

## Dundigal, Hyderabad – 500043 Electronics and Communication Engineering List of Laboratory Experiments

| IC APPLICATIONS LABORATORY |                       |                                         |   |   |         |                         |     |       |  |  |  |
|----------------------------|-----------------------|-----------------------------------------|---|---|---------|-------------------------|-----|-------|--|--|--|
| Course Code                | Category              | Hours / Week                            |   |   | Credits | Maximum Marks           |     |       |  |  |  |
| AECC15                     | Core                  | L                                       | Т | Р | С       | CIA                     | SEE | Total |  |  |  |
|                            |                       | 0                                       | 0 | 2 | 1       | 30                      | 70  | 100   |  |  |  |
| Contact Classes: Nil       | Tutorial Classes: Nil | Practical Classes: 36 Total Classes: 36 |   |   | sses:36 |                         |     |       |  |  |  |
| Branch: ECE                | Semester: IV          | Academic Year: 2022-23                  |   |   |         | <b>Regulation: UG20</b> |     |       |  |  |  |

## **Course overview:**

IC applications lab enables to learn design, testing and describing of circuit performance with digital and analog integrated circuits. It focuses on applications of special ICs and apply the techniques for the design of 741 ICs, applications of 555 timers, data converters and digital IC's for combination and sequential circuits design. This course provides practical hands-on experiments to analyze characteristics of commercially available digital integrated circuits.

## **Course objectives:**

The students will try to perform:

- I. The experiments on design of Linear and Digital Integrated circuits using operational amplifier and digital ICs.
- II. The design and implementation of analog circuits and gain the hands-on experience on the various building blocks of digital circuits.
- III. The IC based real-time applications in the fields of communication systems and home-based automation systems.

## **Course outcomes:**

After successful completion of the course, students should be able to:

**CO1: Design** linear Integrated circuits to perform mathematical operations and voltage gain calculations using IC741.

CO2: Plot the frequency response of second order active filters usingIC 741

CO3: Determine the frequency of oscillations of multi-vibratorsusing IC741 and IC555 timer.

CO4: Obtain the capture range and lock-in range of phase locked loopcircuit using IC565.

**CO5:** Construct the low and high voltage regulators to find the percentage of regulation using IC723.

**CO6:** Implement combinational and sequential circuits using digitalICs to verify their functionality.

| WEEK NO    | EXPERIMENT NAME                                                                                                        | СО       |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| WEEK – I   | INVERTING, NON-INVERTING AND DIFFERENTIAL AMPLIFIERS                                                                   |          |  |  |
|            | To construct and test the performance of an Inverting, Non-inverting amplifier and Differential amplifier using IC741. | CO1      |  |  |
| WEEK – II  | INTEGRATOR AND DIFFERENTIATOR                                                                                          | <u> </u> |  |  |
|            | To construct and test the performance of an Integrator and Differentiator using IC 741.                                | CO1      |  |  |
| WEEK – III | SECOND ORDER ACTIVE LOWPASS, HIGHPASS AND BANDPASS FILTERS                                                             | CO2      |  |  |
|            | To design and verify the operation of the Active low pass and High pass using IC 741.                                  |          |  |  |
| WEEK – IV  | SECOND ORDER ACTIVE BAND PASS AND BANDREJECT FILTERS                                                                   | CO2      |  |  |
|            | To design and verify the operation of the Band pass and Band reject filters using IC 741.                              |          |  |  |
| WEEK – V   | ASTABLE MULTIVIBRATORS USING 555                                                                                       | CO3      |  |  |
|            | To design and construct an astable multivibrators using IC 555.                                                        |          |  |  |

| WEEK – VI   | DNOSTABLE MULTIVIBRATORS 555                                                             |       |  |  |
|-------------|------------------------------------------------------------------------------------------|-------|--|--|
|             | To design and construct monostable multivibrators using IC 555.                          | CO3   |  |  |
| WEEK – VII  | SCHMITT TRIGGER USING 555                                                                | CO3   |  |  |
|             | To design and construct Schmitt trigger using NE555 Timer.                               |       |  |  |
| WEEK –VIII  | PLL USING IC 565                                                                         | - CO4 |  |  |
|             | Verifying characteristics of PLL.                                                        |       |  |  |
| WEEK - IX   | INSTRUMENTATION AMPLIFIER                                                                | CO4   |  |  |
|             | To design and verify the operation of instrumentation amplifier using IC 741.            |       |  |  |
| WEEK - X    | DIGITAL TO ANALOG CONVERTER                                                              | - CO5 |  |  |
|             | To design and verify the operation of R-2R and Inverted R-2R DAC Converter using IC 741. |       |  |  |
| WEEK - XI   | IC 723                                                                                   |       |  |  |
|             | To design and implement voltage regulator using IC 723.                                  | CO5   |  |  |
| WEEK - XII  | RTL LOGIC                                                                                | CO6   |  |  |
|             | Verify Functionality of NOR and NAND gate using RTL Logic.                               |       |  |  |
| WEEK - XIII | DTL LOGIC                                                                                | CO6   |  |  |
|             | Verify Functionality of NOR and NAND gate using DTL Logic.                               |       |  |  |
| WEEK - XIV  | INTERFACE RELAY                                                                          |       |  |  |
|             | Program to interface Relay with P89V51RD2 using transistor                               | CO6   |  |  |
| WEEK - XV   | - XV INTERRUPT                                                                           |       |  |  |
|             | Program to toggle LEDS using simple INTERRUPT                                            | CO6   |  |  |