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Matrix: A system of mn numbers 

(real or complex) arranged in a 

rectangular array of m horizontal lines 

(Called rows) and n vertical lines 

(called columns) is known as matrix of 

order [read as “m by n matrix”]. These 

numbers are called elements being 

enclosed in brackets [ ] or ( )   . 

Matrix: A system of mn numbers (real 

or complex) arranged in a rectangular 

array of m horizontal lines (Called 

rows) and n vertical lines (called 

columns) is known as matrix of order 

[read as “m by n matrix”]. These 

numbers are called elements being 

enclosed in brackets [ ] or ( )   . 

Matrix: A system of mn numbers (real or complex) arranged in 
a rectangular array of m horizontal lines (Called rows) and n 
vertical lines (called columns) is known as matrix of order mxn
*read as “m by n matrix”+. These numbers are 
called elements being enclosed in brackets [ ] 
or ( )   . 
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1.Real Matrix: A matrix whose elements are real numbers is 
called a real matrix.

Example:                       is a real matrix.6 0 1

4 3 2

 
 
 

2.Symmetric Matrix: A square matrix
A =
is called symmetric , if  A = 
Thus, for a symmetric matrix A, we have

for all i and j.

ija  
TA

ija  jia
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3.Skew-Symmetric Matrix: A square matrix

A =            is called skew-symmetric, if ija  

TA A 

Thus for a skew-symmetric matrix A

ij jia a  for all i and j.

0 2 3

2 0 6

3 6 0

 
 

 
   

0

0

0

h g

h f

g f

 
 

 
   

Example: 
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Note: If A is a skew-symmetric matrix then : 

ij jia a 

ii iia a i   2 0iia 

Thus, the diagonal elements of a skew-

symmetric matrix are all zero.
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4. Orthogonal Matrix: A square matrix with real

elements is said to be orthogonal if

TA A I

1TA A  
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Example:  Show That Cos 0 Sin

Sin Sin Cos Sin Cos

Cos Sin Sin Cos Cos



    

    

 
 


 
  

Is an orthogonal matrix

Solution: Let A = 
Cos 0 Sin

Sin Sin Cos Sin Cos

Cos Sin Sin Cos Cos



    

    

 
 


 
  

Cos Sin Sin Cos Sin

0 Cos Sin

Sin Sin Cos Cos

TA

    

 

   

 
 


 
  
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Cos 0 Sin

Sin Sin Cos Sin Cos

Cos Sin Sin Cos Cos

TAA



    

    

 
 

 
 
  

Cos Sin Sin Cos Sin

0 Cos Sin

Sin Sin Cos Cos

    

 

   

 
 
 
  

2 2

2 2 2 2

2 2 2

2

Cos Sin Sin Cos Cos Sin
Cos Sin

Sin Sin Cos Sin Cos Cos

Sin Sin Cos Sin Sin Cos Sin Cos Sin Cos Sin

Sin Cos Sin Sin Cos Sin Cos Cos

Cos Sin Cos Cos Sin Sin Sin Cos

Cos Cos Sin

     
 

     

          

       

       

  

 




  


  

   2 2 2

2 2 2

Cos Sin Sin

Cos Sin Cos Cos Cos

  

    

 
 
 
 
 
 
 

 
 

  
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2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

1 0 0

0 Sin (Sin Cos ) Cos Sin Cos (Sin Cos ) Cos Sin (Sin Cos ) Cos

0 Cos Sin (Sin Cos ) Sin Cos Cos (Sin Cos ) Sin

           

         

 
 

      
 
      

1 0 0

0 1 0

0 0 1

 
 


 
  

Since, TAA I

A is an Orthogonal Matrix.
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Exercise 

Q.1 Express the  following matrices 

2 4 8

6 2 8

2 2 2

 
 
 
  

as the sum of a symmetric matrix and a skew-

symmetric matrix

3 4 1

6 0 1

3 13 4

  
 


 
   
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Q.3 Verify the matrix 2 3 1

4 3 1

3 1 9

 
 
 
  

is orthogonal or not.

Q.4 Show that the matrix

1 2 2

3 3 3

2 1 2

3 3 3

2 2 1

3 3 3

 
 
 

 
 
 

 
  

is orthogonal.

Q.5 Show that the matrix

1 1 1 1

1 1 1 11

1 1 1 12

1 1 1 1

A

 
 


 
 
 

 
is orthogonal
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COMPLEX MATRICES:  So far we discussed about real numbers 
whose elements were real. In this topic we will be considering the 
matrices whose elements are complex numbers. Complex 
matrices have a very wide applications in many areas of 
Engineering Such as quantum mechanics etc.

Complex Matrix: A matrix in which at least one element is 
imaginary is called a Complex Matrix

4 0

5 0 2

i

i

 
 
 

Example: 
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6.Conjugate of a Matrix:The matrix obtained from any 
given
matrix A on replacing its elements by the corresponding 
conjugate complex numbers is called the conjugate of

A denoted by A
Thus, if Thus, if ij m n

A a


    ij m n
A a


   then

Where, ija

denotes the conjugate complex of
denotes the conjugate complex of ija

Example: If 2 3 5

6 2 5

i
A

i i

 
  

  

2 3 5

6 2 5

i
A

i i

 
  

  
then 
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7.Transposed Conjugate of a Matrix: The transpose of the
conjugate of a matrix A is called transposed conjugate of A and is
denoted by A

T TA A A       

i.e., The transpose of the conjugate of a square matrix is same 
as the conjugate of its transpose
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Example:          Let 
1 2 2 3 5

5 2 5 2 8 5

2 6 9

i i

A i i i

i

  
 

   
 
  

1 2 2 3 5

5 2 5 2 8 5

2 6 9

i i

A i i i

i

  
 

   
 
  

then. then.

 
T

A A 
1 2 5 2 2

2 3 5 2 6

5 8 5 9

i i

i i

i i

  
 

  
 
   
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Example:          Let 
1 2 2 3 5

5 2 5 2 8 5

2 6 9

i i

A i i i

i

  
 

   
 
  

1 2 2 3 5

5 2 5 2 8 5

2 6 9

i i

A i i i

i

  
 

   
 
  

then. then.

 
T

A A 
1 2 5 2 2

2 3 5 2 6

5 8 5 9

i i

i i

i i

  
 

  
 
   
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Hermitian Matrix: If the transpose of the conjugate matrix is
equal to the matrix itself i.e.,

A A 

then the matrix A is said to be a Hermitian Matrix.

Thus,

ijA a   
is Hermitian, if

ij jia a  i, j.

Thus every diagonal element of a Hermitian matrix is real.

Example:
1 2 3 2

2 0 2

3 2 2 4

i i

i i

i i

  
 


 
   

is a Hermitian Matrix.
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Skew-Hermitian matrix: A square matrix 
jiA a   

is said to be Skew-Hermitian if A A   i.e., ij jia a 

If A is a Skew-Hermitian matrix, then
ii iia a 

0ii iia a 
So, that iia

is either a purely imaginary number or zero. Thus the diagonal
elements of a Skew-Hermitian matrix must be a purely
imaginary number or zero.
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Example: 0

0

i

i

 
 
 

1 1 2

1 3

2 0

i

i i i

i

 
 
 
 
  

are Skew-Hermitian matrices.

Unitary matrix: A square matrix A with complex elements is
said to be unitary if

A A I 

3

2 2

3

2 2

i

i

 
 
 
 
 
 

the matrix Is an example for a 
unitary matrix.
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Theorem 8: If A is any square matrix, then prove 

that : 

(a)  A A is Hermitian. 

(b) ,AA A A   are Hermitian. 

(c) A A is Skew-Hermitian. 
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Proof   

(a)  
A A A A

             

             A A   

                                                  A A   

                 A A  is Hermitian. 
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AA A A AA

            

A A A A
 

            

                   A A    

                                   A A      

        A A is Skew-Hermitian. 
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Exercise Q.1 If A is Hermitian Matrix, then show that iA 

is a Skew-Hermitian Matrix. 

Q.2 Show that the matrix 

15 8 6 2

8 0 4

6 2 4 3

i i

i i

i i

 
 
  

 
     

 is 

Hermitian. 

 

Q.3 Show the matrix

0 8 2

8 0 4

2 4 0

i i

i i

i i

 
 
 
  

is Skew-

Hermitian. 
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Q.4 Express the matrix

2 3 4 5

6 0 4 5

2 2

i i i

i i

i i i

  
 
 

 
    

as the sum of a 

Hermitian and Skew-Hermitian Matrix. 

 

Q.5 If

2 3 2 4

3 2 5 6

4 6 3

i

A i i

i

  
 

 
 
   

 Show that A is Hermitian and 

iA is a Skew-Hermitian Matrix. 
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ELEMENTARY ROW AND COLUMN 

TRANSFORMATIONS 

Let, 1R , 2R …. nR  be the row vectors of matrix A of 

order m n and 1 2, .... nC C C  be the column vectors of 

A 

 An elementary row operation of A is of any 

one of the following three operations of 

transformation 



ROW OPERATIONS

27

*The interchange of any two rows.
*Multiplication of a row by a non-zero scalar K.
*Replace a row by adding to itself any non-zero scalar multiple 
of any other row

The notations we shall follow for these three elementary row 
operations is as follows :

1. Interchange of thi and thj row is denoted by 
i jR R . 

2. Multiplication of thi row by a non-zero scalar K is 

denoted by i iR KR  

3. Addition of K times the thj row to the thi row is 

denoted by i i jR R KR  . 
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The notations we shall follow for these three 

elementary row operations is as follows : 

1.Interchange of 
thi and thj row is denoted by 

i jR R . 

1. Multiplication of 
thi row by a non-zero 

scalar K is denoted by i iR KR  

2.Addition of K times the 
thj row to 

the
thi row is denoted by i i jR R KR  . 
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Similarly we can define an elementary column operation of A as 
one of the following three operations.

*The interchange of any two columns.

*Multiplication of a column by a non-zero scalar K.

*Replace a column by adding to itself any non-zero scalar 
multiple of any other column.

*The notations we shall follow for these three elementary 
column operations is as follows 
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1. Interchange of
thi and thj column is denoted by 

i jC C  

2. Multiplication of
thi column by a non-zero scalar K 

will be denoted by iC K  

3. Addition of K times the thj column to the thi column 

will be denoted by i i jC C KC   
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Rank of a Matrix: 

 Let A be mxn matrix. If A is a null 

matrix, we define its rank to be ‘0’. If A is a 

non-zero matrix, we say that r is the rank 

of A if 

(i) Every (r+1)th order minor of A is ‘0’ 

(zero) & 

(ii) At least one rth order minor of A 

which is not zero. 

Note: 1. It is denoted by  ρ(A) 
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Note: 1. It is denoted by  ρ(A) 

2. Rank of a matrix is unique. 

3. Every matrix will have a rank. 

4. If A is a matrix of order mxn, 

  Rank of A ≤ min(m,n) 

5. If ρ(A) = r then every minor of A of 

order r+1, or more is zero. 

6. Rank of the Identity matrix In is n. 

7. If A is a matrix of order n and A is non-

singular then ρ(A) = n 
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1. Find the rank of the given matrix 

















12107

443

321

 

 Given matrix A =  
















12107

443

321

 

 det A = 1(48-40)-2(36-28)+3(30-28) 

              =  8-16+6 = -2 ≠ 0 

We have minor of order 3  

ρ(A) =3 
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2. Find the rank of the matrix  

















5078

8765

4321

 

   Sol: Given the matrix is of order 3x4 

 

 Its Rank ≤ min(3,4) = 3 

 Highest order of the minor will be 3. 

Let us consider the minor 
















078

765

321
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Determinant of minor is 1(-49)-2(-56)+3(35-48) 

   = -49+112-39 = 24 ≠ 0. 

Hence rank of the given matrix is ‘3’. 

 

Let us consider the minor 

















078

765

321
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Echelon form of a matrix: 

A matrix is said to be in Echelon form, if  

(i). Zero rows, if any exists, they should be 

below the non-zero row. 

(ii). The first non-zero entry in each non-

zero row is equal to ‘1’. 

(iii). The number of zeros before the first 

non-zero element in a row is less than the 

number of such zeros in the next row. 
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Note: 1.  The number of non-zero rows in  

echelon form of A is the rank of ‘A’. 

1. The rank of the transpose of a 

matrix is the same as that of original 

matrix. 

2. The condition (ii) is optional. 
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1. Find the rank of the matrix A =  





















131

423

732

by reducing it to Echelon form. 

sol: Given A = 




















131

423

732

 

Applying row transformations on A. 

A ~ 




















732

423

131

  

R1 ↔ R3 
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~














 

990

770

131

 

 R2 → R2 –3R1 

    R3→ R3 -2R1 















 

110

110

131

 

~ R2 → R2/7, 

R3→ R3/9  

~ 













 

000

110

131

  

 

 

R3 → R3 –R2 
 

This is the Echelon form of  matrix A.  

 The rank of a matrix A. 

 = Number of non – zero rows =2 
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1. For what values of k the matrix  

























399

222

0111

1344

k

k
 has rank ‘3’. 

Sol: The given matrix is of the order 4x4  

  If its rank is 3  det A =0 

 

A = 
























399

222

0111

1344

k

k
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Applying R2 → 4R2-R1, R3 →4R3 – kR1, R4 

→ 4R4 – 9R1 

 

We get A ~ 


























327400

838480

1100

1344

k

kkk  
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Since Rank A = 3  det A =0  

 

 4 

0

32740

83848

110









k

kkk
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 1[(8-4k)3]-1(8-4k)(4k+27)] = 0 

 (8-4k) (3-4k-27) = 0 

 (8-4k)(-24-4k) =0  

 (2-k)(6+k)=0  

 k =2 or k = -6 
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Normal Form:  

 Every mxn matrix of rank r can be 

reduced to the form  








00

0rI

 

 (or) (Ir ) (or) 








0

rI (or) 






 0rI

  

by a finite number of elementary 

transformations, where Ir is the r – 

rowed unit matrix. 
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Normal form or canonical form 

e.g: By reducing the matrix 
 

                      
















10503

3412

4321

 

into normal form, find its rank.  
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Sol: Given A =
















10503

3412

4321

 

R2 → R2 – 2R1 

A ~ 




















22460

5230

4321

 R3 → R3 – 3R1 

A ~ 


















11230

5230

4321

      R3 → R3/-2 

 

NORMAL FORM
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A ~ 

















6000

5230

4321

                    

 R3 → R3+R2 

A ~ 

















6000

5230

0000

  

 c2→ c2 - 2c1, c3→c3-3c1, c4→c4-4c1 
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A ~


















18000

0030

0001

 

c3 → 3 c3 -2c2, c4→3c4-5c2 

 

     

A ~ 















1000

0010

0001

 

 c2→c2/-3, c4→c4/18 
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A~ 
















0100

0010

0001

 

c4 ↔ c3 

This is in normal form [I3 0] 

Hence Rank of A is ‘3’. 
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Gauss – Jordan method 

 The inverse of a matrix by 

elementary Transformations: 

(Gauss – Jordan method) 

1. suppose A is a non-singular matrix 

of order ‘n’ then we write A = In A 

2. Now we apply elementary row-

operations only to the matrix A and 

the pre-factor In of the R.H.S 

3. We will do this till we get In = BA 

then obviously B is the inverse of A. 
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*Find the inverse of the matrix A using 

elementary operations where 

 A  =      
















210

320

461

 

Sol: 

Given A =            
















210

320

461
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We can write A = I3 A 

 
















210

320

461

  
= 

















100

010

001

   A 

Applying R3 →2R3-R2, we get 

 
















100

320

461

   
=  

















 210

010

001

   A 
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Applying R1→R1-3R2, we get 

 














 

100

320

501

  
=   





















210

010

031

  
 A 

Applying R1 → R1+5R3, R2 → R2-3R3 , we 

get 

 
















100

020

001

   
=    























210

640

1081

   
A   
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Applying R2 → R2/2, we get   

                                                                                     

















100

010

001

   
= 






















210

320

1081

    
A  

 

 I3 = BA 

 B is the inverse of A. 
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LINEAR DIFFERENTIAL EQUATIONS WITH 

CONSTANT COEFFICIENTS 

Def:  

An equation of the form  + P1  + 

P2  + --------+ Pn .y = Q(x) where   P1, 

P2, P3,…..Pn, are real constants and Q(x) is a 

continuous function of x is called an linear 

differential equation of order ‘ n’ with 

constant coeffin 
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To find the general solution of f(D).y = 0 :  

 Where f(D) =  Dn + P1 Dn-1 + P2 Dn-2 +-----------

+Pn is a polynomial in D. 

 Now consider the auxiliary equation : f(m) = 

0 

i.e f(m) =  mn + P1 mn-1 + P2 mn-2 +-----------+Pn  

= 0  

where p1,p2,p3 ……………pn are real constants. 

Let the roots of f(m) =0 be m1, m2, m3,…..mn.   

Depending on the nature of the roots we 

write the complementary function  

as follows:  
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60



61



62



63



64



65



66



67



68



69



70



71



72



73



74



75



76



77



78



79
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MODULE-II

MATRIX LINEAR TRANSFORMATION 

AND

DOUBLE INTEGRALS
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 Eigen Values & Eigen Vectors 

Def:  Characteristic   vector of a matrix: 

Let  A= [ aij] be  an  n x n  matrix.  A non-

zero vector X is said to be a   

Characteristic  Vector of A if there exists  

a  scalar  such that AX=λX. 
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Note:  If  AX=λX (X≠0), then  we  say ‘λ’  is   

the   eigen  value (or) characteristic root 

of ‘A’.Eg: Let A=       X =    

AX   =      =       

 

.  
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Method of finding the Eigen vectors of a 

matrix.  

Let A = [aij] be a nxn matrix. Let X be an 

eigen vector of A corresponding to the 

eigen value λ.  

Then by definition   AX = λX.  

 AX = λIX 

 AX –λIX = 0 

 (A-λI)X = 0 ------- (1)  

This is a homogeneous system of n 

equations in n unknowns.  
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Will have a non-zero solution X if and 

only |A-λI| = 0 

A-λI is called characteristic matrix of A 

|A-λI| is a polynomial in λ of degree n and 

is called the characteristic polynomial of 

A  

|A-λI|=0 is called the characteristic 

equation  

Solving characteristic equation of A, we 

get the roots ,  These are called 

the characteristic roots or eigen values of 

the matrix.  
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- Corresponding to each one of these n 

eigen values, we can find the 

characteristic vectors.  

- Procedure to find eigen values and 

eigen vectors  

- Let A =  

 
11 12 1

21 22 2

1 2

. .,

n

n

n n nn

a a a

a a a
i e A I

a a a








 
 


  
 
 

 





   


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Then the characterstic polynomial is  IA 

 
 

















nnnn

n

n

aaa

aaa

aaa

IAsay

...

............

...

...

21

22221

11211

The characteristic 

equation is  |A-  we solve the 

we get n roots, these are called eigen 

values or latent values or proper values.  
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Let each one of these eigen values say λ 

their eigen vector X corresponding the 

given value λ is obtained by solving 

Homogeneous system 

11 12 1 1

21 22 2 2

1 2

0

0

0

n

n

n n nn n

a a a x

a a a x

a a a x







     
     


     
     
     

     





   



 

And determining the non-trivial solution.  
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1. Find the eigen values and the 

corresponding eigen vectors of matrix   

                    Sol: Let A =  

The characteristic equation is |A-λI|=0 

i.e. |A-λI| =  
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  λ=1,2,3 

The eigen values of A is 1,2,3. 
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                     



















































1

0

1

0

3

2

1







x

x

x
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Properties of Eigen Values:   

Theorem 1: The sum of the eigen values 

of a square matrix is equal to its trace and 

product of the eigen values is equal to its 

determinant.  

Proof: Characteristic equation of A is 

  |A-λI|=0 
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,  

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a







 
 


 
 
 

 





   


 

 

    11 22 12nna a a a       

(a polynomial of degree n – 2) 

+ a13 (a polynomial of degree n -2) + … = 0 
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  0)2(deg)....()1( 1

2211   nreeofpolynomialaaaa n

nn

nn 
 

0)2(deg)()1()1( 11    innreeofpolynomialaATrace nnnn

 

 
s 
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Theorem 2: If  is an eigen value of A 

corresponding to the eigen vector X, then 

 is eigen value An corresponding to the 

eigen vector X.  

Proof: Since  is an eigen value of A 

corresponding to the eigen value X, we 

have  
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AX=  ----------(1) Pre multiply (1) by A, 

A(AX) = A( X)  

(AA)X = (AX) 

A2X= ( X)  

A2X= 2X 

2  is eigen value of A2 with X itself as the 

corresponding eigen vector.  

n   is an eigen value of An 

 



PROPERTIES OF EIGEN VALUES

101

Theorem 3: A Square matrix A and its 

transpose AT have the same eigen values.  

Theorem 4: If A and B are n-rowed square 

matrices and If A is invertible show that A-

1B and B A-1  have same eigen values.  

Theorem 5: If n ..,........., 21  are the eigen values 

of a matrix A then k 1, k 2, ….. k n are the 

eigen value of the matrix KA, where K is a 

non-zero scalar.  

Theorem 6: If  is an eigen values of the 

matrix A then +K is an eigen value of the 

matrix A+KI  
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Theorem 7: If 1, 2 … n are the eigen 

values of A, then 

 1 – K,  2  – K, …    n – K,

scalarzerononaisKwhereKIAmatrixtheofvalueseigentheare  ),(  

Theorem 8: If  are the eigen values 

of A, find the eigen values of the matrix 
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Theorem 15: The eigen values of a 

triangular matrix are just the diagonal 

elements of the matrix.  

 

Theorem 16: The eigen values of a real 

symmetric matrix are always real.  

Theorem 17: For a real symmetric matrix, 

the eigen vectors corresponding to two 

distinct eigen values are orthogonal.  
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Let f(A)  =  

Then eigen values of f(A) are f(1), f(3) and 

f(-2)  

f(1) = 3(1)3+5(1)2-6(1)+2(1) = 4 

f(3) = 3(3)3+5(3)2-6(3)+2(1) = 110 

f(-2) = 3(-2)3+5(-2)2-6(-2)+2(1) = 10 

Eigen values of  are 4,110,10 
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Cayley - Hamilton Theorem: Every square 

matrix satisfies its own characterstic 

equation. 

Q)Show that the matrix A =  

satisfies its characteristic equation Hence 

find A-1 
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Sol: Characteristic equation of A is det 

 (A-λI) = 0 

       C2   C2+C3 
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By Cayley – Hamilton theorem, we have 

A3-A2+A-I=0 









































































011

122

221

101

211

001

210

321

221
32 AAA

 

 



























































































100

010

001

210

321

221

101

211

001

011

122

221
23 IAAA
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=  

Multiplying with A–1 we get A2 – A + I =A–1 



























































































011

122

221

100

010

001

210

321

221

101

211

001
1A
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=  

Multiplying with A–1 we get A2 – A + I =A–1 



























































































011

122

221

100

010

001

210

321

221

101

211

001
1A
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Diagonalization of a matrix: 

Theorem: If a square matrix A of order n 

has n linearly independent eigen vectors 

(X1,X2…Xn) corresponding to the n eigen 

values λ1,λ2….λn respectively then a 

matrix P can be found such that 

 P-1AP is a diagonal matrix.  

Proof: Given that (X1,X2…Xn) be eigen 

vectors of A corresponding to the eigen 

values λ1,λ2….λn respectively and these 

eigen vectors are linearly independent 

Define P = (X1,X2…Xn)  
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Since the n columns of P are linearly 

independent |P|≠0 

Hence P-1 exists 

Consider AP = A[X1,X2…Xn]  

= [AX1, AX2…..AXn]  

= *λX1, λ2X2….λnXn]  
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[X1,X2…Xn] 


















n





...00

............

0...0

0...0

2

1

 

 

Where D = diag )..,.........,,( 321 n  

AP=PD 

P–1(AP) = P–1 (PD)  DPPAPP 11    

P–1AP = (I)D 

 

= diag )..,.........,,( 321 n  

Hence the theorem is proved.  
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Modal and Spectral matrices:  

The matrix P in the above result which 

diagonalize the square matrix A is called 

modal matrix of A and the resulting 

diagonal matrix D is known as spectral 

matrix.  

Note   1: If X1,X2…Xn are not linearly 

independent this result is not true.  

2: Suppose A is a real symmetric 

matrix with n pair wise distinct eigen 

values 1 2, n    then the corresponding 
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= P–1A2P        (since PP–1=I) 

Simlarly D3 = P–1A3P  

In general Dn = P–1AnP……..(1) 

To obtain An, Premultiply (1) by P and 

post multiply by P–1 

Then PDnP–1 = P(P–1AnP)P–1 

= (PP–1)An (PP–1) = An  1 PPDA nn  

Hence An = P 

1

12

0 0 0

0 0 0

0 0 0

n

n

n

n

P









 
 
 
 
 
  





   
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when λ=5  

By solving above we get X1 =  

Similarly, for the given eigen value λ=-3 

we can have two linearly independent 

eigen vectors X2 =  
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 is a diagonal matrix.  

Problems 

1. Diagonalize the matrix  

(i) 
2 2 1

1 3 1

1 2 2

 
 
 
  

(ii)
1 2 2

1 2 1

1 1 0

  
 
 
   
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MULTIPLE INTEGRALS

 

 

 

 Double integrals 

 Triple integrals 

 Change of order of integration  

 Transformation of coordinate system;  

 Determination of areas by double 

integrals 
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Double integrals



MULTIPLE INTEGRALS

125

Double Integral : 

I. When y1,y2 are functions of x and x1  and x2 

are constants. f(x,y)is first integrated w.r.t y 

keeping ‘x’ fixed between limits y1,y2 and then 

the resulting expression is integrated w.r.t ‘x’ 

with in the limits x1,x2 i.e., 

 ,
R

f x y dxdy 
  

2 2

1 1

( )

( )

( , )

x x y x

x x y x

f x y dydx





 

 

 
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II. When x1,x2 are functions of y and y1 ,y2 are 

constants, f(x,y)is first integrated w.r.t ‘x’ 

keeping ‘y’ fixed, with in the limits x1,x2 and 

then resulting expression is integrated w.r.t ‘y’ 

between the limits y1,y2 i.e., 

 ,
R

f x y dxdy 
  

 
 

 22

1 1

,

x yy y

y y x y

f x y dx dy







 

 
 

III. When x1,x2, y1,y2 are all constants. Then 

 ,
R

f x y dxdy 
  

   
2 2 2 2

1 1 1 1

, ,

y x x y

y x x y

f x y dx dy f x y dy dx   
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1. Evaluate 

2 3

2

1 1

xy dx dy   

Sol. 

2 3

2

1 1

xy dx dy
 
 
 
 

 

 
32 22 2

2

1 11

. 9 1
2 2

x y
y dy dy
 

   
 
 

 

2 2

2 2

1 1

8
4.

2
y dy y dy  

 

 
2

3

1

4 4.7
4. 8 1

3 3 3

28

3

y 
     

  
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Evaluate 

2

0 0

x

y dy dx   

Sol. 

2 2

0 0 0 0

x x

x y x y

y dy dx y dy dx
   

 
  

  
   

 

   
22 2 22 3

2 2

0 0 00 0

1 1 1 1 4
0 8 0

2 2 2 2 3 6 3

x

x x x

y x
dx x dx x dx

  

   
          

   
  
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Evaluate 

21 1

2 2

0 0
1

x
dydx

x y



  
    

 

Sol:  

2 21 1 1 1

2 2 2 2

0 0 0 0

1

1 1

x x

x y

dydx
dy dx

x y x y

 

 

 
 

     
   

  
 

 

2

2

1

1 1 1

1

2 2 2
2 2

0 0 0

0

1 1

1 11

x

x

x y x

y

y
dy dx Tan dx

x xx y







  



 
  

    
    

 

  

1

2 2

1 1
[ tan ( )]xdx

ax a a


  

1

1 1

2
0

1
1 0

1x

Tan Tan dx
x

 



   



  

or

 
1 1 1

0(sinh x) (sinh 1)
4 4

  

 
1 1

2

2 0
0

1
log( 1)

4 41 x
x

dx x x
x

 




    
 

  

log(1 2)
4


   
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      Evaluate 
2

1

0
0

s inr d d r



     

      Sol. 
1

2

0 0
s in

r
r d d r




 

 

 
  

 
 

 

 
1

2

00
c o s

r
r d r







   
 

 
1

0
cos cos 0

2r
r dr


  

 

 
1

2
1 1

0 0
0

1 1
0 1 0

2 2 2r

r
r dr rdr



 
        

 
 
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Evaluate 

s in
4

2 20 0

a r d r d

a r

  


 

   
     Sol.      

sin
4

2 20 0

sin
4

2 20 0

sin
4

2 20 0

21
2

a

a

a

rdrd

a r

r
dr d

a r

r
dr d

a r

 

 

 










 
 

 

   
 

 

 

 
 

 

   
sin

4 42 2 2 2 2 2

0 00

1
2 1 2 sin 0

2

a

a r d a a a d
 

  
        

  
 

      
4

4

0 0
cos 1 sina d a




        
 

   s i n 0 0
4 4

a        
    

 

  1 12
4 42 2

a     
    

      
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Problems 

1. Evaluate 
2 3

2

1 1

xy dx dy   

Sol. 2 3

2

1 1

xy dx dy
 
 
 
   

 
32 22 2

2

1 11

. 9 1
2 2

x y
y dy dy
 

   
 
   

2 2

2 2

1 1

8
4.

2
y dy y dy    

 
2

3

1

4 4.7 28
4. 8 1

3 3 3 3

y 
      
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4. Evaluate 
21 1

2 2

0 0
1

x
dydx

x y



       
 

Sol: 
 

2 21 1 1 1

2 2 2 2

0 0 0 0

1

1 1

x x

x y

dydx
dy dx

x y x y

 

 

 
 

     
      

 

 

2

2

1

1 1 1

1

2 2 2
2 2

0 0 0

0

1 1

1 11

x

x

x y x

y

y
dy dx Tan dx

x xx y







  



 
  

    
    

 

  
1

2 2

1 1
[ tan ( )]xdx

ax a a


  

1

1 1

2
0

1
1 0

1x

Tan Tan dx
x

 



   


  
or

 
1 1 1

0(sinh x) (sinh 1)
4 4

  

 
1 1

2

2 0
0

1
log( 1)

4 41 x
x

dx x x
x

 




    
 

  

log(1 2)
4


   
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10. Evaluate ( )xy x y dxdy    
over the region R 

bounded by y=x2 and y=x 

Sol: y= 2x  is a parabola through (0, 0) 

symmetric about y-axis y=x is a straight line 

through (0,0) with slope1.  

Let us find their points of intersection 

solving y= 2x , y=x we get 2x =x  x=0,1Hence 

y=0, 1 

 The point of intersection of the curves are 

(0,0), (1,1)  

Consider ( )
R

xy x y dxdy  
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2

32
1

2

0 2 3

x

x

y x

y xy
x dx





 
  

 


4 4 6 7
1

0 2 3 2 3x

x x x x
dx



 
    

 


4 6 7
1

0

5

6 2 3x

x x x
dx



 
   

 


1
5 7 8

0

5
.

6 5 14 24

x x x 
   
 

1 1 1 28 12 7 28 19 9 3

6 14 24 168 168 168 56

  
      
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11. Evaluate 
R

xydxdy   where R is the 

region bounded by x-axis and x=2a and 

the curve x2=4ay. 

  Sol. The line x=2a and the parabola          

x2=4ay intersect at B(2a,a) 

The given integral = 
   

R

xy dx dy   

Let us fix ‘y’ 

For a fixed ‘y’, x varies from 2 ay
 
to 2a. 

Then y varies from 0 to a. 

Hence the given integral can also be 

written as 
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2 2

0 2 0 2

a x a a x a

y x ay y x ay
xy dxdy xdx ydy

 

   

 
     

2
2

0
2

2

a
a

y
x ay

x
ydy




 
  

 


2

0
2 2

a

y
a ay y dy


   
2 2 3

0

2 2

2 3

a

a y ay 
  
 

4 4 4 4
4 2 3 2

3 3 3

a a a a
a


   
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                   12       Evaluate 
2

1

0
0

sinr d dr



     

           Sol.       
1

2

0 0
sin

r
r d dr




 

 

 
  

 
 

           
1

2

00
cos

r
r dr







 

 
           

1

0
cos cos0

2r
r dr


    

             
 

1
2

1 1

0 0
0

1 1
0 1 0

2 2 2r

r
r dr rdr



 
        

 
 
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And we also introduce function of several 

variables which are essential for the 

discussion of transcendental function and 

also maxima and minima of function of 

more than one variable with and without 

Constraints. In many engineering 

problems change of variables and 

transformation of co-ordinates play an 

important role in solving the problems. 

For such problems, Jacobian of functions 

of more than one variable and functional 

dependence are introduced. 
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Limits, Continuity and Differentiability: 

The reader familiar with the concept of 

limit, continuity and differentiability for 

real valued functions. In this section, we 

give a brief review of these concepts, 

which form the basis of differential 

calculus. 

   Throughout this section we consider 

:f A R  where A is an interval in R. It may 

happen that for a function f,  

     As  x approaches closer to a, the value 

 f x approaches closer to a definite real 

number l  
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(1) Note : The following are some 

fundamental properties of continuous 

functions. 

(2)  Definition: A function f is said to 

approach to a limit l  as x tends to a, if 

given 0  there exists 0  such that 

 0 x a f x l    .  

We write f(x)  = 1 

      x a  
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(1) Definition:  A function f is said to be 

continuous at x a  if    lim
x a

f x f a


  

If f is not continuous at x a . We say that f 

is discontinuous at x a . 

A function f is said to be continuous if it is 

continuous at every point of its domain. 
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(a) If f and g are continuous at ‘a’, then 

f g , f g , fg , kf and f/g (if 0g  ) are all 

continuous at ‘a’. 

(b)  Intermediate Value Theorem: Let f be 

a continuous function defined on a 

closed interval  ,a b and let    f a f b . Let c be 

any real number lying between  f a  and 

 f b .Then there exists  ,a b such that  f c  . 

In other words any continuous function 

defined on a closed interval [a, b] 

assumes every value lying between f(a) 

and f(b) is bounded. 
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(a) Let f be a continuous function defined 

on a closed interval [a, b]. Then there 

exists a real number M such that  f x M  

for all  ,x a b  

In other words any continous function 

defined on a closed interval is bounded.  

(3) Definition: A function f is said to be 

differentiable at x if 
   

0
lim
h

f x h f x

h

 
exists and 

is finite. The value of the limit is called the 

derivative or differential coefficient of f 

at x and is denoted by  'f x or df

dx
or dy

dx
where 

 y f x . 
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If the derivative of  'f x  is differentiable, 

then the derivative  'f x  is called the second 

derivative of  f x  and is denoted by  "f x  or 2

2

d f

dx

or 2

2

d y

dx
or 2y . Continuing this process, one can 

define thn derivative of the function  y f x , 

which is denoted by  nf x , or n

n

d f

dx
or n

n

d y

dx
or ny . 

 



MODULE-III

147

Note : If a function f is differentiable at x, 

then f is continuous at x. However the 

converse is not true. 

For example the function  f x x is 

continuous but not differentiable at 0x  . 
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 Rolle’s Theorem 

 Statement: Let  f x  be a function defined    

 on ,ab satisfying the following conditions. 

(a)  f is Continuous on  ,a b  

(b) f is differentiable on  ,a b  

(c)    f a f b  

Then there exists at least one 

point  ,C a b such that  ' 0f c   
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Geometrical Interpretation of Rolle’s 

Theorem: 

Interpreted geometrically in the following 

figure. 

 

Rolle’s Theorem says that the curve 

representing the graph of the function 

 y f x  must have a tangent parallel to the x-

axis at same point between a and b. 
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Daily life application of rolles theorem 

Since Rolle's theorem asserts the existence of 

a point where the derivative vanishes, I 

assume your students already know basic 

notions like continuity and differentiability. 

One way to illustrate the theorem in terms of 

a practical example is to look at the calendar 

listing the precise time for sunset each day. 

One notices that around the precise date in 

the summer when sunset is the latest, the 

precise hour changes very little from day to 

day in the vicinity of the precise date. This is 

an illustration of Rolle's theorem because 

near a point where the derivative vanishes, 

the function changes very little. 
  

 

  



ROLLES THOEREM

151

Example 1: 

Verify Rolle’s Theorem for   2 1f x x   

in [-1,1] 

Solution: 

Given   2 1f x x  , Which is a polynomial in 

‘x’ 

(i)  f x  is continuous in [-1,1], since it is 

polynomial function. 

(ii)  f x is also derivable in (-1,1), since it is 

polynomial function 
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(iii)  1 0f   ,  1 0f   

i.e.    1 1f f   

Hence all the conditions of Rolle’s 

theorem are satisfied for the function 

  2 1f x x  .Therefore there exists a 

constant, C such that  ' 0f c  . 

           ' 2f x x  

          2 0f c c   

          0 1,1C     

 i.e. C lies in the interval (-1,1) 

Hence Rolle’s  theorem is verified. 
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Verify Rolle’s theorem for the function

   ( )
nmf x x a x b   in [a, b] 

Solution:  

Given    ( )
nmf x x a x b    

(i)  Since  f x  is the product of two 

polynomial in x hence  f x  is continuous in 

[a, b]. 

(ii)            
1

' .
m n m

f x m x a x b x a


       
1n

n x b


  

                     
1 1m n

x a x b n x a m x b
 

         
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    'f x  exists for all  ,x a b  

     f x  is differentiable in  ,a b  

(iii)  Also     0f x f b   

   f x satisfies all the conditions of Roll’s 

Theorem. 

Then   ( , )C a b         such that 

            ' 0f c   
 





ROLLES THOEREM

156

          
1 1

0
m n

c a c b n c a m c b
 

       

 C a , c b ,     0n c a m c b     

        n a m b
C

m n





 

                    n a m b
C

m n





 ,a b  

Hence Rolle’s Theorem is verified. 
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Verify whether Rolle’s Theorem can be 

applied to the following function in the 

intervals cited : 

(i)     tanf x x   in  0,  

Solution:  

 f x  is discontinuous at 2
x   as, it is not 

defined there. 

 The condition (1) of Roll’s Theorem is 

not satisfied. Hence we cannot apply 

Rolle’s theorem. 

(ii)    2

1
f x

x
  in [-1, 1] 

It is discontinuous at 0x  . Hence we 

cannot apply. 
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Verify Rolle’s theorem for  f x x  in [-1 ,1]  

Solution: 

We have  f x x  

i.e.                   f x x , for 0x   

                              x  ,  for  0x   

(i)   f x  is continuous for all values of x . 
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  f x  is continuous in the closed interval 

 [-1, 1] 

(ii)   f x  is not derivable at 0x   

   We have  0 0 0f    

         L.H.D.  
   

0

0
' 0 lim

0x

f x f
f

x


  


 

           
0

0
lim
x

x

x


   
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 0
lim 1
x

x

x


     

R.H.S.                
   

0

0
' 0 lim

0x

f x f
f

x


 

    

  

                                     0

0

x

x
Lt

x


   

                                      0
1

x

x
Lt

x
  

 

 L.H.D.   R.H.D.
 

 f x  is not derivable in the open 

interval (-1, 1) 

 Roll’s Theorem is not applicable. 
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EXERCISE 
 
Verify Rolle’s Theorem for the following 
functions in the intervals indicated. 
 (i)      

3 4
f x x a x b    in  ,a b  

 (ii)   xf x e Sinx  in  0,  
 (iii)   2 2f x x x   in  0,2  
 (iv)     /23 xf x x x e   in  3,0  
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Daily life application of lagranges method 

 

Well, for Lagrange's theorem (if you mean 

the mean value theorem) there's always the 

story about the hiker who goes up a 

mountain one day and down again the other. 

The question is, as he's walking down, will he 

ever be at some point on the path exactly 24 

hours after he was there last? This is without 

assuming he walks at an even pace. He can 

walk slowly uphill and run downhill if he 

wants. The only thing he's not allowed to do 

is deviate from the path, and teleport.  
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2 Lagrange’s Mean Value Theorem 

Statement: Let  f x  be a function 

defined on [a, b] satisfying the following 

conditions. 

(a) f is continuous on (a, b) 

(b) f is differentiable on (a, b) 

Then, there at least one point  ,c a b  such 

that  
   

'
f b f a

f c
b a





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Geometrical Interpretation of Lagrange’s 
mean value theorem: 
Consider the graph of the curve  y f x , 

 ,P a f a  and  ,Q b f b  are two points on the 
curve. Hence slope of the chord PA is
   f b f a

b a




. 
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Also  'f c  represents the slope of the 
tangent of the curve  f x  at  ,R c f c   . 

The relation    f b f a

b a




 'f c means that the 

tangent at R is parallel to the chord PQ. 
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Find C of Lagrange’s mean value theorem 
(L.M.V.T) for the function   xf x e in [0, 1] 
Solution: 
Here we have  
   , 0, 1xf x e a b    
(i)  f x  is continuous in [0, 1]and 
(ii)  f x  is derivable in (0, 1) and  ' xf x e  

 0,1x  
  f x  satisfies both the conditions of 
L.M.V.T. 
Therefore, there must be atleast one 
value  0,1C such that 
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 
   

'
f b f a

F c
b a





 

i.e.        
1 0 1

1 0 1

c e e e
e

 
 

  

i.e.        1ce e   
i.e.           log 1 0,1c e    
Hence, Lagrange mean value Theorem is 
verified 
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Example:    S.T. for   0 1a b    

     
1 1

2 2 2

1 tan tan 1

1 1 1

b a

a a b

 
 

  
 

Solution: 

Consider   1tanf x x          in  
[a, b] for 0 1a b    
Since  f x  is continuous in [a, b] and  
derivable in (a, b) 
We can apply L.M.V.T. here 
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Hence there exists a pt c in (a, b) such 
that 

           
   

'
f b f a

f c
b a





 

Here         2

1
'

1
f x

x



 

And hence      2

1
'

1
f c

c



 

Thus, there exist a point ,c a c b   

Such that       
1 1

2

1 tan tan

1

b a

c b a

 


   
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We have      
2 2 21 1 1a c b      

        2 2 2

1 1 1

1 1 1a c b
 

  
  

Using (1) and (2) we have 

        
1 1

2 2 2

1 tan tan 1

1 1 1

b a

a a b

 
 

    

Hence the result 
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Calculate approximately 5 245  by using 
L.M.V.T. 
Solution: 

Let   5f x x                and      243, 245a b   
Then       4/51

'
5

f x x  

And        4/51
'

5
f c c  

 By L.M.V.T. we have    
 '

f b f a
f c

b a





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      
    4/5
245 243 1

245 243 5

f f
c




  
 

          4/52
245 243

5
f f c 

 
 

       
1/5 4/55 2

245 243
5

c   

  C lies between 243 and 245. [Take 
c=244] 
 

      
5 245 3.0049  
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Prove that  11 1
cos 3 / 5

3 3 85 3

      using L.M.V.T. 

Solution: 
Let   1cosf x x  and an interval [a, b] 
Then      

2

1
'

1
f x

x





 , 

By L.M.V.T. 

      
1 1

2

1

1

Cos b Cos a

b a c

  


 
 where a c b   
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  ( , )C a b  

       
2 2 2a c b a c b      

       
2 2 2a c b      

 

      
2 2 21 1 1a c b      

 

        2 2 2

1 1 1

1 1 1a c b
 

  
  

        2 2 2

1 1 1

1 1 1a c b

  
 

    
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1 1

2 2

1 1

1 1

Cos b Cos a

b aa b

   
 

   

 
 

Let a=1/2 and b=3/5. Then 
 
 

        

   1 13 / 5 1/ 22
5 / 4

3 13

5 2

Cos Cos 
  


 

 

 
 

        

   1 13 / 5 1/ 22
5 / 4

1/103

Cos Cos 
  
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12 5 1
cos (3 / 5) / 3

4 1010 3
 

   

 
 

            

   
 11 1

cos 3 / 5
3 3 85 3

    

 
 
Hence the result 
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Using Mean Value Theorem prove that 
tan x x in 0 / 2x    
Solution: 
Consider   tanf x x  in 0 / 2x    
Take    tanf x x  in , x , where 

0 / 2x    
Applying Lagranges Mean-Value Theorem 
to  f x  
There exists a point C such that  
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There exists a point C such that 

 0 / 2c x     
 

Such that    2tan tanx
Sec C

x

 



 

     
2tan tan ( )secx x c    

Take 0 , Then 2tan secx x c  
But 2sec 1c  . Hence tan x x  
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3 Cauchys’ Mean Value Theorem 
(C.M.V.T) 
Statement: Let  f x  and  g x  be functions 
defined on  ,a b satisfying the following 
conditions. 
(a) f and g  are continuous on  ,a b  
(b) f and g are differentiable on  ,a b  
(c)  'g x  does not vanish at any pt in  ,a b  
  [i.e.     ' 0 ,g x x a b   ] 
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Then, there exists at least one point 
  ,c a b      such that, 
 

     
   

   

 

 

'

'

f b f a f c

g b g a g c




  
 



CAUCHY MEAN VALUE THOERM

181

Example 1: 
Verify Cauchy’s mean value theorem for 
the function 2x and 3x in the interval [1, 2] 
Solution: 
Let   2f x x     and    3g x x  
(i)  f x  and  g x  are continuous in [1, 2] 
(ii)  f x  and  g x  are differentiable in [1, 2] 
(iii)   2' 3 0g x x      1,2x  
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  f x  and  g x  satisfy all the conditions of 
Cauchy’s mean value theorem. 
Hence there exist at least one real 
number c in (1, 2) such that, 
        

 

   

   

' 2 1

' 2 1

f c f f

g c g g





 

       
2 2

2 3 3

2 2 1 4 1

3 2 1 8 1

c

c

 
 

 
 

          2 3

3 7c
  

           14

9
C   

 The value of 14

9
C  lies in (1, 2) 
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 The value of 14

9
C          lies in (1, 2) 

Hence, Cauchy’s mean value theorem is 
verified. 
Example 2: 
Verify Cauchy’s mean value theorem for 
the functions log x and 1

x
in [1, e] 

Solution: 
Here, we have 

   
1

log ,f x x g x
x

  , [a, b] = [1, e] 
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(i) Both  f x and  g x are continuous in [1, e] 
(ii) Differentiable in (1, e) 
(iii) Also   2

1
' 0g x

x
   in (1, e) 

Since  f x ,  g x  satisfy all the functions of 
C.M.V.T. there exist at least one real 
number c in (1, e) such that 

       
 

 

   

   

   

   

' 1

' 1

f c f b f a f e f

g c g b g a g e g

 
 

   
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e.                  2

1/ 2 log log1

1/ 2 11/

e

c




  
 

       
1 0

1 1

e
c

e e

e


  

  
 
   

 

        1,
1

e
c e

e
 

  
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 Example:If   logf x x and   2g x x in [a, b] with 
1b a  , using C.M.V.T. Prove that 

        2

log log

2

b a a b

b a c

 


  

Solution: 

We are given           logf x x  

         log , logf a a f b b   
And          2g x x  

         2 2,g a a g b b   
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Also         
1

'f x
x

  

And         ' 2g x x  
 By Cauchy’s mean value theorem 

        
   

   

 

 

'

'

f b f a f c

g b g a g c





 

 

           2 2

log log 1 /

2

b a c

b a c




  
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            2

lo g lo g 1

2

b a

b a b a c




   

        2

log log

2

b a a b

b a c

 


  
Hence the result. 
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 Triple integrals : 

If x1,x2 are constants. y1,y2 are functions of x and z1,z2 are functions of x and y, then 

f(x,y,z) is first integrated w.r.t. ‘z’ between the limits z 1 and z2 keeping x and y fixed. 

The resulting expression is integrated w.r.t ‘y’ between the limits y 1 and y2 keeping x 

constant. The resulting expression is integrated w.r.t. ‘x’ from x1 to x2 

  . . , ,
v

i e f x y z dxdy dz 
 

 

 
 

 

 2 2

1 1

,

,
, ,

b y g x z f x y

x a y g x z f x y
f x y z dz dy dx

 

      
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    Problems
 

               Evaluate 
2 2 21 1 1

0 0 0

x x y

xyz dxdy dz
  

    

    Sol 

                       
2 2 21 1 1

0 0 0

x x y

x y z
xyz dxdy dz

  

    
 

                             

2 2 21 1 1

0 0 0

x x y

x y z
dx dy xyz dz

  

  
   

 

                             

2 2

2
1

2
1 1

0 0
0

2

x y
x

x y
z

z
dx xy dy

 


 


 
  

 
 

 

                            
 

21 1
2 2

0 0

1
1

2

x

x y
dx xy x y dy



 
   

 

                                   
 

21 1
2 3

0 0

1
1

2

x

x y
dx x x y y dy



 

   
  
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 
21

2 4
1

2

0
0

1
1

2 2 4

x

x

y y
x x dx





 
   

 


 

                     

21
2 2 2 4

1

0
0

1
.

2 2 2 4

x

x

y x y y
x dx





 
   

 


 

                         
     

1 2
2 2 2 2

0

1
. 2 1 2 1 1

8 x
x x x x x dx



      
  

 

                          

 
1

2 4 6
1

3 5

0
0

1 1 2
2

8 8 2 4 6x

x x x
x x x dx



 
      

 


 

                                

1 1 1 1 1

8 2 2 6 48

 
    

   

        
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1.  Evaluate  
1

1 0

z x z

x z x y z dx dy dz


       

:Sol

    

                                         

 
1

1 0

z x z

x z

x y y dxdydz



 

   
 

                                               

21

1 0 2

x z
z

x z

y
xy zy dxdz






  
    

   
 

 

                                     
   

2 2
1

1 0
( ) ( )

2 2

z x z x z
x x z x x z z x z z x z dxdz



    
            

   
   

                                              

1

1 0

1
2 ( ) 4

2

z

z x z xz dxdz


 
   

 
 

 

                                       

2 2
1

2

1
0

2 . .
2 2

z

x x
z z x z dz



 
   

 


 

       
1

3 3 4
1

3

1
1

2. 4. 0
2 2 4

z z z
z dz




   
      

   
  
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                          MODULE IV 
           FUNCTIONS SEVERAL VARIBLES  
        
 



194

 

PARTIAL DIFFERENTIATION
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CHAIN RULE OF PARTIAL 

DIFFERENTIATION 
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MAXIMUM & MINIMUM FOR FUNCTION OF A SINGLE 

VARIABLE 

 

To find the Maxima & Minima of f(x) we use the 

following procedure. 

(i) Find  f1(x) and equate it to zero 

(ii) Solve the above equation we get x0,x1 as 

roots. 

(iii) Then find f11(x).  

If    ,00

11
xxxf  then f(x) is minimum at x0 

If       ,00

11
xxxf  f(x) is  maximum at x0 .  Similarly 

we do this for other stationary points. 
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1. Find the max & min of the function 

f(x) = x5 -3x4 + 5   

Sol: Given f(x) = x5 -3x4 + 5  

f1(x) = 5x4 – 12x3  

for maxima or minima    f1(x) =0  

5x4 – 12x3 = 0  x =0, x= 12/5 

f11(x) = 20 x3 – 36 x2  

 



PROBLEM

201

At  x = 0 =>   f11(x) = 0.  So f is neither maximum nor 

minimum at x = 0 At x = (12/5) =>  

 f11(x) =20 (12/5)3 – 36(12/5) 

=144(48-36) /25   =1728/25 > 0 

So f(x) is minimum at x = 12/5 

The minimum value is f (12/5) = (12/5)5 -3(12/5)4 + 5  
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Working procedure:  

1. Find 
x

f




 and

y

f




  Equate each to zero. Solve these 

equations for x & y we get the pair of values (a1, b1) 

(a2,b2) (a3 ,b3) ……………… 

2. Find l=
2 2

2

 


  

f f
,m

x x y  , n =  
2

2





f

y
 

3.  
i. If ln –m2 > 0 and l  < 0 at   (a1,b1) then f(x ,y) is 

maximum at (a1,b1) and maximum value is f(a1,b1) 
ii. If  ln –m2 > 0 and l  > 0 at   (a1,b1) then f(x ,y) is 

minimum at (a1,b1)    

  and minimum value is f(a1,b1) . 
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ii. If ln –m2 < 0 and at   (a1, b1) then f(x, y) is neither 

maximum nor minimum at (a1, b1). In this case (a1, b1) 

is saddle point. 

iii. If ln –m2 = 0 and at   (a1, b1) , no conclusion can be 

drawn about maximum  or minimum and needs 

further investigation.   Similarly we do this for other 

stationary points. 
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Locate the stationary points & examine their nature of the following 

functions.                                                    

 u =x4 + y4 -2x2 +4xy -2y2,   (x > 0, y > 0)   

Sol: Given u(x ,y) = x4 + y4 -2x2 +4xy -2y2   

         For maxima & minima u

x




= 0, u

y




= 0 

          = 4x3 -4x + 4y = 0   x3 – x + y = 0      -------------------> (1)  

        = 4y3 +4x - 4y = 0   y3 + x – y = 0      -------------------> (2)   

        Adding (1) & (2),    

x3 + y3 = 0     x = – y -------------------> (3)    

(1)   x3 – 2x  x = 2,2,0    

              Hence (3)    y = 2,2,0   

u

x





u

y




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  l  = 2

2

x

u




= 12x2 – 4,  

m =
yx

u



2

  = 
















y

u

x
   = 4  

 n = 2

2

y

u




  = 12y2 – 4  

ln – m2 = (12x2 – 4 )( 12y2 – 4 ) -16  

      At   2,2  ln – m2 = (24 – 4)(24 -4) -16  = (20) (20) – 16    >  0 

 and l=20>0 

      The function has minimum value at  2,2  

 At (0,0) , ln – m2 = (0– 4)(0 -4) -16  = 0  

    (0,0) is not a extreme value.  

 



Scalar and vector point functions: Consider a 

region in three dimensional space. To each point 

p(x,y,z), suppose we associate a unique real number 

(called scalar) say . This (x,y,z) is called a scalar 

point function. Scalar point function defined on the 

region. Similarly if to each point p(x,y,z)we associate 

a unique vector (x,y,z),  is called a vector point 

function. 

 

f f

VECTOR CALCULUS



207

 

Examples: 

 For example take a heated solid. At each point 

p(x,y,z)of the solid, there will be temperature T(x,y,z). 

This T is a scalar point function. 

 Suppose a particle (or a very small insect) is tracing a 

path in space. When it occupies a position p(x,y,z) in 

space, it will be having some speed, say, v. This speedv is 

a scalar point function. 

 Consider a particle moving in space. At each point P 

on its path, the particle will be having a velocity  which 

is vector point function. Similarly, the acceleration of the 

particle is also a vector point function. 

 In a magnetic field, at any point P(x,y,z) there will be 

a magnetic force (x,y,z). This is called magnetic force 

field. This is also an example of a vector point function.  

 

v

f
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Vector Calculus and Vector Operators 

 

INTRODUCTION 

 In this chapter, vector differential calculus is considered, 

which extends the basic concepts of differential calculus, such 

as, continuity and differentiability to vector functions in a 

simple and natural way. Also, the new concepts of gradient, 

divergence and curl are introduced. 

DIFFERENTIATION OF A VECTOR FUNCTION 

 Let S be a set of real numbers. Corresponding to each 

scalar t ε S, let there be associated a unique vector . Then  

is said to be a vector (vector valued) function. S is called the 

domain of . We write  = (t). 

 Let be three mutually perpendicular unit vectors in 

three dimensional spaces. We can write  = (t)= 

 , where f1(t), f2(t), f3(t) are real valued 

functions (which are called components of  ). ( we shall 

assume that  are constant vectors). 

f f

f f f

kji ,,

f f

ktfjtfitf )()()( 321 

f

kji ,,
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4. Properties 

 

1)  

2). If λ is a constant, then  

3). If  is a constant vector, then  

4).  

5).  

6).  

7). Let =  , where f1, f2, f3are 

differential scalar functions of more than 

one variable, Then (treating  

as fixed directions) 
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5. Higher order partial derivatives 

 Let = (p,q,t). Then  

6.Scalar and vector point functions: 

Consider a region in three dimensional 

space. To each point p(x,y,z), suppose we 

associate a unique real number (called 

scalar) say . This (x,y,z) is called a scalar 

point function. Scalar point function 

defined on the region. Similarly if to each 

point p(x,y,z)we associate a unique  

vector (x,y,z),  is called a vector point 

function. 

f f .,
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etc
t
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ptp

f
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f
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f
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
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7. Tangent vector to a curve in space. 

 Consider an interval [a,b]. 

Let x = x(t),y=y(t),z=z(t)be continuous and derivable for a t 

b. 

 Then the set of all points (x(t),y(t),z(t)) is called a curve in 

a space. 

Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are 

called the end points of the curve. If A =B, the curve in said 

to be a closed curve. 

 Let P and Q be two neighbouring points on the curve.  

 Let  

 Then 
t

r



 is along the vector PQ. As Q→P, PQ and hence 

t

PQ


 tends to be along the tangent to the curve at P. 

Hence  
t

r
lt
t 


 0

= 
dt

rd  will be a tangent vector to the curve at P. 

(This 
dt

rd  may not be a unit vector) 

VECTOR CALCULUS



CURL OF A VECTOR 

Def: Let  be any continuously differentiable vector point function. Then the vector function 

defined by is called curl of  and is denoted by curl  or (x ). 

Curl  =  

Theorem 1: If  is differentiable vector point function given by =  then curl  

=  

Proof : curl  =  

 =  

 =  

Note : (1) The above expression for curl  can be remembered easily through the representation. 

 curl  =  =x  

 Note (2)  : If  is a constant vector then curl = . 
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Physical Interpretation of curl 

  If is the angular velocity of a rigid body rotating about a fixed axis and is the 

velocity of any point P(x,y,z) on the body, then  = ½ curl . Thus the angular velocity of 

rotation at any point is equal to half the curl of velocity vector. This justifies the use of the word 

“curl of a vector”.  

2. Irrotational Motion, Irrotational Vector 

 Any motion in which curl of the velocity vector is a null vector i.e curl =  is said to 

be Irrotational. 

Def: A vector  is said to be Irrotational if curl  = . 

 If is Irrotational, there will always exist a scalar function (x,y,z) such that =grad 

. This is called scalar potential of . 

It is easy to prove that, if  = grad , then curl = 0. 

Hence x  = 0  there exists a scalar function  such that = . 

This idea is useful when we study the “work done by a force” later. 
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w v
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1: If = find curl at the point (1,-1,1). 

Sol:- Let = . Then  

 curl = x =  

 =  

=  

= curl  at (1,-1,1) =  
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Prove that div  

 

 

 

 

  

 

 

 

Note : Since  we have  is always solenoidal. 
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Laplacian Operator 2 

.=  

Thus the operator 2
  is called 

Laplacian operator. 

Note : (i). 2
= .() = div(grad ) 

 (ii). If 2
=0 then  is said to satisfy 

Laplacian equation. This  is called a harmonic 
function 
Find div , where = grad (x3+y3+z3-3xyz)  

Sol:  Let = x3+y3+z3-3xyz. Then  

 = grad  

 = =

 

  div = = 6x+6y+6z= 6(x+y+z) 

 i.e div[grad(x3+y3+z3-3xyz)]= 2(x3+y3+z3-

3xyz)= 6(x+y+z). 
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Prove that div  

 

 

 
  

 

 

Note : Since  we have  is always 
solenoidal. 
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

If =(x2-27) -6yz +8xz2 , evaluate rdF
C

  from the 

point (0,0,0) to the point (1,1,1) along the Straight 

line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and 

(1,1,0) to (1,1,1). 

Solution : Given = (x2-27)  -6yz +8xz2  

Now  = + + + +  

.  = (x2-27)dx – (6yz)dy +8xz2dz 

(i) Along the straight line from O = (0,0,0) to 

A = (1,0,0) 

Here y =0 =z and dy=dz=0. Also x changes 

from 0 to 1. 

. = (x2-27)dx = =  

 
(ii) Along the straight line from A = (1,0,0) to B 

= (1,1,0) 

Here x =1, z=0  dx=0, dz=0. y changes 

from 0 to 1. 
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Along the straight line from B = (1,1,0) to C = (1,1,1) 

x =1 =y  dx=dy=0 and z changes from 0 to 1. 

. =  

.  =  
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Find the work done by the force  = + + , when it 

moves a particle along the arc of the curve  = cost  + 

sint -t from t = 0 to t =  

Solution : Given force  = z + x  +y and the arc is  

= cost  + sin t -t  

i.e., x = cost, y= sin t, z = -t 

d = (-sin t  +cost - )dt 

d = (-t +cost +sin t ). (-sin t  + cost - )dt = (t 

sin t + cos2 t – sin t)dt 
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Hence work done = d  = (t sin t + cos2 t – sin t ) dt 

  = dt  

  =  

  =   
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         Surface integral 

 

 

        is called surface integral 
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Evaluate  where  = zi + xj  3y
2
zk and S is the surface x

2
 + y

2
 = 16 included in the 

first octant between z = 0 and z = 5. 

Sol.   The surface S is x
2
 + y

2
 = 16 included in the first octant between z = 0 and z = 5. 

Let  = x
2
 + y

2
 = 16 

Then  =  

   unit normal   

Let R be the projection of S on yz-plane 

Then   =  ……………. * 
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Given   = zi + xj  3y
2
zk 

  

and   

In yz-plane, x = 0, y = 4 

In first octant, y varies from 0 to 4 and z varies from 0 to 5. 

  =  

   =  

   = 90. 
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If  = zi + xj  3y
2
zk, evaluate where S is the surface of the cube bounded by x = 0, 

x = a, y = 0, y= a, z = 0, z = a. 

Sol.  Given that S is the surface of the x = 0, x = a, y = 0, y = a, z = 0, z = a,  and  = zi + xj  

3y
2
zk we need to evaluate . 
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Evaluate  where  = zi + xj  3y2zk and S is 

the surface x2 + y2 = 16 included in the first 

octant between z = 0 and z = 5. 

Sol.   The surface S is x2 + y2 = 16 included in 

the first octant between z = 0 and z = 5. 

Let  = x2 + y2 = 16 

Then  =  

   unit normal   

Let R be the projection of S on yz-plane 

Then   =  ……………. * 
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 GAUSS’S DIVERGENCE THEOREM 
(Transformation between surface integral and 
volume integral) 
 Let S be a closed surface enclosing a volume 
V. If is a continuously differentiable vector 
point function, then 

 dS 

When is the outward drawn normal vector at 
any point of S. 
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Verify Gauss Divergence theorem for 

 taken over the surface of the 

cube bounded by the planes x = y = z = a and 

coordinate planes.  

Sol: By Gauss Divergence theorem we have 
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Verification: We will calculate the value of .
S

F ndS  over the 

six faces of the cube. 

(i) For S1 = PQAS; unit outward drawn normal  

x=a; ds=dy dz; 0≤y≤a, 0≤z≤a  
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For S2 = OCRB; unit outward drawn 

normal 

         

x=0; ds=dy dz; 0≤y≤a, y≤z≤a  
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For S3 = RBQP; Z = a; ds = dxdy;  

 

0≤x≤a, 0≤y≤a  
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Verify divergence theorem for  over the 

surface S of the solid cut off by the  

plane x+y+z=a in the first octant.  

 

Sol; By Gauss theorem, .
s v

F ndS divFdv   
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Let R be the projection of S on xy-plane 

Then the equation of the given plane will be x+y=a   y=a-x 

Also when y=0, x=a 
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Given 2 2 2F x i y j z k    

 

 
div

2 2 2( ) ( ) ( ) 2( )F x y z x y z
x y z

  
     
  

 

 

Now
0 0 0

. 2 ( )

a x ya a x

x y z

divF dv x y z dxdydz

 

  

     
 

 

 

 
 

 

GAUSS DIVERGENCE THEOREM



 

 

 
 

 
 

 
 

 

 
 

 

Hence from (1) and (2), the Gauss Divergence 

theorem is verified.  
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II. GREEN’S THEOREM IN A PLANE 

(Transformation Between Line Integral and Surface 

Integral ) [JNTU 2001S]. 

If S is Closed region in xy plane bounded by a simple 

closed curve C and if M and N are continuous functions of 

x and y having continuous derivatives in R, then 
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Where C  is traversed in the positive(anti  clock-wise) 

direction 
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Verify Green’s theorem in plane for    where C is the region 

bounded by y=   and y=  . 

Solution: Let  M=3 -  and N=4y-6xy. Then 
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We have by Green’s theorem, 
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Verification: 

    

  We can write the line integral along c 

 

=[line integral along y= (from O to A) + [line 

integral along =x(from A to O)] 

 

= + (say) 

 

Now     =  
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And         
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From(1) and (2), we have  .
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Hence the verification of the Green’s theorem. 
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Verify Green’s theorem for   where C is bounded by y=x and  

y=  

Solution:By Green’s theorem, we have 
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Here M=xy +  and N=  
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The line y=x and the parabola y=  intersect at O  and A  
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Along   from  to  the line integral is  
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From (1), (2) and (3), we have 
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Hence the verification of the Green’s  theorem. 
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III. STOKE’S THEOREM 

          (Transformation between Line Integral and Surface Integral)                       

 

         Let S be a open surface bounded by a closed, non intersecting curve C. 

 If   is any  

differentieable vector point function then = 

 

 direction and   
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Verify Stokes theorem for , Where S is the circular disc 

 

Solution: Given that . The boundary of C of S is a circle in xy plane. 

We use the parametric co-ordinates x=cos  

dx=-sin  and dy =cos  
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Now  

 

 

 

We have ( . )k n ds dxdy and R is the region on xy-plane 

 

.  

 

Put x=r cos  

 

 

r is varying from 0 to 1 and 0  

 . .rdr d  

L.H.S=R.H.S.Hence the theorem is verified. 
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Verify Stokes theorem for  over the upper half surface of the sphere 

bounded by the projection of the xy-plane.                                   

Solution: The boundary C of S is a circle in xy plane i.e =1, z=0 

The parametric equations are x=  
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Again  =  

. =  

Where R is the projection of S on xy plane and  

      Now  

                                     = 2 =  

 Stokes theorem is verified. 
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III. STOKE’S THEOREM 

          (Transformation between Line Integral and Surface Integral)                       

 

         Let S be a open surface bounded by a closed, non intersecting curve C. 

 If   is any  

differentieable vector point function then = 

 

 direction and   
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Evaluate by Stokes theorem   where C is the boundary of 

the triangle with vertices (0,0,0), (1,0,0) and (1,1,0). 

Solution: Let   

Then  

By Stokes theorem,  

 

Where S is the surface of the triangle OAB which lies 

in the xy plane. Since the z Co-ordinates of O,A and B  

Are zero. Therefore . Equation of OA is y=0 and  

that  of OB, y=x in the xy plane. 
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