

# INSTITUTE OF AERONAUTICAL ENGINEERING

## (Autonomous)

Dundigal, Hyderabad – 500043

## **Electronics and Communication Engineering**

## **List of Laboratory Experiments**

| DIGITAL SIGNAL PROCESSING LABORATORY |                       |                                         |   |   |         |               |        |       |  |  |  |
|--------------------------------------|-----------------------|-----------------------------------------|---|---|---------|---------------|--------|-------|--|--|--|
| Course Code                          | Category              | Hours / Week                            |   |   | Credits | Maximum Marks |        |       |  |  |  |
| AECB25                               | Core                  | L                                       | T | P | С       | CIA           | SEE    | Total |  |  |  |
|                                      |                       | 0                                       | 0 | 2 | 1       | 30            | 70     | 100   |  |  |  |
| Contact Classes: Nil                 | Tutorial Classes: Nil | Practical Classes: 36 Total Classes: 36 |   |   | sses:36 |               |        |       |  |  |  |
| Branch: ECE                          | Semester: VI          | Academic Year: 2021-22                  |   |   |         | Regulatio     | n: R18 |       |  |  |  |

#### **Course overview:**

This course is concerned with the implementation of digital signal processing algorithms using different computational platforms such as MATLAB and DSP tools that give core knowledge to develop the real time applications in the area of DSP. It focuses on the convolution, discrete Fourier transform, fast Fourier transform algorithms, digital filter design and multi rate signal processing. Digital signal processing applications are used in speech processing, image processing, audio and video data compression, communication systems.

#### **Course objectives:**

### The students will try to learn:

- I. The behavior of discrete time signals and systems in time and frequency domain.
- II. The analysis of IIR, FIR digital filters and multi rate signal processing systems.
- III. The implementation of real time digital signal processing algorithms using MATLAB tool and TI TMSC67XX target board.

#### **Course outcomes:**

## After successful completion of the course, students should be able to:

CO1: Apply discrete Fourier transform for spectral analysis of discretesignals.

CO2: Make use of fast Fourier transform algorithms for reducing computational complexity of discrete Fourier transform.

CO3: Compare IIR digital filter and FIR Digital filters using differentmethods.

CO4: Analyze the Goertzel algorithm for the generation and detection of dual-tone multi-frequency (DTMF) signaling.

CO5: Identify multi-rate signal processing methods such as decimation and interpolation for interfacing the digital systems with different sampling rates.

CO6: Choose the digital signal processing algorithms for designing real time embedded signal processing applications.

| WEEK NO    | EXPERIMENT NAME                                                                                                                                                                | со  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| WEEK – I   | LINEAR CONVOLUTION VS CIRCULAR CONVOLUTION                                                                                                                                     | CO1 |  |
|            | Generation of linear convolution without using built in function and the function conv in MATLAB Generation of circular convolution without using built in function in MATLAB. |     |  |
| WEEK – II  | DFT AND IDFT                                                                                                                                                                   |     |  |
|            | Compute the Discrete Fourier Transform and IDFT with and without FFT and IFFT in MATLAB.                                                                                       | CO1 |  |
| WEEK – III | OVERLAP-ADD AND OVERLAP-SAVE METHODS                                                                                                                                           | CO2 |  |
|            | Implementation of Linear convolution using DFT (Overlap-Add and Overlap-Save methods).                                                                                         |     |  |
| WEEK – IV  | DIT-FFT ALGORITHM                                                                                                                                                              | CO2 |  |
|            | Implementation of Decimation-in-time radix-2 FFT algorithm.                                                                                                                    |     |  |

| WEEK – V    | DIF-FFT ALGORITHM                                                                                                                |      |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
|             | Implementation of Decimation-in-frequency radix-2 FFT algorithm.                                                                 |      |  |  |  |
| WEEK – VI   | IIR DIGITAL FILTER USING BUTTERWORTH METHOD AND BILINEAR TRANSFORMATION                                                          |      |  |  |  |
|             | Implementation of IIR digital filter using Butterworth method and bilinear transformation.                                       | CO3  |  |  |  |
| WEEK – VII  | IIR DIGITAL FILTER USING CHEBYSHEV (TYPE I AND II) METHOD                                                                        | CO3  |  |  |  |
|             | Implementation of IIR digital filter using Chebyshev (Type I and II) method.                                                     | CO3  |  |  |  |
| WEEK -VIII  | FIR DIGITAL FILTER USING WINDOWS                                                                                                 |      |  |  |  |
|             | Implementation of FIR digital filter using window (Rectangular, Hamming, Hanning, Bartlett) methods.                             | CO3  |  |  |  |
| WEEK - IX   | FIR DIGITAL FILTER USING FREQUENCY SAMPLING METHOD                                                                               |      |  |  |  |
|             | Implementation of FIR digital filter using frequency sampling method.                                                            | CO3  |  |  |  |
| WEEK - X    | OPTIMUM EQUI RIPPLE FIR DIGITAL FILTER                                                                                           | G0.4 |  |  |  |
|             | Implementation of optimum equiripple FIR digital filter using window methods.                                                    | CO4  |  |  |  |
| WEEK - XI   | DTMF TONE GENERATION AND DETECTION                                                                                               | COA  |  |  |  |
|             | DTMF Tone Generation and Detection Using Goertzel Algorithm.                                                                     | CO4  |  |  |  |
| WEEK - XII  | SAMPLING RATE CONVERSION                                                                                                         |      |  |  |  |
|             | Implementation of sampling rate conversion by decimation, interpolation and a rational factor using MATLAB.                      | CO5  |  |  |  |
| WEEK - XIII | SINE WAVE GENERATION                                                                                                             |      |  |  |  |
|             | <ul><li>a. Implementation of DFT</li><li>b. Sine wave generation using lookup table with values generated from MATLAB.</li></ul> | CO2  |  |  |  |
| WEEK - XIV  | IIR AND FIR FILTERS USING DSP KITS                                                                                               |      |  |  |  |
|             | IIR and FIR Filter Implementation using DSP Kits.                                                                                | CO6  |  |  |  |