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UNIT 1
INTRODUCTION



Course learning outcomes

CLO’s Course Learning outcomes

CLO1 Understand the key concepts of Image Processing.

CLO?2 Identify the origins of the Digital image processing

CLO3 Demonstrate the scope of the digital image processing in multiple fields

CLO4 Explore on overview of the components contained in the general purpose image
processing system and its use in real time applications

CLO5  Describe the concept of elements of visual perception.




What is digital Imageprocessing?

Image —A two-dimensional signal that canbe observed by
human visual system

Digital image — Representation  of images by sampling In
time andspace.

Digital image processing— Perform digital signal processing
operations on digital images



What is digital image processing?(contd..) A

«An image may be defined as a two- dimensional function, f(x,y) where x
and y are spatial (plane) coordinates, and the amplitude off at any pair of
coordinates (X, y) Is called the intensity or gray level of the image at that
point

«When x, y,and the amplitude valuesof f areall finite, discrete
quantities, we call the image adigitalimage.



What is digital image processing?(contd..)

Adigital image is composed of afinite number of elements, eachof
which hasaparticular location andvalue

*These elements are referred to as picture elements, image
elements andpixels.

*Pixel isthe term most widely usedto denote the elements of
adigital image.



Origins of digital imageprocessing

 One of the first applications of digital images was in the newspaper
Industry, when pictures were first sent by submarine cable between
L.ondon andNewYork.

« Specialized printing equipment coded pictures for cable
transmission and then reconstructed them at the receiving
end.

 Image was transmitted in this way and reproduced on a telegraph
printer fitted with typefaces simulating ahalftone pattern.



Origins of digital image processing(contd..)

 The printing technique based on photographic reproduction made
from tapes perforated at the telegraphreceiving terminal from
1921.

« Theimprovements are tonal quality and inresolution.

 Theearly Bartlane systems were capable of coding imagesin five
distinct levels of gray.

 This capability wasincreasedto 15 levelsin1929.



Examples of fields that use DIP

« Gamma rayimaging

 X-rayImaging (oldest source of EMradiation)
* Imagingin the visible and infraredbands
 Imaging in the microwaveband

* Imaging in the radioband

 Other Imaging Modalities Acoustic images, electron
microscopy and synthetic (computer —generated images)



Fundamental stepsin DIP

There are some fundamental steps but as they are fundamental, all these
steps may have sub-steps. The fundamental steps are described below
with aneatdiagram.

Outputs of these steps are generally images
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Fundamental steps in DIP(Contd..)

1. Image Acquisition:

. This Is the first step or process of the fundamental steps of
digital image processing. Image acquisition could be as simple as
being given an image that is already in digital form. Generally, the
npage acquisition stage involves pre- processing, such as scaling
etc.

2. Image Enhancement:

Image enhancement Is among the simplest and most appealing
areas of digital 1mage processing. Basically, the idea behind
enhancement techniques is to bring out detail that is obscured, or
simply to highlight certain features of interest in an image. Suchas,
changing brightness & contrast etc.

3. Image Restoration:

Image restoration is an area that also deals with improving the
appearance of an 1mage. However, unlike enhancement, which is
subjective, Image restoration Is  objective, In the sense that
restoration techniques tend to be based on mathematical or
probabilistic models of image degradation.



Fundamental stepsin DIP(Contd..)

4. Color ImageProcessing:Color image processing Is an area that has been
gaining its importance because of the significant increase in the use of
digital images over the Internet. This may include color modeling and
processing in adigital domainetc.

5. Wavelets and Multi-ResolutionProcessing:Wavelets are the foundation
for representing Images In various degrees of resolution. Images
subdivision successively into smaller regions for data compression and for
pyramidalrepresentation.

6. Compression:Compression deals with techniques for reducing the storage
required to save an image or the bandwidth to transmit it. Particularly in
the uses of Internet it Is very much necessary to compressdata.

/. Morphological Processing: Morphological processing deals with tools
forextracting image components that are useful in the representation and
description of shape.



Fundamental stepsin DIP(Contd..)

8. Segmentation:Segmentation procedures partition an image into its
constituent parts or objects. In general, autonomous segmentation is one of
the most difficult tasksin digital imageprocessing.

9. Representation and Description:Representation and description almost
always follow the output of a segmentation stage, which usually is raw
pixel data, constituting either the boundary of a region or all the points in
the region itself. Choosing a representation is only part of the solution for
transforming raw data Into a form suitable for subsequent
computerprocessing.

10. Object recognition:Recognition is the process that assigns a label, such as,
“vehicle” to an object basedon its descriptors.

11. Knowledge Base:Knowledge may be as simple as detailing regions of an
Image where the information of interest is known to be located, thus
limiting the search that hasto be conducted in seeking that information.
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Components ofimage processing system

Figure shows different components of image processing
system.

FIGURE 1.24
Components of a
Zenera I-purpose
image processing
syvstem.




Components ofimage processing

1.In sensing, two elements are required to acquire digital images. The
first i1s physical device that Is sensitive to the energy radiated by
the object we wish to image. The second called adigitizer, is
adevice for converting the output of the physical sensing device
Into digital form.

2. Specialized image processing hardware usually consists of the
digitizer plus hardware that performs other primitive operations
such as arithmetic and logical operations (ALU).

3. The computer IS an Image processing system Is a
general purposeto supercomputer

4. Software which include image processing specialized modules
thatperform specific tasks.



Components ofimage processing

5. Massstorage capability is a must in image processing applications.
6. Image displaysin usetoday are mainly color tv monitors.

7. hardcopy devices for recording images include laser printers, film
cameras, inkjet units and cdrom

8. Networking for communication



Elements of visual perception

Structure of human eye:

Sclera

Choroid

Cornea

YWisnal axis

Yitreous humor

Cliliary muscle

FIGURE 2.1
Simplified
diagram of a cross
section of the
human eye.



Elements ofvisual perception(Contd..)

The eye is nearly a sphere, with an average diameter of
approximately 20mm.

Threemembranes enclosethe eye:

1.Cornea:The cornea is a tough, transparent tissue that covers
the anterior surface of theeye.

2.Sclera: sclera is an opaque membrane that encloses the
remainder of the opticglobe.

3.Choroid:The choroid lies directly below the sclera. This membrane
contains a net- work of blood vessels that serve as the major source
of nutrition to the eye. The choroid coat is heavily pigmented and
hence helps to reduce the amount of extraneous light entering the
eye and the backscatter within the optical globe.



Elements ofvisual perception(Contd..)

e The lens is made up of concentric layers of fibrous cells and is
suspended by fibers that attach to the ciliary body. It contains 60
to 70% water, about 6% fat, and more protein than any other
tissue in the eye.

e The innermost membrane of the eye is the retina, which lines the
Inside of all entire posterior portion.

e \When the eye is properly focused, light from an object outside the
eye is imaged on the retina. Pattern vision is afforded by the

distribution of discrete light receptors over the surface of the
retina.

Thereare two classesof receptors: conesandrods.
e Theconesin eacheye number between 6 and 7 million

e They are located primarily in the central portion of the retina,
called the fovea, and are highly sensitive to color.



Elements ofvisual perception(Contd..)

e Muscles controlling the eye rotate the eyeball until the image of an
object of interest fallson the fovea.

e (Conevisioniscalled photopicor bright-light vision.

e Thenumber of rodsismuch larger: Some75 to 150 million are
distributed over the retinal surface.



Elements of visual perception(Contd..)
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Image formationin theeye:

e Theprincipal difference between the lensof the eyeand
an ordinary optical lensisthatthe former is flexible.

e The shape of the lens is controlled by tension in the fibers of
the ciliarybody.

e Tofocuson distant objects, the controlling muscles cause
the lensto berelatively flattened.

e Similarly, these muscles allow the lens to becomethicker in order
to focuson objects nearthe eye.

e The distance between the center of the lens and the retina called
the focal length varies from approximately 17 mm to about 14
mm, as the refractive power of the lens increases from its
minimum to its maximum.



Elements of visual perception(Contd..)

When the eye focuses on an object farther away the
lens exhibits its lowestrefractive power.

When the eyefocuseson a near by object, the lensis most strongly
refractive.

For example, the observer is looking at a tree 15 m high at a
distance of 100m.

If hiisthe heightin mm of that object in the retinal image,
the geometry of Fig.yields 15/100 =h/17 orh=2.55mm.



Simple image formation model

e |magesare represented by two-dimensional functions of the

form f(x,y).
e Thevalue or amplitude of f at spatial coordinates (x,y) gives
the intensity (brightness) of the imageat that point.

e Aslightisaform of energy, f(x,y) must be nonzeroandfinite.
The function f(x,y) may be characterized by twocomponents:

1.The amountof sourceillumination incident on the scenebeing
viewed

2.The amount of illumination reflected by the objects in
the scene.

Theseare called the illuminationand reflectancecomponents and are
denoted by i(x,y)andr(xy), respectively.
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Simple image formation model(Contd..) A

e The two functions combine asa product to
formf(x,y):f(x,y)=i(x,y)r(x,y)
r(x,y)=0 total absorption
1 total reflection

e The intensity of a monochrome image f at any coordinates(x,y)
the gray level(l)oftheimageat that point.

* Thatis,|=f(x0y0)Lliesintherange
Lmin<I< Lmaxwhere Lmin=Imin rmin and Lmax=Imax rmax



Sampling and quantization

e To create an image which is digital, we need toconvert
continuous datainto digital form. Therearetwo stepsin whichit is
done.

1.Sampling

2.Quantization

e Since an image is continuous not just in its co-ordinates (x axis), but
also in its amplitude (y axis), so the part that deals with the digitizing
of co-ordinates is known as sampling. and the part that deals with
digitizing the amplitude isknownasquantization.



Representing digital images

Adigital image can be represented in matrix form:

0 1 2 3 N-1
0 10,0 fi0.1) 1i0,2) 1i0,3) floN-1)
1 fiLe ) fiL2y) fil3) fILN-1)
2 1i2,0) fi2,1) 1i2,2) fi2,3) JiZN-1)
3 /30 31 fid2)  fi33) . JI3N-1)

M- - 1,0) fiM-1.1) fiM-1,2) fiM-13) fiM-1N-1)



Representing digital Images(Contd..)

The number of gray levels is chosen to be a power of 2 for practical

reasons: L=2n, which generates gray values ranging from Imin=0 to |
max=2n-1

We assumethat the discrete levels are equally spacedandthat they
are integersin the interval [0, L-1].

Sometimesthe range of values spannedby the grayscaleis called
the dynamic rangeofan

eThenumber of samplingpoints N, Mis set by the sensorarray.
eThenumber, b, of bits required to store adigitized imageis b=N*M*n



Spatial and Gray-level Resolution

Spatial resolution is the smallest level of detail discernable in animage
Number of line pairs per millimeter, say100 line pairs per millimeter.

Gray-level resolution is the smallest discernable change ingray level.
Very subjective.



Spatial and Gray-level Resolution(Contd..)

ab <

del

FIGURE 2.20 () 1024 x 1024, 8-bit image. (b) 512 % 512 image resampled into 1024 X 1024 pixels by row and
column duplication. (¢) through () 256 X 256, 128 x 128, 64 x 64, and 32 X 32 images resampled int
1024 x 1024 pixels
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FIGURE 2.21

(a) 452 x 374,
256-level image
(h)=(d) Image
displaved n 128,
64, and 32 gray
levels, whike
Keeping the
spatial resolution
conslant



Zoomingand Shrinking Digital Images

Zooming:-It may be viewed as oversampling. Increasing no-of pixels
IN an Image so that image appearslarger.

It requires twosteps:
e Creation of new pixels

e Assignmentof graylevelto those new locations.



Zooming andShrinking Digital

Images(Contd..

ZoomingMethods
e Nearest neighborinterpolation
e Bilinearinterpolation

e K-timeszooming

Shrinking:-Itmaybe viewed asunder sampling.
It is performed byrow-columndeletion



Basic relationshipsbetween pixels

e Neighborhood
e Adjacency

e Connectivity
e Paths

e Regionsandboundaries



Basic relationshipsbetween

pixels(Contd..)

Neighbours ofpixel

o Any pixel p(X, y) has two vertical and two horizontal neighbors, given
by (x+1,y), (x-1,y),(x, y+1), (x,y-1)

e This set of pixels are called the 4-neighbors of P and is denoted by
N4(P).

e Eachof them areat aunit distancefromP.



Basic relatlonshlpsbetween

e The four diagonal neighbors of p(x,y) are given by (x+1, y+1), (x+1, y-1),
(X-ll y+1)l (X_l Iy-l)

e Thissetisdenoted by ND(P).

e The points ND(P) and N4(P) are together known as 8-neighbors of the
point P, denoted by N8(P).

e Some of the points in the N4, ND and N8 may fall outside image

when Plieson the border of image.



Basic relationshipsbetween pixels(Contd..) ..

e Twopixels are connected if they are neighborsand their gray levels
satisfy somespecified criterion ofsimilarity.

e Forexample,in abinary imagetwo pixelsare connected if they are4-
neighbors and havesamevalue(0/1).

LetVbe set of graylevelsvaluesusedto defineadjacency.

4-adjacency: Two pixels p and q with values from Vare 4- adjacent ifq isin
the setN4(p).

8-adjacency: Two pixels p and g with values from Vare 8- adjacent ifq isin
the setN8(p).

m-adjacency: Two pixels p and q with values from V are m- adjacent if, — g

isin N 4(P).— g isin N D(p) and the set [ ] is empty (has no pixels whose
valuesarefromV).



Basic relationshipsbetween

pixels(Contd..)

Connectivity:

TEeTV be the set of gray-level values used to define connectivity; then
Twopixels p, g that have values from the setVare:

a. 4-connected,ifqgisin the set N4(p)

b. 8-connected,if qisinthe set N8(p)

c. m-connected,iff

i. qisin N4(p)or
ii. qgisin ND(p) andthe set N4 (p)NN4(q) is empty.



Basic relationshipsbetween

pixels(Contd..)

Paths

e Apath from pixel p with coordinates (x, y) to pixel g with coordinates
(s,t) is a sequence of distinct pixels with coordinates: (x0,y 0), (x 1,y 1),
(x2,y2) ...(xn, y n), where (x 0, y 0)=(x, y) and (x n,y n)=(s, t); (xi, yi)is
adjacentto (xi-1,yi-1),1<i<n.

e Herenisthe length of the path.

e \Wecandefine 4-, 8-, and m-paths basedon type of adjacencyused.



Basic relationshipsbetween

piers(Contd..)

Reaions and Boundari

e Asubset R of pixels in animage iscalled a Region of the
image if Ris aconnectedset.

e Theboundary of the region Ris the set of pixelsin the region
tha

t haveone or more neighborsthat arenotinR.
Distance measures

Given pixels p, g and z with coordinates (x, y), (s, t), (u, v)
respectively, the distance function Dhasfollowing  properties:

a.D(p,q)=0[D(p,q) =0, iff p=q]
b. D(p,q)=D(q, p)
c. D(p,z)<D(p,q) +D(q, 2)



Basic relationshipsbetween

pixels(Contd..)

Thefollowing are the differentDistance measures:

1. Euclidean Distance:
De(p, q) =[(x-s)(X-s)+(y-t) (y-t)]

2.City BlockDistance:
D4(p,q) =[x-s| +]y-t]

3.Chess BoardDistance:

D8(plq) =maX( | X-S | ’ | Y't | )



Linear andNonlinear operations

e General operator,H,that performs an output image,g(x,y)fora
given inputimage,f(x,y)

H[f(x,y)]=g(x,y)
e Hissaidto belinear operator if
H[aifi(x,y)+ajfj(x,y)]=aiH[fi(x,y)]+ajH[fj(x,y)]=aigi(x,y)+ajgj(x,y)

where ai,aj are arbitrary constants and
fi(x,y),fi(x,y)are images of same size.

e For example sum is a linear operator and max is
nonlinear operator
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Course Learning Outcome

CLOs Course Learning Outcome

CLO6 Use the concept of sampling and quantization in generating
digital images

CLO7 Explore on the basic relationships existed between the pixels in
the image
CLOS lllustrate different mathematical tools used in image intensity

transformations for quality enhancement

CLO9 Use histogram processing techniques in image enhancement
and noise reduction

43



Image Enhancement

*Theprincipal objective of enhancementisto processanimage so
that the result ismore suitable fora special process

eImage Enhancement Fall Into two categories: Enhancementin
spatial domain and Frequencydomain.

eTheterm spatial domain refers to the Image Plane itself which
is DIRECTmanipulation of pixels.

e Frequency domain processing techniques are based on modifying
the Fourier transform ofan image.



Image Enhancement in Spatial domain ™

Spatial Domain=Aggregate of pixels composing animage.

Spatial Domain Methods=Procedures  that operate directly on
these pixels. Denoted by: g(x,y)=TI[f(x,y)]

F(X,y) : Input Image,
T.Operator on Image
g(X,y): Processedimage.

Talso canoperate on aset of Images.

finition of Neiahborhood
Input for Process: A neighborhood about a point (X,y). The simplest

form of input is a one pixel neighborhood. s=T(r) T:Transformation
Function s,r : gray level of f(x,y) andg(x,y) respectively.



Basic gray-level transformations

Somebasicgray-level transformations are

1. Image Negatives

2. Logtransformation

3. Power-law transformation(Gammatransformation)
4. Piece-wise lineartransformation



Basic gray-leveltransformations(Contd..)

Image N IV

 Imagetransformation is given by the followingequation

T(r) =L-1-r
L-1maximum gray level

* It Produces photographic negative. Somedetails are easierto spotif

we go from black and white to white and black.

ab
FIGURE 3.4

(@) Original
digital

image obtained
using the negative
transformation in
l'q. (3.2-1)
(Courtesy of G E
Medical Systems.)



Basic gray-leveltransformations(Contd..)

Logtransformation

Logtransformation is givenby
T(r)=clog(1+s)

Inverse Logtransformation is given by

T(r)=exp(r/c)-1

FIGURE 3.3 Some L —1

: T
basic gray-level
transformation
functions used for MNepgative
image
nhancemen t nith
3L /4 - _|
= Log
D
i nth power
-
)
N L2+ _]
=
[=™
=
(]
L4 _
Identity Inverse log
. /
0 L4 L2 34 L —1




Output gray level. s

Input gray level. r

FIGURE 3.6 Plots
of the equation

s = cr' for
various values of
y(c=Tlinall
cases).
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FIGURE 3.9

(a) Acerial image.
(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ =1and

vy = 3.0.4.0 and
5.0, respectively.
(Original image
for this example
courtesy of
NASA.)




Basic gray-level transformations(Contd..)

e Piecewise-linear transformation functions
— Theform of piecewise functions canbe arbitrarily complex

Contraststretching

a b

c d

FIGURE 3.10
Contrast
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(o) 'I'his
transformation
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constant level.
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other levels,
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Basic gray-level transformations(Contd..)

» Bit-planeslicing

One 8-bit byte FIGURE 3.12

. Bit-plane 7 Bit-plane

most sienificant . .
( 5 ) representation of
an 8-bit image.

Bit-plane 0
(least significant)




HistogramProcessing

 Histogram
. h(rk)=nk

— whererk is the kthgraylevel and isthe number of pixelsin the
Image having gray levelrk

— Normalized histogram
* P(rk)=nk/n



Histogram Processing

T T T
Dark irmmuase
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HistogramProcessing

Histogram Equilization
S=T(n0<<1
r=inverseT(s),0<s<1

S = T(ry) -

Tr(r)

FIGURE 3.16 A
crav-level
transformation
function that i1s
both single valued
and
monotonically
increasing.



Histogram Processing

P, (S) P, (r)

ds

s=1(r)=(L-Df p,(w)dw

ds dI(r)
dr dr == 1)_

1

p.(s)= 71

[ p.orw

=(L=1)p,(r)



Histogram matching

s=T(r)=L—-D| p, (Wydw

G(z)=(L—1) j:' p.(Ddt=s
z=G () =G '[T(")]

PZ(Z) is thedesiredPDF



Fundamentals of spatial filtering

Mechanics of spatialfiltering

Row(ol,ol)f(x o1,y 01)
[]

w(l,0)f(xnpl,y) oo o
w(0,0) f(x,y) 0 [
w(1,0) f(x 0 1,y) [

w(l,1) f(x 01,y 1)



Fundamentals of spatial filtering

Image origin FIGURE 3.32 The

T‘. mechanics of
=Y spatial filtering.

The magnified
drawing shows a
3 = 3 mask and
the image section
directly under it;
the image section
is shown
displaced ont
from under the
mask for ease of
readability.

Image f{x. y¥)

a1, 0] a1, 1]

wil.—1]

Fle—1ly+1) Mask coeflicien s, showing
coordinate arrangement

e+ 1w =11 fla+ 1L v+1]

Pixels of imags
soclion under mask




Fundamentals of spatial filtering

Correlation Convolution
/" Origin f w /— Origin f w rotated 1807
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(h) O8232100 012328080 (p)

FIGURE 3.29 Illustration of 1-D correlation and convolution of a filter with a discrete unit impulse. Note that
correlation and convolution are functions of displacement
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Cropped correlation result CDI‘I’E]E’IHDH
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Smoothing spatialfilters

1. Useful for reducing noise and eliminating small details.
2. The elements of the mask must bepositive.
3. Sumof mask elements is 1 (after normalization).




Smoothing spatialfilters(example)

« Useful for reducing noise and eliminatingsmall detalils.

inputimage outputimage




Smoothing spatial filters(averaging)

« Averaging

« (Gaussian

« Median filtering(non-linear)
1.Averaging

' | |
|
o | | 1
| | !
! i 1 ! ! 1 1
(L))
i 1 1 i | 1 |
| ! | I i
1 i i 1 1 1 1
1 ! I | ! .
-
: r 1 ) i 1 ] i I
53 ! I I 1 I
! 1 1 i | 1 1
| | 1 1 I
| 1 | I 1 1 1
| | 1 | |
| i i 1 1 | |
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Smoothing spatial filters(median)

 \ery effective for removing “salt and pepper’noise (i.e.,
random occurrences of black and white pixels).

median
averaging fi Itering




Smoothing spatialfilters(Median filtering)

* Replace each pixel by the median In a
neighborhood around the pixel.

Area or Mask Processing Methods

input image enhanced image
10]20] 21 ( ) 'I'[f( )]
15|33| 24 2o gX}-' = X}-‘
z0|25 E‘tlx,_q_‘_ T ~"" ’ ’
] T operates on a
neighborhood of pixels

110 20 20 15 99 20 20 15 20 ]
lscrt

-
10 15 20 20 @20 20 20 53 -J

l median



SharpeningFilters

e Unsharpmasking
e High Boostfilter
e Gradient (1stderivative)

e |aplacian(2ndderivative)



Sharpening Filters:Unsharp masking

« Obtain a sharp image by subtracting a lowpass filtered (i.e.,
smoothed) image from the original image.

Highpass = Original — Lowpass

TEXTRTEXTIR @

(after contrast
enhancement) GRAY
COLOR




SharpeningFilters:high boost

e |f A=1,we get unsharpmasking.

e |f A>1, part of the original image is added backto the high pass
filteredimage.

e One way to implement high boost filtering isusing the

masksbelow:
A==]1 L=2
W o= 9A-1 w o= 17
-1 |-1 (-1 -1 |-1 |-1
-1 w o [-1 -1 17 | -1




Sharpening Filters:First order derivatives

» Takingthe derivative of an image results in sharpening theimage.

 Thederivative of animage (i.e., 2D signal) can be computed
usingthe gradient.

s
grad(f) = [ 9% ]

B
J(x+h)—f(x)
h

f(x)=lm

h—=0

= f(x+ D= f(x) (h=1)

g;f: _ f(x+&x—f(.r,}’}:f(er1?_1,-}_30(_1;“1?}, (Ax=1)

df  flx.v+Ay)— f(x.v)

a _&} _f(:’i',}’) _ f{-r,}’ + 1}:- (ﬂ_}’zlj




Sharpening Filters: Second order

derivatives

 The Laplacian(2nd derivative) is defined as:

g o _ _
5 ax ax o
Ve=V -V = ) ) = —5 + -
0 0 dx2  Oy®
>’ f . - o
a2 =S+ D =2/G. )+ G -1
Approximate ‘-;1{ = fG+1. ) =-27G. )+ fG—1. )
2ndderivatives: '

Vi ==4fG. N+ fGj+ D+ fGj=D+ fG+ 1)+ f(i—-1.7)



Combining spatial enhancement methods

e
¢ d

FIGURE 3.46

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a).{c) Sharpened
image obtained
by adding (a) and
(b). (d) Sobel of

(a).




Combining spatial enhancement methods

e f
g h

FIGURE 3.46
(Continued)

(e) Sobel image
smoothed with a
5 X 5 averaging
filter. () Mask
image formed by
the product of (c)
and (e).

(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a
power-law
transformation to
(2). Compare (g)
and (h) with (a).
(Original image
courtesy of G.E.
Medical Systems.)




Image enhancementin frequency domain

Any function that periodically repeats itself can be

expressed as the sum of sines and/or cosines of different
frequencies, each multiplied by a different coefficient (Fourier
series).

Even functions that are not periodic (but whose area under the
curve is finite) can be expressed as the integral of sines and/or
cosines multiplied by a weighting function (Fourier transform).

The frequency domain refers to the plane of the two dimensional
discrete Fourier transform of animage.

The purpose of the Fourier transform is to represent a signal as a
linear combination of sinusoidal signals of various frequencies.



Image enhancement frequency

domain(Contd..)

FIGURE 4.1 The function at the bottom is the sum of the four functions above it
Fourier's idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.



2 000

Introduction to the Fourier Transform and

m =
3 IARE §
), <

the Frequency Domain

Theone-dimensional Fourier transform and Its inverse
Fourier transform (continuouscase)

Fu)= j‘: f(x)e ™ dx where j=+—1

Inverse Fouriertransform:

f(x)= j F(u)e”™ du
Thetwo- dlmensmnal Fourier transform and its  Inverse
Fourier transform (discretecase)DTC

MAN-1

F(u V)— ZZf(x y)e—_;i’,?r(ufo+1{ny)
jk{j“ x=0 y=0

foru=012.... .M —1v=012....N—1



Introduction to the Fourier Transform

and the Frequency Domain(Contd..

Inverse Fouriertransform:

AM-1IN-1
f(.X',y) _ ZZF(u,v)ejZE(me+WJ’N)

w—0 v=0

forx=012,... M —1,y=012,....N —1

u, v : the transform or frequency variables
X,V : the spatial orimage variables



Filteringin the frequency domain

Frequency domain filtering operation

: Filter Inverse
Fourier : :
™ function Fourier
transform
H(u,v) transform

Flu,v) H(u,v)Flu,v)

Pre- Post-
processing processing
fx.y) g(x.y)
Input Enhanced

image image

FIGURE 4.5 Basic steps for filtering in the frequency domain.



Smoothing frequency domain filters

e Thebasicmodel for filtering in the frequencydomain
G(u,v)=H(u,v)F(u,v)
where F(u,v): the Fourier transform of the imageto be
smoothed

H(u,v): afilter transferfunction

e Smoothingisfundamentally alowpassoperationinthe
frequency domain.

e Thereare several standard forms of lowpassfilters(LPF).
— |ldeal lowpassfilter
— Butterworth lowpassfilter
— Gaussian lowpassfilter



Smoothing frequencydomainfilters

|deal low-passfilters

« The simplest lowpass filter is afilter that “cuts off” all high-
frequency components of the Fourier transform that areat a
distance greater than aspecified distance D, from the originof the

transform.
 Thetransfer function of anideal lowpassfilter
F Cea vy — 1 i.f DD, v) < ),
O 1t DD, vy > I,

where D(u,v) : the distance from point (u,v) to the center of ther
frequencyrectangle

1

D@ Vy=|@w—r7/2)> +v—nN/2)* |



Smoothing frequency domainfilters

Butterworth Lowpass Filters (BLPFs) With
order n

1
1+ |D@u,v)/ D, "

H(u,v) =

Hu. v) Hu.v)
i
, 1.0
Y
Jih
WL LT
a-f/"' MYV \\Q b 05
u>" e
alblte

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross sections of orders | through 4.



Smoothing frequency domain filters

Gaussian low passfilters

H(u,v)=¢e P @2

Hu.v)
4
1.0

0.667

D, = 100

= D(u,v)

a:b c

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (¢) Filter
radial cross sections for various values ol D,,.



th(u,V):Hlp(u,V) ‘ -
Ideal highpassfilter =)
u ., ‘ DNu, r)
0 if D(u,v)<D, I

H(u,v) ={

1 i D@,v)>D, — ‘ . /

Butterworthhighpassfilter —

us” w, : } > D{u. v)
1 - Hiu,v)
H(u:’ v) — e — Hiu, r) 10 T
1+ D,/ DG, v) F” < > ,
Gaussian highpassfilter - /
W NNy } c Diu,

H( u V) _1— e—Dz(u,v)IZDg

mo =

be¢
ef
hi

FIGURE 4.22 Top row: Perspective plot. image representation, and cross section of a typical ideal highpass
filter. Midkdie and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



HomomorphicFiltering

e Manytimes, we want to remove shadingeffects from an image
(i.e., due tounevenillumination)

— Enhance highfrequencies
— Attenuate low frequencies but preserve fine detail




Homomorphic Filtering(Contd..)

e (Consider the following model ofimageformation:

| ipGy):illumin
f(x,yv)=i(x.y) r(x.vy) ation r(x,y):
reflection

e Ingeneral,the illuminationcomponent i(x,y) varies slowly and
affects lowfrequenciesmostly.

e |ngeneral, the reflection component r(x,y) varies
fasterand affects high frequencies mostly.

IDEA:separatelow frequencies due toi(x,y)
fromhigh frequencies due tor(x,y)



Steps of Homomorphic Filtering

(D) Take In(f(x,v))=m(i(x,v)) + n(r(x,v))

2) ApplyFT:
( ) pply FE‘TH(f(x:' }*’))):F(IH(I‘(‘T? }})))‘FF(I??(?"(I, }’)))

(3) ApplyH(u,v) Z(u,v) = Hlum(u,v)+ Refl(u, v)

Z(u, v)H(u,v) = Hlum(u.v)H(u,v) + Refl(u,v)H(u,v)



Steps of Homomorphic Filtering

(4) TakelnverseFT:
F Yz v, vww=F " (i@ vy H ) F~ (Refi(u, vy H i, v)

or sy =i(xy+r(x,»)

(5) Takeexp() 5 — i ) g )

Ji

fepCy W [} BT Y A — @t 2 o




ab

FIGURE 4.33

(a) Original
image. (b) Image
processed by
homomorphic
filtering (note
details inside
shelter).
(Stockham.)
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UNIT 3
IMAGE RESTORATION AND FILTERING



Course Learning Outcome

CLOs Course Learning Outcome

CLO10 Understand the impact of smoothing and sharpening filters in
spatial domain.

CLO11 Apply the Fourier transform concepts on image function in
frequency domain filters(low pass/high pass).

CLO12 Describe the concept of image degradation or restoration of
images.

91




Introduction

Objective of imagerestoration
to recoveradistorted imageto the originalformbased on
Idealizedmodels.

Thedistortionis dueto
Image degradation in sensingenvironment e.g.random
atmospheric turbulence
Noisy degradation fromsensornoise.

Blurring degradation due to sensors
e.g.cameramotion or out-of-focus
Geometric distortion

e.g. earth photos taken by acamerain asatellite



Image Enhancement

 Enhancement
— Concerningthe extractionof imagefeatures
— Difficult to quantifyperformance

— Subjective; making an image “lookbetter
* Restoration

— Concemingthe  restorationof degradation
— Performance can be quantified
— Objective; recoveringthe original image



Noise models

 Assuming degradationonly due to additive noise (H=1)

 Noise fromsensors
— Electroniccircuits
— Lightlevel
— Sensortemperature
 Nolise fromenvironment
— Lightening
— Atmospheric disturbance
— Other strong electric/magneticsignals



Noise models

« Assuming thatnoiseis
— Independent of spatial coordinates,and
— uncorrelated with respect to the image content

Gaussian noise
= Probability density function (PDF)

P(2) = —mm— e 12
2o

= z: gray level (Gaussian random variable)

= A mean of average value of z
= o: standard deviation of z

2 °
m O : variance of =z



Noise models

PDF of Gaussian noise
s 70%ofzin [#—0O, 1+ 0]
s 90%ofzin [U—20,u+20]

p(z)

\v"lngu

o501
N 2o

(Gaussian

.u—rr;.x,u:+cr



Noise models

Impulse (salt-and-pepper) noise

f-Pa fOI‘ 2=d Y e e
p(z)=4B, forz=5b Impulse
0 otherwise ' N—

s bipolarif P, #0, F,#0
» unipolar if one of P, and F, 1s 0
= noise looks like salt-and-pepper granules if P, = P,

= negative or positive; scaling 1s often necessary to
form digital images

= extreme values occur (e.g. a = 0, b = 255)



Noise models

 Other commonnoisemodels
— Rayleighnoise
— Gammanolse
— Exponential noise
— Uniform noise



piz)

RayleighNoise 0sr\3
2 Raylcigh
7 ~z-a) /b
p(z):g(z—a)e for z>a
=0 for z<a
Gamma(Erlang) Noise ’ .
Exponential Noise .
— Gamma 2 IExponential
p(z)=ae® for z>0
- a(b :_l_).i'_l‘.ﬂb-ln
=() for z<0 T
b~ 1)/a z 7
p(z) rz)
5—1:-.- ------- B |rnossremeromensssannenany
“ Uniform Impulse
P, leenaccan




Restoration by spatial filtering

Assume noise is the only degradation source

g(x,y)=f(x,y)+n(x,y)
G(u,v)=F(u,v)+ N(u,v)
Spatial filtering

= a means when only additive noise 1s present

= similar to enhancement in spatial domain

3 x 3 filter



Restoration by spatial filtering %

Mean filters (noise reduced by blurring)

s Arithmetic mean filter 1 x 3 mask
A |
fEy)=— Y gl ; ‘20 o 13
MmN (s 1yes,, ﬂ
| T s [T
s Geometric mean filter
! 1D illustration
fen=| T g0
(s.1)eS,, 20 12.6
0 ‘ 10 12
+ Smoothing comparable to Hﬂ”l HHI -HHHHHH

arithmetic mean filter
+ Losing less image details



Restoration byspatial filtering

Order-statistics filters

= Median filter
« handling both bipolar or unipolar impulse noise

~

S(x,y)= rpe)disan{g(s,r)}
m MNMax filter

+ finding the brightest points in an 1image
+ reducing pepper noise

J(x.») = max {g(s.0}

= Min filter
+ finding the darkest points in an 1image
« reducing salt noise

S (x.»)= min {g(s.0}



Restoration byspatial filtering

Order-statistics filters

= Midpoint filter
+ order statistics f (x,y)=

+ averaging
+ work well for Gaussian noise

= Alpha-trimmed mean filter
+ d =0 : arithmetic mean filter
e« d=mn—1 : median filter
+ suitable for the situation
involving multiple types of

noise

l: max {g(s, t)}+ xmn {g(s t)}]

(sen

delete d/2 lowest and
d/2 highest values first,
then average the remaining



Restoration byspatial filtering 2%,

* Filtersdiscussed so far
— Donot consider image characteristics

 Adaptivefilters to bediscussed

— Behaviorsbhased on statistical characteristics of the
subimageunder afilter window

— Better performance

— More complicated

— Adaptive, local noise reductionfilter
— Adaptive medianfilter



Restoration byspatial filtering

Adaptive, local noise reduction filter

= Mean of a random variable: a measure of average gray
level in some region

= Variance of a random variable: a measure of average
contrast in the region

= Response based on four quantities

¢ g(x.p) : value of noisy 1mage at (x,y)

. o';‘ - variance of the noise (x.)

o m;: local mean 1n Sxy

2 - local vari mn .S
¢ . 10cal variaince 11
(0] I Xy Sxy



Restoration byspatial filtering

Algorithm of adaptive median filtering

s Level 0: Set mitial window size at a new (x,y)

m Level A: If z . <z ,<z.. ,GotoLevel B
Else increase the window size
If window s1ize <S__, repeat Level A

Else output .

« LevelB: If 2z, <z <z, outputz

Else output z_,.



Frequency domain filterinc

* Pure sine wave

-Appear as a pair of impulse (conjugate) in the frequency
domain

f (X, V. INGU X +W Ug Vg |
F(u,\S_YP%%—%Q\%‘—ZZ@Y)&(ME,HZ_E) |



Periodic noise reduction(Contd..)

m =
2 IARE §
< \3

» 3

« Bandreject filters
« Bandpass filters
* Notch filters

« Optimum notch filtering



EDDD

Periodic noise reduction(Contd..)

“% IARE 3

Q
/ \2
W pop

Bandreject filters

* Reject an isotropic frequency

ideal Butterworth Gaussian

ﬂ. ¥ guntetitug, m“

il

' ““ll‘nmnmuuﬂ’““

abc

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject
filters.



Bandpass filters

* bp(U,V):l- Hbr(U,V)
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Linear, position-invariant degradation. %

% IARE ¢
Q~

Properties of the degradation function H

« Linear system
HIaf, (x,y)+bf>(x,y)]=aH[f;(x,y)]+bH[f,(x,y)]

 Position(space)-invariant system
H[t(x,y)]=9(x,y) < HI[f(x-a, y-b)]=g(x-a, y-b)

 c.f. 1-D signal
LTI (linear time-invariant system)



Linear, position-invariant

deqgradation(contd..
o) =] [ flaBo(x-ay-p)dedp
o o impulse
9= HITI=H| [ [ (e A)sx-a.y—Adadp
Imelar 5 |:.: % I
g(x, )=HIf(x,y)=| | H[f(a.pS(x~a y-p)|dadp

o —00 o —

G Y) =HIT Y= [ (e AH[S(x-a, y- B)]dedB
(<) = H50 W (x, @, y, B) = H[S(x -y = B)]

If position-invariant H :5()( _a, y—,B)]= h(x—e, y—,B)
9ty =[ ] @ A -a.y - pdedp

T (X, y) = : ..: f(a, Hh(x-a,y-B)dadB+n(X,y)




Liaear, ositign-invarjant

egradation(contad..

 Linear system theory is ready

« Non-linear, position-dependent system
-May be general and more accurate
-Difficult to solve computationally

 Image restoration: find H(u,v) and apply inverse process
-Image deconvolution



Estimating tthe degradation

unction

 Estimation by Image observation
 Estimation by experimentation
 Estimation by modeling

Estimation by image observation

« Take a window in the image
-Simple structure
-Strong signal content
 Estimate the original image in the window

B GS(U,V) ___— known

 F(u,v) S

estimate



function(Contd..

Estimation by experimentation

« |If the image acquisition system is ready
 Obtain the impulse response

Impulse Impulse response



function(Contd..

Estimation by modeling RN
Ex. Atmospheric model H (U,V) — p kU +v )
i)
o k=0.0025
k=0.00025




Estimating the degradation

Estimation by modeling

- Derive a mathematical model
Ex. Motion of image

g(x, V)= [ F(x=%5(t), y - Yo (D)dt
N

Fourie Planar motion
transfarm

T .
G(u,v) = F(u,v)] e 2t gy



* With the estimated degradation function H(u,v)

G(u,v)=F(u,v)H(u,v)+N(u,v) Unknown

/noise

> Fuv) =2V gy NV
[ ’ H (u, v) | H (u,Vv)

Estimate of Problem: 0 or small values
original image

Sol: limit the frequency
around the origin




*Wiener filters, on the other hand, are based on a statistical approach
*If the spectral properties of the signals involved are known, a linear time-
invariant filter can be designed whose output would be as close as possible to

the original signal

*minimum mean square error: e2 = E{ (f-fc)2}
Fe(u,v) =[1/H(UWT T HuVP/ (H(u, v +S,(uv)/Si(u,v))] G(u,v)
S, (u,v) = |N(u,v)[? power spectrum ofnoise

Approximations of S, (u,v)/S¢(u,v):
K (constant)
v |P(u,v)|? (power spectrum of Laplacian)
v found by iterative method to minimize e2
(constrained least squares filtering)



Filtering(Contd..

Wiener Filtering

fum=] Hwf o
[[HUW[Hu[ +K |

K= Sn(U,V)/Sf(U,V),
*Sn(u,v) = [N(u,v) |2
*Sf(u,v) = | F(u,v)|?
* S, (u,v) & S¢(u,v) must be known
*S,(u,v) the power spectrum of the noise,
*S¢(u,v) the power spectrum of the original image




Filtering(Contd..

Example Wiener filter

Original

Noise added

Pseudo-inverse

Wiener filter




VTR MRG!

L inear motion Wiener filter

b
¢
Ehi

-

a
d

FIGURE 5.29 (u) Imuge corrupted by motion blur s scditive sobse, (B) Result of inverse filtering, (¢) Result
of Wiener litering (d)-(1) Same sequence. but with nokse varianoe one onder of magnitode less, (g )-{1) Same
soguence, bat nolse vanance reduced by ve ordenms of magnitude from (a) Note in (b) how the deblurred
Image s quite visible through a “curtain” of noise



H™(u,v)

Ié(u,v): G(u,v)

IH (u,v) |2 + ;/|P(u,v)|2 |

« P(u,v) is the fourier transform of the Laplacian operator
Constraint:
‘lg-H |2=n}?
*R(u,v) = G(u,v) — H(u,v)
Adjust yfrom the constraint — by Newton-Raphson root-
finding




FilterinatContd..

*In the Fourier domain, the constrained least squares filter becomes:

H™(k,I)

F (k1) = :
(k.1) H (kD[ +2|Q(k, 1|

G(k,1)

«Keep always in mind to zero-pad the images properly.



abc

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (¢) with the Wiener filtering
results in Figs. 5.29(c), (), and (i), respectively.

Low noise: Wiener and CLS generate equal results.

High noise: CLS outperforms Wiener if 4 is properly selected.

It is easier to select the scalar value for A than to approximate the
SNR which is seldom constant.



B H (u,v) e

Flu. v) = [(H (u.v) [ 2 Sy(u,v) G(u, v)
e | H (u. v)|? [H(u,v)I" + B S¢(u,v) |

Geometric mean filter is quite useful when 1mplementing
restoration filters because it represents a family of filters combined
Into a single expression



UNIT 4
IMAGE PROCESSING



Course Learning Outcome

CLOs Course Learning Outcome

CLO13 Understand the various kind of noise present in the image and
how to restore the noisy image.

CLO14 Understand the differences of inverse, least square and Wiener
filtering in restoration process of images

CLO15 Understand the color fundamentals and models in image
processing

CLO16 Memorize the transformation techniques in pseudo color

image processing.

CLO17 Use wavelet concepts in multi-resolution processing.
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The use of color is important in image processing because
«Color is a powerful descriptor that simplifies object identification
and extraction.
Humans can discern thousands of color shades and intensities,
compared to about only two dozen shades of gray.

Color image processing is divided into two major areas:
Full color processing :images are acquired with a full color sensor,

such as a color TV camera or color scanner.
«Pseudo color processing: The problem is one of assigning a color to
a particular monochrome intensity or range of intensities.




Physical phenomenon

Physical nature of color is known
*Psysio-psychological phenomenon

How human brain perceive and interpret color?

______ meeeeeesPp [NFRARED
__,_.-o,-.

FIGURE 6.1 Color spectrum seen by passing white light through a prism. (Courtesy of the
General Electric Co., Lamp Business Division.)



Visible light:
Chromatic light span the electromagnetic spectrum (EM) from
400 to 700 nm

GAMMA INFRA- Ml(‘Ro

QlInm inm_.—="" 10nm — oooxrr‘~~~-.‘___ 100 1t
...... ULTRAVIOLET VISIBLE SPECTRUM ~—_ INFRARED ~ =~ —=—e_ .
400 500 1000 1500

WAVELENGTH (Nanometers)

FIGURE 6.2 Wavelengths comprising the visible range of the electromagnetic spectrum.
(Courtesy of the General Electric Co., Lamp Business Division.)



*The color that human perceive in an object = the light reflected
from the object

L] L] /
Illuminationsource —-
~—
/

IR
A

reflection




Physical nLitl [l hromatic ligh [
Radiance: total amount of energy that flow from the light source,

measured in watts (W)
Luminance: amount of energy an observer perceives from a light
source, measured in lumens (Im)
Far infrared light: high radiance, but 0 luminance
Brightness: subjective descriptor that is hard to measure, similar to
the achromatic notion of intensity.
How human eyes sense light?
*6~7M Cones are the sensors In the eye
3 principal sensing categories in eyes
*Red light 65%, green light 33%, and blue light 2%




Primary an ndary color
In 1931, CIE(International Commission on Illumination) defines
specific wavelength values to the primary colors
B =435.8nm, G =546.1 nm, R =700 nm
*However, we know that no single color may be called red,
green, or blue
-Secondary colors: G+B=Cyan, R+G=Yellow, R+B=Magenta

MIXTURES OF PIGMENTS
MIXTURES OF LIGHT (Subtractive primaries)

[{Additive primaries) YELLOW

PRIMARY AMD SECONDARY COLORS
OF LIGHT AND PIGMENT




Color model, color space, color system
Specify colors in a standard way

A coordinate system that each color Is represented by a single point

*RGB model
*CYM model
*CYMK model
*HSI model

-Suitable for hardware or applications

B
I(0,0.l)

RGB color model

Magenta

(1.0.0)

Blue

-~

Black
- -~

T

<] White

_- Giray scale

f,,/Rc
-

R4

Yellow

Cyan

(0.1.0)
Gireen



Pixel depth: the number of bits used to represent each pixel in RGB
space
Full-color image: 24-bit RGB color image

(R, G, B) = (8 bits, 8 bits, 8 bits)

B
Blue (0,0, 1) Cyan
|
|
Magenta ; L] White
|
|
|
|
l “ ' @ -
Black | Graysealel ®.L0
- Green
-
~
(1.0.0) |7
Red Yellow




CMY model (+Black = CMYK)

*CMY: secondary colors of light, or primary colors of pigments
*Used to generate hardcopy output

MIXTURES OF LIGHT

_ C — _1_ — R—‘ (Additive primaries)
VRN




HSI color model

*Will you describe a color using its R, G, B components?
*Human describe a color by its hue, saturation, and brightness
*Hue : color attribute
-Saturation: purity of color (white->0, primary color->1)
Brightness: achromatic notion of intensity

Colors on this triangle

RGB -> HSI model Have the same hue

White Wigte

Intensity saturation

line

Cwvan e llow o e lloer

ooy e e e | e o

Bluc 4 Red Bluc Read



Green Yellow

Cyan Red

Blue Magenta

Green Yellow Green

Yellow

Green

Cyan ¢ Red Cvang Red

Blue Magenta E]ue M agenta Blue Magenta Red



HSI component images

saturation ' ‘

Hue

intensity




*Assign colors to gray values based on a specified criterion
For human visualization and interpretation of gray-scale events
*Intensity slicing

*Gray level to color transformations

|ntensity slicing

3-D view of intensity image
Fix.¥)

Grav-level axis

(White) L — 1 Color1

Slicing plane

(Black) O

Image plane



Pseudo-color image processing(Contdy,

Alternative representation of intensity slicing

Color

Gray levels



Pseudo-color image processing(Contdy,

More slicing plane, more colors

Gray levels



Application of Intensity slicing

8 color regions

Radiation test pattern —



r

level lor transformation

*General Gray level to color transformation

I -1 )

/

Red

1
4_:> Red
transformation

Green
transformation

v

Flxe vy fa(x.y)

Blue
transformation

felx. ¥y)

V

FIGURE 6.23 Functional block diagram for pseudocolor image processing. fi, f;. and fy
are fed into the corresponding red. green, and blue inputs of an RGB color monitor.



Pseudo-color image processing(Contdy.

Application of gray level to color transformation




Color pixel

A pixel at (x,y) Is a vector in the colorspace
*RGB color space

R(X,y)
c(x, ) =| G(x,Y)
B, y)|

c.f. gray-scale image
f(x,y) = 1(x,y)




Basics of Full-Color Image

_____

(x. ¥) i

(x. ¥)
Spatial mask—f Spatial mask —;‘

Gray-scale image RGB color image




How | with color v r?

Per-color-component processing
*Process each color component
*\/ector-based processing
Process the color vector of each pixel
*\WWhen can the above methods be equivalent?
*Process can be applied to both scalars and vectors
«Operation on each component of a vector must be
Independent of the other component



Tw 1al pr IN Il

Similar to gray scale processing studied before, we have to major
categories

Pixel-wise processing

*Neighborhood processing



Similar to gray scale transformation

a(x,y)=T[f(x,y)]
*Color transformation

S, =T.(r,r,..r,), 1=12,...,n

g(x,y) fxy)

<\f1

S «—— Ty
. T%Z
Sy o« T f,



which color model in color transformation?

‘RGB < CMY(K) < HSI

*Theoretically, any transformation can be performed in any color
model

Practically, some operations are better suited to specific color model

Example: modifv intensi f lor im

Example: g(x,y)=k f(x,y), 0<k<1l
*HSI color space
Intensity: s; = Kr,
*Note: transform to HSI requires complex operations



*RGB color space

*For each R,G,B component: s;= Kr;
*CMY color space

For each C,M,Y component:




Magenta

> dis-continuous

Un-defined
over gray

axis




Implementation of color slicing

Sphere region

Cube region






Color imade smoothing

*Neighborhood processing

Gray-scale image

(x. )

Spatial mask—f

_____

(¥ ¥)
Spatial mask

RGB color image

/




vector processing

I \Neigh borhood

Centered at (x,y)

K
(_)(X, y) — | i Z G(X, y) per-component processing
1







Example: 5x5 smoothing mask

RGB model Smooth |
in HSI model difference

ab c

FIGURE 6.40 Image smoothing with a 5 X 5 averaging mask. (a) Result of processing each RGB component
image. (b) Result of processing the intensity component of the HS1 image and converting to RGB. (¢) Dif-
ference between the two results.




*View the YIQ color space:
-Y=luminance, I=hue, Q=saturation

*Human skin occupy a small portion of the | and Q spaces.

«From training images, compare and contrast hue and saturation of faces only vs. entire

Image
Hue and Saturation

Histogramof QComporerisof Training.-jng

“x105

§ Histogram of Q-components of Faces

ke

2]
T

.
T

)
T

yas

1+

D | 1 1 1
180 -100 -0 0 a0 100 150

Training Image

Y

*—Q Distribution Faces



Mask After Color Segmentation

e Skin elements remain.

 Holes in faces later eliminated with hole-filling



Mask After Object Removal

a0y

25}

Based on size distribution of remaining objects, remove small ones



Region counting - Supplementary method

*The edge outlines have clearly identifiable connected regions
«Can be counted, and statistics used to help reject clutter

Number of regions: 14 Number of regions: 43

Edges of 2 hand




Detection Algorithm

Correlation — Degree of matching
Dimensions — height, width
*Region counting — complexity of image

Single face

e —~ )~

Multiple faces

- S - S




ab

cd

FIGURE 6.48
(a)-(¢) Red,
green, and blue
component
images corrupted
by additive
Gaussian noise of
mean O and
varance S(X),

(d) Resulting
RGEB image.
[Compare (d)
with Fig. 6.46(a).]

Noise is less
noticeable
In a color
Image




Saturatio Intensit.

3

FIGURE 6.49 HSI components of the noisy color image in Fig. 6.48(d). (a) Hue. (b) Saturation. (c¢) Intensity.




FIGURE 6.50

(a) RGB image
with green plane
corrupted by salt-
and-pepper noise.
(b)y Hue
component of
HSIT image.

(¢) Saturation
component.

() Intensity
component.



Original image

JPEG2000 FILE

After lossy compression with ratio 230:1



Fourier transform has its basis functions in sinusoids
*\Wavelets based on small waves of varying frequency and limited
duration
*In addition to frequency, wavelets capture temporal information
v'Bound in both frequency and time domains
v'Localized wave and decays to zero instead of oscillating forever
Form the basis of an approach to signal processing and analysis
known as multiresolution theory
v'Concerned with the representation and analysis of images at
different resolutions
v'Features that may not be prominent at one level can be easily
detected at another level



Comparison with Fourier transform

Fourier transform used to analyze signals by converting signals into a
continuous series of sine and cosine functions, each with a constant frequency
and amplitude, and of infinite duration

Real world signals (images) have a finite duration and exhibit abrupt changes
In frequency

«\Wavelet transform converts a signal into a series of wavelets

«In theory, signals processed by wavelets can be stored more efficiently
compared to Fourier transform

*\Wavelets can be constructed with rough edges, to better approximate real-
world signals

*\Wavelets do not remove information but move it around, separating outthe
noise and averaging the signal

*Noise (or detail) and average are expressed as sum and difference of signal,
sampled at different points



«Objects in images are connected regions of similar texture and
Intensity levels

*Use high resolution to look at small objects; coarse resolution to
look at large objects
«If you have both large and small objects, use different
resolutions to look at them

«Images are 2D arrays of intensity values with locally varying
statistics



Originally devised for machine vision and image compression.
It is a collection of images at decreasing resolution levels.
-Base level Is of size 27x2J or NxN.

Level j is of size 2ix2..

| % ]/¢ Level O (apex)
OIL\LIl

4“*’@7\‘ o
\\ °

| \ o
|

/
y |
|

. Level J (base)



What is an Imaae Pvramid?

Low resolution

1&

High resolution




Approximation pyramid:

At each reduced resolution level we have a filtered and
downsampled image.

fiz (n) =f(2n)

1 % ]/¢ Level O (apex)
OIL\L'l

\\ 2

| \ L]
|

/
|
/
|

. Level J (base)



Prediction pyramid:

A prediction of each high resolution level is obtained by
upsampling (inserting zeros) the previous low resolution level
(prediction pyramid) and interpolation (filtering).

f(n/2) Ifniseven
sz (n) — { ( ) .
0 otherwise

1 X |/¢l\l”('p\’
0\[ \'l

““’O“'
N\
\ o

/
/ |
|

|
|
|

/

\
/ N We -
‘\.'/: % .‘\',"3// ; \lx\ul J |

\

N
/ \ Level J (base)
N N /7
N X .‘\,



Prediction residual pyramid:

At each resolution level, the prediction error is retained along with

the lowest resolution level image.
*The original image may be reconstructed from this information.

Downsampler
(rows and columns)

a
P
% l,$ Level O (apex)
\
y

I >
2 X 3/0\ 1"‘“” | Approximation ] ., | Levelj = 1
P = > Level 2 filter | = ? A approximation
\ o
21 Upsampler
(rows and columns)
Interpolation

filter

Prediction l
: wevel
Level j Levelj

° - - prediction
input image -
residual



*An image Is decomposed to a set of bandlimited components
(subbands).

*The decomposition is carried by filtering and downsampling.

*If the filters are properly selected the image may be reconstructed
without error by filtering and upsampling.



hy(n)

|

[

hy(n) = —hy(n)

..—3-2-10 12 3 4 5 6 7...
n

la
|

hy(n) = hy(—n)

T

hy(n) = h(K — 1 = n)

T

e—3-2-1012 3 45 6 7...
n

Tl

hs(n) = (=1)"hy(n)

[ .

=3 -2-101 2 3 4 5 6 7...
n

1 !
..—3-2-101 2 3 4 5 6 7...
n

!

he(n) = (=1)"hy(K =1 = n)

I

1
..m3-2-10 12 3 45 6 7...

i

.

1
..—3-2-101 2 3 4 56 7...

i




A two-band subband coding i h

* hy(n) 2l

21 * go(n)

f(n) @— Analysis filter bank ! Synthesis filter bank C‘I— f (n)

Approximation filter
(low pass) * hy(n)— 21

21 * g1(n)

I‘ Jup(n)

/ A
| Ho(w)| | Hy(o)|

Detail filter (high pass)

Low band High band

Y
€

I
i
I
I
I
I
I
I
I
I
|
™



* hy(n) 21 ® a(m,n) Approximation

Colimts subband
* hg(m) 21 (along n)
Rows
\along ) * hy(n) 21 ® d'(m,n) Vertical subband
f(m,n) @— Columns
* hy(n 2! o d'(mn )
g mn) Horizontal subband
Columns
* hy(m) 21
Rows
* hy(n) 2l @ dP(m,n) Diagonal subband

Columns



I
il i

|
i)

IV

(il
1

*The wavy lines are due to aliasing of the barely discernable

window screen. Despite the aliasing, the image may be perfectly
reconstructed.

ab
cd

FIGURE 7.9

A four-band split
of the vase in
Fig.7.1 using the
subband coding
system of Fig. 7.7.
The four
subbands that
result are the

(a) approximation,
(b) horizontal
detail, (c) vertical
detail, and

(d) diagonal detail
subbands.



It is due to Alfred Haar [1910].
*Its basis functions are the simplest known orthonormal wavelets.
*The Haar transform is both separable and symmetric:

*T=HFH,
*F i1s a NxN image and H is the NxN transformation matrix and T
IS the NxN transformed image.
*Matrix H contains the Haar basis functions.

*The Haar basis functions h,(z) are defined for in 0< z <1, for
k=0,1,..., N-1, where N=2n.



To generate H:

« we define the integer k=2r+q-1, with 0< p <N-1.
* if p=0, then q=0 or g=1.

o If p£0, 1<q <2p

For the above pairs of p and g, a value for k Is determined and
the Haar basis functions are computed.

1
ho(2) =hyo(2) = N z €[0,1]

([ opi2 (q-1)/2P<z<(q—0.5)/2°
J o2 (q-05)/2P<z<q/2°

N 0 otherwise, z €[0,1]

.

1

h(z) =h (2) =




The 1th row of a NxN Haar transformation matrix contains the
elements of h,(z) for z=0/N, 1/N, 2/N,..., (N-1)/N.

For instance, for N=4, p,q and k have the following values:

Ckop A
0 0 0

1
2
3

0
1
1

N R R

and the 4x4 transformation matrix Is:

1 1 1 1

111 1 -1 -1

CEVZ V2 0 o
0 0 2 2]



Similarly, for N=2, the 2x2 transformation matrix is:

1 1]
HZZL[

1 -1

2

*The rows of H,are the simplest filters of length 2 that may be used

as analysis filters hy(n) and hy(n) of a perfect reconstruction filter
bank.

*Moreover, they can be used as scaling and wavelet vectors (defined
In what follows) of the simplest and oldest wavelet transform.



Expansion of a signal f (X) :

f(x)= Z“k@(x) «, . real-valued expansioncoefficients
k

@.(x) : real-valued expansion functions
a, = <¢5k (x), f (x)> = j & (x) F()dx G (x): the dual function of @(x)

If {4 (x4 an orthonormal basis for VV , then & (X) =4 (X)
*If the expansion is unique, the ¢ (x)are called basis functions.

*If{g.(x)} are not orthonormal but are an orthogonal basis for
v,
then the basis funcitons and their duals are called biorthogonal.

. | . 10 j=k
Biorthogonal: <¢,— (X)1¢k(x)>:51k _{1 j=k



Scaling function

¢, () =2"2¢(21x-k), forkeZ and ¢(x) e L*(R)

J

*The subspace spanned over k for any j : V= Spfin{¢,-,k(><)}

*The scaling functions of any subspace can be built from double-
resolution copies of themselves. That is,

#(X) = > hy(M2¢(2x—n)

where the coefficients are called scaling function coefficients.



Requirements of scaling function:
1.

2.

The scaling function is orthogonal to its integer translates.

The subspaces spanned by the scaling function at low scales
are nested within those spanned at higher scales.
Thatis

V_ c--cV,cVcNcV,c---cV

o0

. The only function that iscommonto all Vv, is fx)=0

Thatis  v_={0}

. Any function can be represented with arbitrary precision.

That Is,
vV, ={2(R)}



Wavelet function
*spans the difference between any two adjacent scaling subspaces
V, and v, ,

v () =2""p(2'x-K) forall keZ that spans the space W,

where  w;=span{ y;, %)}

*The wavelet function can be expressed as a weighted sum of
shifted, double-resolution scaling functions. That is,

w(x) = 3 h, (N2 4(2x —n)

where the n () are called the wavelet function coefficients.



Wavel ries expansion

F0 =S¢, (K )+ D S d (K (X)

j=lo k
where |J, s an arbitrary startingscale

iy (k) = (T (), B0 (00) = | £ () ()
called the approximation or scaling coefficients

d; (k) = ( (), 73, () = [ (017, (x)lx

called the detail or wavelet coefficients



Dimension(Contd..

Discrete Wavelet Transform

The function f(x) is a sequence of numbers

f(X) \/_ZWJJOk)¢j k(X)+\/—ZZW (J k)l//Jk(X)

=)o

where j,Is an arbitrary startingscale
W, (Jo, k) = J_Z f ()i, . (X)

called the approxrmatron or scaling coefficients

W, (1.k) = J_Z FO) %k (X)

called the detail or wavelet coefficients



Fast Wavelet Transform (FWT)

-computationally efficient implementation of the DWT

-the relationship between the coefficients of the DWTat adjacent
scales

-also called Mallat's herringbone algorithm

resembles the twoband subband coding scheme



Scaling x by 2J, translating it by k, and
lettingm =2k +n

#(x) = Y h,(n)v2¢(2x—n)
P21 x—K) = D h,(MV24(2(2'x—k) —n )= hy(m—2k)2¢ (27 x —m)

Similarity,
w(2ix—k)=>_h, (m-2k)«/2¢(21* x—m)

Consider the DWT. Assume qz(X) =@(X) and ¥(X)=w(X)

M >
W,( j, k) = J_Z F(x) 4, (X) #(x) = D h,(n)v24(2x—n)
=W2hw(m —2k) 2 (210 x —m)



W, (j.k) = \/—Z F) W, (%) Wi (X) =212y (20 x-K)

:ﬁz f (x)212y (21 x—k)

= ﬁz f(x)2172 {; h(m — 2k)\/§¢(21+1x—m)}

- Z h(m — 2K) {ﬁz f(x)20 D2 21y — m)}
= h,(m—2K)W,(j+1,m)

Similarity,

W, (j,k) =D _hy(m—2K)W,(j+1,m)



w,(.n) —2 7T —h,(n)

()= Wy(+Lm)

w,(j.n) —2 T —{h,(n)

Figure: An FWT-1synthesis filter bank.

By subband coding theorem, perfect reconstrucion for two-band
orthonormal filters requires  g:(n) = h(-n) for i = {0,1}.

That is, the synthesis and analysis filters must be time-reversed
versions of one another. Since the FWT analysis filter are

hy(n) =h,(=n) and h,(n) = h,(-n) , the required FWT-1synthesis filters are

9o(n) =ho(=n)=hy(n)  g.(n) =hy(=n)=h,(n)



h,, (—m)

24

hy, (—n)—2

Columns

Wy(j+1,m,n)—

Rows

hy(—m)

24

Rows

h, (—m)

24

hy(—n) —2

Columns

Rows

hy(—m)

2

Rows

D, .
W, (j,m,n)

Voo

W, (j,m,n)
..

W, (j,m, n)

Wy(j. m,n)

Figure : The two-dimensional FWT — the analysis filter.



Dimensions(Contd..

W, (jom,n) W (j.m.n)

\ 4

WY (j,m,n) [WP(j,m,n)
v v

two-dimensional decomposition

v

W,(j,m,n)

W,(j+1,m,n)

Figure :Two-scale of two-dimensional decomposition



g - =
S IARE §
K \;
QV) Q

Dimensions(Contd..




.I':--'IE:I 1 —
W, (j.mn)—2 T

:’-V 1
W, (j.m.n)

J_?'H ; —
W, (j.m.n)—2 T

Dimensions(Contd..

Wy(j, m,n)

Figure :The two-dimensional FWT — the synthesis filter bank.

<+>— Wy(j+L1mn)

hy, (—m)
Hows t +3—27 b, (—n)
27 hy(—m) Columns
Fows
hy, (—m)
RoOws i +)}—21 hy(—n)
Columns
2 T by (—m)
Rows



Generalization of wavelet decomposition
*\ery useful for signal analysis

rﬂ—l ‘D1 I S = A1+D1
AEI @ :AE+DE+D1

@' @ = Ag+Dy+Dy+ D4

Wavelet analysis: n+1 (at level n) different ways to reconstuct S




*\\e have a complete tree

| =
N By

leh
o] o) o] ] o) o) ]

Wavelet packets: a lot of new possibilities to reconstruct S:
l.e. S=A;+AD,+ADD;+DDD,




Wavelet Packet Transform example (Haar

3210 | 20 | 38 | 37 | 28 | 38 | 34 | 185 | 24 [ 18 G 23| 24 | 28 | 34

21 | 29 |32.5| 36 | 21 |13.5|23.5| 31 | padifiEniiais iiniiigiligaiiaigiig

25 |34.25[17.25 (2725 [ tE 7S 3,28 398 1 | 325|075 |-175 | BL0i| 128 E3 48128

298|222 -2.8| 0.0 212 -0.5 56 | -1.2

2593 1.8 -1.43 1.3 0.8 .06 218 583

368 0iis Bk i R L1ES g 3

YWawvelet Packet Tree



*The goal of Iimage compression is to reduce the amount of data

required to represent a digital image.

Transmit (channel) A
f(x,y)——e | Compress * Decompress— f(X.y)

store
retrieve

torage
Dewce

Types of Image Compressmn
Lossless
Information preserving
Low compression ratios
Lossy
Not information preserving
High compression ratios



Types of Data Redundancy

(1) Coding Redundancy
(2) Interpixel Redundancy
(3) Psychovisual Redundancy

Data compression attempts to reduce one or more of these
redundancy types.



1.Coding Redundancy

Case 1: I(r,) = constant length

. piry) Code 1 l,(rs)
=0 0.19 000 3
n=11 0.25 001 3
. =27 0.21 010 3
Example: -3, 0.16 011 3
r, = 4/7 0.08 100 3
rs =501 0.06 101 3
re = 6/7 0.03 110 3
=] 0.02 111 3

Assume an 1mage with L = 8

;
Assume /(r;) =3 =3 3
_O

P(r) =3 z'; P(r,) = 3 bits

Total number of bits: 3INM



Case 2: I(r,) = variable length

Table 6.1 Variable-Length Coding Example

variable length

T pAry) Code 1 L(ry) Code 2 L(r:)
rn=>0 0.19 000 3 11 2
n=1/ 0.25 001 3 01 2
r. = 27 0.21 010 3 10 2
r, = 3/7 0.16 011 3 001 3
ry = 4f7 0.08 100 3 0001 4
rs = 5/7 0.06 101 3 00001 5
re = 6/7 0.03 110 3 000001 6
r, =1 0.02 111 3 000000 6
Loy = Y I(ry)P(ry) = 2.7 bits )
= 2
w=0 Cr =55 = 111 (about 10%)
Total number of bits: 2.7NM 1
S=1-—— =009

1.11



2.Interpixel redundancy

eInterpixel redundancy implies that pixel values are correlated
(i.e., a pixel value can be reasonably predicted by its neighbors).

f(x0g(x) =" f(x)g(x+a)da

auto-correlation: f(x)=g(x) R 427575 o e ol o R S



3.Psychovisual redundancy

*The human eye Is more sensitive to the lower frequencies than to
the higher frequencies in the visual spectrum.

eldea: discard data that is perceptually insignificant!

Example: quantization

16 gray levels + random noise
256 gray levels 16 gray levels

C=8/4=2:1




Encoder Decoder
A
Source Channel | o | channel o Channel Source | iy v)
ROV —% | o oder encoder | °. decoder decoder

\\I ‘\

# noise tolerant representation

compression (additional bits are included to guarantee
(no redundancies)

detection and correction of errors due to
transmission over the channel - Hamming coding )

We will focus on the only



Encoder

Symbol
i - — & Channel
f(x,y)—e | Mapper — % | Quantizer . encoder - (o
\J \"\‘ \‘
l " - . .
no interpixel redundancies no psychovisual redundancies no coding redundancies
(reversible) (not reversible in general) (reversible)

transforms data to account for interpixel redundancies



Encoder

Symbol
— o | Mapper |—e ' — - — -
f(x,y) PP . Quantizer N encoder - Channel
J N Y
" " - . .
no interpixel redundancies no psychovisual redundancies no coding redundancies
(reversible) (not reversible in general) (reversible)

quantizes the data to account for psychovisual
redundancies.



Encoder

Symbol
— o | Mapper |—e ' — - — -
f(x,y) PP . Quantizer N encoder - Channel
\.J \"\ \‘
.‘ " - . .
no interpixel redundancies no psychovisual redundancies no coding redundancies
(reversible) (not reversible in general) (reversible)

encodes the data to account for coding
redundancies.



Decoder

Inverse
Channel —e c?é(crg?lglr —= | De-Quantizer —* | Mapper —e f(x,y)

*The decoder applies the inverse steps.

*Note that quantization is irreversible in general.



f(x,y)———

Compression

Decompressio]

—— e f(X,y)

e(x,y) = f(x,») — f(x,3) =0



ession(Contd..) *

rror-
Pr

(Lossless)d%m

Taxonomy of Methods

Logsless Coding Techniquas
{ Entropy Coding)

Repstitive [Etuiidi::u]] L:m] [Hilplam‘
Sequence| | Encoding | | Predictive | Encoding
Encoding H Coding
ALE Arthmetic  DPCM

LZW



Huffman N r INd redundan

compression can be achieved
by encodingay appropriately

Source [—e ax—e | Encode |—e| Decode | —e 3y

(gray levels)

A variable-length coding technique.
*Source symbols are encoded one at a time!
*There Is a one-to-one correspondence between source symbols

and code words.
*Optimal code - minimizes code word length per source symbol.



L_ossless)Compression(Contd..

|l ZW N r Interpixel redundan

*Requires no prior knowledge of symbol probabilities.

Assigns fixed length code words to variable length symbol

sequences.
*There Is no one-to-one correspondence between source

symbols and code words.

*Included in GIF, TIFF and PDF file formats



L_ossless)Compression(Contd..

|l ZW N r Interpixel redundan

A codebook (or dictionary) needs to be constructed.

«Initially, the first 256 entries of the dictionary are assigned to the
gray levels 0,1,2,..,255 (i.e., assuming 8 bits/pixel)

Initial Dictionary
Consider a 4x4, 8 bitimage

39 39 126 126
39 39 126 126
39 39 126 126
39 39 126 126




L_ossless)Compression(Contd..

Bit-plan In r Interpixel redundan

Process each Individually.

(1) Decompose an image into a series of binary images.
(2) Compress each binary image (e.g., using run-length coding)

Onc 8-bit byte Bit planc 8
»

(most significant)

Bit planc 1
(lcast significant)

ANNNNN
N




Transform the image into some other domain to reduce interpixel

redundancy.
~ (N/n)2 subimages
[nput Construct Forward B Symbol
[lage =g i PR ot FL’ Quantizer = encoder
(NXN) subimages
7 Merge
Compressed Symbol ﬁ'— Inverse e
decoder transform subimages

Compressed
image

Decompressed
image



LLossy Compression(Contd..)
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The course will enable the students to:

CLO 18 Understand the basic multi-resolution techniques and
segmentation methods

CLO 19 Explore on lossy/lossless compression models using
wavelets

CLO 20 Use morphological operations like dilation and erosion
to represent and describe regions, boundaries etc. in
Identification of the components in images.



Morphology: a branch of biology that deals with the form and
structure of animals and plants

Morphological 1mage processing IS used to extract Image
components for representation and description of region shape, such
as boundaries, skeletons, and the convex hull



*Reflection

The reflection of a set B, denoted B, is definedas
B={w|w=-Db,forbe B}

*Translation

The translation of a set B by point z =(z,, z,), denoted (B),,
IS defined as

(B),={c|c=Db+2zforbeB}



Structure elements (SE)
Small sets or sub-images used to probe an image under study for

properties of interest

Examples

FIGURE 9.2 First
row: Examples of
structuring
elements. Second
row: Structuring
elements
converted to
rectangular

= - - - arrays. The dots

denote the centers
of the SEs.




ab
cde

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring
element. (c) The set padded with background elements to form a rectangular array and
provide a background border. (d) Structuring element as a rectangular array. (e) Set
processed by the structuring element.



Dilation

With A and B as sets in Z#, the dilation of A by B,
denoted A@® B, Is defined as

A@B:%|(B)ZmA¢@}

The set of all displacements z, the translated B and A
overlap by at least one element.

A®B = {WL(B)ZmAWgA}



d /4

ve)

ab c
d e

FIGURE 9.6

(a) Set A.

(b) Square
structuring ele-
ment (the dot de-
notes the origin).
(c) Dilation of A
by B, shown
shaded.

(d) Elongated
structuring ele-
ment. (e) Dilation
of A using this
element. The
dotted border in
(c) and (e) is the
boundary of set A,
shown only for
reference



Dilation(Contd..)

Examples of Dilation

Historically, certain computer
programs were written using
onily two digits rather than
four to define the applicable
year. Accordingly, the

company's software may
recognize a date using "00"
as 1900 rather than the yEgr

& 7

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the

company's software may
recognize a date using "00"
as 1900 rather than the year

ea

FIGURE 9.7

(a) Sample text of
poor resolution
with broken
characters (see
magnified view).
(b) Structuring
element.

(c) Dilation of (a)
by (b). Broken
segments were
joined.



Erosion

With A and B as sets in Z?, the erosion of A by B, denoted A B,
defined

A B= {Zl(B)ng}

The set of all points z such that B, translated by z, is contained by A.

A B={z/(B),nA =0}



Erosion(Contd..)

d/4

“ [=]arm
B a

- e — —

A ass 344 s

a4 )
i /2
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B EEE 72

d/8 d/8

abc
d e
FIGURE 9.4 (a) Set A. (b) Square structuring element, B. (c) Erosion of A by B, shown

shaded. (d) Elongated structuring element. (e¢) Erosion of A by B using this element.
The dotted border in (c) and (e) is the boundary of set A, shown only for reference.



Erosion(Contd..)

ab
cd

FIGURE 9.5 Using
erosion to remove
image compo-
nents. (a) A

486 X 486 binary
image of a wire-
bond mask.
(b)—(d) Image
eroded using
square structuring
elements of sizes
11 X 11,15 X 15,
and 45 X 45,
respectively. The
elements of the
SEs were all 1s.



Duality

Erosion and dilation are duals of each other with respect to set
complementation and reflection

(A-B)" = A°@® B
and
(A® B )" = A° - B

Erosion and dilation are duals of each other with respect to set
complementation and reflection

(A-BY = {21(B) c A¥
={z1(B), nA =0}
={z/(B), n A° 20}
= A° ®B



Opening and Closing

*Opening generally smoothes the contour of an object, breaks narrow
Isthmuses, and eliminates thin protrusions

Closing tends to smooth sections of contours but it generates fuses
narrow breaks and long thin gulfs, eliminates small holes, and fills
gaps in the contour

The opening of set A by structuring element B,
denoted Ao B, is defined as

A-B=(A-B)®B

The closing of set A by structuring element B,
denoted A[B, is definedas

ACB = (A®B)-B



Opening

The opening of set A by structuring element B,
denoted A o B, i1s defined as
AoB=UIB) (B) A}

Example:

A° B = U{(B),(B), C A

Translates of Bin A

@B

abcd
FIGURE 9.8 (a) Structuring element B “rolling” along the inner boundary of A (the dot

indicates the origin of B). (b) Structuring element. (c¢) The heavy line is the outer
boundary of the opening. (d) Complete opening (shaded). We did not shade A in (a)

for clarity.




Closing

Example:
B
A B\\
A
abc

FIGURE 9.9 (a) Structuring element B “rolling” on the outer boundary of set A. (b) The
heavy line is the outer boundary of the closing. (¢) Complete closing (shaded). We did
not shade A in (a) for clarity.
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FIGURE 9.10
Morphological
opening and
closing. The
structuring
element is the
small circle shown
in various
positions in

(b). The SE was
not shaded here
for clarity. The
dark dot is the
center of the
structuring
element.



Opening and Closing(Contd..)

Duality of Opening and Closing

*Opening and closing are duals of each other with respect to set
complementation and reflection

(AB) =(A°-B)

(AoB) = (A°[B)



Opening and Closing(Contd..)

The Properties of Opening and Closing

Properties of Opening

(a) Ao B Is a subset (subimage) of A
(b) if C is a subset of D, then CoB is a subsetof Do B
(c) (AocB)oB=AocB

-Properties of Closing

(a)A is subset (subimage) of ALB
(b) If C isasubsetof D, then C[B iIs a subset of DB
(c) (ALB)[B = ALB



If B denotes the set composed of
D and its background,the match
(or set of matches) of B in A,
denoted A * B,

A*B =(A-D)nlA° - (W-D)I|

B=(B,.B,)
B,: object

B, : background
A*B=(A-B )N (A°-B,)

T ‘
; i
] |_|_._._ [A & 13
H [

]

ATS (W — D)

U 7
. s
-.',- ?/‘I.'E,l[l.\»"—.f.!]

(A SO M (AT

S [W — D)) —

a b
c d
(&

f
FIGURE 9.12

| (a) Set A. (b) A
“ window, W, and

the local back-
ground of D with
respect Lo

W, (W D).

(¢) Complement
of A. (d) Erosion
of A by D.

(e) Erosion of A°
by (W — D).

() Intersection of
(d) and (e). show-
ing the location of
the origin of D, as
desired. The dots
indicate the
originsof C. D,
and E.



Algorithms

*Boundary Extraction
The boundary of a set A, can be obtained by first eroding Aby B and
then performing the set difference between A and itserosion.

B(A) = A-(A-B)

Examplel.:
A B
ASB B(A)
ab
cd

FIGURE 9.13 (a) Set A. (b) Structuring element B. (¢c) A eroded by B. (d) Boundary,
given by the set difference between A and its erosion.



Algorithms(Contd..)

Example2:

ab

FIGURE 9.14

Dg | (a) A simple
binary image, with
1s represented in
white. (b) Result
of using
Eg. (9.5-1) with
the structuring
element in
Fig.9.13(b).




Algorithms(Contd..)

Hole Filling
*A hole may be defined as a background region surrounded by a

connected border of foreground pixels.

Let A denote a set whose elements are 8-connected boundaries,
each boundary enclosing a background region (i.e., a hole). Given a
point in each hole, the objective is to fill all the holes with 1s.

.. Forming an array X, of Os (the same size as the array containing A),
except the locations in X, corresponding to the given point in each
hole, which we set to 1.

o« 2. X = (X +B) At k=1.273,...

« Stop the iteration If X, =X, ;



Example:
Hole
Filling

Algorithms(Contd..)

A AF€
X Xy Xo
Xe Xy XgU A

abec
de f
g hi

FIGURE 9.15 Hole
filling. (a) Set A
(shown shaded).
(b) Complement
of A.

(c) Structuring
element B.

(d) Initial point
inside the
boundary.

(e)—(h) Various
steps of

Eq. (9.5-2).

(i) Final result
[union of (a)

and (h)].



Algorithms(Contd..)

Extraction of Connected Components
« Central to many automated image analysis applications.

Let A be a set containing one or more connected components,
and form an array X, (of the same size as the array containing A)
whose elements are 0s, except at each location known to
correspond to a point in each connected component in A, which is

set to 1.

Central to many automated image analysis applications.
X k — (X k -1 + B) M A
B :structuring element

until X = X,



Algorithms(Contd..)

Example:Extraction of Connected Components

— a
b c d
e f g

FIGURE 9.17 Extracting connected components. (a) Structuring element. (b) Array
containing a set with one connected component. (¢) Initial array containing a 1 in the
region of the connected component. (d)—(g) Various steps in the iteration of Eq. (9.5-3).



Algorithms(Contd..

Convex Hull
*Aset Ais said to be convex If the straight line segment joining any

two points in Alies entirely within A.
*The convex hull H or of an arbitrary set S is the smallest convex

set containing S.
Let B',i=1, 2, 3, 4, represent the four structuring elements.
The procedure consists of implementing the equation:
X, =(X,,*B')u A
i=1,2,3,4 and k =1,2,3,...
with X ;= A.
When the procedure converges, or X 'k = X ‘k_1,|et D' = X,

the convex hull of A is

4
C(A) = _k._)lDi



Algorithms(Contd..)

Example:Convex Hull

(N~

#Z B'
7z B?
=N B
M B+

c(A)

b d
e g

ol N o T

FIGURE 2.19

(a) Structuring
elements. (b) Set
A. (¢)-(f) Results
of convergence
with the
structuring
elements shown
in (a). (g) Convex
hull. (h) Convex
hull showing the
contribution of
each structuring
element.



Algorithms(Contd..)

Thinning
 The thinning of a set A by a structuring element B, defined

A® B =A-(A*B)
- An (A*B)®

A more useful expression for thinning A symmetrically is based
on a sequence of structuring elements:

{B}={B',B? B®...,B"}
where B' is a rotated version of B'"!
The thinning of A by a sequence of structuring element {B}

A®{B}=((..(A®B")®B*)..)®B")



Algorithms(Contd..)

s =
Example: 4 B B 4 0
p ' B! B? B3 B* B3 B B7 BS
Thinning - oviein
1
A A =ARB! A = A R B? al
Ay = A, @ B? Ay=A;® B* As=A,@B°
Aﬁ - AS ® BG AS = As ® 87’8 A8,4 = AS ® _81’2’3’4
Ags = Aga @ B’ Agg= Ags® BS Aggconverted to

No more changes after this. m-connectivity.

a FIGURE 9.21 (a) Sequence of rotated structuring elements used for thinning. (b) Set A.
biecd (¢) Result of thinning with the first clement. (d)—(i) Results of thinning with the next
5 B I seven elements (there was no change between the seventh and eighth elements).
h i j (j) Result of using the first four clements again. (1) Result after convergence. (m)
kK I.m Conversion to m-connectivity.



Algorithms(Contd..)

Thickening:
The thickening is defined by the expression
Al B = Au( A* B)

The thickening of A by a sequence of structuring element {B}
Al {B}=((...((AC BHO B?)..)0J B")

In practice, the usual procedure is to thin the background of the set
and then complement the result.



Algorithms(Contd..)

Example:Thickening

ab
cd

c

FIGURE 9.22 (a) Set A. (b) Complement of A. (c¢) Result of thinning the complement
of A. (d) Thickened set obtained by complementing (c). (e) Final result, with no
disconnected points.



Algorithms(Contd..)

Skeletons
A skeleton, S(A) of a set A has the following properties

a. If z1s a point of S( A) and (D), s the largest disk
centered at z and contained In A, one cannot find a

larger disk containing (D), and included in A.
The disk (D), is called a maximum disk.

b. The disk (D), touches the boundary of A at two or
more different places.



Algorithms(Contd..)

Example:Skeleton

ab
cd

FIGURE 9.23
(a) Set A.
(b) Various

C positions of
maximum disks
with centers on
the skeleton of A.
(c) Another
maximum disk on
a different
segment of the
skeleton of A.
(d) Complete
skeleton.




Algorithms(Contd..)

Pruning

a. Thinning and skeletonizing tend to leave parasitic components
b.Pruning methods are essential complement to thinning and
skeletonizing procedures



Algorithms(Contd..)

Pruning: Examg

x B!, B?, B? B* (rotated 90°)

Sc

B>, B® B’, B® (rotated 90°)

a

o o g

d
f 8

FIGURE 9.25

(a) Original
image. (b) and

(c) Structuring
elements used for
deleting end
points. (d) Result
of three cycles of
thinning. (e¢) End
points of (d).

(f) Dilation of end
points condi-
tioned on (a).

(g) Pruned image.
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Pruning: Exa

B, B%, B?, B* (rotated 90°)

a

o o g

d
B’ B B’ B® (rotated 90°) £ g

FIGURE 9.25

(a) Original

image. (b) and

(c) Structuring

elements used for

deleting end

points. (d) Result

of three cycles of

thinning. (e¢) End

points of (d).

(f) Dilation of end

points condi-

tioned on (a).

(g) Pruned image.




Pruning: Exa

Algorithms(Contd..)

= B' B2 B3 B% (rotated 90°)

B5, BY B7, B® (rotated 90°)

X;=(X,®H)NA
H : 3x 3 structuring element

a

o oag

d
f g

FIGURE 9.25

(a) Original
image. (b) and

(c) Structuring
elements used for
deleting end
points. (d) Result
of three cycles of
thinning. (e) End
points of (d).

(f) Dilation of end
points condi-
tioned on (a).

(g) Pruned image.



Image Segmentation

-Image segmentation divides an Image Into regions that are
connected and have some similarity within the region and some
difference between adjacent regions.

*The goal is usually to find individual objects in an image.

For the most part there are fundamentally two kinds of approaches
to segmentation: discontinuity and similarity.

-Similarity may be due to pixel intensity, color or texture.
-Differences are sudden changes (discontinuities) in any of

these, but especially sudden changes in intensity along a
boundary line, which is called an edge.



Detection of Discontinuities

*There are three kinds of discontinuities of intensity: points, lines and

edges.
*The most common way to look for discontinuities is to scan a small

mask over the image.The mask determines which kind of discontinuity
to look for.

9
R=WZ, +W,2, +...+ WyZg = ) WiZ,
i=1

FIGURE 10.1 A
oral 3 X 3
ﬁ]ﬂ;‘:j\r al wy Wy Wy

Wy W W

w; Wy Wy




Point Detection

|R| > T
where T : a nonnegative threshold

-1 -1 —1
-1 8 -1
-1 -1 e |

i
bcd
FIGURE 10.2
(a) Point
detection mask.
(b) X-ray image
of a turbine blade
with a porosity.
(¢) Result of point
detection.
(d) Result of
using Eq. (10.1-2).
(Original image
courtesy ol
X-TEK Systems
Lid.)



Detection of Discontinuities

Only slightly more common than point detection is to find a one pixel
wide line in an image.

For digital images the only three point straight lines are only
horizontal, vertical, or diagonal (+ or —45°).

FIGURE 10.3 Line
masks. -1 -1 -1 -1 -1 2 -1 2 -1 2 -1 —1

2 2 2 —1 2 -1 —1 2 -1 -1 2 —1

-1 -1 —1 2 -1 -1 —1 2 -1 -1 —1 2

Horizontal +45° Vertical —45°



Line Detection

a
b ¢

FIGURE 10.4
[llustration of line
detection.

(a) Binary wire-
bond mask.

(b) Absolute
value of result
after processing
with —45° line
detector.

(¢) Result of
thresholding
image (b).




Edge Detection

Model of an ideal digital edge

Model of a ramp digital edge

Gray-level profile
of a horizontal line
through the image

Gray-level profile
of a horizontal line
through the image

ab

FIGURE 10.5

(a) Model of an
ideal digital edge.
(b) Model of a
ramp edge. The
slope of the ramp
is proportional to
the degree of
blurring in the
edge.



Edge Detection(Contd..)

a b

FIGURE 10.6

{a) Two regions
separated by a
vertical edge.

(b} Detail near
the edge, showing
a gray-level
profile, and the
first and second
derivatives of the
profile.

Gray-level profile

First

derivative

Second
derivative




Edge Detection(Contd..)

/oAl

FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by
random Gaussian noise of mean O and « = 0.0,0.1. 1.0, and 10.0, respectivelv. Second col-
umn: first-derivative images and grav-level profiles. Third column: second-derivative

images and gray-level profiles.

O oo m



Edge Detection(Contd..)

FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by
random Gaussian noise of mean O and « = 0.0,0.1. 1.0, and 10.0, respectively. Second col-
umn: first-derivative images and gray-level profiles. Third column: second-derivative

images and gray-level profiles.

=Pl o Bl -



Gradient Operators

First-order derivatives:
*The gradient of an image f(x,y) at location (X,y) is
defined as the vector:

G [ of
vV = X _ OX
[GJ oy

- The magnitude of this vector:  Vf =mag(Vf) = [GX2 +G§]/2

a4l G,
-The direction of thisvector: ~ @(X, y) =tan 1(6_]

y



Roberts cross-gradient operators

Prewitt operators

Sobel operators

-1 0 0 -1

0 1 1 0
Roberts

-1 -1 -1 —1 ]

0 0 0 —1 0

1 1 1 —1 0
Prewitt

-1 -2 -1 —1 0

0 0 0 — 0

1 2 1 —1 0




Detection of Discontinuities

Prewitt masks for

detecting diagonal edges =

Sobel masks for

detecting diagonal edges

0 1 1 —1 —1 0
—1 0 1 —1 0 1
—1 —1 0 0 1 1
Prewitt
0 1 2 —2 —1 0
—1 0 1 —1 0 1
-2 —1 0 0 1 2
a b
i il Sobel

FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.



Gradient Operators: Example

ab

¢ d

FIGURE 10.10

(a) Original
image. (b) |G .
component of the
gradient in the
x-direction.

() |G,].
component in the
y-direction.

(d) Gradient
image, |G,| + |G,




Gradient Operators(Contd..)

Second-order derivatives: (The Laplacian)
*The Laplacian of an 2D function f(x,y) Is defined as

«Two forms in practice:

FIGURE 10.13
Laplacian masks 0 —1 0 —1 —1 —1
used to
implement
Eqgs. (10.1-14) and e A A R I
(10.1-15),
respectively. 0 1 0 1 = 1




Detection of Discontinuities

«Consider the functio_

h(r) =—e 2°° where r2 = x? +y?
and o : thestandarddeviation
*The Laplacian of his

[r2 _g52] =
VZh(r) =] —— e ?%
|_ o

*The Laplacian of a Gaussian sometimes is called the Mexican hat
function. It also can be computed by smoothing the image with the
Gaussian smoothing mask, followed by application of the
Laplacian mask.




0O[{0]|=1]0]0
0(-1]-2|-1]0
-1|=2(16(=2|-1
0 —1=2|=1|8
O0(0|=1]0]0

ab
¢ d

FIGURE 10.14
Laplacian of a
Gaussian (LoG).
(a) 3-D plot.

(b) Image (black
is negative, gray is
the zero plane,
and white is
positive).

(¢) Cross section
showing zero
Crossings.

(d)5 X 5 mask
approximation to
the shape of (a).



Detection of Discontinuities

Sobel gradient

-1 =1 -1

-1 8 -1

S =l e

Gaussian smooth function * .
Laplacian mask



Edge Linking and Boundary Detection

m =
% |AREI§
), <

*Two properties of edge points are useful for edge linking:

-the strength (or magnitude) of the detected edge points

-their directions (determined from gradient directions)
This is usually done in local neighborhoods.
«Adjacent edge points with similar magnitude and direction are
linked.
For example, an edge pixel with coordinates (XyY,) In a
predefined neighborhood of (x,y) Is similar to the pixel at (x,y) if

IVE(X,y) =V (X, Yo)|<E, E:anonnegative threshold

(X, y) —a (X, Yo)| < A, A:anonegative angle threshold



ab

¢ d

FIGURE 10.16

(a) Input image.
(b) G, component
ol the gradient.
(¢) G, componenl
ol the gradient.
(d) Result of edge
linking. (Courtesy
of Perceptics
Corporation.)

In this example,
we can find the
license plate
candidate after
edge linking
process.
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Edge Linking and Boundary Detection

m =
2 IARE §
< \3

» Q

* Hough transform: a way of finding edge points in an image that
lie along a straight line.
« Example: xy-plane v.s. ab-plane (parameter space)

y. = ax,+b
- b’ b ab
\ -7 . " FIGURE 10.17
b= —r. (a) xy-plane.
| i T (b) Parameter
® (x;. ) \ | / space.
|
|
\
(xj. ¥) \
.\j ! b= _xjﬂ + _}'J.
]

= -



 The Hough transform consists of

finding all pairs of values of 6 and
0 which satisfy the equations that
pass through (X,y).

These are accumulated in what is
basically a 2-dimensional histogram.
When plotted these pairs of fand p
will look like a sine wave. The
process IS repeated for all v
appropriate (X,y) locations. )

XCcos@+ysind=p



Thresholding

« Assumption: the range of intensity levels covered by objects of
Interest is different from the background.

1 it f(x,y)>T

9%, ¥) :{o it f(xy)<T

||||||‘| hll | II‘H‘I' - I|‘ |‘|||||I.II‘Hllulll‘hh -~
T T, T,

.  Singlethreshold Multiple threshold

FIGURE 10.26 (a) Gray-level histograms that can be partitioned by (a) a single thresh-
old, and (b) multiple thresholds.



Thresholding

The Role of Illumination

| -

FIGURE 10.27
(a) Computer
cenerated
reflectance
function.

(b) Histogram of
reflectance
function.



Basic Global Thresholding

a
b c

FIGURE 10.28
(a) Original
image. (b) Image
histogram.

(¢) Result of
global
thresholding with
T midway
between the
maximum and
minimum gray
levels.

.....-....A._.,....-.,......_..-._‘.__...;...uagxlﬂa.EJ L1

o 63 127 191



Basic Global Thresholding

a b
C

FIGURE 10.29

(a) Original
image. (b) Image
histogram.

(c) Result of
segmentation with
the threshold
estimated by
iteration.
(Original courtesy
of the National
Institute of
Standards and
Technology.)



Basic Adaptive Thresholding

ab

¢ d

FIGURE 10.30
(a) Original
image. (b) Result
of global
thresholding.
(c¢) Image
subdivided into
individual
subimages.

(d) Result of
adaptive

thresholding.




Basic Adaptive Thresholding

How to solve this problem?



a *C’ Answer: subdivision
edf

FIGURE 10.31 (a) Properly and improperly segmented subimages from Fig. 10.30. (b)—(c¢) Corresponding

histograms. (d) Further subdivision of the 1mpropcrl\ scgmulted SllblmdQ,t (e) Histogram of small subim-
age at top, left. (I) Result of adaptively segmenting (d).



Region-Based Segmentation

« Edges and thresholds sometimes do not give good results for
segmentation.

« Region-based segmentation is based on the connectivity of
similar pixels in a region.

« Each region must be uniform.
 Connectivity of the pixels within the region is very important.

« There are two main approaches to region-based segmentation:
region growing and region splitting.



Region-Based Segmentation(Contd..)

Let R represent the entire image region.
«  SedroejitatibhasR process that partitions R into sub regions,
R1,R5,..5R,, such that
(b) R.is a connected region, i=1,2,...,n

(c) R R, =¢ foralliandj,i= j
(d) P(R,))=TRUEfori=1,.2,...,n
(e) P(R;u R;)=FALSE for any adjacent regions R;and R,

« where P(R,): a logical predicate defined over the points in set R,
For example: P(R,)=TRUE if all pixels in R, have the same gray
level.
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FIGURE 10.40

(a) Image
showing defective
welds (b) Seed
points. (¢) Result
of region growing.
(d) Boundaries of
segmented
defective welds
(in black).
(Original image
courtesy of
X-TEK Systems,
Ltd.).
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Region Growing




Region Growing

 Fig. a) shows the histogram of Fig. b). It is difficult to segment
the defects by thresholding methods. (Applying region growing
methods are better in this case.)
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Region-Based Segmentation Region

Splitting and Merging

Region splitting Is the opposite of region growing.

v" First there is a large region (possible the entire image).

v' Then a predicate (measurement) is used to determine if
the region is uniform.

v" If not, then the method requires that the region be split
Into two regions.

v Then each of these two regions is independently tested by
the predicate (measurement).

v This procedure continues until all resulting regions are
uniform.
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* The main problem with region splitting is determining where to split

a region.

« One method to divide a region Is to use a quadtree structure.
« Quadtree: a tree in which nodes have exactly four descendants.
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FIGURE 10.42

(a) Partitioned
image.

(b) Corresponding
quadtree.

Region Splitting




Region Splitting and Merging

The split and merge procedure:
 Split into four disjoint quadrants any region R; for which P(R;)
= FALSE.
 Merge any adjacent regions R;and Ry for which P(R,UR,) =
TRUE. (the quadtree structure may not be preserved)
 Stop when no further merging or splitting is possible.
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FIGURE 10.43
(a) Original
image. (b) Result

of split and merge
procedure.

(¢) Result of
thresholding (a).
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