat arenot in R.
Distancemeasures

Given pixels p, q and z with coordinates (x, y), (s, t), (u, v)  
respectively, the distance function Dhasfollowing properties:

a.D(p,q)≥ 0[D(p, q) =0, iff p =q]
b. D(p,q) =D(q,p)
c. D(p,z)≤D(p,q) +D(q, z)



Basic relationshipsbetween
pixels(Contd..)

Thefollowing arethe differentDistance  measures:

1.EuclideanDistance:

De(p,q)=[(x-s)(X-s)+(y-t) (y-t)]  

2.City BlockDistance:

D4(p, q) =|x-s| +|y-t|  

3.Chess BoardDistance:

D8(p,q) =max(|x-s|,|y-t|)



Linear andNonlinearoperations

• General operator,H,that performs an output image,g(x,y),fora
given input image,f(x,y)

H[f(x,y)]=g(x,y)

• H is saidto be linear operator if

H[aifi(x,y)+ajfj(x,y)]=aiH[fi(x,y)]+ajH[fj(x,y)]=aigi(x,y)+ajgj(x,y)

where ai,aj are arbitrary constants and
fi(x,y),fj(x,y)are imagesofsamesize.

• For example sum is a linear operator and max is
nonlinear operator
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CLOs Course Learning Outcome

CLO6 Use the concept of sampling and quantization in generating 
digital images

CLO7 Explore on the basic relationships existed between the pixels in 
the image

CLO8 Illustrate different mathematical tools used in image intensity 
transformations for quality enhancement

CLO9 Use histogram processing techniques in image enhancement 
and noise reduction

Course Learning Outcome



Image Enhancement

•Theprincipal objective of enhancementisto processanimage so
that the result ismore suitable foraspecialprocess

•Image Enhancement Fall Into two categories:Enhancementin
spatial domain andFrequencydomain.

•Theterm spatial domain refers to the ImagePlane itself which
isDIRECTmanipulation ofpixels.

•Frequency domain processing techniques are based on modifying
the Fourier transform ofan image.



Image Enhancement in Spatial domain

• SpatialDomain=Aggregateof pixelscomposinganimage.

• Spatial Domain Methods=Procedures that operate directly on
these pixels. Denoted by: g(x,y)=T[f(x,y)]

F(x,y) : Input Image,

T:Operator onImage

g(x,y):ProcessedImage.

Talsocanoperate on aset ofImages.

DefinitionofNeighborhood:

Input for Process: A neighborhood about a point (x,y). The simplest

form of input is a one pixel neighborhood. s=T(r) T:Transformation

Function s,r : gray level of f(x,y) andg(x,y) respectively.



Basicgray-leveltransformations

Somebasicgray-leveltransformations are

1.ImageNegatives

2.Logtransformation

3.Power-law transformation(Gammatransformation)

4.Piece-wise lineartransformation



Basic gray-leveltransformations(Contd..)

ImageNegatives

• Imagetransformation isgivenby the followingequation

T(r) =L-1-r

L-1maximum graylevel

• It Producesphotographic negative.Somedetails areeasierto spot if  

we gofrom blackandwhite to white andblack.



Basic gray-leveltransformations(Contd..)

Logtransformation

Logtransformation isgivenby

T(r)=clog(1+s)

InverseLogtransformation isgivenby

T(r)=exp(r/c)-1



Basic gray-leveltransformations(Contd..)



Basic gray-leveltransformations(Contd..)



Basic gray-leveltransformations(Contd..)

• Piecewise-linear transformationfunctions

– Theform of piecewisefunctions canbe arbitrarilycomplex

Contraststretching



Basic gray-leveltransformations(Contd..)

• Gray-levelslicing



Basic gray-leveltransformations(Contd..)

• Bit-planeslicing



HistogramProcessing

• Histogram

• h(rk)=nk

– whererk is the kthgrayleveland isthenumber  of pixelsin the

imagehavinggraylevelrk

– Normalizedhistogram

• P(rk)=nk/n



HistogramProcessing



HistogramProcessing

•Histogram Equilization

S=T(r),0≤r≤1

r=inverseT(s),0≤s≤1



HistogramProcessing



Histogram matching

PZ(Z) is thedesiredPDF



Fundamentals of spatial filtering

1 , y 1 )

Mechanics of spatialfiltering

R w ( 1 , 1 ) f ( x  

w ( 1 , 0 ) f ( x 1 , y )

w ( 0 , 0 ) f ( x , y )

w ( 1 , 0 ) f ( x

w (1 ,1 ) f ( x

1, y )

1, y 1)



Fundamentals ofspatial filtering



Fundamentals of spatial filtering



Fundamentals of spatial filtering



Smoothing spatialfilters

1.Useful for reducing noise and eliminating small details.

2.The elements of the mask must bepositive.

3.Sumof mask elements is 1 (after normalization).

Gaussian



Smoothing spatialfilters(example)

• Useful for reducingnoiseandeliminatingsmall details.

inputimage outputimage



Smoothing spatialfilters(averaging)

• Averaging

• Gaussian

• Median filtering(non-linear)

1.Averaging



Smoothing  spatial filters(median)

• Very effective for removing “salt andpepper”noise  (i.e.,

randomoccurrencesof blackandwhitepixels).

averaging

median

filtering



Smoothing spatialfilters(Median filtering)

• Replace each pixel by the median in a

neighborhood around the pixel.



SharpeningFilters

• Unsharpmasking

• HighBoostfilter

• Gradient (1stderivative)

• Laplacian(2ndderivative)



Sharpening Filters:Unsharpmasking

• Obtain a sharp image by subtracting a lowpass filtered (i.e.,

smoothed) imagefrom the original image.

- =

(after contrast  

enhancement)GRAY  

COLOR



SharpeningFilters:high boost

• If A=1,wegetunsharpmasking.

• If A>1,part of the original imageisaddedbackto the high pass
filteredimage.

• One way to implement high boost filtering isusing the
masksbelow:



Sharpening Filters:First order derivatives

• Takingthe derivative of an image results in sharpening theimage.

• Thederivative of an image(i.e., 2Dsignal) canbe computed

usingthe  gradient.

Δx



Sharpening Filters: Second order 

derivatives

• The Laplacian(2nd derivative) is defined as:

Approximate  

2ndderivatives:



Combining spatial enhancementmethods



Combining spatial enhancement methods



Image enhancementinfrequencydomain

• Any function that periodically repeats itself can be
expressed as the sum of sines and/or cosines of different
frequencies, each multiplied by a different coefficient (Fourier
series).

• Even functions that are not periodic (but whose area under the
curve is finite) can be expressed as the integral of sines and/or
cosines multiplied by a weighting function (Fourier transform).

• The frequency domain refers to the plane of the two dimensional
discreteFouriertransform of animage.

• The purpose of the Fourier transform is to represent a signal as a
linear combination of sinusoidal signals of various frequencies.



Image enhancementfrequency
domain(Contd..)



Introduction to the Fourier Transform and
the  Frequency Domain

Theone-dimensional Fourier transform and its inverse
Fourier transform (continuouscase)

Inverse Fouriertransform:

Thetwo-dimensional Fourier transform andits inverse

Fourier transform (discretecase)DTC



Introduction to the Fourier Transform
and the Frequency Domain(Contd..)

Inverse Fouriertransform:

u, v : the transform or frequencyvariables

x,y : the spatialorimagevariables



Filteringinthefrequency domain



Smoothing frequencydomain filters

• Thebasicmodel for filtering in the frequencydomain  
G(u,v)=H(u,v)F(u,v)
whereF(u,v):the Fouriertransform of the imageto be
smoothed

H(u,v): afilter transferfunction

• Smoothingisfundamentallyalowpassoperation inthe
frequencydomain.

• Thereareseveralstandardforms of lowpassfilters(LPF).
– Ideal lowpassfilter
– Butterworth lowpassfilter
– Gaussian lowpassfilter



Smoothing frequencydomainfilters

Ideal low-passfilters

• The simplest lowpass filter is afilter that “cuts off” all high-

frequency components ofthe Fourier transform that areat a

distance greater than aspecified distance D0 from the originof the

transform.

• Thetransfer function of anideal lowpassfilter

where D(u,v) : the distance from point (u,v) to the center of ther  

frequencyrectangle



Smoothing frequency domainfilters

Butterworth Lowpass Filters (BLPFs) With

order n



Smoothing frequencydomainfilters

Gaussian lowpassfilters



Sharpeningfrequencydomain filters

Idealhighpassfilter

Butterworthhighpassfilter

Gaussianhighpassfilter



HomomorphicFiltering

• Manytimes,we want to removeshadingeffects from an  image 
(i.e., due tounevenillumination)

– Enhance highfrequencies

– Attenuate low frequencies but preservefine detail



Homomorphic Filtering(Contd..)

• Consider the following model of imageformation:

i(x,y):illumin
ation  r(x,y):
reflection

• In general, the illuminationcomponent i(x,y)variesslowlyand  
affects lowfrequenciesmostly.

• In general, the reflection component r(x,y)varies
fasterand  affectshighfrequenciesmostly.

IDEA:separatelow frequencies dueto i(x,y)  
fromhigh frequencies due tor(x,y)



Steps of HomomorphicFiltering

(1) Take

(2) ApplyFT:

or

(3) ApplyH(u,v)



Steps of HomomorphicFiltering

(4) TakeInverseFT:

or

(5) Takeexp()



HomomorphicFiltering:Example
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CLOs Course Learning Outcome

CLO10 Understand the impact of smoothing and sharpening filters in 
spatial domain.

CLO11 Apply the Fourier transform concepts on image function in 
frequency domain filters(low pass/high pass).

CLO12 Describe the concept of image degradation or restoration of 
images.

Course Learning Outcome



Introduction

Objective ofimagerestoration
to recoveradistortedimageto the originalformbased on

idealizedmodels.

Thedistortionis dueto

Imagedegradation in sensingenvironment e.g.random  

atmospheric turbulence

Noisy degradation fromsensornoise.

Blurring degradation due to sensors
e.g.cameramotion orout-of-focus

Geometric distortion
e.g.earth photos taken by acamerain asatellite



Image Enhancement
andRestoration• Enhancement

– Concerningtheextractionof imagefeatures

– Difficult toquantifyperformance

– Subjective;makingan image“lookbetter

• Restoration

– Concerningthe restorationofdegradation

– Performancecanbequantified

– Objective;recoveringtheoriginalimage



Noise models

• Assumingdegradationonlydueto additivenoise(H=1)

• Noise fromsensors

– Electroniccircuits

– Lightlevel

– Sensortemperature

• Noise fromenvironment

– Lightening

– Atmosphericdisturbance

– Other strong electric/magneticsignals



Noise models

• Assuming thatnoiseis

– independent of spatialcoordinates,and

– uncorrelatedwith respect to the imagecontent



Noisemodels



Noisemodels



Noise models

• Other commonnoisemodels

– Rayleighnoise

– Gammanoise

– Exponentialnoise

– Uniform noise



Noise models

RayleighNoise

Gamma(Erlang)Noise  

ExponentialNoise



Restoration by spatial filtering



Restoration byspatial filtering



Restoration byspatial filtering



Restoration byspatial filtering



Restoration byspatial filtering

• Filtersdiscussedsofar

– Donot consider imagecharacteristics

• Adaptivefiltersto bediscussed

– Behaviorsbasedon statistical characteristicsof the  

subimageunder afilter window

– Betterperformance

– More complicated

– Adaptive,localnoisereductionfilter

– Adaptivemedianfilter



Restoration byspatial filtering



Restoration byspatial filtering



Frequency domain filtering

• Pure sine wavePeriodic noise reduction by

-Appear as a pair of impulse (conjugate) in the frequency  

domain

f (x, y)  Asin(u0x  v0 y)
2  2 2 2 2

F (u,v)   j
A  (u 

u0 ,v 
v0 )  (u 

u0 ,v 
v0 )





Periodic noise reduction(Contd..)

• Bandreject filters

• Bandpass filters

• Notch filters

• Optimum notch filtering



Periodic noise reduction(Contd..)

Bandreject filters

• Reject an isotropic frequency

ideal Butterworth Gaussian



Periodic noise reduction(Contd..)

Bandpass filters

• Hbp(u,v)=1- Hbr(u,v)

1G(u,v)H (u,v)
bp



Periodic noise reduction(Contd..)

Notch filters

• Reject(or pass) frequencies in predefined neighborhoods about  

a center frequency

ideal

Butterworth Gaussian



Linear, position-invariant degradation

Properties of the degradation function H

• Linear system  

H[af1(x,y)+bf2(x,y)]=aH[f1(x,y)]+bH[f2(x,y)]

• Position(space)-invariant system  

H[f(x,y)]=g(x,y)  H[f(x-a, y-b)]=g(x-a, y-b)

• c.f. 1-D signal

LTI (linear time-invariant system)



Linear, position-invariant
degradation(contd..)

 

f (x, y)    f ( , ) (x , y   )dd





 
 

  
f (, ) (x , y   )dd

 
 

 
, ) dH f (  (x , y   )d

H[ f (x, y)]  H

H[ f (x, y)] 

 
 

 
f (, )H (x , y   )ddg(x, y)  H[ f (x, y)] 

H(x , y   ) h(x , y   )

 

g(x, y)    f (, )h(x , y   )dd

f (, )h(x , y   )dd (x, y)g(x, y)  
 

 

impulse

g(x, y)
linear

g(x, y)

h(x, y)  H (x, y)h(x,, y, )  H(x , y   )

(x, y)  0

If position-invariant



Linear, position-invariant
degradation(contd..)

• Linear system theory is ready

• Non-linear, position-dependent system

-May be general and more accurate

-Difficult to solve computationally

• Image restoration: find H(u,v) and apply inverse process

-Image deconvolution



Estimating the degradation
function

• Estimation by Image observation

• Estimation by experimentation

• Estimation by modeling

Estimation by image observation

• Take a window in the image

-Simple structure

-Strong signal content

• Estimate the original image in the window

F̂ (u,v)

G (u, v)

s

s
sH (u,v) 

known

estimate



function(Contd..)

Estimation by experimentation

• If the image acquisition system is ready

• Obtain the impulse response

impulse Impulse response



function(Contd..)

Estimation by modeling 

Ex. Atmospheric model

2 2 5 / 6

H (u,v)  ek (u v )

k=0.0025

k=0.00025

original

k=0.001



Estimating the degradation  

function(Contd..)

Estimation by modeling 

• Derive a mathematical model  

Ex. Motion of image


T

0
f (x  x0 (t), y  y0 (t))dtg(x, y)

T

dt
0

G(u, v)  F (u,v) e  j 2 [ux0 (t )vy0 (t )]

Fourier

transform

Planar motion



Inverse
filtering

• With the estimated degradation function H(u,v)

G(u,v)=F(u,v)H(u,v)+N(u,v)

Fˆ(u, v) 
G(u,v)

 F (u,v) 
N (u,v)  

H (u,v) H (u,v)

Unknown  

noise

=>

Estimate of  

original image

Problem: 0 or small values

Sol: limit the frequency  
around the origin



Minimum Mean Square Error
Filtering

•Wiener filters, on the other hand, are based on a statistical approach

•If the spectral properties of the signals involved are known, a linear time-

invariant filter can be designed whose output would be as close as possible to

the original signal

•minimum mean square error: e2 = E{(f-fc)2}

Fc(u,v) =[1/H(u,v)] [ |H(u,v|2 / (|H(u,v|2 +S(u,v)/Sf(u,v))] G(u,v)

S(u,v) = |N(u,v)|2 power spectrum ofnoise

•Approximations of S(u,v)/Sf(u,v):

K (constant)

 |P(u,v)|2 (power spectrum of Laplacian)

 found by iterative method to minimize e2  

(constrained least squares filtering)



Minimum Mean Square Error
Filtering(Contd..)

Wiener Filtering

•K = Sn(u,v)/Sf(u,v),
•Sn(u,v) = |N(u,v)|2

•Sf(u,v) = |F(u,v)|2

• Sn(u,v) & Sf(u,v) must be known
•Sn(u,v) the power spectrum of the noise,
•Sf(u,v) the power spectrum of the original image

1
2

H (u,v)

H (u,v)
2

H (u,v) 


G(u,v)

 K

 
F (u,v)  





Minimum Mean Square Error
Filtering(Contd..)

Example Wiener filter

Original

Noise added

Pseudo-inverse

Wiener filter



Minimum Mean Square Error
Filtering(Contd..)

Linear motion Wiener filter



Constrained Least 
SquaresFiltering

2

H *(u,v)
2 G(u, v)




H (u,v)


F (u,v)  


  P(u,v)

• P(u,v) is the fourier transform of the Laplacian operator  

Constraint:

•|g – H |2 = |η|2

•R(u,v) = G(u,v) – H(u,v)

•Adjust γfrom the constraint – by Newton-Raphson root-

finding



Constrained Least 
SquaresFiltering(Contd..)

•In the Fourier domain, the constrained least squares filter becomes:

•Keep always in mind to zero-pad the images properly.

2

H * (k , l )
2 G ( k , l )

H (k , l )
F (k , l ) 

  Q (k , l )



Constrained Least 
SquaresFiltering(Contd..)

Low noise: Wiener and CLS generate equal results.

High noise: CLS outperforms Wiener if λ is properly selected.

It is easier to select the scalar value for λ than to approximate the  

SNR which is seldom constant.



Geometric mean
filter

•Geometric mean filter is quite useful when implementing

restoration filters because it represents a family of filters combined

into a single expression
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CLOs Course Learning Outcome

CLO13 Understand the various kind of noise present in the image and 
how to restore the noisy image.

CLO14 Understand the differences of inverse, least square and Wiener 
filtering in restoration process of  images

CLO15 Understand the color fundamentals and models in image 
processing

CLO16 Memorize the transformation techniques in pseudo color 
image processing.

CLO17 Use wavelet concepts in multi-resolution processing.

Course Learning Outcome



Color Image
Fundamentals

The use of color is important in image processing because

•Color is a powerful descriptor that simplifies object identification

and extraction.

•Humans can discern thousands of color shades and intensities,  

compared to about only two dozen shades of gray.

Color image processing is divided into two major areas:

•Full color processing :images are acquired with a full color sensor,  

such as a color TV camera or color scanner.

•Pseudo color processing: The problem is one of assigning a color to  

a particular monochrome intensity or range of intensities.



Color Image 
Fundamentals(Contd..)

•Physical phenomenon

Physical nature of color is known

•Psysio-psychological phenomenon

How human brain perceive and interpret color?



Color Image Fundamentals
(Contd..)

Visible light:

Chromatic light span the electromagnetic spectrum (EM) from

400 to 700 nm



Color Image 
Fundamentals(Contd..)

•The color that human perceive in an object = the light reflected  

from the object

scene
Illumination source

reflectioneye



Color Image Fundamentals
(Contd..)

Physical quantities to describe a chromatic light source

Radiance: total amount of energy that flow from the light source,  

measured in watts (W)

Luminance: amount of energy an observer perceives from a light  

source, measured in lumens (lm )

•Far infrared light: high radiance, but 0 luminance

Brightness: subjective descriptor that is hard to measure, similar to

the achromatic notion of intensity.  

How human eyes sense light?

•6~7M Cones are the sensors in the eye

•3 principal sensing categories in eyes

•Red light 65%, green light 33%, and blue light 2%



Color Image Fundamentals
(Contd..)

Primary and secondary colors

•In 1931, CIE(International Commission on Illumination) defines

specific wavelength values to the primary colors

•B = 435.8 nm, G = 546.1 nm, R = 700 nm

•However, we know that no single color may be called red,  

green, or blue

•Secondary colors: G+B=Cyan, R+G=Yellow, R+B=Magenta



Color
Models

•Color model, color space, color system
•Specify colors in a standard way
•A coordinate system that each color is represented by a single point

•RGB model
•CYM model
•CYMK model
•HSI model
•Suitable for hardware or applications
RGB color model



Color
Models(Contd..)

•Pixel depth: the number of bits used to represent each pixel in RGB  

space

•Full-color image: 24-bit RGB color image

•(R, G, B) = (8 bits, 8 bits, 8 bits)



Color
Models(Contd..)

BY 

     
1

CMY model (+Black = CMYK)

•CMY: secondary colors of light, or primary colors of pigments

•Used to generate hardcopy output

C  1 R
M   1 G



Color
Models(Contd..)

RGB -> HSI model

HSI color model

•Will you describe a color using its R, G, B components?

•Human describe a color by its hue, saturation, and brightness

•Hue : color attribute

•Saturation: purity of color (white->0, primary color->1)

•Brightness: achromatic notion of intensity
Colors on this triangle
Have the same hue

saturationIntensity  
line



Color
Models(Contd..)



Color
Models(Contd..)

HSI component images

R,G,B

saturation

Hue

intensity



Pseudo-color image
processing

•Assign colors to gray values based on a specified criterion

•For human visualization and interpretation of gray-scale events

•Intensity slicing

•Gray level to color transformations

Intensity slicing

3-D view of intensity image

Color 1

Color 2

Image plane



Alternative representation of intensity slicing

Pseudo-color image processing(Contd..)



Pseudo-color image processing(Contd..)

More slicing plane, more colors



Pseudo-color image
processing(Contd..)

Application of Intensity slicing

Radiation test pattern
8 color regions



Pseudo-color image
processing(Contd..)

Gray level to color transformation

•General Gray level to color transformation



Pseudo-color image processing(Contd..)

Application of gray level to color transformation



Basics of Full-Color Image
Processing

 

Color pixel

•A pixel at (x,y) is a vector in the color space

•RGB color space

R(x, y)

c(x, y)  G(x,y)

B(x, y)

c.f. gray-scale image

f(x,y) = I(x,y)



Basics of Full-Color Image  

Processing(contd..)

Example: spatial mask



Basics of Full-Color Image  
Processing(contd..)

must be

How to deal with color vector?

•Per-color-component processing

•Process each color component

•Vector-based processing

•Process the color vector of each pixel

•When can the above methods be equivalent?

•Process can be applied to both scalars and vectors

•Operation on each component of a vector  

independent of the other component



Basics of Full-Color Image  
Processing(contd..)

Two spatial processing categories

•Similar to gray scale processing studied before, we have to major  

categories

•Pixel-wise processing

•Neighborhood processing



Color Transformations

•Similar to gray scale transformation  

g(x,y)=T[f(x,y)]

•Color transformation

si  Ti (r1,r2,...,rn) , i 1,2,...,n

T1  

T2

…
Tn

f1  

f2

…
fn

g(x,y)

s1  

s2

…
sn

f(x,y)



Color Transformations(Contd..)

Use which color model in color transformation?

•RGB CMY(K)  HSI

•Theoretically, any transformation can be performed in any color  

model

•Practically, some operations are better suited to specific color model

Example: modify intensity of a color image

•Example: g(x,y)=k f(x,y), 0<k<1
•HSI color space

•Intensity: s3 = k r3

•Note: transform to HSI requires complex operations



Color Transformations(Contd..)

•RGB color space
•For each R,G,B component: si = k ri

•CMY color space
•For each C,M,Y component:
•si = k ri+(1-k)



Color Transformations(Contd..)

Problem of using Hue component

dis-continuous

Un-defined  
over gray  
axis



Color Transformations(Contd..)

Implementation of color slicing

prototype color

Sphere region

prototype color

Cube region



Color Transformations(Contd..)

Application

cube sphere



Smoothing and
Sharpening

Color image smoothing

•Neighborhood processing



Smoothing and
Sharpening(Contd..)

Color image smoothing: averaging mask

xy
K ( x, y)S

c(x, y)c(x, y) 
1

















 xy

K 


K

K (x, y)S

(x, y)Sxy

(x, y)Sxy

B(x, y)
 1

G(x, y)

R(x, y)
 1

c(x, y) 
1

vector processing

per-component processing

Neighborhood
Centered at (x,y)



Smoothing and
Sharpening(Contd..)



Smoothing and
Sharpening(Contd..)

Example: 5x5 smoothing mask

RGB model Smooth I
in HSI model difference



Color
Segmentation

•View the YIQ color space:

-Y=luminance, I=hue, Q=saturation

•Human skin occupy a small portion of the I and Q spaces.

•From training images, compare and contrast hue and saturation of faces only vs. entire  
image

Hue and Saturation

-150 -100 -50 0 50 100 150
0

2

4

6

8

10

12

14
x10

5
Histogram of Q Components ofTraining

7
.jpg

Training Image FacesQ Distribution



Color
Segmentation(Contd..)

Mask After Color Segmentation

• Skin elements remain.

• Holes in faces later eliminated with hole-filling



Color
Segmentation(Contd..)

Mask After Object Removal

Based on size distribution of remaining objects, remove small ones



Color
Segmentation(Contd..)

Region counting - Supplementary method

•The edge outlines have clearly identifiable connected regions

•Can be counted, and statistics used to help reject clutter

Number of regions: 14 Number of regions: 43



Color
Segmentation(Contd..)

Detection Algorithm

•Correlation – Degree of matching

•Dimensions – height, width

•Region counting – complexity of image

Single face

Correlation Dimensions Region counting

Correlation Dimensions Region counting
Multi-face  
detection

Multiple faces



Noise in Color
Images

Noise can corrupt each color component independently

AWGN 2


=800
AWGN 2



=800

AWGN 2


=800

Noise is less  

noticeable  

in a color  

image



Noise in Color
Images(Contd..)

Hue Saturatio

n

Intensit

y



Noise in Color
Images(Contd..)



Color Image
Compression

Original image

After lossy compression with ratio 230:1

JPEG2000 FILE



Wavelets and Multi-resolution  
Processing

•Fourier transform has its basis functions in sinusoids

•Wavelets based on small waves of varying frequency and limited

duration

•In addition to frequency, wavelets capture temporal information

Bound in both frequency and time domains

Localized wave and decays to zero instead of oscillating forever

•Form the basis of an approach to signal processing and analysis  

known as multiresolution theory

Concerned with the representation and analysis of images at  

different resolutions

Features that may not be prominent at one level can be easily  

detected at another level



Wavelets and Multi-resolution  
Processing(Contd..)

Comparison with Fourier transform
•Fourier transform used to analyze signals by converting signals into a  

continuous series of sine and cosine functions, each with a constant frequency  

and amplitude, and of infinite duration

•Real world signals (images) have a finite duration and exhibit abrupt changes  

in frequency

•Wavelet transform converts a signal into a series ofwavelets

•In theory, signals processed by wavelets can be stored more efficiently  

compared to Fourier transform

•Wavelets can be constructed with rough edges, to better approximate real-

world signals

•Wavelets do not remove information but move it around, separating out the

noise and averaging the signal

•Noise (or detail) and average are expressed as sum and difference of signal,  

sampled at different points



Wavelets and Multi-resolution  
Processing(Contd..)

•Objects in images are connected regions of similar texture and  

intensity levels

•Use high resolution to look at small objects; coarse resolution to  

look at large objects

•If you have both large and small objects, use different  

resolutions to look at them

•Images are 2D arrays of intensity values with locally varying  

statistics



Image
Pyramids

•Originally devised for machine vision and image compression.

•It is a collection of images at decreasing resolution levels.

•Base level is of size 2Jx2J or NxN.

•Level j is of size 2jx2j.



Image
Pyramids(Contd..)

What is an Image Pyramid?

Low resolution

High resolution



Image
Pyramids(Contd..)

Approximation pyramid:
At each reduced resolution level we have a filtered and

downsampled image.

f
2 

(n)  f (2n)



Image
Pyramids(Contd..)

Prediction pyramid:
A prediction of each high resolution level is obtained by

upsampling (inserting zeros) the previous low resolution level

(prediction pyramid) and interpolation (filtering).

0

if niseven  

otherwise
f

2
(n) 

 f (n / 2)





Image
Pyramids(Contd..)

Prediction residual pyramid:
•At each resolution level, the prediction error is retained along with

the lowest resolution level image.

•The original image may be reconstructed from this information.



Subband
Coding

•An image is decomposed to a set of bandlimited components  

(subbands).

•The decomposition is carried by filtering and downsampling.

•If the filters are properly selected the image may be reconstructed  

without error by filtering and upsampling.



Subband
Coding(Contd..)



Subband
Coding(Contd..)

Detail filter (high pass)

A two-band subband coding

Approximation filter
(low pass)



Subband
Coding(Contd..)

Approximation  
subband

Vertical subband

Horizontal subband

Diagonal subband



Subband
Coding(Contd..)

•The wavy lines are due to aliasing of the barely discernable

window screen. Despite the aliasing, the image may be perfectly

reconstructed.



The Haar Transform

•It is due to Alfred Haar [1910].

•Its basis functions are the simplest known orthonormal wavelets.

•The Haar transform is both separable and symmetric:

•T=HFH,

•F is a NxN image and H is the NxN transformation matrix and T

is the NxN transformed image.

•Matrix H contains the Haar basis functions.

•The Haar basis functions hk(z) are defined for in 0≤ z ≤1, for

k=0,1,…, N-1, where N=2n.



The Haar Transform(Contd..)

To generate H:

• we define the integer k=2p+q-1, with 0≤ p ≤N-1.

• if p=0, then q=0 or q=1.

• if p≠0, 1≤q ≤2p

For the above pairs of p and q, a value for k is determined and  

the Haar basis functions are computed.

1

N
h0(z)  h00(z) 

1
2

0

p /2

k pq
N

 2p /2


h (z)  h (z)  , 



, z [0,1]

(q 1) / 2 p  z  (q  0.5) / 2 p  

(q  0.5) / 2 p  z  q / 2 p  

otherwise, z[0,1]




The Haar Transform(Contd..)

The ith row of a NxN Haar transformation matrix contains the  

elements of hk(z) for z=0/N, 1/N, 2/N,…, (N-1)/N.

For instance, for N=4, p,q and k have the following values:

k p q

0 0 0

1 0 1

2 1 1

3 1 2

and the 4x4 transformation matrix is:

4

0

 1 1 1 1
 

1 1 1 1 1


24  2  0 0

0





2  2

H 



The Haar Transform(Contd..)

Similarly, for N=2, the 2x2 transformation matrix is:

2

1 1 1 

2
1 1 

H 

•The rows of H2 are the simplest filters of length 2 that may be used

as analysis filters h0(n) and h1(n) of a perfect reconstruction filter

bank.

•Moreover, they can be used as scaling and wavelet vectors (defined

in what follows) of the simplest and oldest wavelet transform.



Multi-resolution
Expansions

•Expansion of a signal f (x) :

f (x) kk (x)
k

k

k : real-valued expansioncoefficients

 (x) : real-valued expansion functions

k k k k k
   (x), f (x)   *(x) f (x)dx  (x): the dual function of  (x)

•If k (xi)san orthonormal basis for V , then k (x) k (x)

•If the expansion is unique, the k (x)are called basis functions.

are not orthonormal but are an orthogonal basis for

j k jk
Biorthogonal:  (x), (x) 

•Ifk (x)

V ,

then the basis funcitons and their duals are called biorthogonal.


0 , j  k


1 , j  k



Multi-resolution
Expansions(Contd..)

•Scaling function

j,k (x)  2 j / 2(2 j x  k), for kZ and (x)L2 R

k
•The subspace spanned over k for any j : Vj  span j,k(x)

•The scaling functions of any subspace can be built from double-

resolution copies of themselves. That is,

n

where the coefficients are called scaling function coefficients.

2(2x  n)(x)  h (n)



Multi-resolution
Expansions(Contd..)

Requirements of scaling function:

1. The scaling function is orthogonal to its integer translates.

2. The subspaces spanned by the scaling function at low scales  
are nested within those spanned at higher scales.
That is

3. The only function that is common to all
That is

 1 0 1 2 

is .

V  V V  V V  V

V0
Vj f (x)  0

4. Any function can be represented with arbitrary precision.  
That is,

V L2 R



Multi-resolution
Expansions(Contd..)

Wavelet function

•spans the difference between any two adjacent scaling subspaces
Vj

and Vj1

j,k 
 (x)  2 j / 2 (2 j x  k) for all kZ that spans the space Wj

k

Wj  span j,k (x)where

•The wavelet function can be expressed as a weighted sum of

shifted, double-resolution scaling functions. That is,

are called the wavelet function coefficients.

n

2(2x n) (x) h (n)

where the h(n)



Wavelet Transforms in One
Dimension

Wavelet series expansion



f (x) c j0
(k) j0 ,k (x) d j (k) j ,k (x)

k j j0 k

where j0 is an arbitrary startingscale

c j0
(k)  f (x), j0 ,k (x)   f (x) j0 ,k (x)dx

called the approximation or scaling coefficients

d j (k)  f (x), j,k (x)   f (x) j,k (x)dx

called the detail or wavelet coefficients



Wavelet Transforms in
One

j ,k
M M

 0 j0 ,k 
k j j0 k

f (x) 
1
W ( j , k)



(x) 
1
W ( j, k) (x)

Dimension(Contd..)

Discrete Wavelet Transform

•The function f(x) is a sequence of numbers

where j0 is an arbitrary startingscale

1

M

M 1

x0

W( j0,k)   f (x) j0 ,k (x)

called the approximation or scaling coefficients
1

M

M 1

x0

W ( j,k)   f (x) j,k (x)

called the detail or wavelet coefficients



Fast Wavelet Transform

Fast Wavelet Transform (FWT)

•computationally efficient implementation of the DWT

•the relationship between the coefficients of the DWTat adjacent  

scales

•also called Mallat's herringbone algorithm

•resembles the twoband subband coding scheme



Fast Wavelet Transform(Contd..)

n

 2(2x  n)(x) h (n)
Scaling x by 2j, translating it by k, and  

letting m = 2k + n

(2 j x  k )  h (n) 2 2(2 j x  k )  n h (m  2k ) 22 j1 x m
n m

2(2 j1 x m)

n

 2(2x  n)(x) h (n)
1

j0 ,k

m

f (x)
M

M

 0



 (x)
M 1

x0

W ( j , k) 

2(2 j0 x m)




1
h (m  2k)

Similarity,

 (2 j x  k)  h (m  2k )
m

Consider the DWT.Assume  (x) (x) and  (x)  (x)



Fast Wavelet Transform(Contd..)

1
j,k

x

j / 2

m x

f (x)
M

M

f (x)2
M

f (x)2
M



 (x)
M1

x0

( j1)/ 2

W ( j, k) 

1 
 h (m  2k ) 2(2 j1 x m)


 
 m

 1




 h (m  2k ) (2 j1 x m) 

 




1
 f (x)2 j / 2 (2 j x  k)

  

x

 

j,k
 (x)  2 j / 2 (2 j x  k)

h(m  2k)W ( j 1,m)
m

Similarity,

W ( j, k ) h (m  2k )W ( j 1, m)
m



Fast Wavelet Transform(Contd..)

Figure: An FWT-1 synthesis filter bank.

•By subband coding theorem, perfect reconstrucion for two-band

orthonormal filters requires gi (n)  hi (n) for i = {0,1}.

That is, the synthesis and analysis filters must be time-reversed  

versions of one another. Since the FWT analysis filter are
h0 (n)  h(n) and h1(n)  h(n) , the required FWT-1 synthesis filters are

g0 (n)  h0(n)  h (n) g1(n)  h1(n)  h (n)



Wavelet Trasnforms in Two  
Dimensions

Figure : The two-dimensional FWT  the analysis filter.



Wavelet Trasnforms in Two
Dimensions(Contd..)

W ( j 1,m,n)

W ( j, m, n) W H ( j, m, n)


WV ( j,m,n)


W D ( j, m,n)


W ( j 1,m,n)

W ( j, m, n) W H ( j, m, n)


WV ( j,m,n)


W D ( j, m,n)


two-dimensional decomposition

Figure :Two-scale of two-dimensional decomposition



Wavelet Trasnforms in Two
Dimensions(Contd..)



Wavelet Trasnforms in Two
Dimensions(Contd..)

Figure :The two-dimensional FWT  the synthesis filter bank.



Wavelet
Packets

•Generalization of wavelet decomposition

•Very useful for signal analysis

Wavelet analysis: n+1 (at level n) different ways to reconstuct S



Wavelet
Packets(Contd..)

•We have a complete tree

Wavelet packets: a lot of new possibilities to reconstruct S:

i.e. S=A1+AD2+ADD3+DDD3



Wavelet Packets(Contd..)

Wavelet Packet Transform example (Haar)



Image
Compression

•The goal of image compression is to reduce the amount of data  

required to represent a digital image.

Types of Image Compression  
Lossless

Information preserving  
Low compression ratios

Lossy

Not information preserving  
High compression ratios



Image
Compression(Contd..)

Types of Data Redundancy

(1) Coding Redundancy

(2) Interpixel Redundancy

(3) Psychovisual Redundancy

•Data compression attempts to reduce one or more of these  

redundancy types.



Image
Compression(Contd..)

1.Coding Redundancy

Case 1: l(rk) = constant length

Example:



Image
Compression(Contd..)

Case 2: l(rk) = variable length
variable length

Total number of bits: 2.7NM



Image
Compression(Contd..)

2.Interpixel redundancy

•Interpixel redundancy implies that pixel values are correlated  

(i.e., a pixel value can be reasonably predicted by its neighbors).



f (x) o g(x)   f (x)g(x  a)da

auto-correlation: f(x)=g(x)



Image
Compression(Contd..)

3.Psychovisual redundancy

•The human eye is more sensitive to the lower frequencies than to  

the higher frequencies in the visual spectrum.

•Idea: discard data that is perceptually insignificant!

Example: quantization

256 gray levels 16 gray levels
16 gray levels + random noise

C=8/4 = 2:1



Image Compression
Model

We will focus on the Source Encoder/Decoder only



Image Compression Model(Contd..)

Mapper: transforms data to account for interpixel redundancies



Image Compression
Model(Contd..)

Quantizer: quantizes the data to account for psychovisual  

redundancies.



Image Compression Model(Contd..)

Symbol encoder: encodes the data to account for coding  

redundancies.



Image Compression
Model(Contd..)

•The decoder applies the inverse steps.

•Note that quantization is irreversible in general.



Error-free
(Lossless)Compression



Error-free
(Lossless)Compression(Contd..)

Taxonomy of Lossless Methods



Error-free
(Lossless)Compression(Contd..)

Huffman Coding (addresses coding redundancy)

•A variable-length coding technique.
•Source symbols are encoded one at a time!

•There is a one-to-one correspondence between source symbols  
and code words.

•Optimal code - minimizes code word length per source symbol.



Error-free
(Lossless)Compression(Contd..)

LZW Coding (addresses interpixel redundancy

•Requires no prior knowledge of symbol probabilities.

•Assigns fixed length code words to variable length symbol  
sequences.

•There is no one-to-one correspondence between source
symbols and code words.

•Included in GIF, TIFF and PDF file formats



Error-free
(Lossless)Compression(Contd..)

LZW Coding (addresses interpixel redundancy

•A codebook (or dictionary) needs to be constructed.

•Initially, the first 256 entries of the dictionary are assigned to the  

gray levels 0,1,2,..,255 (i.e., assuming 8 bits/pixel)

Consider a 4x4, 8 bit image
39 39 126 126
39 39 126 126
39 39 126 126
39 39 126 126

1
.  
255

1
.  
255
256 -

511 -

Initial Dictionary

0Dictionary Location 0Entry



Error-free
(Lossless)Compression(Contd..)

Bit-plane coding (addresses interpixel redundancy)

Process each bit plane individually.

(1) Decompose an image into a series of binary images.

(2) Compress each binary image (e.g., using run-length coding)



Lossy
Compression

•Transform the image into some other domain to reduce interpixel  

redundancy.

~ (N/n)2 subimages



Lossy Compression(Contd..)

Lossy Methods - Taxonomy



UNIT – V

MORPHOLOGICAL IMAGE 

PROCESSING



The course will enable the students to: 

CLO 18 Understand the basic multi-resolution techniques and 

segmentation methods

CLO 19 Explore on lossy/lossless compression models using 

wavelets

CLO 20 Use morphological operations like dilation and erosion 

to represent and describe regions, boundaries etc. in 

identification of the components in images.

Course Outcomes cont.



Introductio
n

•Morphology: a branch of biology that deals with the form and

structure of animals and plants

•Morphological image processing is used to extract image

components for representation and description of region shape, such

as boundaries, skeletons, and the convex hull



Preliminarie
s

•Reflection

The reflection of a set B, denoted B, is definedas

B  {w | w  b, for bB}

•Translation

The translation of a set B by point z  (z1, z2 ), denoted (B)Z ,  

is defined as

(B)Z {c | c  b  z, for bB}



Preliminaries(Contd..
)

•Structure elements (SE)

Small sets or sub-images used to probe an image under study for  

properties of interest

Examples



Preliminaries(Contd..
)



Dilation

  
z

With A and B as sets in Z 2 , the dilation of A by B,  

denoted A B, is defined as

AB= z | B  A 

The set of all displacements z, the translated B and A

overlap by at least one element.

  
z

 A B  z | B  A  A
 



Dilation(Contd..)

Examples of Dilation



Dilation(Contd..)

Examples of Dilation



Erosion

With A and B as sets in Z 2 , the erosion of A by B, denoted A B,  

defined

A B  z | (B)Z  A

The set of all points z such that B, translated by z, is contained by A.

A B  z | (B)Z  A  
c



Erosion(Contd..)

Example of Erosion



Example of Erosion

Erosion(Contd..)



Duality

•Erosion and dilation are duals of each other with respect to set  

complementation and reflection

 A  B  c
 A c  B

a n d

 A  B  c
 A c  B

•Erosion and dilation are duals of each other with respect to set  

complementation and reflection

Z

Z

A  B c
 z | B 

Z
 Ac

 A c  c

 Ac  

z | B

z | B

 Ac   B



Opening and Closing

•Opening generally smoothes the contour of an object, breaks narrow  

isthmuses, and eliminates thin protrusions

•Closing tends to smooth sections of contours but it generates fuses  

narrow breaks and long thin gulfs, eliminates small holes, and fills  

gaps in the contour

T h e open ing of set A b y structuring element B ,   

denoted A B ,  is def ined as

A B  A  B  B

T h e closing of set A b y structuring element B ,   

deno ted  A  B ,  is  def ined as

A B  A  B  B



Opening

T h e o p e n i n g o f s e t A b y s t r u c t u r i n g e l e m e n t B ,   

d e n o t e d A B ,  i s  d e f i n e d a s

B 
Z

A B  | B   A
Z

Example:



Closing

Example:



Opening and Closing(Contd..)



Opening and Closing(Contd..)

Duality of Opening and Closing

•Opening and closing are duals of each other with respect to set  

complementation and reflection

A B c
 ( Ac B)

A B c
 ( Ac B)



Opening and Closing(Contd..)

The Properties of Opening and Closing

•Properties of Opening

(a) A B is a subset (subimage) of A

(b) if C is a subset of D, then C B is a subset of D B

(c) (A B) B  A B

•Properties of Closing

( a ) A  is subset (subimage) of A B

(b) If C is a subset of D , then C B is a subset of D B

(c) ( A B ) B   A B



The Hit-or-Miss Transformation

 1 2

c

if B denotes the set composed of  

D and its background,the match  

(or set of matches) of B in A,  

denoted A B,

A* B  A  D A
c  W  D

B  B1, B2 

B1 :object

B2 : background

AB  AB (A  B )



Algorithms

•Boundary Extraction

The boundary of a set A, can be obtained by first erodingA by B and  

then performing the set difference between A and itserosion.

 ( A )  A   A  B 
Example1:



Some Basic Morphological

Algorithms(Contd..)

Example2:



Algorithms(Contd..)

Hole Filling

•A hole may be defined as a background region surrounded by a

connected border of foreground pixels.

•Let A denote a set whose elements are 8-connected boundaries,

each boundary enclosing a background region (i.e., a hole). Given a

point in each hole, the objective is to fill all the holes with 1s.

•. Forming an array X0 of 0s (the same size as the array containing A),

except the locations in X0 corresponding to the given point in each

hole, which we set to 1.
Ac k=1,2,3,…• 2. Xk = (Xk-1 +B)

• Stop the iteration if Xk =Xk-1



gical

Algorithms(Contd..)

Example:  

Hole  

Filling



u n t i l X k

Algorithms(Contd..)

Extraction of Connected Components

• Central to many automated image analysis applications.

•Let A be a set containing one or more connected components,

and form an array X0 (of the same size as the array containing A)

whose elements are 0s, except at each location known to

correspond to a point in each connected component in A, which is

set to 1.

•Central to many automated image analysis applications.

X k  ( X k  1  B )  A

B : s t r u c t u r i n g e l e m e n t

 X k - 1



Some Basic Morphological

Algorithms(Contd..)

Example:Extraction of Connected Components



Some Basic
MorphologicalAlgorithms(Contd..)

k
X i

k  1

Convex Hull

•A set A is said to be convex if the straight line segment joining  any

two points in A lies entirely within A.

•The convex hull H or of an arbitrary set S is the smallest convex  

set containing S.
L e t  B i ,  i   1 , 2 , 3 , 4 , r e p r e s e n t t h e f o u r s t r u c t u r i n g e l e m e n t s .   

T h e p r o c e d u r e c o n s i s t s o f i m p l e m e n t i n g t h e e q u a t i o n :

 ( X * B i )  A

0

4

i  1 , 2 , 3 , 4 a n d k  1 , 2 , 3 , . . .

t h e c o n v e x h u l l o f A i s

k

i  1

w i t h  X i   A .

W h e n t h e p r o c e d u r e c o n v e r g e s , o r X i  X i

k k  1
, l e t D i  X i ,

C ( A )   D i



Some Basic Morphological

Algorithms(Contd..)

Example:Convex Hull



Algorithms(Contd..)

Thinning

• The thinning of a set A by a structuring element B,defined

A  B  A  ( A * B )

 A  ( A * B ) c

•A more useful expression for thinningA symmetrically is based  

on a sequence of structuring elements:

B  B 1 , B 2 , B 3 , . . . , B n
w h e r e B i i s a r o t a t e d v e r s i o n o f B i - 1

The thinning of A by a sequence of structuring element {B}

A{B} ((...((A B1) B2 )...) Bn )



Some Basic Morphological

Algorithms(Contd..)

Example:  

Thinning



Algorithms(Contd..)

Thickening:

The thickening is defined by the expression

A B  A   A * B

The thickening of A by a sequence of structuring element {B}

A {B}  ((...((A B1) B2 )...) Bn )

In practice, the usual procedure is to thin the background of the set  

and then complement the result.



Algorithms(Contd..)

Example:Thickening



Algorithms(Contd..)

Skeletons

A skeleton, S(A) of a set A has the following properties

a. if z is a point of S( A) and (D) z is the largest disk

centered at z and contained in A, one cannot find a  

larger disk containing (D)z and included in A.  

The disk (D)z is called a maximum disk.

b. The disk (D)z touches the boundary of A at two or  

more different places.



Some Basic Morphological

Algorithms(Contd..)

Example:Skeleton



Algorithms(Contd..)

Pruning

a. Thinning and skeletonizing tend to leave parasitic components

b.Pruning methods are essential complement to thinning and  

skeletonizing procedures



Some Basic Morphological

Algorithms(Contd..)

Pruning: Example

X 1  A  { B }



Some Basic
MorphologicalAlgorithms(Contd..)

Pruning: Example

8

2 1 * B k 
k  1

X    X



Algorithms(Contd..)

X3  X 2 H  A

H : 33 structuring element

Pruning: Example



Image Segmentation

•Image segmentation divides an image into regions that are
connected and have some similarity within the region and some
difference between adjacent regions.

•The goal is usually to find individual objects in an image.

•For the most part there are fundamentally two kinds of approaches
to segmentation: discontinuity and similarity.

-Similarity may be due to pixel intensity, color or texture.

-Differences are sudden changes (discontinuities) in any of
these, but especially sudden changes in intensity along a
boundary line, which is called an edge.



Detection of Discontinuities

9

•There are three kinds of discontinuities of intensity: points, lines and

edges.

•The most common way to look for discontinuities is to scan a small

mask over the image.The mask determines which kind of discontinuity

to look for.

R  w1z1  w2 z2  ... w9 z9 wi zi

i1



Point Detection

R  T

where T : a nonnegative threshold



Detection of Discontinuities

•Only slightly more common than point detection is to find a one pixel  

wide line in an image.

•For digital images the only three point straight lines are only

horizontal, vertical, or diagonal (+ or –45).



Line Detection



Edge Detection



Edge Detection(Contd..)



Edge Detection(Contd..)



Edge Detection(Contd..)



Gradient Operators

First-order derivatives:

•The gradient of an image f(x,y) at location (x,y) is  

defined as the vector:

•The magnitude of this vector:

•The direction of this vector:


  y 

 f

 x
  f 

y 

x

G

G 
 f  

2
1

2 2

yxG G f  mag(f )  





 

y 

x

G 

G1(x, y)  tan



Detection of Discontinuities

Roberts cross-gradient operators

Prewitt operators

Sobel operators



Detection of Discontinuities

Prewitt masks for  
detecting diagonal edges

Sobel masks for
detecting diagonal edges



Gradient Operators: Example



Gradient Operators(Contd..)

Second-order derivatives: (The Laplacian)

•The Laplacian of an 2D function f(x,y) is defined as

•Two forms in practice:


y2

2 f 2 f
f 

x2
2



Detection of Discontinuities

•Consider the function:

•The Laplacian of a Gaussian sometimes is called the Mexican hat

function. It also can be computed by smoothing the image with the

Gaussian smoothing mask, followed by application of the

Laplacian mask.

an d   :  t h e s t a n d a r d devia t ion

•The Laplacian of h is

2 2 r 2

r 2

w h e r e  x 2   y 2h ( r )    e


2 2

 4

 r 2

e
 

 r 2  2 
 2 h (r )   

The Laplacian of a Gaussian
(LoG)

A Gaussian function



Detection of Discontinuities



Detection of Discontinuities

Sobel gradient

Gaussian smooth function
Laplacian mask



Edge Linking and Boundary Detection

•Two properties of edge points are useful for edge linking:

-the strength (or magnitude) of the detected edge points

-their directions (determined from gradient directions)

•This is usually done in local neighborhoods.

•Adjacent edge points with similar magnitude and direction are  

linked.

•For example, an edge pixel with coordinates (x0,y0) in a  

predefined neighborhood of (x,y) is similar to the pixel at (x,y) if

f (x, y) (x0 , y0 )  E, E : a nonnegative threshold

A : a nonegative angle threshold(x, y)  (x0 , y0 )  A,



Edge Linking and Boundary Detection

In this example,  

we can find the  

license plate  

candidate after  

edge linking  

process.



Edge Linking and Boundary Detection

• Hough transform: a way of finding edge points in an image that  

lie along a straight line.

• Example: xy-plane v.s. ab-plane (parameter space)

yi  axi b



Edge Linking and Boundary Detection

• The Hough transform consists of  

finding all pairs of values of  and

 which satisfy the equations that  

pass through (x,y).

• These are accumulated in what is  

basically a 2-dimensional histogram.

• When plotted these pairs of  and 
will look like a sine wave. The

allprocess is repeated for  

appropriate (x,y) locations.
x cos  y sin  



Thresholding


if f (x, y) T0

• Assumption: the range of intensity levels covered by objects of  

interest is different from the background.

if f (x, y) T
g(x, y) 

1

Single threshold Multiple threshold



Thresholding
The Role of Illumination



Basic Global Thresholding



Basic Global Thresholding



Basic Adaptive Thresholding



Basic Adaptive Thresholding

How to solve this problem?



Basic Adaptive Thresholding

Answer: subdivision



Region-Based Segmentation

• Edges and thresholds sometimes do not give good results for  

segmentation.

• Region-based segmentation is based on the connectivity of  

similar pixels in a region.

• Each region must be uniform.

• Connectivity of the pixels within the region is very important.

• There are two main approaches to region-based segmentation:  

region growing and region splitting.



Region-Based Segmentation(Contd..)

 Ri  R
• i1

(b) Ri is a connected region, i 1,2,...,n

(c) Ri   R j   for all i and j,i  j

(d) P(Ri )  TRUEfor i 1,2,...,n

(e) P(Ri  R j  ) FALSE for any adjacent regions Ri andR j

• where P(Rk): a logical predicate defined over the points in set Rk  

For example: P(Rk)=TRUE if all pixels in Rk have the same gray  

level.

• Let R represent the entire image region.

• Segmentation is a process that partitions R into sub regions,

R1,R2,…,Rn, such that
n



Region Growing



Region Growing

• Fig. a) shows the histogram of Fig. b). It is difficult to segment

the defects by thresholding methods. (Applying region growing

methods are better in this case.)

Figure b Figure a



Region-Based Segmentation  Region 
Splitting and Merging

• Region splitting is the opposite of region growing.

 First there is a large region (possible the entire image).

 Then a predicate (measurement) is used to determine if

the region is uniform.

 If not, then the method requires that the region be split  

into two regions.

 Then each of these two regions is independently tested by

the predicate (measurement).

 This procedure continues until all resulting regions are  

uniform.



Region Splitting

• The main problem with region splitting is determining where to split  

a region.

• One method to divide a region is to use a quadtree structure.

• Quadtree: a tree in which nodes have exactly four descendants.



Region Splitting and Merging

The split and merge procedure:

• Split into four disjoint quadrants any region Ri for whichP(Ri)

= FALSE.

• Merge any adjacent regions Rj and Rk for which P(RjURk) =  

TRUE. (the quadtree structure may not be preserved)

• Stop when no further merging or splitting is possible.
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