

Course Code: AHSB02 LINEAR ALGEBRA AND CALCULUS Regulation: IARE-R18 B . TECH: I SEM PREPARED BY
P.RAJANI ASSISTANT PROFESSOR ,FE Institute of Aeronautical Engineering Dundigal ,Hyderabad

THEORY OF MATRICES AND HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

MATRICES

Matrix: A system of mn numbers (real or complex) arranged in a rectangular array of m horizontal lines (Called rows) and n vertical lines (called columns) is known as matrix of order mxn [read as " m by n matrix"]. These numbers are called elements being enclosed in brackets [] or () .
1.Real Matrix: A matrix whose elements are real numbers is called a real matrix.

Example: $\left[\begin{array}{ccc}6 & 0 & -1 \\ 4 & \sqrt{3} & 2\end{array}\right]$ is a real matrix.
2.Symmetric Matrix: A square matrix
$\mathrm{A}=\left[a_{i j}\right]$
is called symmetric, if $\mathrm{A}=A^{T}$
Thus, for a symmetric matrix A, we have
$\underset{\text { for all } \mathrm{i} \text { and } \mathrm{j} .}{ }$

MATRICES

3.Skew-Symmetric Matrix: A square matrix
$A=\left[a_{i j}\right]$ is called skew-symmetric, if

$$
A^{T}=-A
$$

Thus for a skew-symmetric matrix A

$$
\begin{gathered}
a_{i j}=-a_{j i} \text { for all i and j. } \\
\text { Example: }\left[\begin{array}{ccc}
0 & 2 & 3 \\
-2 & 0 & 6 \\
-3 & -6 & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & h & g \\
-h & 0 & f \\
-g & -f & 0
\end{array}\right]
\end{gathered}
$$

MATRICES

Note: If A is a skew-symmetric matrix then :

$$
\begin{gathered}
a_{i j}=-a_{j i} \\
a_{i i}=-a_{i i} \forall i \quad 2 a_{i i}=0
\end{gathered}
$$

Thus, the diagonal elements of a skewsymmetric matrix are all zero.

MATRICES

4. Orthogonal Matrix: A square matrix with real elements is said to be orthogonal if

$$
\begin{aligned}
& \mathbf{u}^{\mathbf{T}} \boldsymbol{\mathbf { 1 }}=\mathbb{T} \\
& {\left[A^{T}=A^{-1}\right]}
\end{aligned}
$$

Example: Show That $\left[\begin{array}{ccc}\operatorname{Cos} & 0 & \operatorname{Sin} \phi\end{array}\right.$ $\operatorname{Sin} \theta \operatorname{Sin} \phi \quad \operatorname{Cos} \theta \quad-\operatorname{Sin} \theta \operatorname{Cos} \phi$ $\left[\begin{array}{lll}-\operatorname{Cos} \theta \operatorname{Sin} \phi & \operatorname{Sin} \theta & \operatorname{Cos} \theta \operatorname{Cos} \phi\end{array}\right]$

Is an orthogonal matrix

Solution: Let $\mathrm{A}=\left[\begin{array}{ccc}\operatorname{Cos} & 0 & \operatorname{Sin} \phi \\ \operatorname{Sin} \theta \operatorname{Sin} \phi & \operatorname{Cos} \theta & -\operatorname{Sin} \theta \operatorname{Cos} \phi \\ -\operatorname{Cos} \theta \operatorname{Sin} \phi & \operatorname{Sin} \theta & \operatorname{Cos} \theta \operatorname{Cos} \phi\end{array}\right]$

$$
A^{T}=\left[\begin{array}{ccc}
\operatorname{Cos} \phi & \operatorname{Sin} \theta \operatorname{Sin} \phi & -\operatorname{Cos} \theta \operatorname{Sin} \phi \\
0 & \operatorname{Cos} \theta & \operatorname{Sin} \theta \\
\operatorname{Sin} \phi & \operatorname{Sin} \theta & \operatorname{Cos} \theta \operatorname{Cos} \phi
\end{array}\right]
$$

MATRICES

$$
A A^{T}=\left[\begin{array}{ccc}
\operatorname{Cos} & 0 & \operatorname{Sin} \phi \\
\operatorname{Sin} \theta \operatorname{Sin} \phi & \operatorname{Cos} \theta & -\operatorname{Sin} \theta \operatorname{Cos} \phi \\
-\operatorname{Cos} \theta \operatorname{Sin} \phi & \operatorname{Sin} \theta & \operatorname{Cos} \theta \operatorname{Cos} \phi
\end{array}\right]\left[\begin{array}{ccc}
\operatorname{Cos} \phi & \operatorname{Sin} \theta \operatorname{Sin} \phi & -\operatorname{Cos} \theta \operatorname{Sin} \phi \\
0 & \operatorname{Cos} \theta & \operatorname{Sin} \theta \\
\operatorname{Sin} \phi & \operatorname{Sin} \theta & \operatorname{Cos} \theta \operatorname{Cos} \phi
\end{array}\right]
$$

$\left[\operatorname{Cos}^{2} \phi+\operatorname{Sin}^{2} \phi\right.$
$\operatorname{Cos} \phi \operatorname{Sin} \theta \operatorname{Sin} \phi$
$-\operatorname{Sin} \phi \operatorname{Sin} \theta \operatorname{Cos} \phi$
$=\left[\begin{array}{ll}\operatorname{Sin} \theta \operatorname{Sin} \phi \operatorname{Cos} \phi & \operatorname{Sin}^{2} \theta \operatorname{Sin}^{2} \phi+\operatorname{Cos}^{2} \phi \\ -\operatorname{Sin} \theta \operatorname{Cos} \phi \operatorname{Sin} \phi & +\operatorname{Sin}^{2} \theta \operatorname{Cos}^{2} \phi \\ -\operatorname{Cos} \theta \operatorname{Sin} \phi \operatorname{Cos} \phi & -\operatorname{Cos} \theta \operatorname{Sin} \theta \operatorname{Sin}^{2} \phi+\operatorname{Sin} \theta \operatorname{Cos} \theta \\ \operatorname{Cos} \theta \operatorname{Cos} \phi \operatorname{Sin} \phi & -\operatorname{Cos} \theta \operatorname{Sin} \theta \operatorname{Cos}^{2} \phi\end{array}\right.$
$-\operatorname{Cos} \theta \operatorname{Cos} \phi \operatorname{Sin} \phi+$ $\operatorname{Sin} \phi \operatorname{Cos} \theta \operatorname{Cos} \phi$
$-\operatorname{Sin} \theta \operatorname{Cos} \theta \operatorname{Sin}^{2} \phi+\operatorname{Cos} \theta \operatorname{Sin} \theta$
$-\operatorname{Sin} \theta \operatorname{Cos} \phi \operatorname{Cos}^{2} \theta$
$\operatorname{Cos}^{2} \theta \operatorname{Sin}^{2} \phi+\operatorname{Sin}^{2} \theta$
$+\operatorname{Cos}^{2} \theta \operatorname{Cos}^{2} \phi$

MATRICES

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \operatorname{Sin}^{2}\left(\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta\right)+\operatorname{Cos}^{2} \theta & -\operatorname{Sin} \theta \operatorname{Cos} \theta\left(\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta\right)+\operatorname{Cos} \theta \operatorname{Sin} \theta\left(\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta\right)+\operatorname{Cos}^{2} \theta \\
0 & -\operatorname{Cos} \theta \operatorname{Sin} \theta\left(\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta\right)+\operatorname{Sin} \theta \operatorname{Cos} \theta & \operatorname{Cos}^{2} \theta\left(\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta\right)+\operatorname{Sin}^{2} \theta
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Since, $\quad A A^{T}=I$

A is an Orthogonal Matrix.

MATRICES

Exercise

Q. 1 Express the following matrices

$$
\left[\begin{array}{lll}
2 & 4 & 8 \\
6 & 2 & 8 \\
2 & 2 & 2
\end{array}\right] \quad\left[\begin{array}{ccc}
3 & -4 & -1 \\
6 & 0 & -1 \\
-3 & 13 & -4
\end{array}\right]
$$

as the sum of a symmetric matrix and a skewsymmetric matrix

MATRICES

Q. 3 Verify the matrix $\left[\begin{array}{ccc}2 & -3 & 1 \\ 4 & 3 & 1 \\ -3 & 1 & 9\end{array}\right]$ is orthogonal or not.
Q. 4 Show that the matrix

$$
\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & \frac{-2}{3} \\
\frac{2}{3} & \frac{-2}{3} & \frac{1}{3}
\end{array}\right] \quad \text { is orthogonal. }
$$

Q. 5 Show that the matrix

$$
A=\frac{1}{2}\left[\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right]
$$

is orthogonal

COMPLEX MATRICES: So far we discussed about real numbers
whose elements were real. In this topic we will be considering the matrices whose elements are complex numbers. Complex matrices have a very wide applications in many areas of Engineering Such as quantum mechanics etc.

Complex Matrix: A matrix in which at least one element is imaginary is called a Complex Matrix
Example:

$$
\left[\begin{array}{ccc}
4 & 0 & i \\
-5 i & 0 & 2
\end{array}\right]
$$

6.Conjugate of a Matrix:The matrix obtained from any given
matrix A on replacing its elements by the corresponding conjugate complex numbers is called the conjugate of
A denoted by \bar{A}
Thus, if $A=\left[a_{i j}\right]_{m \times n}$ then $\bar{A}=\left[\bar{a}_{i j}\right]_{m \times n}$ Where, $\bar{a}_{i j}$
denotes the conjugate complex of
Example: If

$$
A=\left[\begin{array}{cc}
2+3 i & 5 \\
6-2 i & 5+i
\end{array}\right]
$$

$$
\text { then } \bar{A}=\left[\begin{array}{cc}
2-3 i & 5 \\
6+2 i & 5-i
\end{array}\right]
$$

7.Transposed Conjugate of a Matrix: The transpose of the conjugate of a matrix A is called transposed conjugate of A and is denoted by A^{θ}

$$
A^{\theta}=[\bar{A}]^{T}=\overline{\left[A^{T}\right]}
$$

i.e., The transpose of the conjugate of a square matrix is same as the conjugate of its transpose

COMPLEX MATRICES

Example: Let

$$
A=\left[\begin{array}{ccc}
1+2 i & 2-3 i & 5 \\
5+2 i & 5-2 i & 8+5 i \\
2 & 6 & 9-i
\end{array}\right]
$$

$$
\text { then. } \quad \bar{A}=\left[\begin{array}{ccc}
1-2 i & 2+3 i & 5 \\
5-2 i & 5+2 i & 8-5 i \\
2 & 6 & 9+i
\end{array}\right]
$$

$$
A^{\theta}=(\bar{A})^{T}=\left[\begin{array}{ccc}
1-2 i & 5-2 i & 2 \\
2+3 i & 5+2 i & 6 \\
5 & 8-5 i & 9+i
\end{array}\right]
$$

COMPLEX MATRICES

Example:

$$
A=\left[\begin{array}{ccc}
1+2 i & 2-3 i & 5 \\
5+2 i & 5-2 i & 8+5 i \\
2 & 6 & 9-i
\end{array}\right]
$$

$$
\text { then. } \bar{A}=\left[\begin{array}{ccc}
1-2 i & 2+3 i & 5 \\
5-2 i & 5+2 i & 8-5 i \\
2 & 6 & 9+i
\end{array}\right]
$$

$$
A^{\theta}=(\bar{A})^{T}=\left[\begin{array}{ccc}
1-2 i & 5-2 i & 2 \\
2+3 i & 5+2 i & 6 \\
5 & 8-5 i & 9+i
\end{array}\right]
$$

Hermitian Matrix: If the transpose of the conjugate matrix is equal to the matrix itself i.e.,

$$
A^{\theta}=A
$$

then the matrix A is said to be a Hermitian Matrix.
Thus, $\quad A=\left[a_{i j}\right]$ is Hermitian, if $\quad a_{i j}=\overline{a_{j i}} \quad \forall \quad \mathrm{i}, \mathrm{j}$.
Thus every diagonal element of a Hermitian matrix is real.

Example: $\left[\begin{array}{ccc}1 & 2+i & 3-2 i \\ 2-i & 0 & 2 i \\ 3+2 i & -2 i & 4\end{array}\right]$ is a Hermitian Matrix.

Skew-Hermitian matrix: A square matrix

$$
A=\left[a_{j i}\right]
$$

is said to be Skew-Hermitian if

$$
A^{\theta}=-A \quad \text { i.e., } \quad a_{i j}=-\bar{a}_{j i}
$$

If A is a Skew-Hermitian matrix, then $\quad a_{i i}=-\bar{a}_{i i}$

$$
\Longrightarrow \quad a_{i i}+a_{i i}=0
$$

So, that $a_{i i}$
is either a purely imaginary number or zero. Thus the diagonal elements of a Skew-Hermitian matrix must be a purely imaginary number or zero.

COMPLEX MATRICES

Example: $\left[\begin{array}{cc}0 & -i \\ -i & 0\end{array}\right]\left[\begin{array}{ccc}1 & 1-i & 2 \\ -1-i & 3 i & i \\ -2 & i & 0\end{array}\right]$
are Skew-Hermitian matrices.
Unitary matrix: A square matrix A with complex elements is said to be unitary if

$$
\begin{aligned}
& A^{\theta} A=I \\
& {\left[\begin{array}{cc}
\frac{i}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{i}{2}
\end{array}\right]}
\end{aligned}
$$

the matrix Is an example for a unitary matrix.

COMPLEX MATRICES

Theorem 8: If A is any square matrix, then prove that :
(a) $A+A^{\theta}$ is Hermitian.
(b) $A A^{\theta}, A^{\theta} A$ are Hermitian.
(c) $A-A^{\theta}$ is Skew-Hermitian.

COMPLEX MATRICES

Proof

$A+A^{\theta}$ is Hermitian.

COMPLEX MATRICES

$$
\begin{gathered}
{\left[A A^{\theta}\right]=\left[A^{\theta}\right]^{\theta} A^{\theta}=A A^{\theta}} \\
{\left[A-A^{\theta}\right]^{\theta}=A^{\theta}-\left[A^{\theta}\right]^{\theta}} \\
=A^{\theta}-A \\
=-\left[A-A^{\theta}\right]
\end{gathered}
$$

: $\quad A-A^{\theta}$ is Skew-Hermitian.

COMPLEX MATRICES

Exercise Q. 1 If A is Hermitian Matrix, then show that iA is a Skew-Hermitian Matrix.
Q. 2 Show that the matrix $\left[\begin{array}{ccc}15 & 8 i & 6-2 i \\ -8 i & 0 & -4+i \\ 6+2 i & -4-i & -3\end{array}\right]$ is Hermitian.
Q. 3 Show the matrix $\left[\begin{array}{ccc}0 & 8 i & 2 i \\ 8 i & 0 & 4 i \\ 2 i & 4 i & 0\end{array}\right]$ is Skew-

Hermitian.

COMPLEX MATRICES

Q. 4 Express the matrix $\left[\begin{array}{ccc}i & 2-3 i & 4+5 i \\ 6+i & 0 & 4-5 i \\ -i & 2-i & 2+i\end{array}\right]$ as the sum of a

Hermitian and Skew-Hermitian Matrix.
Q. 5 If $A=\left[\begin{array}{ccc}2 & 3+2 i & -4 \\ 3-2 i & 5 & 6 i \\ -4 & -6 i & 3\end{array}\right]$ Show that A is Hermitian and
iA is a Skew-Hermitian Matrix.

ELEMENTARY ROW AND COLUMN TRANSFORMATIONS

Let, $R_{1}, R_{2} \ldots R_{n}$ be the row vectors of matrix A of order $m \times n$ and $C_{1}, C_{2} \ldots C_{n}$ be the column vectors of A

An elementary row operation of A is of any one of the following three operations of transformation

ROW OPERATIONS

*The interchange of any two rows.
*Multiplication of a row by a non-zero scalar K.
*Replace a row by adding to itself any non-zero scalar multiple of any other row

The notations we shall follow for these three elementary row operations is as follows :

1. Interchange of $i^{h /}$ and $j^{j^{h}}$ row is denoted by $R_{i} \leftrightarrow R_{i}$.
2. Multiplication of i^{μ} row by a non-zero scalar K is denoted by $R_{i} \rightarrow K R_{i}$
3. Addition of K times the j^{μ} row to the $i^{{ }^{\prime \prime}}$ row is denoted by $R_{i} \rightarrow R_{i}+K R_{j}$.

The notations we shall follow for these three elementary row operations is as follows :
1.Interchange of $i^{\text {th }}$ and $j^{\text {th }}$ row is denoted by $R_{i} \leftrightarrow R_{j}$.

1. Multiplication of $i^{\text {th }}$ row by a non-zero scalar K is denoted by $R_{i} \rightarrow K R_{i}$
2.Addition of K times the $j^{\text {th }}$ row to the $i^{\text {th }}$ row is denoted by $R_{i} \rightarrow R_{i}+K R_{j}$.

COLUMN OPERATIONS

Similarly we can define an elementary column operation of A as one of the following three operations.
*The interchange of any two columns.
*Multiplication of a column by a non-zero scalar K.
*Replace a column by adding to itself any non-zero scalar multiple of any other column.
*The notations we shall follow for these three elementary column operations is as follows

COLUMN OPERATIONS

1. Interchange of $i^{\text {th }}$ and $j^{\text {th }}$ column is denoted by $C_{i} \leftrightarrow C_{j}$
2. Multiplication of $i^{\text {th }}$ column by a non-zero scalar K will be denoted by $C_{i} \rightarrow K$
3. Addition of K times the ${ }_{j^{\prime \prime}}$ column to the $i_{i "}$ column will be denoted by $C_{i} \rightarrow C_{i}+K C_{j}$

RANK OF A MATRIX

Rank of a Matrix:

Let A be mxn matrix. If A is a null matrix, we define its rank to be 'O'. If A is a non-zero matrix, we say that r is the rank of A if
(i) Every $(r+1)^{\text {th }}$ order minor of A is ' O ' (zero) \&
(ii) At least one $r^{\text {th }}$ order minor of A which is not zero.

Note: 1. It is denoted by $\rho(A)$

RANK OF A MATRIX

Note: 1. It is denoted by $\rho(A)$
2. Rank of a matrix is unique.
3. Every matrix will have a rank.
4. If A is a matrix of order $m \times n$,

$$
\operatorname{Rank} \text { of } A \leq \min (m, n)
$$

5. If $\rho(A)=r$ then every minor of A of order $r+1$, or more is zero.
6. Rank of the Identity matrix I_{n} is n.
7. If A is a matrix of order n and A is nonsingular then $\rho(A)=n$

RANK OF A MATRIX

1. Find the rank of the given matrix
$\left[\begin{array}{rrr}1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12\end{array}\right]$

Given matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12\end{array}\right]$
$\operatorname{det} A=1(48-40)-2(36-28)+3(30-28)$

$$
=8-16+6=-2 \neq 0
$$

We have minor of order 3
$\rho(A)=3$

2. Find the rank of the matrix

$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 8 & 7 & 0 & 5\end{array}\right]$

Sol: Given the matrix is of order 3×4

Its Rank $\leq \min (3,4)=3$
Highest order of the minor will be 3.
Let us consider the minor $\left[\begin{array}{lll}1 & 2 & 3 \\ 5 & 6 & 7 \\ 8 & 7 & 0\end{array}\right]$

RANK OF A MATRIX

$\left[\begin{array}{ccc}1 & 2 & 3 \\ 5 & 6 & 7 \\ 8 & 7 & 0\end{array}\right]$

Determinant of minor is 1(-49)-2(-56)+3(35-48)

$$
=-49+112-39=24 \neq 0
$$

Hence rank of the given matrix is ' 3 '.

ECHELON FORM OF A MATRIX

Echelon form of a matrix:
A matrix is said to be in Echelon form, if
(i). Zero rows, if any exists, they should be below the non-zero row.
(ii). The first non-zero entry in each nonzero row is equal to '1'.
(iii). The number of zeros before the first non-zero element in a row is less than the number of such zeros in the next row.

Note: 1. The number of non-zero rows in echelon form of A is the rank of ' A '.

1. The rank of the transpose of a matrix is the same as that of original matrix.
2. The condition (ii) is optional.

ECHELON FORM

1. Find the rank of the matrix $\mathbf{A}=$ $\left[\begin{array}{ccc}2 & 3 & 7 \\ 3 & -2 & 4 \\ 1 & -3 & -1\end{array}\right]$ by reducing it to Echelon form.
sol: Given $\mathbf{A}=\left[\begin{array}{rrr}2 & 3 & 7 \\ 3 & -2 & 4 \\ 1 & -3 & -1\end{array}\right]$
Applying row transformations on A.
$\mathbf{A} \sim\left[\begin{array}{ccc}1 & -3 & -1 \\ 3 & -2 & 4 \\ 2 & 3 & 7\end{array}\right]$
$\mathbf{R}_{\mathbf{1}} \longleftrightarrow \mathbf{R}_{\mathbf{3}}$

ECHELON FORM

This is the Echelon form of matrix A.
= Number of non - zero rows $=2$

$$
\begin{aligned}
& \sim\left[\begin{array}{ccc}
1 & -3 & 1 \\
0 & 7 & 7 \\
0 & 9 & 9
\end{array}\right] \\
& R_{2} \rightarrow R_{2}-3 R_{1} \\
& R_{3} \rightarrow R_{3}-2 R_{1} \\
& {\left[\begin{array}{ccc}
1 & -3 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

The rank of a matrix A.

$$
\sim\left[\begin{array}{ccc}
1 & -3 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$\sim R_{2} \rightarrow R_{2} / 7$,
$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3} / 9$

$$
R_{3} \rightarrow R_{3}-R_{2}
$$

1. For what values of \mathbf{k} the matrix

$$
\left[\begin{array}{cccc}
4 & 4 & -3 & 1 \\
1 & 1 & -1 & 0 \\
0 & 2 & 2 & -2 \\
9 & 9 & k & 3
\end{array}\right] \text { has rank '3’. }
$$

Sol: The given matrix is of the order 4×4
If its rank is $3 \Rightarrow \operatorname{det} A=0$

$$
\mathbf{A}=\left[\begin{array}{cccc}
4 & 4 & -3 & 1 \\
1 & 1 & -1 & 0 \\
k & 2 & 2 & -2 \\
9 & 9 & k & 3
\end{array}\right]
$$

Applying $R_{2} \rightarrow 4 R_{2}-R_{1}, R_{3} \rightarrow 4 R_{3}-k R_{1}, R_{4}$ $\rightarrow 4 \mathrm{R}_{4}-9 \mathrm{R}_{1}$

Since Rank $A=3 \Rightarrow \operatorname{det} A=0$

$$
\Rightarrow 4\left|\begin{array}{ccc}
0 & -1 & -1 \\
8-4 k & 8+3 k & 8-k \\
0 & 4 k+27 & 3
\end{array}\right|=0
$$

RANK OF A MATRIX

$$
\begin{aligned}
& \Rightarrow 1[(8-4 k) 3]-1(8-4 k)(4 k+27)]=0 \\
& \Rightarrow(8-4 k)(3-4 k-27)=0 \\
& \Rightarrow(8-4 k)(-24-4 k)=0 \\
& \Rightarrow(2-k)(6+k)=0 \\
& \Rightarrow k=2 \text { or } k=-6
\end{aligned}
$$

Normal Form:

Every mxn matrix of rank r can be reduced to the form $\left(\begin{array}{ll}I_{r} & 0 \\ 0 & 0\end{array}\right)$
(or) (Ir) (or) ($\left.\begin{array}{l}I_{r} \\ 0\end{array}\right)$ (or) $\left(\begin{array}{ll}I_{r} & 0\end{array}\right)$
by a finite number of elementary transformations, where I_{r} is the r rowed unit matrix.

Normal form or canonical form

e.g: By reducing the matrix

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 0 & 5 & -10
\end{array}\right]
$$

into normal form, find its rank.

Sol: Given $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10\end{array}\right]$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}$
$\mathbf{A} \sim\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & -3 & -2 & 5 \\ 0 & -6 & -4 & -22\end{array}\right] \mathbf{R}_{\mathbf{3}} \rightarrow \mathbf{R}_{\mathbf{3}}-\mathbf{3} \mathbf{R}_{\mathbf{1}}$
$A \sim\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & -3 & -2 & -5 \\ 0 & 3 & 2 & 11\end{array}\right] \quad R_{3} \rightarrow R_{3} /-2$
$A \sim\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & -3 & -2 & -5 \\ 0 & 0 & 0 & 6\end{array}\right]$
$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}$
$\mathrm{A} \sim\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & -3 & -2 & -5 \\ 0 & 0 & 0 & 6\end{array}\right]$
$\mathrm{c}_{2} \rightarrow \mathrm{c}_{2}-2 \mathrm{c}_{1}, \mathrm{c}_{3} \rightarrow \mathrm{c}_{3}-3 \mathrm{c}_{1}, \mathrm{c}_{4} \rightarrow \mathrm{c}_{4}-4 \mathrm{c}_{1}$

$$
\mathbf{A} \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 \\
0 & 0 & 0 & 18
\end{array}\right]
$$

$$
c_{3} \rightarrow 3 c_{3}-2 c_{2}, c_{4} \rightarrow 3 c_{4}-5 c_{2}
$$

$A \sim\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\mathrm{c}_{2} \rightarrow \mathrm{c}_{2} /-3, \mathrm{C}_{4} \rightarrow \mathrm{c}_{4} / 18$
$A^{\sim}\left[\begin{array}{lllc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\mathrm{C}_{4} \longleftrightarrow \mathrm{C}_{3}$
This is in normal form $\left[\begin{array}{ll}I_{3} & 0\end{array}\right]$
Hence Rank of A is ' 3 '.

GAUSS JORDAN METHOD

Gauss - Jordan method

- The inverse of a matrix by elementary Transformations:

(Gauss - Jordan method)

1. suppose A is a non-singular matrix of order ' n ' then we write $A=I_{n} A$
2. Now we apply elementary rowoperations only to the matrix A and the pre-factor I_{n} of the R.H.S
3. We will do this till we get $I_{n}=B A$ then obviously B is the inverse of A.

GAUSS JORDAN METHOD

*Find the inverse of the matrix A using elementary operations where

$$
A=\left[\begin{array}{lll}
1 & 6 & 4 \\
0 & 2 & 3 \\
0 & 1 & 2
\end{array}\right]
$$

Sol:

Given $\mathrm{A}=$

$$
\left[\begin{array}{lll}
1 & 6 & 4 \\
0 & 2 & 3 \\
0 & 1 & 2
\end{array}\right]
$$

GAUSS JORDAN METHOD

We can write $A=I_{3} A$

$$
\left[\begin{array}{lll}
1 & 6 & 4 \\
0 & 2 & 3 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A}
$$

Applying $R_{3} \rightarrow 2 R_{3}-R_{2}$, we get

$$
\left[\begin{array}{lll}
1 & 6 & 4 \\
0 & 2 & 3 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 2
\end{array}\right] \mathrm{A}
$$

GAUSS JORDAN METHOD

Applying $R_{1} \rightarrow R_{1}-3 R_{2}$, we get

$$
\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & 2 & 3 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -3 & 0 \\
0 & 1 & 0 \\
0 & -1 & 2
\end{array}\right] \quad \mathrm{A}
$$

Applying $R_{1} \rightarrow R_{1}+5 R_{3}, R_{2} \rightarrow R_{2}-3 R_{3}$, we get

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -8 & 10 \\
0 & 4 & -6 \\
0 & -1 & 2
\end{array}\right] \mathrm{A}
$$

GAUSS JORDAN METHOD

Applying $R_{2} \rightarrow R_{2} / 2$, we get

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -8 & 10 \\
0 & 2 & -3 \\
0 & -1 & 2
\end{array}\right] \mathrm{A}} \\
& \Rightarrow I_{3}=B A \\
& B \text { is the inverse of } A .
\end{aligned}
$$

LINEAR DIFFERENTIAL EQUATIONS WITH
 CONSTANT COEFFICIENTS

Def:
An equation of the form $\frac{d^{n} y}{d x^{n}}+P_{1} \cdot \frac{d^{n-1} y}{d x^{n-1}}+$ $P_{2} \cdot \frac{a^{n-2} y}{d x^{n-2}}+\cdots+\cdots+P_{n} \cdot y=\mathbf{Q}(x)$ where P_{1}, $P_{2}, P_{3}, \ldots . P_{n}$, are real constants and $Q(x)$ is a continuous function of x is called an linear differential equation of order ' n’ with constant coeffin

To find the general solution of $f(D) \cdot v=0$:

Where $f(D)=D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+\ldots$
$+P_{n}$ is a polynomial in D.
Now consider the auxiliary equation $: f(m)=$ O
i.e $f(m)=m^{n}+P_{1} m^{n-1}+P_{2} m^{n-2}+--------+P_{n}$ $=0$
where $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ \qquad P_{n} are real constants.
Let the roots of $f(m)=0$ be $m_{1}, m_{2}, m_{3}, \ldots . m_{n}$.
Depending on the nature of the roots we write the complementary function
as follows:

S.No	Roots of.AE $\mathrm{f}(\mathrm{m})=0$	Complementary finction(CF)
1	$\mathrm{m}_{12} \mathrm{~m}_{2} \quad . \mathrm{m}_{\mathrm{n}}$ are real and distinct.	$y_{8}=c_{1} e^{x_{1}}+c_{2} e^{x} z^{x}+\ldots+c_{0} e^{x} e^{x}$
2	$\mathrm{m}_{1+} \mathrm{m}_{2}, \mathrm{~m}_{\mathrm{n}}$ are and two roots are equal $i e_{-1} m_{1 m} m_{2}$ are equal and real(ie repated twice) \& the rest are real and different.	
3	$\mathrm{m}_{1,} \mathrm{~m}_{2}, \mathrm{~mm}_{n}$ are real and three roots are equal ie, $m_{11} m_{2}, m_{7}$ are equal and real(ie repated thrice) \& the rest are real and different	$y_{8}=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{x_{1} x}+c_{4} e^{x_{4} x}+\ldots+c_{n} e^{x_{4}} x^{x}$
4	Two roots of A.E are complex say $\alpha+\mathrm{i} \beta \alpha-\mathrm{i} \beta$ and rest are real and distinct	
5	If $\alpha \pm i \beta$ are repaaled twice δ rest are real and distinct	$\begin{aligned} & \left.y_{y}=e^{\omega x}\left[\left(c_{1}+c_{2} x\right) \cos \beta x+\left(c_{3}+c_{s} x\right) \sin \beta x\right)\right]+c_{s} e^{-x} x \\ & +\ldots+c_{n} e^{-x} x^{x} \end{aligned}$
6	If $\alpha \pm \mathrm{i} \beta$ are repated thrice c_{2} rest are real and distinct	$\begin{aligned} & y_{5}=e^{\alpha x}\left[\left(c_{1}+c_{2} x+c_{3} x^{2}\right) \cos \beta x+\left(c_{4}+c_{x} x+c_{x^{3}} x^{2}\right) \sin \beta\right. \\ & x)]+c_{7} e^{n x}+\ldots \ldots \ldots+c_{n} \theta^{n x} \end{aligned}$
7	If root of A.E. irrational say $\alpha \pm \sqrt{\beta}$ and rest are real and distinct	$y_{n}=e^{*-}\left[c_{1} \cosh \sqrt{\beta} x+c_{2} \sinh \sqrt{\beta} x\right]+c_{1} e^{-x}+\ldots+c_{2} e^{-a_{0}}$

Solve $\frac{a^{3} y}{m x^{3}}-3 \frac{a y}{x x}+2 y=0$

Given equation is of the form f(D)y $=0$

Where $f(D)=\left(D^{3}-3 D+2\right) y=0$ consider the auxiliary equation $f(m)=$ O

$$
f(m)=m^{3}-3 m+2=0 \Rightarrow(m-1)(m-
$$

1) $(m+2)=0$

$$
\Rightarrow m=1,1,-2
$$

Since m_{1} and m_{2} are equal and m_{3} is -2

We have $y_{c}=\left(c_{1}+c_{2} x\right) e^{x}+c_{3} e^{-2 x}$
3. Solve $\left(\mathrm{D}^{2}+8 \mathrm{D}^{2}+16\right) \mathrm{y}=0$

Soi: Given $f(D)=\left(D^{4}+8 D^{2}+16\right) y=0$

$$
\text { Aumitiary equation } f(m)=\left(m^{4}+8 m^{2}+16\right)=0
$$

$$
\Rightarrow\left(m^{2}+4\right)^{2}=0
$$

$$
\Rightarrow(m+2 i)^{2}(m+2 i)^{2}=0
$$

$$
\Rightarrow m=2 i, 2 i,-2 i,-2 i
$$

$$
\left.Y_{s}=e^{0 x}\left[\left(c_{1}+c_{2} x\right) \cos 2 x+\left(c_{3}+c_{2} x\right) \sin 2 x\right)\right]
$$

4. Solve $y^{11}+6 y^{1}+9 y=0 ; y(0)=-4, y^{1}(0)=14$

Sol: Given equationis $y^{1^{1}}+6 y^{1}+9 y=0$
$A x$ iliary equationf(D) $y=0 \Rightarrow\left(D^{2}+6 D+9\right) y=0$
A equation $f(m)=0 \Rightarrow\left(m^{2}+6 m+9\right)=0$

$$
\Rightarrow m=-3 .-3
$$

$y a=\left(c_{1}+c_{2} x\right) e^{-3 x} \ldots>(1)$
Differentiate of (1) w.t.to $x \Rightarrow y^{1}=\left(c_{1}+c_{2} x\right)\left(-3 e^{-3 x}\right)+c_{2}\left(e^{-3 x}\right)$
$G i v e n y_{1}(0)=14 \Rightarrow c_{1}=-4 \& c_{2}=2$
Hemce we get $y=(-4+2 x)\left(e^{-3 x}\right)$
5 Solve $4 y^{111}+4 y^{11}+y^{1}=0$
Sol: Given equationis $4 y^{111}+4 y^{11}+y^{1}=0$
That is $\left(4 D^{2}+4 D^{2}+D\right) y=0$
$A \operatorname{siliary}$ equation $f(m)=0$

$$
\begin{aligned}
& 4 m^{2}+4 m^{2}+m=0 \\
& m\left(4 m^{2}+4 m+1\right)=0 \\
& m(2 m+1)^{2}=0 \\
& m=0 .-1 / 2,-1 / 2 \\
& y=c_{1}+\left(c_{2}+c_{2}\right) e^{-\infty}
\end{aligned}
$$

Is given by $\mathrm{y}=\mathrm{y}_{\mathrm{c}}+\mathrm{y}_{\mathrm{p}}$
i.e. $y=C . F+P . I$

Where the P.I consists of no arbitrary constants and P.I of $f(D) y=Q(x)$
Is evaluated as P.I $=\frac{1}{f(\mathrm{D})} \cdot \mathrm{Q}(\mathrm{x})$
Depending on the type of function of $Q(x)$.
P.I is evaluated as follows:

1. P.I of $f(D) y=Q(x)$ where $Q(x)=e^{a x}$ for (a) $\neq 0$

Case1: P.I $=\frac{1}{f(D)} \cdot \mathrm{Q}(\mathrm{x})=\frac{1}{f(D)} \mathrm{e}^{2 \mathrm{x}}=\frac{1}{f(a)} \mathrm{e}^{2 \mathrm{x}}$
Provided $f(a) \neq 0$
Case 2: If $f(a)=0$ then the above method fails. Then

$$
\text { if } f(D)=(D-a)^{k} \emptyset(D)
$$

(i.e ' a ' is a repeated root k times).

Then PI $=\frac{1}{O(a)} \mathrm{e}^{2 x} \cdot \frac{1}{k!} \mathrm{x}^{\mathrm{k}}$ provided $\varnothing(\mathrm{a}) \neq 0$

$$
\text { Express } \frac{1}{f(D)}=\frac{1}{1 \pm \emptyset(D)}=[1 \pm \emptyset(D)]^{-1}
$$

Hence P.I $=\frac{1}{1 \pm O(D)} Q(x)$.

$$
=[1 \pm \emptyset(D)]^{-1} \mathrm{x}^{\mathrm{k}}
$$

Solve the Differential equation($\left.D^{2}+5 D+6\right) y=e^{x}$

Sol: Given equation is $\left(D^{2}+5 D+6\right) y=e^{x}$
Here $Q(x)=e^{x}$
Auxiliary equation is $f(m)=m^{2}+5 m+6=0$

$$
\begin{aligned}
& m^{2}+3 m+2 m+6=0 \\
& m(m+3)+2(m+3)=0 \\
& m=-2 \text { or } m=-3
\end{aligned}
$$

The roots are real and distinct
$C . F=y_{c}=c_{1} e^{-2 x}+c_{2} e^{-3 x}$

Particular Integral $=\mathrm{y}_{\mathrm{p}}=\frac{1}{f(D)}, \mathrm{Q}(\mathrm{x})$

$$
=\frac{1}{D 2+5 D+6} \mathrm{e}^{\mathrm{x}} \quad=\frac{1}{(D+2)(D+3)} \mathrm{e}^{\mathrm{x}}
$$

Put D $=1$ in $f(D)$

$$
P_{-1}=\frac{1}{(3)(4)} e^{x}
$$

Particular Integral $=y_{p}=\frac{1}{12} \cdot e^{x}$
General solution is $\mathrm{y}=\mathrm{y}_{\mathrm{E}}+\mathrm{y}_{\mathrm{p}}$

$$
y=c_{1} e^{-2 x}+c_{2} e^{-3 x}+\frac{e^{x}}{12}
$$

Solve $y^{11}-4 y^{\Perp}+3 y=4 e^{B x}, y(0)=-1, y^{1}(0)=3$
Soll : Given equation is $y^{11}-4 y^{1}+3 y=4 e^{3 x}$

$$
\text { i.e } \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=4 e^{3 x}
$$

it can be expressed as
$D^{2} y-4 D y+3 y=4 e^{3 x}$
$\left(D^{2}-4 D+3\right) y=4 e^{3 x}$
Here $Q(x)=4 e^{3 x}=f(D)=D^{2}-4 D+3$
Auxiliary equation is $f(m)=m^{2}-4 m+3=0$ $m^{2}-3 m-m+3=0$
$m(m-3)-1(m-3)=0=m=3$ or 1
The roots are real and distinct.
$C F=Y C=c_{1} e^{3 x}+c_{2} e^{x} \ldots \rightarrow$ (2)

$$
\begin{aligned}
& \text { P.I. }=y_{p}=\frac{1}{f(D)} \cdot Q(x) \\
& =y_{p}=\frac{1}{D^{2}-4 D+3} \cdot 4 e^{2 x} \\
& =y_{p}=\frac{1}{(D-1)(D-2)} \cdot 4 \mathrm{e}^{2 x}
\end{aligned}
$$

Put $\mathrm{D}=3$
$y_{y}=\frac{4 e^{2 x}}{(3-1)(D-3)}=\frac{4}{2} \frac{e^{2 x}}{(D-3)}=2 \frac{x^{2}}{1!} e^{3 x}=2 x e^{2 x}$
General solutionis $y=y_{r}+y_{p}$
$y=c_{1} e^{2 x}+c_{1} e^{x}+2 x e^{2 x} \quad-\cdots(3)$
Equation (3) differentlat ing with respect to ' x '

$$
\begin{equation*}
y^{1}=3 c_{4} e^{2 x}+c_{4} e^{x}+2 e^{2 x}+6 x e^{2 x} \tag{4}
\end{equation*}
$$

By data, $Y(0)=-1, Y^{11}(0)=3$
From (3), $-1=c_{1}+c_{1} \quad-\quad . \quad . \quad$ (5)
From (4), $3=3 c_{4}+c_{x}+2$

$$
3 c_{1}+c_{1}=1 \quad \ldots, \ldots, \cdots(6)
$$

Solving (5) and (6) we set $c_{1}=1$ and $c_{x}=-2$
$y=-2 e^{=}+(1+2 x) e^{2 x}$

The general solution is

$$
\begin{aligned}
& y=C . F+P . I \\
& y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} e^{-2 x}+\left[2 x^{3}-3 x^{2}+15 x-8\right]
\end{aligned}
$$

P. Iof $\left\{(D) \mid y=Q(x)\right.$ when $Q(x)=e^{x 2} V$

ON FOR LIO
P. I of $f(D) y=Q(x)$ when $Q(x)=e^{a x} V$ where ' a ' is a constant and V is function of x. where $V=\sin$ ax or cosax or x^{k}

$$
\begin{aligned}
& \text { Then P.I } \begin{aligned}
& =\frac{1}{f(D)} Q(x) \\
& =\frac{1}{f(D)} e^{2 x} V \\
& =\mathrm{e}^{2 x}\left[\frac{1}{f(D+a)}(V)\right]
\end{aligned} \\
& \& \frac{1}{f(D+a)} \text { V is evaluated depending on } V .
\end{aligned}
$$

$$
\text { Solve }\left(D^{3}-7 D^{2}+14 D-8\right) y=e^{x} \cos 2 x
$$

Given equation is

$$
\begin{aligned}
& \left(D^{3}-7 D^{2}+14 D-8\right) y=e^{x} \cos 2 x \\
& \\
& \text { A.E is }\left(m^{3}-7 m^{2}+14 m-8\right)=0 \\
& (m-1)(m-2)(m-4)=0 \\
& \\
& \text { Then } m=1,2,4 \\
& \\
& C . F=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{4 x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { P.I }=\frac{e^{x} \cos 2 x}{\left(D^{3}-7 D^{2}+14 \mathrm{D}-8\right)} \\
& =e^{x} \cdot \frac{1}{(D+1)^{3}-7(D+1)^{2}+14(D+1)-8} \cdot \cos 2 x \\
& {\left[\because P . I=\frac{1}{f(D)} e^{a x} v=e^{a x} \frac{1}{f(D+a)} v\right]} \\
& \\
& =e^{x} \cdot \frac{1}{\left(D^{3}-4 D^{2}+3 \mathrm{D}\right)} \cdot \cos 2 x \\
& \\
& =e^{x} \cdot \frac{1}{(-4 D+3 \mathrm{D}+16)} \cdot \cos 2 x\left(\text { Replacing } \mathrm{D}^{2} \text { with }-2^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -e^{x} \cdot \frac{1}{(16-D)}-\cos 2 x \\
& -e^{\pi} \cdot \frac{16+D}{(16-D)(16+D)} \cdot 0 \leq 2 x \\
& -e^{x} \cdot \frac{16+D}{256-D 2}-\cos 2 x \\
& -e^{-2} \cdot \frac{16+D}{256-(-4)} \cdot \cos 2 x \\
& -\frac{e x}{260}(1600 \leq 2 x-251 n 2 x) \\
& =\frac{2 e^{x}}{260}(8 \cos 2 x-\sin 2 x) \\
& =\frac{e^{x}}{130}(8 \cos 2 x-\sin 2 x)
\end{aligned}
$$

General solution ls $Y=Y=+Y_{p}$

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{4 x}+\frac{e^{x}}{130}(8 \cos 2 x-\sin 2 x)
$$

Solve $\left(D^{2}-4 D+4\right) y=x^{2} \sin x+e^{2 x}+3$
Sol:Given $\left(D^{2}-4 D+4\right) y=x^{2} \sin x+e^{2 x}+3$

$$
\begin{aligned}
& \text { A.E is }\left(m^{2}-4 m+4\right)=0 \\
& (m-2)^{2}=0 \text { then } \mathrm{m}=2,2 \\
& \text { C.F. }=\left(c_{1}+c_{2} x\right) e^{2 x} \\
& \text { P.I }=\frac{x^{2} \sin x+e^{2 x}+3}{(D-2)^{2}}=\frac{1}{(D-2)^{2}}\left(x^{2} \sin x\right)+\frac{1}{(D-2)^{2}} e^{2 x}+\frac{1}{(D-2)^{2}}(3) \\
& \text { Now } \frac{1}{(D-2)^{2}}\left(x^{2} \sin x\right)=\frac{1}{(D-2)^{2}}\left(x^{2}\right) \\
& \qquad=\| . P \text { of } \frac{1}{(D-2)^{2}}\left(x^{2}\right)\left(e^{i x}\right)
\end{aligned}
$$

$$
=1 . P \text { of }\left(e^{i x}\right) \cdot \frac{1}{(D+i-2)^{2}}\left(x^{2}\right)
$$

On simplification, we get

$$
\begin{aligned}
& \frac{1}{(D+i-2)^{2}}\left(x^{2} \sin x\right)=\frac{1}{625}[(220 \mathrm{x}+244) \cos \mathrm{x}+(40 \mathrm{x}+33) \sin \mathrm{x}] \\
& \text { and } \frac{1}{(D-2)^{2}}\left(e^{2 x}\right)=\frac{x^{2}}{2}\left(e^{2 x}\right) \\
& \frac{1}{(D-2)^{2}}(3)=\frac{3}{4} \\
& \mathrm{P} . I=\frac{1}{625}[(220 \mathrm{x}+244) \cos \mathrm{x}+(40 \mathrm{x}+33) \sin \mathrm{x}]+\frac{x^{2}}{2}\left(e^{2 x}\right)+\frac{3}{4} \\
& \mathrm{y}=\mathrm{y}_{c}+\mathrm{y}_{\mathrm{D}} \\
& \mathrm{y}=\left(c_{1}+c_{2} \mathrm{x}\right) e^{2 x}+\frac{1}{625}[(220 \mathrm{x}+244) \cos \mathrm{x}+(40 \mathrm{x}+33) \sin \mathrm{x}]+\frac{x^{2}}{2}\left(e^{2 x}\right)+\frac{3}{4}
\end{aligned}
$$

P.I. of $f(D) y=Q(x)$ where $Q(x)=x^{m} v$ where v is a function of x.

$$
\begin{aligned}
& \text { Then P.I. }=\frac{1}{f(D)} \times Q(x)=\frac{1}{f(D)} x^{m} v=I . P . o f \frac{1}{f(D)} x^{m}(\cos \alpha x+i \sin a x) \\
& =I . P . o f \frac{1}{f(D)} x^{m} e^{j a x} \\
& \text { ii. P.I. }=\frac{1}{f(D)} x^{m} \cos a x=R P . o f \frac{1}{f(D)} x^{m} e^{m a x}
\end{aligned}
$$

Solve $\left(D^{2}-4 D+4\right) y=x^{2} \sin x+e^{2 x}+3$
Sol:Given $\left(D^{2}-4 D+4\right) y=x^{2} \sin x+e^{2 x}+3$

$$
\begin{aligned}
& \text { A.E is }\left(m^{2}-4 \mathrm{~m}+4\right)=0 \\
& (m-2)^{2}=0 \text { then } \mathrm{m}=2,2 \\
& \text { C.F. }=\left(\mathrm{c}_{1}+\mathrm{c}_{2} x\right) e^{2 x} \\
& \text { P.I }=\frac{x^{2} \sin x+e^{2 x}+3}{(D-2)^{2}}=\frac{1}{(D-2)^{2}}\left(x^{2} \sin x\right)+\frac{1}{(D-2)^{2}} e^{2 x}+\frac{1}{(D-2)^{2}}(3)
\end{aligned}
$$

P.I $=\frac{1}{625}[(220 \mathrm{x}+244) \cos \mathrm{x}+(40 \mathrm{x}+33) \sin \mathrm{x}]+\frac{x^{2}}{2}\left(e^{2 x}\right)+\frac{3}{4}$
$y=y_{c}+y_{p}$
$\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) e^{2 x}+\frac{1}{625}[(220 \mathrm{x}+244) \cos \mathrm{x}+(40 \mathrm{x}+33) \sin \mathrm{x}]+\frac{x^{2}}{2}\left(e^{2 x}\right)+\frac{3}{4}$

Working Rule :

1. Reduce the given equation of the form $\frac{d^{2} y}{d x}+P(x) \frac{d y}{d x}+Q(x) y=R$
2. Find C.F.
3. Take P.I $\mathrm{y}=\mathrm{Au}+\mathrm{Bv}$ where $\mathrm{A}=-\int \frac{v R d x}{u v-v \chi^{\downarrow}}$ and $=\int \frac{u R d x}{u v-v{ }^{\downarrow}}$
4. Write the G.S. of the givenequation $y=y_{c}+y_{p}$

Problems:

1. Apply the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+\mathbf{y}=\operatorname{cosec} \boldsymbol{x}$

Sol: Given equation in the operator form is $\left(D^{2}+1\right) y=\operatorname{cosec} x$ -
A.E is $\left(m^{2}+1\right)=0$
$\therefore m= \pm i$
The roots are complex conjugate numbers.
\therefore C.F. is $y_{c}=c_{1} \cos x+c_{2} \sin x$

Let $y_{=}=A \cos x+B \sin x$ be P.I. of (1)
$u \frac{d v}{d x}-v \frac{d u}{d x}=\cos ^{2} x+\sin ^{2} x=1$
A and B are given by

$$
\begin{aligned}
& \mathrm{A}=-\int \frac{v R d x}{u v^{2}-v u^{2}}=-\int \frac{\sin x \operatorname{cosec} x}{1} d \mathrm{x}=-\int d x=-\mathrm{x} \\
& \mathrm{~B}=\int \frac{w R d x}{u v^{1}-v u^{2}}=\int \cos x \cdot \operatorname{cosec} x d x=\int \cot x d x=\log (\sin x)
\end{aligned}
$$

$\therefore y=-x \cos x+\sin x \cdot \log (\sin x)$
\therefore General solution is $y^{\prime}=y_{=}+y_{F}$.
$y=c_{2} \cos x+c_{2} \sin x-x \cos x+\sin x . \log (\sin x)$
2. Solve $\left(4 D^{-}-4 D+1\right) y=100$

Sol:A.E is $\left(4 m^{2}-4 m+1\right)=0$

$$
\begin{aligned}
& (2 m-1)^{2}=0 \text { then } m=\frac{1}{2} \cdot \frac{1}{2} \\
& \text { C.F }=\left(c_{1}+c_{2} x\right) e^{\frac{x}{2}} \\
& \text { P.I }=\frac{100}{\left(4 D^{2}-4 D+1\right)}=\frac{100 e^{0 x}}{(2 D-1)^{2}}=\frac{100}{(0-1)^{2}}=100
\end{aligned}
$$

Hence the general solution is $y=C . F+P . I$

$$
y=\left(c_{1}+c_{2} x\right) e^{\frac{x}{2}}+100
$$

MODULE-II

MATRIX LINEAR TRANSFORMATION AND
 DOUBLE INTEGRALS

EIGEN VALUES AND EIGEN VECTORS

Eigen Values \& Eigen Vectors

Def: Characteristic vector of a matrix:
Let $A=\left[a_{i j}\right]$ be $a n n \times n$ matrix. A non-
zero vector X is said to be a
Characteristic Vector of A if there exists
a scalar such that $A X=\lambda X$.

EIGEN VALUES AND EIGEN VECTORS

Note: If $A X=\lambda X(X \neq 0)$, then we say ' λ ' is
the eigen value (or) characteristic root
of ' A '.Eg: Let $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right] \quad X=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
$A X=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\quad\left[\begin{array}{c}1 \\ -1\end{array}\right]=1 \cdot\left[\begin{array}{c}1 \\ -1\end{array}\right]$
$=1 . X$

EIGEN VALUES AND EIGEN VECTORS

Here Characteristic vector of A is $\left[\begin{array}{c}1 \\ -⿰ ⿱ 丶 ㇀ ⿱ ㇒ 丶-1]\end{array}\right]$ and
Characteristic root of A is＂1＂．

Note：We notice that an eigen value of a square matrix A can be 0 ．But a zero vector cannot be an eigen vector of A ．

EIGEN VALUES AND EIGEN VECTORS

Method of finding the Eigen vectors of a

 matrix.Let $A=\left[a_{i j}\right]$ be a $n \times n$ matrix. Let \times be an eigen vector of A corresponding to the eigen value λ.

Then by definition $\quad A X=\lambda X$.

```
> AX = \IXX
=>AX - \lambdaIXX =O
=>(A-\lambdaI)X=O ------- (1)
```

This is a homogeneous system of n equationsin nunknowns.

Will have a non-zero solution X if and only $|\mathrm{A}-\lambda \mathbf{I}|=\mathbf{O}$
$A-\lambda I$ is called characteristic matrix of A $|A-\lambda I|$ is a polynomial in λ of degree n and is called the characteristic polynomial of A
$|A-\lambda I|=0$ is called the characteristic equation

Solving characteristic equation of A, we get the roots, $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots . \lambda_{n}$, These are called the characteristic roots or eigen values of the matrix.

- Corresponding to each one of these n eigen values, we can find the characteristic vectors.
- Procedure to find eigen values and

eigen vectors

- Let $\mathrm{A}=\left[\left.\begin{array}{cccc}a_{11} & a_{12} \ldots \ldots & a_{1 n} \\ a_{21} & a_{22} \ldots . & a_{2 n} \\ a_{n 1} & a_{n 2} \ldots \ldots & \cdots & a_{n n}\end{array} \right\rvert\,\right.$ be a given matrix

Chanacteristic matrix of A is $A-\lambda I$
i.e., $A-\lambda I=\left[\begin{array}{cccc}a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda\end{array}\right]$

Then the characterstic polynomial is $|A-x|$ $\operatorname{say} \phi(\lambda)=|A-\lambda|=\left|\begin{array}{cccc}a_{11}-\lambda & a_{12} & \ldots & a_{n 1} \\ a_{21} & a_{22}-\lambda & \ldots & a_{2 n} \\ \cdots & \cdots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{m 1}-\lambda\end{array}\right|$.
equation is $|A-x|=0$ we solve the $\varnothing(C)=|A-\lambda|=0$, we get n roots, these are called eigen values or latent values or proper values.

EIGEN VALUES AND EIGEN VECTORS

Let each one of these eigen values say $\boldsymbol{\lambda}$ their eigen vector X corresponding the given value $\boldsymbol{\lambda}$ is obtained by solving Homogeneous system

$$
\left[\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

And determining the non-trivial solution.

1. Find the eigen values and the

corresponding eigen vectors of matrix
$\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$

The characteristic equation is $|A-\lambda| \mid=0$
i.e. $|A-\lambda|\left|=\left|\begin{array}{ccc}2-\lambda & 0 & 1 \\ 0 & 2-\lambda & 0 \\ 1 & 0 & 2-\lambda\end{array}\right|=0\right.$

$$
\begin{aligned}
& \Rightarrow(2-\lambda)(2-\lambda)^{2}-0+[-(2-\lambda)]=0 \\
& \Rightarrow(2-\lambda)^{3}-(\lambda-2)=0 \\
& \Rightarrow \lambda-2\left[-(\lambda-2)^{2}-1\right]=0 \\
& \Rightarrow \lambda-2\left[-\lambda^{2}+4 \lambda-3\right]=0 \\
& \Rightarrow(\lambda-2)(\lambda-3)(\lambda-1)=0 \\
& \Rightarrow \lambda=1,2,3
\end{aligned}
$$

The eigen values of A is $1,2,3$.

EIGEN VALUES AND EIGEN VECTORS

$\Rightarrow\left[\begin{array}{ccc}2-\lambda & 0 & 1 \\ 0 & 2-\lambda & 0 \\ 1 & 0 & 2-\lambda\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Eigen vector corresponding to $\lambda=1$
$\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\begin{aligned}
& x_{1}+x_{3}=0 \\
& x_{2}=0 \\
& x_{1}+x_{3}=0 \\
& x_{1}=-x_{3}, x_{2}=0 \\
& \text { say } x_{3}=\alpha \\
& x_{1}=-\alpha \quad x_{2}=0, \quad x_{3}=\alpha \\
& {\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-\alpha \\
0 \\
\alpha
\end{array}\right]=\alpha\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \text { is Eigen vector }}
\end{aligned}
$$

EIGEN VALUES AND EIGEN VECTORS

Eigen vector corresponding to $=2$

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Here $x_{1}=0$ and $x_{3}=$ Oand we can take any arbitary value x_{2} ie. $x_{2}=a($ say $)$
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ \alpha \\ 0\end{array}\right]=\alpha\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
Eigen vector is $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$

EIGEN VALUES AND EIGEN VECTORS

Eigen vector corresponding to $\lambda=3$
$\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
-x_{1}+x_{3}=0
$$

$-x_{2}=0$
$x_{1}-x_{3}=0 \quad$ here by solving we get $x_{1}=x_{3}, x_{2}=0$ say $x_{3}=\alpha$
$x_{1}=\propto, \quad x_{2}=0 \quad, x_{3}=\propto$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
0 \\
\alpha
\end{array}\right]=\alpha\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Eigen vector is $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

EIGEN VALUES AND EIGEN VECTORS

Properties of Eigen Values:

Theorem 1: The sum of the eigen values of a square matrix is equal to its trace and product of the eigen values is equal to its determinant.

Proof: Characteristic equation of A is

$$
|A-\lambda I|=0
$$

EIGEN VALUES AND EIGEN VECTORS

,$\left[\begin{array}{cccc}a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda\end{array}\right]$ expanding this we get
$\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)-a_{12}$
(a polynomial of degree $n-2$)
$+a_{13}(a$ polynomial of degree $n-2)+\ldots=0$

EIGEN VALUES AND EIGEN VECTORS

$\Rightarrow(-1)^{n}\left[\lambda^{n}-\left(a_{11}+a_{22}+\ldots+a_{n n}\right) \lambda^{n-1}+\right.$ a polynomial of deg ree $\left.(n-2)\right]=0$
$(-1)^{n} \lambda^{n}+(-1)^{n+1}($ Trace $A) \lambda^{n-1}+$ a polynomial of deg ree $(n-2)$ in $\lambda=0$

If $\lambda_{1}, \lambda_{2} \ldots . \lambda_{n}$ are the roots of this equation
sum of the roots $=\frac{(-1)^{n+1} \operatorname{Tr}(A)}{(-1)^{n}}=\operatorname{Tr}(A) \mathrm{s}$

Further $|A-\lambda I|=(-1)^{n} \lambda^{n}+\cdots \cdot+a_{0}$
put $\lambda=0$ then $\| A \mid=a_{0}$
$(-1)^{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\ldots .+a_{0}=0$
Product of the roots $=\frac{(-1)^{n} a_{0}}{(-1)^{n}}=a_{0}$
but $a_{0}=\| A \mid=\operatorname{det} A$
Hence the result

PROPERTIES OF EIGEN VALUES

Theorem 2: If λ is an eigen value of A corresponding to the eigen vector X, then λ^{n} is eigen value A^{n} corresponding to the eigen vector X.

Proof: Since is an eigen value of A corresponding to the eigen value X, we have
$A X=\lambda X-----(1)$ Pre multiply (1) by A, $A(A X)=A(\lambda X)$
$(A A) x=2(A X)$
$A^{2} X=\lambda(x)$
$A^{2} x=\lambda^{2} x$
λ^{2} is eigen value of A^{2} with X itself as the corresponding eigen vector.
λ^{n} is an eigen value of A^{n}

PROPERTIES OF EIGEN VALUES

Theorem 3: A Square matrix A and its transpose A^{\top} have the same eigen values.

Theorem 4: If A and B are n-rowed square matrices and If A is invertible show that A^{-} ${ }^{1} B$ and $B A^{-1}$ have same eigen values.

Theorem 5: If $\lambda_{1}, x_{2}, \ldots \ldots \ldots, x_{n}$ are the eigen values of a matrix A then $k x_{1}, k_{x_{2}}, \ldots . . k_{n}$ are the eigen value of the matrix $K A$, where K is a non-zero scalar.

Theorem 6: If x is an eigen values of the matrix A then $x+K$ is an eigen value of the matrix $A+K I$

Theorem 7: If $\lambda_{1}, \lambda_{2} \ldots \lambda_{n}$ are the eigen values of A, then

$$
\lambda_{1}-K, \quad \lambda_{2}-K, \ldots \quad \lambda_{n}-K,
$$

arethe eigen values of the matrix $(A-K I)$, where K is a non - zeroscalar
Theorem 8: If $\lambda_{1}, \lambda_{2} \ldots \lambda_{n}$ are the eigen values of A, find the eigen values of the matrix $(A-\lambda I)^{2}$

Theorem 9: If ${ }^{3}$ is an eigen value of a non-singular matrix A corresponding to the eigen vector X, then $\overbrace{}^{-1}$ is an eigen value of A^{-1} and corresponding eigen vector X itself.

PROPERTIES OF EIGEN VALUES

Theorem 15: The eigen values of a triangular matrix are just the diagonal elements of the matrix.

Theorem 16: The eigen values of a real symmetric matrix are always real.

Theorem 17: For a real symmetric matrix, the eigen vectors corresponding to two distinct eigen values are orthogonal.

PROPERTIES OF EIGEN VALUES

1.

Sairw
田思 $\left[\begin{array}{ccc}1 i & -2 & -3 \\ 0 & 3 & -2 \\ 0 & -2-2\end{array}\right]=0$

PROPERTIES OF EIGEN VALUES

Let $f(\mathrm{~A})=3 A^{3}+5 A^{2}-6 A+2 I$
Then eigen values of $f(A)$ are $f(1), f(3)$ and

$$
f(-2)
$$

$f(1)=3(1)^{3}+5(1)^{2}-6(1)+2(1)=4$
$f(3)=3(3)^{3}+5(3)^{2}-6(3)+2(1)=110$
$f(-2)=3(-2)^{3}+5(-2)^{2}-6(-2)+2(1)=10$
Eigen values of $3 A^{3}+5 A^{2}-6 A+2 l$ are 4,110,10

CAYLEY HAMILTON THEOREM

Cayley - Hamilton Theorem: Every square matrix satisfies its own characterstic equation.
Q)Show that the matrix $A=\left[\begin{array}{lll}1 & -2 & 1 \\ 1 & -2 & 3 \\ 0 & -1 & 2\end{array}\right]$ satisfies its characteristic equation Hence find A^{-1}

PROBLEM

Sol: Characteristic equation of A is det

$$
(A-\lambda I)=0
$$

$$
\Rightarrow\left|\begin{array}{ccc}
1-\lambda & -2 & 2 \\
1 & -2-\lambda & 3 \\
0 & -1 & 2-\lambda
\end{array}\right|=0 \quad \mathrm{C} 2 \quad \rightarrow \mathrm{C} 2+\mathrm{C} 3
$$

$$
\left|\begin{array}{ccc}
1-\lambda & 0 & 2 \\
1 & 1-\lambda & 3 \\
0 & 1-\lambda & 2-\lambda
\end{array}\right|=0
$$

PROBLEM

$$
\lambda^{3}-\lambda^{2}+\lambda-1=0
$$

By Cayley - Hamilton theorem, we have $A^{3}-A^{2}+A-I=0$

$$
A=\left[\begin{array}{lll}
1 & -2 & 2 \\
1 & -2 & 3 \\
0 & -1 & 2
\end{array}\right] A^{2}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & -1 & 2 \\
-1 & 0 & 1
\end{array}\right] A^{3}=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
-2 & 2 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

$$
A^{3}-A^{2}+A-I=\left[\begin{array}{lll}
-1 & 2 & -2 \\
-2 & 2 & -1 \\
-1 & 1 & 0
\end{array}\right]-\left[\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & -1 & 2 \\
-1 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & -2 & 3 \\
0 & -1 & 2
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=0
$$

Multiplying with A^{-1} we get $A^{2}-A+I=A^{-1}$

$$
A^{-1}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & -1 & 2 \\
-1 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & -2 & 3 \\
0 & -1 & 2
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
-2 & 2 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=0
$$

Multiplying with A^{-1} we get $A^{2}-A+I=A^{-1}$

$$
A^{-1}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & -1 & 2 \\
-1 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & -2 & 3 \\
0 & -1 & 2
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
-2 & 2 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

1.Using Cayley - Hamilton Theorem find the inverse and A^{4} of the matrix $A=$
$\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -11 & 2 \\ 6 & 2 & -1\end{array}\right]$
2.Verify Cayley - Hamilton Theorem for A

Hence find A^{-1}.

Diagonalization of a matrix:
Theorem: If a square matrix A of order n has n linearly independent eigen vectors $\left(x_{1}, x_{2} \ldots x_{n}\right)$ corresponding to the n eigen values $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2} \ldots \boldsymbol{\lambda}_{n}$ respectively then a matrix P can be found such that $P^{-1} A P$ is a diagonal matrix.

Proof: Given that $\left(x_{1}, x_{2} \ldots x_{n}\right)$ be eigen vectors of A corresponding to the eigen values $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2} \ldots \boldsymbol{\lambda}_{n}$ respectively and these eigen vectors are linearly independent Define P

Since the n columns of P are linearly independent $|\mathrm{P}| \neq 0$

Hence P^{-1} exists
Consider AP $=A\left[X_{1}, \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}\right]$
$=\left[A X_{1}, A X_{2} \ldots . . A X_{n}\right]$
$=\left[\lambda X_{1}, \lambda_{2} X_{2} \ldots . \lambda_{n} X_{n}\right]$

DIAGONALIZATION OF A MATRIX

$\left[X_{1}, X_{2} \ldots X_{n}\right]\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ o & \lambda_{2} & \cdots & 0 \\ \cdots & \cdots & \cdots & \ldots \\ 0 & o & \cdots & x_{n}\end{array}\right]$
$=P D$
Where $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots \ldots . . \lambda_{n}\right)$
$A P=P D$
$P^{-1}(A P)=P^{-1}(P D) \Longrightarrow P^{-1} A P=\left(P^{-1} P\right) D$
$\Rightarrow P^{-1} A P=(I) D$
$=D$
$=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots \ldots \ldots \lambda_{n}\right)$
Hence the theorem is proved.

MODAL AND SPECTRAL MATRICES

Modal and Spectral matrices:

The matrix P in the above result which diagonalize the square matrix A is called modal matrix of A and the resulting diagonal matrix D is known as spectral matrix.

Note 1: If $x_{1}, x_{2} \ldots X_{n}$ are not linearly independent this result is not true.

2: Suppose A is a real symmetric
matrix with n pair wise distinct eigen values $\lambda_{1}, \lambda_{2} \cdots \lambda_{n}$ then the corresponding

POWERS OF A MATRIX

$$
\begin{aligned}
& \text { i.e, } \mathbf{P}^{\top} \mathbf{P}=\mathbf{P P}^{\boldsymbol{\top}}=\mathbf{I} \\
& \text { Hence } \mathbf{P}^{-\mathbf{1}}=\mathbf{P}^{\boldsymbol{\top}} \\
& \mathbf{P}^{-\mathbf{1}} \mathbb{A N P}^{d} \Rightarrow \mathbf{P}^{\top} \mathbf{A P}=\mathbf{D}
\end{aligned}
$$

Calculation of powers of a matrix:
We can obtain the power of a matrx by using diagonalization

Let A be the square matrix then a nonsingular matrix P can be found such that $D=P^{-1} A P$
$D^{2}=\left(P^{-1} A P\right)\left(P^{-1} A P\right)$
$=P^{-1} A\left(P P^{-1}\right) A P$

POWERS OF A MATRIX

$=\mathrm{P}^{-1} \mathrm{~A}^{2} \mathrm{P} \quad$ (since $\mathrm{PP}^{-1}=1$)
Simlarly $D^{3}=P^{-1} A^{3} P$
In general $D^{n}=P^{-1} A^{n} P \ldots \ldots$. (1)
To obtain A^{n}, Premultiply (1) by P and post multiply by P^{-1}

Then $P D^{n} P^{-1}=P\left(P^{-1} A^{n} P\right) P^{-1}$
$=\left(P^{-1}\right) A^{n}\left(P^{-1}\right)=A^{n} \Rightarrow A^{n}=P D^{-1}$
Hence $A^{n}=\mathbf{P}\left[\begin{array}{cccc}\lambda_{1}^{n} & 0 & 0 \cdots & 0 \\ 0 & \lambda_{2}^{n} & 0 & 0 \\ \cdots & \cdots & 0 \\ 0 & 0 & 0 & \lambda_{n}^{n}\end{array}\right]^{-1}$

PROBLEM

1. Determine the modal matrix P of $=\left[\begin{array}{ccc}-2 & 0 & -3 \\ 3 & i & -6 \\ -i l & -2 & 0\end{array}\right]$ - Verify that $\mathbb{P}^{-1 A P}$ is a diagonal matrix.

Sol: The characteristic equation of A is

$$
|\mathbf{A}-\boldsymbol{\lambda} \mathbf{I}|=\mathbf{O}
$$

4
Thus the eigen values are $\lambda=5, \lambda=-3$ and $\lambda=-3$

PROBLEM

when $\boldsymbol{\lambda}=5 \Rightarrow\left[\begin{array}{ccc}-7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
By solving above we get $X_{1}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$
Similarly, for the given eigen value $\boldsymbol{\lambda}=-3$
we can have two linearly independent eigen vectors $X_{2}=\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$ and $x_{3}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$
$P=\left(\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}\right)$
$P=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 0 \\ -1 & 0 & 1\end{array}\right]=$ modal matrix of A
Nowdet $P=1(-1)-2(2)+3(0-1)=-8$

PROBLEM

$$
\begin{aligned}
& P^{-1}=\frac{\operatorname{adj} P}{\operatorname{det} P}=-\frac{1}{8}\left[\begin{array}{ccc}
-1 & -2 & 3 \\
-2 & 4 & 6 \\
-1 & -2 & -5
\end{array}\right] \\
& -\frac{1}{8}\left[\begin{array}{ccc}
-1 & -2 & 3 \\
-2 & 4 & 6 \\
-1 & -2 & -5
\end{array}\right]\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right] \\
& =-\frac{1}{8}\left[\begin{array}{ccc}
-5 & -10 & 15 \\
6 & -12 & -18 \\
3 & 6 & 15
\end{array}\right] \\
& P^{-1} A P=-\frac{1}{8}\left[\begin{array}{ccc}
-40 & 0 & 0 \\
0 & 24 & 0 \\
0 & 0 & 24
\end{array}\right]
\end{aligned}
$$

$=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3\end{array}\right]=\operatorname{diag}(5,-3,-3)$
Hence $P^{-1} A P$ is a diagonal matrix.

Problems

1. Diagonalize the matrix
(i) $\left[\begin{array}{ccc}2 & 2 & 1 \\ 1 & 3 & 1 \\ -1 & 2 & 2\end{array}\right]$ (ii) $\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right]$

MULTIPLE INTEGRALS

> Double integrals
$>$ Triple integrals
$>$ Change of order of integration
> Transformation of coordinate system;
$>$ Determination of areas by double integrals

Double integrals

The expression:

$$
\int_{y=y_{1}}^{y_{2}} \int_{x=x_{1}}^{x_{2}} f(x, y) d x \cdot d y
$$

is called a double integral and indicates that $f(x, y)$ is first integrated with respect to x and the result is then integrated with respect to y

If the four limits on the integral are all constant the order in which the integrations are performed does not matter.

If the limits on one of the integrals involve the other variable then the order in which the integrations are performed is crucial.

MULTIPLE INTEGRALS

Double Integral :

I. When y_{1}, y_{2} are functions of x and x_{1} and x_{2} are constants. $f(x, y)$ is first integrated w.r.t y keeping ' x ' fixed between limits y_{1}, y_{2} and then the resulting expression is integrated w.r.t ' x ' with in the limits x_{1}, x_{2} i.e.,

$$
\iint_{R} f(x, y) d x d y=\quad \int_{x=x_{1}}^{x=x_{2}} \int_{y=\phi_{1}(x)}^{y=\phi_{2}(x)} f(x, y) d y d x
$$

MULTIPLE INTEGRALS

II. When x_{1}, x_{2} are functions of y and y_{1}, y_{2} are constants, $f(x, y)$ is first integrated w.r.t ' x '
keeping ' y ' fixed, with in the limits x_{1}, x_{2} and then resulting expression is integrated w.r.t ' y ' between the limits y_{1}, y_{2} i.e.,

$$
\iint_{R} f(x, y) d x d y=\int_{y=y_{1}}^{y=y_{2}} \int_{x=\phi_{1}(y)}^{x=\phi_{1}(y)} f(x, y) d x d y
$$

III. When $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}$ are all constants. Then

$$
\iint_{R} f(x, y) d x d y=\quad \int_{n_{1}}^{y_{1}} \int_{x_{1}}^{x_{2}} f(x, y) d x d y=\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} f(x, y) d y d x
$$

MULTIPLE INTEGRALS

1. Evaluate $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y$

Sol. $\int_{1}^{2}\left[\int_{1}^{3} x y^{2} d x\right] d y$
$=\int_{1}^{2}\left[y^{2} \cdot \frac{x^{2}}{2}\right]_{1}^{3} d y=\int_{1}^{2} \frac{y^{2}}{2} d y[9-1]$
$=\frac{8}{2} \int_{1}^{2} y^{2} d y=4 \cdot \int_{1}^{2} y^{2} d y$
$=4 .\left[y^{3} / 3\right]_{1}^{2}=\frac{4}{3}[8-1]=\frac{4.7}{3}$
$=\frac{28}{3}$

MULTIPLE INTEGRALS

Evaluate $\int_{0}^{2} \int_{0}^{x} y d y d x$
Sol. $\int_{x=0}^{2} \int_{y=0}^{x} y d y d x=\int_{x=0}^{2}\left[\int_{y=0}^{x} y d y\right] d x$
$=\int_{x=0}^{2}\left[\frac{y^{2}}{2}\right]_{0}^{x} d x=\int_{x=0}^{2} \frac{1}{2}\left(x^{2}-0\right) d x=\frac{1}{2} \int_{x=0}^{2} x^{2} d x=\frac{1}{2}\left[\frac{x^{3}}{3}\right]_{0}^{2}=\frac{1}{6}(8-0)$

MULTIPLE INTEGRALS

Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d y d x}{1+x^{2}+y^{2}}$
Sol: $\int_{0}^{1 \sqrt{1+x^{2}}} \int_{0}^{2} \frac{d y d x}{1+x^{2}+y^{2}}=\int_{x=0}^{1}\left[\frac{\sqrt{1+x^{2}}}{\sqrt{y=0}} \frac{1}{\left(1+x^{2}\right)+y^{2}} d y\right] d x$

$$
\begin{aligned}
& =\int_{x=0}^{1}\left[\int_{y=0}^{\sqrt{1+x^{2}}} \frac{1}{\left(\sqrt{1+x^{2}}\right)^{2}+y^{2}} d y\right] d x=\int_{x=0}^{1} \frac{1}{\sqrt{1+x^{2}}}\left[\operatorname{Tan}^{-1} \frac{y}{\sqrt{1+x^{2}}}\right]_{y=0}^{\sqrt{1+x^{2}}} d x \\
& {\left[\because \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}(x / a)\right]} \\
& =\int_{x=0}^{1} \frac{1}{\sqrt{1+x^{2}}}\left[\operatorname{Tan}^{-1} 1-\operatorname{Tan}^{-1} \mathrm{O}\right] d x \\
& \text { or } \frac{\pi}{4}\left(\sinh ^{-1} \mathrm{x}\right)_{0}^{1}=\frac{\pi}{4}\left(\sinh ^{-1} 1\right) \\
& =\frac{\pi}{4} \int_{x=0}^{1} \frac{1}{\sqrt{1+x^{2}}} d x=\frac{\pi}{4}\left[\log \left(x+\sqrt{\left.x^{2}+1\right)}\right]_{x=0}^{1}\right. \\
& =\frac{\pi}{4} \log (1+\sqrt{2})
\end{aligned}
$$

MULTIPLE INTEGRALS

Evaluate $\int_{0}^{1} \int_{0}^{\pi / 2} r \sin \theta d \theta d r$
Sol. $\int_{r=0}^{1} r\left[\int_{\theta=0}^{\pi / 2} \sin \theta d \theta\right] d r$

$$
\int_{r=0}^{1} r(-\cos \theta)_{\theta=0}^{\pi / 2} d r
$$

$\int_{r=0}^{1}-r(\cos \pi / 2-\cos 0) d r$
$\int_{r=0}^{1}-r(0-1) d r=\int_{0}^{1} r d r=\left(\frac{r^{2}}{2}\right)_{0}^{1}=\frac{1}{2}-0=\frac{1}{2}$

MULTIPLE INTEGRALS

Evaluate $\int_{0}^{\pi / 4} \int_{0}^{a \sin \theta} \frac{r d r d \theta}{\sqrt{a^{2}-r^{2}}}$
Sol.
$\int_{0}^{5 / 4} \int_{o}^{\text {ain }} \frac{r d r d \theta}{\sqrt{a^{2}-r^{2}}}=$
$\int_{0}^{\pi / 4}\left\{\int_{0}^{\operatorname{cosin} \theta} \frac{r}{\sqrt{a^{2}-r^{2}}} d r\right\} d \theta=$
$-1 / 2 \int_{0}^{\pi / 4}\left\{\int_{0}^{\cos \theta} \frac{-2 r}{\sqrt{a^{2}-r^{2}}} d r\right\} d \theta$
$\frac{-1}{2} \int_{0}^{\pi / 4} 2\left(\sqrt{a^{2}-r^{2}}\right)_{0}^{a \sin \theta} d \theta=(-1) \int_{0}^{\pi / 4} 2\left[\sqrt{a^{2}-a^{2} \sin ^{2} \theta}-v\right.$
$(-a) \int_{0}^{\pi / 4}(\cos \theta-1) d \theta=(-a)(\sin \theta-\theta)_{0}^{\pi / 4}$
$(-a)[[\sin \pi 4-\pi]-(0-0)]$
$(-a)[1 / \sqrt{2}-\pi / 4]=2[\pi / 4-1 / \sqrt{2}]$

Problems

1. Evaluate $\iint_{11}^{23} x y^{2} d x d y$

Sol. $\int_{1}^{2}\left[\int_{1}^{\{ } x y^{2} d x\right] d y$

$=4 .\left[y^{3} / 3\right]_{1}^{2}=\frac{4}{3}[8-1]=\frac{4.7}{3}=\frac{28}{3}$

4. Evaluate $\int_{0}^{1 \sqrt{1+2}} \frac{d y d x}{1+x^{2}+y^{2}}$

Sol: $\int_{0}^{1 \sqrt{\prod_{0}^{2}}} \frac{d y d x}{1+x^{2}+y^{2}}=\int_{=00}^{1}\left[\sqrt{x_{y=0}^{x}} \frac{1}{\left(1+x^{2}\right)+y^{2}} d y\right] d x$

$$
\begin{aligned}
& =\int_{x=0}^{1} \frac{1}{\sqrt{1+x^{2}}}\left[\operatorname{Tan}^{-1} 1-\operatorname{Tan}^{-1} 0\right] d x \text { or } \frac{\pi}{4}\left(\sinh ^{-1} x\right)_{0}^{1}=\frac{\pi}{4}\left(\sinh ^{-1} 1\right) \\
& =\frac{\pi}{4} \int_{4=0}^{\sqrt{1+x^{2}}} \frac{1}{d x}=\frac{\pi}{4}\left[\log \left(x+\sqrt{\left.x^{2}+1\right)}\right]_{x-0}^{1}\right. \\
& =\frac{\pi}{4} \log (1+\sqrt{2})
\end{aligned}
$$

10. Evaluate $\iint x y(x+y) d x d y$ over the region R bounded by $y=x^{2}$ and $y=x$
Sol: $y=x^{2}$ is a parabola through $(0,0)$
symmetric about y-axis $y=x$ is a straight line through $(0,0)$ with slope1.
Let us find their points of intersection solving $\mathrm{y}=x^{2}, \mathrm{y}=\mathrm{x}$ we get $x^{2}=\mathbf{x} \Rightarrow \mathbf{X}=0,1$ Hence $\mathrm{y}=0,1$

The point of intersection of the curves are $(0,0),(1,1)$

Consider $\iint_{R} x y(x+y) d x d y$

$$
\begin{aligned}
& \underbrace{\text { (2, }}_{(0,0)} \\
& =\int_{x=0}^{1}\left(x^{2} \frac{y^{2}}{2}+\frac{x y^{3}}{3}\right)_{y=x^{2}}^{x} d x \\
& =\int_{x=0}^{1}\left(\frac{x^{4}}{2}+\frac{x^{4}}{3}-\frac{x^{6}}{2}-\frac{x^{7}}{3}\right) d x \\
& =\int_{x=0}^{1}\left(\frac{5 x^{4}}{6}-\frac{x^{6}}{2}-\frac{x^{7}}{3}\right) d x \\
& =\left(\frac{5}{6} \cdot \frac{x^{5}}{5}-\frac{x^{7}}{14}-\frac{x^{8}}{24}\right)_{0}^{1}=\frac{1}{6}-\frac{1}{14}-\frac{1}{24}=\frac{28-12-7}{168}=\frac{28-19}{168}=\frac{9}{168}=\frac{3}{56}
\end{aligned}
$$

11. Evaluate $\iint_{R} x y d x d y$ where R is the region bounded by x-axis and $x=2$ a and the curve $x^{2}=4 a y$.

Sol. The line $x=2 a$ and the parabola $\kappa^{2}=4 a y$ intersect at $B(2 a, a)$
\therefore The given integral $=\iint_{R} x y d x d y$
Let us fix ' y '
For a fixed ' y ', x varies from $2 \sqrt{a y}$ to $2 a$.
Then y varies from O to a.
Hence the given integral can also be
written as

$$
\begin{aligned}
& \int_{y=0}^{a} \int_{x=2 \sqrt{a y}}^{x=2 a} x y d x d y=\int_{y=0}^{a}\left[\int_{x=2 \sqrt{a y}}^{x=2 a} x d x\right] y d y \\
& \quad=\int_{y=0}^{a}\left[\frac{x^{2}}{2}\right]_{x=2 \sqrt{a y}}^{2 a} y d y \\
& =\int_{y=0}^{a}\left[2 a^{2}-2 a y\right] y d y \\
& =\left[\frac{2 a^{2} y^{2}}{2}-\frac{2 a y^{3}}{3}\right]_{0}^{a} \\
& =a^{4}-\frac{2 a^{4}}{3}=\frac{3 a^{4}-2 a^{4}}{3}=\frac{a^{4}}{3}
\end{aligned}
$$

12 Evaluate $\int_{0}^{1 \pi / 2} r \sin \theta d \theta d r$

Sol. $\int_{r=0}^{1} r\left[\int_{\theta=0}^{\pi / 2} \sin \theta d \theta\right] d r$
$=\int_{r=0}^{1} r(-\cos \theta)_{\theta=0}^{\pi / 2} d r$
$=\int_{r=0}^{1}-r(\cos \pi / 2-\cos 0) d r$
$=\int_{r=0}^{1}-r(0-1) d r=\int_{0}^{1} r d r=\left(\frac{r^{2}}{2}\right)_{0}^{1}=\frac{1}{2}-0=\frac{1}{2}$

MODULE III

FUNCTIONS OF SINGLE VARIABLE AND TRIPLE INTEGRALS

MODULE-II

And we also introduce function of several variables which are essential for the discussion of transcendental function and also maxima and minima of function of more than one variable with and without Constraints. In many engineering problems change of variables and transformation of co-ordinates play an important role in solving the problems. For such problems, Jacobian of functions of more than one variable and functional dependence are introduced.

MODULE-III

Limits, Continuity and Differentiability:

The reader familiar with the concept of limit, continuity and differentiability for real valued functions. In this section, we give a brief review of these concepts, which form the basis of differential calculus.

Throughout this section we consider $f: A \rightarrow R$ where A is an interval in R. It may vappen that for a function f,

As x approaches closer to a, the value $f(x)$ approaches closer to a definite real number,

MODULE-II

(1) Note : The following are some

 fundamental properties of continuous functions.(2) Definition: A function f is said to approach to a limit , as x tends to a, if given $\in>0$ there exists $s>0$ such that $0<|x-a|<\delta|f(x)-l|<\epsilon$.
We write $f(x)=1$
$x \rightarrow a$

CONTINOUS FUNCTION

(1) Definition: A function f is said to be continuous at $x=a$ if $_{\substack{\lim f(x)=f(a)}}$
f f is not continuous at $x=a$. We say that f s discontinuous at $x=a$.

A function f is said to be continuous if it is zontinuous at every point of its domain.
'a)If f and g are continuous at 'a', then $f+g, f-g, f g, k f$ and f / g (if $g \neq 0$) are all continuous at 'a'.
(b) Intermediate Value Theorem: Let ${ }_{f}$ be a continuous function defined on a closed interval ${ }_{[a, b]}$ and let $f(a) \neq f(b)$. Let c be any real number lying between $f(a)$ and $f(b)$.Then there exists ${ }_{\infty \in(a, b)}$ Such that $f(x)=c$.

In other words any continuous function defined on a closed interval [a, b] assumes every value lying between f(a) and $f(b)$ is bounded.

MODULE-II

'a) Let f be a continuous function defined on a closed interval [a, b]. Then there exists a real number M such that $|f(x)| \leq M$ for all $x \in[a, b]$
In other words any continous function defined on a closed interval is bounded.
(3) Definition: A function f is said to be differentiable at \times if $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists and s finite. The value of the limit is called the derivative or differential coefficient of f at \times and is denoted by $f^{\prime}(x)$ or $\frac{d f}{d x}$ or $\frac{d y}{d x}$ where $y=f(x)$.
f the derivative of $_{f^{\prime}(x)}$ is differentiable, then the derivative $f_{f^{\prime}(x)}$ is called the second derivative of $f(x)$ and is denoted by $f_{f^{\prime \prime}(x)}{\text { or } \frac{d^{2} f}{d x^{2}}}^{c^{2}}$ כr $\frac{d^{2} y}{d k^{2}} \mathrm{Or}_{y_{2}}$. Continuing this process, one can define n^{n} derivative of the function ${ }_{y=f(x)}$, which is denoted by $f_{f^{\prime \prime}(x)}$, $\operatorname{or}_{\frac{d^{n} f}{d x^{n}}} \operatorname{Or}_{\frac{d^{\prime \prime}}{d x^{n}}} \operatorname{or}_{y_{n}}$.

Note: If a function f is differentiable at x, then f is continuous at x. However the zonverse is not true.

For example the function $f(x)=|x|$ is zontinuous but not differentiable at $x=0$.

Rolle's Theorem

Statement: Let $f(x)$ be a function defined on $[a, b]$ satisfying the following conditions. 'a) f is Continuous on (a, b)
'b) f is differentiable on (a, b)
'C) $f(a)=f(b)$
Then there exists at least one soint $c \in(a, b)$ such that $f^{\prime}(c)=0$

Geometrical Interpretation of Rolle's rheorem:

Interpreted geometrically in the following figure.

Rolle's Theorem says that the curve -epresenting the graph of the function $y=f(x)$ must have a tangent parallel to the x $\exists x i s$ at same point between a and b.

ROLLES THOEREM

Daily life application of rolles theorem
Since Rolle's theorem asserts the existence of a point where the derivative vanishes, I assume your students already know basic notions like continuity and differentiability. One way to illustrate the theorem in terms of a practical example is to look at the calendar listing the precise time for sunset each day. One notices that around the precise date in the sumnmer when sunset is the latest, the precise hour changes very little from day to day in the vicinity of the precise date. This is an illustration of Rolle's theorem because near a point where the derivative vanishes, the function changes very little.

Example 1:

Verify Rolle's Theorem for $f(x)=x^{2}-1$

$$
n[-1,1]
$$

Solution:

Given $f(x)=x^{2}-1$, Which is a polynomial in ' x^{\prime}
'i) $f(x)$ is continuous in $[-1,1]$, since it is solynomial function.
'ii) $f(x)$ is also derivable in (-1,1), since it is solynomial function
iii) $f(-1)=0, f(1)=0$
.e. $f(-1)=f(1)$
Hence all the conditions of Rolle's theorem are satisfied for the function $f(x)=x^{2}-1$.Therefore there exists a =onstant, C such that $f^{\prime}(c)=0$.

$$
\begin{aligned}
& f^{\prime}(x)=2 x \\
& f(c)=2 c=0 \\
& C=0 \in(-1,1)
\end{aligned}
$$

i.e. Clies in the interval ($-1,1$)

Hence Rolle's theorem is verified

ROLLES THOEREM

Verify Rolle's theorem for the function $f(x)=(x-a)^{m}(x-b)^{n}$ in [a, b]

Solution:

Given $f(x)=(x-a)^{m}(x-b)^{n}$
'i) Since ${ }_{f(x)}$ is the product of two solynomial in ${ }_{x}$ hence ${ }_{f(x)}$ is continuous in [a, b].
'ii)

$$
f^{\prime}(x)=m(x-a)^{m-1}(x-b)^{n}+(x-a)^{m} \cdot n(x-b)^{n-1}
$$

$$
=(x-a)^{m-1}(x-b)^{n-1}[n(x-a)+m(x-b)]
$$

ROLLES THOEREM

$f^{\prime}(x)$ exists for all $x \in(a, b)$
$\therefore f(x)$ is differentiable in (a, b)
'iii) Also $f(x)=f(b)=0$

$f(x)$ satisfies all the conditions of Roll's

Theorem.
Then $\exists^{C \in(a, b)}$ such that

$$
f^{\prime}(c)=0
$$

ROLLES THOEREM

$$
\begin{aligned}
& \Rightarrow \quad(c-a)^{m-1}(c-b)^{n-1}\{n(c-a)+m(c-b)\}=0 \\
& \Rightarrow C=a, c=b, n(c-a)+m(c-b)=0 \\
& \Rightarrow \\
& \therefore \quad C=\frac{n a+m b}{m+n} \\
& \therefore \\
& \quad C=\frac{n a+m b}{m+n} \in(a, b)
\end{aligned}
$$

-ence Rolle's Theorem is verified.

RULES THOEREM

Verify whether Rolle's Theorem can be applied to the following function in the intervals cited :
'i) $f(x)=\tan x$ in $[0, x]$

Solution:

$f(x)$ is discontinuous at $x=\pi / 2$ as, it is not defined there.

The condition (1) of Roll's Theorem is not satisfied. Hence we cannot apply Roble's theorem.
(ii) $f(x)=\frac{1}{x^{2}}$ in $[-1,1]$

It is discontinuous at $x=0$. Hence we cannot apply.

Verify Rolle's theorem for $f(x)=|x|$ in $[-1,1]$

Solution:

We have $f(x)=|x|$
i.e.

$$
\begin{aligned}
f(x) & =x, \text { for } x \geq 0 \\
& =-x, \text { for } x<0
\end{aligned}
$$

(i) $f(x)$ is continuous for all values of x.
: $f(x)$ is continuous in the closed interval

$$
[-1,1]
$$

(ii) $f(x)$ is not derivable at $x=0$

We have $f(0)=0 \mid=0$

$$
\begin{aligned}
& \text { L.H.D. }=f^{\prime}(0)=\lim _{x \rightarrow 0^{-}}=\frac{f(x)-f(0)}{x-0} \\
& \quad=\lim _{x \rightarrow 0^{-}}=\frac{|x|-0}{x}
\end{aligned}
$$

ROLLES THOEREM

$=\lim _{x \rightarrow 0^{-}}=\frac{-x}{x}=-1$
R.H.S.

$$
f^{\prime}(\mathrm{O})=\lim _{x \rightarrow 0^{+}}=\frac{f(x)-f(\mathrm{O})}{x-\mathrm{O}}
$$

$$
\begin{aligned}
& =\underset{x \rightarrow \mathrm{o}^{+}}{\operatorname{Lt}}=\frac{|x|-\mathbf{O}}{x} \\
& =\underset{x \rightarrow \mathrm{0}^{+}}{\operatorname{Lt}}=\frac{x}{x}=\mathbf{1}
\end{aligned}
$$

L.H.D. $=$ R.H.D. $f(x)$ is not derivable in the open interval (-1, 1)

Roll's Theorem is not applicable.

ROLLES THOEREM

EXERCISE

Verify Rolle's Theorem for the following functions in the intervals indicated.
(i) $f(x)=(x-a)^{3}(x-b)^{4}$ in $[a, b]$
(ii) $f(x)=e^{-x} \operatorname{Sin} x$ in $[\mathbf{0}, \pi]$
(iii) $f(x)=x^{2}-2 x$ in $[0,2]$
(iv) $f(x)=x(x+3) e^{-x / 2}$ in $[-3,0]$

ROLLES THOEREM

Daily life application of lagranges method

Well, for Lagrange's theorem (if you mean the mean value theorem) there's always the story about the hiker who goes up a mountain one day and down again the other. The question is, as he's wallking down, will he ever be at some point on the path exactly 24 hours after he was there last? This is without assuming he wallks at an even pace. He can walk slowly uphill and run downhill if he wants. The only thing he's not allowed to do is deviate from the path, and teleport.

LAGRANGES MEAN VALUE THEOREM

2 Lagrange's Mean Value Theorem

Statement: Let $f(x)$ be a function defined on [a, b] satisfying the following conditions.
(a) f is continuous on (a, b)
(b) f is differentiable on (a, b)

Then, there at least one point $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

LAGRANGES MEAN VALUE THEOREM

Geometrical Interpretation of Lagrange's

 mean value theorem:Consider the graph of the curve $y=f(x)$, $P[a, f(a)]$ and $Q[b, f(b)]$ are two points on the curve. Hence slope of the chord PA is $\frac{f(b)-f(a)}{b-a}$.

LAGRANGES MEAN VALUE THEOREM

Also $f^{\prime}(c)$ represents the slope of the tangent of the curve ${ }_{f(x)}$ at $R[c, f(c)]$. The relation $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$ means that the tangent at R is parallel to the chord PQ .

LAGRANGES MEAN VALUE THEOREM

Find C of Lagrange's mean value theorem (L.M.V.T) for the function $f(x)=e^{x}$ in [0, 1] Solution:
Here we have

$$
f(x)=e^{x}, a=0, b=1
$$

(i) $f(x)$ is continuous in [0, 1] and (ii) $f(x)$ is derivable in $(0,1)$ and $f^{\prime}(x)=e^{x}$ $x \in(0,1)$
$f(x)$ satisfies both the conditions of L.M.V.T.

Therefore, there must be atleast one value $C \in(0,1)$ such that

LAGRANGES MEAN VALUE THEOREM

$$
F^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

i.e.

$$
e^{c}=\frac{e^{1}-e^{0}}{1-0}=\frac{e-1}{1}
$$

i.e.
$e^{c}=e-1$
i.e.

$$
c=\log (e-1) \in(0,1)
$$

Hence, Lagrange mean value Theorem is verified

LAGRANGES MEAN VALUE THEOREM

Example: S.T. for $0<a<b<1$

$$
\frac{1}{1+a^{2}}>\frac{\tan ^{-1} b-\tan ^{-1} a}{1+a^{2}}>\frac{1}{1+b^{2}}
$$

Solution:

Consider $f(x)=\tan ^{-1} x \quad$ in
[a, b] for $0<a<b<1$
Since $f(x)$ is continuous in [a, b] and derivable in (a, b)
We can apply L.M.V.T. here

LAGRANGES MEAN VALUE THEOREM

Hence there exists a pt c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Here

$$
f^{\prime}(x)=\frac{1}{1+x^{2}}
$$

And hence

$$
f^{\prime}(c)=\frac{1}{1+c^{2}}
$$

Thus, there exist a point $c, a<c<b$
Such that $\quad \frac{1}{1+c^{2}}=\frac{\tan ^{-1} b-\tan ^{-1} a}{b-a}$

LAGRANGES MEAN VALUE THEOREM

We have $\quad 1+a^{2}<1+c^{2}<1+b^{2}$

$$
\frac{1}{1+a^{2}}>\frac{1}{1+c^{2}}>\frac{1}{1+b^{2}}
$$

Using (1) and (2) we have

$$
\frac{1}{1+a^{2}}>\frac{\tan ^{-1} b-\tan ^{-1} a}{1+a^{2}}>\frac{1}{1+b^{2}}
$$

Hence the result

LAGRANGES MEAN VALUE THEOREM

Calculate approximately $\sqrt[5]{245}$ by using L.M.V.T.

Solution:
Let $f(x)=\sqrt[5]{x} \quad$ and $\quad a=243, b=245$
Then $\quad f^{\prime}(x)=\frac{1}{5} x^{-4 / 5}$
And $\quad f^{\prime}(c)=\frac{1}{5} c^{-4 / s}$
\therefore By L.M.V.T. we have $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$

LAGRANGES MEAN VALUE THEOREM

$\Rightarrow \quad \frac{f(245)-f(243)}{245-243}=\frac{1}{5} c^{-4 / 5}$
$\Rightarrow \quad f(245)=f(243)+\frac{2}{5} c^{-4 / 5}$

$$
\sqrt[5]{245}=(243)^{1 / 5}+\frac{2}{5} c^{-4 / 5}
$$

C lies between 243 and 245. [Take $c=244$]

$$
\sqrt[5]{245}=3.0049
$$

LAGRANGES MEAN VALUE THEOREM

Prove that $\frac{\pi}{3}-\frac{1}{5 \sqrt{3}} \cos ^{-1}(3 / 5)>\frac{\pi}{3}-\frac{1}{8}$ using L.M.V.T.

Solution:

Let $f(x)=\cos ^{-1} x$ and an interval $[\mathrm{a}, \mathrm{b}$]
Then

$$
f^{\prime}(x)=\frac{-1}{\sqrt{1-x^{2}}}
$$

By L.M.V.T.

$$
\frac{\operatorname{Cos}^{-1} b-\operatorname{Cos}^{-1} a}{b-a}=\frac{-1}{\sqrt{1-c^{2}}} \text { where } a<c<b
$$

$C \in(a, b)$

$$
\begin{array}{ll}
\therefore & a<c<b \Rightarrow a^{2}<c^{2}<b^{2} \\
\Rightarrow & -a^{2}<-c^{2}<-b^{2} \\
\Rightarrow & 1-a^{2}>1-c^{2}>1-b^{2} \\
\Rightarrow & \frac{1}{\sqrt{1-a^{2}}}<\frac{1}{\sqrt{1-c^{2}}}<\frac{1}{\sqrt{1-b^{2}}} \\
\Rightarrow & \frac{-1}{\sqrt{1-a^{2}}}>\frac{-1}{\sqrt{1-c^{2}}}>\frac{-1}{\sqrt{1-b^{2}}}
\end{array}
$$

LAGRANGES MEAN VALUE THEOREM

$$
\frac{-1}{\sqrt{1-a^{2}}}>\frac{\operatorname{Cos}^{-1} b-\operatorname{Cos}^{-1} a}{b-a}>\frac{-1}{\sqrt{1-b^{2}}}
$$

Let $a=1 / 2$ and $b=3 / 5$. Then

$$
\frac{-2}{\sqrt{3}}>\frac{\operatorname{Cos}^{-1}(3 / 5)-\operatorname{Cos}^{-1}(1 / 2)}{\frac{3}{5}-\frac{1}{2}}>-5 / 4
$$

$$
\frac{-2}{\sqrt{3}}>\frac{\operatorname{Cos}^{-1}(3 / 5)-\operatorname{Cos}^{-1}(1 / 2)}{1 / 10}>-5 / 4
$$

LAGRANGES MEAN VALUE THEOREM

$$
\frac{-2}{10 \sqrt{3}}>\cos ^{-1}(3 / 5)-\pi / 3>\frac{-5}{4}-\frac{1}{10}
$$

$$
\Rightarrow
$$

$$
\frac{\pi}{3}-\frac{1}{5 \sqrt{3}}>\cos ^{-1}(3 / 5)>\frac{\pi}{3}-\frac{1}{8}
$$

Hence the result

LAGRANGES MEAN VALUE THEOREM

Using Mean Value Theorem prove that $\tan x>x$ in $0<x<\pi / 2$
Solution:
Consider $f(x)=\tan x$ in $0<x<\pi / 2$
Take $f(x)=\tan x$ in $[\epsilon, x]$, where
$0<\in<x<\pi / 2$
Applying Lagranges Mean-Value Theorem to $f(x)$
There exists a point C such that

There exists a point C such that $0<\epsilon<c<x<\pi / 2$

Such that $\frac{\tan x-\tan \epsilon}{x-\epsilon}=\operatorname{Sec}^{2} C$
$\Rightarrow \quad \tan x-\tan \in=(x-\epsilon) \sec ^{2} c$
Take $\in \rightarrow 0$, Then $\tan x=x \sec ^{2} c$
But $\sec ^{2} c>1$. Hence $\tan x>x$

CAUCHY MEAN VALUE THOERM

3 Cauchys' Mean Value Theorem

 (C.M.V.T)Statement: Let $f(x)$ and $g(x)$ be functions defined on $[a, b]$ satisfying the following conditions.
(a) f and g are continuous on $[a, b]$
(b) f and g are differentiable on $[a, b]$
(c) $g^{\prime}(x)$ does not vanish at any pt in $[a, b]$

$$
\text { [i.e. } \left.g^{\prime}(x) \neq 0 \forall x \in(a, b)\right]
$$

CAUCHY MEAN VALUE THOERM

Then, there exists at least one point $c \in(a, b)$ such that,

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

CAUCHY MEAN VALUE THOERM

Example 1:

Verify Cauchy's mean value theorem for the function x^{2} and x^{3} in the interval $[1,2]$ Solution:
Let $f(x)=x^{2} \quad$ and $g(x)=x^{3}$
(i) $f(x)$ and $g(x)$ are continuous in [1, 2]
(ii) $f(x)$ and $g(x)$ are differentiable in [1, 2]
(iii) $g^{\prime}(x)=3 x^{2} \neq 0 \quad \forall \quad x \in[1,2]$

CAUCHY MEAN VALUE THOERM

$\therefore f(x)$ and $g(x)$ satisfy all the conditions of Cauchy's mean value theorem. Hence there exist at least one real number c in $(1,2)$ such that,

$$
\begin{array}{ll}
& \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(2)-f(1)}{g(2)-g(1)} \\
\Rightarrow & \frac{2 c}{3 c^{2}}=\frac{2^{2}-1^{2}}{2^{3}-1^{3}}=\frac{4-1}{8-1} \\
\Rightarrow & \frac{2}{3 c}=\frac{3}{7} \\
\Rightarrow & C=\frac{14}{9}
\end{array}
$$

\therefore The value of $c=\frac{14}{9}$ lies in $(1,2)$

CAUCHY MEAN VALUE THOERM

\therefore The value of $c=\frac{14}{9} \quad$ lies in $(1,2)$
Hence, Cauchy's mean value theorem is verified.

Example 2:

Verify Cauchy's mean value theorem for the functions $\log x$ and $\frac{1}{x}$ in $[1, \mathrm{e}]$

Solution:

Here, we have

$$
f(x)=\log x, g(x)=\frac{1}{x},[\mathrm{a}, \mathrm{~b}]=[1, \mathrm{e}]
$$

CAUCHY MEAN VALUE THOERM

(i) Both $f(x)$ and $g(x)$ are continuous in [1, e] (ii) Differentiable in (1, e)
(iii) Also $g^{\prime}(x)=-\frac{1}{x^{2}} \neq 0$ in (1, e)

Since ${ }_{f(x), g(x)}$ satisfy all the functions of C.M.V.T. there exist at least one real number c in $(1, \mathrm{e})$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f(e)-f(1)}{g(e)-g(1)}
$$

CAUCHY MEAN VALUE THOERM

$$
\begin{array}{ll}
\text { e. } & \frac{1 / 2}{\left(-1 / c^{2}\right)}=\frac{\log e-\log 1}{1 / 2-1} \\
\Rightarrow & -c=\frac{1-0}{\left(\frac{1-e}{e}\right)}=\frac{e}{1-e} \\
\therefore & c=\frac{e}{1-e} \in(1, e)
\end{array}
$$

CAUCHY MEAN VALUE THOERM

Example:If $f(x)=\log x$ and $g(x)=x^{2}$ in [a, b] with $b>a>1$, using C.M.V.T. Prove that

$$
\frac{\log b-\log a}{b-a}=\frac{a+b}{2 c^{2}}
$$

Solution:

We are given $\quad f(x)=\log x$
$\Rightarrow \quad f(a)=\log a, f(b)=\log b$
And

$$
g(x)=x^{2}
$$

$\Rightarrow \quad g(a)=a^{2}, g(b)=b^{2}$

CAUCHY MEAN VALUE THOERM

Also

$$
f^{\prime}(x)=\frac{1}{x}
$$

And

$$
g^{\prime}(x)=2 x
$$

\therefore By Cauchy's mean value theorem

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

$$
\Rightarrow
$$

$$
\frac{\log b-\log a}{b^{2}-a^{2}}=\frac{1 / c}{2 c}
$$

CAUCHY MEAN VALUE THOERM

$$
\begin{aligned}
\Rightarrow \quad & \frac{\log b-\log a}{(b-a)(b+a)}=\frac{1}{2 c^{2}} \\
& \frac{\log b-\log a}{b-a}=\frac{a+b}{2 c^{2}}
\end{aligned}
$$

Hence the result.

Triple integrals :

${ }_{1}, x_{2}$ are constants. y_{1}, y_{2} are functions of x and z_{1}, z_{2} are functions of x and y, then $, y, z$) is first integrated w.r.t. ' z ' between the limits z_{1} and z_{2} keeping x and y fixed. \geq resulting expression is integrated w.r.t ' y ' between the limits y_{1} and y_{2} keeping x istant. The resulting expression is integrated w.r.t. ' x ' from x_{1} to x_{2}
$\iiint_{V} f(x, y, z) d x d y d z=$
, $\int_{y=g_{1}(x)}^{y=g_{2}(x)} \int_{z=f_{1}(x, y)}^{z=f_{2}(x, y)} f(x, y, z) d z d y d x$

$$
\text { Evaluate } \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d x d y d z
$$

iol

$$
\begin{aligned}
& \int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} \int_{z=0}^{\sqrt{1-x^{2}-y^{2}}} x y z d x d y d z \\
& \quad=\int_{x=0}^{1} d x \int_{y=0}^{\sqrt{1-x^{2}}} d y \int_{z=0}^{\sqrt{1-x^{2}-y^{2}}} x y z d z \\
& =\int_{x=0}^{1} d x \int_{y=0}^{\sqrt{1-x^{2}}} x y\left(\frac{z^{2}}{2}\right)_{z=0}^{\sqrt{1-x^{2}-y^{2}}} d y \\
& =\frac{1}{2} \int_{x=0}^{1} d x \int_{y=0}^{\sqrt{1-x^{2}}} x y\left(1-x^{2}-y^{2}\right) d y \\
& \quad=\frac{1}{2} \int_{x=0}^{1} d x \int_{y=0}^{\sqrt{1-x^{2}}} x\left[\left(1-x^{2}\right) y-y^{3}\right] d y
\end{aligned}
$$

$$
\begin{gathered}
=\frac{\mathbf{1}}{2} \int_{x=0}^{1} x\left[\left(1-x^{2}\right) \frac{y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{\sqrt{1-x^{2}}} d x \\
=\frac{1}{2} \int_{x=0}^{1} x\left[\frac{y^{2}}{2}-\frac{x^{2} y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{\sqrt{1-x^{2}}} d x \\
=\frac{1}{8} \int_{x=0}^{1} x\left[2\left(1-x^{2}\right)-2 x^{2}\left(1-x^{2}\right)-\left(1-x^{2}\right)^{2}\right]^{d x} \\
=\frac{1}{8} \int_{x=0}^{1}\left(x-2 x^{3}+x^{5}\right) d x=\frac{1}{8}\left[\frac{x^{2}}{2}-\frac{2 x^{4}}{4}+\frac{x^{6}}{6}\right]_{0}^{1} \\
=\frac{1}{8}\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{6}\right)=\frac{1}{48}
\end{gathered}
$$

$$
\begin{aligned}
& \int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+y) d x d y d z \\
& =\int_{-1}^{1} \int_{0}^{z}\left[\left(x y+y^{2} / 2+z y\right)_{x-z}^{x+z}\right] d x d z \\
& =\int_{-1}^{1} \int_{0}^{z} x(x+z)-x(x-z)+\left[\frac{x+z}{2}\right]^{2}-\left[\frac{x-z}{2}\right]^{2}+z(x+z)-z(x-z) d x d z \\
& =\int_{-1}^{1} \int_{0}^{z}\left[2 z(x+z)+\frac{1}{2} 4 x z\right] d x d z \\
& =2 \int_{-1}^{1}\left[z \cdot \frac{x^{2}}{2}+z^{2} x+z \cdot \frac{x^{2}}{2}\right]_{0}^{z} d z \\
& =2 \cdot \int_{-1}^{1}\left[\frac{z^{3}}{2}+z^{3}+\frac{z^{3}}{2}\right] d z=4 \cdot\left(\frac{z^{4}}{4}\right)_{-1}^{1}=0
\end{aligned}
$$

MODULE IV FUNCTIONS SEVERAL VARIBLES

PARTIAL DIFFERENTIATION

The partial differential coefficients of f_{x} and f_{y} are $f_{x x}, f_{x y}, f_{y x} f_{y y}$ or $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial y \partial x}, \frac{\partial^{2} f}{\partial y^{2}}$, respectively.
It should be specially noted that $\frac{\partial^{2} f}{\partial y \partial x}$ means $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$ and $\frac{\partial^{2} f}{\partial x \partial y}$ means $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$.
The student will be able to convince himself that in all ordinary cases

$$
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}
$$

Change of Variables: If u is a function of x, y and x, y are functions of t and r, then u is called a composite function of t and r.
Let $u=f(x, y)$ and $x=g(t, r), y=h(t, r)$ then the continuous first order partial derivatives are

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial t} \\
& \frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial r}
\end{aligned}
$$

PROBLEMS

If $u=u\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$ show that $x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}=0$

Solution: Here given $u=u\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$
$=\mathrm{u}(\mathrm{r}, \mathrm{s})$
where $\mathrm{r}=\frac{\mathrm{y}-\mathrm{x}}{\mathrm{xy}}$ and $\mathrm{s}=\frac{\mathrm{z}-\mathrm{x}}{\mathrm{zx}}$

PROBLEMS

$\Rightarrow r=\frac{1}{x}-\frac{1}{y}$ and $s=\frac{1}{x}-\frac{1}{z}$.
we know that
$\frac{\partial u}{\partial x}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial x}$
$=\frac{\partial u}{\partial r}\left(-\frac{1}{x^{2}}\right)+\frac{\partial u}{\partial s}\left(-\frac{1}{x^{2}}\right) \quad \because r=\frac{1}{x}-\frac{1}{y}$

$$
\begin{align*}
& \Rightarrow \frac{\partial r}{\partial x}=-\frac{1}{x^{2}} \\
& \because s=\frac{1}{x}-\frac{1}{z} \\
& \Rightarrow \frac{\partial s}{\partial x}=-\frac{1}{x^{2}} \tag{ii}
\end{align*}
$$

$=-\frac{1}{x^{2}} \frac{\partial u}{\partial r}-\frac{1}{x^{2}} \frac{\partial u}{\partial s}$
or $x^{2} \frac{\partial u}{\partial x}=-\frac{\partial u}{\partial r}-\frac{\partial u}{\partial s}$

Similarly $\frac{\partial u}{\partial y}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial y}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial y}$
$=\frac{\partial \mathrm{u}}{\partial \mathrm{y}} \cdot \frac{1}{\mathrm{y}^{2}}+\frac{\partial \mathrm{u}}{\partial \mathrm{s}}, 0 \quad$ from (i)
or $y^{2} \frac{\partial u}{\partial y}=\frac{\partial u}{\partial r}$.
and $\frac{\partial u}{\partial z}=\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial z}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial z}$
$=\frac{\partial u}{\partial r} \cdot 0+\frac{\partial u}{\partial s} \cdot \frac{1}{z^{2}}$
$\Rightarrow z^{2} \frac{\partial u}{\partial z}=\frac{\partial u}{\partial s}$
Adding (i) (ii) and (iii) we get
$x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}=0$
Hence Proved.

To find the Maxima \& Minima of $f(x)$ we use the following procedure.
(i) Find $f^{1}(x)$ and equate it to zero
(ii) Solve the above equation we get x_{0}, x_{1} as roots.
(iii) Then find $f^{11}(x)$.

If $f^{11}(x)_{\left(x=x_{0}\right)>0}$, then $\mathrm{f}(\mathrm{x})$ is minimum at x_{0}
If $f^{11}(x)_{\left(x=x_{0}\right)<0,} \mathbf{f}(\mathbf{x})$ is maximum at \mathbf{x}_{0}. Similarly
we do this for other stationary points.

PROBLEM

1. Find the max \& min of the function

$$
f(x)=x^{5}-3 x^{4}+5
$$

Sol: Given $f(x)=x^{5}-3 x^{4}+5$
$f^{1}(x)=5 x^{4}-12 x^{3}$
for maxima or minima $f^{1}(x)=0$

$$
\begin{aligned}
& 5 x^{4}-12 x^{3}=0 \quad x=0, x=12 / 5 \\
& f^{11}(x)=20 x^{3}-36 x^{2}
\end{aligned}
$$

PROBLEM

At $x=0 \Rightarrow f^{11}(x)=0$. So f is neither maximum nor minimum at $\mathrm{x}=0$ At $\mathrm{x}=(12 / 5)=>$

$$
\mathrm{f}^{11}(\mathrm{x})=20(12 / 5)^{3}-36(12 / 5)
$$

$$
=144(48-36) / 25=1728 / 25>0
$$

So $f(x)$ is minimum at $x=12 / 5$
The minimum value is $\mathrm{f}(12 / 5)=(12 / 5)^{5}-3(12 / 5)^{4}+5$

MAXIMA AND MINIMA OF FUNCTION OF TWO VARIABLES

Working procedure:

1. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ Equate each to zero. Solve these equations for $x \& y$ we get the pair of values $\left(a_{1}, b_{1}\right)$ $\left(a_{2}, b_{2}\right)\left(a_{3}, b_{3}\right)$
2. Find $l=\frac{\partial^{2} f}{\partial x^{2}}, m=\frac{\partial^{2} f}{\partial x \partial y}, \mathbf{n}=\frac{\partial^{2} f}{\partial y^{2}}$
3.

i. If $l n-m^{2}>0$ and,<0 at $\left(a_{1}, b_{1}\right)$ then $f(x, y)$ is maximum at $\left(a_{1}, b_{1}\right)$ and maximum value is $f\left(a_{1}, b_{1}\right)$ ii. If $l \mathrm{n}-\mathrm{m}^{2}>0$ and $l>0$ at $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ then $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is minimum at $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ and minimum value is $f\left(a_{1}, b_{1}\right)$.

MAXIMA AND MINIMA OF FUNCTION OF TWO VARIABLES

ii. If $l n-m^{2}<0$ and at $\left(a_{1}, b_{1}\right)$ then $f(x, y)$ is neither maximum nor minimum at $\left(a_{1}, b_{1}\right)$. In this case $\left(a_{1}, b_{1}\right)$ is saddle point.
iii. If $l n-m^{2}=0$ and at $\left(a_{1}, b_{1}\right)$, no conclusion can be drawn about maximum or minimum and needs further investigation. Similarly we do this for other stationary points.

PROBLEM

Locate the stationary points \& examine their nature of the following

 functions.$$
u=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}, \quad(x>0, y>0)
$$

Sol: Given $u(x, y)=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$
For maxima \& minima $\frac{\partial u}{\partial x}=0, \frac{\partial u}{\partial y}=0$

$$
\begin{align*}
& \frac{\partial u}{\partial x}=4 x^{3}-4 x+4 y=0 \Rightarrow x^{3}-x+y=0 \tag{1}\\
& \frac{\partial u}{\partial y}=4 y^{3}+4 x-4 y=0 \Rightarrow y^{3}+x-y=0 \tag{2}
\end{align*}
$$

Adding (1) \& (2),

$$
\begin{aligned}
& x^{3}+y^{3}=0 \quad \Rightarrow x=-y \\
& (1) \Rightarrow x^{3}-2 x \Rightarrow x=0, \sqrt{2,-\sqrt{2}}
\end{aligned}
$$

Hence (3) $\Rightarrow y=0, \sqrt{2,-\sqrt{2}}$

PROBLEM

$$
\begin{aligned}
& l=\frac{\partial^{2} u}{\partial x^{2}}=12 \mathrm{x}^{2}-4 \\
& \mathrm{~m}=\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=4 \\
& \mathrm{n}=\frac{\partial^{2} u}{\partial y^{2}}=12 \mathrm{y}^{2}-4 \\
& \ln -\mathrm{m}^{2}=\left(12 \mathrm{x}^{2}-4\right)\left(12 \mathrm{y}^{2}-4\right)-16 \\
& \quad \text { At }(-\sqrt{2}, \sqrt{2}) \ln -\mathrm{m}^{2}=(24-4)(24-4)-16=(20)(20)-16>0 \\
& \quad \text { and } \mathrm{l}=20>0
\end{aligned}
$$

The function has minimum value at $(-\sqrt{2}, \sqrt{2})$

$$
\text { At }(0,0), \ln -m^{2}=(0-4)(0-4)-16=0
$$

$(0,0)$ is not a extreme value.

VECTOR CALCULUS

Scalar and vector point functions: Consider a region in three dimensional space. To each point $p(x, y, z)$, suppose we associate a unique real number (called scalar) say ϕ. This $\phi(x, y, z)$ is called a scalar point function. Scalar point function defined on the region. Similarly if to each point $p(x, y, z)$ we associate a unique vector $\bar{f}(x, y, z), \bar{f}$ is called a vector point function.

Examples:

For example take a heated solid. At each point $p(x, y, z)$ of the solid, there will be temperature $T(x, y, z)$. This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a position $p(x, y, z)$ in space, it will be having some speed, say, v. This speedv is a scalar point function.

Consider a particle moving in space. At each point P on its path, the particle will be having a velocity \bar{v} which is vector point function. Similarly, the acceleration of the particle is also a vector point function.

In a magnetic field, at any point $P(x, y, z)$ there will be a magnetic force $\bar{f}(x, y, z)$. This is called magnetic force field. This is also an example of a vector point function.

VECTOR CALCULUS

Vector Calculus and Vector Operators

INTRODUCTION

In this chapter, vector differential calculus is considered, which extends the basic concepts of differential calculus, such as, continuity and differentiability to vector functions in a simple and natural way. Also, the new concepts of gradient, divergence and curl are introduced.

DIFFERENTIATION OF A VECTOR FUNCTION

Let S be a set of real numbers. Corresponding to each scalar $t \in S$, let there be associated a unique vector \bar{f}. Then \bar{f} is said to be a vector (vector valued) function. S is called the domain of \bar{f}. We write $\bar{f}=\bar{f}(t)$.

Let $\bar{i}, \bar{j}, \bar{k} b e$ three mutually perpendicular unit vectors in three dimensional spaces. We can write $\bar{f}=\bar{f}(t)=$ $f_{1}(t) \bar{i}+f_{2}(t) \bar{j}+f_{3}(t) \bar{k}$, where $f_{1}(t), f_{2}(t), f_{3}(t)$ are real valued functions (which are called components of \bar{f}). (we shall assume that $\bar{i}, \bar{j}, \bar{k}$ are constant vectors).

VECTOR CALCULUS

4. Properties
1) $\frac{\partial}{\partial t}(\phi \bar{a})=\frac{\partial \phi}{\partial t} \bar{a}+\phi \frac{\partial \bar{a}}{\partial t}$
2). If λ is a constant, then $\frac{\partial}{\partial t}(\lambda \bar{a})=\lambda \frac{\partial \bar{a}}{\partial t}$
3). If ${ }_{\bar{c}}$ is a constant vector, then $\frac{\partial}{\partial t}(\phi \bar{c})=\bar{c} \frac{\partial \phi}{\partial t}$
4). $\frac{\partial}{\partial t}\left(\bar{a}+\bar{B}=\frac{\partial \bar{L}}{\partial t} \pm \frac{\partial \bar{B}}{\partial t}\right.$
5). $\frac{\partial}{\partial t}(\bar{a} \cdot \overline{\bar{b}})=\frac{\partial \bar{a}}{\partial t} \cdot \overline{\boldsymbol{b}}+\bar{a} \cdot \frac{\partial \bar{b}}{\partial t}$
6). $\frac{\partial}{\partial t}(\bar{a} \times \bar{b})=\frac{\partial \bar{a}}{\partial t} \times \bar{b}+\bar{a} \times \frac{\partial \bar{b}}{\partial t}$
7). Let $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$, where f_{1}, f_{2}, f_{3} are differential scalar functions of more than one variable, Then $\frac{\partial \bar{f}}{\partial t}=\bar{i} \frac{\partial f_{1}}{\partial t}+\bar{j} \frac{\partial f_{2}}{\partial t}+\bar{k} \frac{\partial f_{3}}{\partial t}$ (treating $\bar{i}, \bar{j}, \bar{k}$ as fixed directions)

VECTOR CALCULUS

5. Higher order partial derivatives

$$
\text { Let } \bar{f}^{\prime}=\bar{f}(p, \boldsymbol{q}, \boldsymbol{t}) \text {. Then } \frac{\partial^{2} \bar{f}}{\partial t^{2}}=\frac{\partial}{\partial t}\left(\frac{\partial \bar{f}}{\partial t}\right), \frac{\partial^{2} \bar{f}}{\partial p \partial t}=\frac{\partial}{\partial p}\left(\frac{\partial \bar{f}}{\partial t}\right) e t c \text {. }
$$

6.Scalar and vector point functions:

Consider a region in three dimensional space. To each point $p(x, y, z)$, suppose we associate a unique real number (called scalar) say ϕ. This $\phi(x, y, z)$ is called a scalar point function. Scalar point function defined on the region. Similarly if to each point $p(x, y, z)$ we associate a unique vector ${ }_{f}(x, y, z), \bar{f}$ is called a vector point function.

VECTOR CALCULUS

7. Tangent vector to a curve in space.

Consider an interval [a,b].
Let $x=x(t), y=y(t), z=z(t)$ be continuous and derivable for $a \leq t$ \leq b.

Then the set of all points $(x(t), y(t), z(t))$ is called a curve in a space.

Let $A=(x(a), y(a), z(a))$ and $B=(x(b), y(b), z(b))$. These A, B are called the end points of the curve. If $A=B$, the curve in said to be a closed curve.

Let P and Q be two neighbouring points on the curve.
Let $\overline{O P}=\bar{r}(t), \overline{O Q}=\bar{r}(t+\bar{\delta} t)=\bar{r}+\bar{\delta}$. Then $\bar{\delta} \bar{r}=\overline{O Q}-\overline{O P}=\overline{P Q}$
Then $\frac{\delta \bar{r}}{\delta t}$ is along the vector $P Q$. As $Q \rightarrow P, P Q$ and hence $\frac{P Q}{\delta t}$ tends to be along the tangent to the curve at P.
 (This $\frac{d \bar{r}}{d t}$ may not be a unit vector)

VECTOR CALCULUS

CURL OF A VECTOR

Def: Let \bar{f} be any continuously differentiable vector point function. Then the vector function defined by $\bar{i} \times \frac{\partial \bar{f}}{\partial x}+\bar{j} \times \frac{\partial \bar{f}}{\partial y}+\bar{k} \times \frac{\partial \bar{f}}{\partial z}$ is called curl of \bar{f} and is denoted by curl \bar{f} or $(\nabla \mathrm{x} \bar{f})$. $\operatorname{Curl} \bar{f}=\bar{i} \times \frac{\partial \bar{f}}{\partial x}+\bar{j} \times \frac{\partial \bar{f}}{\partial y}+\bar{k} \times \frac{\partial \bar{f}}{\partial z}=\sum\left(\bar{i} \times \frac{\partial \bar{f}}{\partial x}\right)$
Theorem 1: If \bar{f} is differentiable vector point function given by $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$ then curl \bar{f}
$=\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right) \bar{i}+\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right) \bar{j}+\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \bar{k}$
Proof : curl $\bar{f}=\sum \bar{i} \times \frac{\partial}{\partial x}(\bar{f})=\sum \bar{i} \times \frac{\partial}{\partial x}\left(f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}\right)=\sum\left(\frac{\partial f_{2}}{\partial x} \bar{k}-\frac{\partial f_{3}}{\partial x} \bar{j}\right)$

$$
\begin{aligned}
& =\left(\frac{\partial f_{2}}{\partial x} \bar{k}-\frac{\partial f_{3}}{\partial x} \bar{j}\right)+\left(\frac{\partial f_{3}}{\partial y} \bar{i}-\frac{\partial f_{1}}{\partial y} \bar{k}\right)+\left(\frac{\partial f_{1}}{\partial z} \bar{j}-\frac{\partial f_{2}}{\partial z} \bar{i}\right) \\
& =\bar{i}\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)+\bar{j}\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right)+\bar{k}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)
\end{aligned}
$$

Note : (1) The above expression for curl \bar{f} can be remembered easily through the representation.

$$
\operatorname{curl} \bar{f}=\left|\begin{array}{lll}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f_{1} & f_{2} & f_{3}
\end{array}\right|=\nabla \mathbf{x} \bar{f}
$$

Note (2): If \bar{f} is a constant vector then curl $\bar{f}=\bar{o}$.

VECTOR CALCULUS

Physical Interpretation of curl

If \bar{w} is the angular velocity of a rigid body rotating about a fixed axis and \bar{v} is the velocity of any point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ on the body, then $\bar{w}=1 / 2$ curl \bar{v}. Thus the angular velocity of rotation at any point is equal to half the curl of velocity vector. This justifies the use of the word "curl of a vector".

2. Irrotational Motion, Irrotational Vector

Any motion in which curl of the velocity vector is a null vector i.e curl $\bar{v}=\overline{0}$ is said to be Irrotational.

Def: A vector \bar{f} is said to be Irrotational if curl $\bar{f}=\overline{0}$.
If \bar{f} is Irrotational, there will always exist a scalar function $\varphi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ such that $\bar{f}=\operatorname{grad}$ ϕ. This ϕ is called scalar potential of \bar{f}.

It is easy to prove that, if $\bar{f}=\operatorname{grad} \phi$, then curl $\bar{f}=0$.
Hence $\nabla \mathrm{x} \bar{f}=0 \Leftrightarrow$ there exists a scalar function ϕ such that $\bar{f}=\nabla \phi$.
This idea is useful when we study the "work done by a force" later.

VECTOR CALCULUS

1: If $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$ find curl \bar{f} at the point (1,-1,1).
Sol:- Let $\bar{f}=x y^{2} \bar{i}+2 x^{2} y z \bar{j}-3 y z^{2} \bar{k}$. Then

$$
\begin{aligned}
& \text { curl } \bar{f}=\nabla \mathbf{x}_{\bar{f}}=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y^{2} & 2 x^{2} y z & -3 y z^{2}
\end{array}\right| \\
& ==_{i}\left(\frac{\partial}{\partial y}\left(-3 y z^{2}\right)-\frac{\partial}{\partial z}\left(2 x^{2} y z\right)+\bar{j}\left(\frac{\partial}{\partial z}\left(x y y^{2}\right)-\frac{\partial}{\partial x}\left(-3 y z^{2}\right)\right)+\bar{k}\left(\frac{\partial}{\partial x}\left(2 x^{2} y z\right)-\frac{\partial}{\partial y}\left(x y^{2}\right)\right)\right. \\
& =\bar{i}\left(-3 z^{2}-2 x^{2} z\right)+\bar{j}(0-0)+\bar{k}(4 x y z-2 x y)=-\left(3 z^{2}+2 x^{2} y\right)+(4 x y z-2 x y) \bar{k} \\
& =\text { curl }_{\bar{f}} \text { at }(1,-1,1)=-\bar{i}-2 \bar{k} .
\end{aligned}
$$

VECTOR CALCULUS

Prove that $\operatorname{div} \operatorname{curl} \bar{f}=0$
Proof: Let $\bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k}$
$\therefore \operatorname{curl} \bar{f}=\nabla \times \bar{f}=\left|\begin{array}{lcc}\bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_{1} & f_{2} & f_{3}\end{array}\right|$

$$
=\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right) \bar{i}-\left(\frac{\partial f_{3}}{\partial x}-\frac{\partial f_{1}}{\partial z}\right) \bar{j}+\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \bar{k}
$$

$\therefore \quad$ div curl $\bar{f}=\nabla \cdot(\nabla \times \bar{f})=\frac{\partial}{\partial x}\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)-\frac{\partial}{\partial y}\left(\frac{\partial f_{3}}{\partial x}-\frac{\partial f_{1}}{\partial z}\right)+\frac{\partial}{\partial z}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)$
$=\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{2}}{\partial x \partial z}-\frac{\partial^{2} f_{3}}{\partial y \partial x}+\frac{\partial^{2} f_{1}}{\partial y \partial z}+\frac{\partial^{2} f_{2}}{\partial z \partial x}-\frac{\partial^{2} f_{1}}{\partial z \partial y}=0$
Note : Since $\operatorname{div}(\operatorname{curl} \bar{f})=0$, we have $\operatorname{curl} \bar{f}$ is always solenoidal.

VECTOR CALCULUS

Thus the operator $\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is called
Laplacian operator.
Note : (i). $\nabla^{2} \phi=\nabla .(\nabla \phi)=\operatorname{div}(\operatorname{grad} \phi)$
(ii). If $\nabla^{2} \phi=0$ then ϕ is said to satisfy

Laplacian equation. This ϕ is called a harmonic function
Find div \bar{F}, where $\bar{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
Sol: Let $\phi=x^{3}+y^{3}+z^{3}-3 x y z$. Then

$$
\begin{aligned}
& \bar{F}=\operatorname{grad} \phi \\
& =\sum i \frac{\partial \phi}{\partial x}=3\left(x^{2}-y z \bar{i}+3\left(y^{2}-z x\right) \bar{j}+3\left(x^{2}-x y\right) \bar{k}=\right.
\end{aligned}
$$

$$
F_{1} i+F_{2} j+F_{3} k(s a y)
$$

$$
\therefore \operatorname{div} \bar{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=6 x+6 y+6 z=6(x+y+z)
$$

$$
\text { i.e } \operatorname{div}\left[\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)\right]=\nabla^{2}\left(x^{3}+y^{3}+z^{3}-\right.
$$

$3 x y z)=6(x+y+z)$.

DIVERGENCE

Prove that $\operatorname{div}_{\text {curl }}=0$

$$
\begin{aligned}
& \text { Proof: Let } \bar{f}=f_{1} \bar{i}+f_{2} \bar{j}+f_{3} \bar{k} \\
& \therefore \operatorname{curl} \bar{f}=\nabla \times \bar{f}=\left|\begin{array}{llc}
\bar{i} & \bar{j} & \bar{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f_{1} & f_{2} & f_{3}
\end{array}\right| \\
& =\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right) \bar{i}-\left(\frac{\partial f_{3}}{\partial x}-\frac{\partial f_{1}}{\partial z}\right) \bar{j}+\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \bar{k} \\
& \therefore \quad \operatorname{div} \operatorname{curl} \bar{f}=\nabla \cdot(\nabla \times \bar{f})=\frac{\partial}{\partial x}\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right)-\frac{\partial}{\partial y}\left(\frac{\partial f_{3}}{\partial x}-\frac{\partial f_{1}}{\partial z}\right)+\frac{\partial}{\partial z}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \\
& =\frac{\partial^{2} f_{3}}{\partial x \partial y}-\frac{\partial^{2} f_{2}}{\partial x \partial z}-\frac{\partial^{2} f_{3}}{\partial y \partial x}+\frac{\partial^{2} f_{1}}{\partial y \partial z}+\frac{\partial^{2} f_{2}}{\partial z \partial x}-\frac{\partial^{2} f_{1}}{\partial z \partial y}=0
\end{aligned}
$$

 solenoidal.

VECTOR CALCULUS

If $\bar{H}=\left(x^{2}-27\right) \bar{i}-6 y z \bar{j}+8 x z^{2} \bar{k}$, evaluate $\int_{c} \bar{F} \cdot d \bar{r}$ from the point (O,O,O) to the point (l, $1, \mathcal{L}$) along the Straight line from $(0, O, O)$ to $(1, O, O),(1, O, O)$ to ($1,1,1, O)$ and $(1,1,0)$ to $(1,1,1)$.
Solution : Given $\bar{F}=\left(x^{2}-27\right) \bar{i}-6 y z \bar{j}+8 x z^{2} \bar{k}$
Now $\overline{\mathbf{r}}=x \overline{\mathbf{i}}+y_{\overline{\mathbf{j}}}+z \overline{\mathbf{K}} \Longrightarrow d \overline{\mathbf{r}}=d x \bar{i}+d y \overline{\mathbf{j}}+d z \overline{\mathbf{k}}$
$\therefore \quad \bar{H}-d \overline{\mathbf{r}}=\left(x^{2}-27\right) d x-(6 y z) d y+8 x z^{2} d z$
(i) Along the straight line from $0=(0,0,0)$ to $A=(1,0,0)$

Here $y=0=z$ and $d y=d z=0$. Also x changes from Oto 1 .

$$
\therefore \int_{0} \bar{H}-d \overline{\mathbf{r}}=\int_{0}^{1}\left(x^{2}-27\right) d x=\left[\frac{x^{3}}{3}-27 x\right]_{0}^{1}=\frac{1}{3}-27=\frac{-80}{3}
$$

(ii) Along the straight linefrom $A=(1, O, O)$ to B $=(1,1,0)$
Here $x=1, z=0 \Longrightarrow d x=0, d z=0 . y$ changes from Oto 1 .

VECTOR CALCULUS

Along the straight line from $\mathrm{B}=(1,1,0)$ to $\mathrm{C}=(1,1,1)$ $x=1=y \quad d x=d y=0$ and z changes from 0 to 1 .

$$
\therefore \int_{\text {BC }} \bar{F} \cdot d \overline{\mathrm{r}}=\int_{z=0}^{1} 8 x z^{2} d z=\int_{z=0}^{1} 8 x z^{2} d z=\left[\frac{8 z^{3}}{3}\right]_{0}^{1}=\frac{8}{3}
$$

$$
(i)+(i i)+(i i i) \Rightarrow \int_{c} \bar{F} \cdot d \overline{\mathrm{r}}=\frac{88}{3}
$$

VECTOR CALCULUS

Find the work done by the force $\bar{F}=z \bar{i}+x \bar{j}+y \bar{k}$, when it moves a particle along the arc of the curve $i=\operatorname{cost} i+$ sint \bar{j} - $\mathrm{t} \overline{\mathrm{k}}$ from $\mathrm{t}=0$ to $\mathrm{t}=2 \pi$
Solution : Given force $\bar{F}=\mathbf{Z}+\mathrm{X}_{\bar{j}}+\mathrm{y} \bar{k}$ and the arc is ${ }_{i}$
$=\operatorname{cost}{ }^{i}+\sin t \bar{j}-\mathrm{t} \bar{k}$
i.e., $\mathrm{x}=\cos \mathrm{t}, \mathrm{y}=\sin \mathrm{t}, \mathrm{z}=-\mathrm{t}$
$\therefore \mathrm{d}_{\mathrm{i}}=(-\sin \mathrm{t} \bar{i}+\operatorname{cost} \bar{j}-\bar{k}) \mathrm{dt}$
$\therefore \bar{F} \cdot \mathrm{~d}_{\mathrm{i}}=(-\mathrm{t} i+\operatorname{cost} \bar{j}+\sin \mathrm{t} \bar{k}) \cdot\left(-\sin \mathrm{t} \bar{i}+\operatorname{cost}_{\bar{j}}-\bar{k}\right) \mathrm{dt}=(\mathrm{t}$
$\left.\sin t+\cos ^{2} t-\sin t\right) d t$

VECTOR CALCULUS

Hence work done $=\int_{0}^{5} \bar{F} \cdot \mathrm{~d}_{\mathrm{r}}^{-}=\int_{0}^{2}\left(\mathrm{t} \sin \mathrm{t}+\cos ^{2} \mathrm{t}-\sin \mathrm{t}\right) \mathrm{dt}$

$$
\begin{aligned}
& =[t(-\cos t)]_{0}^{2 \pi}-\int_{0}^{2 \pi}(-\sin t) d t+\int_{0}^{2 \pi} \frac{1+\cos 2 t}{2} d t-\int_{0}^{2 \pi} \sin t \mathrm{dt} \\
& =-2 \pi-(\cos t)_{0}^{2 \pi}+\frac{1}{2}\left(t+\frac{\sin 2 t}{2}\right)_{0}^{2 \pi}+(\cos t)_{0}^{2 \pi} \\
& =-2 \pi-(1-1)+\frac{1}{2}(2 \pi)+(1-1)=-2 \pi+\pi=-\pi
\end{aligned}
$$

SURFACE INTEGRAL

Surface integral

${ }_{\int}^{[F}$ End is called surface integral

SURFACE INTEGRAL

Evaluate $\int \overline{\mathrm{F}}$.ndS where $\overline{\mathrm{F}}=\mathrm{zi}+\mathrm{xj}-3 y^{2} \mathrm{zk}$ and S is the surface $\mathrm{x}^{2}+y^{2}=16$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$.
Sol. The surface S is $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
Let

$$
\phi=x^{2}+y^{2}=16
$$

Then $\quad \nabla \phi=\overline{\mathrm{i}} \frac{\partial \phi}{\partial \mathrm{x}}+\overline{\mathrm{j}} \frac{\partial \phi}{\partial \mathrm{y}}+\overline{\mathrm{k}} \frac{\partial \phi}{\partial \mathrm{z}}=2 \mathrm{x} \overline{\mathrm{i}}+2 \mathrm{y} \overline{\mathrm{j}}$
\therefore unit normal $\overline{\mathrm{n}}=\frac{\nabla \phi}{|\nabla \varphi|}=\frac{\mathrm{x} \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}}{4}\left(\because \mathrm{x}^{2}+\mathrm{y}^{2}=16\right)$
Let R be the projection of S on yz-plane

Then

$$
\int_{S} \overline{\mathrm{~F}} \cdot \mathrm{ndS}=\iint_{R} \overline{\mathrm{~F}} \cdot \overline{\mathrm{n}} \frac{\mathrm{dydz}}{|\overline{\mathrm{n}} \cdot \overline{\mathrm{i}}|} \ldots \ldots \ldots \ldots \ldots . . *
$$

SURFACE INTEGRAL

Given $\quad \bar{F}=z i+x j-3 y^{2} z k$
$\therefore \quad \overline{\mathrm{F}} \cdot \overline{\mathrm{n}}=\frac{1}{4}(\mathrm{xz}+\mathrm{xy})$
and $\quad \overline{\mathrm{n}} . \overline{\mathrm{i}}=\frac{\mathrm{x}}{4}$
In yz-plane, $x=0, y=4$
In first octant, y varies from 0 to 4 and z varies from 0 to 5 .

$$
\begin{aligned}
\int_{S} \overline{\mathrm{~F}} . \mathrm{ndS} & =\int_{y=0}^{4} \int_{z=0}^{5}\left(\frac{x z+x y}{4}\right) \frac{d y d z}{\left|\frac{x}{4}\right|} \\
& =\int_{y=0}^{4} \int_{z=0}^{5}(y+z) \mathrm{dz} \text { dy } \\
& =90 .
\end{aligned}
$$

SURFACE INTEGRAL

If $\overline{\mathrm{F}}=\mathrm{zi}+\mathrm{xj}-3 y^{2} \mathrm{zk}$, evaluate $\int_{\mathrm{S}} \overline{\mathrm{F}} . \bar{n} \mathrm{n} S$ where S is the surface of the cube bounded by $\mathrm{x}=0$, $x=a, y=0, y=a, z=0, z=a$.

Sol. Given that S is the surface of the $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{z}=\mathrm{a}$, and $\overline{\mathrm{F}}=\mathrm{zi}+\mathrm{xj}-$ $3 y^{2} \mathrm{zk}$ we need to evaluate $\int_{S} \overline{\mathrm{~F}} \cdot \overline{\mathrm{n}} \mathrm{n} S$.

SURFACE INTEGRAL

the surface $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
Sol. The surface S is $x^{2}+y^{2}=16$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$.

Let ? $=x^{2}+y^{2}=16$
Then $\quad \nabla \phi=\frac{i}{} \frac{\partial \phi}{\partial \mathrm{x}}+\mathrm{j} \frac{\partial \phi}{\partial \mathrm{y}}+\overline{\mathrm{k}} \frac{\partial \phi}{\partial z}=2 \mathrm{x} \mathrm{i}+2 \mathrm{y} \overline{\mathrm{j}}$
[] unit normal $\bar{n}=\frac{\nabla \phi}{\nabla \phi \mid}=\frac{x \bar{i}+y \bar{j}}{4}\left(\because x^{2}+y^{2}=16\right)$
Let R be the projection of S on $y z-$ plane
Then

SURFACE INTEGRAL

$$
\begin{aligned}
& \therefore \int_{s_{1}} \int_{\bar{F}} \bar{n} d s=\int_{z=0}^{a} \int_{y=0}^{a}\left(a^{3} \overline{\bar{i}}+y^{3} \bar{j}+z^{3} \bar{k}\right) \cdot \overline{\mathrm{i}} d y d z
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{z=0}^{\infty} \int_{n=0}^{\infty} \int_{0}^{2}(y) d y d z \\
& =a^{6}(z)^{\left[\frac{\pi}{0}\right.}=\pi^{5}
\end{aligned}
$$

SURFACE INTEGRAL

$$
\iint_{s_{2}} \bar{F} \bar{n} d s=\int_{z=0}^{a} \int_{y=0}^{a}\left(y^{3} \bar{j}+z^{3} \bar{k}\right) \cdot(\overline{-i}) d y d z=0
$$

$$
\begin{aligned}
& \iint_{s_{3}} \bar{F} \cdot n d s=\int_{z=0}^{a} \int_{x=0}^{a}\left(x^{3} \bar{i}+a^{3} \bar{j}+z^{3} \bar{k}\right) \cdot \bar{j} d x d z=a^{3} \int_{z=0}^{a} \int_{x=0}^{a} d x d z=a^{3} \int_{0}^{a} a d z=a^{4}(z)_{0}^{a} \\
& =a^{5}
\end{aligned}
$$

PROBLEM

PROBLEM

GAUSS DIVERGENCE THEOREM

GAUSS'S DIVERGENCE THEOREM

(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume V . If \bar{F} is a continuously differentiable vector point function, then

$$
\int_{v} d i v F d v=\int_{\underset{j}{F} \cdot n} \mathrm{~d} S
$$

When n is the outward drawn normal vector at any point of S.

GAUSS DIVERGENCE THEOREM

Verify Gauss Divergence theorem for
$\bar{F}=\left(x^{3}-y z\right) \bar{\imath}-2 x^{2} y \bar{J}+z \bar{k}$ taken over the surface of the
cube bounded by the planes $x=y=z=a$ and
coordinate planes.
Sol: By Gauss Divergence theorem we have

$$
\begin{align*}
& \int_{S} \bar{F} \cdot n d S=\int_{V} d v \bar{F} d v \\
& R H S=\int_{0}^{a} \int_{0}^{a} \int_{0}^{a}\left(3 x^{2}-2 x^{2}+1\right) d x d y d z=\int_{0}^{a} \int_{0}^{a} \int_{0}^{a}\left(x^{2}+1\right) d x d y d z=\int_{0}^{a} \int_{0}^{a}\left(\frac{x^{3}}{3}+x\right)_{0}^{a} d y d z \\
& \int_{0}^{a} \int_{0}^{a}\left[\frac{a^{3}}{3}+a\right] d y d z=\int_{0}^{a}\left[\frac{a^{3}}{3}+a\right](y)_{0}^{a} d z=\left(\frac{a^{3}}{3}+a\right)_{0}^{a} \int_{0}^{a} d z=\left(\frac{a^{3}}{3}+a\right)\left(a^{2}\right)=\frac{a^{5}}{3}+a^{3} \ldots \ldots(1) \tag{1}
\end{align*}
$$

GAUSS DIVERGENCE THEOREM

(i) For $\mathrm{S}_{1}=$ PQAS; unit outward drawn normal $\overline{n=i}$

$$
x=a ; d s=d y d z ; 0 \leq y \leq a,
$$

$0 \leq z \leq a$

$$
\therefore \bar{F} \cdot \bar{n}=x^{3}-y z=a^{3}-y z \sin c e x=a
$$

$$
\therefore \int_{S_{1}} \int_{\bar{F}} \cdot \bar{n} d S=\int_{z=0}^{a} \int_{y=0}^{a}\left(\mathrm{a}^{3}-y z\right) d y d z
$$

$$
=\int_{z=0}^{a}\left[a^{3} y-\frac{y^{2}}{2} z\right]_{y=0}^{a} d z
$$

$$
=\int_{z=0}^{a}\left(a^{4}-\frac{a^{2}}{2} z\right) d z
$$

$$
=a^{5}-\frac{a^{4}}{4} \ldots(2)
$$

GAUSS DIVERGENCE THEOREM

For $S_{2}=O C R B$; unit outward drawn normal

$$
\begin{aligned}
& \overline{\mathbf{r l}}=-\overline{\mathbf{2}} \\
& \mathbf{x}=\mathbf{O} ; \mathrm{ds}=\mathrm{dy} \mathrm{dz} ; \mathrm{O} \leq \mathrm{y} \leq \mathbf{a}, \mathrm{y} \leq \mathrm{z} \leq \mathbf{a} \\
& \bar{F} \cdot \bar{n}=-\left(x^{3}-y z\right)=y z \operatorname{since} x=0 \\
& \int_{s_{a}} \int \bar{F} \cdot \bar{n} d s=\int_{z=0}^{a} \int_{y}^{a} y z d y d z=\int_{z=0}^{a}\left[\frac{y^{2}}{2}\right]_{y=0}^{a} z d z \\
& =\frac{a^{2}}{2} \int_{z=0}^{a} z d z=\frac{a^{4}}{4} \ldots \text { (3) }
\end{aligned}
$$

GAUSS DIVERGENCE THEOREM

For $\mathrm{S}_{3}=\mathrm{RBQP} ; \mathrm{Z}=\mathrm{a} ; \mathrm{ds}=\mathrm{dxdy} ; \bar{n}=\bar{k}$
$0 \leq \mathrm{x} \leq \mathrm{a}, 0 \leq \mathrm{y} \leq \mathrm{a}$
$\bar{F} \cdot \bar{n}=z=a$ since $z=a$
$\therefore \int_{S_{3}} \int_{\bar{F}} \bar{n} d S=\int_{y=0}^{a} \int_{x=0}^{a} a d x d y=a^{3} \ldots .$. (4)

Verify divergence theorem for $\bar{F}=x^{2} i+y^{2} j+z^{2} k$ over the surface S of the solid cut off by the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{a}$ in the first octant.

Sol; By Gauss theorem, $\int \bar{F} \bar{F} \cdot \bar{d} S=\int_{v} d i \overline{\bar{v}} d v$

Let $\phi=x+y+z-a$ be the given plane then
$\frac{\partial \phi}{\partial x}=1, \frac{\partial \phi}{\partial y}=1, \frac{\partial \phi}{\partial z}=1$
$\therefore \operatorname{grad} \phi=\sum \bar{i} \frac{\partial \phi}{\partial x}=\bar{i}+\bar{j}+\bar{k}$
Unit normal $=\frac{\operatorname{grad} \phi}{|\operatorname{grad} \phi|}=\frac{\bar{i}+\bar{\jmath}+\bar{k}}{\sqrt{3}}$

Let R be the projection of S on $x y$-plane

Then the equation of the given plane will be $x+y=a \Rightarrow y=a-x$
Also when $\mathrm{y}=0, \mathrm{x}=\mathrm{a}$

$$
\begin{aligned}
& \therefore \int_{s} \bar{F} \cdot n d S=\iint_{R} \frac{\bar{F} \cdot \bar{n} d x d y}{|\bar{n} \cdot \bar{k}|} \\
& =\int_{x=0}^{a} \int_{y=0}^{a-x} \frac{x^{2}+y^{2}+z^{2}}{\sqrt{3}} d x d y \\
& 1 / \sqrt{3}
\end{aligned}=\int_{0}^{a} \int_{y=0}^{a-x}\left[x^{2}+y^{2}+(a-x-y)^{2}\right] d x d y[\text { since } x+y+z=a] .
$$

GAUSS DIVERGENCE THEOREM

$$
=\int_{0}^{a} \int_{0}^{a-x}\left[2 x^{2}+2 y^{2}-2 a x+2 x y-2 a y+a^{2}\right] d x d y
$$

$$
=\int_{x=0}^{a}\left[2 x^{2} y+\frac{2 y^{3}}{3}+x y^{2}-2 a x y-a y^{2}+a^{2} y\right]_{0}^{a-x} d x
$$

$$
=\int_{a=0}^{a}\left[2 x^{2}(a-x)+\frac{2}{3}(a-x)^{3}+x(a-x)^{2}-2 a x(a-x)-a(a-x)^{2}+a^{2}(a-x) d x\right.
$$

$\therefore \int_{s}^{\bar{F}} \cdot \bar{n} d S=\int_{0}^{a}\left(-\frac{5}{3} x^{3}+3 a x^{2}-2 a^{2} x+\frac{2}{3} a^{3}\right) d x=\frac{a^{4}}{4}$, on simplification... (1)

GAUSS DIVERGENCE THEOREM

Given $\bar{F}=x^{2} \bar{i}+y^{2} \bar{j}+z^{2} \bar{k}$

$$
\therefore \operatorname{div} \bar{F}=\frac{\partial}{\partial x}\left(x^{2}\right)+\frac{\partial}{\partial y}\left(y^{2}\right)+\frac{\partial}{\partial z}\left(z^{2}\right)=2(x+y+z)
$$

$$
\text { Now } \iiint d i v \bar{F} \cdot d v=2 \int_{x=0}^{a} \int_{y=0}^{a-x} \int_{z=0}^{a-x-y}(x+y+z) d x d y d z
$$

$$
\begin{aligned}
& =2 \int_{z=0}^{a} \int_{y=0}^{a-x}\left[z(x+y)+\frac{z^{2}}{2}\right]_{0}^{a-x-y} d x d y \\
& =2 \int_{z=0}^{a} \int_{y=0}^{a-x}(a-x-y)\left[x+y+\frac{a-x-y}{2}\right] d x d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{a=0}^{a} \int_{y=0}^{a-x}(a-x-y)[a+x+y] d x d y \\
& =\int_{0}^{a} \int_{0}^{a-x}\left[a^{2}-(x+y)^{2}\right] d y d x=\int_{0}^{a} \int_{0}^{a-x}\left(a^{2}-x^{2}-y^{2}-2 x y\right) d x d y \\
& =\int_{0}^{a}\left[a^{2} y-x^{2} y-\frac{y^{3}}{3}-x y^{2}\right]_{0}^{a-x} d x \\
& =\int_{0}^{a}(a-x)\left(2 a^{2}-x^{2}-a x\right) d x=\frac{a^{4}}{4} \ldots \ldots \text { (2) }
\end{aligned}
$$

Hence from (1) and (2), the Gauss Divergence theorem is verified.

GREENS THEOREM

(Transformation Between Line Integral and Surface

 Integral) [JNTU 2001S].If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous functions of x and y having continuous derivatives in R, then $\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.

Where C is traversed in the positive(anti clock-wise) direction

GREENS THEOREM

Verify Green's theorem in plane for $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the region bounded by $\mathrm{y}=\sqrt{x}$ and $\mathrm{y}=x^{2}$.
Solution: Let $M=3 x^{2}-8 y^{2}$ and $N=4 y-6 x y$. Then
$\frac{\partial M}{\partial y}=-16 y, \frac{\partial N}{\partial x}=-6 y$

GREENS THEOREM

We have by Green's theorem,

$$
\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y .
$$

Now $\iint_{k}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\iint_{k}(16 y-6 y) d x d y$

$$
=10 \iint_{R} y d x d y=10 \int_{x=0}^{1} \int_{y=x^{2}}^{\sqrt{x}} y d y d x=10 \int_{x=0}^{1}\left(\frac{y^{2}}{2}\right)_{x^{2}}^{\sqrt{x}} d x
$$

GREENS THEOREM

Verification:

We can write the line integral along c

$=\left[\right.$ line integral along $\mathrm{y}=x^{2}($ from O to A $)+[$ line integral along $y^{2}=\mathrm{x}($ from A to O)]
$=l_{1}+l_{2}$ (say)

Now

$$
\left.L_{1}=\int_{x=0}^{1}\left[\left[3 x^{2}-8\left(x^{2}\right)^{2}\right] d x+\left[4 x^{2}-6 x\left(x^{2}\right)\right] 2 x d x\right\}\right]\left[y=x^{2} \Rightarrow \frac{d y}{d x}=2 x\right]
$$

GREENS THEOREM

$$
=\int_{0}^{1}\left(3 x^{3}+8 x^{3}-20 x^{4}\right) d x=-1
$$

And

$$
l_{2}=\int_{1}^{0}\left[\left(3 x^{2}-8 x\right) d x+\left(4 \sqrt{x}-6 x^{3 / 2}\right) \frac{1}{2 \sqrt{x}} d x\right]=\int_{1}^{0}\left(3 x^{2}-11 x+2\right) d x=\frac{5}{2}
$$

$\therefore I_{1}+I_{2=-1+5 / 2=3 / 2}$.

From(1) and (2), we have $\int_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.

Hence the verification of the Green's theorem.

GREENS THEOREM

Verify Green's theorem for $\int_{c}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$, where C is bounded by $\mathrm{y}=\mathrm{x}$ and $y=x^{2}$

Solution:By Green's theorem, we have $\prod_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$

Here $M=x y+y^{2}$ and $N=x^{2}$

GREENS THEOREM

The line $\mathrm{y}=\mathrm{x}$ and the parabola $\mathrm{y}=\mathrm{x}^{2}$ intersect at $\mathrm{O}(0,0)$ and $\mathrm{A}(1,1)$

Now $\int_{c} M d x+N d y=\int_{c_{1}} M d x+N d y+\int_{c_{2}} M d x+N d y \ldots \ldots$ (1)
Along C_{1} (i.e. $y=x^{2}$), the line integral is

$$
\begin{align*}
& \int_{c_{1}} M d x+N d y=\int_{c_{1}}\left[x\left(x^{2}\right)+x^{4}\right] d x+x^{2} d\left(x^{2}\right) \int_{c}\left(x^{3}+x^{4}+2 x^{3}\right) d x=\int_{0}^{1}\left(3 x^{3}+x^{4}\right) d x \\
& =\left(3 \cdot \frac{x^{4}}{4}+\frac{x^{3}}{5}\right)_{0}^{1} \\
& =\frac{3}{4}+\frac{1}{5}=\frac{19}{20} \quad \ldots \ldots .(2) \tag{2}
\end{align*}
$$

GREENS THEOREM

Along $C_{2}(i . e . y=x)$ from $(1,1)$ to $(0,0)$, the line integral is

$$
\begin{align*}
& \int_{c_{2}} M d x+N d y=\int_{c_{2}}\left(x . x+x^{2}\right) d x+x^{2} d x[\because d y=d x] \\
& \quad=\int_{c_{2}} 3 x^{2} d x=3 \int_{1}^{0} x^{2} d x=3\left(\frac{x^{5}}{3}\right)_{1}^{0}=\left(x^{3}\right)_{1}^{0}=0-1=-1 \tag{3}
\end{align*}
$$

GREENS THEOREM

From (1), (2) and (3), we have
$\int_{0} M d x+N d y=\frac{19}{20}-1=\frac{-1}{20}$
...(4)
Now

$$
\begin{align*}
& \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\iint_{R}(2 x-x-2 y) d x d y \\
& =\int_{0}^{1}\left[\left(x^{2}-x^{2}\right)-\left(x^{3}-x^{4}\right)\right] d x=\int_{0}^{1}\left(x^{4}-x^{3}\right) d x \\
& =\left(\frac{x^{5}}{5}+\frac{z^{4}}{4}\right)_{0}^{1}=\frac{1}{5}-\frac{1}{4}=\frac{-1}{20} \tag{5}
\end{align*}
$$

From(4) and(5), We have $\int_{c} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathrm{dxdy}$
Hence the verification of the Green's theorem.

III. STOKE'S THEOREM

(Transformation between Line Integral and Surface Integral)

Let S be a open surface bounded by a closed, non intersecting curve C.
If \bar{F} is any
differentieable vector point function then $\oint_{C} \bar{F} \cdot d \bar{r}=$
$\int_{S} c u r l \bar{F} \cdot \bar{n} d s$ where c is traversed in the positive direction and \bar{n} is unit outward drawn normal at any point of the surface.

GREENS THEOREM

Verify Stokes theorem for $\bar{F}=-y^{3} \bar{\imath}+x^{3} \bar{\jmath}$, Where S is the circular disc $x^{2}+y^{2} \leq 1_{s} z=0$.

Solution: Given that $\bar{F}=-y^{3} \bar{\imath}+x^{3} \bar{\jmath}$. The boundary of C of S is a circle in xy plane. $x^{2}+y^{2} \leq 1_{s} z=0$. We use the parametric co-ordinates $\mathrm{x}=\cos \theta_{s} y=\sin \theta_{s} z=0,0 \leq \theta \leq 2 \pi$; $d x=-\sin \theta d \theta$ and $d y=\cos \theta d \theta$

$$
\begin{aligned}
\therefore \oint_{0} \bar{F} \cdot d r=\int_{0} & F_{1} d x+F_{2} d y+F_{3} d z=\int_{0}-y^{3} d x+x^{3} d y \\
& =\int_{0}^{2 \pi}\left[-\sin ^{3} \theta(-\sin \theta)+\cos ^{3} \theta \cos \theta\right] d \theta=\int_{0}^{2 \pi}\left(\cos ^{4} \theta+\sin ^{4} \theta\right) d \theta \\
& =\int_{0}^{2 \pi}\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right) d \theta=\int_{0}^{2 \pi} d \theta-\frac{1}{2} \int_{0}^{2 \pi}(2 \sin \theta \cos \theta)^{2} d \theta \\
& =\int_{0}^{2 \pi} d \theta-\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2} 2 d \theta=(2 \pi-0)-\frac{1}{4} \int_{0}^{2 \pi}(1-\cos 4 \theta) d \theta \\
& =2 \pi+\left[-\frac{1}{4} \theta+\frac{1}{16} \sin 4 \theta\right]_{0}^{2 \pi}=2 \pi-\frac{2 \pi}{4}=\frac{6 \pi}{4}=\frac{3 \pi}{2}
\end{aligned}
$$

GREENS THEOREM

$\operatorname{Now} \nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y^{3} & x^{3} & 0\end{array}\right|=\bar{k}\left(3 x^{2}+3 y^{2}\right)$
$\therefore \int_{z}(\nabla \times \bar{F}) \cdot \bar{n} d s=3 \int_{s}\left(x^{2}+y^{2}\right) \bar{k} \cdot \bar{n} d s$

We have $(\bar{k} \cdot \bar{n}) d s=d x d y$ and R is the region on xy-plane
$\therefore \iint_{s}(\nabla \times \bar{F}) \cdot \bar{n} d s=3 \iint_{R}\left(x^{2}+y^{2}\right) d x d y$

Put $\mathrm{x}=\mathrm{r} \cos \varnothing, y=r \sin \emptyset: d x d y=r d r d \emptyset$
r is varying from 0 to 1 and $0 \leq \emptyset \leq 2 \pi$.
$\therefore \int(\nabla \times \bar{F}) \cdot \bar{n} d s=3 \int_{\varnothing=0}^{2 \pi} \int_{r=0}^{1} r^{2}$.rdr $\mathrm{d} \emptyset=\frac{3 \pi}{2}$
L.H.S=R.H.S.Hence the theorem is verified.

STOKES THEOREM

Verify Stokes theorem for $\bar{F}=(2 x-y) \bar{\imath}-\dot{y} z^{2} \bar{\jmath}-y^{2} z \bar{k}$ over the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ bounded by the projection of the xy-plane.
Solution: The boundary C of S is a circle in xy plane i.e $x^{2}+y^{2}=1, \mathrm{z}=0$
The parametric equations are $\mathrm{x}=\cos \theta_{y} y=\sin \theta, \theta=0 \rightarrow 2 \pi$
$\therefore d x=-\sin \theta d \theta, d y=\cos \theta d \theta$

$$
\begin{gathered}
\int_{c} \bar{F} \cdot d \bar{r}=\int_{c} \bar{F}_{1} d x+\overline{F_{2}} d y+\overline{F_{3}} d z=\int_{c}(2 x-y) d x-y z^{2} d y-y^{2} z d z \\
=\int_{c}(2 x-y) d x(\operatorname{since} z=0 \text { and } d z=0)
\end{gathered}
$$

$$
=-\int_{0}^{2 \pi}(2 \cos \theta-\sin \theta) \sin \theta d \theta=\int_{0}^{2 \pi} \sin ^{2} \theta d \theta-\int_{0}^{2 \pi} \sin 2 \theta d \theta
$$

$$
=\int_{\theta=0}^{2 \pi} \frac{1-\cos 2 \theta}{2} d \theta-\int_{0}^{2 \pi} \sin 2 \theta d \theta=\left[\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta+\frac{1}{2} \cdot \cos 2 \theta\right]_{0}^{2 \pi}
$$

$$
=\frac{1}{2}(2 \pi-0)+0+\frac{1}{2} \cdot(\cos 4 \pi-\cos 0)=\pi
$$

GREENS THEOREM

Again $\nabla \times \bar{F}=\left|\begin{array}{ccc}\bar{\imath} & \bar{\jmath} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2 x-y & -y z^{2} & -y^{2} z\end{array}\right|=\bar{i}(-2 y z+2 y z)-\bar{\jmath}(0-0)+\bar{k}(0+1)=\bar{k}$
$\therefore \int_{S}(\nabla \times \bar{F}) \cdot \bar{n} d s=\int_{S} \bar{k} \cdot \bar{n} d s=\int_{R} \int d x d y$
Where R is the projection of S on xy plane and $\bar{k} . \bar{n} d s=d x d y$
Now $\iint_{R} d x d y=4 \int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^{2}}} d y d x=4 \int_{x=0}^{1} \sqrt{1-x^{2}} d x=4\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{0}^{1}$

$$
=4\left[\frac{1}{2} \sin ^{-1} 1\right]=2 \frac{\pi}{2}=\pi
$$

\therefore The Stokes theorem is verified.

STOKES THEOREM

III. STOKE'S THEOREM

(Transformation between Line Integral and Surface Integral)

Let S be a open surface bounded by a closed, non intersecting curve C.
If \bar{F} is any
differentieable vector point function then $\oint_{C} \bar{F}, d \bar{r}=$
\int_{S} curl $\bar{F} \cdot \bar{n} d s$ where c is traversed in the positive direction and \bar{n} is unit outward drawn normal at any point of the surface.

STOKES THEOREM

Evaluate by Stokes theorem $\oint_{0}(x+y) d x+(2 x-z) d y+(y+z) d z$ where C is the boundary of the triangle with vertices $(0,0,0),(1,0,0)$ and $(1,1,0)$.
Solution: Let $\bar{F} \cdot d \bar{r}=\bar{F} \cdot(\bar{i} d x+\bar{\jmath} d y+\bar{k} d z)=(x+y) d x+(2 x-z) d y+(y+z) d z$
Then $\bar{F}=(x+y) \bar{\imath}+(2 x-z) \bar{\jmath}+(y+z) \bar{k}$
By Stokes theorem, $\oint_{C} \bar{F} \cdot d \bar{r}=\iint_{S} \operatorname{curl} \bar{F} \cdot \bar{n} d s$

Where S is the surface of the triangle OAB which lies in the $x y$ plane. Since the z Co-ordinates of O, A and B Are zero. Therefore $\bar{n}=\bar{k}$. Equation of OA is $\mathrm{y}=0$ and that of $O B, y=x$ in the $x y$ plane.

STOKES THEOREM

r is varying from 0 to 1 and $0 \leq 0 \leq 2 \pi$.

L.H.S=R.H.S.Hence the theorem is verified.

STOKES THEOREM

$=2 \mathrm{OA} \times \mathrm{AB}=\frac{1}{2} \times 1 \times 1=\frac{1}{2}$

