

Aeronautical Engineering

List of Laboratory Experiments

			AND I	ROPU		LADUKA	IUKI		
Course Co	de	Category	Ho	urs / We	ek	Credits	Maximum Marks		KS
AAEC1	•	Come	L	Т	Р	С	CIA	SEE	Total
AAEC12		Core	0	0	3	1.5	30	70	100
Contact Classe	s: Nil	Tutorial Classes: Nil		Prac	tical Cla	asses: 36	Total Classes: 36		
Branch: A	E	Semester: IV		Acader	nic Yea	r: 2021-22	Regulation: UG20		: UG20
calculate lift, dra efficiency of diff Course objecti The students v I. The und	ng, and merent com ves: vill try to erstand th	e course is intended to pro- oments by using low spipressors, nozzles, propell learn: e behaviour of flow prop- experimentally the pres	eed wind er and tu	l tunnel. arbines. er differe	Propuls	sion lab deal	s to unders	stand the perf	formance a
evaluate III. The illus IV. The den V. The und paramet	lift and c strate flow constrate t lerstand ers.		ow speed r, turbine	ls over c es, nozzl	lifferent es and p	aerodynamic ropellers.	bodies.		
Course outcon		etion of the course, stu							
CO 3 Estima wake p CO 4 Classif motors CO 5 Catego system	the the ae performan by different prize the s ze the material	sing subsonic wind tunnel rodynamic forces and mo ce nt fuels based on calorifie different types blowers, a echanical efficiency of g	ments of c value u nozzles a	using bo and prop	mb calo vellers f o	rimeter for s or identifying	electing op g exit syste	timal fuel in ms in various	solid rocke
WEEK NO						signing futu			es based or
WEEK – I	+		EXPE	RIMEN	T NAM				Course
	CALI	BRATION AND PRESS				Е	ER		1
		BRATION AND PRESS tion of subsonic wind tur	URE DI	STRIBU	U TION	E – CYLINDF			Course Outcome
WEEK – II	Calibra PRESS AND (tion of subsonic wind tur SURE DISTRIBUTION CAMBERED AEROFO	URE DI inel, Pres AND	STRIBU ssure dis FLOW	UTION tribution VISUA	E - CYLINDH over cylinde LIZATION	er. – SYMN	IETRICAL	Course Outcome
WEEK – II	Calibra PRESS AND (Pressur	tion of subsonic wind tur SURE DISTRIBUTION CAMBERED AEROFO re distribution and flow vi	URE DI inel, Pres AND	STRIBU ssure dis FLOW	UTION tribution VISUA	E - CYLINDH over cylinde LIZATION	er. – SYMN	IETRICAL	Course Outcome CO1 CO2
	Calibra PRESS AND O Pressur FORC	tion of subsonic wind tur SURE DISTRIBUTION CAMBERED AEROFO re distribution and flow vi E MEASUREMENT	URE DI inel, Pres AND IL sualizati	STRIBU SSURE dis FLOW on over	UTION tribution VISUA	E - CYLINDH over cylinde LIZATION	er. – SYMN	IETRICAL	Course Outcome CO1
WEEK – II WEEK – III	Calibra PRESS AND C Pressur FORC	tion of subsonic wind tur SURE DISTRIBUTION CAMBERED AEROFO re distribution and flow vi E MEASUREMENT measurement using wind t	URE DI inel, Pres AND IL sualizati	STRIBU SSURE dis FLOW on over	UTION tribution VISUA	E - CYLINDH over cylinde LIZATION	er. – SYMN	IETRICAL	Course Outcome CO1 CO2 CO3
WEEK – II	Calibra PRESS AND C Pressur FORC Force I WAKI	tion of subsonic wind tur SURE DISTRIBUTION CAMBERED AEROFO The distribution and flow vi E MEASUREMENT neasurement using wind the E ANALYSIS	URE DI nel, Pres AND L sualizati	STRIBU SSURE dis FLOW on over lance.	UTION tribution VISUA	E - CYLINDH over cylinde LIZATION	er. – SYMN	IETRICAL	Course Outcome CO1 CO2
WEEK – II WEEK – III	Calibra PRESS AND C Pressur FORC Force I WAKI	tion of subsonic wind tur SURE DISTRIBUTION CAMBERED AEROFO re distribution and flow vi E MEASUREMENT neasurement using wind to E ANALYSIS neasurement using wind to	URE DI Inel, Pres AND IL sualizati unnel ba	STRIBU SSURE dis FLOW on over lance.	UTION tribution VISUA	E - CYLINDH over cylinde LIZATION	er. – SYMN	AETRICAL	Course Outcome CO1 CO2 CO3
WEEK – II WEEK – III WEEK – IV	Calibra PRESS AND C Pressur FORC Force I WAKI Force I FLOW	tion of subsonic wind tur SURE DISTRIBUTION CAMBERED AEROFO The distribution and flow vi E MEASUREMENT neasurement using wind the E ANALYSIS	URE DI Inel, Pres AND IL sualizati unnel ba	STRIBU SSURE dis FLOW on over lance.	UTION tribution VISUA	E - CYLINDH over cylinde LIZATION	er. – SYMN	IETRICAL	Course Outcome CO1 CO2 CO3

	Calculation of calorific value of different fuels and materials using digital bomb calorimeter and optimizing astute fuels.			
WEEK – VII	BLOWER TEST RIG			
	Efficiency of blower test rig for 3 different vane settings.			
WEEK –VIII	NOZZLE PERFORMANCE			
	Calculation of various nozzle performance with airflow			
WEEK - IX	PROPELLER TEST RIG			
	Calculation of propeller efficiency and thrust availability using propeller test rig at various			
	blade pitch angles.			
WEEK - X	GAS TURBINE PARAMETERS CALCULATION	CO6		
	Calculation of work, power and Thrust requirement in gas turbine- combustion power input, work heat relationship.			
WEEK - XI	GAS TURBINE EFFICIENCY AND PERFORMANCE DIAGRAMS			
	Elucidate T-S, H-S diagrams for the gas turbine and compare efficiencies of non-ideal			
	engine components.			
WEEK - XII	GAS TURBINE EFFICIECNY CALCULATIONS			
	Calculation of thermal, propulsive and overall efficiency of turbo jet cycle.			