

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad – 500043

Electronics and Communication Engineering

List of Laboratory Experiments

VIRTUAL INSTRUMENTATION LABORATORY											
Course Code	Category	Hours / Week			Credits	Maximum Marks		·ks			
AECC30	Core	L	T	P	С	CIA	SEE	Total			
AECCSU	Core	0	0	3	1.5	30	70	100			
Contact Classes: Nil	Tutorial Classes: Nil		Prac	tical Cla	asses: 36	Total Classes:36					
Branch: ECE	Semester: V	Academic Year: 2021-22 Regulation: UG20				n: UG20					

Course overview:

The Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a development environment designed by National Instruments that creates graphic-based programs called virtual instruments (VIs) that simulate actual laboratory instruments. The course imparts the basic knowledge about the software based tools for the development of virtual instruments for use in real world data acquisition and measurement systems. The course seeks to provide a hands-on environment and uses a number of VI-programming.

Course objectives:

The students will try to learn:

- I. The concept of virtual instrumentation and to develop basic VI programs using loops, case structures etc. including its applications in image, signal processing and motion control.
- II. LabVIEW tool to design basic operations and data acquisition using myDAQ and myRIO cards.
- III. Prototype model for distribute stand-alone applications using LabVIEW.

Course outcomes:

After successful completion of the course, students should be able to:

CO1: Build the arithmetic and logical operations based applications using the LabVIEW graphical programming

CO2: Apply single and multiple-loop design patterns for application functionality.

CO3: Analyze data log waveform graphs for system monitoring, processing and controlling

CO4: Demonstrate the formula node in LabVIEW for signal processing, image processing etc.

CO5: Design data acquisition systems using myDAQ and myRIO data cards.

CO6: Illustrate the data acquisition and interfacing concepts using a state-of-the-art software platform such as National Instrument's LabVIEW.

WEEK NO	EXPERIMENT NAME	CO	
WEEK – I	OPEN AND RUN A VIRTUAL INSTRUMENT		
	Open the front panel and block diagram in Lab VIEW software	CO1	
WEEK – II	SUM OF "n" NUMBERS USING "FOR" LOOP AND WHILE LOOP FACTORIAL OF A GIVE NUMBER USING FOR LOOP AND WHILE LOOP		
	Design a program to find the sum of _n,, numbers using FOR loop and WHILE loop	CO2	
	Design a program to perform the factorial of a given number using FOR loop and WHILE		
	loop.		
WEEK – III	BUNDLE AND UNBUNDLE CLUSTER	CO1	
	Design a program to bundle and unbundle a cluster.		
WEEK – IV	APPLICATION USING FORMULA NODE & DISCRETE COSINE TRANSFORM	CO4	

	Design a program to create a sine wave using formula node and to perform discrete cosine transform on the given signal.			
WEEK – V	FLAT AND STACKED SEQUENCE			
	Design a program to perform functions using flat and stacked sequence.	CO2		
WEEK – VI	AMPLITUDE MODULATION			
	Design a program to perform Amplitude Modulation.			
WEEK – VII	REAL TIME TEMPERATURE MONITORING USING VIRTUAL INSTRUMENTATION.	CO6		
	Design a program for real time temperature monitoring by using virtual instrumentation			
WEEK -VIII	MEASURE DISTANCE USING IR RANGER AND MYDAQ			
	Design a program for measure distance using ir ranger and myDAQ	CO5		
WEEK - IX	MEASUREMENT OF VIBRATIONS USING PIZEO ELECTRIC TRANSDUCER AND MYDAQ	CO5		
	Design a program for measurement of vibrations using pizeo electric transducer and myDAQ			
WEEK - X	MEASUREMENT OF VIBRATIONS USING PIZEO ELECTRIC TRANSDUCER AND MYRIO	CO5		
	Design a program for measurement of vibrations using pizeo electric transducer and myRIO			
WEEK - XI	INTERFACE SERVO MOTOR AND DC MOTORS USING MYDAQ	CO5		
	Acquire the data from the sensors by using myDAQ and myRIO			
WEEK - XII	INTERFACE SERVO MOTOR AND DC MOTORS USING MYRIO	CO5		
	Design a program to interface servo motor and dc motors using myRIO			
WEEK - XIII	MEASURE DISTANCE USING IR RANGER AND MYRIO			
	Design a program to develop signal generator by using myRIO cards			
WEEK - XIV	DEVELOPING SIGNAL GENERATOR USING DAQ CARDS			
	Design a program to develop signal generator by using myDAQ cards	CO5		