

Dundigal, Hyderabad – 500043 Electronics and Communication Engineering List of Laboratory Experiments

VLSI DESIGN LABORATORY										
Course Code	Category	Ho	urs / We	eek	Credits	Maximum Marks		·ks		
AECB29	Core	L	Т	Р	С	CIA	SEE	Total		
		0	0	3	1.5	30	70	100		
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 36 Total Classes:36			sses:36					
Branch: ECE	Semester: VII	Academic Year: 2021-22					Regulation: R18			

Course overview:

The art of VLSI circuit design is dynamic with advances in process technology and innovations in the electronic design automation (EDA) industry. The objective of this laboratory course is to demonstrate the various stages in VLSI design flow using cadence software. Hands on training on logic and circuit simulations of MOSFETS, ring oscillators, multiplexers, analog amplifiers etc are included. The course also covers physical layout of complex logic gates for chip design.

Course objectives:

The students will try to learn:

- I. Modern tools for functional level to physical layout with verification at intermediate stages in the VLSI design flow in top-down approach.
- II. Design and simulations of analog, digital and mixed circuits for optimum values of area over head, power and time delay.
- III. The Chip design through a practical approach using advanced modern tools such as vivado and cadence for front end& back end.

Course outcomes:

After successful completion of the course, students should be able to:

CO1: Calculate the static, dynamic and noise margin parameters of CMOS inverter using the output and transfer characteristics of MOSFETs

CO2: Analyze complex gates, switch logic and transmission gates for performance optimization of distortion, power consumption and circuit delays

CO3:Build 4 X 1 multiplexer and ring oscillator using multiplexer & inverter circuit symbols with necessary inter connections

CO4: Examine the conditions for optimum performance of latches and registers with the knowledge of digital system design. **CO5: Calculate** bandwidth, gain, and common mode rejection ratio parameters for differential, MOSFET and casode amplifiers.

CO6:Build the stick diagrams, layouts of MOS circuits using design rule checks (DRC) and verification

WEEK NO	EXPERIMENT NAME	СО	
WEEK – I	MOSFET		
	To plot the, (i) output characteristics	C01	
	(ii) Transfer characteristics of an n-channel and p-channel MOSFET.		
WEEK – II	CMOS INVERTER	CO1	
	To design the static (VTC) and dynamic characteristics and layout of a digital CMOS inverter.		
WEEK – III	RING OSCILLATOR	CO2	
	To design and plot the output characteristics of a 3 stage ring oscillator using CMOS inverters.		
WEEK – IV	LOGIC GATES	CO2	

	To design and plot the dynamic characteristics of 2-input NAND, NOR, XOR and XNOR logic gates using CMOS design style.			
WEEK – V	4X1 MULTIPLEXER			
	To design and plot the characteristics of a 4x1 digital multiplexer using pass transistor logic and transmission gatelogics	CO3		
WEEK – VI	LATCHES			
	To design and plot the characteristics of a positive and negative latch using multiplexers.	CO4		
WEEK – VII	REGISTERS			
	To design and plot the characteristics of a master-slave positive and negative edge triggered registers based onmultiplexers.	CO4		
WEEK –VIII	DIFFERENTIAL AMPLIFIER	~~~		
	Design and simulation of a simple 5 transistor differential amplifier. Measure gain and Common mode rejection ratio.	CO5		
WEEK - IX	MOSFET COMMON SOURCE AMPLIFIER			
	Analysis of Frequency response of Common source amplifiers using n and p MOSFETs	CO5		
WEEK - X	MOSFET COMMON DRAIN AMPLIFIER	CO5		
	Analysis of Frequency response of Common drain amplifiers using n and p MOSFETs	005		
WEEK - XI	SINGLE STAGE CASCODE AMPLIFIER	CO5		
	Design and Simulation of Single Stage Cascode Amplifier.	005		
WEEK - XII	BASIC CURRENT MIRROR, CASCODE CURRENT MIRROR AMPLIFIER	- CO6		
	Design and Simulation of Basic Current Mirror, Cascode Current Mirror Amplifier.	000		
WEEK - XIII	I DESIGN OF NAND/NOR USING CNTFET			
	Design and plot the dynamic characteristics of 2-input NAND/ NOR logic gates using CNTFET.	CO6		
WEEK - XIV	DESIGN OF DIFFERENTIAL AMPLIFIER USING FINFET Analysis of Frequency response of differential amplifiers using FinFET.			