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MATRICES

Matrix: A system of mn numbers (real or complex) arranged in
a rectangular array of m horizontal lines (Called rows) and n
vertical lines (called columns) is known as matrix of order mxn
[read as “m by n matrix”]. These numbers are

called elements being enclosed in brackets [ ]

or() .




MATRICES

1.Real Matrix: A matrix whose elements are real numbers is
called a real matrix.

6 0 -1

Example:
4 3 2

}is a real matrix.

2.Symmetric Matrix: A square matrix
A= 3] o ;
is called symmetric, if A= A

Thus, for a symmetric matrix A, we have

a. = a;
foralli anjdj.




MATRICES

3.Skew-Symmetric Matrix: A square matrix

A= |a s called skew-symmetric, if

A =—A

Thus for a skew-symmetric matrix A

0 2 3 0 h g
Example: |2 0 6 _h
3 6 0




MATRICES

Note: If A is a skew-symmetric matrix then :

q; =—a;

a. =-—a.Vi 2a.. =0

Thus, the diagonal elements of a skew-
symmetric matrix are all zero.




MATRICES

4. Orthogonal Matrix: A square matrix with real
elements is said to be orthogonal if

Al A — 1

-]




MATRICES

Example: Show That

Cos 0 Sin ¢
SindSing Coséd —-Sin@Cosg
| —Cos@Sing Sing Cos@Cosg |

Is an orthogonal matrix

Solution: Let A =

Cos 0 Sin ¢
SindSing Cos@ —-Sin@Cos¢

' Cos¢g Sin@Sing —CosOSing
Al=| 0 Cosé Sin @
 SIng Siné CosdCosg

| —CosdSing Sind  CosdCos¢




MATRICES

- Cos 0 Sing | [Cos¢ Sin@Sing —Cos&Sing |
AA" =| SindSing Cos@® -Sin@Cosg 0 Cosé Sin@
| —CosdSing Sing  Cos@Cos¢ | | Sing Sing CosdCos¢ |

B Cos #Sin #Sin ¢ —Cos@Cos#Sin g+
Cos“ ¢ +Sin‘ ¢ _ _ ,
—SINPSIn 8 Cos ¢ SingCosdCos ¢
| SingSingCos¢ Sin® #Sin® ¢+ Cos’ ¢ ~Sin@CosHSin* ¢ +CosHSin b
—Sin&CospSin ¢ +Sin® @ Cos® ¢ ~Sin@Cos¢Cos” 0
—~Co0s8SingCos¢g —CoshSindSin® ¢ +SinHCosé Cos® 8Sin’ ¢ +Sin* @
| Cos@CosgSing  —Cos@SingCos’ ¢ +Cos’ 6 Cos® ¢ ]




MATRICES

1 0 0
0 Sin®(Sin® @+ Cos’ §) + Cos’ -Sin#Cos A(Sin® #+Cos* 6) +Cos #Sin (Sin § +Cos’ §) + Cos* §
0 -CosdSing(Sin®§+Cos” ) +Sin#Cos 4 Cos”A(Sin”#+Cos* 6) +Sin* 4

1 0 0

=10 1 O

00 1

Since, AA" — |

A IS an Orthogonal Matrix.




MATRICES

Exercise

Q.1 Express the following matrices

2 4 8 3 -4 -1
6 2 8 6 0 -1
22 2 3 13 -4

as the sum of a symmetric matrix and a skew-
symmetric matrix




MATRICES

Q.3 Verify the matrix |2 3 | isorthogonal or not.

Q.4 Show that the matrix

1 2 2 :
s 3 3 is orthogonal.
L
3 3 3
2 2 1 -1 1 1 1
SRS T T
Q.5 Show that the matrix 2|11 1

is orthogonal



COMPLEX MATRICES

COMPLEX MATRICES: So far we discussed about real numbers
whose elements were real. In this topic we will be considering the
matrices whose elements are complex numbers. Complex
matrices have a very wide applications in many areas of
Engineering Such as quantum mechanics etc.

Complex Matrix: A matrix in which at least one element is
imaginary is called a Complex Matrix

Example: 4 O |
5i 0 2




COMPLEX MATRICES

6.Conjugate of a Matrix:The matrix obtained from any
given

matrix A on replacing its elements by the corresponding
conjugate complex numbers is called the conjugate of

A denoted by Z\

A—| 7 Where, a..
Thus, if A:[aij}mxn then A_[aij]mxn .
denotes the conjugate complex of aij B _
Example: If A 2431 5 A— 23l 0
“|6-2i 5+i| M 16421 5-i




COMPLEX MATRICES

7.Transposed Conjugate of a Matrix: The transpose of the
conjugate of a matrix A is called transposed conjugate of A and is
denoted by  A¢

0 =[A] <[

|.€., The transpose of the conjugate of a square matrix is same
as the conjugate of its transpose




COMPLEX MATRICES

14+2i 2-3i 5
Example: Let A=|5+2i 5-2i 8+5i
2 6 9-i

1-2i 2+3i 5 ]
then. A=|5-2i 5+2i 8-5i
2 6 9+i |

T 1-2i 5-2i 2
) =[2+31 5+ 2 6
5 8 —5i '




COMPLEX MATRICES

(1+2i 2-3i 5
Example: Let A=|5+2i 5-2i 8+5i
2 6 9-i

1-2i 2+3i 5 ]
then. A=|5-2i 5+2i 8-5i
2 6 9+i |

T 1-2i 5-2i 2
) =[2+31 5+ 2 6
5 8 —5i '




COMPLEX MATRICES

Hermitian Matrix: If the transpose of the conjugate matrix is
equal to the matrix itself i.e.,

then the matrix A is said to be a Hermitian Matrix.
Thus, _ i o i _a i, .
A_[aij] IS Hermitian, If aij — aji \v4 j

Thus every diagonal element of a Hermitian matrix is real.

1 2+ 3-2i
2-i 0 2i
3420 -2i 4

Example:
is a Hermitian Matrix.




COMPLEX MATRICES

is said to be Skew-Hermitian if Al —_A e, &=-9;

If Ais a Skew-Hermitian matrix, then aii — —a.

—> q; +a; = 0
So, that aii

is either a purely imaginary number or zero. Thus the diagonal
elements of a Skew-Hermitian matrix must be a purely
imaginary number or zero.



COMPLEX MATRICES

Example: 0 —i 1 1-1 2
-i 0

are Skew-Hermitian matrices.

Unitary matrix: A square matrix A with complex elements is
said to be unitary if

A’A=I

ﬁ the matrix Is an example for a
2 unitary matrix.

2
J3

2

!
2




COMPLEX MATRICES

Theorem 8: If A is any square matrix, then prove
that :

(a) A+ A’is Hermitian.
(b)  AA”,A’A are Hermitian.
(c) A-A’is Skew-Hermitian.




COMPLEX MATRICES

Proof
A+ AQT — A +[A‘9T

= A"+ A

(a)

= A+ A’

A+ A’ is Hermitian.




COMPLEX MATRICES

[AA?|=[A%] A? = AN

=—| A=A

A— A’ is Skew-Hermitian. l



COMPLEX MATRICES

Exercise Q.1 If Ais Hermitian Matrix, then show that iA

is a Skew-Hermitian Matrix.

Q.2 Show that the matrix

Hermitian.

Q.3 Show the matrix

Hermitian.

15 8i
—8i 0

6420 —4-i

4i 01's

6—2i
—4+1
-3

IS

Skew-




COMPLEX MATRICES

i 2-3i 4+45i
. | 6+1 0 4-5i
Q.4 Express the matrix T CE the sum of a
— — +

Hermitian and Skew-Hermitian Matrix.

2 3+2i 4]
Q.5 If A= 3‘42i Z_ Zi Show that A is Hermitian and
- —6i

iA is a Skew-Hermitian Matrix.




MODULE-I

ELEMENTARY ROW AND COLUMN
TRANSFORMATIONS

Let, R, R,....R, be the row vectors of matrix A of
order mxnand C,.C,..C, be the column vectors of
A

An elementary row operation of A is of any
one of the following three operations of
transformation



ROW OPERATIONS

*The interchange of any two rows.
*Multiplication of a row by a non-zero scalar K.

*Replace a row by adding to itself any non-zero scalar multiple
of any other row

The notations we shall follow for these three elementary row
operations is as follows :

1. Interchange of i"and j"row is denoted by & o« r..

2. Multiplication of irow by a non-zero scalar K is
denoted by R — KR,

3. Addition of K times the jjrow to theirrrow is
denoted by R, - R, + KR,



ROW TRANSFORMATIONS

The notations we shall follow for these three
elementary row operations is as follows :

1.Interchange of i"and j"row is denoted by

R <R,
1. Multiplication of i" row by a non-zero

scalar K is denoted by R = KR
2.Addition of K times the i"row to

thei”row is denoted by Ri = Ri +KR;



COLUMN OPERATIONS

Similarly we can define an elementary column operation of A as
one of the following three operations.

*The interchange of any two columns.
*Multiplication of a column by a non-zero scalar K.

*Replace a column by adding to itself any non-zero scalar
multiple of any other column.

*The notations we shall follow for these three elementary
column operations is as follows



COLUMN OPERATIONS

1. Interchange ofi"and j"column is denoted by
C o C,

2. Multiplication ofi" column by a non-zero scalar K
will be denoted byC; = K

3. Addition of K times thej»column to theircolumn

C.—>C +KCJ.

will be denoted by




RANK OF A MATRIX

Rank of a Matrix:

Let A be mxn matrix. If A is a null
Mmatrix, we define its rank to be ‘O’. If A is a
Nnon-zero matrix, we say thatr is the rank

of A if

(i) Every (r+1)th order minor of A is ‘O’
(zero) &
(ii) At least one r'" order minor of A

which is not zero.

Note: 1. It is denoted by p(A)



RANK OF A MATRIX

Note: 1. It is denoted by p(A)

2. Rank of a matrix is unique.

3. Every matrix will have a rank.

4. If A is a matrix of order mxn,
Rank of A <= min(m,n)

5. If p(A) =r then every minor of A of

order r+1, or more is zero.
6. Rank of the Identity matrix I, is n.

7. 1f Ais a matrix of order n and A is non-

singular then p(A) = n



RANK OF A MATRIX

1. Find the rank of the given matrix
1 2 3
3 q4 4
7 10 12
1 2 3
) ) 3 4 4
Given matrix A = 210 12

det A = 1(48-40)-2(36-28)+3(30-28)
= 8-164+6 = -2 = O

We have minor of order 3

pP(A) =3




RANK OF A MATRIX

2. Find the rank of the matrix

Sol: Given the matrix is of order 3x4

Its Rank < min(3,4) =3

Highest order of the minor will be 3.

1 2 3
] ] 5 6 7
Let us consider the minor s 7 0o




RANK OF A MATRIX

1 2 3
5 6 7
8 7 0

Determinant of minor is 1(-49)-2(-56)+3(35-48)

= -49+112-39 = 24 = O.

Hence rank of the given matrixis ‘37.




ECHELON FORM OF A MATRIX

Echelon form of a matrix:
A matrix is said to be in Echelon form, if

(i). Zero rows, if any exists, they should be

below the non-zero row.

(ii). The first non-zero entry in each non-

zero row is equal to “1°.

(iii). The number of zeros before the first
Nnon-zero elementin a row is less than the

NnumMmber of such zeros in the next row.



MODULE-I

Note: 1. The number of non-zero rows in

echelon form of A is the rank of ‘A’.

1. The rank of the transpose of a
matrix is the same as that of original
matrix.

2. The condition (ii) is optional.



ECHELON FORM

1. Find the rank of the matrix A =

2 3 7
{3 —2 4}by reducing it to Echelon form.
1-3-1

2 3 7
sol: Given A= |3 -2 4
1 — 3 —1

Applying row transformations on A.

1 — 3 — 1]
.13 =2 a4
A 2 3 7

Ri1 <= Rs




ECHELON FORM

L[1r —3 —1
o 7 7 This is the Echelon form of matrix A.
O o o
The rank of a matrix A.
R R, —3R
2 % 2 1 = Number of non — zero rows =2
R;—> R3-2R;
1 —3 — 4 _ _
o 1 1 1 —3 -1
o 1 1 O 1 1
“lO O O

~ Ry 2> Ry/7,




RANK OF A MATRIX

1. For what values of k the matrix

4 4 -3 1
{1 1 -10 | has rank ‘3’.
k 2 2 =2
9 9 k 3

Sol: The given matrix is of the order 4x4

If its rank is 3 = det A =0

4 4 -3 1]
1 1 -10
A=|k2 2 -2




RANK OF A MATRIX

Applying R, 2 4R,-R4, R3 24R3— kR4, R4
9 4R4 - 9R1

4 4 -3 1]
0 0 -1 -1

We getA"' 0 8-4k 8+3k 8-k
00 4k +27 3




RANK OF A MATRIX

Since Rank A =3 = det A =0

0 -1 -1
6-4k 8+3k 8-k=0
=40  4k+27 3

I




RANK OF A MATRIX

= 1[(8-4k)3]-1(8-4k)(4k+27)] = 0
= (8-4k) (3-4k-27) = 0
= (8-4k)(-24-4k) =0

= (2-k)(6+k)=0

=> k=2o0ork=-6




RANK OF A MATRIX

Normal Form:

Every mxn matrix of rank r can be

reduced to the form [(') ooj

|0
(or) (1) (or) [t ton)[ " )

by a finite number of elementary
transformations, where I, is the r —
rowed unit matrix.



NORMAL FORM

Normal form or canonical form

e.g: By reducing the matrix

123 4
2 1 4 3
30 5 -10

into normal form, find its rank




NORMAL FORM

1 2 3 4 ]
Sol: Given A=|¢ 1t 4 3
'3 0 5 —10]
R29R2—2R1
1 2 3 4
0 -3 -2 5

A~l) s 4 3 Re>Rs—3R,

1 2 3 4
0-3 -2 -5
A 03 2 11| Rs = Ra/-2




NORMAL FORM

1 2 3 4
0O -3 -2 -5
O 0 O 6

Rs —> Rs+R>

0 0 0 O
0 -3 -2 -5
00 0 6

AN

AN

Cze Co - 2C1’ C39C3—3C1’ C49C4—4C1




NORMAL FORM

1 0 0 O
0-3 0 O
A~

0 0 0 18

C3 —> 3 C3 —2C2’ C493C4—5C2

1 0 0 O
O 1 0 O

ATlo o o0 1

Cz%CZ/—3, C4%C4/18




GAUSS JORDAN METHOD

AN

1 0
0 1 0
00 1

Cq €2 C3

This is in normal form [l5 O]

Hence Rank of A is ‘3’.




GAUSS JORDAN METHOD

Gauss — Jordanmn method

® The inverse of a matrix by
elementary Transformations:

(Gauss — Jordan method)

1. suppose A is a non-singular matrix
of order 'N” then we write A =1, A

2. Now we apply elementary row-
operations only to the matrix A and
the pre-factor |, of the R.H.S

3. We will do this till we get |, = BA

then obviously B is the inverse of A.



GAUSS JORDAN METHOD

*Find the inverse of the matrix A using
elementary operations where

1 (&) 4 |
A = O 2 3
o 1 2 |
Sol:
(1 6 4
. O 2 3
Given A = 0 1 o




GAUSS JORDAN METHOD

We can write A=15 A

1 6 4
0 2 3
01 2

1 0 0
01 0| A
00 1

Applying R; 22R3-R,, we get

SO N O

o i
0 3




GAUSS JORDAN METHOD

Applying R1—>R;-3R,, we get

1 0 _5 1 -3 O
o2 3| = (010 A
00 1 0 -1 2

Applying R; - R1+5R;3, R, & R,-3R3, we
get

1 0 O 1 -8 10
0 4 -6




GAUSS JORDAN METHOD

Applying R, > R,/2, we get

10 0] [1-8 10
01 0| |02 -3
00 1] Tlo -1 2 A
':>|3=BA

B is the inverse of A.




HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

LINEAR DIFFERENTIAL EQUATIONS wWIiTH
CONSTANT COEFFICIENTS

Def:
oL Ty ATt 1,
AN equation of the form Tt T+ P, - Tt —1 t
AT 2,
P> - 3 mi—2 + - + P, .y = Q(x) where P,,
P>, Ps ..... P., are real constants and Q(x) is a

continuous function of x is called an linear

differential equation of order “ N7 with

constant coeffin



To find the general solution of f(D).v = O :

Where f(D) = D"+ P, D"'+ P, D"? 4o
+P, is a polynomial in D.

Now consider the auxiliary equation : f(m) =

(@]
ief(m)= M "+P m""+Pom"™"% 4+ +P,
=0
where p1,p2,P3 ---cvceeeeenan-- P~ are real constants.
Let the roots of f(m) =0 be Mm;, m,, ms,..... mn.

Depending on the nature of the roots we

write the complementary function

as follows:




Roots of A E fim) =0

Complementary fonction{CT}

My, M, MW, 2e 5ea] and disinct

Fe= QT e Tt o+ g™

1 My, My .M, 22 2nd BED 100t 21
equal ie, m, m;aresguel znd P (et o R o u N
realiie repaated twice) & the r2st
are rezl znd dfferent

i M, Mz MW, 3e real and thees Ve = (O G +oa ™™ + ce™ i+ + et
roots are equal ie, my, Mo MW aTe
equal and real{is repeatad thrice)
& the rest are real and dfferent

3 |Tworcolsd AE are ComPIE £2¥ |y, = o0 (0,008 (0% + CEn 1)+ 27 + + G
ce+H O -if and rest are real and
digtinct

= If (il are repeated twice Eregt | v.= ™ [{orcaoosT 1 + {orroa) sinffx)p coe™F
are rezl and distinct . ET

& If ce+i[F are repeated thrice & rest | v, = %" [{oca+ o xdoosgfi  + {ctoat @) sinff
af= 7zl =nd distinct IH e™ L e

[2 If roots of AE drational sy Y, - l:,cmahﬁx+.:= E‘iJﬂl..I'EII-F - N -
e+ JF and rest zr= ==l and

digtinct




Solve > -32 + 2y = 0O

Given equation is of the form f(D)y
=0
Where f(D) =(D>-3D +2)y =0
consider the auxiliary equation f(m) =
O
flm)=mM>-3m +2 =0 - (mMm-1)(m-
1) (m+2) =0
=m=1,1,-2
Since m4q and m; are equal and

ms is -2

-2
We have vy, = (cit+cyx)e™ + czge™™




3. Sole (D°+8D" + 16)v =10
Sol: Given fiD) =(D" +80F + 16 v=0
Anm itizry sguation f{m) = (o +Bm® + 1&=0
= (m-+H*=0
=+ {m+MHy (m+X)y =0
= m=H_H_ -4 -H
¥.= ™ [o+cxoos2x + (o) sn2x))




4 Solvey'+6y'+0y =0 ; W0} =-4 ¥ (0H = 14
Saol: Fivenn: equaiiotris 3 1+0 3+ 0= 0
Aamiliaryrequadoaf (DN vy =0 = (O +5D+9 =0

A squation fimy=0 = (M*+6m +83y=0
= m=-3 ,-3
¥e = {Cahoox pe ™ —= {1}

Differendare of (1} wrtox = 3 ={Ci+czxM-32 ) + @)
Given=n (=14 = c;=-4 & =2
Herwewe get w={(-4 + 2x} (&™)
5 Solve 4&4"''+ A¥*t+yt =10
Sol: Given equatonis 4+ + 477 4= =0
That is (4D -4 D +D=0
Aamiliary equadon fimy =0
4m* +~4m=*+m= 0
mi4m= +4m + 13 = 0
m(2rr: + 13° =0
m=90,-1.2 -1-2
¥ =Ci+ {Cz+ cxx) e™F




s gvenby y=y.+ ¥
1.e.y=CFtPI
Where the P.I consists of no arbitrary constants and P.Iof £ (D) y=Q(x)

[s evaluated as P.I=J:+IT.Q[1]
(D)

Depending on the type of function of Q{x).

P I1s evaluated as follows;




1. PI of £ (D) v = Q(x) where Q(x) =e* for (a) #0

1 1 = 1 ax
_Q{K = = = =
F o) ) F D) F {a}

Provided fila) # 0
Case 2: If f{a) = 0 then the above method fails. Then
if fiD) = D-2)° OD)
{1.e ° a2’ 1s a repeated root k times).

Casel: PlI=

ThenPI=—> % =

k -
) ded O 0
v = & provi (a) #

1 _
Express = =[1=0(D)N?*
Pt F{D) 1zx0lD) L ( )]

1
H Pl=——0Qx).
ence T18(0) x)

=[1=0O(D)1* xF




Solve the Differential egquation(D’+5D+6)yv—e™

Sol : Given equation is (D7+5D+6)v—e™

Here Q( ®x) = *

Aunxiliarvy equaton 1s film) = m-+5m-=+6=0
m-+3m-+2m-+6=0
m{m+3)+2(m—+3)=0
m=-2 or m=—-3

The roots are real and distinct

-—2® -3
C.F = v—= c1& “+Cch e




Q)

Particular Int ral = = -
SETELTYET rio

1 1
a" = ="
D2+5D+6 (D+2W D=3

Put D=1 in fiD)

1
Pl = —— ==
L3I(4)

. |
Particular Inmtegral = y_= F -2

General solution is y=y_+y_

"
&
-2 -3
y=Cc,e " +Ccy e +——
1=




Solve v _dv '+ 3v=4 ™, vw(0)= -1, v H(0)= 3

Sol - Given equation is vu—4vl+3v=4&i

- 4%y o S
L _ —_— —
1.e. —— 4 = F3yv—4de

it can be expressed as

D%y -4Dy+3y=de "

(D2 AD+3 yy=4ae>"

Here Qx)=4e ™. fiD)y= D2 4D+3
Auxiliary equation is fim)=m~-4m—+3 = 0

m--3m-m—+3 = 0
mi{m -3 -1{m -3—0 == m=3 or 1
The roots are real and distinct.

C.F= yvo=cie +cae™ = (2)




1

P.L= 3= Q=)

rooy
1
— ¥ pr_4pe3 4
— o — = Ix
— ¥ p_anp-2)°
Pui D=3
"1'3:: 4 E:= 11 _
= = = 1_ = Em'x
YeTE-IND-3 2D-3 ~1°

G eneral solvhonis sy=y+3;
=cy e+ e +2lne™™ —_—2(3)
Egquation (3) differentliating with respectto '

=3 o, &* "4 0™+ 2= +Hbx o= _— = {4)
By data, 30} = -1 , 3" (0)=3
From (3}, -l=c;+c. —————— = (3)
From (4), 3=3ci+tca:+2
Ioater=1 ———— e = (&)

Solwvnz (3) and (6) we zete,=1 ande, =-2
v—=-2e*H 1+2x)e’™




The general solution is

y=C.F+P.|

y= Elex + Eze_x + c;E-Ex +[2-3x* +15x -8]




P.lotf(D) y = Q(x) when Q[x) = gV

P.Iof D) y=Q(x) when Q(x) =e" V where “a’ is a constant and V is fnction of x. where
V =sin ax or cos ax or x’
1
Then P.I=—
enPI=— Q)

:%ﬁﬂy
f(2)

=" [——(V)]

f(D+a)

&

V 1sevaluated depending on V.

f(D+a)




solve (D'?' — 7D2 4 14D -=yy = e cosZx

Given equation is
(D3 — 7D< + 14D -8)y = € cos2x
AEis(m® —7m~ + 14m — 8)=o0
(rm-1) (m-2Z2}{m-4) =0

Then m = 1,.2,49

C.F=c,e "

+ EEEEJ: -+ ::E-E.'d"r




P.l=

er*cos2x

(D3-7D2+14D —8)

. 1
X
= &7 _ . Cos2
(D+1)3—7(D+1)2+14(D+1)—8 .

[ =7 "¢ Fo=a)

. . 2
(D®—aD2+3D )

. 1l
x .cos2x (Replacing D with -27)

=&

"(—4D+3D+16 )



i

o
- . 2
= (1e—D > Cos
- 16+ D
" (1e—D J(ls+D 3 COs&
. 1S =
= - Sse_p= Tos®E
e 1&s 40> -
L= - 256—(—4j":ﬂ5 -
E--'-"i"
—— {lScos2x — Z2=sIn2x])
Z &0
2e* .
—  (Bcos 2x —=in 2x)
260
e~ )
F(E cos 2x — sin 2x )

ernaeral solutlarn 1S W o=— w4 W

£
130

=¢c, 8%+ c,e* + e +

(83coz 2x —=in 2x)



solve (D° — 4D+ay=x"sinx + e** 43

sol:Gwen (D° — 4D +a)y= x° sinx + &% 43
AEis(m® —4m+ 4)=0
(1m — E)E = 0then m=2,2

CF. =y + EI}:]E‘II

x< cinx+ % +3 1 s 1 - 1
Pl= = xXx“sinxy——e=* + ——— (3
(D—=232 (D—=232 ( > (D=2732 (D=272 (3)
1 . - - ix
Now—— (X~ sinyl=——(x- LPof €
(D—2)2 { J {D—272 ( ) E )

i = ix
=l Pof——[X~) I E
o Do (x ) ( )




. 1 -
= I_P 'Elf (EEA )_ m {_‘l‘_-}

Onsimplification, we get

i

I S St S )
Dai—2)° (x< sinx) = — 7 [(220x+244)cosx+{40x+33 )sinx]

; | - x2
r-.d a A ——— 2 a
2 {D_nli (E } - (:'e ]'_.-
i 3
(D—2)2 {3}= 4

1 - .3.r1 2.!':' 3
P_I=F [{2 20w+ 244 ) cosx+{ 40n+ 33 ) sinx] + {E' ]"":
- s

Y =¥t Yo

1 i 3
y=(cL + cax)@-F + 7 [(220%+ 244 )cosx+(40x-+33) sinx] +AT (e2¥)+2




P.IL of f(D)y=Q(x) where Q(x)=x"v where v is a function of x.

Then P.L =ﬁ Q) :ﬁ o :Iﬂﬂfﬂ—ijj (cogueHisina)

_[Pof_ye=
SD)

1 1 .
ii. P.I. =——x"cosmx=RPof——x"é"
JD)

D)




solve (D° — 4D +a)y = x*sinx + ™ +3

solGiven (D? = 4D+l =x* sinx + e** 43
AEis (M* —4m+ 4)=0
(m-= 2)2 =0thenm=2,2

CF.= (¢, + o1

| x2sinx+ e2V +3 1

e+ ——3

= xsinx
(D-2)2 (D-2)2 ( » (D-2)2 (D-2)2




1 .2 A3
PA=— [(220¢+284)cosx+{40x+33Jsinx] + — (£7%) +-
= Y. 4

Y=YtV

2 1 2 )
v=la+axe s+ o [(220x4244)cosx+{40x+33)sinx] + I? (e“’ 1 +




Working Rule :

et

4

. Reduce the given equation of the funn:lil.i +F{Jd +xpy=R

d
Find CF.
Relx
. Take P1 w=AuwtBv whers A= —[_~ e —
= Im; —a I

Write the G.5. of the givenequation y=); +¥,

uRdx
w —vil




Problems:

d®y
1. Apply the method of variation of parameters to solve ; + Y = COSecx
Sol: Given equation in the operator form is [D: + 1}].’ = Cosecx——-(1)

agis (m*+1)=0
=X

The roots are complex conjugate numbers.

s C.F.is Y.=C1COSX + C51IMK




Let vy, = Acosx + Bsinx be P, of (1)

uet vEE _rosix + sin®x-=1
e e b

Aand B are given by

R
.||3||.=—I 11 p—_— :rnx:osnc.rmt=_'rdx=_x
LV — Vil 1
wRal
B=l " =J' COSX.cosecxy dx = _fcan: X = log( sin
MY — VU

Sey= -xoosK +sinx. log(sinx)

<o General solution is v = y+ o

W= CyDOSH # CoSim-wooed +sinod. hogsimg




2.Solve(4D - — 40U s1)y = 100

sol:aEis (4m? —4m+ 1)-0

(2m — 1)2 - 0thenm=l.

2

| e

X
C.F=(c;#cx) ez

100 100 e+ 100

P.l=

Hence the general solution isy = CF +P.I

A
y= [c#cx) €2 + 100

"~ (4D2—-aD+1) (2D-1)2 {(0-1)2

100



MODULE-II

MATRIX LINEAR TRANSFORMATION
AND
DOUBLE INTEGRALS



EIGEN VALUES AND EIGEN VECTORS

Eigen Values & Eigen Vectors

Def: Characteristic vector of a matrix:

Let A= a;] be an nxn matrix. A non-
zero vector X is said to be a
Characteristic Vector of A if there exists

a scalar such that AX=AX.

= =)
m =
3 IARE §
7 <



EIGEN VALUES AND EIGEN VECTORS %

Note: If AX=AX (X#0), then we say ‘A’ is
the eigen value (or) characteristic root

of ‘AEg:LetA=[> 3] X= [

1 2 —1

o= bl -

-1

=1.X

I




EIGEN VALUES AND EIGEN VECTORS

Here Characteristic vector of Ais[1] and

Characteristic root of Ais “1”.

Note: We notice that an eigen value of a

square matrix A can be 0. But a zero

vector cannot be an eigen vector of A.



EIGEN VALUES AND EIGEN VECTORS

NMethod of finding the Eigen vectors of a

matrix.

Let A = [a;;] be a nxNn matrix. Let X be an
eigen vector of A corresponding to the
eigen value A.

Then by definition AX = AX.

> AX = AIX

= AX —2AIX = 0

= (A-2DX =0 ——————- (L)

This is a homogeneous system of n

equations in Nn unknowns.



Will have a non-zero solution X i1if and
only |A-AI1| =0

A-Al 1s called characteristic matrix of A
|A-AI| is a polynomial in A of degree n and
iIs called the characteristic polynomial of
A

|A-A1|=—O0 is called the characteristic
egquation

Solving characteristic equation of A, we
get the roots , 4utzds 4w These are called
the characteristic roots or eigen values of
the matrix.



- Corresponding to each one of these n

eigen values, we can find the
characteristic vectors.

- Procedure to find eigen values and

eigen vectors

211 €13 wen wan Ly

221 e e Lan i i
- Let A = be a given matrix

a1 Claa wan wans am

Characteristic matrix of A is 4 — Al

all_;l“ A, T .,
ie. A— A1 — A, a22_/1 Tt s,

A a,, T a,, — A



EIGEN VALUES AND EIGEN VECTORS

Then the characterstic polynomial is -

6‘11_’1 4 Ay
a a,-A .. a
N=|A=11l= 21 22 2n L
saydld)=[A-Al[=] = T T characteristic
anl an2 aﬂ”_l

equation is |A-u-o we solve the 0=[4-1=0,
we get n roots, these are called eigen
values or latent values or proper values.



2 000

EIGEN VALUES AND EIGEN VECTORS %

Let each one of these eigen values say A
their eigen vector X corresponding the
given value A is obtained by solving

Homogeneous system

a, — A a,, a, |[x] [O]
Ay Ay — A T Az, X2 . o
| a,; a,, T A, _AJ _Xn_ _O_

And determining the non-trivial solution.



1. FiInd the eigen values and the

corresponding eigen vectors of matrix
2 0 1]

2 0 1
SoI:LetA=[“ E “}

0 2 0
1 0 2 1 0 2

The characteristic equation is | A-Al|=0
-1 0 1

i.e. |A-Nl| = 2




EIGEN VALUES AND EIGEN VECTORS %

=2-M2-0)*-0+[-(2-M]=0
— (2 -3 —(A—-2)=0
= A-2[-(A-2)¢-1]=0

= A-2 [ +4-3]=0

=0-2JA-3)n-1)=0

= A=1,2,3 ‘



EIGEN VALUES AND EIGEN VECTORS

For finding eigen vector the system is (A - )X =

2-% 0 1 1[*1] [0]
= | 0 2-A 0 ||*z2|=|0
1 0 2-M X3l L0

Eigen vector corresponding toh=1

1 0 1] [*1 0
0 1 0f|*z1=10
1 0 11Lx 0




EIGEN VALUES AND EIGEN VECTORS %%

¥y +x5=20
o =
X{+x3=0
Xy=—Xg3,x,=10

SaV Xg = O

Yyw=—a x=0 1x3=a

EEN — —1
Kol = [ Dﬂ:l = X (]
| 3] o 1

0 iz Figen vector




EIGEN VALUES AND EIGEN VECTORS %

Eigen vector corresponding tod =2

0 0 1] [*1 0
O 0O 0] [®z2]=|0

1 0 01 Lx3 L0

Here x, = Qand x; = 0 and we can take any arbitary valuex, L. x, = a (say)

= L5l - <La)

0
Eigen vectoris [1]

0




2 000

EIGEN VALUES AND EIGEN VECTORS %

Eigen vector corresponding toh= 3

—1 (] 1 Ha (]
Al -
Xq— Xg = here by solving we get xy = X5, x, =0 say x5 =X

X4 =0, Izz[} X =




EIGEN VALUES AND EIGEN VECTORS

Properties of Eigen Values:

Theorem 1: The sum of the eigen values

of a sguare matrix is equal to its trace and

product of the eigen values is equal to its

determinant.

Proof: Characteristic equation of A is

| A-Al | =0



EIGEN VALUES AND EIGEN VECTORS

> expandirng this we get

(all —/1)(8.22 _2‘)° | '(ahn _/1) —a

(g polynomial of degree n — 2)

+ a.3 (g polynomial of degree n -2) + ... = 0O




EIGEN VALUES AND EIGEN VECTORS

0]

= (D" [ﬂ,” —(a,+a,, +....+a,,)A" " +a polynomial of deg ree(n— 2)]

D" A" + (-1 (Trace A) A" +a polynomial of degree(n—2)in1=0

IfA,As .... . A, are the roots of this equation

(—1)"+ire(a)

—Dn = Tr{d)s

sumof theroots =

Further |A— Al = (—1)"3"+ .-, +a,
put A = 0then |A| = agy
(—1)"A" 4+ a, A" 14+a, A" 24+ ..4+a,=0

(—1)"ap _
(—p= e

Productof the roots =

but ag = |A| = detd

Henece the result




PROPERTIES OF EIGEN VALUES

Theorem 2: If * is an eigen value of A

corresponding to the eigen vector X, then

A" is eigen value A" corresponding to the

eigen vector X.

Proof: Since #- is an eigen value of A

corresponding to the eigen value X, we

have



PROPERTIES OF EIGEN VALUES

AX= A (1) Pre multiply (1) by A,
A(AX) = A(*X)

(AA)X

[
!
>
Z

AZX= 2(F-X)
AZX= »2X
2?2 is eigen value of A with X itself as the

corresponding eigen vector.

2" js an eigen value of A"




PROPERTIES OF EIGEN VALUES

Theorem 3: A Square matrix A and its

T -
transpose A have the same eigen values.

Theorem 4: If A and B are n-rowed square

matrices anmnd If A is invertible show that A

B -4 -
B and B A have same eigen values.

Theorem S: It o ... 2, are the eigen values

of a matrix A then k-4, ks, ..... k:, are the

eigen value of the matrix KA, where K is a

NnonNn-zero scalar.

Theorem 6: If: is an eigen values of the

matrix A then :+K is an eigen value of the

matrix A+KI



PROPERTIES OF EIGEN VALUES

Theorem 7: If 54, -5 ... 2, are the eigen

values of A, then
"_':"1_ Kl "_':"2 - K) e "-':l"n_ K)

arethe eigen values of the matrix (A — K1), where K is a non — zero scalar

Theorem 8: If »,.7. ... »,, are the eigen values

of A, find the eigen values of the matrix

(A — AI)~




PROPERTIES OF EIGEN VALUES

Theorem 9: If & is an eigen value of a

non-singular matrix A corresponding to
the eigen vector X, then 2 is an eigen
value of A" and corresponding eigen

vector X itself.



PROPERTIES OF EIGEN VALUES

Theorem 15: The eigen values of a

triangular matrix are just the diagonal

elements of the matrix.

Theorem 16: The eigen values of a real

symmetric matrix are always real.

Theorem 17: For a real symmetric matrix,

the eigen vectors corresponding to two

distinct eigen values are orthogonal.



PROPERTIES OF EIGEN VALUES

2 —3
1. Wmmmmafw+5ﬂfﬂ—ﬁﬂ+21whﬁ73ﬂ=|§ 5 zz]

feife sgueritom of Afs l4d —AF] = @

4 —3
£ =, i =
i —2—-

= [ —DE—D—=2—D —al=a
= (1 —AQE—DE4+I =a A=13,—2
Efygper malres af 4 o 1,3,—3

e kmore that &F I fr an etgen valnes af 4 ond fLd)fs = polyveoimizl 2 A,

them the sigern walns o f FlLd)is FIA)




PROPERTIES OF EIGEN VALUES

Let f(A) = 34° +54° —6A4 +2I
Then eigen values of f(A) are f(1), f(3) and
f(-2)

f(1) = 3(1)>+5(1)*-6(1)+2(1) = 4
f(3) = 3(3)>+5(3)*-6(3)+2(1) = 110
f(-2) = 3(-2)>+5(-2)%-6(-2)+2(1) = 10

Eigen values of 34’ +54°-64+2 are 4,110,10



CAYLEY HAMILTON THEOREM

Cayley - Hamilton Theorem: Every square
matrix satisfies its own characterstic

equation.

1 —2 1
Q)Show that the matrix A = [1 - 3]

o —1 2
satisfies Its characteristic equation Hence
find A™



PROBLEM

Sol: Characteristic equation of A is det

(A-Al) = 0

| b o—2-4 3 =0 C2 2> C2+C3




PROBLEM

A-F4+i-1=0
By Cayley — Hamilton theorem, we have
A>-A+A-1=0

1 -2 2 —1 0 0 -1 2 -2
A=1 -2 3| A’=|-1 -1 2| A°=|-2 2 -1
0 -1 2 -1 0 1 -1 1 0|

12 2] [-1 0 0]t -22][to0
NN +A-1=-2 2 -1|-[-1 -1 2[+|1 -2 3|-{0 1 0
11 0] [-10 1




PROBLEM

© © o
[
-

3 e
-

Multiplying with A~ we get A°— A + | =A""

10 0]t -221[tooq][12-2
At=l-1 -1 2|1 -2 3[+{0 1 0|=[-2 2 -1
101012001110

R




PROBLEM

© © o
[
-

3 e
-

Multiplying with A~ we get A°— A + | =A""

10 0]t -221[tooq][12-2
At=l-1 -1 2|1 -2 3[+{0 1 0|=[-2 2 -1
101012001110

R




PROBLEM

1.Using Cayley - Hamilton Theorem find

the inverse and A? of the matrix A =

T & —=
— —1 =
& B —

2. Verify Cayley — Hamilton Theorem for A

E =
= e =
=12 = =l

Hence find A™.



DIAGONALIZATION OF A MATRIX

Diagonalization of a matrix:

Theorem: If a square matrix A of order n

has N linearly imndependent eigen vectors
(X4,X5...X,,) corresponding to the nNn eigen
values AQ,A>.... A\ respectively then a

matrix P can be founmd such that
P 1TAP is a diagonal matrix.

Proof: Given that (X1,X5...2X,4) be eigen
vectors of A corresponding to the eigen
values A 4, A5....A,, respectively and these
eigen vectors are linearly independent

Define P = (X41,X5...X,)



DIAGONALIZATION OF A MATRIX

Since the n columns of P are

independent |P|#0
Hence P exists
Consider AP = A[X1,X5...X,]

= [AXq, AX;.....AX,]

— [}\Xl, }\2X2... .7\an]

linearly




DIAGONALIZATION OF A MATRIX

2
Where D = diag (4.4, A An)

AP=PD
P (AP) = P (PD) — rnr — ()
P AP = (/D

= D

— diag (.4 Agreeeeeene. )

Hence the theorem is proved.




MODAL AND SPECTRAL MATRICES

NModal and Spectral matrices:

The matrix P in the above result which
diagonalize the sguare matrix A is called
modal matrix of A and the resulting
diagonal matrix D is known as spectral

matrix.

Note 1: If X4,X5...X, are not linearly

independent this result is not true.

2. Suppose Al iIs a real symmetric
matrix with n pair wise distinct eigen

values 4.4.---2, then the corresponding



POWERS OF A MATRIX

i.e, P'P=PP =I
Hence P '= P’
P lar=p =P"AP=D

Calculation of powers of a matrix:

We can obtain the power of a matrx
by using diagonalization

Let A be the square matrix then a non-
singular matrix P can be found such
that D = P AP

D°=(P TAP) (P AP)

= P 'A(PP H)AP



POWERS OF A MATRIX

= P A’P (since PP '=I)

Simlarly D> = PT'A°P

In general D" = P TA"P........ (1)

To obtain A", Premultiply (1) by P and
post multiply by P71

Then PD"P ' = P(P A"P)P

= (PPTHA" (PPY) = A" =A'=PDP*

A O O0--- O

o
N
. N5

o

@]

Hence A" =P




PROBLEM

ad. Determine the modal matrix P
—a = —
of = M;E _jlm ;g] . Verify that F4F js a
diagonal matrix.

Sol: The characteristic equation of A

1S

|A-AI] = O

— — A g —=
ie, = 1—a —s|=a

—l — -
which gtves (1— S){A+ 3 =0

Thus the eigen values are A=5, A=-3

and A=—-3




PROBLEM

— 7 2 —377 rx O
when A=5 — , = 3 —'5] [“] = "3]

—1 —2 —5h1t= O
By solving above we get X; = [_é]

Similarly, for the given eigen value A=-3

we can have two linearly independent

=

=
eigen vectors X, = [—'31] arnd Xz = h]

P = X 3]

1 2
P = \ ]—mﬂdﬂimﬂt?"i::: o A

NowdetP = 1(—1] -2(2)+3(0-1)= -8




PROBLEM




DIAGONALIZATION OF A MATRIX

5 0 0
=10 -3 0 |=diag(5-3-3)
0 0 -3

Henee AP js a diagonal matrix.

Problems

1. Diagonalize the matrix

2 2 1 1 2 27
(i)|1 3 1(i)|r 2 1
-1 2 2 -1 -1 o0




MULTIPLE INTEGRALS

Double integrals

Triple integrals

Change of order of integration
Transformation of coordinate system;

V.V V VYV V

Determination of areas by double
integrals



Double integrals

The EKIJI'EISSiDﬂ:
J.IZ Iz f( j .: ) " I:
J y=w .|J|:=J|:1

is called a double integral and indicates that f (x, y) is first integrated with
respect to x and the result is then integrated with respect to y

If the four limits on the integral are all constant the order in which the
integrations are performed does not matter.

If the limits on one of the integrals involve the other variable then the
order in which the integrations are performed is crucial.




MULTIPLE INTEGRALS

Double Integral :

l. Whenvy,,y, are functions of x and x; and x,
are constants. f(x,y)is first integrated w.r.ty
keeping ‘X’ fixed between limits y;,y, and then
the resulting expression is integrated w.r.t ‘x’

with in the limits x1,x, i.e.,

X=X, y=¢,(X)

[[fooyxay= | [ flxy)dydx

X=X y=¢(x)




MULTIPLE INTEGRALS

Il. When x4,X, are functions of y and y; y, are
constants, f(x,y)is first integrated w.r.t ‘x’
keeping ‘y’ fixed, with in the limits x;,x, and
then resulting expression is integrated w.r.t ‘y’

between the limits y;,y, i.e.,

y=y, X=

Hf(x,y)dxdy: j ? f(xy)dx dy

Y=% X=

lIl. When x4,X5, y1,¥2 are all constants. Then

Hf(x,y)dxdy= yj Xff(x,y)dxdyzxf yff(x,y)dydx

R Y1 X X Y1




MULTIPLE INTEGRALS

2 3
2
1. Evaluate _!_!xy dx dy




MULTIPLE INTEGRALS




MULTIPLE INTEGRALS

— j‘ %[Tan_ll—Tan_loj dx
x=0 + X

:%J’ 1 — dx:%[log(x+«/x2 +1):|1=0

— %Iog(l—l— v2)




MULTIPLE INTEGRALS

Evaluate IO I rsin@deo dr

0

Sol. frlzor [I/sm Hdg}dr

:J‘l r(—cos@)’V dr

J-r1=0_r(COS%_ COS O)dr

2

I::O—F(O—l)dr = E rdr = (?

1

,
~
|
N[
|
)
|
N[




MULTIPLE INTEGRALS

J-O%J-Oasine rdrd &

Evaluate a — r
Sol.

[ e,
[ I
—3 J;%{j:s e rzz_r — dr}de

:21 = (Ve —r )‘f”g do—(—1) [[* & et sirF O

. 2
(—a) [7*(coso—1)do—=(—a)(sino—6)_

(—a)|[[sin Z o - = 4]~ (o — o0) ]
(—a>)| 2z —za|-2|za - 2z




Problems

1. Evaluate []xxay

Sol. jﬁ xyzdx}dy







10. Evaluate [[xy(x+y)dxdy over the region R

bounded by y=x” and y=x

Sol: y=X® is a parabola through (0, 0)
symmetric about y-axis y=x is a straight line
through (0,0) with slopel.

Let us find their points of intersection
solving y=x*, y=x we get x*=x - x=0,1Hence
y=0, 1

-~ The point of intersection of the curves are

(0,0), (1,1)

Consider [[xy(x+y)dxdy



6 14 24 168 168 168

5 x x?  x® ) 1 1 1 28-12-7 28-19 9 3
_(6' 5 )




11. Evaluate J-.F[Xdedy where R is the

region bounded by x-axis and x=2a and
the curve x2=4ay.
Sol. The line x=2a and the parabola

x’=4ay intersect at B(2a,a)

J‘J‘xydxdy
R

“~The given integral =
Let us fix vy’
For a fixed ‘y’, x varies from 2Jay to 2a.

Then y varies from O to a.

Hence the given integral can also be

written as







%
1 -
12 Evaluate jojrsmededr
0

Sol. _[rlzorUZsin QdH}dr

= r( cose)/ dr

= Lo—r (cos % —COS 0) dr

1 1 r.2 1 1
- r_o—r(O—l)drz'fOrdrz[?j =5-0=>




MODULE I
FUNCTIONS OF SINGLE VARIABLE AND TRIPLE INTEGRALS




MODULE-II

AnNd we also introduce function of several
variables which are essential for the
discussion of transcendental function and
Aalso Mmaxima and minima of function of
more thanmn one variable with and without
Constraints. INn many engineering
problems change of variables and
transformation of co-ordinates play an
important role in solving the problems.
For such problems, Jacobian of functions
of more than one variable and functional
dependence are introduced.



MODULE-III

Limits, Continuity and Differentiability:

The reader familiar with the concept of
limit, continuity and differentiability for
real valued functions. In this section, we
give a brief review of these concepts,
which form the basis of differential
calculus.

Throughout this section we consider
f:A>R where A is an interval in R. It may
NTappen that for a function f,

As X approaches closer to a, the value
rooapproaches closer to a definite real

AumMmber



MODULE-II

(1) Note : The following are some
fundamental properties of continuous
functions.

(2) Definition: A function f is said to
approach to a limit i\ as x tends to a, if
given .o there exists s-osuch that
O<[x—al<s|f(x)—Il<e=.

We write f(x) =1

X —>a



CONTINOUS FUNCTION

1) Definition: A function f is said to be

continuous at x-a if imrx)=1()

f f is not continuous at «-.. We say that f
s discontinuous at x-a.

A function f is said to be continuous if it is
continuous at every point of its domain.



‘a)lf f and g are continuous at ‘a’, then
i+g, T —9, fg ,kf and f/g (if ¢.0) are all
continuous at ‘a’.

(b) Intermediate Value Theorem: Let :rbe
a continuous function defined on a
closed interval [(asvjand letrf(a)=f(b). Let c be
any real number lying between . and
roy. T hhen there exists «c@anysuch that f)--.

In other words any continuous function
defined on a closed interval [a, b]
assumes every value lying between f(a)
and f(b) is bounded.



MODULE-II

‘a)Let f be a continuous function defined
on a closed interval [a, b]. Then there
exists a real number M such that |[f(X)|<M

for all X =|a,b]
In other words any continous function
defined on a closed interval is bounded.

(3) Definition: A function f is said to be

differentiable at x if 'imf(x+h3_f(x)exists and

h—0

s finite. The value of the Iimit is called the
derivative or differential coefficient of f
at X and is denoted by f'YNor L or ¥where

dx dx
y = Tf (x).



MODULE-III

f the derivative of: is differentiable,
chen the derivative (v is called the second
Jerivative of ((y and is denoted by or?

2 f
dx?

réyory,. Continuing this process, one can

dx?

Jefine ~derivative of the function,-+(),
~vhich is denoted by -, or&foreyor,,.



MODULE-III

Note : If a function f is differentiable at x,
‘hen f is continuous at x. However the
~onverse Is not true.

-or example the function f(x)=|xis
continuous but not differentiable at x=0.



ROLLES THOEREM

Rolle’s Theorem

Statement: Let f(¥) be a function defined
onlablsatisfying the following conditions.
‘a) fis Continuous on(a.b)

‘b) f is differentiable on (a.b)

.C) t(a)-1(b)

Then there exists at least one
Jdointce(ab)such that+(c)=o0



ROLLES THOEREM

Geometrical Interpretation of Rolle’s
lNheorem:

nNnterpreted geometrically in the following

-~ B =
Ea S ] Fa -
- =
> - = ’I
Fig 2 _1

Rolle’s Theorem says that the curve
~epresenting the graph of the function
,~r Must have a tangent parallel to the x-

figure.

axis at same point between a and b.



ROLLES THOEREM

Daily life application of rolles theorem

Since Rolle's theorem asserts the existence of
a point where the derivative vanishes, I
assume your students already know basic
notions like continuity and differentiability.
One way to illustrate the theorem in terms of
a practical example is to look at the calendar
listing the precise time for sunset each day.
One notices that around the precise date in
the summer when sunset is the latest, the
precise hour changes very little from day to
day in the vicinity of the precise date. This is
an illustration of Rolle’'s theorem because
near a point where the derivative vanishes,
the function changes very little.



ROLLES THOEREM

Example 1:

verify Rolle’s Theorem for f (x)=x*-—-1
Nn[-1,1]

Solution:

given f(x)=x2-1, Which is a polynomial in
S’

i) f(x) is continuous in [-1,1], since it is
c>olynomial function.

‘ii) f(x)is also derivable in (-1,1), since it is
c>olynomial function
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iii) f(—1)=0, f (1)=o0

.e. f(—) = f (D)

—dence all the conditions of Rolle’s
ctheorernm are satisfied for the function
f(x)=x*—1 _Therefore there exists a

—onstant, C such that f ' '(c)=o0.
f "(x) =2x

f () —2c — O

C =0<=(—11)

i.e. C lies in the interval (-1,1)

—Hence Rolle’ s theorem is verified.
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Verify Rolle’s theorem for the function
f(x)=(x—a)"(x—b)'in [a, b]

Solution:
Siven f(x)=(x—-a)"(x—b)"

i) Since x is the product of two

sdolynomial in shence ) is continuous in
a, b].

i) f'(x)=m(x—a)" (x—b)" +(x—a)". n(x-b)"

=(x—a)m_l(x—b)"_l[n(x—a)+m(x—b):|
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f'(x) exists for all x<(a,b)

- f(X) is differentiable in (a,b)
iii) Also f(x)=f(b)=0

f (x)satisfies all the conditions of Roll’s
Theorem.

'hen s Ce(a,b) such that

f'(c)=0
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 (e-a"(c-b)" rle-am(e-b}-0
_,C=a,c=hb ,n(c—a)+m(c—b):0

na + mb
m + n

= C =

na-+mb
c - P <l

Hence Rolle’s Theorem is verified

I



ROLLES THOEREM

verify whether Rolle’s Theorem can be

applied to the following function Iin the
Nntervals cited :

i) f(x)=tanx N [O. ==
Solution:

f(x) is discontinuous at x—7245 as, it is not
defined there.

The condition (1) of Roll’'s Theorem is
Nnot satisfied. Hence we cannot apply
Rolle’s theorem.

(ii) too==

X2

in [-1, 1]

It is discontinuous at X =0 . Hence we
cannot applyvy.
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Verify Rolle’s theorem for f (x)=1[x| in [-1,1]
Solution:

We have f(x)=|x

i.e. f (x)=x,for x=0

= —X, for x<o

(i) f(x) is continuous for all values of X.
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f(x) is continuous in the closed interval
[_1/ 1]
(ii) f(x is not derivable at x=0

We have f(0)=[0=0

L.H.D. =)= tip = - I= 1O

_|x-0
=lim =
Xx—0" X
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f1(0) = lim = )~ 1 (0)

R.H.S. xX—>0" X —0
x| —O
= Lt =
xX—>0" X
X
= Lt = =1
xX—>07" X

L.H.D. . R.H.D. 1 is not derivable in the open
interval (-1, 1)

-~ Roll’'s Theorem is not applicable.
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EXERCISE

Verify Rolle’s Theorem for the following
functions in the intervals indicated.
(i) (=(-a)'(-b)" i [a.b]
(||)f x)=e”Sinx in [0, ]
(|||) f(x)=x*-2x In [0, 2]
(v) T3 in s
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Daily life application of lagranges method

Well, for LLagrange's theorem (f you mean
the mean value theorem) there's always the
story about the hiker who goes up a
mountain one day and down again the other.
The question is, as he's walking down, will he
ever be at some point on the path exactly =24
hours after he was there last? This is without
assuming he walks at an even pace. He can
walk slowly uphill and run downhill if he
wants. The only thing he's not allowed to do
is deviate from the path, and teleport.
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2 Lagrange’s Mean Value Theorem

Statement: Let f(x) be a function
defined on [a, b] satisfying the following
conditions.

(a) fis continuous on (a, b)
(b) fis differentiable on (a, b)
Then, there at least one point ce(a,b) such

that (c)- 1= 1(2)

b—a
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Geometrical Interpretation of Lagrange’s
mean value theorem:

Consider the graph of the curve y=f(x),
Plaf(a)]and q[bf(b)]are two points on the

curve. Hence slope of the chord PA is
f(b)—f(a)

b—a
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Fig.2.2

Also f'(c) represents the slope of the
tangent of the curve :( at R[c, f(c)].
The relation - =f()means that the

tangent at R is parallel to the chord PQ.
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Find C of Lagrange’s mean value theorem
(L.M.V.T) for the function f(x)=¢*in [0, 1]
Solution:
Here we have

f(x)=e*,a=0,b=1
(i) f(x) is continuous in [0, 1]and
(ii) f(» is derivable in (0O, 1) and f'(x)=¢
x < (0,1)

f(x) satisfies both the conditions of
L.M.V.T.
Therefore, there must be atleast one
value C<(01)such that
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1 e = =
I-e- 1_0 1
I.e. e =e-1
l.e. c=log(e-1)e(0,1)

Hence, Lagrange mean value Theorem is
verified
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Example: S.T.for O<a<b<l

1 . tan*b—tanta 1

1+a’ 1+a’ >1+b2
Solution:

. . -1 .
Consider f(Xx)=tan"x in

[a, b] for 0<a<b«<l

Since f(x) is continuous in [a, b] and
derivable in (a, b)

We can apply L.M.V.T. here
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Hence there exists a pt cin (a, b) such
that

Here f'(x)

1+ x°

And hence  f()-—2

1+ c?

Thus, there exist a point ¢,a<c<b
1 tan"b-tan'a

Such that T =T A

1+cC
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We have 1+a® <1+c’<1+b?

1 1 1
>
1+a® 1+c? 1+ b2

Usmg (1) and (2) we have

1 >tm11b—1w1 a 1

>
1+a’° 1+a’ 1+b°
Hence the result
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Calculate approximately ¥245 by using
L.M.V.T.

Solution:

Let f(x)=%¥x and  a=243,b=245
Then Fr(x) = Lo

And fr(c)=zc

- By LM.V.T. we have f(bg:;(a)ﬂ'(c)
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f (245)— f (243) 1
= 245 243 5

—4/5
C

f (245) = f (243)+ Zc

/245 = (243)"° + é c /5

-~ Clies between 243 and 245. [Take
c=244]

/245 = 3.0049
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Prove that = g—ﬁmos (3/5)>§—§ using L.M.V.T.

Solution:
Let f(x)=cos*x and an interval [a, b]
Then

By L.M.V.T.

Cos'b—Cos™ta -1

) ==

= a<c<b
- Vi where
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C e (a,b)

“ a<c<b=a’*<c’<b?
. —a’ <—¢* <P’

~ 1-a’>1-¢*>1-b°
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—1 Cos'b—Cos'a —1
> >
1—a? b—a 1—Db?

Let a=1/2 and b=3/5. Then

—2 - Cos *(3/5)—Cos ™ (1/2)

/3 3 1

5 2

>-5/4

1 1
—2 . Cos™(3/5)—Cos*(1/2) .
J3 1/10
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o 05 1(3/5) =7/ 3> -2

10\[ 4 10

— >cos‘1(3/5)>£—1

Hence the result
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Using Mean Value Theorem prove that
tanNn X > Xijn O<x<xz/2

Solution:
Consider f(x)=tanx jn O<Xx<xz/2

Take f(x)=tanx in[=, <], where

O<e< X<t/ 2

Applying Lagranges Mean-Value Theorem
to f ()
There exists a point C such that
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There exists a point C such that
O<e<c<x<rml?2

tan X —tan €

Such that v
tan X —tan e= (- €)sec’ c

= Sec’C

—

Take >0, Then tanx=xsec’c
But sec’c>1. Hence tanx > x
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3 Cauchys’ Mean Value Theorem

(C.M.V.T)

Statement: Let f(x) and g(x) be functions

defined on [ab]satisfying the following

conditions.

(a) f and 9 are continuous on [ab]

(b) fand gare differentiable on [a.b]

(c) ¢'(x) does not vanish at any ptin [ab]
[i.e. g'(x)=0vxe(ab)]
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Then, there exists at least one point
ce(a,b) such that,

fb)-f(a)_f'(c)

g(b)-g(a) g'(c)
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Example 1:

Verify Cauchy’s mean value theorem for
the function x*and x®in the interval [1, 2]
Solution:

Let f(x)=x and g9(x)=x

(i) f(x) andg(x) are continuous in [1, 2]
(ii)) f(x) andg(x) are differentiable in [1, 2]
(iii) 9'(0=3¢=0 v xe[12]
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. f(x) and g(x) satisfy all the conditions of
Cauchy’s mean value theorem.
Hence there exist at least one real

number cin (1, 2) such that,
f'(c) f(2)—f(@)
g'(c) 9(2)-9(®)
2c 22-1* 4-1

= 3c2 23-1° 8-1
2 3

f— —_
3cC 7

N C=14

9

. The value of c-3 liesin (1, 2)
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- The value of c -12 lies in (1, 2)

Hence, Cauchy’s mean value theorem is
verified.

Example 2:

Verify Cauchy’s mean value theorem for
the functions logxand X in [1, €]
Solution:

Here, we have

f(x)=togx.a(x)==, [a, b] = [1, €]
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(i) Both f(x)and g(x)are continuous in [1, e]
(ii) Differentiable in (1, e)

(iii) Also ¢(1--=+0in (1, e)

Since 1(v,qx Satisfy all the functions of
C.M.V.T. there exist at least one real
number cin (1, e) such that

fi(c)_f(b)-f(a)_fle)-F(y

g'(c) g(b)-g(a) g(e)-g()
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1/2  loge-logl

e. (—1/c2) 1/2-1
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Example:If f(x)=logxand g(x)=x*in [a, b] with
b>a>1, using C.M.V.T. Prove that
logb—-loga a-+Db
b—a = 2c?

Solution:

We are given f (x)=log x
N f(a)=loga, f (b)=logh

And g(x)=x"

- g(a)=a?g(b)=b’
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Also Frix)=—

And g'(x)=2x

- By Cauchy’s mean value theorem
f(b)-f(a) _f'(c)
g(b)-9(a) g'(c)

logb-loga 1/c

= b? —a’ 2C

I
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logb -loga 1
- (b-a)(b+a) 2c?
logb—-loga a-+b

b—a 2c*
Hence the result.




Triple integrals :

1,Xz are constants. y1,y, are functions of x and z4,z, are functions of x and y, then
y,z) is first integrated w.r.t. ‘2’ between the limits z; and z, keeping x and y fixed.
2 resulting expression is integrated w.r.t ‘y’ between the limits y; and y, keeping x

1stant. The resulting expression is integrated w.r.t. ‘X’ from x4 to x;

ij(x y,z)dxdydz =

| jyzgi(x) r:fZ(X’y)f(x, y,z)dz dy dx

y=g1(x)

2= (x,y)




Evaluate Jj Ioﬁ _[ ey xyz dx dy dz

0

>0l

J‘xl=o.[ﬁjfo_xz:_fwz dx dy dz

y=0

=1 dx

x=0 y:0 7=0

1 ﬁdyj‘ﬁxyz dz

N sz
S

. 1 d 1—
_IXZO X y:0 Xy ?

z=0

:%I::de ):;ny(l_XZ _yz)dy

i

B %Jiodx y=1; X[(l—xz) y— y3]dy






Evaluate_f IIX+Z(X+ y + z)dx dy dz

]

X+z

_f (x+ y+ y)dxdydz
(0}

= Ijljoz |:[xy + y% + zij+Z :|dX dz

=f_11fozx(x+Z)—X(X—Z){X;ZT—[X;Z]Z +2(x +2) — 2(x — 2)dx dz

=J-1 IZ 22(x+z)+14xz dx dz
—1J0 2
x2 |
—2J. |:z—+z x+z—] dz
2

-2




MODULE IV
FUNCTIONS SEVERAL VARIBLES

—



PARTIAL DIFFERENTIATION

The puﬁl differential coefficients of f. and fy are f., fuy, fyx fyy
7 f IFf  If

or 3 3xdy” dyax’ 3y’ respectively.

B’f d 2*f d | of
It should be specially noted that —— ayﬂx ay(ax] and ﬁﬂﬂlﬂ! E[g]
The student will be able to convince himself that in all ordinary cases

’f  &f

dyox  oxdy




CHAIN RULE OF PARTIAL

DIFFERENTIATION

Change of Variables : If u is a function of x, y and x, y are functions of t and r,
then u is called a composite function of tand .
Let u =f(x, y) and x = g(t, r), y = h(t, r) then the continuous first order partial

derivatives are

du_du ox du dy
d ox ot dy ot




PROBLEMS

Solution : ngvenu-u[" : u]

=u(r,s)
Z-X

where r=L~and 5 = m—
Xy ZX




7, S &
m | = 1 =
— ' y ;
O : :
(a'd " :
P -I__"E e m
A T et 2le
v &l83z Bk _
E m + h._.m Ty _.w__.m
1___.1 __.w. ,._._1_|_H., I .
~ixgals 1 RlE 2
s 2 Es T s
t 288 Ty i &




PROBLEMS

Adding (i) (ii) and (iii) we get

du du du
2 2 2 =0
et Arwh L aw Hence Proved.




MAXIMUM & MINIMUM FOR FUNCTION OF A SINGLE g D_D(

VARIABLE ® IARE §

To find the Maxima & Minima of f(x) we use the
following procedure.

(i) Find f'(x) and equate it to zero

(ii) Solve the above equation we get xg,x; as

roots.

(iii)  Then find f(x).

If £11(X)(exg )0, then f(x) is minimum at xg

If £ () xexo )0, F(X) is maximum at xo. Similarly

we do this for other stationary points.




PROBLEM

1. Find the max & min of the function
f(x) =x° -3x* +5
Sol: Given f(x) = x> -3x"* + 5
f'(x) = 5x* — 12x°
for maxima or minima  f'(x) =0

5x*—12x° =0 x =0, x= 12/5

f(x) = 20 x> — 36 x°
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At x=0=> f*(x)=0. So fis neither maximum nor

minimum at X = 0 At x = (12/5) =>

f1(x) =20 (12/5)° — 36(12/5)

=144(48-36) /25 =1728/25> 0

So f(x) 1Is minimum at x = 12/5

The minimum value is f (12/5) = (12/5)° -3(12/5)* + 5




MAXIMA AND MINIMA OF FUNCTION

OF TWO VARIABLES

Working procedure:

1.

2.

3.

of
o X

Find and % Equate each to zero. Solve these

equations for x & y we get the pair of values (a4, b)

(az,bz) (a3 ,b3) ..................

i o f o f .
Find 1=75¢ M oxay N = Zyz

i. Ifin—m”>0and, <0 at (aq,bq) then f(x ,y) is
maximum at (a4,b;) and maximum value is f(a;,b1)
i. If In—m”>0andI>0at (a,b;)then f(x,y)is

minimum at (a;,b;)

and minimum value is f(a1,b;) .




MAXIMA AND MINIMA OF FUNCTION

OF TWO VARIABLES

ii. fiIn—m”°<0and at (ay, by) then f(x, y) is neither
maximum nor minimum at (a;, b4). In this case (a4, b;)

is saddle point.

iii.If In —m?* = 0 and at (a1, b1) , no conclusion can be
drawn about maximum or minimum and needs
further investigation. Similarly we do this for other

stationary points.



PROBLEM

Locate the stationary points & examine their nature of the following
functions.

u=x"+ y4 -2x° +4xy —2y2, (x>0,y>0)
Sol: Given u(x,y) = x* + y* -2x” +4xy -2y°

For maxima & minima 24 =0,

o u =O

oy

o u

ax =4x3—4x+4y=0 :,x3—x+y=0

o u

— =4y3+4x-4y=0 :,y3+x—y=0

Adding (1) & (2),

2 +y3=0

(1) x> —2x - x =0,-/2,—/2
~y=0,/2—-/2

Hence (3)




PROBLEM

o%u
| = 57 =12x" -4,

_0°u _ s(au) _
M=oy =l =

_ o%u  _ 2

In—m”=(12x"—4)(12y*—4)-16

At (-+/2,42) In—m’=(24—4)(24 -4) -16 =(20) (20)-16 > 0
and 1=20>0

The function has minimum value at (-+/2,+/2)

At (0,0), In—m’=(0—4)(0-4)-16 =0

(0,0) is not a extreme value.



VECTOR CALCULUS

Scalar and vector point functions: Consider a
region in three dimensional space. To each point
p(X,y,z), suppose we associate a unigue real number
(called scalar) say ¢. This ¢(x,y,z) Is called a scalar
point function. Scalar point function defined on the
region. Similarly if to each point p(x,y,z)we associate
a unigue vector f(x,y,z),7 1s called a vector point

function.



Examples:

For example take a heated solid. At each point
p(x,y,z)of the solid, there will be temperature T(x vy, z).
This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a
path in space. When it occupies a position p(xy,.z) in
space, it will be having some speed, say, v. This speedyv is
a scalar point function.

Consider a particle moving in space. At each point P
on its path, the particle will be having a velocity v which
is vector point function. Similarly, the acceleration of the
particle is also a vector point function.

INn @a magnetic field, at any point P(x,y,z) there will be
a magnetic force f(x,y,z). This is called magnetic force

field. This is also an example of a vector point function.
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Vector Calculus and VVector Operators

INTRODUCTION

INn this chapter, vector differential calculus is considered,
which extends the basic concepts of differential calculus, such
as, continuity and differentiability to vector functions in a
simple and natural way. Also, the new concepts of gradient,
divergence and curl are introduced.

DIFFERENTIATION OF A VECTOR FUNCTION

Let S be a set of real Nnumbers. Corresponding to each
scalar t € S, let there be associated a unique vector . Then

is said to be a vector (vector valued) function. S is called the

domain of f. We write 7 = 7 (t).
Let i,j.kbe three mutually perpendicular unit vectors in
three dimensional spaces. WwWe can write 3 = Ff(t)=

O+ f,)J+ f,(Dk , where f£f;(t), f=(t), fsz(t) are real wvalued
functions (which are called components of ). ( we shall

assume that i.j.< are constant vectors).
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4. Properties

1) E(ﬁ) =%§+¢68t—§

o _ oa
2). If A is a constant, then E(ﬂ“a) =15

o, .\ _0¢

3). If - is a constant vector, then 5(@)—05
a). Srem > 2 28
5). S e
7). Let Fr= i, where f7, f> fzare

differential scalar functions of more than

of _of, -of,

. — of .
one variable, Then =i +i—+k—>(treating i«

as fixed directions)
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5. Higher order partial derivatives
Let = f(p,qg,t). Then 52f_=2(i] orf 6[ijetc.

otz ot ot ) opot  opl ot

6.Scalar and vector point functions:
Consider a region in three dimensional
space. To each point p(x,y,z), suppose we
associate a unique real number (called
scalar) say ¢. This ¢(x,y,z) is called a scalar
point function. Scalar point function
defined on the region. Similarly if to each
point p(x,y,z)we associate a unique

vector (x,y,z),s is called a vector point

function.
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7. Tangent vector to a curve in space.

Consider an interval [a,b].
Let x = x(t),y=y(t),z=z(t)be continuous and derivable for a< t
<b.

Then the set of all points (x(t),y(t),z(t)) is called a curve in
a space.
Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are
called the end points of the curve. If A =B, the curve in said
to be a closed curve.

Let P and Q be two neighbouring points on the curve.

Let o7 = /(). 00 = 7(t + 8t) = 7+ &F. Then &7 — 00 — OP — PO

Then %is along the vector PQ. As EQP, PQ and hence
% tends to be along the tangent to the curve at P.

Hence alt0%= % will be a tangent vector to the curve at P.

(This % may not be a unit vector)




VECTOR CALCULUS

CURL OF AVECTOR
Def: Let f be any continuously differentiable vector point function. Then the vector function

defined by i’xi+]xﬂ+ﬁxﬂis called curl of f and is denoted by curl f or (Vx f).
OoX oy oz
Curl f = ix +]xi+Exi= i_><i
oy %) OX
Theorem 1: If f is differentiable vector point function given by f = fi + f, ]+f3lz then curl f
N e P A N e A A T e A A
oy oz 0z ox ox oy
of, of, -
Proof : curl f le—(f) le—(f|+f J+fk)=> =2k -=2]
ax oX
(e e ) ai P} (T2
OX OX oy oy oz oz

(5-%)15-5)15-3)
=i | R e R R
oy @z oz ox ox oy

Note : (1) The above expression for curl f can be remembered easily through the representation.

i Kk

curl f = o 0 @9 =vx f
oX oy oz
f, f, f

Note (2) : If f isa constant vector thencurl f= 0©.
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Physical Interpretation of curl

If Wis the angular velocity of a rigid body rotating about a fixed axis and Vis the
velocity of any point P(x,y,z) on the body, then W = % curl V. Thus the angular velocity of
rotation at any point is equal to half the curl of velocity vector. This justifies the use of the word
“curl of a vector”.

2. Irrotational Motion, Irrotational Vector

Any motion in which curl of the velocity vector is a null vector i.e curl V=10 is said to
be Irrotational.

Def: A vector f is said to be Irrotational if curl f = 0.

If fis Irrotational, there will always exist a scalar function ¢(x,y,z) such that f =grad
. This¢ is called scalar potential of f .
It is easy to prove that, if f =grad ¢, then curl f=0.

Hence Vx f =0 < there exists a scalar function ¢ such that f = V.

This idea is useful when we study the “work done by a force™ later.
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1:If = xyzi_+2x2yz]—3yzzlz'ﬁnd curl tat the pOint (1,'1,1).
Sol:- Let = xy?i +2x%yz j -3yz° K . Then

curl i=Vxi=1|2

O SR R R B S - S R
.(5(_@2 -2 o yz)]+ J(E(Xy )~ oy )]+k(&<2x -2 0y )j

= i_(—322 — 2xzz)+ j(0-0)+k(4xyz —2xy) = —(322 +2x2 y)i +(4xyz - 2xy )k

=curl 7 at(1,-1,1) = -i-ax.




VECTOR CALCULUS

Prove that divcurl f =0

Proof : Let f =f,i + f,j+ f.k

i k
0
oz
f

Q| —y

R|o

seurl f=vxf=

—h
iy
—h

w

[8f3 afz]-— (6f3 afl)* (8f2 aflj_
=sl—/l-|——|]+ = k
oy oz ox oz X oy

div curl f =V.(Vx f_)=E oA o, _2(%_@j+ﬁ o, o,
ox\oy oz ) oy\ox oz) oz\ ox oy

oM, o, oy oty oy oty

X0y Oxor  oyox oyor  owox ooy

Note : Since div(curl f)=0, we havecurl f is always solenoidal.




VECTOR CALCULUS

2 2 2 2 .
Thus the operator V E;(_ﬁ%%‘;_z is called

Laplacian operator.
Note : (i). Vo= V.(Vd) = div(grad ¢)
(ii). If V>9=0 then ¢ is said to satisfy

Laplacian equation. This ¢ is called a harmonic
function
Find div £, where £= grad (X>+y>+z°-3xyz)

Sol: Let ¢= x*+y*+z°>-3xyz. Then
F=grad ¢
. 0¢ — 2 = 2 H 2 [ =
=Z|&—3(x -y +3(y° —zx) j+3(x* —xy)k =
Fi+F,j+Fk (say)

~div g=%, % F = 6x+6y+62= 6(X+y+2)

ox oy oz

i.e div[grad(}C+y>+2°-3xyz)]= V(X +y +2°-

3xyz)= 6(x+y+z).



DIVERGENCE

Prove that divaurt=o

Proof : Let f =f,i + f,j+ f.k

Q| —y

k
curlf_=V><f_=i o
OX 0z

f3

—h
N

fl

[6& afz)— (afs afle (afz afl)—
= =—-=|1-|=-=|]4+ =-—=1k
oy oz X oz X oy

. div el T=vxfy=2 [ T _3(%_@)+ﬁ o, 0
x\oy ) oy\ax o) alox oy

_82f3 _52f2 _82f3 +52f1 +62f2 _azfl B
OX0y OX0Z 0Oyox oyoL 0z0x ooy

Note : Since div@nf)-0 we haveurt is always

solenoidal.




VECTOR CALCULUS

If F=(x"-27) i-6yz i+8x%z~ k, evaluate [F. .ar from the
pPoint (0O,0,0) to the point (1,1,1) along thhe Straight

lime from (0,0,0) to (1,0,0), (L,0,0) to (1.,1,0) and
(1,1,0) to (1,1,1).

Solution : Given = (x°-27)i -6yz i+8xz~ k
N ow Fr=— xi+yvj+ zk — dr = dxi—+ dyj+ dzk
F.dr = (x°-27)dx — (6yz)dy +SxzZd=
(i) Along the straight line from O = (0,0,0) to

A = (1,0,0)
Here v —mO =z and dy=dz=0. Also x changes

frorm O to 1.

~f F.dr= j' (<x"-27)dx = [%3—27x:|1= %—27=_380
(ii) Along thhe straight lime from A = (1,0,0) to B
= (1.1,0)
Here < =1, z=0 — dx=0, dz=0. y changes

fromrm O to 1.




VECTOR CALCULUS

Along the straight line from B = (1,1,0) to C =(1,1,1)
X =1=y _dx=dy=0 and z changes from 0 to 1.

_ _ 1 1 371
j F.dr— _[8x22dz= j8xzzdz: 8z \*_8
BC 7=0 7=0 310 3

e - - — 88
(|)+(||)+(|||):>£ Fudr = =




VECTOR CALCULUS

Find the work done by the force r = zi+ij+ vk, wWhen it
moves a particle along the arc of the curve = cost i +
sint j-t kfromt=0tot=2

Solution : Given force r = zi+ xj +y «and the arc is «

=cost i +sint j-tk
l.e., X =cost,y=sint, z = -t
-di=(-sint i +cost j-«)dt

- r.di= (-t i+cost j+sint k). (-sint i + cost j- k)dt = (t

sin t + cos® t — sin t)dt




VECTOR CALCULUS

Hence work done = | F.d: = [ (tsint+cos’t—sint) dt

0

2

V3 2r 2z
= [t(-cost)]." - I (—sint)dt+j 1+0552t dt—_[sint dt
0 0 0

1(, sin2t)”
= —2n—(cost)§”+5(t+T) +(cost )"
0

- —27[—(1—1)+%(27r)+(1—1) =2r+nm=—-7




SURFACE INTEGRAL

Surface integral

1S called surface Integral




SURFACE INTEGRAL

Evaluate II_:.ndS where F = zi + xj — 3y’zk and S is the surface x? + y* = 16 included in the

first octant betweenz=0and z = 5.
Sol. The surface S is x* + y* = 16 included in the first octant between z = 0 and z = 5.

Let db=x*+y*=16
Ten V=i k% _oxis 2y
oXx "oy oz
unit normal N = Vo _ Xity] (-0 x* +y? =16)

Ve 4

Let R be the projection of S on yz-plane
dydz
1

Then IF ndS = ﬁF




SURFACE INTEGRAL

Given F =zi +xj — 3y’zk

F. ﬁ:%(xz+xy)

— : X
and n.l=—

4
In yz-plane, x =0,y =4

In first octant, y varies from 0 to 4 and z varies from 0 to 5.
r 5 ( XZ+ Xy \dydz

4 ) x
4

[Fnds

y=0 z=0

= r I: (y+2z)dz dy

y=0

=90.




SURFACE INTEGRAL

If F =2zi+xj— 3y’zk, evaluate II_:.ﬁdS where S is the surface of the cube bounded by x =0,
S

Xx=a,y=0,y=a2=0,z=a
Sol. Given that S is the surface of thex=0,x=a,y=0,y=2a,z2=0,z=4a, and F =zi + Xj —

3y’zk we need to evaluate I F.ndS.
S

Y a




SURFACE INTEGRAL

the surface x° + y° = 16 included in the first
octant betweenz=0andz=5

Sol. The surface Sis x* +y” = 16 included in
the first octant betweenz=0andz=5
let B=x"+y° =16

Then Vo= f: 8$+ka¢ 2Xi +2Yj

B unit normal n- XIEY] (. y2 1y = 16)
\(P\ 4

Let R be the projection of S on yz-plane

Then [Fnds = [(Fn “:]ydlz‘ cevrrenneee




SURFACE INTEGRAL

![mﬁﬂﬂjﬁlﬁm-ﬂ-i[F.m-]-m.}ifp_m

B S, we have E=Tx = o

s J [ (@ityTes i

nnnnnn

fﬁpm_ fﬂ’@ﬁ'+?1+ 3F).Tdy dz

Z=M=

= f faﬂdy@x=ff@gdz
== v ]

= d(z) =2’




SURFACE INTEGRAL

Bu Sy we hopeR=—"Tx=10

[[Fois= | [ (3774 2)(5)abez=0

N z=0) y=0
D Sgwwe have = y=0

[[Fnds= [ [ (¥i+a+rR)jds=d | | dico=a[ade=a'(2);
5 70 x=0 =0 x=0 0

=a

BueS,wehereR=—],y=10




PROBLEM

B Fum hove = —F,v=10
M @

jlﬁpm: _@, f—ﬁﬁ+fﬁ)x-ﬂ-ﬁdx.¢z= g

O Sy we hepei=kz=an

JJM“‘*- f ﬂr’%y—"-mﬂrz) Edx dy

=l =i -

ﬁf&“&mdy-ﬂﬁxjﬁy e =

=i 2=l




PROBLEM

fﬁmm; f fiﬁﬂ'fﬂ-(-ﬁdxdyz ;
£ s

Tm_ﬂ’ﬁﬁwﬁﬂﬁ= a® +8+a® 4+ 0+ 2° +0=3a"




GAUSS DIVERGENCE THEOREM

GAUSS’S DIVERGENCE THEOREM
(Transformation between surface integral and
volume integral)

Let S be a closed surface enclosing a volume

V. If ris a continuously differentiable vector
point function, then
[divFdv=[F.n dS

When nis the outward drawn normal vector at
any point of S.



GAUSS DIVERGENCE THEOREM

Verify Gauss Divergence theorem for

F = (x* —y2)i- 222y7+ 2k taken over the surface of the
cube bounded by the planesx=y=z=2a and
coordinate planes.

Sol: By Gauss Divergence theorem we have

j F.ndS = j divFdv

RHS = J-J-J-Gx —2x*+1)dxdydz= fJJx +1)dxdyvdz= jj( +x)ﬂdvdz
i

1]

:[—+aJ —+a3 ...... (1)

000 o

{5 vapneff5efora-{5ee




GAUSS DIVERGENCE THEOREM

(i) For S; = PQAS; unit outward drawn normal 7-:

x=a; ds=dy dz; 0<y<a,

~Fn=x-yz=a’—vyzsincex=a

I I F.ndS = j .T (a*- yz)dydz

y
4

C

P

0<z<a



GAUSS DIVERGENCE THEOREM

For S, = OCRB; unit outward drawn
normal
L — —1

X=0; ds=dy dz; O<y=a, y=z=<a

Fil=—(x*—vz)=vyzsincex =0

= = i
J‘ T j j Vvzdvdz = j [}?] =zd=
=0 =0 =0

=
=

g
|

(]

a
= ﬂ? fzdzz%..-{fﬁ}
==

i




GAUSS DIVERGENCE THEOREM

For S3 =RBQP; Z =4a; ds = dxdy; 1 = k

— Ay, UV_Z ¥y _

Fn=z=asincez=a




Verify divergence theorem for 7 - i+, 2k Over the

surface S of the solid cut off by the

plane x+y+z=a in the first octant.

Sol; By Gauss theorem, [Funas = [divFdv

Letgg = x4+ v+z—a bethe given plane then

o _, 00 104,
ox oy oz

:5¢ - iy T
sgradg= > i—=1i+j+k
gradg=>" o j

grad ¢ _I+f+I_c

Unit normal =

lgrad | 3




Let R be the projection of S on xy-plane

Then the equation of the given plane will be x+y=a = y=a-x

Also when y=0, x=a

IEH ”Fndxdy

T
- ‘+ 2+ 2 o a—x ) ) ﬂ
B ff T =f f [x2+y% + (a—x — y)*ldx dy [ since x +y +z = a
x=0 =0 \I'——fix d'l,i" o0 y=0




GAUSS DIVERGENCE THEOREM

— f; f;'x[zxf + 2y* —2ax + 2xy — 2ay + aldx dy

]

x=0

[2::: v+——|—xv —2axv—av” +a’ v] dx
o

[Exz(a—x]+§(a—x]3 +x(a—x)*—2ax(a—x)—ala—x)*+ a*(a —x)dx

I
B
e

- [Finds :j(_gxs + 30 _2a2x+§a3)dx:%4, on simplification...(1)
0

[




GAUSS DIVERGENCE THEOREM

Given F=x%i+y?j+2%k

dlvF——(x)+ (y)+ (z) 2(X+y+12)

Now m.divf.dv =2 ji T a__x[_y (X+ y+ z)dxdydz

x=0y=0 z=0

il -

& 2 o—x—y
-2 f f [z(x+}r:]+%l dx dy
= o




= J. J. (a—x—v)la+x+ v]dedy
=0 =0

o—x

= | [ @ -Gt ayar= | [ @-x2-y-2maxay
o o0 o o

UE

[az}, _x:F _-'? _x}rzj g—x dx

D'\-._____‘

a4

= J(a—x][:Za: —x? —a,x]dx =T (2)

Hence from (1) and (2), the Gauss Divergence
theorem is verified.




GREENS THEOREM

(Transformation Between Line Integral and Surface
Integral ) [JNTU 2001S].

If S is Closed region in xy plane bounded by a simple
closed curve C and if M and N are continuous functions of

x and y having continuous derivatives in R, then

oN oM
ch Mdx + Ndy = J;J’(g - E]dxdy.

Where C is traversed in the positive(anti clock-wise)

direction




GREENS THEOREM

Verify Green’s theorem in plane for $(3x? — 8v*)dx + (4v — 6xv)dy where C is the region
bounded by y=yx and y=x~ .

Solution: Let M=3x7-8y* and N=4y-6xy. Then
au
dy

=16y, X = _6y
-

\ y=& Ly’
t AT )
. X




GREENS THEOREM

We have by Green’s theorem,

dex+ Ndy = ”[%—% xdy.
C

R

Now J;J‘(% —%dedy = _[J(lBy — 6y )dxdy

1 Jx 1 2 W
:1OH ydxdy:].O j J' ydydx=10j (y?J dx
R x=0 y:)(2 x=0 X2




GREENS THEOREM

Verification:

We can write the line integral along c

=[line integral along y=x+*(from O to A) + [line

Integral along »>=x(from A to O)]

=, +.(say)

NOW I1:fxlzﬂ{[3x2 _ B(xz:]:]dx + [4:{2 _ ﬁx(x::]]zxrix} [ v = 22 = % — Ex]



GREENS THEOREM

=7 (3x% +8x% — 20x¥)dx = —1

And

N | o1

|2

P e O

{(3x2 —8x) dx+(4& _6x? )%dx} = T(sz ~11x+2)dx =

o ly o ysss0=32

From(1) and (2), we have [Jj Mdx + Ndy = ”(% _M xdy.
C

R oy

Hence the verification of the Green’s theorem.




GREENS THEOREM

Verify Green’s theorem for [ [(xy + ¥*)dx + x*dy], where C is bounded by y=x and

y=x"

Solution:By Green’s theorem, we have deX +Ndy = _”(— ——— (dxdy
c RLOX Oy

Here M=xy +¥~ and N=x"-




GREENS THEOREM

The line y=x and the parabola y=x" intersect at O(0,0) and A(1,1)

Now [[|Mdx+ Ndy = | Mdx + Ndy + | Mdx + Ndy...... 1 (D)
1 y y y
c G C,

Along C; (i.e.v = x7), the line integral is

1
j Mdx + Ndy = j [X(X?) + x*]dx + x2d (x?) j (x* +x* + 2x%)dx = j (3x% + x*)dx
G C c 0




GREENS THEOREM

Along C, (i.e.v = x) from (1,1) to (0.,0), the line integral is

I Mdx + Ndy = j(x.x+ x?)dx + x?dx [+ dy = dx]

g 3
=f 3x%dx =3 flﬂxzdx=3(x?}l=(xE']E:O-l:-l .3




GREENS THEOREM

From (1), (2) and (3), we have

=5 _ ;=
J.Mdx+Ndy= ——1

20

.4
Now
N oM
u(&_ﬁ xdy =I£(2x—x—2y)dxdy
=[x = 2% = (2 —x9)]dx = [) (x* — x¥)dx
e N -1
:(zﬁ)ﬁ":;
.05
From(4)and(5),We hﬂﬂedeX+ Ndy=“.(aa—s—%j dxdy

Hence the verification of the Green’s theorem.




111. STOKE’S THEOREM

(Transformation between Line Integral and Surface Integral)
Let S be a open surface bounded by a closed, non intersecting curve C.

If Fisany
differentieable vector point function then ¢_ F.d 7=

[ eurl F.7ids where c is traversed in the positive direction and

71 is unit outward drawn normal at any point of the surface.




GREENS THEOREM

Verify Stokes theorem for F = —v*7 + x?7, Where S is the circular disc
x*+yvi=Z1,z=0.
Solution: Given that F = —v37 + x*}. The boundary of C of S is a circle in xy plane.
x*+ v® = 1,z = 0. We use the parametric co-ordinates x=cosf, v = sinfl,z = 0,0 = § < 2m;
dx=-sinf! d& and dy =cos# df
w¢ Fdr = [ Fdx+Fdy+Fdz = [ —yidx +x3dy
=~|";"T [—sin®@(—sind) + cos?Bcosfldl = f;”(cos‘lﬁ' + sin*8)df
=f;n (1 — 2sin*@ cos*6) dﬁ':f;” d8 — %f;n (2sin@ cosd)? df

:f:?r 48 _%Jr;?r sin®2d8 = (2w — 0) —%f;”(l — cos48)df

= _i i ] 2.1?_ I __ BT __ 3m
—2?I+[ 4E+1E_5m49] =2q — & = 5F _ 3%

o 2 2 z




GREENS THEOREM

T 7 k
vF—iii—E(azafj
Now¥V x T oax dy é= o x°+ ¥
_}FE xﬂ D

~ J (VX F)ads =3 [ (x* + y*)k.fids

We have (k.n)ds = dxdy and R is the region on xy-plane

2 [[(Vx F)ads =3 [[_(x* +y?) dx dy

Put x=r cos®@, v = r sin@. dxdy = rdr d@

risvarying from0Otoland 0= @ < 2m.

3

-
&

. gl — — 2 1 Z .
W J(VXF).oads =3 [T (7 *rdrde =
L.H.S=R.H.S.Hence the theorem is verified.




STOKES THEOREM

Verify Stokes theorem for F = (2x — v)T— ¥z77 — v*zk over the upper half surface of the sphere
x4+ y* + z7 = 1bounded by the projection of the xy-plane.
Solution: The boundary C of S is a circle in xy plane i.e x* + v*=1, z=0
The parametric equations are x=co=8, v = sinf,8 =0 = 27
dx = —sinf df, dy = cosf df

IE.dF :jEldx+Ezdy+E3dz =I(2x—y)dx— yz2dy — y?zdz
=_|';(2x — v)dx(since z = 0 and dz = 0)
2r 2z 2z
= —I (2cos@—sin @) sinAdé = j sin’ ede—j sin26dé
0 0 0

2

=f;:ﬁ 1—52325 dg — f;?f sin28 df = EE‘ — ismza + %.60525] ,

:% (2m—0)+0 —|—%. (cosdm — cos0) =




GREENS THEOREM

k
2 | =%(—2yz+2yz) —j(0— 0) + k(0 + 1) =

Again V X F=| —— P
S

o [V x F)Ads=[ k.Ads = [ [ dedy

Where R is the projection of S on xy plane and k.fids = dxdy
[[dxdy=2aft " dyax=afl VI—aZdx=4[*VI— 22+ isintx]|
Now | Jpaxay =] _,J -, @vax==] vl—-x =4[EVI-xt+osinTixl

1, -
=4 [;sm 1 1] =2=m

.~ The Stokes theorem is verified.




STOKES THEOREM

111.STOKE’S THEOREM
(Transformation between Line Integral and Surface Integral)

Let S be a open surface bounded by a closed, non intersecting curve C.
If Fisany
differentieable vector point function then 56( F.ds=

_I"_q curl F.7 ds where ¢ is traversed in the positive direction and

f1 is unit outward drawn normal at any point of the surface.




STOKES THEOREM

Evaluate by Stokes theorem 955(“"‘ +vldx + (2x — z)dv + (v + z)dz where C is the boundary of
the triangle with vertices (0,0,0), (1,0,0) and (1,1,0).

Solution: Let F.d7 = F.( idx + jdy + kdz) = (x + yv)dx + (2x — z)dy + (v + z)dz

Then F=({x+v)T+(2x—z)j+ (v +2)k

By Stokes theorem, §_F.d7 = [ [_curl F.7ids

Y
T /8(1,1,0)
4

Yi=x

0 — X
P A(1,0,0)

rd
Where S is the surface of the triangle OAB which lies
in the xy plane. Since the z Co-ordinates of O,A and B

Are zero. Thereforei = k. Equation of OA is y=0 and

that of OB, y=x in the xy plane.




STOKES THEOREM

Nowsxr—

& [(x Fl.ide =3 [ (x* +y*)k.7ds

We havegnas-a4and R is the region on xy-plane
& [[ (9% F)ide =3 [] (3 47) dx dy

Put X=r COSs.y =~ stnp= dudy = rar d

risvarying from0to1and Ocs<2=

_-_‘m”@vxpj_%zaﬁﬂf:ﬂﬂ.rdr dm=%

L.H.S=R.H.S.Hence the theorem is verified.




STOKES THEOREM

s et PO0S=CUr| E.xa: éy= a2y

~§F.dF= [ drdy= [ | 24 =i = wrzn of the soar

_ﬂOA AB——xlxl—E






