
SOFTWARE TESTING METHODOLOGY(AIT008)

IV B. Tech I semester (Autonomous IARE R-16)

BY

Ms. M Geetha Yadav
Assistant Professor

DEPARTMENT OF INFORMATION TECHNOLOGY

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

DUNDIGAL, HYDERABAD - 500 043

UNIT - I
INTRODUCTION

3

CLO’s Course Learning outcomes

CLO1 Explain the importance of testing and purpose of testing.

CLO2 Illustrate different and compare dichotomies of testing.

CLO3 Demonstrate the model for testing and different testing levels and role of models.

CLO4 Describe the consequences and taxonomy of bugs and different bugs in project
environment.

CLO5 Illustrate the concepts of path testing and predicate loops and path sensitization.

CLO6 Explain Path instrumentation and their applications and link markers.

Course learning outcomes

Introduction

Testing:

• It is a process used to estimate the productivity and quality of
software. Testing techniques provide systematic guidance for
designing tests that

1) Exercise the internal logic of s/w components

2)Exercise the input and output domains of program to uncover
errors in program function, behavior and performance

4

Testing

What is Testing?
• Related terms : SQA, QC, Verification, Validation
• Verification of functionality for conformation against given

specifications By execution of the software application.
• A Test
• Passes: Functionality OK.

• Fails: Application functionality NOK
• Bug/Defect/Fault: Deviation from expected functionality.

5

Purpose of Testing

• Testing is performed for following purposes

• For improving and assuring software quality

• For verification and validation

• For estimating reliability

6

Productivity and Quality in Software

• It is used to monitor the s/w engineering process and
methods (audits) for ensuring its quality.

• There is a trade off between quality assurance costs and
manufacturing costs. If insufficient effort is spent in quality
assurance, the reject rate will be high and so will the net cost.

• If inspection is so good that all faults are caught as they occur,
inspection costs will dominate, and again net cost will suffer.

7

Purpose of Testing

Phase 1: Testing is to show that the software works
• A failed test shows software does not work, even if

many tests pass.
• Objective not achievable.

Phase 2: Software does not work
• One failed test proves that.
• Tests are to be redesigned to test corrected software.
• But we do not know when to stop testing.

Phase 3: Test for Risk Reduction
• We apply principles of statistical qualitycontrol.
• Our perception of the software quality changes – when

a test passes/fails.
• Consequently, perception of product Risk reduces.
• Release the product when the Risk is under a

predetermined limit.
8

Purpose of Testing

• 5 Phases in tester’s thinking
• Phase 4: A state of mind regarding “What testing can do &
cannot do. What makes software testable”.

• Applying this knowledge reduces amount of testing.

• Testable software reduces effort

• Testable software has less bugs than the code hard to test
• Cumulative goal of all these phases:

• Cumulative and complementary. One leads to the other.
• Phase2 tests alone will not show software works

• Use of statistical methods to test design to achieve good
testing atacceptable risks.

• Most testable software must be debugged, must work,
must be hard to break.

9

Purpose of Testing

5. TESTING AND INSPECTION
 Inspection is also called static testing.
 Methods and Purposes of testing and inspection are

different, but the objective is to catch & prevent
different kinds of bugs.

 To prevent and catch most of the bugs, we must
 Review
 Inspect &
 Read the code

10

Dichotomies

• Testing Vs Debugging

 Testing is to find bugs.

 Debugging is to find the cause or misconceptionleading
to the bug.

 Their roles are confused to be the same. But, there are
differences in goals, methods and psychology applied to
these

11

Dichotomies

S.No

6 Much of testing can be without

design knowledge.

Impossible without a

detailed design knowledge.

7 Can be done by outsider to the

development

team.

Must be done by an insider

(development

team).

8 A theory establishes what testing can door

cannot do.

There are only Rudimentary Results

(on how much can be done. Time,

effort, how etc. depends on human

ability).

9 Test execution and design can be

automated.

Debugging - Automation is a dream.

12

Dichotomies

 For a given model of programs, Structural tests may be done
first and later the Functional,
Or vice-versa. Choice depends on which seems to be the natural
choice.

 Both are useful, have limitations and target different kind of
bugs. Functional tests can detect all bugs in principle, but
would take infinite amount of time. Structural tests are
inherently finite, but cannot detect all bugs.

 The Art of Testing is how much allocation % for structural vs
how much % forfunctional.

13

Dichotomies

Programmer/Designer Tester

1 Tests designed by designers are

more oriented towards structural

testing and are limited to its

limitations.

With knowledge about internal test

design, the tester can eliminate

useless tests, optimize & do an

efficient test design.

2 Likely to be biased. Tests designed by independent testers are

bias- free.

3 Tries to do the job in simplest &

cleanest way, trying to reduce the

complexity.

Tester needs to suspicious,

uncompromising, hostile and obsessed

with destroyingprogram.

14

Dichotomies

4.Modularity vs Efficiency
• System and test design can both be modular.
• A module implies a size, an internal structure and an

interface, Or, in otherwords.
• A module (well defined discrete component of a system)

consists of internal complexity & interface complexity and
has a size.

15

Dichotomies

1 Smaller the component easier to

understand.

Implies more number of components &

hence more # of interfaces increase

complexity & reduce efficiency (=> more

bugs likely)

2 Small components/modules are

repeatable independently with

less rework (to check if a bug is

fixed).

Higher efficiency at module level, when a

bugoccurs with small components.

3 Microscopic test cases need

individual setups with data,

systems & the software. Hencecan

have bugs.

More # of test cases implies higher

possibility of bugs in test cases. Implies

more rework and hence less efficiency with

microscopic testcases

4 Easier to design large

modules &smaller interfaces

at a higher level.

Less complex & efficient. (Design may not be

enough to understand and implement. It

may have to be broken down to

implementation level.)

16

Dichotomies

• Programming in Small Vs Programming in Big
– Impact on the development environment due to the volume

of customer requirements.

17

A Model for Testing

Acceptance test Application is accepted after a formal
acceptance test. At first it’s the customer’s & then the
software design team’s responsibility.
Personnel: The technical staff comprises of :A combination of
experienced professionals & junior programmers (1– 3 yrs) with
varying degrees of knowledge of the application.
Standards:
 Programming, test and interface standard (documented

and followed).
 A centralized standards data base is developed &

administrated

18

A Model for Testing

Environment Environment

Model

Tests
Program

Model
Program

Bug

Model

Nature &

Psychology

Outcome

The World
The Model

World

Expected

Unexpected

19

Consequences of Bugs

• Very serious
System does another transaction instead of requested.

• Extreme
Frequent & Arbitrary - not sporadic & unusual.

• Intolerable
Long term unrecoverable corruption of the Data base.(not

easily discovered and may lead to system down.)
• Catastrophic

System fails and shuts down.
• Infectious

Corrupts other systems, even when it may not fail.

20

Consequences of Bugs

Assignment of severity:

• Assign flexible & relative rather than absolute values to
the bug (types).

• Number of bugs and their severity are factors in
determining the quality quantitatively.

• Organizations design & use quantitative, quality metrics
based on the above.

• Parts are weighted depending on environment,
application, culture, correction cost, current SDLC
phase & other factors.

21

Consequences of Bugs

When to stop Testing
• List all nightmares in terms of the symptoms & reactions of

the user to theirconsequences.
• Convert the consequences of into a cost. There could be

rework cost. (but if the scope extends to the public, there
could be the cost of lawsuits, lost business, nuclear reactor
meltdowns.)

• Order these from the costliest to the cheapest. Discard
those with which you can live with.

• Based on experience, measured data, intuition, and
published statistics postulate the kind of bugs causing
each symptom. This is called ‘bug design process’. A bug
type can cause multiple symptoms

22

Consequences of Bugs

• Rank the bug types in order of decreasing importance.
• Design tests & QA inspection process with most effective against

the most important bugs.
• If a test is passed or when correction is done for a failed test,

some nightmares disappear.
• Stop testing when probability (importance & cost) proves to be

inconsequential.
• This procedure could be implemented formally in SDLC.

23

Taxonomy of Bugs

Importance of Bugs- statistical quantification of impact

Consequences of Bugs - causes, nightmares, to stop testing

We will now see the:

Taxonomy of Bugs - along with some remedies

• In order to be able to create an organization’s own Bug
ImportanceModel for the sake of controlling associated cost.

Why Taxonomy ?

• To study the consequences, nightmares, probability,
importance, impact and the methods of prevention and
correction.

24

Taxonomy of Bugs

 Adopt known taxonomy to use it as a statistical framework on
which your testing strategy is based.

 6 main categories with sub-categories..

1)Requirements, Features, Functionality Bugs 24.3%

2)Structural Bugs 25.2%

3)Data Bugs 22.3%

4)Coding Bugs 9.0%

5)Interface, Integration and System Bugs 10.7%

6)Testing & Test Design Bugs 2.8 %

25

Taxonomy of Bugs

Requirements, Features, Functionality Bugs
 Incompleteness ,Requirements & Specs.
 ambiguous or self-contradictory
 Analyst’s assumptions not known to the designer
 Some thing may miss when specs change
 These are expensive: introduced early in SDLC and

removed at the last
I. Feature Bugs

 Specification problems create feature bugs
 Wrong feature bug has design implications
 Missing feature is easy to detect & correct

26

Taxonomy of Bugs and remedies

III. Feature Interaction Bugs

 Arise due to unpredictable interactions between feature
groups or individual features. The earlier removed the better
as these are costly if detected at the end.

 Examples: call forwarding & call waiting. Federal, state &
local tax laws.

No magic remedy. Explicitly state & test important
combinations.

Remedies

 Use high level formal specification languages to eliminate
human-to-human communication

 It’s only a short term support & not a long term solution.

27

Taxonomy of Bugs

2. Structural Bugs
we look at the 5 types, their causes and remedies.

I. Control & Sequence bugs
II. Logic Bugs
III. Processing bugs
IV. Initialization bugs
V. Data flow bugs & anomalies

Control & Sequence Bugs:
 Paths left out, unreachable code, spaghetti code, and

pachinko code.
 Improper nesting of loops, Incorrect loop-termination

or look-back, ill-conceived switches.
 Missing process steps, duplicated or unnecessary

processing, rampaging GOTOs.

28

Taxonomy of Bugs

Structural Bugs
– Logic Bugs

 Misunderstanding of the semantics of the control
structures & logic operators

 Improper layout of cases, including impossible & ignoring
necessary cases,

 Using a look-alike operator, improper simplification,
confusing Ex-OR with inclusive OR.

 Deeply nested conditional statements & using many
logical operations in 1 stmt.

29

Taxonomy of Bugs

Initialization Bugs
 Forgetting to initialize work space, registers, or data areas.
 Wrong initial value of a loop control parameter.
 Accepting a parameter without a validation check.
 Initialize to wrong data type or format.
 Very common.

Dataflow Bugs & Anomalies
 Run into an un-initialized variable.
 Not storing modified data.
 Re-initialization without an intermediate use.
 Detected mainly by execution (testing).

30

Dynamic data Static data

Transitory. Difficult to catch. Fixed in form & content.

Due to an error in a shared storage object

initialization.

Appear in source code or data base, directly or

indirectly

Due to unclean / leftover garbage in a shared

resource.

Software to produce object code creates a

static data table – bugs possible

Examples Examples

Generic & shared variable Telecom system software: generic parameters,

a generic large program & site adapter

program to set parameter values, build data

declarations etc.

Shared data structure Postprocessor : to install software packages.

Data is initialized at run time – with

configuration handled by tables.

Prevention

Data validation, unit testing

Prevention

Compile time processing

Source language features

Taxonomy of Bugs

31

Taxonomy of Bugs

 Coding errors create other kinds of bugs.
 Syntax errors are removed when compiler checks syntax.
 Coding errors typographical, misunderstanding of

operators or statements or could be just arbitrary.
 Documentation Bugs
 Erroneous comments could lead to incorrect

maintenance.
 Testing techniques cannot eliminate documentation bugs.

32

Control Flow Graphs and Path Testing

Path Testing : A family of structural test techniques based on
judiciously selecting a set of test paths through the programs.
Goal: Pick enough paths to assure that every source statement
is executed at least once.

• It is a measure of thoroughness of code coverage.
• It is used most for unit testing on new software.
• Its effectiveness reduces as the software size increases.
• We use Path testing techniquesindirectly.
• Path testing concepts are used in and along with other

testing techniques
• Code Coverage: During unit testing: # stmts executed at

least once / total # stmts

33

Control Flow Graphs and Path Testing

Assumptions:
•Software takes a different path than intended due to some

error.
•Specifications are correct and achievable.
•Processing bugs are only in control flow statements
•Data definition & access are correct

Observations
•Structured programming languages need less of path testing.
•Assembly language, Cobol, Fortran, Basic & similar languages

make path testingnecessary.

34

Control Flow Graphs and Path Testing

• A simplified, abstract, and graphical representation of a
program’s control structure using process blocks, decisions and
junctions.

35

Control Flow Graphs and Path Testing

Process Block:
•A sequence of program statements uninterrupted by

decisions or junctions with a single entry and single exit.
Junction:
•A point in the program where control flow can merge (into a

node of the graph)
•Examples: target of GOTO, Jump, Continue

Decisions:
•A program point at which the control flow can diverge (based

on evaluation of a condition).
•Examples: IF stmt. Conditional branch and Jump instruction.

Case Statements:
•A Multi-way branch or decision.
•For test design, Case statement and decision are similar.

36

Control Flow Graph Flow Chart

Compact representation of the program Usually a multi-page description

Focuses on Inputs, Outputs, and the control

flow into and out of the block.

Focuses on the process steps inside

Inside details of a process block are not

shown

Every part of the process block are

drawn

Control Flow Graph Vs Flow Charts

37

Control Flow Graphs and Path Testing

• One statement to one element translation to get a Classical Flow
chart

• Add additional labels as needed

• Merge process steps

• A process box is implied on every junction and decision

• Remove External Labels

• Represent the contents of elements by numbers.

• We have now Nodes and Links

38

One to one flow chart

39

Linked List Notation of a Control Flow Graph

Node Processing, label,
Decision

Next-Node

1 (BEGIN; INPUT X, Y; Z := X+Y ; V := X-
Y)

: 2

2 (Z >= 0 ?) : 4 (TRUE)

: 3 (FALSE)

3 (JOE: Z := Z + V) : 4

4 (SAM: Z := Z – V; N := 0) : 5

5 (LOOP; Z := Z -1) : 6

6 (N = V ?) : 7 (FALSE)

: END (TRUE)

7 (N := N + 1) : 5

1 2 3 4 5

6 7

Control flow graph

40

Path is a sequence of statements starting at an entry, junction or
decision and ending at another, or possibly the same junction or
decision or an exit point.

• Link is a single process (block) in between two nodes.

• Node is a junction or decision.

• Segment is a sequence of links. A path consists of many
segments.

• Length of a path is measured by # of links in the path or # of
nodes traversed

Control Flow Graphs and Path Testing

41

Control Flow Graphs and Path Testing

• Name of a path is the set of the names of the nodes along the
path.

• Path-Testing Path is an “entry to exit” path through a
processing block.

• Path segment is a succession of consecutive links that belongs
to the same path.

Entry / Exit for a routines, process blocks and nodes.
Single entry and single exit routines are preferable.
Called well-formed routines.
Formal basis for testing exists.
Tools could generate test cases.

42

Test Strategy for Multi-entry / exit routines
1. Get rid of them.

2. Control those you cannot get rid of.

3. Convert to single entry / exit routines.

4. Do unit testing by treating each entry/exit combination as if
it were a completely different routine.

5. Recognize that integration testing is heavier

6. Understand the strategies & assumptions in the automatic
test generators and confirm that they do (or do not) work
for multi-entry/multi exit routines.

Test Strategy for Multi-entry / exit routines

43

Control Flow Graphs and Path Testing

Fundamental Path Selection Criteria
A minimalset of paths to be able to do complete testing.
•Each pass through a routine from entry to exit, as one traces

through it, is a potential path.
•The above includes the tracing of 1….n times tracing of an

interactive block each separately.
•Note: A bug could make a mandatory path not executable or
could create new paths not related to processing.

Complete Path Testing prescriptions:
1. Exercise every path from entry to exit.
2. Exercise every statement or instruction at least once.
3. Exercise every branch and case statement in each direction,

at least once.

44

Control Flow Graphs and Path Testing

Path Testing Criteria :
• Path Testing (P):Execute all possible control flow paths thru the

program; but typically restricted to entry-exit paths. Implies
100% path coverage. Impossible to achieve.

• Statement Testing (P1) :Execute all statements in the program at
least once under the some test. 100% statement coverage =>
100% node coverage. Denoted by C1.

• Branch Testing (P2) :Execute enough tests to assure that every
branch alternative has been exercised at least once under some
test. Denoted by C2

• Objective: 100% branch coverage and 100% Link coverage. For
well structured software, branch testing & coverage include
statement coverage

45

Control Flow Graphs and Path Testing

Revised path selection Rules
1. Pick the simplest and functionally sensible entry/exitpath.
2. Pick additional paths as small variations from previous paths.

(pick those with no loops, shorter paths, simple and
meaningful).

3. Pick additional paths but without an obvious functional
meaning (only to achieve C1+C2 coverage).

4. Be comfortable with the chosen paths. play hunches, use
intuition to achieveC1+C2.

5. Don’t follow rules slavishly – except for coverage.

46

Control Flow Graphs and Path Testing

4. Testing of Paths involving loops:
Bugs in iterative statements apparently are not discovered by
C1+C2.But by testing at the boundaries of loop variable.
• Types of Iterative statements:

1. Single loop statement.
2. Nested loops.
3. Concatenated Loops.
4. Horrible Loops

47

Control Flow Graphs and Path Testing

2.Testing a Nested Loop Statement

Multiplying # of tests for each nested loop => very large # of tests

A test selection technique:

1. Start at the inner-most loop. Set all outer-loops to Min
iteration parameter values: Vmin.

2. Test the Vmin, Vmin + 1, typical V, Vmax - 1, Vmax for the inner-
most loop. Hold the outer- loops to Vmin. Expand tests are
required for out-of-range & excluded values.

48

Control Flow Graphs and Path Testing

3. Testing Concatenated Loop Statements

• Two loops are concatenated if it’s possible to reach one
after exiting the other while still on the path from
entrance to exit.

• If these are independent of each other, treat them as
independent loops.

• If their iteration values are inter-dependent & these are
same path, treat these like a nested loop.

• Processing times are additive.

4321

49

• If you have done with outer most loop, Go To step 5. Else,
move out one loop and do step 2 with all other loops set to
typical values.

• Do the five cases for all loops in the nest simultaneously.

– Assignment: check # test cases = 12 for 16 for 3, 19 for 4.

– nesting = 2

Control Flow Graphs and Path Testing

50

Control Flow Graphs and Path Testing

4. Testing Horrible Loops

• Avoid these.
• Even after applying some techniques of paths, resulting

test cases notdefinitive.
• Too many test cases.
• Thinking required to check end points etc. is unique for

each program.
• Jumps in & out of loops and intersecting loops etc, makes

test case selection an uglytask.
• etc. etc.

54321 6

51

Control Flow Graphs and Path Testing

Loop Testing Times
•Longer testing time for all loops if all the extreme cases are to

be tested.
•Unreasonably long test execution times indicate bugs in the

s/w or specs.
Case: Testing nested loops with combination of extreme
values leads to long test times.

•Show that it’s due to incorrect specs and fix the specs.
•Prove that combined extreme cases cannot occur in the

real world. Cut-off those tests.
•Put in limits and checks to prevent the combined extreme

cases.

52

Control Flow Graphs and Path Testing

Effectiveness of Path Testing
• Path testing (with mainly P1 & P2) catches ~65% of Unit Test

Bugs ie., ~35% of allbugs.
• More effective for unstructured than structured software.
• Limitations

• Path testing may not do expected coverage if bugs occur.
• Path testing may not reveal totally wrong or missing

functions.
• Unit-level path testing may not catch interface errors among

routines.
• Data base and data flow errors may not be caught.
• Unit-level path testing cannot reveal bugs in a routine due to

another.

53

Control Flow Graphs and Path Testing

•Effectiveness of Path Testing
• A lot of work

• Creating flow graph, selecting paths for coverage, finding
input data values to force these paths, setting up loop cases &
combinations.

• Careful, systematic, test design will catch as many bugs as the
act oftesting.

• Test design process at all levels at least as effective at catching
bugs as is running the test designed by that process.

54

Predicates, Predicate Expressions

• Path: A sequence of process links (& nodes)

• Predicate
• Compound Predicate: Two or more predicates combined with

AND, OR etc.
• Path Predicate:

• Every path corresponds to a succession of True/False values
for the predicatestraversed on that path.

• A predicate associated with a path.
• “ X > 0 is True “ AND “W is either negative or equal to

122” is True Multi-valued Logic / Multi-way branching.

55

Control Flow Graphs and Path Testing

• The symbolic substitution of operations along the path in
order to express the predicate solely in terms of the input
vector is called predicate interpretation.

• An input vector is a set of inputs to a routine arranged as a
one dimensional array.

Example:
• INPUT X, Y
• ON X GOTO A, B, C INPUT X
• A: Z := 7 @ GOTO H IF X < 0 THEN
• B: Z := -7 @ GOTO H Y:= 2
• C: Z := 0 @ GOTO H ELSE Y := 1
• H: DO SOMETHING IF X + Y*Y > 0 THEN …IF -7 > 3.

• K: IF X + Z > 0 GOTO GOOD ELSE GOTO BETTER

56

Path Testing

Process Dependency
• An input variable is independent of the processing if its value

does not change as a result of processing.
• An input variable is process dependent if its value changes as a

result of processing.
• A predicate is process dependent if its truth value can change as

a result of processing.
• A predicate is process independent if its truth value does not

change as a resultof
processing.

• Process dependence of a predicate doesn’t follow from process
dependence of variables

57

Correlation
• Two input variables are correlated if every combination of

their values cannot be specified independently.
• Variables whose values can be specified independently without

restriction are uncorrelated.
• A pair of predicates whose outcomes depend on one or more

variables in common are
correlated predicates.

• Every path through a routine is achievable only if all predicates
in that routine are
uncorrelated.

• If a routine has a loop, then at least one decision’s predicate
must be process dependent.

Correlation

58

Path Predicate Expression
• Every selected path leads to an associated boolean expression,

called the path predicate expression, which characterizes the
input values (if any) that will cause that path to be traversed.

• Select an entry/exit path. Write down un-interpreted
predicates for the decisions along the path. If there are
iterations, note also the value of loop-control variable for that
pass. Converting these into predicates that contain only input
variables, we get a set of boolean expressions called path
predicate expression.

Path Predicate Expression

59

Control Flow Graphs and Path Testing

Predicate Coverage:
•Look at examples & possibility of bugs: A B C D A + B + C + D

• Due to semantics of the evaluation of logic expressions in
the languages, the entire
expression may not be always evaluated.

• A bug may not be detected.
• A wrong path may be taken if there is a bug.
• Realize that on our achieving C2, the program could still

hide some control flow bugs.

60

• Predicate coverage:

• If all possible combinations of truth values corresponding
to selected path have been explored under some test,
we say predicate coverage has been achieved.

• Stronger than branch coverage.

• If all possible combinations of all predicates under all
interpretations are covered, we

• have the equivalent of total path testing

Predicate coverage

61

1. Objective is to select & test just enough paths to achieve a
satisfactory notion of test completeness such as C1 + C2.

2. Extract the program’s control flow graph & select a set of
tentative coveringpaths.

3. For a path in that set, interpret the predicates.
4. Trace the path through, multiplying the individual compound

predicates to achieve a boolean expression.
5. Multiply & obtain sum-of-products form of the path predicate

expression: AD + AE + BCD + BCE
6. Each product term denotes a set of inequalities that, if solved,

will yield an input vector that will drive the routine along the
selected path.

Achievable Paths

62

It’s the act of finding a set of solutions to the path predicate
expression.

In practice, for a selected path finding the required input vector is
not difficult. If there is difficulty, it may be due to some bugs.
Heuristic procedures:

Choose an easily sensitizable path set, & pick hard-to-sensitize
paths to achieve morecoverage.

1. Identify all the variables that affect the decisions. For
process dependent variables, express the nature of the
process dependency as an equation, function, or whatever
is convenient and clear. For correlated variables, express
the logical, arithmetic, or functional relation defining the
correlation.

Path Sensitization

63

1. Identify correlated predicates and document the nature of
the correlation as for variables. If the same predicate
appears at more than one decision, the decisions are
obviously correlated.

2. Start path selection with uncorrelated & independent
predicates. If coverage is achieved, but the path had
dependent predicates, something is wrong.

Path Sensitization

64

4. If the coverage is not achieved yet with independent
uncorrelated predicates, extend the path set by using
correlated predicates; preferably process independent (not
needing interpretation)

5. If the coverage is not achieved, extend the path set by
using dependent predicates (typically required to cover
loops), preferably uncorrelated.

6. Last, use correlated and dependent predicates.

Path Sensitization

65

Path Sensitization

4. For each of the path selected above, list the corresponding
input variables. If the variable is independent, list its value.
For dependent variables, interpret the predicate ie., list the
relation. For correlated variables, state the nature of the
correlation to other variables. Determine the mechanism
(relation) to express the forbidden combinations of variable
values, if any.

5. Each selected path yields a set of inequalities, which must be
simultaneously satisfied to force the path.

66

Examples for Path Sensitization

1. Simple Independent Uncorrelated Predicates

1 4 276A C

D
9

3 5

1

0

8

B

a ec f

h

l

i

j k

m

B
_

B

A

b
_

A

_
C

d

_

D

D

C

PathPredicateValues
PathPredicate Values

abcdef

aghci

mkf

aglmje

f

A C

A B C

D

A

B

D

abcdef

abcimjef

abcimkf

aghcdef

aglmkf

A C

A C D

A C D

A B C

A B
D

4 predicates => 16

combinations

Set of possible paths =

8

A Simple case of solving inequalities.

(obtained by the procedure for finding a

covering set of paths)

67

• Dependent Predicates
Usually most of the processing does not affect the control
flow. Use computer simulation for sensitization in a simplified
way. Dependent predicates contain iterative loop statements
usually.

• For Loop statements:

Determine the value of loop control variable for a certain # of
iterations, work backward to determine the value of input
variables (input vector).

Dependent Predicates

68

The General Case
No simple procedure to solve for values of input vector for a
selected path.
1. Select cases to provide coverage on the basis of functionally

sensible paths. Well structured routines allow easy sensitization.
Intractable paths may have a bug.

2. Tackle the path with the fewest decisions first. Select paths with
least # of loops.

3. Start at the end of the path and list the predicates while tracing
the path in reverse. Each predicate imposes restrictions on the
subsequent (in reverse order) predicate.

4. Continue tracing along the path. Pick the broadest range of
values for variables affected and consistent with values that
were so far determined.

Dependent Predicates

69

Control Flow Graphs and Path Testing

Alternately:
1. In the forward direction, list the decisions to be traversed.

For each decision list the broadest range of input values.
2. Pick a path & adjust all input values. These restricted values

are used for next decision.
3. Continue. Some decisions may be dependent on and/or

correlated with earlier ones.
4. The path is unachievable if the input values become

contradictory, or, impossible. If the path is achieved, try a
new path for additional coverage.

70

Output of a test: Results observed. But, there may not be any
expected output for a test.
Outcome: Any change or the lack of change at theoutput.

Expected Outcome: Any expected change or the lack of change at
the output (predicted as partof design).
Actual Outcome: Observed outcome

Path Instrumentation

71

• Coincidental Correctness:

• When expected & actual outcomes match,
• Necessary conditions for test to pass are met.
• Conditions met are probably not sufficient. (the

expected outcome may be achieved due to a
wrong reason)

• Path Instrumentation is what we have to do confirm that the
outcome was achieved by the intended path.

Coincidental Correctness

72

Double Link Marker Instrumentation

The problem is solved. Two link markers specify the path name and
both the beginning & end of the link.

m

A =

7?

ji

o ? qProcess

C

Proces

sA

Proces

s B

Process

D

r

n

l

p

73

• Less disruptive and less informative.
• Increment a link counter each time a link is traversed.Path

length could confirm the intended path.
• For avoiding the same problem as with markers, use double

link counters.
Expect an even count = double the length.

• Now, put a link counter on every link.(earlier it was only
between decisions)
If there are no loops, the link counts are = 1.

• Sum the link counts over a series of tests, say, a covering set.
Confirm the total link counts with the expected.

• Using double link counters avoids the same & earlier
mentionedproblem.

Double Link Marker Instrumentation

74

Link Counters Technique:
Check list for the procedure:
• Do begin-link counter values equal the end-link countervalues?
• Does the input-link count of every decision equal to the sum of the

link counts of the output links from that decision?
• Do the sum of the input-link counts for a junction equal the

output-link count for that junction?
• Do the total counts match the values you predicted when you

designed the covering test set?
This procedure and the checklist could solve the problem of
Instrumentation.

Link Counters Technique

75

Limitations

• Instrumentation probe (marker, counter) may disturb
the timing relations & hide racing condition bugs.
Instrumentation probe (marker, counter) may not
detect locationdependent Bugs.

• If the presence or absence of probes modifies things
(for example in the data base) in a faulty way, then the
probes hide the bug in the program.

Limitations

76

Implementation & Applications Path Testing

Application of path testing to New Code
• Do Path Tests for C1 + C2 coverage
• Use the procedure similar to the idealistic bottom-up

integration testing,using a mechanized test suite.
• A path blocked or not achievable could mean abug.
• When a bug occurs the path may be blocked.

77

Application of path testing to Maintenance
• Path testing is applied first to the modified component.
• Use the procedure similar to the idealistic bottom-up

integration testing, but withoutusing stubs.
• Select paths to achieve C2 over the changed code.
• Newer and more effective strategies could emerge to

provide coverage in maintenance phase.

Application of path testing

78

Application of path testing to Rehosting
• Path testing with C1 + C2 coverage is a powerful tool for rehosting

old software.
• Software is rehosted as it’s no more cost effective to support the

application environment.
• Use path testing in conjunction with automatic or semiautomatic

structural test generators.

Application of path testing

79

Process of path testing during rehosting
• A translator from the old to the new environment is created &

tested. Rehosting process is to catch bugs in the translator
software.

• A complete C1 + C2 coverage path test suite is created for the
old software. Tests are run in the old environment. The
outcomes become the specifications for the rehosted software.

• Another translator may be needed to adapt the tests &
outcomes to thenew environment.

• The cost of the process is high, but it avoids risks associated with
rewriting the code.

• Once it runs on new environment, it can be optimized or
enhanced for new functionalities (which were not possible in the
old environment.)

Process of path testing during rehosting

80

UNIT-II
Transaction Flow Testing

82

CLOs Course Learning Outcome

CLO7 List Transaction flows techniques and transaction flow
structures and their test databases.

CLO8 State Basics of data flow testing and Strategies in data flow
testing, applications of dataflow testing.

Course Learning Outcome

Definitions

• Transaction-flow
Transaction-flow represents a system’s processing.
Functional testing methods are applied for testing T-F.

• Transaction-flow Graph
TFG represents a behavioral (functional) model of the
program (system) used for functional testing by an
independent system tester.

• Transaction
• It is a unit of work seen from system’s user point ofview.
• consists of a sequence of operations performed by a system,

persons orexternal devices.
• It is created (birth) due to an external act & up on its

completion (closure), it remains in the form of historical
records.

83

Example of a Transaction flow

User

(terminal)
Terminalcontroller

CPU
Reque

st

order

from

CPU

Request

Type

cancel

ord

er

hel

p

Accept

Order

from

CPU

Process

Form
B

B
Trans

mit

Page

to

termi

nal

C
Acc

ep

t

In

pu

t

Fi

el

d

More

Fields?

Y

Trans

mit

To

CPU

D

User

wants

Revie

w?

D
CPU-

Acc

ept

Conf

irm

Valid

?

Y
More

Pages ?

N
Do

ne

Transmit

Diagnostic

to Terminal

C

N

Set up

Review

84

Implementation of Transaction-Flow (in a system)

• Implicit in the design of system’s control structure & associated
database.

• No direct one-to-one correspondence between the
processes” and “decisions” of transaction-flow, and the
corresponding program component.

• A transaction-flow is a path taken by the transaction through a
succession of processing modules.

• A transaction is represented by a token.
• A transaction-flow graph is a pictorial representation of what

happens to the tokens.

Inpu

t

S A S B S C S S

D

ES :

Scheduler

A, B, C, D, E :

Processes

Outp

ut

85

Implementation of Transaction-Flow

System Control

Structure

(architecture of the

implementation) :

Fr

o

nt

E

n

d

Input

Que

ue

EXECUTIVE

SCHEDULER - AND / OR OPERATING

SYSTEM

DISPATCHER

Output

Module

Output

Queue

Proce

ss

Queu

es

A

Processor

B

Processo

r

C

Processo

r

D

Processo

r

E

Processo

r

Application

Processes

Disc

Read

s

Di

sc

Re

ads

Do All

C’s

Do All

A’s

Tape

Write

s

Ta

pe

Re

ads

Do All

B’s

Do All

E’s

Disc

Write

s

Di

sc

Wri

tes

2

1

1 Do All

B’s

2 Do All

D’s

Executive / Dispatcher

Flowchart

(a sample

sequence)

86

Implementation of Transaction-Flow

• System control structure:
System is controlled by a scheduler

A Transaction is created by filling in a Transaction Control Block
(TCB) by user inputs and by placing that token on input Q of
Scheduler.
Scheduler examines and places it on appropriate process Q
such as A. When A finishes with the Token, it places the TCB
back on the scheduler Q.

• Scheduler routes it to the next process after examining the
token
1. It contains tables or code to route a token to the next

process.
2. It may contain routing information only in tables.
3. Scheduler contains no code / data. Processing modules

contain code forrouting.
87

Transaction Processing System:
• There are many Tr. & Tr-flows in the system.
• Scheduler invokes processes A to E as well as disk &

tape read &writes.
• The order of execution depends on priority & other

reasons.
• Cyclic structure like in this example is common in

process control & communication systems.
• Cyclic structure like in this example is common in

process control & communication systems

88

A perspective of Transaction-Flow

Transaction-flow testing is a block box technique.
1.TFG is a kind of DFG.

TFG has tokens, & DFG has data objects with history of
operations applied on them. Many techniques of CFG apply to
TFG & DFG

2. Decision nodes of TFG have exception exits to the central
recovery process.So we ignore the effect of interrupts in a
Transaction-flow.

89

Transaction Flows – splitting & merging decisions

Splits of transactions(Births)

1. A decision point in TFG

Alternative 1

Alternative 2

Daughter Tr.

Parent
Parent

Daughter Tr.

Daughter Tr.
Parent

2.Biosis

3.Mitosis

90

Data - Flow Testing

Anomaly:
Unreasonable processing on data

• Use of data object before it is defined
• Defined data object is not used

Data Flow Testing (DFT) uses Control Flow Graph (CFG) to explore
dataflow anomalies.

• DFT Leads to testing strategies between P and P1 / P2

91

Data - Flow Testing

Definition:
DFT is a family of test strategies based on selecting paths through
the program’s control flow in order to explore the sequence of
events related to the status of data objects.

Example:
Pick enough paths to assure that every data item has been
initialized prior to its use, or that all objects have been used for
something.

92

Data - Flow Testing

Program Flow using Data Flow Machines paradigm

BEGIN

PAR DO

READ m, n, n, p, q

END PAR

PAR DO

a := m+n

b := p+q END

PAR PAR DO

c := a+b

d := a-b END

PAR PAR DO

e := c * d END

PAR END

n m p

q

a :=

m+n

b :=

p+q

c :=

a+b

The interrelations among the data items remain same.

d :=

a-b

e := c

* d

93

Data - Flow Testing

Program Flow using Data Flow Machines paradigm

BEGIN PAR DO
READ m, n, n, p, q

END PAR
PAR DO

a := m+n b :=
p+q

END PAR
PAR DO

c := a+b
d := a-b END

PAR PAR DO
e := c * d END

PAR END

n m p

q

a :=

m+n

b :=

p+q

c :=

a+b

The interrelations among the data items remain same.

d :=

a-b

e := c

* d

94

Data Flow Anomaly State graph
• Object state
• Unforgiving Data flow state graph

K

DU A
u

d

u
d,

k

d, k,

u

k, u

d

Defin

edUse

d

Undefin

ed

Anomal

ous

Data - Flow Testing

95

Procedure To Build:
1. Entry & Exit nodes
2. Unique node identification
3. Weights on out link
4. Predicated nodes
5. Sequence of links

 Join
 Concatenate weights
 The converse

Data - Flow Testing

96

CFG for the Example

1 2

3 4

5 6

Read
a,b,n
Z := 0

Z :=
1

Z := b +
Z

r < n
?

Z := (c-
1)/(a-1)

P2

Y

r := 1
c:=1

r := r+1, c:=
c*a

a
=
1
?

P
1

Y

Data - Flow Testing

97

Data - Flow Testing-Basics – Data Flow model

CFG annotated – Data Flow Model for Z

1 2

3 4

5 6
d

d or

kd

cd or

ckd

r < n

?

Y

a
=
1
?

P
1

Y

d or

kd

P2

98

CFG annotated – Data Flow Model for c

1 2

3 4

5 6

-

d

ckd or

kd r < n

?

P

2

Y

a
=
1
?

P
1

Y

c

-

CFG annotated – Data Flow Model for c

99

Data -Flow Testing-Basics – Data Flow model

CFG annotated – Data Flow Model for r

1 2

3 4

5 6

-

d

ckd or

kd r < n

?

P

2

Y

a
=
1
?

P
1

Y

p

-

100

CFG annotated – Data Flow Model for b

1 2

3 4

5 6
d

r < n ?

P

2

Y

a = 1?
P1

Y

c

CFG annotated – Data Flow Model for b

101

CFG annotated – Data Flow Model for n

1 2

3 4

5 6
d

r < n ?

Y

a = 1?
P1

Y

p-

P2

CFG annotated – Data Flow Model for n

102

CFG annotated – Data Flow Model for a

1 2

3 4

5 6
d

r < n ?

P2

Y

a = 1?
P1

p

c-

c

CFG annotated – Data Flow Model for a

103

Data - Flow Testing– Data Flow Testing Strategies

Ordering the strategies

All Paths

All du Paths

All-uses Paths
(AU)

All-c / some-p
(A

CU+p)

All c uses
(ACU)

All-p / some-c
A

PU+c

All P-uses
APU

All Branches
P2

All Stmts
P1

All
Defs

AD

104

Testing, Maintenance & Debugging in the Data Flow context
Debugging:

• Select a slice.
• Narrow it to a dice.
• Refine the dice till it’s one faulty stmt.

Debugging

105

UNIT-III
DOMAIN TESTING

107

CLOs Course Learning Outcomes

CLO9 Describe Domains and paths and explain about
domains and bugs and their tools effectiveness.

CLO10 Demonstrate Domains and Interfaces testing.

CLO11 Explain linearising transformation and coordinate
transformation

CLO12 Describe Logic based testing and Decision tables and
compare hardware and software testing.

Course Learning Outcomes

Domain Testing Model

Domain Testing Model
Two Views

• Based on Specs
Functional Testing

• Based on Implementation information
Structural Technique

108

Domain Testing

Domain Testing Model

INPU

T

CLASSI

FY

DO

CASE 1

OUTP

UT

DO

CASE 2

DO

CASE 3

DO

CASE n

D1

D3

(x,y,z,

…)

(1, 2, 3, 4, 5,…)

{ Outcome }

D2

Dn

109

Domain Testing Model Variables
• Simple combinations of two variables
• Numbers from-infinity to +infinity
• Input variables as numbers
• Loop-free Programs

Domain Testing Model

110

Domain Testing Model
• Structural Knowledge is not needed Only Specs.
• For each Input Case,

1. A Hypothetical path for Functional testing
2. An Actual path for Structural testing

Domain Testing Model

111

Domain Testing Domains & Paths

• A Single Connected Set of numbers
• No arbitrary discrete sets
• Defined by the boundaries

1.One or more boundaries
2.Specified by predicates
3.Bugs likely at the boundaries

• One or more variables

D

1

112

Predicates
• Interpretation

1. Structural Testing - CFG
2. Functional Testing - DFG

• Specifies the Domain Boundary
• Predicates in Sequence => domains Or, just two

domains .
A .AND. B .AND. C

Predicates

113

Boundary: Closed / Open

MIN MAX

D

1

D2
D3X < MAXX >= MIN

MIN

D

1

D2 D3

X >= MIN X <= MAX

MAX

Clos

ed

Closed Open

Boundary: Closed / Open

114

Domain Closure

Boundary: Closed / Open

MIN
MAX

D1
D2 D3

X > MIN X < MAX
Open

115

Domain Dimensionality

• One dimension per variable
• At least one predicate

• Slices thru previously defined Domain
• Slicing Boundary
• N-spaces are cut by Hyperplanes

116

Bug Assumptions

• Processing is OK.
• Domain definition may be wrong.

Boundaries are wrong.
Predicates are wrong.
Once input vector is set on the right path, it’s correctly
processed. More bugs causing domain errors.

117

INPUT CLASSIFY DO CASE
1

OUTPU
T

DO CASE
2

DO CASE
3

DO CASE
n

D1

D3

(x, y, z,…)

(1, 2, 3, 4, 5,…)

{ Outcome }D2

Dn

Function f1

f2

f3

f4

Domain Testing Model

118

3. Simple boundaries

X

0 1

6

X >=0 .AND. X <= 16

Y = 1 .AND. X >=0 .AND. X <= 16

X
0 1

6

Y

D1

D1

Simple boundaries

119

Compound predicates….
• Impact of OR.

• Concave, Disconnected
• Adjacent domains with same function
• Example

A B C + D E F
• Eliminate compound predicates

Compound predicates

120

5. Linear Vector Space
• Linear boundary predicate, Interpreted
• Simple relational operators
• Conversion to linear vector space
• 2-d Polar co-ordinates
• Polynomials Problems with Non-linear Boundaries

Linear Vector Space

121

Nice & Ugly domains

Nice Domains
Requirements

• Bugs => ill-defined domains
Before DT

• Analyze specs
• Make the Boundary Specs Consistent & Complete

122

Nice domains

Nice Domains
• Linear, Complete, Systematic, Orthogonal, Consistently

Closed, & Convex

U

1

U

2

V

1

V

2

D11 D12

D21 D22

123

Nice domains

Nice Domains:
Boundaries are
1. Linear
2. Complete
3. System
4. Orthogonal
5. Convex
6. Closure consistency
7. Simply connected

124

Domains & Paths – Nice domains

•LinearBoundaries
Interpreted linear inequalities n-dim Hyperplane:
n+1 Points
n+1 + 1 Test Cases

• Non-Linear

• Transform

125

Domain Testing - Domains & Paths – Nice domains

2. CompleteBoundaries
• Span the total number space (-∞,+ ∞)

• One set of Tests
Incomplete…

• Reasons
• Tests

126

Nice domains

3. Systematic Boundaries

• Linear Inequalities differing by a constant

fj (X) ≥ kj or, fj (X) ≥ g (j, c) g (j, c) = j + k *
c

• Parallel lines
• Identical Sectors in a Circle

• DT

• Test a domain Tests for other
Domains

127

4. OrthogonalBoundaries

• Two boundaries or, boundary sets

• Parallel to axes

• DT
• Each Set Independently

• # Tests O (n)

U
j

V
j

Orthogonal Boundaries

128

Orthogonal Boundaries

• Tilted sets
• transformation
• Test cases: O(n)

• Concentric circles with radial lines

• Rectangular coordinates
• Polar

r ≥ aj .AND. r < aj+1

Orthogonal Boundaries

129

5. Closure Consistency
• A Simple pattern in all boundaryclosures
• Example
• Same relational operator for systematicboundaries

Closure Consistency

130

6. Convex Domain

• Line joining any two points lies with in the domain
• DT
• Non-points &1 off-pt Concave
• “ But, However, Except, Or …“in Specs Handle with special

care

Convex Domain

131

• Holes in input vector space.
• Missing boundary
• Detected by Specification languages & tools.

Ambiguities & Contradictions

132

2. Contradictions..
•Overlapping of

• Domain Specs

• Closure Specs

D

1

D

2

D

3

Contradictions

133

• Filling in Holes

Domain Testing-Domains & Paths – Ugly Domains

Simplifying the Topology - Smoothing out concavity

134

3. Simplifying the Topology….

• Joining the pieces

Correct:
• Connect disconnected boundary segments

• Extend boundaries to infinity

Domain Testing-Domains & Paths – Ugly Domains

135

Domain Testing-Domains & Paths – Ugly Domains

4. Rectifying Boundary Closures.
• make closures in one direction for parallel boundaries with

closures in both directions

• Force a Bounding Hyperplane to belong to the Domain.

Consistent

Direction

Inclusion / Exclusion

Consistency
136

Domain Testing - Domains & Paths

General DT Strategy
1.Select test points near the boundaries.
2. Define test strategy for each possible bug related to

boundary
3.Test points for a domain useful to test its adjacentdomain.
4. Run the tests. By post test analysis determine if any

boundaries are faulty & if so how?
5.Run enough tests to verify every boundary of every domain

137

DT for Specific Domain Bugs

Generally,
• Interior point
• Exterior point
• Epsilon neighborhood
• Extreme point
• On point

Domain Testing

138

Domain Testing Specific Domain Bugs

Domain D1

Epsilon

neighborhood

Boundary

point

Extreme

point

On

Points

Off

Points

139

1. 1-d Domains
2. 2-d Domains
3. Equality & inequality Predicates
4. Random Testing
5. Testing n-dimensional Domains

Domain Testing-Domains & Paths

140

Domain Testing

Testing 1-d Domains : Bugs with open boundaries

AB

x

AB

x

AB

xx

1

AB

x x

1

Closure

Bug

Shift left

Bug

Shift Right

Bug

141

Domain Testing - Domains & Paths

AB

x
Missing
Boundary

AB

x

x

Extra
Boundary

AB

x

1
x

C
x x

Testing 1-d Domains : Bugs with open
boundaries

Bugs with Closed Boundaries Similar to the above

142

Testing 2-d Domains

Closure bug
Boundary Shift: up / down

• Tilted Boundary
• Extra Boundary
• Missing Boundary

143

Domains & Paths – Domain Testing

2n : Domains share tests
3 n : no sharing of tests by domains
4Strategy for domain testing in 2-dim

144

Domains & Paths – Domain Testing

3. Equality & Inequality Predicates
• An Equality predicate defines a line in 2-d

c

’ c
c

A

B

a

d

b

To avoid

bugs

145

Domains & Paths – Domain Testing

Random Testing
• A Point in the center : verifies computation

146

Domains & Paths – Domain Testing

Testing n-Dimensional Domains (strategy)
d. imensions, p boundary segments

• (n+1)*p test cases : n on points & 1 off point
• Extreme pt shared : 2 * p points
• Equalities over m-dimensions create a subspace of n-m

dimensions
• Orthogonal domains with consistent boundary closures,

orthogonal to the axes & complete boundaries

147

Procedure for solving for values
Simple procedure. Need tools.
1. Identify input variables.
2. Identify variables which appear in domain-defining

predicates, such as control-flow predicates.

Procedure for solving for values

148

Procedure
1. Interpret all domain predicates in terms of input variables:

1. Transform non-linear to linear
2. Find data flow path

2. Predicate expression with p # predicates. Find
domains:< 2 p

3. Solve inequalities for extreme points
4. Use extreme points to solve for nearby on points …

Procedure

149

Domain Testing

Domains & Interface Testing

• Domain
• Range

Function /

Routine
Classify

DomainVariable Range

150

Domain Testing

Domains & Interface Testing

• Span compatibility

Routine 2Routine 1
Domain

Variable Range for

Routine2

Domain for

Routine2

Range for

Routine1

151

Logic based testing: Overview

• Logic is used in a program by programmers. Boolean algebra is the

way to work with logic – simplification & calculation.

• Hardware logic testing – hardware logic test design tools and

methods use logic & Boolean algebra. Hardware design language

compilers/translators use logic & Boolean algebra.

• Impact of errors in specifications of a software is high as these are
first in and last out. So, higher level language for specs is desired to
reduce the number of errors. Higher order logic systems are used
for formal specifications. The tools to simplify, transform and
check specs use Boolean algebra.

152

Logic based testing : Overview

Knowledge based systems:
• Knowledge based systems and artificial intelligence systems

use high level logic languages which are based on rule bases
consisting of rules.

• Rules are predicate expressions containing domain
knowledge related elements combined with logical
connectives. The answers to queries (problems) are
derived based on Boolean algebraic operations performed on
the rule bases. Such programs are called inference
engines.

153

Modeling Logic with Decision Tables

• Consists of three parts

– Condition stubs

• Lists condition relevant to decision

– Action stubs

• Actions that result from a given set of conditions

– Rules

• Specify which actions are to be followed for a given set
of conditions

154

Modeling Logic with Decision Tables

• Indifferent Condition

– Condition whose value does not affect which action is taken
for two or more rules

• Standard procedure for creating decision tables

– Name the condition and values each condition can assume

– Name all possible actions that can occur

– List all rules

– Define the actions for each rule

– Simplify the table

155

Modeling Logic with Decision Tables

• Indifferent Condition

– Condition whose value does not affect which action is taken
for two or more rules

• Standard procedure for creating decision tables

– Name the condition and values each condition can assume

– Name all possible actions that can occur

– List all rules

– Define the actions for each rule

– Simplify the table

156

Complete decision table for payroll system example

Complete decision table for payroll system example

157

Constructing a Decision Table

• PART 1. FRAME THE PROBLEM.

– Identify the conditions (decision criteria).These are the
factors that will influence the decision.

• E.g., We want to know the total cost of a student’s
tuition. What factors are important?

– Identify the range of values for each condition or criteria.
• E.g. What are they for each factor identified above?

– Identify all possible actions that can occur.

• E.g. What types of calculations would be necessary?

158

Constructing a Decision Table

• PART 2. CREATE THE TABLE.

– Create a table with 4 quadrants.

• Put the conditions in the upper left quadrant.One row
per condition.

• Put the actions in the lower left quadrant.One row per
action.

– List all possible rules.
• Alternate values for first condition.Repeat for all values

of second condition.Keep repeating this process for all
conditions.

• Put the rules in the upper right quadrant.

– Enter actions for each rule

• In the lower right quadrant, determine what, if any,
appropriate actions should be taken for each rule.

– Reduce table as necessary.
159

Example

• Calculate the total cost of your tuition this quarter.

– What do you need to know?

• Level. (Undergrad or graduate)

• School. (CTI, Law, etc.)

• Status. (Full or part time)

• Number of hours

– Actions?

160

• Actions?

– Consider CTI only (to make the problem smaller):

• U/G

– Part Time (1 to 11 hrs.): $335.00/per hour

– Full Time (12 to 18 hrs.): $17,820.00

– * Credit hours over 18 are charged at the part-time
rate

• Graduate:

– Part time (1 to 7 hrs.): $520.00/per hour

– Full time (>= 8 hrs.): $520.00/per hour

• Create a decision table for this problem.In my solution I was
able to reduce the number of rules from 16 to 4.

Actions

161

Boolean Algebra

A Boolean algebra consists of:
• a set B={0, 1},
• 2 binary operations on B (denoted by + & ×),
• a unary operation on B (denoted by '), such that :

0+ 0 = 0 0 × 0 = 0
1 + 0 = 1 0 × 1 = 0
0 + 1 = 1 1 × 0 = 0
1 + 1 = 1 1 × 1 = 1
0’=1 and 1’=0.

162

Rules of a Boolean Algebra

The following axioms (‘rules’) are satisfied forall elements x, y& z of B:

(1) x + y = y + x x× y = y × x(commutative axioms)
(2) x + (y + z) = (x + y) + z (associative axioms)

x × (y × z) = (x × y) × z
(3) x × (y + z) = (x × y) + (x × z)

x + (y × z) = (x + y) × (x + z) (distributive axioms)
(4) x + 0 = x x × 1 = x (identity axioms)
(5) x + x' = 1 x × x' = 0 (inverse axioms)

163

Boolean Notation

• This means that in effect we’ll be employing Boolean Algebra

notation.

• The truth tables can be rewritten as

164

Notational Short-cuts

We will employ short-cuts in notation:
(1) In ‘multiplication’ we’ll omit the symbol ×, & write xy for

x × y (just as in ordinary algebra)
(2) The associative law says that

x + (y + z) = (x + y) + z
So we’ll write this as simply x + y + z, because the brackets
aren’t necessary.

165

Notational Short-cuts

Similarly, write the product of 3 terms as xyz
(3) In ordinary algebra, the expression

x + y × z means x + (y × z), because of the convention that
multiplication takes precedence over addition.
e.g. x + yz means x + (y × z), and not (x + y) × z
Similarly, ab + cd means (a × b) + (c × d)

166

Reducing Boolean Expressions

• Is this the smallest possible implementation of this expression?

No! G = xyz + xyz’ + x’yz

• Use Boolean Algebra rules to reduce complexity while preserving

functionality.

• Step 1: Use idempotent law (a + a = a). So xyz + xyz’ + x’yz = xyz +

xyz + xyz’ + x’yz

• Step 2: Use distributive law a(b + c) = ab + ac. So xyz + xyz + xyz’

+ x’yz = xy(z + z’) + yz(x + x’)

• Step 3: Use Inverse law (a + a’ = 1). So xy(z + z’) + yz(x + x’) = xy.1

+ yz.1

• Step 4: Use Identity law (a . 1 = a). So xy + yz = xy.1 + yz.1 = xyz +
xyz’ + x’yz

167

x y F

0 0 1

0 1 1

1 0 0

1 1 0

Karnaugh maps

• Alternate way of representing Boolean function

– All rows of truth table represented with a square

– Each square represents a minterm

0

1

x
y

0

1

1 1

0 0

0

1

x
y

0

1

x’y’ x’y

xy’ xy

168

Karnaugh maps

• Easy to convert between truth table, K-map, and SOP.

– Un optimized form: number of 1’s in K-map equals number of

minterms (products) in SOP.

– Optimized form: reduced number of minterms
F(x,y) = x’y + x’y’ = x’

169

Karnaugh Maps

• A Karnaugh map is a graphical tool for assisting in the general
simplification procedure.

• Two variable maps.
B

A 0
10 1

1 0
0
1

F=AB
+A’B

0 1
1 1

B

0

1

A

01

A
0 1 0 1
1 1 1 1

0
1

• Three variable maps.

BC 00 01 11 10

F=AB’C’+AB C+ABC +ABC + A’B’C + A’BC’

F=AB+AB
+AB

A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

+

170

Rules for K-Maps

 We can reduce functions by circling 1’s in the K-map.
 Each circle represents minterm reduction.
 Following circling, we can deduce minimized and-or form.

F(x,y) = x’y + x’y’ = x’

Rules to consider
• Every cell containing a 1 must be included at least once.
• The largest possible “power of 2 rectangle” must be

enclosed

171

Rules for K-Maps

Rules to consider
1. Every cell containing a 1 must be included at least once.
2. The largest possible “power of 2 rectangle” must be

enclosed.

172

Specifications

1. Rewrite the specifications using consistent terminology.
2. Identify the predicates on which the cases are based. Name

them with suitable letters, such as A, B, C.
3. Rewrite the specification in English that uses only the

logical connectives AND, OR, and NOT, however stilted
it may seem.

4. Convert the rewritten specifications into an equivalent set of
Boolean expressions.

5. Identify the default action and cases, if any are specified.

173

Specifications

6. Enter the Boolean expressions in a KV chart and check for
consistency. If the specifications are consistent, there will be no
except for the cases that result in multiple actions.

7. Enter the default cases, and check for consistency.
8. If all boxes are covered, the specification is complete.
9. If the specification is incomplete or inconsistent, translate the

corresponding boxes of the KV chart back into English and get a
clarification, explanation, or revision.

10. If the default cases were not specified explicitly, translate the
default cases back into English and get a confirmation.

174

UNIT-IV
PATH PRODUCTS

176

Course Learning Outcomes

CLOs Course Learning Outcomes

CLO 14 State Path products and path expression, different laws
used in path testing.

CLO 15 Demonstrate Reduction procedure and applications.
CLO 16 Explain about Regular expressions
CLO 17 Demonstrate about Flow anomaly detection

1. Check for data flow anomalies.
2. Regular expressions are applied to problems in test design &

debugging.
3. Electronics engineers use flow graphs to design & analyze

circuits & logic designers. Software development, testing &
debugging tools use flow graph analysis tools & techniques.

4. These are helpful for test toolbuilders.

Purpose & Applications

177

Path Products & expressions

Motivation:
1. Flow graph is an abstract representation of a program.
2. A question on a program can be mapped on to an

equivalent question on an appropriate flow graph.
3. It will be a foundation for syntax testing & state testing

178

Path Products & expressions

Path Expression:
An algebraic representation of sets of paths in a flow
graph.

Regular Expression:
Path expressions converted by using arithmetic laws &
weights into an algebraic function.

179

Path Products & expressions

2 31

b

• Annotate each link with a name.
• The pathname as you traverse a path (segment) expressed

as concatenation of the link names is the
• path product.
• Examples of path products between 1 & 4 are:

a b d a b c b a b c b c b d ….

a

4

d

180

Path Products & expressions – Path Expression

Example:

{ a b d, a b c b d, a b c b c b d , ….. } abd + abcbd +

abcbcbd +….

2 31

b

Path Expression
Simply: Derive using path products.

a

4

d

c

181

Path Products & expressions – Path Expression

a b c d

h
fe

Example:
g

j
i

{ abcd , abfhebcd , abfigebcd , abfijd }

abcd + abfhebcd + abfigebcd + abfijd

182

Path Products & expressions – Path Expression

Path name for two successive path segments is the
concatenation of their path products.

X = abc Y = def XY = abcdef

a X = aabc X a =

abca

XaX = abcaabc

X = ab + cd Y = ef +
gh

XY = abef + abgh +
cdef + cdgh

183

Path Products & expressions – Path Product

Path Product
• Not Commutative:

XY ≠ YX in general
• Associative
A (BC) = (AB) C = ABC

184

Path Products & expressions – Path Product

Denotes a set of paths in parallel between two nodes.

• Commutative

: Rule 2X + Y = Y + X

• Associative

(X + Y) + Z =X + (Y + Z)= X + Y + Z : Rule 3

: Rule 4

• Distributive
A (B + C) = A B + A C (A + B) C

= A C + BC

185

Path Products & expressions

: Rule 5

• Absorption

X + X = X

X + any subset of X = X

X = a + bc + abcd X + a=X+bc + abcd=X

186

Path Products & expressions

• Loop:

An infinite set of parallel paths.

b* =b0 + b1 + b2 + b3 + ……

X* = X0

X
+

X1= + X2 + X3

+ X1 + X2 + X3 + ……

+ ……

• X X* =

X* X = X
+

= a* a =a+

Xn X0= + X1+X2

 a

a

+X3+ ……

a c

b

187

More Rules…

if n ≥ m : Rule 6
if n < m

: Rule 7

Xm + Xn =

=

Xn

Xm

Xm Xn
= Xm+n

Xn X* = X* Xn =X* : Rule 8

Xn

X+
= X+

Xn =

X
+

: Rule 9

X*

X+
= X+

X*=

X
+

: Rule 10

188

Identity Elements ..

1 : Path of Zero Length

1 + 1 = 1 : Rule 11

1 X = X 1 = X : Rule 12

1n
= 1n

= 1* = 1+ = 1 : Rule 13

1+ + 1 = 1* = 1 : Rule 14

Identity Elements

189

Identity Elements ..
0 : empty set of paths

X + 0 = 0 + X = X : Rule 15

X 0 = 0 X = 0 : Rule 16

0* = 1 + 0 + 02 + 03 + . . . = 1 : Rule 17

Identity Elements

190

Initialization Steps

• Combine all serial links by multiplying their path expressions.
• Combine all parallel links by adding their path expressions.
• Remove all self-loops-replace with links of the form X*

• ReductionProcedure:
To convert a flow graph into a path expression that denotes
the set of all entry/exit paths.
Node by Node Reduction Procedure

• Cross-Term Step(Step 4 of the Algorithm)
• Fundamental step.

Removes nodes one by one till there’s one entry & one exit
node.

• Replace the node by path products of all in-links with all out-
links and interconnecting its immediate neighbors.

191

Processing of Loop Terms:

1 5
a

e

b c
f

2
d

3
4

b

d

1 2 4 5
b

c

fa

e

1 2 4 5
(bd)*

bc

fa

e

Processing of Loop Terms

192

Processing of Loop Terms

1 2 4 5
(bd)*

bc

fa

e

1 4 5
a (bd)*

bc

f

e (bd)*

bc

1 4 5
a (bd)*

bc

(e (bd)* bc

) * f

193

Example:

1

7 8

9

f

j

m

k

2
a b c

d e
3 4 5

6

1

0

g h

i l

3 4 6
b c da

2
e

1 5

f

7

g

j
8

h

k
9

il

im

Example

194

1 3 6
b da c+gkh

4

5

g

i

f

i

m

f

2
e

il

h

1 3 4 5 6

j

f

b c da

g

8

i

m

f

k

h

2
e

il

h

1

7 8

f

j

i

m

k

h

2
a b c

d e
3 4 5

6g

ilh

Processing of Loop Terms

195

1 3 5 6
b(c+g

kh)

da

bg

if

2
e

i

l

h

imf

1 6
da

(bgif)*b(c+gk

h)

3

5

im

f

2
e

il

h

1 3 6
(bgif)*b(c+g

kh)d
a

i

m

f

2
e

ilh

d

Processing of Loop Terms

196

1 3 6
(bgif)*b(c+g

kh)d
a

(ilhd)*i

mf

2
(ilhd)

*e

1 6
a(bgif)*b(c+g

kh)d

(ilhd)*imf(bgif)*b(c

+gkh)d

2
(ilhd)

*e

Processing of Loop Terms

197

Flow Graph Path Expression :
a(bgif)*b(c+gkh)d
{(ilhd)*imf(bgif)*b(c+gkh)d}* (ilhd)*e

1 6
a(bgif)*b(c+g

kh)d 2
{(ilhd)*imf(bgif)*b(c+gkh)d

}* (ilhd)*e

Processing of Loop Terms

198

Path Products & expressions

(A + B) * = (A* + B*) * : I1

= (A* B*)* : I2

= (A* B)* A* : I3

= (B* A)* B* : I4

= (A* B + A)* : I5

= (B* A + B)* : I6

(A + B + C + . . .)

*

= (A* + B* + C* + . . .)* : I7

= (A* B* C* . . .)* : I8

Derived by removing nodes in different orders & applying the
series-parallel-loop rules.

199

Reducible to a single link by successive application of the
transformations shown below.

A B A,

BProce

ss

A B

WHILE ..

DO ..

A B A

IF THEN ..

ELSE ..

B

Path Products & expressions

200

A B A,

B
REPEAT ..

UNTIL ..

Properties:

• No cross-term transformation.

• No GOTOs.

• No entry into or exit from the middle of a loop.

Path Products & expressions

201

Some examples – unstructured flow graphs/code:

X

X

Jumping into

loops
X

Jumping out of

loops

Branching into

Decisions

X

Branching out of

Decisions

Unstructured Flow Graphs/Code

202

UNIT-V
TRANSITION TESTING

204

Course Learning Outcomes

CLOs Course Learning Outcomes

CLO 18 Explain state graphs and state testing

CLO 19 Demonstrate about the testability tips

CLO 20 Explain state behavior in state graphs

• A state graph is a graphical representation of the program (its
FSM) in terms of states, transitions, inputs and outputs
It has one start state and usually, an end/destination/exit state.

• Note => In the exam you may draw only 3 state graph for
simplicity.

• State graph in the above example is used to model the
behavior of the program that recognizes a string occurrence
at the input. It can be used to design, implement and the
testing of the program

State graph

205

A Property of a state graph

• State graphs are not dependent on time or temporal behavior
or the program. (Temporal behavior is represented by some
time sequence diagrams etc..) The system changes state only
when an event (with an input sequence occurs or an epsilon
symbol representing no event appears at the input of a
transition).

• State graphs (FSM) are implemented as state tables which are
represented in software with definite data structures and
associated operations.

206

State table

Very big state graphs are difficult to follow as the diagrams get
complicated and links get entwined. It is more convenient to
represent the state graph as a table called state table or state
transition table.

Each row represents the transitions from the
originating state. There is one column for each input symbol
(erroneous input or normal input). The entry in the table
represents the new state to which the system transits to on this
transition and the output it prints on the target printer device or
on the output side.

207

A Property of a state graph

• State graphs are not dependent on time or temporal behavior
or the program. (Temporal behavior is represented by some
time sequence diagrams etc..) The system changes state only
when an event (with an input sequence occurs or an epsilon
symbol representing no event appears at the input of a
transition).

• State graphs (FSM) are implemented as state tables which are
represented in software with definite data structures and
associated operations.

208

Software implementation of state table

There are four tables that are needed.

1. A table or a process that encodes the input values into a
compact list (INPUT_CODE_TABLE)

2. A table that specifies the next state for every combination of
state and input code. (TRANISITION_TABLE)

3. A table or case statement that specifies the output (or
output code) associated with every state-input
combination (OUTPUT_TABLE)

4. A table that stores the present state of each device or
process or component or system that uses the same state
table. (DEVICE_TABLE)

209

Software implementation of state table

1. The present state is fetched from the memory (from
DEVICE_TABLE).

2. the present input value (symbol) is fetched from the
environment. It is encodedif it is non-numerical by using the
INPUT_CODE_TABLE.

3. The present state and the input code are
concatenated to give a pointer (row,column) into a
cell of the TRANSITION_TABLE.

4. The OUTPUT_TABLE contains a pointer to the routine to be
executed when that
state-input combination occurs.

5. The same pointer value is used to fetch the new state value,
which is then stored in DEVICE_TABLE

210

Principles of state testing

Asit is not possible to test every path the stategraph,
use the notion of coverage. We assume that the graph is

strongly connected.

1.It is not useful or practical to plan an entire grand tour of the
states for testing initially as it does not work out due to
possibility of bugs.

2. During the maintenance phase only few transitions and states
need to be tested which are affected.

3.For very long test input symbol sequences it is difficult to test
the system.

211

Uses/Advantages of state testing

• State testing can find bugs which are not possible to be found
with other types of testing. Normally most of systems can be
modeled as state graphs.

• It can find if the specifications are complete and ambiguous.
This is seen clearly if the state table is filled with multiple
entries in some cells or some cells are empty. IT can also tell
if some default transitions or transitions on erroneous inputs
are missing.

• State testing can identify the system’s seemingly impossible
states and checks if there are transitions from these states to
other states are defined in the specifications or not. That is,
the error recovery processes are defined for such impossible
states.

212

Uses/Advantages of state testing

• State testing can simplify the design of the program / system
by identifying some equivalent states and then merging these
states. Also, state testing using FSM can allow design/test
design in a hierarchical manner if the state tables are so
designed.

• The state testing can identify if the system reaches a dead
state / unreachable states and allow one to correct the
program specifications and make the system complete, robust
and consistent.

• The bugs in the functional behavior can be caught earlier and
will be less expensive if state testing is done earlier than the
structural (white box) testing.

213

Disadvantages of state testing

• State transition testing does not guarantee the complete testing
of the program. How much of testing with how many
combinations of input symbol sequences constitutes sufficient
number of tests is not clear/known. It is not practical to test thru
every path in the state graph.

• Functional behavior is tested and structural bugs are not tested
for. There could be difficulty if those bugs are found and mixed
up with behavioral bugs.

• We assume that the state graph is strongly connected that is
every node is connected to every other node thru a path.

214

Application areas for state testing

Any program that processes input as a sequence of
events/symbols and produces output such as detection of
specified input symbol combinations, sequential format
verification, parsing, etc.

Communication Protocols: processing depends on current state of
the protocol stack, OS, network environment and the message
received

– concurrent systems,
– system failures and the corresponding recovery systems,
– distributed data bases,
– device drivers – processing depends on the state of the

device

215

Application areas for state testing

• Operation requested by the user or system
–multi-tasking systems,
–human computer interactive systems,

–resource management systems – processing
depends on availability

• levels and states of resources

–Processing of hierarchical pop-up menus on windows
based software systems – letting the user navigate
thru menus

–the web based application software, embedded
systems and other systems also use this model for
design and testing.

216

Good-state graphs and Bad state graph

The principles of judging whether a state graph is good or bad are:
• the total number of states is equal to the product of possibilities

of factors that make up the state. (ie., number of permutations
of all values of all attributes/properties of the
system/component)

• For every state and every input there is exactly one transition
specified to exactly one, possibly the same, state.

• For every transition there is one output action specified. That
output could be trivial (epsilon), but at least one output does
some thing sensible.

• For every state there is a sequence of inputs that drives the
system to the starting (same) state.

• A good state graph has at least two input symbols. With one
symbol only a limited number of useful graphs are possible.

217

Principles of State Testing

• The strategy for state testing is analogous to that used for
path testing flow graphs.

• Just as it’s impractical to go through every possible path in a
flow graph, it’s impractical to go through every path in a
state graph.

• The notion of coverage is identical to that used for flow
graphs. Even though more state testing is done as a single
case in a grand tour, it’s impractical to do it that way for
several reasons

218

References

1. Boris Beizer “Software Testing Techniques“, Dreamtech Press
2nd Edition, 2003.

2. P C Jorgenson “Software Testing : Craft of Software Testing “,
Auerback Publications 3rd Edition, 2013.

219

